
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Daniel Hobi, Lukas Winterhalter

Large-scale Bluetooth
Sensor-Network Demonstrator

Master’s Thesis MA-2005-13
Summer Term 2005

Tutor: Jan Beutel, Matthias Dyer

Supervisor:
Prof. Dr. L.Thiele

1st October 2005

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

2

Abstract

Distributed, wireless sensor networks captivate by their scalability and the tight
integration into their environment. Large numbers of self-organizing, autonomous
sensor nodes are envisioned to ease observations in wide-ranging, hardly accessible
terrains.

Both, advances in the fabrication of hardware and the recent progress in wireless
network technologies spawned a great variety of impressive, low-cost prototyping
platforms for wireless sensor networks, utilized by research groups and industry
alike.

Existing development tools however do not scale to the same dimensions. Currently,
wired testbeds are used to develop and test small or medium-sized networks. The
only option for larger networks, as of today, was simulation in a virtual environment.
The problem with both variants is that the sensor network application cannot be
tested in real environments.

The Deployment-Support Network represents a novel tool which addresses this is-
sue. It is a non-permanent wireless cable replacement that provides services to de-
velop, test, validate and deploy wireless sensor network applications.

In this thesis, the concept of the deployment-support network and a first, exemplary
implementation were pursued further. Services to program, control and monitor sen-
sor nodes were specified and implemented.

An extension board for the BTnode platform was designed, manufactured and
tested. This board is used to establish a wired connection between BTnodes that
are part of the deployment-support network and sensor nodes for which an applica-
tion is to be developed.

A permanent setup was installed for demonstration purposes. This demonstrator
may be used for experiments and measurements. Several stability and performance
tests were conducted, and it was shown that the development system presented in
this thesis is well suited for long-term applications.

i

ii

Contents

1: Introduction 1
1.1 Wireless Sensor Networks . 1
1.2 Deployment-Support Network . 2
1.3 Related Work . 3
1.4 Short Task Description . 4
1.5 Thesis Overview . 5

2: Platform: BTnode 7
2.1 Overview . 7
2.2 Banked Memory . 8
2.3 Bluetooth . 9

2.3.1 Scatternet Operation . 10
2.4 Nut/OS . 10

3: Concepts 13
3.1 JAWS . 13

3.1.1 Overview . 13
3.1.2 Connection Manager . 14
3.1.3 Transport Manager . 15

3.2 Remote Command Execution . 16
3.3 Target Programming . 17

3.3.1 Upload to the host node . 17
3.3.2 Flooding the network . 17
3.3.3 Target Flashing . 18

3.4 Self-Programming . 19
3.5 Target Monitoring and Control . 20
3.6 Logging . 20
3.7 DSN Adapter Board . 20

4: Implementation 23
4.1 System Overview . 23
4.2 Remote Command Execution . 23

iii

Contents

4.2.1 Overview . 23
4.2.2 Transport Layer Extension . 25
4.2.3 Messages . 26
4.2.4 Control Flow . 27
4.2.5 An Example . 27

4.3 Program Management . 29
4.3.1 The Bootloader Application . 29
4.3.2 Loadhex . 30

4.4 Code Distribution . 31
4.4.1 Overview . 31
4.4.2 Transport Layer Extension . 32
4.4.3 Messages . 32

4.5 Target Adapter . 34
4.5.1 Reprogramming . 34
4.5.2 Monitoring . 34
4.5.3 Target Control . 36

4.6 Logging . 36
4.7 L2CAP Support . 40
4.8 GUI . 40
4.9 Problems and Difficulties . 42

4.9.1 Nut/OS Interrupt Latency . 42
4.9.2 Missing HCI Flow Control . 42
4.9.3 Speed . 43

5: DSN Adapter Board 45
5.1 Overview . 45
5.2 Power . 46
5.3 Debug (SUART) . 47
5.4 Sensor Board . 47
5.5 ISP Pin Mapping . 48

6: Demonstrator 49
6.1 Installation . 49
6.2 Senso – A Sensor Network Application 50

7: Test Results and Benchmarks 53
7.1 Stability . 53
7.2 Code Distribution . 57

7.2.1 Transfer Rate . 58
7.2.2 Transmission Failures . 59

7.3 Battery . 59

iv

8: Conclusion 61
8.1 Summary . 61
8.2 Future Work . 62

A: Protocol 63
A.1 Connection Manager Packets . 63
A.2 Transport Manager Packets . 64
A.3 DSN Packets . 64

A.3.1 NB Data . 64
A.3.2 CL Data . 65

B: Command Specification 67
B.1 Connection Manager Commands . 67
B.2 Transport Manager Commands . 67
B.3 DSN Commands . 68
B.4 Target Adapter Commands . 69
B.5 Monitor Commands . 71
B.6 Logging Commands . 71
B.7 Other Commands . 71
B.8 JAWS Commands . 72

C: DSN Adapter Schematic & Pin-Out 73

D: Assignment 77

Bibliography 84

Contents

vi

1
Introduction

1.1 Wireless Sensor Networks
Wireless Sensor Networks (WSN) are typically considered as a large number of
small, independent sensor nodes with limited resources and low production costs.
Because of their small physical dimensions, they can be used to monitor all kinds
of real-world phenomena without disturbing the observed environment. Often, the
intention is there to use them in hardly accessible, wide-spread areas. The lack of
infrastructure in these scenarios makes it desirable that the sensor nodes are au-
tonomous units. Popular visions suggest that they organize themselves in wireless
ad hoc networks to collaboratively forward and even process measurement data in
order to provide high-level sensing results. It can be said that the sensor nodes com-
pose in their collectivity a complex distributed system.

As an example, the Argo project [1] is depicted in Figure 1-1. Argo is a global array
of 3000 free-drifting sensor floats that will measure the temperature, salinity and
velocity of the upper ocean layers. The floats use satellite links to transfer the data.
Main goal of the project is to improve the understanding of the ocean’s role in climate
changes.

Generally, developing and testing of such systems is rather difficult for the following
reasons:

• Sensor node complexity. Autonomous behavior, wireless components, sensor
integration, robustness, power, actuators and data processing capabilities have
to be reconciliated.

• Wireless sensor nodes are often embedded systems with limited debugging
possibilities.

• Programming and debugging of many nodes simultaneously requires addi-
tional tools and infrastructure. For large numbers of sensor nodes this can
lead to a scaling problem of the test equipment and become infeasible.

1

Chapter 1: Introduction

Figure 1-1
The Argo project [1] targets global ocean surveillance. A great number of independent floats
have been positioned all over the planet. On the left: an Argo float being deployed from a
research ship.

• Testing the interaction of many nodes in a realistic environment is difficult.
The reason is that wireless sensor networks are often deployed in inaccessible
terrains. The Argo project is a good example.

Simulations of whole wireless sensor networks are possible. However, making
the simulation realistic with respect to sensor node hardware and target en-
vironment is not easy. Often, simplifications and assumptions about certain
conditions lead to a divergency between simulation and reality.

Embedding network programming and debugging features into the sensor network
application itself is widely accepted to be a bad idea. It would increase code size and
complexity of the firmware. Additionally, it would affect performance and network-
ing behavior of the sensor nodes during testing.

1.2 Deployment-Support Network
The increasing efforts both from research and industry have spawned many dif-
ferent platforms and proposals for WSNs. Nevertheless, the large number of nodes
and the need to test them in a realistic physical environment makes developing of
large-scale WSN applications still very hard.

Classic approaches to develop and deploy WSNs use serial cables for reprogram-
ming, testing, monitoring and controlling of the sensor nodes. Although successful in
lab setups (confer next section) this method does not scale very well. For larger num-
bers of nodes, for deployment or even testing in the field, it is infeasible to connect a
cable to each node. As an alternative, often computer simulation environments are
used. These have the advantage that they are highly scalable. However, simulations
can only approximate and have to make assumptions that do not necessarily match
the conditions in the real environment.

2

1.3. Related Work

Figure 1-2
Deployment-support network. Some or all nodes of the sensor network are wired to a DSN
node. The DSN provides wireless connectivity from one or more host controllers (personal
computer) to the target nodes, allowing remote programming, debugging, monitoring and
control.

In [6] a Deployment-Support Network (DSN) has been proposed as a tool for the de-
ployment of large WSNs. The DSN is a non-permanent, wireless cable replacement
that assists in the process of developing WSN applications. The intended features
include remote programming, debugging, monitoring and target control. It allows to
perform calibration and validation of a WSN application in realistic physical envi-
ronments.

Figure 1-2 illustrates the concept. It consists of small wireless DSN nodes which
are attached to the target sensor nodes. Both, the DSN and the target sensor nodes
span up independent wireless networks. The DSN network can be considered as a
wireless backbone network. A host, e.g. a personal computer can be used to access
and control the DSN network by connecting to one of the DSN nodes.

It is expected that this new approach enhances scalability and flexibility with re-
spect to node location, density, and mobility.

In [7] a first implementation called JAWS of such a DSN is described based on the
BTnode platform. It uses Bluetooth to construct a tree-based multi-hop wireless
network. As a first service, it is possible to establish virtual connections between
arbitrary target nodes and a host PC over the DSN network. More details about
JAWS are provided in Section 3.1.

1.3 Related Work
MoteLab [19] is a wireless sensor network testbed located at Harvard University.
It consists of 30 MicaZ sensor “motes” from Crossbow. A special interface board
(MIB600) is used to attach the motes to the departmental Ethernet. It provides

3

Chapter 1: Introduction

reprogramming and data logging capabilities. MoteLab provides a web interface
where users can upload executables, create and schedule experiments to be run on
the moteLab testbed. A persistent data base logs all generated data. The moteLab
software is open source and is used by several other universities.

The sMote [5] testbed at the UC Berkeley follows the same approach. 78 Mica2DOT
sensor motes are powered and connected by Ethernet. The additional Omega testbed
consists of 28 Telos motes (rev B) that are connected by USB for power, programming
and debugging.

TOSSIM [16] is a simulator for TinyOS [9] sensor network applications. It simulates
the TinyOS network stack and provides different abstraction models for the under-
lying hardware such as RF channels and sensors. It allows to run entire networks
of thousands of sensor nodes.

The EmStar platform [11, 12] tries to improve the simulation by adding the possibil-
ity to interface with real hardware. It provides a wrapper library called EmTOS for
TinyOS applications which makes it possible to simulate a great number of different
motes with the option to communicate over real hardware. The hardware consists
of a wired ceiling array of motes that are connected via a serial multiplexer to the
simulating server running TinyOS instances.

Deluge [8, 15] is a network programming protocol to spread program code over a
multi-hop, wireless network. Deluge relies on periodic advertisements to keep nodes
informed of their neighbors’ states. Nodes can send requests to receive parts of newer
program data. An implementation is available for TinyOS.

1.4 Short Task Description
The goal of this thesis is to develop a permanent installation of the JAWS
deployment-support network in the TIK building. For this purpose, the system has
to be further improved and extended.

• Get familiar with related work. Perform a literature research.

• Evaluate the existing JAWS software. Determine missing features and poten-
tial bugs.

• Propose and develop a physical target connection for different targets.

• Implement the necessary DSN services remote command execution, code dis-
tribution, target programming, self-programming, etc. according to the deter-
mined requirements.

• Present proposals for distributed power, fixation, case. Deploy a permanent
JAWS installation.

• Perform tests and benchmarks, interpret the results.

• Document your work accurately in a presentation, a small demonstration and
a final report.

For the entire assignment, please refer to Appendix D.

4

1.5. Thesis Overview

1.5 Thesis Overview
The thesis is organized as follows. In Chapter 2, an introduction to the BTnode and
the wireless network technology Bluetooth is given. Chapter 3 begins with a dis-
cussion of the existing JAWS framework, followed by our proposals to extend it. In
Chapter 4, implementation aspects of the added services are described. In Chapter
5, an new adapter hardware is presented that allows to connect different targets to
the DSN nodes. In Chapter 6, the sensor-network demonstrator consisting of per-
manently installed DSN nodes is described. In Chapter 7, we present the obtained
test results and benchmarks. Finally, Chapter 8 concludes the thesis.

5

Chapter 1: Introduction

6

2
Platform: BTnode

2.1 Overview
The BTnode [20] is a small, autonomous wireless communication and computing
platform developed at ETH Zürich by the Computer Engineering and Networks Lab-
oratory (TIK) and the Research Group for Distributed Systems.

Figure 2-1
BTnode rev3. The printed circuit board is mounted on a 2 AA cell battery case.

It is used in research on mobile and ad-hoc connected networks (MANETs) as well
as distributed wireless sensor networks.

The BTnode is a dual radio device built around an Atmel Atmega128l microcon-
troller. An overview of the system is given in Figure 2-2. It features both a Zeevo
ZV4002 Bluetooth system as well as a Chipcon CC1000 low-power radio. The
BTnode can power and use both radios independently. The Bluetooth radio supports
7 slaves per piconet and up to 4 independent piconets for scatternet operation. The
low-power Chipcon radio is the same as used on the Berkeley Mica2 Motes. Note

7

Chapter 2: Platform: BTnode

that it remains unused in this thesis. Four LEDs of different colors allow to provide
status information and are useful for debugging purposes.

Figure 2-2
BTnode System Overview.

The Atmega128l is an 8-bit RISC microcontroller running at frequencies up to
8 MHz. Most instructions are executed in a single clock cycle. On the BTnode, the
system clock is generated from an external 7.3728 MHz crystal oscillator. The At-
mega128l provides 128 kB in-system reprogrammable flash, 4 kB EEPROM and
4 kB internal SRAM. Section 2.2 explains how 240 kB additional memory are made
available on the BTnode.

The integrated peripherals include general purpose I/O pins, several 10-bit ADC
inputs, JTAG, serial peripheral interface (SPI), two-wire serial interface (TWI1) and
two universal asynchronous receiver transmitters (UART).

On the BTnode, the ATmega128l is connected over the second UART with the Blue-
tooth module. The first UART is available to applications. It is mainly used as debug
and control interface by connecting with standard terminal emulator software.

2.2 Banked Memory
As mentioned before, the Atmega128l comes with 4 kB internal RAM. Additionally,
it features an external memory interface which drives the ports A, C and G when
enabled. Operating on 16-bit addresses, up to 64 kB external RAM can be attached.
However, the first 4 kB are not accessable because they are mapped to the internal
memory.

Figure 2-3 shows how 240 kB additional SRAM are made available on the BTnode.
Two general purpose I/O pins (PB7 and PB6) are used to access data beyond the first
60 kB, otherwise not addressable via the standard interface. The external memory
is divided into four equal sized memory banks. By default, only bank 0 is available
providing 60 kb additional data memory. In order to access memory bank 1 to 3,
from now on referred to as storage memory, special memcopy routines exist that
control the two additional address lines:

u_char cpy_to_xbank(void * buffer, u_long addr, u_short len)
u_char cpy_from_xbank(void * buffer, u_long addr, u_short len)

1Also known as I2C.

