
Master’s Thesis - Summer Term 2005

Service Management Procedures Supporting
Distributed Services in Mobile Ad Hoc

Networks

Florian Maurer
maurerfl@ee.ethz.ch

MA-2005-14

August 31, 2005

Tutor: Károly Farkas farkas@tik.ee.ethz.ch
Supervisor: Prof. B. Plattner plattner@tik.ee.ethz.ch

III

Abstract

Using real-time applications in mobile environments, e.g., multiplayer games or collaborative

working tools, is getting popular as mobile devices and wireless networks are becoming ubiq-

uitous. Especially mobile networked gaming, in regard to the current trends, is considered by

game developers, mobile device manufacturers and service providers to be a very attractive

source of future revenue. Furthermore, the appearance and evolution of new communication

paradigms like mobile ad hoc networking offer new ways and unique features for real-time

mobile applications and even for mobile gaming. However, ad hoc networks reserve special

challenges mainly due to their self-organized behavior and the resource constraints of the par-

ticipating mobile devices. One of these challenges is how we can manage applications and

support their smooth running in this dynamic and error prone environment.

In this Master’s thesis, an algorithm called PBS (Priority Based Selection) will be presented

that addresses these challenges. This algorithm is based on graph theory using Dominating

Sets to create a distributed service architecture in a self-organized mobile ad hoc, shortly ‘self-

hoc’, network. PBS computes an appropriate Dominating Set of the network graph in a fully

distributed manner and it is the first approach in contrast to the existing algorithms that offers

continuous maintenance of this set even in dynamically changing network topologies. To get

an appreciation about PBS it will be discussed, analyzed and evaluated via simulations and it

will be shown how the distributed service architecture created and maintained by applying PBS

can be used to manage real-time multiplayer games in self-organized mobile ad hoc networks.

Finally, the algorithm has been implemented in a real self-hoc network testbed .

V

Preface

With this Master’s Thesis I will finish my studies at the Department of Information Technology

and Electrical Engineering (D-ITET) [1] at the Swiss Federal Institute of Technology (ETH),

Zürich [2]. This thesis was performed at the Computer Engineering and Networks Laboratory

[3] between March and August 2005.

I would like to express my sincere gratitude to:

• Károly Farkas(farkas@tik.ee.ethz.ch), for the opportunity he gave me to conduct this

project and his guidance and assistance through the whole project.

• Dirk Budke(d.budke@web.de), for the enjoyable teamwork and the permission to use and

extend Mobigen, a scene generator for the NS-2 simulator.

Zurich, 31st August

Florian Maurer

Table of Contents

Abstract III

Preface V

Table of Contents VII

List of Figures VIII

List of Tables IX

1 Task Description 1

1.1 Introduction. 1

1.2 Tasks and Working Plan. 4

1.3 General Regulations. 5

2 Related Work 7

2.1 Game Architectures. 7

2.1.1 Comparing Different Architectures. 8

2.2 Zone-Based Game Architecture. 9

2.2.1 Characteristics of Zone Servers. 9

2.2.2 Task of Zone Servers. 10

2.2.3 Detection of Zone Servers. 13

2.2.4 Selection of Zone Servers. 13

2.3 Existing Dominating Set Computation Algorithms. 13

2.3.1 Problem Definition. 13

2.3.2 Notations and Evaluation. 14

2.3.3 Largest-ID Algorithm . 16

2.3.4 Local Randomized Greedy Algorithm. 17

2.3.5 Marking Algorithm. 19

VII

VIII TABLE OF CONTENTS

2.3.6 LP-Relaxation Algorithm . 21

2.3.7 Dominator Algorithm . 21

2.3.8 Removing Cycles Algorithm. 23

2.3.9 Steiner Tree Algorithms. 24

2.3.10 Conclusions. 25

3 Zone Server Selection 29

3.1 Requirements. 29

3.1.1 Prerequisites. 30

3.1.2 Properties of Dominating Set. 31

3.1.3 Requirements for Zone Server Selection Algorithm. 36

3.1.4 Summary. 37

3.2 Priority Based Selection (PBS) algorithm. 39

3.2.1 Notations and Prerequisites. 39

3.2.2 Dominating Set Computation. 41

3.2.3 Extensions . 48

3.2.4 Examples. 52

3.2.5 Performance Analysis. 54

3.2.6 Summary. 59

4 Simulations and Evaluation 61

4.1 Simulation Settings. 61

4.2 Simulation Results. 64

4.3 Summary . 71

5 Implementation 73

5.1 About SIRAMON. 73

5.2 Implementation Overview. 74

6 Conclusions and Outlook 77

6.1 Conclusions. 77

6.2 Outlook . 79

Appendix 81

A NS-2 Implementation 81

A.1 About Network Simulator NS-2 . 81

TABLE OF CONTENTS IX

A.1.1 PBS Implementation in NS-2. 82

A.2 General Architecture. 83

A.3 Typical Tcl File . 83

A.4 Getting Started... 84

B SIRAMON Implementation 89

B.1 PBS Implementation in SIRAMON. 89

B.2 Packet Format. 90

B.3 Net Monitor . 91

C Finite State Machine (FSM) 93

C.1 The States. 94

C.2 The Transitions and Actions. 94

D Used Abbreviations 97

Bibliography 104

List of Figures

2.1 Example Zone-Based Game Architecture in a Self-Hoc Network. 8

2.2 Zone Server Architecture from the View of a Zone Server. 11

2.3 Example of a Unit Disk Graph (UDG). 15

2.4 Largest-ID algorithm. 16

2.5 Largest-ID algorithm for another arrangement of the node IDs. 16

2.6 Greedy Algorithm - After the first Round. 17

2.7 Greedy Algorithm - Final Dominating Set. 18

2.8 Marking Algorithm without Extensions. 20

2.9 Marking Algorithm with Extensions. 20

2.10 First Step of the Dominator Algorithm. 22

2.11 MIS of the Dominator Algorithm. 23

2.12 Final CDS of the Dominator Algorithm. 23

3.1 An Ad Hoc Network Where the Gray Nodes Want to Build a Game Session. . 31

3.2 Example for Interconnecting Nodes. Should Node 7 and 9 Join the DS?. . . . 32

3.3 Full Connected Graph with Two Nodes in the DS. 33

3.4 Ad Hoc Network Shown as a Graph. 34

3.5 Case 1: CDS Based Only on Weights. 34

3.6 Case 2: CDS Based on Weights, then on Minimum Number of Nodes. 34

3.7 Case 3: CDS Based on Minimum Number of Nodes, then on Weights. 34

3.8 Zone Servers Before the Splitting. 37

3.9 Zone Servers After the Splitting. 37

3.10 Sample Graph Where Node 1 is DOMINATOR, Nodes 2 and 3 DOMINATEE,

and Node 4 still INTCANDIDATE . 43

3.11 A Graph with Two Full Connected Nodes. 44

3.12 The Chosen CDS for this Graph with Two Full Connected Nodes. 44

X

LIST OF FIGURES XI

3.13 Pseudo Code of the PBS Algorithm. 46

3.14 Flow Chart of the PBS Algorithm. 47

3.15 A Graph Containing Two Common DOMINATOR Neighborhoods. 50

3.16 Graph Where Only One Path is Required to Build CDS. 52

3.17 The Cycle Cannot Be Detected and All Nodes Will Switch to DOMINATOR. 52

3.18 Example 1 - Graph. 54

3.19 Example 1- After first round. 54

3.20 Example 1 - Chosen DS. 54

3.21 Example 1 - Chosen CDS. 54

3.22 Example 2 - Graph. 54

3.23 Example 2 - Chosen DS. 55

3.24 Example 2 - Chosen CDS. 55

3.25 Worst Case Scenario Concerning Time Complexity. 57

3.26 Situation in the Worst Case Scenario After 3 Rounds Applying the PBS Algorithm57

4.1 Sent Data of a Node During a Game Session. 65

4.2 Number of DOMINATOR Nodes if a DOMINATOR Doesn’t Switch Back to

DOMINATEE Status . 68

4.3 Number of DOMINATOR Nodes if a DOMINATOR Switches Back Immedi-

ately to DOMINATEE Status. 68

4.4 Number of DOMINATOR Nodes if a DOMINATOR Waits 10 Seconds Before

Switching Back to DOMINATEE Status. 68

5.1 Ad Hoc Device Model with SIRAMON. 75

A.1 Architecture of the Implementation in NS-2. 84

A.2 Tcl Commands for PBS Agent. 86

A.3 School Yard Scenario Shown in NAM. 87

C.1 Finite State Machine (FSM). 93

List of Tables

1.1 Working Plan . 6

2.1 Properties of Game Architectures. 10

2.2 Used Notations. 15

2.3 Largest-ID Algorithm. 17

2.4 LRG Algorithm . 18

2.5 Node Weighted LRG Algorithm. 19

2.6 Marking Algorithm . 21

2.7 LP-Relaxation Algorithm. 22

2.8 Dominator Algorithm. 23

2.9 Removing Cycles Algorithm. 24

2.10 Summary (CDS and Approximation) of DS Computing Algorithms. 26

2.11 Summary (Rounds and Message Complexity) of DS Computing Algorithms. . 26

3.1 Zone Server Selection Requirements. 38

3.2 Performance Results of PBS Algorithm. 60

4.1 Simulation Settings. 63

4.2 Used Bandwidth [%] . 65

4.3 Determination Delay [sec]. 66

4.4 Number of Required Changes. 66

4.5 Number of DS Changes. 69

4.6 Minimum Number of DOMINATOR Nodes. 69

4.7 Maximum Number of DOMINATOR Nodes. 69

4.8 Determination Delay for School Yard w/ 35 Nodes Scenario. 70

5.1 Two New Attribute Fields of the DEMANDS Element. 75

XIII

XIV LIST OF TABLES

A.1 Directory Structure of the PBS Implementation in NS-2. 82

A.2 Used Files of the PBS Implementation in NS-2. 83

B.1 New Packages Containing ZSS Functionality. 89

B.2 Used Files of the PBS Implementation in SIRAMON. 90

B.3 Used Packet Fields of a SIRAMON Packet. 91

B.4 Used Files of the Net Monitor Implementation in SIRAMON. 91

C.1 The Transitions of the Finite State Machine (FSM) Implemented in the PBS Agent95

Chapter 1

Task Description

In the first section of this chapter, the topic of this Master’s Thesis will be introduced and the

structure of this report will be explained. In the second section, a detailed working plan that

guided through the different steps of the project will be shown, and the last section contains

the general regulations for the project as predetermined by the department for fulfilling the

requirements for a report leading to the master’s degree.