8

2.3. Bluetooth

Figure 2-3
External SRAM connected to the Atmega128l.

With these functions data can be read from or written to storage memory. The ad-
dresses addr are 32-bit wide starting at zero and allow to address the 180 kB stor-
age memory transparently.

One thing to note is that changing the memory bank in these functions requires that
interrupts are disabled. This is due to the fact that the Nut/OS interrupt handlers
may access data in external memory which is stored in bank 0. Therefore, it has to
be made sure that no other bank is mapped in when an interrupt is executed.

More information about BTnode memories can be found in [10].

2.3 Bluetooth
Bluetooth is a short-range radio technology designed for wireless connectivity be-
tween all kinds of devices. The design goals were small size, low price and minimal
power consumption.

Bluetooth operates in the license-free 2.4 GHz ISM2 band. It uses a frequency-
hopping scheme to improve robustness against interferences from other sources.

Figure 2-4
Bluetooth Protocol Stack.

In the following, we describe the basic Bluetooth layers depicted in Figure 2-4:
2Industrial Scientific and Medical

9

Chapter 2: Platform: BTnode

Baseband The Baseband layer controls the physical radio. It performs inquiry and
paging to find and access nearby devices.

The Baseband layer provides different types of transport links between de-
vices. The Asynchronous Connection-Oriented (ACL3) link type supports sym-
metric and asymmetric channels. The symmetric channel can transfer data
up to 433.9 kbit/s in both directions. The asymmetric channels supports data
rates up to 723.2 kbit/s in one direction and 57.6 kbit/s in the reverse direction.

ACL supports forward error correction and simple packet retransmission to
provide basic reliability.

LMP The Link Manager Protocol is used for connection setup and control. Respon-
sibilities of the LMP also include authentication and security services.

HCI The Host Controller Interface provides a uniform interface to the LMP and
Baseband layers. It is the dividing line between the Bluetooth controller and
the host controller.

L2CAP The Logical Link Control and Adaption Layer Protocol lies on top of the
Host Controller Interface. L2CAP uses an abstraction called channels to allow
multiple data flows over a shared ACL transport link between two Bluetooth
devices. The channels are used to provide protocol multiplexing for higher pro-
tocol layers. Additional features include segmentation and reassembly of upper
layer data and reliable packet transmission.

SDP The Service Discovery Protocol is used to search for services on a remote Blue-
tooth device.

RFCOMM The Radio Frequency Communications Protocol emulates a RS-232 ser-
ial connection between two Bluetooth devices over a L2CAP connection.

2.3.1 Scatternet Operation
Bluetooth devices have to synchronize to the same frequency hopping sequence in
order to transmit data. This is done during connection establishment. When con-
nected, the devices form a piconet. In every piconet there is one master to which
up to seven slaves can be connected. The hopping sequence and its phase are deter-
mined by the Bluetooth address and the clock of the master device and are therefore
unique for every piconet.

It is possible that a Bluetooth device takes part in more than one piconet by ap-
plying time multiplexing. Note that every device can only be master of one piconet,
however, it may act as a slave in other piconets at the same time. This form of over-
lapping, when several piconet are interconnected, is called scatternet (see Figure
2-5).

2.4 Nut/OS
Nut/OS [2] is a simple general purpose operating system for embedded devices de-
veloped by an active open source community. Its features include:

3It is clear that the most obvious abbreviation would be ACO. However, according to the Bluetooth
1.2 specification this acronym had already an alternative meaning from a previous version.

10

2.4. Nut/OS

Figure 2-5
Bluetooth networks: Piconet (a) and multiple piconets connected to a scatternet (b).

• Non preemptive, cooperative multi-threading

• Thread priorities

• Events

• Timers

• Dynamic heap memory allocation

• Interrupt driven streaming I/O

The BTnut system software extends the Nut/OS by providing BTnode specific
drivers and libraries. Most notably, a Bluetooth stack and several communication
protocols have been implemented.

11

Chapter 2: Platform: BTnode

12

3
Concepts

In the following, we present our proposals to extend the existing JAWS software.

3.1 JAWS
3.1.1 Overview
JAWS [20] is a project that aims at implementing the deployment-support network
concepts described in Section 1.2 for the BTnode platform. The JAWS application
uses Bluetooth ad-hoc networking to autonomously interconnect the DSN nodes. By
default, it establishes a tree-based topology as illustrated in Figure 3-1.

Figure 3-1
JAWS deployment-support network. The DSN nodes autonomously construct a multi-hop
Bluetooth scatternet. The DSN nodes allow to control the attached targets from the host
controller on the left. Here, Berkeley Motes are shown as exemplary targets.

The blue and red circles represent BTnode devices that take part in the DSN Blue-
tooth scatternet. The blue ones are master of their piconet while the red ones are

13

Chapter 3: Concepts

slaves. As explained in Section 2.3 a device can be master and slave in different pi-
conets. Wireless sensor nodes, in the image referred to as target nodes, are attached
over a wired connection to the DSN nodes.

One or more host controllers can hook into DSN nodes to control the target devices
over the DSN network. The host controller is nothing else than a user device, usually
a personal computer connected over USB with a DSN device (see Figure 5-2 on page
46). DSN nodes that are attached to a host controller are in the following denoted
as host nodes.

A simple graphical user interface allowed to visualize the network topology and to
control the DSN nodes. A first service that JAWS already provided, was the possi-
bility to establish transparent virtual connections over several hops between one or
more DSN nodes with attached targets and a host node.

A principle idea of JAWS is that the DSN nodes autonomously construct a network
topology, but do not initiate further multi-hop network traffic. This is done exclu-
sively by the host nodes that pass user requests into the network.

Because the Bluetooth standard does not specify the formation and control of net-
work topologies or how data transport over multiple hops can occur, these func-
tionalities have to be provided by the JAWS application. This is described in the
following two sections.

3.1.2 Connection Manager
The connection manager constructs and maintains a multi-hop network of DSN
nodes. The basic principle is simple: Every DSN node periodically searches for other
nodes in its neighborhood and connects to the discovered devices based on certain
conditions.

The default connection manager forms tree topologies. The tree structure is main-
tained by two parallel threads. The inquiry thread (Algorithm 1) periodically per-
forms inquiries and randomly connects to one of the discovered DSN devices.

Algorithm 1 Connection manager: Inquiry thread
loop

neighbors := inquiry()
randomly select neighbor n from neighbors
connect to n

end loop

The packet-handler thread (Algorithm 2) processes topology control packets that are
exchanged between connected devices. Two types of packets are distinguished:

• tree ID packet: This packet type is used to prevent and detect cycles in the
network topology.

• negotiation packet: This packet type is used to compare tree-IDs between
neighboring nodes.

14

3.1. JAWS

All nodes in the same network share the same tree-ID. Initially, every node is in its
own network with the tree-ID set to its unique Bluetooth address.

When two nodes connect, they exchange negotiation packets and compare their IDs.
If the two nodes were not in the same network before, their IDs will differ. The
node with the smaller ID adopts the higher ID of the newly connected neighbor as
its tree-ID and broadcasts this new ID to all nodes in its subtree with the smaller
tree-ID.

Whenever a node receives a tree-ID packet broadcast containing an ID different
from its own, it adopts this new ID. If the received ID is its own ID, there is a cycle
in the network and the link over which the broadcast arrived is dropped.

If a node loses a link over which the current tree-ID was received, the node broad-
casts its device address as new tree-ID for its subtree.

Algorithm 2 Connection manager: Packet-handler thread
loop

packet := wait for packet()
if packet.type = tree ID packet then

if local tree ID = remote tree ID then
drop connection

else
local tree ID := remote tree ID
broadcast local tree ID to my subtree

end if
end if
if packet.type = negotiation packet then

if local tree ID = remote tree ID then
drop connection

else
if local tree ID < remote tree ID then

local tree ID := remote tree ID
broadcast local tree ID to my subtree

end if
end if

end if
end loop

This local algorithm provides self-healing tree topologies and is expected to scale
well to a large number of nodes.

3.1.3 Transport Manager
The transport manager takes care of multi-hop packet forwarding. It receives
information about available connections from the connection manager via the
tp_reliable_con_change_cb callback function (see Figure 4-1 on page 24).

For the transport manager the concept of host nodes are important. As explained
before, a host node is a user controlled DSN node. Hence, the host node is a source

15

Chapter 3: Concepts

for commands and a sink for data from the DSN. Multiple host nodes in the same
network are possible.

When communication is initiated by a host node, the network is flooded with a route
request message. Each DSN node stores the connection handle over which such
messages arrived on in a host table; this is the route back to the host to be used on
the return path.

The transport manager provides a connectionless transport type based on this prin-
ciple. The data is always broadcasted to all nodes. It can be specified whether all or
only a certain device address actually receives the packet (i.e. the packet is passed
to the upper layer). The DSN nodes can send back reply messages to the host which
is known by all intermediate nodes at this point.

A second option is to route packets based on ATM virtual-circuit switching. When
a node receives packets of this type, it automatically forwards traffic to the appro-
priate connection based on a virtual-circuit identifier. The connectionless transport
mechanism explained above is used to establish these virtual connections between
any two nodes in the network. Virtual connections are efficient for large data trans-
fers.

In case of link failures, the host and all endpoints of broken virtual connections are
notified, and all virtual-circuit identifiers removed from the local tables. In addition,
when a node loses a link to a known host node, it informs the nodes in its subtree
about the loss such that they can delete this host from their host tables.

Retransmission of lost packets in case of link failures is not performed and has to
be taken care of by higher application layers.

3.2 Remote Command Execution
The transport layer of the existing JAWS provided already a simple interface
(tp cmd) to execute registered terminal commands on remote DSN nodes. We
wanted to extend this functionality to address the following issues. First, an im-
portant missing feature was command output. The existing mechanism merely exe-
cuted the command but did not collect and send back the output to the source node.
Secondly, time-consuming commands were a problem. tp cmd is direct part of the
transport layer and therefore execution of a command blocks other transport activi-
ties such as packet forwarding.

We defined a new remote command execution service which is able to do the follow-
ing (without affecting the transport layer):

• Send a command string to remote nodes. Unicast as well as broadcast shall be
supported.

• Execute the command on the specified remote node(s) and collect the output (if
any).

• Send the result back to the host node.

16

3.3. Target Programming

3.3 Target Programming
Loading new program code into the target’s flash memory is one of the key features
of a DSN. Basically, three steps have to be performed:

1. Load the program from the PC to the wired host node.

2. Distribute it to every other DSN node over Bluetooth.

3. Let one (or all) DSN nodes flash their targets with the received program.

3.3.1 Upload to the host node
As explained in Chapter 3.1, the host node is connected to a personal computer
by a serial connection over USB. The target program is stored in an Intel HEX
file. Our idea was that the user should be able to transfer this file to the host node
directly over the serial interface for simplicity. Terminal emulator software typically
supports sending of a plain text file (which a Intel HEX file is). Thus, it is possible
for the user to upload her programs without additional tools. The host node has to
know the Intel HEX format and converts the incoming program into the bootloader
format (see Section 4.3.1). We defined a new terminal command called loadhex for
this task which is explained in Section 4.3.2.

3.3.2 Flooding the network
The next step is to send the program from the host node to all other nodes. The
desired features of this process are:

• Robustness. Changes in network topology or packet loss should not interfere
with code distribution.

• Short distribution time. All nodes should receive the uploaded program as fast
as possible.

A first idea was that the host node uses broadcast packets to send the program to
all other nodes simultaneously. This approach would have been fast but not very
reliable. Especially because one major problem we had to face was packet loss due
to missing flow control in the Bluetooth chip (see Section 4.9.2). Sending the packets
too quickly leads to congestion at nodes that have to forward the data to more than
one link. Another problem is when the topology changes due to link loss. The nodes
in the subtree that have been disconnected will receive the program only partially –
if at all.

To cope with these problems we followed a different approach (Algorithm 3). Each
node independently advertises its own program to its immediate neighbors. If a node
has a program in memory it will send information about this program from time to
time to its neighbors. The neighbors decide based on the given program information,
whether they want to download it from the advertising node or not. In our case, the
decision is based on the program version. After some time, all nodes will have the
newest one. If transmission of a program between two neighbors failed1, the node
will try to redownload automatically when the program gets advertised again.

1Because the receiving node doesn’t have to forward these packets, transmission errors due to
packet loss (because of congestion) are not very likely, provided that there is not much other traffic.

17

Chapter 3: Concepts

The main characteristics of this code distribution scheme are:

• Simple and robust.

• Completion time depends on the topology.

Algorithm 3 Code Distribution (Sender)
loop

wait some time
for for all neighbors n do

send program information to n
wait for reply with timeout
if reply = ack then

send program to n
end if

end for
end loop

3.3.3 Target Flashing
In the final step, the DSN nodes flash their targets with the new software. The
target has to be attached to the DSN node over a wired connection suitable for
programming. Based on our task description, we concentrated on targets based on
the Atmega128l microcontroller. This includes, besides the BTnode, also the Mica2
and Mica2Dot.

There are four possibilities to program this type of microcontroller:

• Serial interface (UART). The target is flashing itself with the program data it
receives over a serial interface. Programming this way works only if the target
has special software installed that performs the flashing.

• JTAG. This interface is often used on microcontrollers to provide debugging
capabilities and provides a fast programming mode. It occupies four pins when
enabled. On the Atmega128l, all of these pins lie on the ADC port. This may
restrict the target’s possibilities to use sensor or sensor boards.

• Parallel Programming. This is a high-voltage parallel programming mode us-
ing many pins. Not intended for our purposes.

• Serial Downloading. Memory programming over the SPI programming inter-
face.

We have chosen Serial Downloading for the following reasons:

• It does not depend on the firmware running on the target.

• The pin mapping does not collide with any target functionality of the BTnode.

• It uses an instruction set that is simple to implement.

• In a former semester thesis [14] some experiences where already made with
Serial Downloading on the BTnode.

18

3.4. Self-Programming

3.4 Self-Programming
Being in active development, it is a desired feature that the DSN is able to up-
grade itself. A way to distribute program code was already presented in the previous
section. To reprogram themselves the nodes can use the boot loader feature of the
Atmega128l.

The program memory on this microcontroller is divided into application and boot
flash section (Figure 3-2). The size of the boot flash section can be configured by
fuse settings. It can be used to hold a small, resident program that writes to the
application section.

Figure 3-2
Atmega128 program memory layout [4]. The reprogrammable flash memory is organized as
64k x 16. The memory space is divided into an application and a boot section.

The BTnut system provides such a bootloader application. On system reboot, it
checks the serial interface and the storage memory for new firmware. If there is
a new program, it is transferred to program memory and started.

So, once the program is distributed, self-programming can be done by resetting the
nodes.

19

Chapter 3: Concepts

3.5 Target Monitoring and Control
Besides reprogramming, the DSN should also provide means to monitor and control
the targets. For the monitoring part we wanted to reuse the planned logging system
by defining a special log class that receives all output from the target.