1.1 Introduction

Real-time applications are attractive candidates to be used in mobile environments as the num-

ber of mobile devices and wireless networks are dramatically increasing. Especially mobile

networked games can constitute significant source of revenue for the mobile game industry. In

2004, over 170 million people had downloaded games to their mobile phones. This number will

triple in 2005. The global market intelligence and advisory firm IDC predicts that wireless gam-

ing will be worth 1.15 billion EUR by 2008 overtaking ring-tones in 2005 [4]. This information

reflects the high expectations for the wireless gaming market potential.

New communication paradigms like mobile ad hoc networks (MANETs) can offer new ways

and unique features for real-time mobile gaming attracting veteran gamers and new players

alike. MANETs are self-organized networks consisting of different mobile devices that are

communicating with each other. The network structure of a MANET is altering continuously

due to device mobility. Moreover, there exists no central administration in a mobile ad hoc

network. Each node participating in the network can act as end host or router or both and

must be cooperative in packet forwarding for other nodes. Among the new possible features for

MANETS are the abilities to integrate the real-world context of the players into the game, to en-

2 CHAPTER 1. TASK DESCRIPTION

courage real-world interaction between players, and to enable ubiquitous and competitive game

playing in a continuously changing environment. Existing efforts to enable mobile networked

games have either focused on using GPRS, UMTS or WLAN technologies to provide connec-

tivity between players or they were limited to direct short-term communication via Bluetooth or

Infrared connections. It is our vision that there will be a strong demand for games running on

mobile ad hoc networks where the player neither has to continuously use connectivity through

infrastructure-based networks nor is restricted to short-term games with direct communication

between players [5]. Market leader companies are also supporting this trend with their latest

products like Nokia N-Gage1 or Sony PSP2 game consoles.

In order to meet this demand, players’ mobile devices need to collaborate as a self-organizing

mobile ad hoc system called shortly ‘self-hoc’ system in our terminology. They will perform

tasks such as detecting the real-world context of players, maintaining a persistent game state,

and providing connectivity between players that are not in radio range of each other. However,

the ad hoc way of communication results in several challenges including the management and

support of the applications in this flexible and unreliable environment. Multiplayer games are

generally demanding real-time services preferring continuous low latency network connections

(in the range of 50-100 ms) with no jitter [6], [7]. In self-hoc networks, network connections are

established over feeble wireless links and devices can move and disappear easily which make

the management of real-time services especially difficult. Today’s online multiplayer game ar-

chitectures are mainly based on the client-server model [8]. This model is not suitable for a

self-hoc network due to the lack of central administration in these networks, point of failure

property of the server node, limited scalability and unprepared handling of fluctuating network

connections and conditions. In contrast, the zone-based game architecture [9] aids the real-

ization of multiplayer games with a robust, redundant server-client model by increasing fault

tolerance and responsiveness. In this model, the player nodes are divided into separate zones. In

every zone, a dedicated server node handles the players belonging to the zone and synchronizes

with the other zone servers.

However, the zone server nodes should be selected in an efficient and distributed way using

the most powerful nodes (concerning available computation and communication resources, po-

sition in the network, etc.) as servers. To this end, in this report a distributed Dominating

1http://www.n-gage.com/
2http://www.us.playstation.com/psp.aspx

1.1. INTRODUCTION 3

Set (DS) computation algorithm called PBS (Priority Based Selection) will be proposed. This

graph theory based algorithm computes an appropriate DS of the ad hoc network graph in a

fully distributed way containing nodes which can be used as zone servers. Note that the goal

in developing PBS was not to create the ‘best’ distributed DS computation algorithm rather to

compute an appropriate DS with reasonable time complexity and signaling overhead. More-

over, to ensure the smooth running of a real-time application in a self-hoc network, the set of

zone server nodes must be maintained and recomputed on the fly when it’s required (e.g., in

case of network topology changes or link failures). PBS is the first algorithm, according to our

knowledge, that offers continuous maintenance of the DS even if the network graph changes

dynamically. PBS shows a stable performance even in case of high node mobility keeping the

DS computation time nearly constant. Note that although this work was mainly motivated by

mobile ad hoc multiplayer games, the applied zone-based architecture and the PBS algorithm to

select zone server nodes can be used also in case of other mobile applications like collaborative

working tools, multimedia entertainment or ‘edutainment’.

To be able to get an appreciation about PBS, the algorithm has been analyzed and evaluated

via simulations in the NS-2 [10] network simulator and it will be shown how the distributed

service architecture created and maintained by applying PBS can be used in managing real-time

multiplayer games in self-organized mobile ad hoc networks. Finally, the algorithm’s implemen-

tation in a real self-hoc network testbed called SIRAMON (Service provIsioning fRAMework

for self-Organized Networks) [11] will be described. This framework has been developed at

the Computer Engineering and Networks Laboratory [3] in a previous Master’s Thesis [12] to

support provisioning of services, i.e., the description, indication, deployment and management,

in MANETs.

The report is divided into the following chapters:

• Chapter 2 - Related Work- Introduces the Zone-based Game Architecture and gives an

overview about the current state of the art concerning ad hoc networks, zone servers and

choosing Dominating Sets.

• Chapter 3 - Zone Server Selection- Introduces the Priority Based Selection (PBS) algo-

rithm for the Zone Server selection supporting a Zone-based Game Architecture.

• Chapter 4 - Simulations and Evaluation- Evaluates the PBS algorithm based on the sim-

ulation results.

4 CHAPTER 1. TASK DESCRIPTION

• Chapter 5 - Implementation- Gives an overview about the implementation of the PBS

algorithm in the SIRAMON framework.

• Chapter 6 - Conclusions and Outlook- Concludes the work of this Master’s Thesis and

gives an outlook for further projects.

• Appendix A - NS-2 Implementation- Gives an overview about the implementation of the

PBS algorithm in the NS-2 simulator.

• Appendix B - SIRAMON Implementation- Gives some more detailed insights of the PBS

implementation in the SIRAMON framework.

• Appendix C - Finite State Machine (FSM)- Explains the Finite State Machine used by the

implementations of the PBS algorithm.

• Appendix D - Used Abbreviations- Index of the used abbreviations of this report.

1.2 Tasks and Working Plan

The project has been divided into the following tasks:

1. Literature exploration

Collect the available material and documentation about algorithms choosing Dominating

Sets and get the current state of the art concerning ad hoc networks and zone servers.

2. Requirements to select Zone Server nodes

Define the requirements to select the zone server nodes. What is the ”best” solution for

the choice of the server nodes in an ad hoc network?

3. Evaluation criteria for comparing the modified (C)DS algorithms

Define the criteria that can be used to evaluate and compare different algorithms deter-

mining Dominant Sets in ad hoc networks.

4. Develop an own C(DS) algorithm

Devlop an own algorithm that is appropriate for selecting the Zone Server nodes according

to the elaborated criteria from the previous tasks.

5. Analytical evaluation and comparison

Perform an analytical evaluation and comparison of the different algorithms according to

the defined criteria and the own developed algorithm.

1.3. GENERAL REGULATIONS 5

6. Implementation and evaluation in a simulator

Implementation and evaluation of the developed algorithm in a network simulator. The

used simulator will be NS-2 [10] that is an event driven network simulator and can be

used to analyze the algorithm.

7. Implementation and evaluation in the SIRAMON framework

Implementation and evaluation of the developed algorithm in the SIRAMON framework

using Java language.

In Table1.1, the working plan of the project is shown. The numbers in brackets refer to the

defined tasks above.

1.3 General Regulations

The project will be guided by Ḱaroly Farkas. At the end of the project, a written thesis report

describing the work and the outcomes as well as the documentation of the developed code have

to be delivered. The master student understands and accepts the terms and regulations of ETH

in regard to the developed code which will be published as open source under the terms of the

GNU General Public License (GPL) [13]. In the course of the work an intermediate and a final

presentation have to be given. An accepted thesis report and successfully accomplished presen-

tations are the prerequisites for getting the final grade.

Start: Tuesday, 1st March 2005

End: Wednesday, 31st August 2005

6 CHAPTER 1. TASK DESCRIPTION

Week Date Task

1 March 1st - 6th Start of the work

2 7th - 13th Literature exploration (1)

3 14th - 20th

4 21st - 27th Requirements to select zone server nodes (2)

5 28th - 3rd

6 April 4th - 10th Evaluation criteria for comparing the modified (C)DS algorithms (3)

7 11th - 17th

8 18th - 24th Modify the C(DS) algorithms (4)

9 May 25th - 1st

10 2nd - 8th Analytical evaluation and comparison (5)

11 9th - 15th

12 16th- 22th Implementation and evaluation in a simulator (6)

13 23rd - 29th

14 June 30th - 5th

15 6th - 12th

16 13th - 19th

17 20th - 26th Implementation and evaluation in SIRAMON (7)

18 July 27th - 3rd

19 4th- 10th

20 11th- 17th

21 18th - 24th

22 25th- 31th Writing Master Thesis

23 August 1st - 7th

24 8th - 14th

25 15th - 21st

26 22th - 28th

27 29th - 31st Hand in the Thesis

Table 1.1: Working Plan

Chapter 2

Related Work

In this chapter, the related work to the task of this thesis is presented and the current state of

the art concerning gaming architectures and computing Dominating Sets in a distributed manner

is shown. In the first section, a new Zone-Based Gaming architecture well suited for real-time

multiplayer games is introduced and compared to the traditional peer-to-peer and centralized

server architectures. The second section gives an overview about existing distributed algorithms

that computes Dominating Sets of nodes based on an existing graph.

2.1 Game Architectures

Most of the commonly used game architectures nowadays follow one of two approaches: First,

a central server design where the server receives the state change events of the game from the

users, recalculates the overall state and distributes the changes in the game state back to the user.

Or second, a completely distributed model often referred to as peer-to-peer, where every player

sends state changes directly to all the other players. In this thesis, a new concept as defined in

[9] will be used: the concept of a ’Zone Server’. There exist similar approaches called ’Mirror

Server Architecture’ [14] or ’Proxy Server Architecture’ [15], but in this thesis the concept of

Zone Servers will be preferred.

The Zone-Based Gaming Architecture means some players are elected as Zone Servers and each

of them receives the state changes of only a group of players. These Zone Servers communicate

also with the other Zone Servers to propagate the game state changes to all the other players.

The Zone Servers are topologically distributed across the network and the clients connect to

their closest Zone Servers. In Fig.2.1, an example of this architecture for a typical ad hoc

network is shown in which each group has its own Zone Server. Nodes 1 and 3 are connected

to Zone Server 2 while nodes 8 and 9 are connected to Zone Server 10. The white nodes 4, 5,

8 CHAPTER 2. RELATED WORK

6, and 7 are not participating in the game session and are called auxiliary nodes, because it can

happen that they have to forward the game traffic. In the shown network, this is the case for

node 4 and 6.

Figure 2.1: Example Zone-Based Game Architecture in a Self-Hoc Network

2.1.1 Comparing Different Architectures

In case of thecentralizedarchitecture, every player connects to a single central machine, the

game server, that knows the game rules and acts as a master authority on the game state. Clients

send state updates to the server and the server sends authoritative updates (based on the game

logic) back to each client. In this model, the server makes sure that the rules of the game are

followed. This centralized architecture also allows the implementation of different security fea-

tures to avoid cheating. The main problems with this model, which make it unsuitable to be

used in self-hoc networks, are the reduced fault tolerance (a centralized server represents a sin-

gle point of failure for the game), the limited scalability (computation and bandwidth problems

may arise if too many players are connected to one server) and the required central administra-

tion.

Thepeer-to-peerarchitecture follows the opposite philosophy. Here the device of each player

maintains a local copy of the game state and informs every other player whenever the game state

changes. With this architecture, a good fault tolerance level can be achieved because there is no

2.2. ZONE-BASED GAME ARCHITECTURE 9

single point of failure (if one player has technical difficulties, still the others will be able to keep

playing). The main problems with this architecture are the relatively easy cheating possibility

(players are able to cheat by modifying their local copies of the game) and limited scalability

(as everybody communicates to everybody else, the bandwidth required at every player can be

pretty high).

The zone-basedgame architecture proposed in [9] provides a robust, redundant server-client

model that is more appropriate for the self-hoc environment. In this approach, some nodes act

as Zone Servers and each Zone Server is in charge of a small group of players. For efficiency

reasons, this group should be close to its Zone Server. The Zone Server receives updates from

its players and propagates the game state change to all other players via their Zone Servers. If

a zone server looses connection or is shut down or disappears, its players will be able to keep

playing by using another Zone Server. In Table2.1the three different architectures are compared

to each other from different view points.

2.2 Zone-Based Game Architecture

2.2.1 Characteristics of Zone Servers

The characteristics of wireless devices are very different from the wired counterparts. There

are devices with very tight resources, like mobile phones, and also devices with more of power

like PDAs or big machines like laptops. Each device has different computing power, memory,

batteries etc. For this reason, there are many things that should be taken into account when

deciding if a player is able to provide a server service or not. For example, it has to be considered

if this device has spare power to run not only the game but also to act as Zone Server. On one

hand it is not eligible to have single point of failure, thus, all players should be able to act as

Zone Servers. On the other hand, from the network point of view it is difficult to know which

host is a better suited server than another, because the prediction of the movement of a node

is difficult. After all Zone Servers should be devices with enough spare resources since the

overhead created by the server should not be noticeable by the players at the Zone Server. But

there are also other factors that are important. In order for a node to know whether it can be a

Zone Server or not, some kind of benchmark should be run to measure the appropriate factors.

The Zone Servers should be prepared not only to handle the players under their control, but also

the players from other Zone Servers. This could become necessary in order to keep playing

when a player loses the connection to its Zone Server.

10 CHAPTER 2. RELATED WORK

Centralized Peer-to-Peer Zone-based

Performance The performance is deter-

mined by the resources of

the central server and in-

fluences all players

The performance is de-

termined by the local de-

vice and influences only

the local player

The performance is deter-

mined by the Zone Server

and influences the players

of a zone

Bandwidth Bandwidth problems may

arise if too many play-

ers are connected to the

server

As everybody communi-

cates to everybody, the

bandwidth required at ev-

ery player is higher than

in the server based ap-

proach

The bandwidth is shared

among the players of one

zone. If the resource is

running out a new zone

can be created

Fault Tolerance The centralized server is a

single point of failure

If a player’s device fails,

it does not affect the other

players

If a Zone Server fails, the

players should be able to

connect to another Zone

Server

Synchronisation No synchronisation

needed

Synchronisation needed

between all players

Synchronisation needed

between the Zone Servers

Latency Low Latency High Latency High Latency

Scalability The scalability is limited

by the resources of the

central server

Because every player has

to send the information to

all other players, scalabil-

ity is an issue as well

The architecture scales

well because new zones

can be created at every

time

Cheating The centralized architec-

ture allows the imple-

mentation of security fea-

tures

It is very easy for play-

ers to cheat by modify-

ing their local copy of the

game

Cheating is still possible

if a specific Zone Server

can be manipulated

Table 2.1: Properties of Game Architectures

2.2.2 Task of Zone Servers

The task of a Zone Server will be discussed on the example of a real-time game. Such a game

is a continuous application, but the game simulation, i.e. its processing by the participating

nodes, is usually done at certain points in time which discretizes the application. During the

processing of a real-time game, the state of the application, i.e. the state of all dynamic entities

in the game like their position and the currently performed action, is periodically altered by the

server. Therefore, the game can be modeled as a sequence of state transitions. At each transi-

tion, the new stateSi+1 is calculated from the current stateSi and the user inputs occur during

the time the game simulation was in the stateSi. In [8] a Game Scalability Model (GSM) is

2.2. ZONE-BASED GAME ARCHITECTURE 11

introduced that provides a possibility to compare the scalability of different network topologies.

This model can mainly be used for studying the scalability of network topologies, but it gives as

well a deep insight into the tasks and the required performance by a Zone Server. In the work

itself the three different architectures (Client-Server, Peer-to-Peer, and Proxy Server Network)

have been compared. Note that the used Proxy Server Network is similar to the Zone Server

Architecture. However, in this thesis the GSM model will be applied with slight changes to the

Zone Server Architecture.

The situation for a Zone Server is outlined in Fig.2.2. Zone Server 1 hask connected clients

that are participating in the game session (note that in most of the cases the Zone Server itself

is also one of these clients) and there exist in totall Zone Servers that are connected with each

other. In the considered game session it is assumed that there are in totaln = k · l participating

clients andm game-controlled entities. Such entities are the dynamic parts of the game not

controlled by participating users. Of course, this is the ideal case, if the number of clients are

distributed equally between the different Zone Servers. In the worst case there is one server with

n − l clients, and all other servers have only one client. It is further assumed that the adminis-

tration of the server-controlled entities is also equally distributed among the Zone Servers. With

m = l · s, each of thel servers have to processs entities.

Figure 2.2: Zone Server Architecture from the View of a Zone Server

The following steps are necessary in a state transition at a Zone Server:

• Receiving, validating, and processing ofk actions from the different clients, which re-

quires the maximum time for processing oftca(n, m) per client, depending on the total

number of players and game entities. Each received message has a constant sizedcin.

12 CHAPTER 2. RELATED WORK

• Receiving and processing ofn−k remote client actions and state updates from other Zone

Servers. Each message has constant sizedrsu with constant processing timetrsu.

• General processing of the game world. Process thes game-controlled entities, which re-

quirestse(n, m) for each entity in the worst case. Additionally, this requires each Zone

Server to receive information aboutm− s remotely managed server entities, with a con-

stant size ofdrsu for each message.

• Filtering and transmission of the new stateSi+1 to clients. This takestfc(n, m) for each

client; each message has sizedcout(n, m).

• Transmission of updated state informationSi+1 to l− 1 Zone Servers. Information about

thek local clients and thes server-controlled entities has to be sent, each with an amount

of datadrsu. Note that if IP multicast is available between the Zone Servers, this infor-

mation has to be sent only once.

The overall time for the calculation of a single state transition at a Zone Server results in

TZS(l, n,m) =
n

l
· tca(n, m) + (n− n

l
) · trsu +

m

l
· tse(n, m) +

n

l
· tfc(n, m) (2.1)

The used bandwidth for incoming traffic amounts to

Din
ZS(l, n,m) =

n

l
· dcin + (n− n

l
) · drsu + (m− m

l
) · drsu (2.2)

while outgoing traffic requires a bandwidth of

Dout
ZS (l, n,m) =

n

l
· dcout(n, m) + (l − 1) · (n

l
+

m

l
) · drsu (2.3)

where the term(l − 1) will be reduced to1 if multicast is supported.

It can be seen from equation (2.1) that with the increasing numberl of Zone Servers the second

term increases as well, in contrast all other terms decrease. With the increasing number of

clients and game-controlled entities thetrsu remains constant and all other processing times

will increase. In the worst case consideration where one server hasn − l clients, the termn
l

have to be replaced byn − l in the equations above. These equations will be used in section

3.1.2to evaluate different possible selections of Zone Servers.

Because lost or delayed messages can cause inconsistencies between game states a consistency

protocol is needed to deliver the messages to their destination, and a synchronization mecha-

nism must be used to detect and resolve inconsistencies. Both of them have to be supported

by the Zone Server and influence the processing times. A possible consistency protocol and

synchronization mechanism called trailing state synchronization (TSS) can be found in [14].

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 13

2.2.3 Detection of Zone Servers

A client can detect existing Zone Servers with the help of a service location protocol. For ex-

ample, Konark [16] is a service discovery protocol designed for mobile ad hoc networks and

targeted toward device independent services. To describe a wide range of services, Konark de-

fines an XML-based description language, based on WDSL, that allows services to be described

in a tree-based human and software understandable form. The service advertisements contain

name and address of the service, and a time-to-live (TTL) information, as well. Based on this

information, a client is able to detect the nearest available Zone Server.

2.2.4 Selection of Zone Servers

The Zone Server nodes must be selected carefully and this selection must be maintained even

in case of changes in the network topology or available resources. The most powerful devices

(concerning available computation and communication resources) also taking into account their

positions in the network should act as Zone Servers. Since the player nodes should be close

to their Zone Servers to decrease the latency of their responsiveness, a distributed Dominating

Set computation algorithm called PBS (Priority Based Selection) for selecting the Zone Server

nodes will be presented in chapter3.2. In this sense, a self-hoc network can be considered as a

graph and the problem can be mapped into the computation and maintenance of an appropriate

Dominating Set of this graph containing the most suitable (most powerful with ‘good’ position

in the network) nodes. In chapter3.1, the requirements of this selection of Zone Servers will be

discussed.