To allow these concepts, further communication between the two is required. Possi-
ble options to connect them depend on the type of the target and are discussed in
Section 3.7.

3.6 Logging
Log messages consist of a log class, a log level and an arbitrary string, usually a
human-readable text message. The log class specifies the origin of the message and
provides a way to distinguish different message types. The log level marks the sever-
ity of the message, ranging from critical errors which compromise the system up to
debug information.

A set of log masks shall be used to determine the behavior of each pair of log class
and level. A log mask consists of one bit for each level and specifies whether the
associated operation should be performed (1) or not (0).

The log module shall further provide services to capture, store and show log mes-
sages generated by both the target node and the DSN node. The services shall also
include a mechanism to send all or specific log entries to a remote host. This mech-
anism should be triggered by hand or automatically. Thus, allowing important mes-
sages to be sent to the host immediately.

3.7 DSN Adapter Board
One goal of this thesis is to develop a concept for the integration of DSN nodes with
target sensor nodes as depicted in [6]. An experimental connection was used in [14],
however no large-scale solution is available up to now.

The first question that arises is which target platform to support. The most obvious
and convenient solution is to use BTnodes for the DSN network as well as the target
network. Particularly since the BTnode device was developed at the ETH Zürich
and is the most used platform among research groups involved in wireless sensor
networks at our university. The Berkeley Mica [13] and Mica2 Motes are another,
even more widely spread platform (as mentioned in Section 1.3). Fortunately, the
BTnode and the Mica Motes are quite similar as both feature an Atmel ATmega128l
microcontroller, and may be connected likewise to a DSN node. This is the reason,
why we opt for a solution which can be used to connect BTnodes and Mica Motes
interchangeably.

Another emerging wireless sensor platform is Telos [18], the latest low-power de-
vice developed at the UC Berkeley. As its interfaces are quite different, our target
adapter is not required to be compatible to the Telos platform.

There are various methods to connect two ATmega128l featured devices. One can
distinguish between the way to program a target node and how to communicate at

20

3.7. DSN Adapter Board

runtime. The programming methods are described in Section 3.3.3. As stated there,
Serial Downloading is the only feasible method for programming a target node in
our environment.

Then, the following ways to communicate with the target node exist:

• Connection of custom pins. This would require the definition and implemen-
tation of an own communication protocol. This may be the best method for a
simple communication scheme or for some special purpose cases.

• Two-wire Serial Interface (TWI). Simplex, device addressing, requires two bi-
directional lines. Compatible to the I2C bus by Philips.

• Serial Peripheral Interface (SPI). Duplex, no addresses, requires four lines.
Similar to TWI, but more data streams oriented.

• UART serial interface. Requires two wires, four if hardware flow control is to
be used. Widely used standard interface.

• JTAG Interface. Complicated, a controller would need to be implemented in
software. Albeit it would possibly provide the best debugging facility.

The serial communication using an UART port is the simplest connection method
that still provides enough flexibility and bandwidth to allow for a sophisticated de-
bug and status interface. As almost every computer has a serial port, it is also easy
to debug the target interface itself during the development phase. Additionally, the
data transmit and receive pins of the target’s first serial port already have to be con-
nected to the DSN node for the programming interface. For these reasons, we have
chosen the UART serial connection to connect target nodes and DSN nodes.

A first hardware proposal consisted of a custom PCB (Printed Circuit Board) con-
necting the DSN BTnode with either another BTnode or a Mica Mote as target sen-
sor node. This board would have had connectors for the nodes as well as for a Mica
sensor board featuring a light sensor, temperature sensor, microphone with tone
detector, sounder, magnetometer and an accelerometer. However, as the extension
connecters mounted on the BTnode and the Mica Mote are not the same, it would
have been necessary to develop either a board with both connectors or two board
variants.

The final hardware design is based on a wired connection between the nodes. An
extension board will be attached to the DSN node as well as the target node. Both
boards have a connector that meets the 6-way SPI pin-out specification used by
Atmel. A standard 6-pin cable is then used to connect two nodes. As there is already
a Mica adapter using the same SPI interface, this solution is compatible to the Mica
platform per se. Other compatible devices include the Atmel STK500 developer kit
and some ISP programmers. For the BTnode, an adapter board has to be designed.
This solution is way more flexible as it not only allows to connect BTnodes and Mica
Motes without a change in hardware, but it can also be used as an interface for
future devices. We thus implement this connection method.

An important aspect of a permanent installation of DSN nodes is the power supply.
The aim is a distributed power system. Although it should be possible to supply each
node with current from batteries, changing them every week – or even every day –

21

Chapter 3: Concepts

is not practicable. Therefore, the DSN adapter board has to provide a connector for
an external power supply.

22

4
Implementation

4.1 System Overview
In Figure 4-1, an overview of the JAWS software is depicted. As can be seen, JAWS
uses a modular structure. Transport and connection manager are described in Sec-
tion 3.1. The BTstack thread is part of the BTnut system software. It provides
lower level HCI functionality such as receiving and dispatching of HCI events and
data packets. The con_event_buffer buffers connection events that are later on
processed by the connection manager. Transport and connection manager are regis-
tered as different services and process their packet types independently.

The DSN service layer and the target adapter are new components that have been
implemented in this thesis. The DSN layer uses the multi-hop packet routing func-
tionality of the transport manager to provide different services. The target adapter
is a local module that interfaces with the attached target.

In the following of this chapter the new services in the DSN layer and the target
adapter are described in detail.

4.2 Remote Command Execution
This section describes implementation aspects of the remote command execution
service defined in Chapter 3.2.

4.2.1 Overview
The service registers the following terminal command:

dsn cmd <trans-id> [<addr>] [<remote-cmd>]

The remote-cmd is a normal command string. If this argument is omitted, the dsn
cmd will ask the user explicitly to enter a command string.

23

Chapter 4: Implementation

�� � ����

�	��
��� ����

� �� �� �� ��� �� ��

��� �� � ��

��� �� � ��� ��

��� ��� � �����
��

�� ���� ��� �� �����

�
 � ���� � ���
�����

�� �� ���

������ ���� � 	�	
� �

� �	��� ��

� �� � ��� � � � ��� �

� �	��

� ���� ��

��� ���� ���

� � �� �� �� �� �� �� ���� ����� ������ � �� ���

�	 �
� � � �	� �� �

�� ���

!��� ���� �� ���
�� �� ���

" ����
�� � " ���� # � ��

�� ������ !��� ����

��
���

$" � �
� �"" ���

%��� ���
� ��

� �� ����� ����
���� �

�& �� ���

��� �" �
�� ���

�� �� � �� ���

�� �� �� ��

Figure 4-1
JAWS Overview (receiving side).

The addr is the remote Bluetooth address where the command shall be executed. If
this argument is omitted, the command is sent to all nodes (broadcast).

Now, the trans-id field deserves some special attention. Imagine that the user
sends a rather time consuming command such as flashing the target of a DSN
node which takes approximately 30 seconds. It would be a waste of time to block
the terminal just for waiting for the remote command to complete. Therefore, we
wanted the dsn cmd to behave asynchronously, i.e. the command terminates after
the command is sent to the target address. Receiving of the command output is
handled in the background by the transport callback cl_data_cb . This approach
allows the user to issue other terminal commands (possibly dsn cmd on other tar-
get addresses!) while a dsn cmd is in progress on a remote node. In order to distin-
guish the incoming command outputs we introduced a transaction ID. It is a number
which is sent together with the command string. When a node receives a command
string to execute, it will send back this number together with the command output
to the source node. On the source node, the command output can now be mapped to
a previously issued dsn cmd based on this transaction ID.

24

4.2. Remote Command Execution

4.2.2 Transport Layer Extension
An important question for the implementation was how to realize it on the trans-
port level. As already described in Section 3.1.3 the transport layer provides the
concept of virtual connections for multi-hop communication. Despite of its efficient
data transfer we didn’t consider it as a viable solution because of the following rea-
sons:

• The presented remote command execution mechanism is not intended to trans-
mit large amounts of data. The command strings are short and fit into one
packet. The result is not very long either, usually consisting of a few lines of
terminal output. Opening and closing a virtual connection (involves broadcasts
of transport manager commands) would mean a large overhead compared to
the actual data transferred.

• Broadcasting of remote commands would have caused some problems. Either
the host node has to sequently open and close temporary virtual connections
or it has to open and maintain permanent virtual connections to every DSN
node. Both variants were considered to not scale very well.

The transport layer internally uses special broadcast packets to do its job (e.g. to
establish a virtual connection). The terminal command tp cmd uses this packet
type to send its command string in one broadcast to all nodes. We extended the
transport manager API by the function

tp_broadcast_cl_data(bt_l2cap_pkt_t * pkt,
bt_addr_t destination,
u_short len);

to access this functionality directly. The packet pointed to by pkt of length len is
sent to all nodes. And every node that forwards these packet adds the source node
to its host table. The destination argument defines, whether all or only a specific
node passes this packet to the higher layer by calling the registered cl_data_cb
callback function.

To send a reply, the nodes can use the already existing tp_send_cl_data() func-
tion. This function is able to send data back to a host without broadcast by following
the host table entries as explained before in Section 3.1.3.

Comparing this connectionless data transfer scheme to the virtual connection, the
following points can be made:

• No connection setup overhead.

• Easy broadcast.

• Slightly reduced payload size, because broadcast packets have a larger packet
header. As this transport type is not intended for high data traffic, this is not
considered as a problem.

25

Chapter 4: Implementation

Figure 4-2
Messages when executing a remote command.

4.2.3 Messages
Figure 4-2 shows the message flow. First, a cmd exec packet (1) is sent to the target
node. It contains the command string and the given transaction ID. The receiving
node will always send back a cmd status packet (2). This status packet contains
again the transaction ID and an error code to indicate, whether the command was
successfully executed or not. On success, it will additionally contain the length of
the command’s output (may be zero). In the current implementation the output is
just a string for every command containing what it would print, if the command was
executed directly on the terminal. This string is returned in cmd result packets (3).
Because it does not necessarily fit into a single packet it can be split up into several
ones. Each cmd result packet contains:

• Transaction ID.

• Sequence number. For every command output the result packets are sequenced
starting at zero. This allows to recognize if a part is missing or if the packets
are disordered.

• Length. The length of the output part in this packet.

• Output data. This is a null terminated substring of the complete output string.

The status and result packets are printed in a parsable format to the terminal when
they arrive. Depending on the error code the cmd status message is printed differ-
ently:

:C <source-addr> <trans-id> completed: <total-len>

26

4.2. Remote Command Execution

:C <source-addr> <trans-id> failed: <reason>

The first format is used if the command was successfully executed, the latter if an
error occurred. reason stands for a short string describing the cause of the error
(Table 4-1).

Reason Explanation
busy The destination node is already executing a command.

Try again later.
cmd not found The command string is not a registered terminal command.

Table 4-1: Possible DSN cmd errors reported by cmd status messages.

The cmd result messages (if any) are printed as:

:CO <source-addr> <trans-id> <seq-nr> <len>
<cmd-output-data>

4.2.4 Control Flow
Figure 4-3 illustrates the control flow in our implementation. As can be seen, incom-
ing data is handled by the transport thread callback. A dedicated DSNcmdthread
executes incoming commands. Only one command can be processed at a given time.

4.2.5 An Example
Now, let’s assume the following scenario: The user is connected to the host node
A and wants to retrieve the battery voltage of a DSN node B with address
00:04:3f:00:00:87 . She could enter the following command on node A:

dsn cmd 3 00:04:3f:00:00:87 get bat

If the command was successfully executed the user sees the following output printed
on the terminal:

:C 00:04:3f:00:00:87 3 completed: 24

:CO 00:04:3f:00:00:87 3 0 24
Battery Voltage: 2.57 V

Or, if node B was already executing a command from another host:

:C 00:04:3f:00:00:87 3 failed: busy

27

Chapter 4: Implementation

Figure 4-3
DSNcmd control flow and involved threads. The user on node A sends a command for
execution to node B.

28

4.3. Program Management

4.3 Program Management
As described in Chapter 2, the BTnode features 180 kB storage memory. In JAWS we
have two applications for this additional memory space: program and log data. The
first 129 kB are reserved to store a program in bootloader format (see Section 4.3.1).
Due to the record based format it is possible that the space needed for a program
exceeds 128 kB. This is why an additional kilobyte is reserved.

Additionally, the following information is stored on every node:

• Type. We differentiate whether the program is intended to flash the target or
the DSN node itself.

• Version. This is a four byte integer number. Note that we don’t store the real
program version here. The implemented code distribution scheme favors ver-
sion numbers which are higher than others. Therefore, this number has to be
increased when the user uploads an other program, because she expects that
this program will be distributed regardless of its real program version. The
graphical JAWS user interface fills this number with the current upload time.
This ensures that the most recently uploaded program is always distributed.

• Size.

• Name.

• Boot address. Depending on whether the stored program is or includes a boot
loader application the fuse values on the ATmega128l have to be changed when
flashing the target. The boot address is determined automatically from the
uploaded HEX file.

The stored program might be accessed by different threads. To avoid corruption the
threads must acquire a program lock before they read or modify the program in the
storage memory. Getting the program lock is a non-blocking process.

The file xbankdata.h defines an interface for accessing programs in banked mem-
ory.

4.3.1 The Bootloader Application
The BTnut system provides an application called bootloader that fits into the boot
flash section (Fig. 3-2). Its main purpose is to flash the BTnode with new application
software that is transferred over the serial interface. As a second option it can load
program data from storage memory (SRAM). There, the program has to be in the
bootloader format to be recognized. It is defined as:

Field type version active proglen crc progdata crc
Bytes 1 4 1 4 2 proglen 2

where

type is the program type.

version is the program version.

29

Chapter 4: Implementation

active is a special flag that indicates wether the bootloader shall write this pro-
gram to the flash section or not.

proglen defines the length of the program data.

crc holds a checksum over the program header fields above.

progdata contains the program code in a record based format. Each record consists
of three bytes defining the length (lll) of the record and three bytes defining
an address offset (aaa) for the data followed by the actual program data (d):

lllaaa[d...]

crc contains a checksum over the program data. A program is only valid if both
checksums are correct.

We reused the bootloader program format to store programs that are distributed in
the DSN. It allows the bootloader to do the required self-programming: When the
BTnode is rebooted the bootloader becomes active and writes the firmware to the
program memory – provided that type and active fields are set correctly.