2.3 Existing Dominating Set Computation Algorithms

In this section, an overview of the existing distributed algorithms building a (connected) domi-

nating set of nodes in an existing graph is given. Note that most of these algorithms have been

developed for the purpose of providing routing functionality in ad hoc networks. This means

that these algorithms do not fulfill all the requirements, as described in chapter3.1, for selecting

the Zone Servers.

2.3.1 Problem Definition

A Dominating Set and its different variations can be defined as follows:

14 CHAPTER 2. RELATED WORK

Dominating Set (DS): A dominating set of a graph G = (V, E) is a subsetS ⊆ V of the

nodes such that for all nodesv ∈ V , eitherv ∈ S or a neighboru of v is in S.

Connected Dominating Set (CDS):If all the nodes of the subsetS induce a connected sub-

graph,S is spanning a Connected Dominating Set.

Minimum Dominating Set (MDS): A dominating set is called a Minimum Dominating Set

if the number of nodes inS is minimal. Note that finding a dominating set of minimum size is

NP hard ([17], [18]).

Node Weighted Dominating Set (NWDS):If the nodes have weights, a Node Weighted Domi-

nating Set is the smallest weighted subsetS of the nodes forming a Dominating Set of the graph.

Edge Weighted Connected Dominating Set (EWDS):Find the smallest weight tree with the

subsetS those edges have smallest weight.

Steiner Tree problem: The Steiner Tree problem is defined as follows: Given a graphG =

(V,E) and a setR ⊆ V of required nodes in an edge weighted graph, find a minimum weight

tree connecting the nodes inR. Note that the tree may include other nodes that are not inR.

The Steiner Tree problem can be used, for example, to build a CDS based on a DS.

2.3.2 Notations and Evaluation

In general, the following notations as listed in Table2.2will be used.

Unit Disk Graph (UDG): The topology of a wireless ad hoc network can be modeled as a Unit

Disk Graph (UDG) [19]. This is a geometric graph in which there is an edge between two nodes

if and only if their distance is at most one. In Fig.2.3an example is shown. The dashed circles

represent the transmission range of the node in the center of the circle. If a node is inside the

circle of another node, a edge between these nodes can be drawn, because the nodes are in the

range of each other. In a UDG it is assumed that every node’s transmission range can be repre-

sented by a unit circle.

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 15

V the set of nodes

E the set of edges

G(V,E) the graph defined by nodes and edges

∆ maximum degree in graph G

n number of nodes

N(vi) open neighborhood (contains all neighbor nodes) of nodevi

N [vi] closed neighborhood (contains all neighbor nodes including node

vi itself) of nodevi

Table 2.2: Used Notations

Figure 2.3: Example of a Unit Disk Graph (UDG)

The discussed algorithms will be evaluated according to some quality and construction cost

factors. The quality factors are:

• Connected:Indicates whether the Dominating Set is connected or not.

• Approximation: As already mentioned to find a MDS is a classic NP-complete optimiza-

tion problem and has to be approximated. The approximation factor is defined as the ratio

of the computed Dominating Set’s size to that of the MDS:

|DS|
|DSMDS |

= Approximation

where|DS| is the number of nodes in the DS and|DSMDS | the number of nodes in the

MDS, respectively.

16 CHAPTER 2. RELATED WORK

The construction costs can be characterized by:

• Time Complexity: The time complexity is measured in rounds. One round consists of

sending a message, receiving a message and some local computation.

• Message Complexity:Indicates how many messages have to be sent and their size.

2.3.3 Largest-ID Algorithm

The Largest-ID algorithm [20] is a simple algorithm. Each node in the graph has a unique ID.

On every node the algorithm performs:

1: send ID to all elements of N(v)

2: tell node with largest ID in N(v) that it has to join the DS

An example of the algorithm is outlined in Fig.2.4. The red arrows show to which node the

different nodes communicated to join the DS. For example, node 1 told node 3, or node 2 told

node 4 to join the DS. In Fig.2.5 the same graph is shown but with different node IDs. It can

be seen that in this case the algorithm gives the optimal solution. Generally it can be said, that

for typical settings the algorithm produces very good Dominating Sets. If the nodes know the

distances to each other, there is an iterative variant which computes a constant approximation in

O(log log n) time. Table2.3shows the quality and construction cost factors for the Largest-ID

algorithm.

Figure 2.4: Largest-ID algorithm

Figure 2.5: Largest-ID algorithm for another arrangement of the node IDs

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 17

Connected DS: No

Approximation: O(
√

n) for UDG. Constant for iterative algorithm

Time Complexity: 2 rounds

Message Complexity: n messages

Table 2.3: Largest-ID Algorithm

2.3.4 Local Randomized Greedy Algorithm

The main idea behind the greedy algorithm is to choose the ’good’ nodes into the Dominating

Set. The nodes in the algorithm get different colors: black nodes are in the Dominating Set, gray

nodes are neighbors of nodes in the DS, and white nodes are not yet dominated and also referred

to as candidates. Initially all nodes are white. The greedy algorithm chooses those nodes in the

DS that color most white nodes. The number of white neighbors (including itself) is called span

value. A basic implementation of the distributed greedy algorithm at nodev looks like:

1: while v has white neighbors do

2: compute span d(v)

3: if d(v) largest within 2 hop counts (ties broken by ID) then

4: join DS

5: fi

6: od

An illustrated example of this algorithm is shown in Fig.2.6 and2.7. After the first round

node 3 joins the DS because it has withd(v3) = 5 the highest span value. All neighbors of

node 3 becomes gray (Fig.2.6). In the next round, nodes 6 and 7 have the same span value

d(v6) = d(v7) = 2, but because of the smaller ID node 6 joins the DS. Now there are no white

nodes left, and nodes 3 and 6 are in the dominating set. The final result is shown in Fig.2.7.

Figure 2.6: Greedy Algorithm - After the first Round

As mentioned in [21], this simple implementation has some considerable drawbacks in the

needed calculation time for some special graphs like a caterpillar or star-complete graphs.

Therefore, the algorithm has been enhanced and is calledLocal Randomized Greedy (LRG)

18 CHAPTER 2. RELATED WORK

Figure 2.7: Greedy Algorithm - Final Dominating Set

algorithm. The LRG algorithm proceeds in rounds. Every round contains the following steps:

Span calculation: Calculate for eachv the spand(v), which is as already mentioned above the

number of uncovered white nodes that are adjacent tov (includingv itself if uncovered). Let the

rounded span̂d(v) of nodev be the smallest power of base b that is at leastd(v), whereb > 1 is

a constant integer (oftenb = 2). The parameterb represents a tradeoff between time complexity

and approximation ratio.

Candidate selection: Nodev ∈ V is a candidate ifd̂(v) ≥ d̂(w) for all w ∈ V within 2

hop counts ofv. For each candidatev, let coverC(v) denote the set of candidate neighbors of

nodev.

Support calculation: For each uncovered nodeu, its supports(u), which is the number of

candidates that coveru, is calculated.

Dominator selection:Each candidatev joins the DS with probability1/med(v), wheremed(v)

is the calculated median of the support values of the nodes inC(v).

The quality and construction cost factors of the LRG algorithm are summarized in Table2.4.

There are no information available about the message complexity.

Connected DS: No

Approximation: O(log∆)

Time Complexity: O(lognlog∆) rounds

Message Complexity: N/A

Table 2.4: LRG Algorithm

Node weighted LRG:

The LRG algorithm can also be extended to build a node weighted Dominating Set. Instead of

comparing the rounded span of the nodes, the ratio of the span to the weight of the node can

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 19

be compared. This value is again rounded to the nearest power of a constantb > 1 (allowing

negative powers) and is referred to as normalized span. In the candidate selection phase, a

node selects itself as a candidate only if the rounded normalized span is the maximum among

all the nodes within a distance of two hop counts. The remaining phases in each round are

identical to the LRG. Note that the number of different values for the rounded normalized span

is O(log(W∆)), whereW is the ratio of the maximum weight to the minimum weight. The

quality and construction cost factors of a node weighted LRG algorithm are summarized in

Table2.5.

Connected DS: No

Approximation: O(log∆)

Time Complexity: O(log(W∆)logn) rounds

Message Complexity: N/A

Table 2.5: Node Weighted LRG Algorithm

2.3.5 Marking Algorithm

The Marking Algorithm as described in [22] uses a marker for every nodem(v) ∈ [T, F],

whereasT means marked andF unmarked, respectively. The algorithm is defined as follows:

1: Assign m(v)=F to every node

2: Every node v exchanges N(v) with all neighbors

3: Every node v assigns m(v)=T if there exist two unconnected neighbors

Extension 1:

4: if N[v] <= N[u] AND id(v)<id(u)

5: m(v)=F

6: fi

7: send status to neighbors

Extension 2:

8: if u,w neighbor of v in DS

9: if N(v)<=N(u)+N(w) and id(v)=min{id(v),id(w),id(u)}

10: m(v)=F

11: fi

12: fi

20 CHAPTER 2. RELATED WORK

An example of the algorithm is shown in Fig.2.8 and 2.9. The numbers above the nodes

represent the node ID. The closed neighborhoods are:

N [v1] = {1, 2, 7}

N [v2] = {1, 2, 3, 7}

N [v3] = {2, 3, 4, 7}

N [v4] = {3, 4, 5, 6}

N [v5] = {4, 5, 6}

N [v6] = {4, 5, 6, 7}

N [v7] = {1, 2, 3, 6, 7}

Nodev2 joins the DS because nodev1 andv3 are not directly connected. Furthermore, nodes

v3, v4, v6, andv7 are joining the DS as well because they have neighbors that are not connected.

It can be seen that the approximation is quite poor (see Fig.2.8).

Figure 2.8: Marking Algorithm without Extensions

Using Extension 1, nodev2 marks itself ’F’ becauseN [2] ⊆ N [6] and id(2) < id(3). Be-

cause of Extension 2, nodev3 leaves the DS becauseN [3] ⊆ N [4] ∪ N [7] and id(3) =

min{id(3), id(4), id(7)}. Note that if the IDs would have been distributed in another way,

this node could not be removed. The final result of the DS for this graph after using Extension

1 and 2 is shown in Fig.2.9.