4.3.2 Loadhex
In the AVR world, compiled programs typically are stored in the Intel HEX File
Format. This format is a way of representing binary object files in ASCII. The file
is blocked into records of different types containing all needed data. Each record is
based on the following hexadecimal format:

:llaaaatt[dd...]cc

where

: is the record start mark.

ll specifies the number of data bytes dd in the record.

aaaa defines the 16-bit starting address offset for the data bytes dd in the record.

tt is the record type. The GNU-AVR utilities make use of the following record types:

00 Data record.

01 End of file record.

02 Extended segment address record. This record type is required to place
data at addresses greater than 64k.

05 Start linear adddress record. Defines the start address for execution on
system power up.

dd represents one byte of data in hexadecimal format. A record may have multiple
data bytes. The number of data bytes in the record must match the number
specified by the ll field.

cc contains a checksum over the record. The checksum is calculated by summing
the values of all hexadecimal digit pairs in the record modulo 256 and taking
the two’s complement.

30

4.4. Code Distribution

We implemented a terminal command loadhex that reads a HEX file from the se-
rial interface and writes the program code to SRAM in the afore mentioned boot-
loader format (Section 4.3.1).

To optimize performance, every record is read in two steps:

• Read the first 9 characters and convert length, address and type field to binary.

• Read the rest of the record including the checksum field. The number of bytes
to read depends on the length field.

When uploading the HEX file, we measured data rates of about 4.9 kB/s. This would
allow to load a binary program in less than 30 seconds. However, the hexadecimal
data representation basically doubles the amount of data to be transferred.

4.4 Code Distribution
In Section 3.3.2 a simple code distribution algorithm was introduced. This chapter
explains the integration with JAWS.

4.4.1 Overview
Regarding the code distribution, each DSN node is in one of three states (Figure
4-4). Normally, the node resides in the ready state. From there it can change to
either download or advertise mode. Advertising is done in a separate cdist thread.
Downloading is handled by the transport callback function.

Figure 4-4
Code distribution states. The nodes can not download and advertise at the same time.

The cdist thread sleeps most of the time waiting for an event to take action. Possi-
ble events that wake up the cdist thread are:

• The maximal waiting time of 60 seconds is over. All nodes advertise at (more
or less) regular intervals.

• A new program has been downloaded. This ensures that new programs are
spread as quickly as possible.

When running, the cdist thread tries to switch the state to advertising. This fails, if
the node is not in the ready state, i.e. the node is downloading a new program. Once
switched to advertising, the code distribution Algorithm 3 on page 18 is performed.
If there is no program to advertise the thread does nothing.

31

Chapter 4: Implementation

4.4.2 Transport Layer Extension
The presented code distribution scheme requires communication between immedi-
ate neighbors in the network topology. Data transfer has to be efficient because
programs should be transferred as fast as possible. Because the transport layer
featured no suitable mechanism to do this, we extended it by a new packet type
neighbor data with the following characteristics:

• Sent to direct neighbors only.

• No routing overhead.

• Small packet header.

• A certain neighbor is addressed by the corresponding connection handle.

Some new functions were added to the transport interface. To get a list of neighbors
one can use tp_get_rel_cons() .

tp_send_nb_data(bt_l2cap_pkt_t * pkt,
bt_con_handle_t con_handle,
u_short len)

This function works analogously to the sending functions for connectionless and
virtual connection data. To send a neighbor data packet:

1. Allocate a packet.

2. Use tp_get_nb_data_pointer() and fill in the data.

3. Use tp_send_nb_data() .

To receive such packets one can register a callback function the same way as with
every packet type.

4.4.3 Messages
This section describes in more detail how programs are transmitted. Have a look at
Figure 4.4.3. It shows the message flow when a node advertises a program.

First, it sends a prog info packet (1). This packet contains all relevant information
the node stores about it (cf. Section 4.3):

• Program type

• Version

• Size

• Name

• Boot address

Based on this program information the neighbor sends back a reply packet (ACK
or NACK) indicating whether it wants to receive the program or not (2). The reply
is of type ACK only if the advertised program version number is higher1 and the

1The neighbor accepts every version number if it has no program yet.

32

4.4. Code Distribution

Figure 4-5
Code distribution message flow. The node on the left advertises its program version to one of
its neighbors.

neighbor is ready to receive the program at the moment. Reasons why a node might
not be ready to receive a program include:

• Code distribution state is not ready. That means that the node is already down-
loading from an other node or that it is advertising and possibly uploading its
program to one of its neighbors.

• The program lock has been set.

In these cases the neighbor returns a NACK reply. Otherwise it prepares to receive
a new program. The code distribution state is switched from ready to download and
any previously existing program is deleted.

When the advertising node receives an ACK reply, it starts transmitting the pro-
gram (3). The program is stored contiguously in the storage memory. The start
address is always the same. The end address depends on the program size. This
memory area is split up into equal sized chunks and sent in prog data packets to
the receiver where they are reassembled and copied to the same memory locations.
The receiver knows the size of the program, therefore it is able to recognize the last
packet. When it does so it checks header and data CRCs of the received program
and sets the code distribution state to ready.

To further ensure correct transmission the prog data packets contain a sequence
number. Thus, the receiver notices immediately when a packet is lost. In this case,
it terminates the download and returns to ready state.

Timeouts when waiting for reply or prog data packets guarantee that the nodes do
not get stuck in either advertise or download mode when the remote device does not

33

Chapter 4: Implementation

respond. For both packet types the timeout is set to 10 seconds by default.

4.5 Target Adapter
The target adapter provides functionality to interface with the attached target de-
vice. It provides terminal commands for target control and communication as well
as some simple monitoring features. The file target_btnode.c contains our im-
plementation for BTnode targets.

4.5.1 Reprogramming
In Section 3.3.3 we chose to reprogram the targets by the Serial Downloading fea-
ture of the Atmega128l. It uses the serial SPI bus for data transfer. SPI provides
fast, full-duplex data transfer between two endpoints. One is the master and the
other is the slave. The data is transferred over the two MISO/MOSI lines simulta-
neously. The former sends data bits from the slave to the master, the latter from
the master to the slave. The transmission is synchronized by the master’s clock rate
(SCK). The slave select (SS) line is only used in normal SPI operation, not in SPI
programming mode. Therefore it remains unconnected. In our scenario the target is
the slave and the DSN node is the master.

The SPI programming mode is activated on the target if the Atmega128l is reset,
i.e. the RESET pin is set to ground. Incoming data on the SPI bus is now interpreted
as serial programming instructions. The available instruction set allows to:

• Read, write or erase program memory.

• Read, write or erase EEPROM.

• Change fuse and lock bits settings.

For a complete list of available instructions have a look at [4]. We implemented a
small SPI programming library (files spiprog.h and spiprog.c) which is used by
several target adapter commands.

The target adapter provides the tg flash terminal command. It checks, whether a
target program is available in storage memory. If this is the case, it uses the above
mentioned library to reprogram the target over SPI. In addition, it sets the correct
fuse settings according to the boot address (confer Section 4.3). When the command
finished programming, it prints :TF ok on success or :TF failed: <reason> if
something went wrong. Again, reason is a short error string. In Table 4-2 a list
of tg flash specific errors is given. Additionally, all commands that use the SPI
programming mode report the errors in Table 4-3.

Changing Atmega128l fuse settings needed for bootloader support is handled by
tg flash . Additionally, the target adapter provides commands to read and set cus-
tom fuse values.

4.5.2 Monitoring
The target adapter contains a special thread that listens on the first serial interface
(UART0), where the target is connected. Every received line is passed to the logging

34

4.5. Target Adapter

Reason Explanation
program locked Because an other command is already accessing the program,

the program lock could not be acquired.
program check There is no valid program in the storage memory.
program type There is a program, but it is not a target program.

Table 4-2: Possible errors reported by tg flash .

Reason Explanation
spi busy The SPI bus is already used by an other command.
spi error Could not enable programming mode on target.
cpu signature The target is not a Atmega128l with 128 kB flash

Table 4-3: Possible errors reported by all commands that use SPI programming mode.

system. This allows to capture debug or other output from the target and can be
sent to a host node later on.

Section 3.5 describes the concept of a monitor in the target application that pro-
vides status information. Figure 4-6 illustrates the situation. We implemented such
a monitor in the file monitor.c for BTnode targets. It consists of a set of terminal
commands summarized in Table 4-4.

Figure 4-6
A special monitor hooks into the target application and provides status information to the
target adapter on the DSN node. Communication is line-based via the first serial interface
(UART0).

The mon reg command is able to print the memory content at a given address. Be-
sides data memory, it is also possible to print the memory mapped contents of ports
and registers. A decent application is to print status registers or to check whether
an I/O pin is currently high or low on the target.

The mon cmd command executes a given command string as the terminal would
do. The difference is that it inserts start and end markers for the command output.
Additionally, it prohibits that other threads write to the UART. This ensures that
the command output is not intermixed with output from other commands. The start
and end markers clarify which lines belong to the same command output when it is
several lines long.

35

Chapter 4: Implementation

Command Explanation
mon bat Print battery voltage.
mon cmd <cmd> Execute cmd and mark its output (see text).
mon heap Print free heap memory.
mon irq [<nr>] Print interrupt counters.
mon net Print packet statistics
mon reg <addr> Print memory location at address addr .
mon threads Print thread list.
mon timers Print timer list.
mon ver Print version string.

Table 4-4: List of available monitor commands.

The mon ver command is used in conjunction with the tg get version com-
mand. tg get version issues the mon ver command on the target and waits at
most 2 seconds for the corresponding output. The output of mon ver is filtered out
by the target adapter thread and passed to the waiting tg get version which
finally prints the version string.

4.5.3 Target Control
The DSN Adapter Board allows to switch power on and off for the target, if it is
not running on its own batteries. The target adapter provides commands to control
target power and for reset.

The tg cmd <cmd> command allows to send an arbitrary text string (cmd) to the
target. If the target application uses the BTnut terminal library, this string will be
interpreted as terminal command. This makes it possible to control the targets with
commands they support.

4.6 Logging
Log classes are primarily bound to the different modules sketched in Section
4.1. Table 4-5 describes the different classes. There are two special classes, first,
LOG TERMINAL is used for any terminal output. That is, all output generated as a
response to a terminal command as well as everything needed by the GUI (see com-
mand specification in Appendix B). Second, the class LOG TG captures any output
from the target node.

36

4.6. Logging

Log Class Description
LOG TERMINAL Terminal and GUI messages.
LOG CM Connection manager module.
LOG TP Transport manager module.
LOG DSN DSN service layer.
LOG TG Output from target, if connected.
LOG JAWS General JAWS class.
LOG TA Target Adapter.

Table 4-5: Log classes in JAWS

Table 4-6 shows the different log levels in detail.

Log Level Description
LOG ERROR Severe errors that impact the system.
LOG WARNING Warnings. Indicate a non-critical failure.
LOG INFO Informational messages.
LOG DEBUG Debug output intended for developers.

Table 4-6: Log levels in JAWS

As log messages make up a good deal of the overall program size, we introduced
the concept of static and dynamic log masks. Static log masks are used to define
which log classes and levels are included in the final program code. Only these pairs
of class and level can be stored and/or displayed later on. This allows to exclude
partial or all log information in the final program code and thus saving precious
program memory.

Then, there are three dynamic masks which control the behavior during runtime.
Namely, these are:

• logmask. Defines whether a message is written to the log storage or not.

• verbosity. Messages will be printed to the terminal if this mask is set.

• sendmask. If a valid host address has been provided, messages to levels with
this mask set will immediately be sent to this address.

Several functions are provided to handle log messages:

int log_line(u_char class, u_char, level, PGM_P fmt, ...);

Used to add a new log message to the log storage. The parameters class and level
specify the log class and level of the message. The format string fmt and additional
arguments are handled the same way as in printf() (Standard C library).

void log_show(u_char class, u_char mask);

37

Chapter 4: Implementation

This function prints all log messages which match the given class and level. The
arguments may be zero, indicating that all messages of that class or level should be
printed.

void log_send(bt_addr_t host_addr, u_char class, u_char mask);

Sends log messages to the given host address. Again, class and level are used to
specify which messages to send.

void log_process_log_data(bt_addr_t source, u_char * data,
u_short len);

On the receiving side, this function is used to print received log messages to a ter-
minal according to the format description in Section B.3.

For convenience, the following macros are defined:

#define ERROR(class, text, ...)
#define WARNING(class, text, ...)
#define INFO(class, text, ...)
#define DEBUG(class, text, ...)

They are merely an abbreviation for a call to the function log_line() with the
argument level set to corresponding log level.

The log storage is implemented as a ring buffer containing variable sized records.
This buffer is located in storage memory and uses 10 kilobytes by default.

The record format is as follows

Field length class level time string
Bytes 2 1 1 4 length -8

where

length is the length of the whole record.

class is the log class assigned to this record.

level is the log level.

time is the time measured in milliseconds.

string is a arbitrary text message of length length -8.

Three offset pointers are used to manage the ring buffer. These are

• xbank start. Points to the first message in the buffer.

• xbank end. Points one byte beyond the most recent message. Can be used to
find the starting position of a new message.

38

4.6. Logging

• xbank tail. One byte beyond the last message, that is the message with the
highest memory address.

Initially, when the buffer is empty, all tree offsets point to zero (see Figure 4-7). As
messages are added to the buffer, both xbank end and xbank tail are increased up
to the point where the next message does not fit in the remaining free space (Figure
4-8). Then, xbank end is wrapped around to zero, and xbank start gets increased
while messages are freed until the new log messages fits in. Thenceforward, mes-
sages at xbank start get freed when new messages are added at xbank end (Figure
4-9).

Figure 4-7
Empty log buffer.

Figure 4-8
Full log buffer, without wrapping.

Figure 4-9
Full log buffer, wrapped around.

An additional feature of the log module are per-thread buffers. A thread can reg-
ister itself using the function log_register_thread() and activate the thread
buffer using log_start_capture() . From then on, all log messages to the log
class LOG TERMINAL are not only stored in the log storage or printed out (depend-
ing on the log masks), but also stored in a special buffer belonging to the running
thread. Using log_stop_capture() , the thread can disable capturing messages
to his buffer and receive a data pointer to the saved messages.

This mechanism is used by the DSNcmdthread to capture the output of terminal
commands.

39

Chapter 4: Implementation

4.7 L2CAP Support
The BTnut system provides a modular Bluetooth stack to handle the Host Controller
Interface (HCI) to the Bluetooth Controller. In addition, it contains two layers that
build up on the HCI layer, the acl com and the l2cap layers. Both of them can be
used to send and receive Asynchronous Connection-Oriented (ACL) data packets.
Acl com is a simplistic (and small!) implementation using service multiplexing only,
whereas the l2cap layer supports creating and handling channels, signalling packets
as well as segmentation & reassembly of data packets and is thus compatible to the
official Link Layer Control and Adaptation Layer Protocol (L2CAP) specification.
However, it does not support quality of service or piconet group addresses (yet). Due
to its larger functional range, it also needs considerably more program memory.

JAWS, as described in Chapter 3.1, makes use of the acl com layer. One of our goals
was to augment JAWS in such a way as to enable it to communicate with other
Bluetooth capable devices. This makes a lot of new applications possible, such as
other devices participating in the JAWS network, drop the need for a host node or
running a small GUI on a PDA equipped with a Bluetooth module (as done in a
current student thesis).