Figure 2.9: Marking Algorithm with Extensions

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 21

The quality and construction cost factors of the algorithm are summarized in Table2.6. Note that

there exists only some simulations that investigated the approximation factor of the algorithm.

There is no analytical expression available.

Connected DS: Yes

Approximation: N/A

Time Complexity: 2 rounds

Message Complexity: O(∆n) messages

Table 2.6: Marking Algorithm

2.3.6 LP-Relaxation Algorithm

In [23] a fully distributed algorithm is presented that approximates the MDS problem by the use

of Linear Programming (LP) Relaxation. First, the integer program which describes the MDS

problem has to be derived. LetS ⊆ V denote a subset of the nodes ofG. To each nodevi ∈ V ,

a bit xi is assigned, such thatxi = 1 ⇔ vi ∈ S. ForS to be a Dominating Set for each node

vi ∈ V at least one of the nodes inN(vi) has to be inS. Therefore,S is a Dominating Set ofG

if and only if ∀i ∈ [1, n] :
∑

j∈N(vj)
xj ≥ 1. With the neighborhood matrixN , defined as the

sum of the adjacency matrix ofG and the identity matrix (N is the adjacency matrix with ones

in the diagonal), the MDS problem can be formulated as an integer program:

min
∑n

i=1 xi subject toN · x ≥ 1 andx ∈ {0, 1}n

By relaxing the conditionx ∈ {0, 1}n to x ≥ 0, the linear program can be derived:

min
∑n

i=1 xi subject toN · x ≥ 1 andx ≥ 0

In [23] two algorithms are shown. The first algorithm solves the LP program and the second

transforms the solution from the first algorithm to the Integer Program solution. In Table2.7,

the quality and construction cost factors of these two algorithms are shown. Note thatk is a

parameter that can be chosen arbitrarily.

2.3.7 Dominator Algorithm

In [24] a distributed approximation algorithm that constructs a Minimum Connected Dominating

Set (MCDS) for the Unit Disk Graph has been proposed. The construction of the CDS can be

briefly described in two phases:

22 CHAPTER 2. RELATED WORK

Connected DS: No

Approximation: O(k∆
2
k log∆)

Time Complexity: O(k2) rounds

Message Complexity: O(k2∆) messages of sizeO(log∆)

Table 2.7: LP-Relaxation Algorithm

• In the first phase, a maximal independent set (MIS), i.e., an independent Dominating Set

S is constructed. This means that any pair of nodes inS are separated by at least two

hops, and any subset of nodes inS is at most three hops away from the other nodes in

S. The nodes inS are referred to asdominators, and the nodes not in S are referred to as

dominatees.

• In the second phase, each dominatee node identifies and broadcasts this information. Us-

ing such information from all neighbors, each dominator node identifies a path of at most

three hops (not necessarily the shortest one) to each dominator that is at most three hops

away from itself and has larger ID than its own ID, and informs all nodes on this path

about this selection. The setC then consists of all dominatee nodes on these paths, which

are referred to asconnectors. The DS consists finally of the dominator and connector

nodes.

An example of the dominator algorithm is shown in Fig.2.10, 2.11 and2.12. White nodes

are referred to as candidates, black nodes as dominators, grey nodes as dominatees, and nodes

with a point as connectors. Building the MIS of the first phase is based on the node’s unique

ID. Therefore, in the first step node 1 declares itself as dominator because it has no candidate

neighbors with a lower ID and nodes 2 and 7 change their states to dominatee as illustrated in

Fig. 2.10.

Figure 2.10: First Step of the Dominator Algorithm

In the next step, node 3 becomes dominator because there are no candidate neighbors with lower

ID left and node 4 changes to dominatee. Finally, node 5 becomes as well dominator and node

6 dominatee. The first phase of the algorithm is now finished and the built MIS is shown in Fig.

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 23

2.11.

Figure 2.11: MIS of the Dominator Algorithm

In phase 2, the different dominator nodes get now connected, for building the CDS, by nodes 4

and 7 that switch to the connector state. Note that it also would be possible that node 2 becomes

a connector. This depends on whether node 7 or 2 announces first to node 1 its neighborhood to

dominator node 3. The final CDS consisting of the dominator and connector nodes is shown in

Fig. 2.12. The quality and construction cost factors of the Dominator algorithm are summarized

in Table2.8.

Figure 2.12: Final CDS of the Dominator Algorithm

Connected DS: Yes!

Approximation: O(4)

Time Complexity: O(n) rounds

Message Complexity: O(n) messages of sizeO(logn)

Table 2.8: Dominator Algorithm

2.3.8 Removing Cycles Algorithm

In [25] a fast distributed algorithm is shown. Order the edges of G in some fashion: say each

edge has a unique ID (if the edges do not have such IDs, a simple distributed way of achieving

this is to make each edge choose a random real number in [0,1] as its ID, this ID has to be agreed

of both nodes that are connected to the edge). Each edge, in parallel, drops out if it is the edge

with the smallest ID in a cycle of a length less than1 + 2 log n. A node is in the CDS if it is not

24 CHAPTER 2. RELATED WORK

a leaf node in the remaining subgraph. Disadvantage: Every node has to know the number of

nodes in the graph, or at least an estimation of it. A simple implementation could look like:

1: Assign ID to all edges, send them to all neighbors

2: Accept Edge-ID of neighbor if neighbor has higher Node-ID

3: send N(v) together with Edge-IDs to all neighbors

4: the different N(v) has to be forwarded as far as is needed

to recognize cycles of length less than 1+2log(n)

4: detect cycles of length less than 1+2log(n) and remove edges

5: join DS if there are still 2 nodes with active edge

The quality and construction cost factors of the Removing Cycles algorithm are summarized in

Table2.9.

Connected DS: Yes!

Approximation: O(log∆)

Time Complexity: O(n) rounds

Message Complexity: O(n(n + 2logn)) messages

Table 2.9: Removing Cycles Algorithm

2.3.9 Steiner Tree Algorithms

As already mentioned, the task of an algorithm that solves the Steiner Tree problem is to build

a connected tree containing the nodes of the subsetR ⊆ V of a given graphG = (V,E). There

exist several approximation algorithms that have been developed for producing graphs that ful-

fill this Steiner Tree problem.

In [26] an algorithm for node weighted Steiner Trees has been introduced. The nodes ofR are

referred to asterminalsand the algorithm maintains a node-disjoint set of trees containing all

these terminals. Initially, each terminal is in a tree by itself. The algorithm uses a greedy strat-

egy to iteratively merge the trees into larger trees until there is only one tree. The weight of a

tree is defined as the sum of all weights of the nodes that are part of this tree. In each iteration,

the algorithm chooses nodev to join a tree that minimizes the ratio of the weight of a tree to

the number of terminals that it connects. It is proved that this greedy process yields a good

approximation.

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 25

Based on this algorithm, in [27] some improved methods for approximating Node Weighted

Steiner Trees with a better approximation factor has been shown. Unfortunately, this algorithm

is computationally intensive and is not well suited for large networks. Therefore, a much faster

algorithm has been presented as well with the same approximation factor as in [26]. This algo-

rithm has been transformed to the case if all nodes in a network have the same (or no) weights.

An application of this algorithm to build a Connected Dominating Set is shown in [28]: The

algorithm runs in two phases. At the start of the first phase all nodes are colored white. Each

time a node joins the DS it changes the color to black. Nodes that are dominated and therefore

adjacent to a black node are colored gray. In the first phase, the algorithm picks a node at each

step and colors it black and all adjacent white nodes gray. Apieceis defined as a white node

or black connected component. At each step a node that gives the maximum reduction in the

number of pieces is chosen. At the end of the first phase there are no white nodes left and we

have a DS that is not connected. In the second phase, there is a collection of black connected

components that need to be connected. This is done by recursively connecting pairs of black

components by choosing a chain of nodes, until there is one black connected component.

This procedure can be generalized for the Connected Dominating Set problem:

1. Use an existing algorithm that builds a DS.

2. Use a Steiner Tree approximation algorithm that connects the nodes that are elements of

DS.

Another application of the Steiner Tree problem is to build a backbone for multicast applications

in wireless ad hoc networks where a tree is needed that contains forwarding nodes and the nodes

that joined the corresponding multicast group. In [29] an algorithm called d-hop algorithm is

shown that computes a Steiner Connected Dominating Set (SCDS) containing the nodesVm that

are part of the multicast group.

2.3.10 Conclusions

A new Zone-based Gaming Architecture has been proposed that provides a robust, redundant

server-client model that is more appropriate for the self-hoc environment than the centralized

server or peer-to-peer architecture approaches. In this architecture, there exist several servers

that are distributed across the network and the clients will connect to their closest Zone Server.

The server will run among each other some synchronization and consistency mechanisms to

distribute the game states of the different clients. If a Zone Server looses connection or disap-

26 CHAPTER 2. RELATED WORK

pears, its players will be able to keep playing by using another Zone Server. However, the Zone

Servers must be selected carefully. Due to the mobility of the devices in an ad hoc network,

this selection must be maintained even in case of changes in the network topology or available

resources. If the network is considered as a graph, the problem can be mapped into the com-

putation and maintenance of an appropriate Dominating Set of this graph containing the most

suitable nodes.

There exist already plenty of distributed algorithms that build a (Connected) Dominating Set

of nodes in an existing graph. Most of these algorithms have been developed for the purpose

of providing routing functionality in ad hoc networks. In Table2.10and2.11, the evaluation

factors and their performance are summarized.

Algorithm CDS Approximation

Largest-ID No O(
√

n) for UDG.

LRG No O(log ∆)

Node weighted LRG No O(log ∆)

Marking Yes N/A

LP Relaxation No O(k∆
2
k log∆)

Dominator Yes O(4)

Removing cycles Yes O(log∆)

Table 2.10: Summary (CDS and Approximation) of DS Computing Algorithms

Algorithm Rounds Message Complexity

Largest-ID 2 O(n) messages

LRG O(log ∆ log n) -

Node weighted LRG O(log(W∆) log n) -

Marking 2 O(∆n) messages

LP Relaxation O(k2) O(k2∆) messages, sizeO(log∆)

Dominator O(n) O(n) messages, sizeO(logn)

Removing cycles O(n) O(n(n + 2logn)) messages

Table 2.11: Summary (Rounds and Message Complexity) of DS Computing Algorithms

It can be seen, that the different algorithms have different properties according to their quality

and construction factors. From the view of time complexity, there are two algorithms (Largest-

ID [20] and Marking [22]) that perform in the minimal number of 2 rounds. But this is paid with

a higher approximation factor (for the Marking algorithm we found only simulation results and

2.3. EXISTING DOMINATING SET COMPUTATION ALGORITHMS 27

not analytical expression). The best approximationlog∆ results can be achieved with a greedy

(LRG [21]) or the Removing Cycles [25] algorithms.