Since the interfaces to both the acl com and the l2cap layers are quite similar, we
chose to implement a wrapper layer. This allows to switch the ACL layer at compile
time without any code changes. All functions and data types are defined as macros in
the file l2cap layer.h , for example BT CONNECT(..) or BT SEND(..) . By using
the define USE ACL COM, the developer can choose whether these macros should
be resolved to the function names of the acl com layer (when USE ACL COM is
defined) or l2cap layer (otherwise).

4.8 GUI
While it is possible to use JAWS as a Deployment Support Network with a terminal
program only, using a Graphical User Interface (GUI) is strongly recommended,
especially with increasing number of active nodes. For this purpose, JAWS contains
a GUI written in Java (see picture 4-10). It is implemented as a Java servlet running
on the host computer, that is connected to the host node, and a Java applet running
on the user’s workstation.

Originally it was written by Matthias Dyer and later on modified by Sven Zimmer-
mann during his student thesis. Additionally, we made some small changes to adapt
the GUI to the latest JAWS features.

In its current state, the GUI is able to:

• Display the connected nodes and their topology with variable zoom.

• Display various additional information, such as battery status, information
about targets and program version.

• Open, close and display virtual connections.

• Send arbitrary commands to one or all nodes.

40

4.8. GUI

Figure 4-10
The JAWS GUI.

41

Chapter 4: Implementation

• Request and display log messages from remote nodes.

• Load and distribute program code.

• Issue miscellaneous commands regarding the targets, such as power on/off or
reprogramming.

4.9 Problems and Difficulties
4.9.1 Nut/OS Interrupt Latency
A lot of effort during our thesis went into bug fixing and optimizations of the BTnut
system software and the underlying Nut/OS. One major problem were UART over-
runs resulting in lost bytes. This is especially problematic on the Bluetooth UART.
UART overruns occur, when the corresponding interrupts are not processed fast
enough, i.e. the interrupt latency is too long. Mainly, two reasons were identified:

• UART interrupt execution time was rather long. Therefore, UART0 could
starve out UART1.

• Long critical sections.

The biggest improvement was the optimization of the receiving UART interrupt
handler. It was possible to almost half the execution time from 45 µs to 26 µs. The
main difference was the removal of indirections over function calls which seem to be
rather costly on AVR microcontrollers.

To identify long critical sections, the tracing functionality provided by Nut/OS was
used. We located some frequently called critical sections that took considerably
longer than 10 µs. The measurement results were forwarded to the Nut/OS devel-
opers which were able to decrease the execution times.

Finally, by working together with the Nut/OS developers it was possible to reduce
the interrupt latency such that both UARTs can now be used simultaneously run-
ning at 57.6 kbit/s without problems.

4.9.2 Missing HCI Flow Control
As already mentioned in Section 2.1 the Bluetooth module (Zeevo ZV4002) is con-
nected over the second serial interface (UART1) to the ATmega128l microcontroller.
The serial interface is used to exchange HCI commands and data. Both sides man-
age data buffers for received packets and for packets to send. The Bluetooth stan-
dard defines a flow control mechanism that ensures that both sides do not run out
of their buffers.

The microcontroller knows how many free sending buffers the Bluetooth module
has by looking at the packet completed events and delays consequent packets, if
necessary. In the opposite direction, the microcontroller can inform the Bluetooth
controller about how many free packet buffers it has for receiving data.

Unfortunately, this HCI flow control does not work correctly on the BTnode rev3 due
to a firmware bug in the Zeevo Bluetooth chip. Therefore, the microcontroller cannot

42

4.9. Problems and Difficulties

control the number of packets it receives at a time. When too many packets arrive,
it has to discard them.

This caused some problems because:

• The current JAWS connection manager and transport layer implementation
are not packet loss aware.

• Code distribution was affected. Big program transfers were likely to fail be-
cause of discarded packets.

In order to reduce the impact of packet loss we decided to reduce the baud rate
between Atmega128 and Bluetooth module such that the microcontroller is always
fast enough to process incoming packets.

As explained in the previous section, the maximal baud rate is 57.6 kbit/s consider-
ing the interrupt latency issues that arise with higher values. Several experiments
were conducted to determine the maximal packet rate the Atmega128l can handle.
Two devices had to transfer a maximum sized program without error under several
conditions. The maximal incoming data rate that allows stable operation without
packet loss was found to be around 3.2 kB/s. The next smaller baud rate of 19.2 kbit/s
was then chosen as default Bluetooth UART speed. This solved the code distribution
problem completely, however at the cost of reduced communication speed.

Although this measure decreases the probability of packet loss between neighboring
nodes greatly, it does not completely solve the problem. Especially in a tree topol-
ogy it is still possible that congestion occurs and packets have to be dropped when
intermediate nodes are not able to forward the data fast enough.

4.9.3 Speed
Overall performance of the system was always an issue during our thesis. Consider-
ing that an 8 MHz microcontroller is used, one could assume that it would allow for
higher throughput than the 3.2 kB/s measured above.

However, it has to be considered that the use of a fully featured operating system
such as the Nut/OS involves overhead at many occasions. Due to the aimed portabil-
ity, Nut/OS contains a lot of indirections and nested function calls. This is actually
very nice for programming but can affect performance quite a bit as the example of
the UART interrupt latency problem has shown. Then, JAWS evolved to a complex
application featuring ten different, cooperatively running threads to do its tasks.

43

Chapter 4: Implementation

44

5
DSN Adapter Board

This chapter describes the DSN adapter board. An overview is given first, followed
by details regarding the power options, debugging and sensor connectors. Then, the
ISP connectors are further explained.

5.1 Overview

Figure 5-1
BTnode DSN adapter board, bottom view (left) and top view (right).

The DSN adapter board (Figure 5-1) is based on the BTnode USB programming
adapter [20] (see Figure 5-2). The main differences are a smaller USB jack and
a second (also smaller) 6-way ISP connector which is used as programming and
communication interface to a target node. This plug has a switchable power line,
which means that the target can either power itself or may be powered by the DSN
adapter board. Additionally, the Teco sensor board connector is rearranged to the
upper right corner.

45

Chapter 5: DSN Adapter Board

A BTnode with a mounted DSN adapter board may be used as DSN node or as target
sensor node as well. When used as DSN node, the 6-way cable has to be connected
to the connector on the right side in Figure 5-1. When used as a target node, the left
connector has to be used.

Figure 5-2
BTnode USB programming adapter.

5.2 Power
A BTnode attached to a DSN adapter board can be powered in three ways.

• Using its own batteries.

• By the power line of the mini USB jack, 3.8V to 20V, usually 5V.

• By the power line of the ISP In connector (on the left side in the top view in
Figure 5-1), 2.7V to 5.5V, usually 3.3V.

Because the DSN adapter board features a power regulator and a switchable power
output on the 6-way ISP Out connector (on the right side in the top view in Figure
5-1), the following scenario is possible. The DSN adapter board uses the 5V power
line of the mini USB jack as current supply and feeds it to the attached BTnode. In
addition, it generates a voltage of 3.3V and acts as a power supply for the connected
target node. So both the DSN node as well as the target node are powered by the
DSN adapter board. This setup is well suited for a long-term deployment of a larger
number of nodes during development phase. Especially since USB power supplies
are present on most computers today, the deployment support network may easily
be placed in office buildings. During the deployment process, the BTnode and the
target node may run self-contained, using batteries.

Another property of the DSN adapter board is the ability to sense the target’s supply
voltage. That is to say, the power line of the ISP Out connector is routed to one of

46

5.3. Debug (SUART)

the analog inputs of the DSN BTnode. If the target node provides its own power, the
DSN node is able to sense whether a target is connected. Depending on the target
node, this feature may even be used to measure the target’s battery voltage.

5.3 Debug (SUART)
As mentioned in Section 3.7, the first serial port (UART0) of the DSN node is used
for communicating with the target node. As the second serial port (UART1) is hard-
wired with the Bluetooth module, the USB controller cannot be connected to a serial
port anymore on the DSN adapter board. Instead, the USB controller is connected
to two general purpose pins (PE2 and PE4) to allow for an emulated serial port in
software (Soft UART or SUART). The transmission speed of this interface is usu-
ally very low, however it simplifies the development of the JAWS software consid-
erably. The standard configuration in JAWS DSN mode (see Appendix B.8) enables
the SUART interface set to 2400 Baud. And the output to that serial port is kept to
a minimum using the log mask described in Section 4.6.

5.4 Sensor Board
The DSN adapter board features a sensor board connector that is compatible to
the sensor boards by Particle Computer [3]. Available in three variants, the fully
featured board contains:

• High precision daylight and IR light sensor.

• High precision temperature sensor.

• High precision and high linear capacitive microphone.

• 2 Acceleration sensors: 3 axis, 10g max, +/- 40 mg resolution, high responsive
(<1ms).

• Prepared for additional analog sensors e.g. pressure sensor (only sensor is
missing, amplifier implemented).

• 1 LED (can be replaced by e.g. vibration motor).

• Provides Physical I/O for Core Board.

• Interfaces to Core Board via analog input, digital Input/Output lines.

• Power supply through main board.

• Size: 17x22 mm.

Figure 5-3
The Ssmall Teco sensor board.

47

Chapter 5: DSN Adapter Board

5.5 ISP Pin Mapping
For programming and communication, two 6-way molex connectors are mounted.
The first one – called ISP In connector – is used when the board is attached to
a target BTnode. A cable interconnects the ISP In connector of the target board
with the ISP Out connector of the adapter board attached to the DSN BTnode. This
standard interface allows the SPI In-System Programming of the target node’s mi-
crocontroller and is used by various ISP programming devices. The ISP pin-out de-
scriptions are listed in the following tables.

Table 5-1 shows the pin mapping of the 6-way ISP In connector shown in Figure 5-1
(on the left side of the top view).

Pin Name Description
1 UART0 TxD This is the Master In Slave Out (MISO)

pin on the target Atmega128.
2 TARGET VCC This pin can be used to power the target node.
3 SCK SPI Serial Clock Output. This is the SPI clock

output signal.
4 UART0 RxD This is the Master Out Slave In (MOSI) pin on

the target Atmega128.
5 RESET Active-Low target RESET control pin.
6 GND Common ground connection between

programming and target BTnode.

Table 5-1: Pin Mapping ISP In

Table 5-2 shows the pin mapping of the 6-way ISP Out connector shown in Figure
5-1 (on the right side of the top view).

Pin Name Description
1 PROG MISO Master In Slave Out. This is the SPI data

input pin to the programmer
2 PROG VCC Output pin of the switchable power supply.
3 PROG SCK SPI Serial Clock Output. This is the SPI

clock output signal.
4 PROG MOSI Master Out Slave In. This is the SPI data

output pin from the programmer.
5 PROG RESET Active-Low target RESET control pin.
6 PROG GND Common ground connection between

programming and target BTnode.

Table 5-2: Pin Mapping ISP Out

The full pin-out and the schematic of the DSN adapter board can be found in Ap-
pendix C.

48

6
Demonstrator

6.1 Installation
A casing was worked out to hold a coupled pair of nodes of both the DSN and the
target network. The case is transparent so that the nodes and their respective LEDs
are visible and that a possibly attached light sensor remains functional. Both nodes
or only the DSN BTnode may be powered by an external electricity supply. The
enclosure is shown in Figure 6-1.

Figure 6-1
The demonstrator enclosure featuring two BTnodes connected by wired adapter boards. The
DSN node is situated on the left side, the target node with a mounted sensor board on the
right side.

For demonstration purposes, a permanent setup (Figure 6-2) of 19 BTnodes was
deployed on the floor of the Computer Engineering and Networks Laboratory at the
Swiss Federal Institute of Technology in Zürich. All nodes are powered over USB to

49

Chapter 6: Demonstrator

ensure the availability of this long-term installation. Furthermore, the network is
expandable with battery-operated pairs of nodes on demand.

The demonstrator not only exemplifies the concept of a deployment-support network
and serves as a base for tests and measurements, it also provides an excellent plat-
form for further research on wireless sensor networks and distributed algorithms.

The user interfaces consists of a stationary host computer and a Java applet avail-
able on http://www.btnode.ethz.ch .

Figure 6-2
Placement of 19 units in an indoor environment. The nodes are powered by USB either
directly attached to personal computers or clustered around USB hubs.

6.2 Senso – A Sensor Network Application
For demonstrating purposes, we developed a small sensor application. It makes use
of the possibility to attach a Teco sensor board to the DSN adapter board (described
in Section 5.4). It has the following features:

50

6.2. Senso – A Sensor Network Application

• Sampling of analog microphone values. On the same time, the four LEDs are
adjusted according to the measured sound intensity.

• Performing light measurements. The light sensor is connected to the TWI bus.
The sensor values are converted to the actual illuminance measured in lux.
Every two seconds a light measurement is printed to UART0.

• Integration of the BTnode target monitor (Section 4.5.2).

• Program size: 30 kB.

This application allows to demonstrate all features of the JAWS deployment support
network such as target monitoring, logging and control.

51

Chapter 6: Demonstrator

52

7
Test Results and Benchmarks

7.1 Stability
A long-term stability test has been performed using the demonstrator described in
Chapter 6. A special node – the host node – was used to issue commands to all other
nodes in regular intervals of two minutes. All nodes were supposed to respond with
a status packet. The reception of this status information indicated that the sending
node is reachable and was recorded accordingly. Finally, the number of reachable
nodes was counted and drawn in a graph.

Depending on the topology, a link failure may thus lead to different number of un-
reachable nodes. Since we used a tree topology originating at the host node, the
breakdown of one node causes the whole subtree connected to that node to be un-
reachable.

A first experiment is shown in Figure 7-1. This test was conducted with 22 nodes
and one host node and lasted almost three days. Apparently, there are some stability
issues as nodes drop out of the network at random times and cannot reestablish
their connection. Notable is the point in time of the first node failure, the network
was stable for almost a full workday so that these random failure did not stand out
during earlier development.

The analysis of the problem resulted in another issue with the Bluetooth controller.
Very rarely, the BT module did not respond correctly to commands on the HCI inter-
face. For example, the Inquiry Command was answered with Inquiry Result packets,
but the final Inquiry Complete Event was missing. This behavior led to a deadlock
of the BTnut system. Consequently, no further packets could be sent or received.

Since no insight into the Bluetooth module is possible, a software watchdog has
been implemented. The watchdog has a timeout of ten minutes and is restarted
on incoming data packets on the transport layer. Because the code distribution al-
gorithm (Section 4.4) exchanges data packets in shorter intervals, an unintended
system reset is avoided.

53

Chapter 7: Test Results and Benchmarks

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30
JAWS Stability Test (Successful Queries: 67.029%)

Hours

A
ct

iv
e

N
od

es

Figure 7-1
Failed stability test.