The Dominator algorithm [24] is a distributed approach that constructs in the first step an inde-

pendent Dominating Set. In the second step, every node in the Dominating Set from the previous

phase detects the best paths to the other dominator nodes (that consist at most of 2 intermediate

nodes), and forces the intermediate nodes to join the DS, too. At the end a Connected Dominat-

ing Set is constructed. This procedure can be generalized for building a Connected Dominatig

Set: First, use an existing algorithm that builds a DS. Second, use a Steiner Tree approximation

algorithm that connects the nodes that are elements of the DS from the first step. This approach

could be used by any Zone Server Selection algorithm, if the set of Zone Servers needs to be

connected.

Chapter 3

Zone Server Selection

This chapter presents the Priority Based Selection (PBS) algorithm that computes a Dominating

Set. This algorithm compares the priorities of the different nodes and choses the high prioritized

nodes into the DS that will act as Zone Servers. The chapter is divided into two sections: The

first section describes the requirements for the Zone Server Selection (ZSS) and the second

section describes the PBS algorithm that fulfills all these requirements.

3.1 Requirements

This section describes the requirements for the Zone Server Selection in an existing ad hoc

network based on building a DS. The requirements are split up into the following subsections:

• The section3.1.1Prerequisitesdescribes the requirements for the nodes and edges in an

existing ad hoc network and the network itself.

• The section3.1.2Properties of Dominating Setdescribes the requirements for the Domi-

nating Set that should be built.

• The section3.1.3 Requirements for Zone Server Selection Algorithmdescribes the re-

quirements for the algorithm that computes the DS.

It is obvious that some of the requirements are conflicting with each other. These conflicts are

investigated and a strategy is determined how the different requirements should be prioritized to

each other. At the end of the section, a summary with the decision for the chosen requirements

and properties is given. This summary builds the base for the development of the algorithm.

30 CHAPTER 3. ZONE SERVER SELECTION

3.1.1 Prerequisites

This section describes the prerequisites for selecting the Zone Servers with respect to the nodes

and edges of a network.

Connected ad hoc network: It is assumed that there is an ad hoc network consisting of several

nodes that span a connected network. Thus, any node can communicate with any other

node in this network using a routing protocol.

Neighbor Discovery: There is a neighbor discovery functionality required that guarantees that

every node knows its neighbors and is able to detect new nodes and nodes that left the

network.

Unique IDs: Every node needs an identification number that is unique within the local ad hoc

network. This identifier will be used as last tie breaker in the zone server selection proce-

dure.

Node weight: The Zone Servers should be nodes with enough spare resources so that the over-

head created by the server functionality will not be noticed by the player itself. It is

obvious that a laptop device is better suited to act as Zone Server than a mobile phone.

Therefore, every node should be classified by a weight that indicates the node’s capability

to act as Zone Server. This node weight should be based on:

• CPU power

• Memory

• Remaining battery power

• Mobility (the probability for a laptop that it moves around is less than for a mobile

phone or PDA)

• Link connectivity

It can be seen, that the weight is mainly based on the available resources of a node. But

it is also important that the servers provide good connectivities to the connected clients.

Therefore, the node weight is also based on the link connectivity that it can offer to the

clients. For generating this node weight, there should be some kind of benchmark test

included in the framework that measures all these factors and generates the weight value.

(Note, that there should be a mechanism that avoids the possibility to pretend a false node

weight. I.e., a laptop that claims to have resources like a mobile phone to minimize the

probability to join the DS. But this is out of scope of this thesis).

3.1. REQUIREMENTS 31

Edge weight: Similar to the nodes, it is also possible that the edges of a graph get different

weights that indicates the quality of the link. The edge weight can be based, for example,

on the Round Trip Delay (RTT) value.

Co-operative behavior: Co-operative behavior from every node as social contribution is as-

sumed. Every node in an ad hoc network must be willing to contribute to a service, even

if it is not participating in this specific service session itself (like offering routing func-

tions to other nodes). In the case of multiplayer games, this means that a node can be

selected as Zone Server for a game session even if this node will not participate in the

game itself. In Fig.3.1a network is shown where the nodes colored in gray (1,2,5, and 7)

want to build a game session. Although the other nodes will not participate it is possible

that they have to act as Zone Server (in the shown graph there is a high probability that

node 4 will be selected as server).

Figure 3.1: An Ad Hoc Network Where the Gray Nodes Want to Build a Game Session

3.1.2 Properties of Dominating Set

This section describes the desired properties of the DS. Some of them are conflicting with each

other. These conflicts will be investigated at the end of the section.

Connected DS (optional): Does the DS need to be connected and to build a direct connected

backbone of Zone Servers? Or seen from another point of view: In a non-connected DS,

there are maximum two nodes between two ’neighboring’ Zone Servers. Does it make

sense that such interconnecting nodes of two Zone Servers do not join the DS? An ex-

ample is illustrated in Fig.3.2 where nodes 7 and 9 are interconnecting nodes. Some

arguments pro and contra are listed in the following:

Pro:

32 CHAPTER 3. ZONE SERVER SELECTION

Figure 3.2: Example for Interconnecting Nodes. Should Node 7 and 9 Join the DS?

• An intermediate node has anyway to forward the whole game traffic between the

Zone Servers. Whereas there are several other functions besides traffic forwarding

for a Zone Server.

• In some cases synchronization can be simplified, because every Zone Server has to

forward the changes of its zones only to its neighbors and those will forward it to

their neighbors. Otherwise the different Zone Servers have to build a full mesh of

connections to synchronize their game states. Note that this simplification can lead

to higher latency, because if the chain of Zone Servers is quite long, the game state

information has to travel from the first server in the chain to the last server.

• Additional redundancy is created if interconnecting nodes join the DS. Because ev-

ery node has already a neighbored node that is acting as server, the neighbors of the

interconnecting nodes will now have more than one server neighbor. In Fig.3.2,

node 8 is already connected to node 11 that is in the DS. If node 9 joins the DS as

well, it has now 2 neighbor nodes (node 9 and 11) that are acting as server.

• If the DS is connected, it is easier to monitor the status of the other Zone Servers.

Every server checks the connectivity to its neighboring Zone Servers and does not

need to wait until the routing protocol reports the fail of a Zone Server node.

Contra:

• Acting as Zone Server creates some extra overhead, especially for the consistency

and synchronization mechanisms. If the interconnecting node is a device with less

resources this can lead to some considerable problems and slow down the whole

game session.

It can be seen that the decision whether the DS should be connected or not is mainly based

3.1. REQUIREMENTS 33

on how expensive the overhead of the consistency and synchronization mechanisms are

if there are some additional Zone Servers. At the moment there exist no deeper investi-

gations of the performance requirements of these mechanisms, and some simulations and

deeper investigations of this question are required. It can be assumed that the cost will

mainly be dependent on the complexity of the game itself. It is assumed in this thesis that

it is not required to build a Connected Dominating Set, rather it is an optional possibility.

Node weighted: The algorithm should prefer to put nodes in the DS that have high weights and

are therefore better suited to act as Zone Server.

Minimum number of nodes: For every graph there have to be at least two nodes in the DS,

also for full connected graphs (this is different to the conditions when the DS is used for

the purpose of routing where the DS is empty for full connected graphs). In Fig.3.3,

the situation is illustrated for the simple case of a three-node network. Even in this case,

minimum two Zone Servers are needed, because if node 1 is leaving the network the two

remaining nodes should still be able to continue playing.

Figure 3.3: Full Connected Graph with Two Nodes in the DS

MDS approximation: With the increasing number of Zone Servers the produced overhead as

needed for the synchronization increases as well. This results in lower game performance

and increases, for example, the latency time. Therefore, the Dominating Set should con-

tain as few nodes as possible and should have a quite good approximation of the MDS.

The Dominating Set should consist of nodes with only high weights as well as the DS should be

the best approximation of the MDS. It is obvious that these properties are in conflict with each

other. In most of the graphs it is not possible to fulfill both requirements at a time. To deter-

mine the order of the priority of these two requirements, a worst case scenario will be discussed

based on a graph, where it is required to build a Connected DS. In Fig.3.4 this graph of an ad

hoc network is shown. The numbers written inside the circles represent the node IDs, and the

numbers above the nodes indicate the calculated node weights. A high weight indicates high

capabilities to act as Zone Server. It can be seen that node 7 with the highest degree in the graph

34 CHAPTER 3. ZONE SERVER SELECTION

has unfortunately the lowest node weight of the whole graph. How this case should be handled

is discussed and evaluated considering three possible choices of the CDS:

In the first case, outlined in Fig.3.5, only the requirement to build a CDS containing nodes of

highest weight has been considered. That’s why first the nodes 3 and 5 with weight 5 are chosen.

Afterward node 1 because that’s the node with the highest weight of the uncovered node. Node

4 and 6 are connecting the dominated set.

In the second case, as shown in Fig.3.6, again a Dominating Set choosing the nodes 1, 3, and 5

with the highest weight has been chosen first. But second, for building a Connected Dominating

Set the condition of using as few nodes as possible has been used, and only node 7 joins the DS

as well.

In the third and last case the first priority is to get a good approximation of the MCDS and sec-

ond, if there is a choice between several nodes, it takes the node with the highest weight. In Fig.

3.7node 7 has been chosen, because it covers most other nodes, afterward node 3 joins the DS

because it has the highest weight (tie broken by ID) among the remaining nodes.

Figure 3.4: Ad Hoc Network Shown as a

Graph

Figure 3.5: Case 1: CDS Based Only on

Weights

Figure 3.6: Case 2: CDS Based on

Weights, then on Minimum Number of

Nodes

Figure 3.7: Case 3: CDS Based on Mini-

mum Number of Nodes, then on Weights

The chosen Dominating Sets for the three different cases can be summarized as follows:

1. Only node weights (Fig. 3.5): It can be seen that the ”danger” to choose node 7 in the CDS

3.1. REQUIREMENTS 35

is avoided because of having a low node weight. Although due to its central position and

the high degree this node is predestined as Zone Server. This is paid with having a lot of

nodes in the CDS.

2. First node weight, then minimum number of nodes(Fig. 3.6): In this case node 7 is in

the CDS as well and reduces the number of nodes. But all nodes have the possibility to

connect to another node with higher weights.

3. First minimum number of nodes, then node weight(Fig. 3.7): A minimal CDS is se-

lected but with the disadvantage that most of the nodes outside the CDS have to connect

to the weakest node 7.

Which of these three cases is the most suited solution? If the weakest node 7 is chosen into the

Dominating Set due to its central position it can seriously slow down the whole game session

because of its constraint resources. On the other hand in the shown example, as already men-

tioned, not choosing node 7 as Zone Server is paid with having more Zone Servers that can slow

down as well the performance. Considering the GSM model (as introduced in section2.2.2)

for a fixed numbern of clients and constant numberm of game-controlled entities, the time

required to calculate a game state transition dependent on the numberl of Zone Servers can be

expressed as follows:

TZS(l, n,m) =
n

l
· (tca + tfc) + (n− n

l
) · trsu +

m

l
· tse (3.1)

Whereastca, tfc, trsu, andtse are the used times for processing the arriving messages inside the

nodes. It is evident that the values of these times are determined by the weakest Zone Server.

Considering the shown examples (Fig.3.5, 3.6, and3.7), the calculation times result into the

following values (n=7; l=5,4,2;m=7 arbitrarily chosen):

T 1
ZS(5, 7, 7) = 1.4 · (t1ca + t1fc) + 5.6 · t1rsu + 1.4 · t1se (3.2)

T 2
ZS(4, 7, 7) = 1.75 · (t2ca + t2fc) + 5.25 · t2rsu + 1.75 · t2se (3.3)

T 3
ZS(2, 7, 7) = 3.5 · (t3ca + t3fc) + 3.5 · t3rsu + 3.5 · t3se (3.4)

The message processing times in case 2 and 3 are equal because in both cases they are deter-

mined by node 7, in case 1 they are determined by node 6. Because node 7 has a lower weight

than node 6, it can be assumed that its processing times will be proportionally higher. Forx > 1

it can be stated thatt2ca = x · t1ca, t2fc = x · t1fc, t2rsu = x · t1rsu, andt2se = x · t1se. It can be shown

thatT 2
ZS has better values thanT 1

ZS only if x is less than 1.1. But it can be assumed that the

36 CHAPTER 3. ZONE SERVER SELECTION

node weights indicate real differences in the resources and therefore a higher value for x can be

expected andT 1
ZS < T 2

ZS .

With focus on the calculation time for a game state transition, the first case is the better solution

than case two and three. The disadvantage of the first case is that due to the high number of

nodes a higher game latency can result, because it takes time to distribute the game state data

to all servers. But this depends on the used synchronization mechanism and the complexity of

the game and on the available bandwidth and delay of the edges. On the other hand, due to its

restraint resources it is not guaranteed that the synchronization mechanism is faster if node 7 is

part of the DS.

It can be concluded that for the network shown in Fig.3.4 it is assumed that case 1 as outlined

in Fig. 3.5 shows the best selection of Zone Servers. And the situation is still improved, if it

is not required to build a Connected DS. Because then, only nodes 1,3, and 5 will join the DS

in the first case, and this is only one additional server compared to the ideal situation from the

view of the MDS approximation in the third case. Therefore choosing nodes with high weights

into the DS will be prioritized over the requirement to get a good MDS approximation.

3.1.3 Requirements for Zone Server Selection Algorithm

Completely Distributed: The algorithm has to run locally on every node in a distributed man-

ner because there is no pre-established infrastructure in ad hoc networks that can be used

for central administration.

Time Complexity: The time complexity is measured in rounds consisting of sending messages,

receiving messages, and performing some local computations. It is evident that the num-

ber of rounds that the algorithm needs to determine the DS should be kept minimal. Es-

pecially if the algorithm needs to be recalculated during the game, the interruption of the

game should not be noticeable to the players.

Message Complexity:The message complexity is measured in the number of messages that

have to be sent per round and the size of the message. In order to keep the time complexity

low, the number of the messages and their size should be kept low as well.

Mobility Maintenance: Due to the possible host’s movements there has to exist someupdate

andrecalculationmechanisms for modifying the DS according to the topological changes

that occur. Note, that an update mechanism should only change the status of some indi-

vidual hosts in contrast to a recalculation mechanism that recalculates the status of all

nodes in the entire network. It is obvious that the DS should be recalculated as seldom as

3.1. REQUIREMENTS 37

possible, because moving from one Zone Server to another produces a lot of overhead.

There exist 3 types of ”movement” that cause topological changes in an ad hoc network:

A host joining the game, a host leaving the game, or a host that moves around. These three

cases can be combined in one problem case: There are links (respectively edges from the

view point of a graph) going down and up between the different nodes in the network.

These topological changes can be reported by the routing protocol that underlies to the

framework. Based on these reports the concerning update or recalculation algorithms can

be started.

Zone Splitting (optional): If the resources of a Zone Server are running out and the server gets

overloaded, it should be possible to split the zone and to determine a new additional Zone

Server. An example is shown in Fig.3.8and3.9.

Figure 3.8: Zone Servers Before the SplittingFigure 3.9: Zone Servers After the Splitting

It is evident that based on the graph structure it is not always possible to determine a new

Zone Server that keeps the DS connected. Maybe the structure of sub zones within a zone

has to be investigated.

3.1.4 Summary

The following requirements for the Zone Server Selection will be considered:

Ad Hoc Network: It is assumed that there is a connected ad hoc network and a routing protocol

running for the communication between the nodes.

Nodes: Every node needs a unique ID and a node weight. The ID is used as tie breaker in the

Zone Server selection procedure and the weight indicates the node’s capability to act as

Zone Server. Furthermore, every node must be willing to contribute to the service and act

as server, even if it is not participating in this specific service.

Dominating Set: There is a minimum number of 2 nodes that should be in the DS for every

ad hoc network. The DS should consist of nodes with high weights as first priority. If

38 CHAPTER 3. ZONE SERVER SELECTION

there are several nodes with the same weight, those nodes should be chosen that give

a good MCDS Approximation. As final tie breaker the node’s unique ID can be used.

It is assumed, that there is no gain in building a Connected Dominating Set. It could

be shown that the decision whether the DS should be connected or not is mainly based

on how expensive the overhead of the consistency and synchronization mechanisms are.

Therefore, it is an optional requirement to extend a built Dominating Set to a Connected

Dominating Set.

Algorithm: Because there is no central infrastructure that can be used, the algorithm has to run

locally on every node. The time complexity (i.e. the number of rounds that the algorithm

needs to determine the DS) should be kept minimal as well as the message complexity for

saving resources. The algorithm should provide a mobility maintenance and being able to

react to links that are going down or up. There are some optional requirements that can

be considered like zone splitting if a Zone Server becomes overloaded.

Table3.1shows a collected overview of the requirements:

Ad hoc Network Not fragmented net

Routing protocol

Nodes Unique ID

Node weight

Co-operative behavior

Dominating Set Minimum 2 nodes

Node weighted

Tie breaker 1: MDS approximation

Tie breaker 2: unique ID

Connected (optional)

Algorithm Completely Distributed

Low time complexity

Low message complexity

Update mechanism for mobile maintenance

Zone splitting (optional)

Table 3.1: Zone Server Selection Requirements

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 39

3.2 Priority Based Selection (PBS) algorithm

In section2.3, a lot of existing distributed algorithms that choose a Dominating Set in a given

network have been presented. Nearly all of them have been developed for the purpose of pro-

viding routing functionality in ad hoc networks. Providing functionality for a Zone-based Ar-

chitecture and the required selection of Zone Servers is faced with partly different requirements

as described in section3.1. Therefore, a new modified algorithm is required. In this section,

the Priority Based Selection (PBS) algorithm is presented for choosing the Zone Servers in an

ad hoc network that fulfills these requirements. The section is structured into the following

subsections:

• The section3.2.1Notations and Prerequisitesintroduces the used notations in the algo-

rithm and the needed prerequisites.

• The section3.2.2Dominating Set Computationpresents a Zone Server Selection algo-

rithm based on comparing priorities.

• The section3.2.3 Extensionspresents an enhancement to the PBS algorithm that con-

structs a Connected Dominating Set.

• The section3.2.4Examplesshows some examples of the PBS algorithm.

• The section3.2.5Performance Analysisanalyzes the algorithm and checks whether all

requirements have been considered.

3.2.1 Notations and Prerequisites

In the algorithm, the following notations and definitions will be used:

Status: A node can be in one of the following four states:

• DOMINATOR

The node is in the DS and will act as Zone Server.

• DOMINATEE

The node is not in the DS but is covered by one or more DOMINATOR nodes (it

has at least one DOMINATOR neighbor).

• INT CANDIDATE

The node participates in the game session and still does not have a DOMINATOR

or DOMINATEE status but it is an internal candidate to become one of them.

40 CHAPTER 3. ZONE SERVER SELECTION

• EXT CANDIDATE

The node does not participate in the game but based on the co-operative behavior

assumption (see section3.1.1) it is possible that the algorithm chooses the node as

DOMINATOR in the DS. Thus, the node can be considered as an external candidate.

In the beginning, every node will have the status of an INTCANDIDATE or EXT CANDIDATE

node. The task of the algorithm is to put at least every INTCANDIDATE node of the

graph into DOMINATOR or DOMINATEE status. In the figures shown in this chap-

ter, INT CANDIDATEE nodes are white, DOMINATEE nodes gray, and DOMINATOR

nodes black colored. EXTCANDIDATE nodes will have gray dashed circles.

Span: Thespan(v) of a nodev is the number of INTCANDIDATE neighbors (including it-

self).

Fully connected node: If a node has a link to all other nodes in the network, the node is fully

connected.

Neighborlist: Every node is tracking a neighborlist that contains all relevant information about

its neighbors. For every neighbor node the following information will be stored in this list

about this node:

• ID

The unique ID of the neighbor node.

• Address

The network address of the neighbor node.

• Node weight

The weight of the neighbor node.

• Span

The span value of the neighbor node.

• Status

The status of the neighbor node.

• Fullconnected

A flag used to indicate that a node is fully connected and a further DOMINATOR

node is required.

In the beginning all values of these fields are unknown except the address field.