54

7.1. Stability

Another, clearer solution would be the redesign of the BTnut system to account for
unexpected behavior on the HCI interface. Also, in order to deal with the deficient
Bluetooth controller, the BTnut system should be able to restart the BT module
separately which is feasible with the current BTnode hardware.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30
JAWS Stability Test (Successful Queries: 96.279%)

Hours

A
ct

iv
e

N
od

es

Figure 7-2
Stability test, first half.

Figure 7-2 and 7-3 show the result of a later stability test. Here, 27 nodes were
used beside the host node and the test was run over four days. The above mentioned
watchdog yielded a much stabler network where 96.279 % of all queries were an-
swered. However, compared to Figure 7-1 this test contains a lot more spikes, that
is more nodes were unreachable for only a short time. The reason is found in the test
setup where the nodes were placed further apart. Due to the simple topology control
– links were established independent of link quality – more weak links arose than
in the first experiment.

Also, such link failures caused by weak connections are not distinguished from node
failures which eventually lead to a system restart by the watchdog. In order to quan-
tify the restarts, a counter was introduced (see command specification, Table B-3).

55

Chapter 7: Test Results and Benchmarks

50 55 60 65 70 75 80 85 90 95
0

5

10

15

20

25

30
JAWS Stability Test (Successful Queries: 96.279%)

Hours

A
ct

iv
e

N
od

es

Figure 7-3
Stability test, second half.

56

7.2. Code Distribution

7.2 Code Distribution
To perform tests and benchmarks of the code distribution the new logging facility
(described in Section 4.6) has been used. A special log class has been defined to store
code distribution log events.

In Figure 7-4, the result of an example test run is shown. The experiment has been
conducted on the nodes of the demonstrator and on some more nodes placed in the
same room around the host node. The network topology is depicted in Figure 7-5.
A program of the size 120 kB has been loaded on the host node marked as square
on the left. The average transmission time from node to node was 73 seconds with
a minimum of 72 and a maximum of 94 seconds. After 14 minutes and 51 seconds,
the program has been sent to the last node.

Figure 7-4
Code distribution test run with 29 nodes.

Clearly, the completion time depends on several factors:

• Transfer rate between two neighboring nodes.

• Network topology. The more possibilities exist to transfer programs simulta-
neously, the shorter the completion time will be.

57

Chapter 7: Test Results and Benchmarks

Figure 7-5
Network topology during the code distribution test run in Figure 7-4. The node marked as
red square on the left is the host node from which the program is being distributed.

• Order in which the neighbors of an advertising node are processed. In the cur-
rent implementation the order is random. Optimal with respect to the tree
building connection manager would be that the neighbor with the largest sub-
tree is served first.

• The probability of transmission failures.

7.2.1 Transfer Rate
Averaged over several experiments, the transfer rate from node to node has been
determined as about 1.6 kB/s. Compared to the possible Bluetooth data rates this
is slow. The reason for this is that the Bluetooth UART baud rate has been reduced
to 19.2 kbit/s. Due to a bug in the firmware of the Bluetooth module the microcon-
troller cannot control the incoming packet rate. When the system is not fast enough
to process the incoming data, packets have to be discarded resulting in packet loss.
At higher baud rates this would lead to many failed program transfers. By reducing
the speed between microcontroller and Bluetooth module to a level where the micro-
controller is always fast enough to process the incoming data, the problem has been

58

7.3. Battery

mitigated. See Section 4.9 for the complete discussion.

Once this problem is sorted out, the code distribution performance will benefit con-
siderably by increasing the Bluetooth UART baud rate.

7.2.2 Transmission Failures
Two different mechanisms assure correct program transfers:

• Lost packets are detected by comparing sequence numbers.

• In addition, the 16-bit program CRC is checked after all packets arrived.

During our tests1 we observed transmission failures only in rare cases. The reason
for an error was always a lost packet. An analysis of these cases has shown that the
flow-control problem of the Bluetooth module is not the cause. We therefore assume
that these missing packets are caused by transmission errors on the ACL link due
to bad link quality and/or interferences.

It is expected that the use of topology control which incorporates link quality such
as XTC [17] makes the probability of such errors even smaller.

7.3 Battery
A battery measurement was carried out to determine the runtime of battery pow-
ered BTnodes running the JAWS software. Three BTnodes on battery supply were
connected with direct links to the host node. The BTnodes were powered by Ans-
mann AA Ni-MH 2400 mAh rechargeable batteries and measured the battery volt-
age using the built-in analog-digital converter.

The logging facility was used to transmit the self-measured battery voltage from
each node to the host node every 60 seconds. This resulted in a steady load of the
network due to the regular transmission of data packets.

Figure 7-6 illustrates the decreasing voltage measurements of each node. While the
voltage level fairly differ, the runtime of all nodes was around 27 hours. A good indi-
cator for the necessity to replace the batteries soon is 2.4 V, an urgent replacement
is needed at 2.3 V.

1Bluetooth UART baud rate was already reduced to 19.2 kbit/s as mentioned in Section 4.9.2.

59

Chapter 7: Test Results and Benchmarks

0 5 10 15 20 25 30
1.5

2

2.5

3
BTnode Battery Test

B
at

te
ry

 V
ol

ta
ge

 [V
]

Time [h]

Node 1
Node 2
Node 3

Figure 7-6
Battery Test with 3 Nodes.

60

8
Conclusion

The last chapter summarizes the achievements of this thesis and proposes some
topics for future workings.

8.1 Summary
The concept of a deployment-support network (DSN) is a novel tool for wireless
development and real-world deployment of large-scale sensor networks. JAWS, an
exemplary implementation on the BTnode platform, forms a self-organizing network
based on Bluetooth scatternets and provides multi-hop forwarding.

In this thesis, several services to extend the JAWS software were evaluated, spec-
ified and implemented. They include mechanisms to program, control and moni-
tor the attached sensor nodes. Several modifications to the graphical user interface
were made in order to support the newly developed services. A hardware solution,
the DSN adapter board, was developed to connect target sensor nodes to their DSN
counterparts. It has been designed as flexible as possible with the option to not only
attach it to the DSN node, but also to attach the same board to targets which use
the BTnode as platform. An enclosure holding a DSN node and the corresponding
target was worked out and used in a permanent installation of 19 DSN nodes for
demonstration purposes.

The demonstrator served as a base for various stability and performance measure-
ments. A lot of effort went into the overall stability of the wireless network. With
the demonstrator, it was possible to show that JAWS is mature for durable deploy-
ment. Running unattended, without further interaction needed, it is thus ready for
long-term applications.

Furthermore, it was shown that the concept of deployment-support networks is fea-
sible and may ease the development of wireless sensor applications considerably.

61

Chapter 8: Conclusion

8.2 Future Work
In order to make the JAWS software usable for less experienced users, the graphical
user interface needs to be reworked. Currently, the user still has to know much
about the actual terminal commands. Altogether, the handling of large numbers of
nodes should be possible in a more user-friendly way.

While the most important development services have been implemented in this the-
sis, it would be possible to further enhance the debugging capabilities of the DSN.
For instance, it could be feasible in the future to include a JTAG controller in the tar-
get adapter software. This would allow to provide debugging services that approach
the comfort of graphical debuggers common in software development. Also, the mon-
itor fragment running on the target node may need some adaptations depending on
the respective sensor network application.

Furthermore, additional target platforms may be supported in the future by devel-
oping an appropriate adapter board or cable. While support for Atmel AVR based
platforms is simply a matter of correct wiring, other microcontroller technologies
may require more complex modifications.

Using the demonstrator that is introduced in this thesis, a thorough comparison of
algorithms is feasible. For example, the recently implemented XTC topology control
algorithm may be compared to the currently used treenet algorithm. Interesting
criteria are the quality of Bluetooth links as well as the availability and stability of
the formed network.

Other topics for future theses lie in research fields that investigate time synchro-
nization and location services. Here, the JAWS system may be used for measuring
the accuracy and reliability of algorithms.

62

A
Protocol

A.1 Connection Manager Packets

Field Bytes Explanation
ptype 1 Set to TYPE TREE ID
id 6 Tree-ID (Bluetooth device address)

Table A-1: Tree-ID packet.

Field Bytes Explanation
ptype 1 Set to TYPE NEGOT
id 6 Tree-ID
role 1 Master or slave in Bluetooth piconet.

Table A-2: Negotiation packet.

Field Bytes Explanation
ptype 1 Set to TYPE NEGOT RESP
id 6 Tree-ID

Table A-3: Negotiation packet response.

63

Appendix A: Protocol

A.2 Transport Manager Packets

Field Bytes Explanation
ptype 1 Set to CMD REQUEST PKT or CL DATA PKT
seq 1 Broadcast sequence number
source 6 Source address
dest 6 Destination address
cmd 1 Command code
verbose/ttl 1 Bit 0-6: time to live, bit 7: verbose flag
hop cnt 1 Hop count
data * Payload

Table A-4: Connectionless data packet. This packet type is used to broadcast transport man-
ager commands and connectionless data to DSN nodes. Additionally, the same format is used
to send connectionless data back to a host node.

Field Bytes Explanation
ptype 1 Set to VC DATA PKT
vci 2 Virtual-circuit identifier
data * Payload

Table A-5: Virtual connection data packet.

Field Bytes Explanation
ptype 1 Set to NB DATA PKT
data * Payload

Table A-6: Neighbor data packet. Used to communicate with direct neighbors in network
topology. Therefore, these packets are not routed.

A.3 DSN Packets
A.3.1 NB Data

Field Bytes Explanation
ptype 1 Set to CDIST INFO
prog type 1 Program type: 0=dsn, 1=target
size 4 Size all program data records in bootloader format.
boot addr 4 Boot address. Needed to define, whether bootloader is used or not.
version 4 Encoded upload time.
name * Null terminated string.

Table A-7: cdist prog info packet.

64

A.3. DSN Packets

Field Bytes Explanation
ptype 1 Set to CDIST DATA
seq nr 2 Sequence number starting at zero.
data * Program data.

Table A-8: cdist prog data packet.

Field Bytes Explanation
ptype 1 Set to CDIST ACK
seq nr 2

Table A-9: cdist ack reply packet.

Field Bytes Explanation
ptype 1 Set to CDIST NACK

Table A-10: cdist nack reply packet.

A.3.2 CL Data

Field Bytes Explanation
ptype 1 set to CMDEXEC
trans id 1 Transaction ID
cmd * Null termianted command string.

Table A-11: dsn cmd exec packet.

Field Bytes Explanation
ptype 1 Set to CMDSTATUS
trans id 1 Transaction ID.
error code 1 0 = ok, 1 = unknown, 2 = busy, 3 = cmd not found
output len 2 Length of the command output.

Table A-12: dsn cmd status packet.

Field Bytes Explanation
ptype 1 Set to CMDRESULT
trans id 1 Transaction ID.
seq nr 1 Sequence number starting at zero for this

command result packet.
data * Null terminated substring of the command output.

Table A-13: dsn cmd result packet.

65

Appendix A: Protocol

Field Bytes Explanation
len 2 Total length of the log record.
class 1 Log class
level 1 Log level
time 4 Time stamp in milliseconds
data len-8 Text message

Table A-14: log record

Field Bytes Explanation
ptype 1 Set to LOG DATA
log records * One or more log records.

Table A-15: log data packet.

66

B
Command Specification

This chapter provides an overview on the available terminal commands. Important,
changed or new commands are described in separate tables. Command output begin-
ning with a colon is intended for being parsed by the JAWS graphical user interface.

B.1 Connection Manager Commands
cm id
cm relcons
cm inq
cm autinq [0|1 [0|1]]
cm aiperiod [SECONDS [0|1]]
cm aitime [SECONDS [0|1]]
cm maxsl [1-7]
cm blink
cm disconall

B.2 Transport Manager Commands
tp openvc xx:xx:xx:xx:xx:xx
tp send <vc-handle> <len>
tp psend <vc-handle> <len> <#pkts> <pause 100ms>
tp clsnd xx:xx:xx:xx:xx:xx <len>
tp close <vc-handle>
tp vt (vc table)
tp ht (host table)
tp rc (reliable con)
tp bc
tp hd (host delete)
tp trace xx:xx:xx:xx:xx:xx
tp con xx:xx:xx:xx:xx:xx

67

Appendix B: Command Specification

tp rname xx:xx:xx:xx:xx:xx
tp cmd <ttl> xx:xx:xx:xx:xx:xx
tp verbose [1|0]
tp wd [reset]

Command tp con <addr>
Output (async) :T <source-addr> <num-entries>

:TE <1st neighbor addr> <con-state> <NRSSI>
:TE <2nd neighbor addr> <con-state> <NRSSI>
...

Table B-1: Topology Request

con-state 0 = unconnected, 1 = neighbor is my master, 2 = neighbor is my slave, 3
= denied connection

NRSSI Negative RSSI in dB. Range: [0..100] (0=perfect, 100=bad)

Command tp trace <addr>
Output (async) :TR 1 <1st hop-addr>

:TR 2 <2nd hop-addr>
...
:TR N <addr>

Table B-2: Trace: The target node sends a reply packet back to the host. On the way to the
host each intermediate node appends its address to the packet.

Command tp wd [reset]

Table B-3: Transport watchdog: After 10 minutes without incoming packet the node is reset.
This command prints or resets the watchdog statistics, i.e. how many times the watchdog has
been triggered.

B.3 DSN Commands
dsn testpkt <vc-handle> <nr>
dsn time <vc-handle> <num> <len> <sleep>
dsn cmd <trans-id> [<addr>] [<cmd>]
dsn cdist on|off|run
dsn sendlog <addr> [<class> [<mask>]]
dsn logfilter <class> [<mask>]

Command dsn cdist run

Table B-4: Start code distribution immediately on local node.

68

B.4. Target Adapter Commands

Command dsn sendlog <host-addr> <log-class> <log-level>
Output :DL <source-addr> <log-class> <log-level> <length>
(on specified <log-data>
host node)

Table B-5: Send stored log entries to a specified host address.

Command dsn logfilter <host-addr> <log-class> <log-level>
Output :DL <source-addr> <log-class> <log-level> <length>
(on specified <log-data>
host node)

Table B-6: Permanently send new log entries to a host address according to log class and
log levels specified. Deactivated by choosing log level zero. Omitting log class/level returns
current setup.

Command dsn cmd <trans-id> [<host-addr>] [<remote-cmd>]
Input <remote-cmd>
Output :C <source-addr> <trans-id> failed: <reason>
(async) :C <source-addr> <trans-id> completed: <total-len>
Output :CO <source-addr> <trans-id> <seq-nr> <len>
(async) <remote-cmd-output>

Table B-7: Remote command execution.

trans-id Unique id used by GUI/user to map cmd result pkts to issued cmds.

seq-nr Sequence number always starting at zero.

total-len Length of the complete <remote-cmd-output> in bytes.

len Length of the following <remote-cmd-output> part in bytes.

B.4 Target Adapter Commands
tg cmd <cmd>
tg flash
tg get bat
tg get fuses
tg get status
tg get version
tg reset
tg set fuses
tg set power on|off

69

Appendix B: Command Specification

Command tg flash
Output 1 :TF ok
Output 2 :TF failed: <reason>

Table B-8: Reprogram the target.

Command tg get fuses
Output 1 :TGF ok: 0xEEHHLL
Output 2 :TGF failed: <reason>

Table B-9: Reads extended, high and low fuse bytes.

Command tg set fuses
Output 1 :TSF ok: 0xEEHHLL
Output 2 :TSF failed: <reason>

Table B-10: Sets the standard fuses: 0xFF408E .

Command tg get bat
Output :TB <voltage> V

Table B-11: Print target battery voltage.

Command tg get version
Output 1 :TV YYYYMMDD-hhmm
Output 2 :TV unknown

Table B-12: Print target version. If no target monitor support is compiled into the target
application, the string unknown is printed..

Command tg cmd <cmd>

Table B-13: Execute arbitrary terminal commands on the target.

Command tg reset

Table B-14: Reset the target.

Command tg set power on | off

Table B-15: Control target power. If target runs on batteries, this command should not be
used.

70

B.5. Monitor Commands

B.5 Monitor Commands
mon bat
mon cmd <cmd>
mon heap
mon irq [<nr>]
mon net
mon reg <reg/port/mem-addr>
mon timers
mon threads

B.6 Logging Commands
log show [<class> [<mask]]
log clear
log logmask <class> [<mask>]
log verbosity <class> [<mask>]

Command log show <log-class> <log-level>
Output <log buffer entries>

Table B-16: Output log buffer to terminal.

B.7 Other Commands
loadhex <ver> <type: 0=dsn, 1=tg> [<name>]
blink
get bat
reset
xbank get proginfo
xbank get status
xbank set progname <name>
xbank set progtype dsn|tg
xbank set progver <ver>

Command loadhex <version> [<type> <name>]
Output ready to receive hex data, press enter for quit
Input program hex data
Output 1 :LH completed: <nl> lines read
Output 2 :LH failed: <reason>

Table B-17: Load program code stored in Intel HEX file to local storage memory.

version Time encoded as 32-bit integer.

71

Appendix B: Command Specification

type Program type. 0 = dsn, 1 = target

name Program name.

Command get bat
Output 1 :B <voltage> V
Output 2 :B external

Table B-18: Print battery voltage.

voltage Format example: 2.56 V

Command xbank get proginfo
Output 1 :XNP
Output 2 :XPT <progtype>

:XPN <progname>
:XPV <version>
:XPS <progsize>
:XPB <boot-addr>

Table B-19: Print information about program in storage memory.

B.8 JAWS Commands
jaws get version
jaws get name
jaws set mode dsn|gui
jaws set name <name>

Command jaws get version
Output :JV YYMMDD-hhmm

Table B-20: Print JAWS program version.

Command jaws set mode dsn |gui

Table B-21: Set JAWS mode. Use this command to configure the local node as normal DSN
node or as GUI node. Defines, whether the DSN adapter board or the USBprog adapter board
can be attached.

72

C
DSN Adapter Schematic & Pin-Out

73

Appendix C: DSN Adapter Schematic & Pin-Out

U
S

B

IS
P

O
U

T
IS

P
IN

P
O

W
E

R

B
T

N
O

D
E

T
O

P
E

X
T

E
N

S
IO

N

T
E

C
O

S
E

N
S

O
R

B
O

A
R

D
B

R
E

A
K

O
U

T

3

U
A

R
T

1
_
R

T
S

17

36

T
h
u

S
e
p

2
9

1
8
:1

3
:1

5
2
0
0
5

C5

5
21

8

4

3

U
2

C
6

C7

987654321

J1

C4

C3

C1

C2

5

6

2

13

4

U7

5

6

2

13

4

U6

654321

J2

654321

J8

2322212019181716151413121110
987654321

J6

302928272625242322212019181716151413121110
987654321

J3

4241403938373635343332313029282726252423222120191816141312111098765421

J4

654321

J7

5

2

4

U5

5

6

2

13

4

U4

6 8

261112 259 2

7 3

28 271

5 4

U
1

424140393837353433323130292827262522212019181716151413121110
987654321

J5

IS
P

_
P

O
W

E
R

_
S

W

IS
P

_
P

O
W

E
R

_
S

W

M
O

S
I

IS
P

_
R

E
S

E
T

V
C

C
_
IS

P

R
S

S
I

M
O

S
I

M
IS

O

P
E

6

U
A

R
T

1
_
R

T
S

P
A

LE

S
U

A
R

T
_
R

X
D

U
A

R
T

0
_
T

X
D

U
A

R
T

0
_
R

X
D

U
A

R
T

1
_
T

X
D

U
A

R
T

1
_
R

X
D

R
E

S
E

T

M
IS

O

A
V

R
_T

D
I

T
C

K

P
D

A
T

A

S
C

K

S
C

L

P
F1

P
E

6
P

E
3

U
A

R
T

1
_
R

X
D

B
T

_
R

S
T

C
H

P
_
O

U
T

S
C

K

P
B

4
S

C
L

S
D

A
P

F1
P

F
0

U
A

R
T

1
_
T

X
D

U
A

R
T

1
_
C

T
S

U
A

R
T

0
_
R

X
D

U
A

R
T

0
_
T

X
D

A
V

R
_T

D
I

S
D

A
P

F1
P

F
0

S
C

L

T
C

K
P

B
4

P
E

6

P
E

3

V
C

C
_

IO

P
E

3

S
D

A

P
C

LK

P
F

0

P
A

LE

V
C

C
_

IO

U
A

R
T

1
_
C

T
S

S
U

A
R

T
_
R

X
D

S
U

A
R

T
_
T

X
D

C
H

P
_
O

U
T

B
T

_
R

S
T

R
E

S
E

T

R
S

S
I

P
D

A
T

A
P

C
LK

T
C

K

A
V

R
_T

D
I

IS
P

_
R

E
S

E
T

V
C

C
_
IS

P

V
C

C

D
S

N
B

T
N

O
D

E
A

D
A

P
T

E
R

D
A

N
IE

L
H

O
B

I

1
1

2

T
IK

R
E

S
E

T
U

A
R

T
0
_
R

X
D

S
C

K

U
A

R
T

0
_
T

X
D

IS
P

_
R

E
S

E
T

IS
P

_
M

O
S

I_
T

X
D

S
C

K

IS
P

_
M

IS
O

_
R

X
D

V
D

C
_

IN
V

C
C

V
C

C
_

IO
V

C
C

V
C

C
_

IS
P

V
C

C
V

C
C

R
E

S
E

T
IS

P
_
M

IS
O

_
R

X
D

R
E

S
E

T
IS

P
_
M

O
S

I_
T

X
D

M
IS

O

IS
P

_
R

E
S

E
T

M
O

S
I

U
A

R
T

0
_
T

X
D

IS
P

_
R

E
S

E
T

10U

10
N

V
D

C
_

IN

4.7U

100N

4.7U

100N

V
D

C
_

IN

1.0U

23

S
U

A
R

T
_
T

X
D

S
U

A
R

T
_
R

X
D

S
U

A
R

T
_
T

X
D

15

V
D

C
_

IN

390
R1

C190_BLUE
D1

V
C

C
_

IS
P

24

P
B

4

D
S

N
-B

R
E

V
1

163

S
U

S
P

E
N

D
*

S
U

S
P

E
N

D
*

U
A

R
T

0
_
R

X
D

IS
P

_
P

O
W

E
R

_
S

W

C
P

21
01

24 23

1
2

3
4

5
6

7
8

1
2

3
4

5
6

8
7

ABCDE
E D C B A

Z
E

IC
H

N
U

N
G

S
T

IT
E

L
:

S
E

IT
E

V
O

N

Z
E

IC
H

N
U

N
G

S
N

U
M

M
E

R
:

P
R

O
JE

K
T

:

A
3

E
ID

G
E

N
O

E
S

S
IS

C
H

E
T

E
C

H
N

IS
C

H
E

H
O

C
H

S
C

H
U

L
E

Z
U

E
R

IC
H

LA
B

O
R

A
T

O
R

Y
:

D
E

S
IG

N
B

Y
:

1 1098765432 11 14 15 1612 13 20 211917 18 2322 24 2625 27 28 29 3130 32 3433 3635 37 403938 41 42

1 1098765432 11 211918171615 20141312 302928272625242322

R
E

G
IN

V
B

U
S

D
+

D
-

V
D

D

G
N

D

R
T

S

C
T

S

R
X

D

D
S

R

T
X

D

D
T

R

D
C

D

R
I

S
U

S
P

E
N

D

R
S

T
_N

S
U

S
P

E
N

D
_N

nc
7s

b3
25

7 V
C

C
G

N
D

A
S B1B

0 nc
7s

b3
25

7 V
C

C
G

N
D

A
S B1B

0

1 2 3 4 5 6

1

10
98765432

11 14 15 1612 13 20 211917 18 2322 24 2625 27 28 29 3130 32 3433 3635 37 403938 41 42

22 2319 212017 1814 16151312111097 865421 3

1 2 3 4 5 6

1 2 3 4 5 6

nc
7s

b3
25

7 V
C

C
G

N
D

A
S B1B

0 nc
7s

b3
25

7 V
C

C
G

N
D

A
S B1B

0

K

K

T

K

2 3 4 5 6 7 8 91

T

K

LT
19

62 S
E

N
S

E

GND

B
Y

P

O
U

T

S
H

D
N

*

IN

T

74

1 GND

2 UART0_CTS

3 UART0_RTS

4 UART0_TXD

5 UARTO_RXD

6 UART1_CTS

7 UART1_RTS

8 UART1_TXD

9 UART1_RXD

10 PF0

11 PF1

12 SDA

13 SCL

14 PB4

15 RESET

16 GND

17 VDC_IN

18 VDC_IN

19 VCC_IO

20 VCC_IO

40 GND

39 BT_RST

38 BT_TDO

37 AVR_TDI

36 TMS

35 TCK

34 RSSI

33 PDATA

32 PCLK

30 PALE

31 PE3

29 PE6

28 CHP_OUT

27 SS

26 SCK

25 MISO

24 MOSI

23 GND

22 VCC

21 VCC

1
V

C
C

_I
O

VCC_IO

GND

GND

ISP_MOSI_TXD

VCC_ISP

ISP_RESET

SCK

ISP_MISO_RXD

BT_RST

AVR_TDI

TCK

PDATA

PALE

PE6

ISP_RESET

MISO

RESET

SCL

PF1

UART1_RXD

UART1_RTS

UART0_RXD

SUART0_TXD

VCC_RST

ISP_POWER_SW

RSSI

PCLK

PE3

CHP_OUT

SCK

MOSI

PB4

SDA

PF0

UART1_TXD

UART1_CTS

UART0_TXD

SUART0_RXD

GND

UART0_RXD

VCC

RESET

SCK

UART0_TXD

VCC VDC_IN

GNDGND

2
PE

3

3 4
V

C
C

_I
O

5
PE

6

6
PB

4

7
TC

K

8
V

C
C

_I
O

9
SC

L

10 11
 P

F0

21
 G

N
D

20
 P

E6

19
 P

E3

18 17
 V

C
C

_I
O

16

15

14
 A

V
R_

TD
I

13
 S

D
A

12
 P

F1

75

Appendix C: DSN Adapter Schematic & Pin-Out

76

D
Assignment

77

Appendix D: Assignment

Institut für Technische Informatik (TIK)

Sommersemester 2005

MASTERRARBEIT

für
Daniel Hobi und Lukas Winterhalter

Betreuer: Jan Beutel
Stellvertreter: Matthias Dyer

Ausgabe: 1. April 2005
Abgabe: 1. Oktober 2005

Large-scale Bluetooth Sensor-Network Demonstrator

Einleitung

Eine bekannte Vision für ad hoc Netzwerke [16] geht davon aus, das unendlich viele, kleinste “Sensorknoten”
kollaborativ ein Netzwerk und somit eine Applikation bilden. In anderen Visionen [13, 6] wird davon ausgegan-
gen, das solche System weite Anwendungsbereiche abdecken können und das die einzelnen Komponenten
unterschiedliche Ressourcen aufweisen.

Die BTnodes [5] bestehen aus einem Atmel AVR Mikrokontrollerm einem Bluetooth Modul und ein Low-
Power Radio. Zusammen mit der im NCCR-MICS [30] entwickelten BTnut System Software bilden sie eine sehr
kompakte programmierbare Platform für die Entwicklung mobiler ad hoc und Sensornetze. An diese Knoten
können diverse Peripheriegeräte (z.B. Sensoren) angehängt werden. Mit der geeigneten Software bauen viele
Sensorknoten selbstständig ein Sensornetzwerk auf, worüber die Sensordaten transportiert werden können.

Die Mica Motes und ihr Betriebssystem TinyOS sind ein ähnliches System das an der UC Berkeley entwickelt
[12, 19, 18] und von Crossbow [29] kommerzialisiert wurde, das aber mit einem proprietärem Funkprotokoll auf
Basis eines Chipcon CC1000 [8] Radios arbeitet. TinyOS ist heute der de-facto Industriestandard für Sensor-
platformen.

Heute werden Applikationen für Sensornetze meist explorativ entwickelt. Hierzu ist relativ viel Aufwand von
Personal, Know-How und entsprechenden iterativen Designzyklen notwendig. Erfahrungsberichte von sol-
chen Experimenten gibt es von Szewcyk [23, 24, 22], Cerpa [7], Hemingway [11], Mainwaring [20] und anderen.
Erste Ansätze die koordinierte Methoden und Verfahren eines ganzheitlichen Entwicklungsprozesses zum Ziel
haben gibt es bereits. Insbesondere sind in den Teilbereichen der Simulation [18, 21, 17], Emulation [10], Ent-
wicklung [9, 5], Inbetriebnahme [15], Test [26], Validierung und Verifikation [4] Lösungen vorhanden. Einer
besonderer Ansatz stellt hier das sogennante Deployment-Support Netzwerk (DSN) [3, 2, 4] dar, welches als
temporäres Werkzeug während des Entwicklungs- und Inbetriebnahmenprozesses sowie zur Überwachung
angewendet werden kann.

Das Ziel dieser Arbeit ist, einen dauerhaften DSN Demonstrator zu entwickeln der im Bereich des ETZ
Gebäudes installiert wird. Dazu werden Anpassungen der vorhandenen BTnodes und der Stromversorgun-
gen notwendig sein sowie die Entwicklung von Funktionen und Tools zur Steuerung und Programmierung des
Netzwerkes.

78

Abbildung 1: Der BTnode rev3 und die Mica2 Mote Familie.

Konkret soll eine fixe und zuverlässige Installation des JAWS deployment-support networks am TIK realisiert
werden (siehe Abb. 2). Diese Anwendung wurde am TIK u.a. mit Unterstützung von Semester-/Diplomarbeiten
entwickelt. Um aber diese Anwendung in einen permanenten stabilen Zustand für die Demonstration zu brin-
gen, muss diese Software noch verbessert werden.

Aufgabenstellung

1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch thematisch fest [27].
Erarbeiten Sie in Absprache mit dem Betreuer ein Pflichtenheft.

2. Machen Sie sich mit den relevanten Arbeiten im Bereich Sensornetze, Platformen, Systeme, Software
und Fast-prototyping vertraut. Führen Sie eine Literaturrecherche durch. Suchen Sie auch nach rele-
vanten neueren Publikationen. Vergleichen Sie bestehende Demonstratoren anderer Universitäten (Mo-
telab [25], Smote [1], Kansai, Mirage, EmStar [10]). Prüfen Sie welche Ideen/Konzepte Sie aus diesen
Lösungen verwenden können.

3. Arbeiten Sie sich in die Softwareentwicklungsumgebung der BTnodes [28] ein. Machen Sie sich mit den
erforderlichen Tools vertraut und benutzen Sie die entsprechenden Hilfsmittel (Versionskontrolle, Bug-
tracker, online Dokumentation, Mailinglisten, Application Notes, Beispielapplikationen).

4. Nehmen Sie das JAWS Deployment-Support Network auf einigen Knoten in Betrieb und testen Sie dieses
auf Zuverlässigkeit und Leistung. Erstellen Sie eine Liste der noch fehlenden Eigenschaften die für einen
zuverlässigen Dauerbetrieb notwendig sind sowie der noch vorhandenen Fehlfunktionen. Benutzen Sie
hierzu soweit Möglich computergestütze tools (Bugtracker).

5. Das DSN besitzt noch keine Target Anbindung, diese wurde jedoch in vorhergegangenen Arbeiten [14]
schon separat entwickelt. Machen Sie sich mit diesen Funktionen vertraut und entwickeln Sie ein Kon-
zept zur Anbindung verschiedener Targets (BTnode, Mica Motes, etc.) Schlagen sie eine physikalische
Verbindung vor (Kabel oder PCB) und implementieren Sie diese. Überprüfen Sie ob es möglich ist auch
einen standard Sensor in diese Hardware zu integrieren um Referenzmessungen innerhalb des DSNs zu
ermöglichen.

6. Implementieren Sie die erforderlichen DSN services wie remote command execution, code distribution,
target programming, self-programming, etc. entsprechend der von Ihnen festgestellten Anforderungen.

7. Erarbeiten Sie einen Vorschlag für die Befestigung sowie eine verteilte Stromversorgung der DSN Kno-
ten. Zur Fertigung von mechanischen Baugrupen kann z.B. die Elektrotechnikwerkstatt hinzugezogen
werden. Installieren Sie mit diesem Konzept ein 40 Knoten Netzwerk am TIK (ETZ G Geschoss).

8. Führen sie Tests und Benchmarks durch. Interpretieren Sie die Resultate.

9. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen Demonstration, sowie mit
einem Schlussbericht.

2

79

Appendix D: Assignment

virtual connections
host controller

targetsDSN nodes

Abbildung 2: JAWS: Deployment-Support Network. Die BTnodes (DSN nodes) bilden und unterhalten
selbstständig ein Backbone-Netzwerk über welches die Targetnodes (z.B. die Berekley Motes) programmiert
bzw. überwacht werden können.

Durchführung der Masterarbeit

Allgemeines

• Der Verlauf des Projektes Masterarbeit soll laufend anhand des Projektplanes und der Meilensteine eva-
luiert werden. Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg können Änderungen
am Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über PC’s mit Linux/Windows für Softwareentwicklung und Test. Für die Einhaltung der
geltenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst verantwortlich. Falls damit Probleme auf-
tauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Masterarbeit in einem Kurzvortrag vor und präsentieren Sie die er-
arbeiteten Resultate am Schluss im Rahmen des Institutskolloquiums Ende Semester.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern. Verfassen Sie dazu auch einen kurzen
wöchentlichen Statusbericht (email).

Abgabe

• Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens am 1. Oktober 2005 dem betreuen-
den Assistenten oder seinen Stellvertreter ab. Diese Aufgabenstellung soll vorne im Bericht eingefügt
werden.

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten Source- und Objectfiles, Konfi-
gurationsfiles, benötigten Directorystrukturen usw. bestehen bleiben. Der Programmcode sowie die Fi-
lestruktur soll ausreichen dokumentiert sein. Eine spätere Anschlussarbeit soll auf dem hinterlassenen
Stand aufbauen können.

3

80

Literatur

[1] UC Berkeley. Smote: Berkeley network sensor testbed. http://smote.cs.berkeley.edu/.

[2] J. Beutel. Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, chapter Location
Management in Wireless Sensor Networks. CRC-Press, Boca Raton, FL, 2004.

[3] J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald. Next-generation prototyping of sensor networks. In
Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages 291–292. ACM Press, New
York, November 2004.

[4] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology control for deployment-sensor networks. In
Proc. 4th Int’l Conf. Information Processing in Sensor Networks (IPSN ’05), page to appear, April 2005.

[5] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and L. Thiele. Prototyping wireless sensor network
applications with BTnodes. In Proc. 1st European Workshop on Sensor Networks (EWSN 2004), volume 2920
of Lecture Notes in Computer Science, pages 323–338. Springer, Berlin, January 2004.

[6] L. Blazevic, L. Buttyan, Capkun S., S. Giordano, J.P. Hubaux, and J.Y. Le Boudec. Self organization in mobile
ad hoc networks: the approach of Terminodes. IEEE Communications Magazine, 39(6):166–174, June 2001.

[7] A. Cerpa, J.E. Elson, M. Hamilton, J. Zhao, D. Estrin, and L. Girod. Habitat monitoring: application driver
for wireless communications technology. ACM SIGCOMM Computer Communication Review, 31(2):20–41,
April 2001.

[8] Chipcon. CC1000, Single Chip Very Low Power RF Transceiver, April 2002.

[9] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In Proc. ACM SIGPLAN 2003 Conf. Programming Language Design and
Implementation (PLDI 2003), pages 1–11. ACM Press, New York, June 2003.

[10] L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramananthan, and D. Estrin. EmStar: A software environ-
ment for developing and deploying wireless sensor networks. In Proc. USENIX 2004 Annual Tech. Conf.,
pages 283–296, June 2004.

[11] B. Hemingway, W. Brunette, T. Anderl, and G. Borriello. The Flock: Mote sensors sing in undergraduate
curriculum. IEEE Computer, 37(8):72–78, August 2004.

[12] J.L. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions for networ-
ked sensors. In Proc. 9th Int’l Conf. Architectural Support Programming Languages and Operating Systems
(ASPLOS-IX), pages 93–104. ACM Press, New York, November 2000.

[13] J.P. Hubaux, T. Gross, J.Y. Le Boudec, and M. Vetterli. Toward self-organized mobile ad hoc networks: The
Terminodes Project. IEEE Communications Magazine, 39(1):118–124, January 2001.

[14] T. Hug and F. Süss. Mote/TinyOS meets BTnode, February 2004.

[15] J.W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network programming
at scale. In Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages 81–94. ACM
Press, New York, November 2004.

[16] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next Century Challenges: Mobile Networking for Smart Dust. In
Proc. 5th ACM/IEEE Ann. Int’l Conf. Mobile Computing and Networking (MobiCom ’99), pages 271–278. ACM
Press, New York, August 1999.

[17] O. Landsiedel, K. Wehrle, and S. Götz. Accurate prediction of power consumption in sensor networks. In
Proc. 2nd IEEE Workshop on Embedded Networked Sensors (EmNetS-II), page to appear. IEEE, Piscataway, NJ,
May 2005.

[18] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable simulation of entire TinyOS app-
lications. In Proc. 1st ACM Conf. Embedded Networked Sensor Systems (SenSys 2003), pages 126–137. ACM
Press, New York, November 2003.

4

81

Appendix D: Assignment

[19] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, Brewer E., and D. Culler. The emergence of
networking abstractions and techniques in TinyOS. In Proc. First Symp. Networked Systems Design and
Implementation (NSDI ’04), pages 1–14. ACM Press, New York, March 2004.

[20] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for habitat
monitoring. In Proc. 1st ACM Int’l Workshop Wireless Sensor Networks and Applications (WSNA 2002), pages
88–97. ACM Press, New York, September 2002.

[21] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Simulating the power consumption
of large-scale sensor network applications. In Proc. 2nd ACM Conf. Embedded Networked Sensor Systems
(SenSys 2004), pages 188–200. ACM Press, New York, November 2004.

[22] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An analysis of a large scale habitat
monitoring application. In Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages
214–226. ACM Press, New York, November 2004.

[23] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin. Habitat monitoring with
sensor networks. Communications of the ACM, 47(6):34–40, June 2004.

[24] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a sensor network expedition. In Proc. 1st
European Workshop on Sensor Networks (EWSN 2004), volume 2920 of Lecture Notes in Computer Science,
pages 307–322. Springer, Berlin, January 2004.

[25] Harvard University. MoteLab: Harvard network sensor testbed. http://motelab.eecs.harvard.edu/.

[26] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A wireless sensor network testbed. In Proc. 4th
Int’l Conf. Information Processing in Sensor Networks (IPSN ’05), page to appear, April 2005.

[27] E. Zitzler. Studien- und Diplomarbeiten, Merkblatt für Studenten und Betreuer. Computer Engineering
and Networks Lab, ETH Zürich, Switzerland, March 1998.

[28] BTnodes - A Distributed Environment for Prototyping Ad Hoc Networks. http://www.btnode.ethz.ch.

[29] Crossbow Technology Inc. http://www.xbow.com.

[30] NCCR-MICS: Swiss National Competence Center on Mobile Information and Communication Systems.
http://www.mics.org.

Date Section Changes
Jan. 06, 2005 Initial version
Sep. 28, 2005 Minor revisions

Tabelle 1: Revision History

5

82

Bibliography

[1] Argo: Global ocean surveillance. http://www.argo.ucsd.edu.

[2] Ethernut: An open source hardware and software project for building tiny em-
bedded ethernet devices. http://www.ethernut.de.

[3] Particle computer – sensor networks and solutions. http://www.particle-
computer.net.

[4] Atmel. Atmel ATmega128L - 8-Bit AVR Microcontroller with 128k in-System
programmable Flash, November 2004.

[5] UC Berkeley. Smote: Berkeley network sensor testbed.
http://smote.cs.berkeley.edu/.

[6] J. Beutel, M. Dyer, L. Meier, M. Ringwald, and L. Thiele. Next-generation de-
ployment support for sensor networks. Technical Report 207, Computer Engi-
neering and Networks Lab, ETH Zürich, Switzerland, November 2004.

[7] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology control for
deployment-sensor networks. Technical Report 208, Computer Engineering
and Networks Lab, ETH Zürich, Switzerland, November 2004.

[8] Adam Chlipala, Jonathan Hui, and Gilman Tolle. Del-
uge: Data dissimination for network programming at scale.
http://www.cs.berkeley.edu/˜jwhui/research/deluge/cs262/cs262a-report.pdf,
2003.

[9] D. Culler et al. TinyOS: An operating system for Networked Sensors.
http://webs.cs.berkeley.edu/tos.

[10] U. Frey. Topology and position estimation in Bluetooth ad hoc networks. Mas-
ter’s thesis, Computer Engineering and Networks Lab, ETH Zürich, Switzer-
land, March 2003.

[11] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ra-
manathan, and Deborah Estrin. Emstar: a software environment for devel-
oping and deploying wireless sensor networks. In Proceedings of the 2004
USENIX Technical Conference, Boston, MA, 2004.

83

Bibliography

[12] Lewis Girod, Thanos Stathopoulos, Nithya Ramanathan, Jeremy Elson, Debo-
rah Estrin, Eric Osterweil, and Tom Schoellhammer. A system for simulation,
emulation, and deployment of heterogeneous sensor networks. In Proceedings
of the Second ACM Conference on Embedded Networked Sensor Systems, Balti-
more, MD, 2004. To appear.

[13] J.L. Hill and D. Culler. Mica: A wireless platform for deeply embedded net-
works. IEEE Micro, 22(6):12–24, November 2002.

[14] T. Hug and F. Süss. Mote/TinyOS meets BTnode, February 2004.

[15] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemi-
nation protocol for network programming at scale. In Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 81–94.
ACM Press, 2004.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire TinyOS applications. In Proc. 1st ACM Conf. Embedded
Networked Sensor Systems (SenSys 2003), pages 126–137. ACM Press, New
York, November 2003.

[17] K. Martin. Adaptive xtc on btnodes. Master’s thesis, Computer Engineering
and Networks Lab, ETH Zürich, Switzerland, May 2005.

[18] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power
wireless research. In Proc. 4th Int’l Conf. Information Processing in Sensor
Networks (IPSN ’05), pages 364–369. IEEE, Piscataway, NJ, April 2005.

[19] Harvard University. MoteLab: Harvard network sensor testbed.
http://motelab.eecs.harvard.edu/.

[20] BTnodes - A Distributed Environment for Prototyping Ad Hoc Networks.
http://www.btnode.ethz.ch.

84

	Introduction
	Wireless Sensor Networks
	Deployment-Support Network
	Related Work
	Short Task Description
	Thesis Overview

	Platform: BTnode
	Overview
	Banked Memory
	Bluetooth
	Scatternet Operation

	Nut/OS

	Concepts
	JAWS
	Overview
	Connection Manager
	Transport Manager

	Remote Command Execution
	Target Programming
	Upload to the host node
	Flooding the network
	Target Flashing

	Self-Programming
	Target Monitoring and Control
	Logging
	DSN Adapter Board

	Implementation
	System Overview
	Remote Command Execution
	Overview
	Transport Layer Extension
	Messages
	Control Flow
	An Example

	Program Management
	The Bootloader Application
	Loadhex

	Code Distribution
	Overview
	Transport Layer Extension
	Messages

	Target Adapter
	Reprogramming
	Monitoring
	Target Control

	Logging
	L2CAP Support
	GUI
	Problems and Difficulties
	Nut/OS Interrupt Latency
	Missing HCI Flow Control
	Speed

	DSN Adapter Board
	Overview
	Power
	Debug (SUART)
	Sensor Board
	ISP Pin Mapping

	Demonstrator
	Installation
	Senso -- A Sensor Network Application

	Test Results and Benchmarks
	Stability
	Code Distribution
	Transfer Rate
	Transmission Failures

	Battery

	Conclusion
	Summary
	Future Work

	Protocol
	Connection Manager Packets
	Transport Manager Packets
	DSN Packets
	NB Data
	CL Data

	Command Specification
	Connection Manager Commands
	Transport Manager Commands
	DSN Commands
	Target Adapter Commands
	Monitor Commands
	Logging Commands
	Other Commands
	JAWS Commands

	DSN Adapter Schematic & Pin-Out
	Assignment
	Bibliography