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 41

Coverage: All the nodes that are directly connected to a DOMINATOR node are covered by

this node. Every DOMINATEE node is covered by minimum one DOMINATOR node.

3.2.2 Dominating Set Computation

Building a Dominating Set using the PBS algorithm is based on comparing priorities. A node

has ahigher priority than another node if

1. the node has a higher node weight;

2. if tie: the node has a higher span value;

3. if tie: the node has more neighbors with DOMINATOR status;

4. if tie: the node has a lower ID.

As described in chapter3.1, the node weight indicates the node’s capability to act as Zone Server

and having high weighted nodes in the DS has the highest preference. Thus, this is the most

important criterion to determine the priority of a node. The span value is an indication of how

many nodes will lose their INTCANDIDATE status if this node becomes a DOMINATOR and

is used as the second criterion to compare the priority of two nodes. This criterion leads to a

better MDS approximation. Note that if all nodes have the same node weights and their pri-

ority decisions are based on the span value, the algorithm will be quite similar to the greedy

algorithms presented in section2.3.4. If no decision can be made based on the span values

the number of DOMINATOR neighbors will be considered. It is useful to have as less hops as

possible between the DOMINATOR nodes due to the consistency and synchronization mecha-

nisms required by the applications. The number of DOMINATOR neighbors of a node can be

calculated based on the received neighborlist. The final tie breaker for comparing priorities of

different nodes is the node ID which is unique within the network. A node with lower node ID

has higher priority.

The choice of criteria and their order to compare the priorities of different nodes are based

on the discussions from chapter3.1. It is easy to see, that they are the most influencing factors

of the quality and property of the DS built by the PBS algorithm. One advantage of the algo-

rithm is that the Dominating Set can be influenced by purely changing these criteria and their

order. For example, if it is important to get a Connected DS fast the criterion about the number

of DOMINATOR neighbors (criterion 3) can be put at the top, and the algorithm constructs a

CDS. In this case, not compulsory nodes with highest weights will be chosen into the DS.

The PBS algorithm is performed in rounds. Every round consists of three steps, such as sending

42 CHAPTER 3. ZONE SERVER SELECTION

the own neighborlist to the neighbors, receiving the neighborlist from the neighbors and recal-

culation of the own status. Based on the exchange of the neighborlists, every node knows the

network up to a distance of 2 hops and is therefore able to determine the nodes with the highest

priorities. In the beginning, the rounds are performed as long as there are any INTCANDIDATE

neighbors left (including the node itself) within distance of 2 hops. Afterward, a node starts a

round again, if it detects lost or new links to some neighboring nodes. Note that not all nodes

perform compulsory the same amount of rounds because it is possible that a node has already

no INT CANDIDATE neighbors left whereas other nodes still have some. But the rounds are

synchronized between the nodes, because a node always have to wait until all neighbor nodes

sent their neighborlist. Nodes that already have no INTCANDIDATE neighbors left will also

send a neighborlist back if it receives one from a node.

Every node sets its initial state to EXTCANDIDATE when it joins the self-hoc network. If

the node wants to join the game session, it changes its status to INTCANDIDATE and starts

sending the neighborlist.

In a very general way, the algorithm for a nodev can be outlined as:

1: set own status to INT_CANDIDATE or EXT_CANDIDATE

2: while v has INT_CANDIDATE neighbors within distance 2 do

3: send neighborlist

4: receive neighborlist

5: change to DOMINATEE if a direct neighbor has status DOMINATOR

6: change to DOMINATOR if v has highest priority within distance 2

7: among the nodes with INT_CANDIDATE status

8: od

In the beginning, every node set its own status to INTCANDIDATE or EXT CANDIDATE de-

pending on whether the node wants to join the game session or not, and sends in the first round

the neighborlist to its neighbors. This means after the first round every node has already a two

hop view of the network. Every node compares its priority with the node neighbors (based on

the received neighborlists) and if it has the highest priority among all neighbors up to a distance

of two hops it changes the own status to DOMINATOR. Note that there always a node exists

with the highest priority among the INTCANDIDATEE neighbors, because the last tie breaker

for the priority comparison is the node with lower ID and the ID is unique within the network.

A node needs to have the highest priority within a distance of two hops because it is possible,

that a candidate node has two neighbors with higher priority and therefore both of them will

change to DOMINATOR. An example of such a constellation is shown in Fig.3.10where node

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 43

1 already has been determined as DOMINATOR, and nodes 2 and 3 as DOMINATEE. Node 4

has still INT CANDIDATE status and has node 2 and 3 as its neighbors. All nodes have the

same node weights. If the nodes 2 and 3 are only looking at the direct neighborhood, both nodes

will change to DOMINATOR to cover node 4 because both of them has higher priority than

node 4 due to the number of neighbored DOMINATOR nodes. But if the nodes compare the

priority within the distance of two hops, only node 2 will change to DOMINATOR and cover

node 4 because based on the ID it has higher priority than node 3. In the end, the DS consists of

node 1 and 2, which is the best possible solution for this network topology.

Figure 3.10: Sample Graph Where Node 1 is DOMINATOR, Nodes 2 and 3 DOMINATEE, and

Node 4 still INT CANDIDATE

But this very basic implementation of the first phase of the PBS algorithm does not fulfill all

requirements. Therefore, some modifications are required that consider the requirements and

that improve the time complexity of this first phase:

A neighbor node of a node that changed its status to DOMINATOR will be informed in the next

round about this change and will change the own status to DOMINATEE. If the node has some

common neighbors with the DOMINATOR node, it will also change immediately their status

to DOMINATEE. By doing this the node gets faster the correct information and do not need

to wait one round more until these nodes informed it about their change to DOMINATEE and

wrong decisions can be avoided.

Different to the DOMINATOR status that can not be changed during the DS building process, a

node that has status of a DOMINATEE can still switch to DOMINATOR. Because a DOMINA-

TEE node is already connected to a DOMINATOR, and if it has the highest priority among the

other INT CANDIDATE, EXT CANDIDATE, and DOMINATEE neighbors it is a good choice

if it joins the DS.

A requirement to the algorithm is that the DS has to contain minimum two nodes regardless

of the network topology due to redundancy reasons. This causes some problems especially if

44 CHAPTER 3. ZONE SERVER SELECTION

a node is fully connected. Consider the simple network shown in Fig.3.11consisting of four

nodes. Nodes 1 and 2 has node weight 3 and nodes 3 and 4 node weight 2. The nodes 1 and 3

are fully connected with the other nodes.

Figure 3.11: A Graph with Two Full Con-

nected Nodes

Figure 3.12: The Chosen CDS for this

Graph with Two Full Connected Nodes

Based on the node weight and on the higher span value node 1 will change its status to DOM-

INATOR in the first round of the algorithm. In the second round, all other nodes change to

DOMINATEE and without the requirement of having a minimum number of two Zone Servers,

the DS could be considered as built. But caused by this requirement, the algorithm needs to

be extended: It is very easy for a node to detect if it is fully connected or not by receiving the

neighborlist from the neighbor nodes. If none of the neighbors has a neighbor that is not already

an own neighbor, then the node is fully connected. Being such a full connected node has the

big advantage to know the whole network. Therefore, if a full connected node is selected as

DOMINATOR it checks all neighbors if there are any other DOMINATOR nodes. If this is not

the case it determines the node with the highest priority among its neighbors and sends in the

next round the neighborlist with a flag called ”fullconnected” that forces this neighbor node to

join the DS as well. In the considered example of Figure3.11, after switching to DOMINATOR

in round 1, node 1 sends in round 2 node 2 the ”fullconnected” flag in the neighborlist, because

it is the node with the highest priority among the neighbors of node 1. Node 2 will also switch

to DOMINATOR and the DS consists of nodes 1 and 2 as shown in Fig.3.12. The requirement

of two Zone Servers is fulfilled.

With this modifications, a round of the PBS algorithm can be summarized as follows:

Step 1: Send neighborlist to all neighbors;

Step 2: Receive neighborlist from all neighbors;

Step 3: Determine status:

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 45

• If the node’s status is INTCANDIDATE:

– change status to DOMINATEE if at least one neighbor has DOMINATOR status.

Update also the status of the common neighbors of the DOMINATOR node to DOM-

INATEE.

– change status to DOMINATOR if

∗ the node has the highest priority among its 1-hop INTCANDIDATE neighbors

and the neighbors of these INTCANDIDATE nodes which are two hop away

from the original node;

∗ a DOMINATOR neighbor reported “fullconnected”.

If the node is fully connected and changed to DOMINATOR, check the number of

other DOMINATOR nodes among its neighbors. If there are not any other DOMI-

NATOR node set the “fullconnected” flag in the neighborlist that is sent to the node

with the highest priority among its 1-hop neighbors.

• If the node’s status is DOMINATEE or EXTCANDIDATE:

– change status to DOMINATOR if

∗ the node has the highest priority among its 1-hop INTCANDIDATE neighbors

and their two hop neighbors;

∗ at least one DOMINATOR neighbor reported “fullconnected”.

If the node is fully connected and changed to DOMINATOR, check the number of

other DOMINATOR nodes among its neighbors. If there are not any other DOMI-

NATOR node set the “fullconnected” flag in the neighborlist that is sent to the node

with the highest priority among its 1-hop neighbors.

• If the node’s status is DOMINATOR:

– change status back to DOMINATEE if there are no DOMINATEE neighbors left,

but there is still another DOMINATOR neighbor.

For the better understanding, Fig.3.13shows the pseudo code of the algorithm and the logic is

shown in Fig.3.14. The black boxes contain the conditions for the different branches, and the

gray boxes indicate the status of the node at the given point.

Due to the device’s mobility and the possibility that nodes leave or new nodes join the mobile

ad hoc network, the network and especially its links can not be considered as static. It is one

of the real contribution of the PBS algorithm that it can react properly to links that are going

46 CHAPTER 3. ZONE SERVER SELECTION

1: myStatus = INT_CANDIDATE or EXT_CANDIDATE
2:
3: do until (!all_neighbors_determined)
4: send_neighborlist
5: receive_neighborlist
6:
7: if (myStatus==INT_CANDIDATE)
8:
9: if (isNeighbor(DOMINATOR)==true)

10: myStatus=DOMINATEE
11: updateCommonNeighbors()
12: fi
13:
14: if(highestPriority or haveLeafNeighbor
15: or fullConnected_reported)
16: myStatus=DOMINATOR
17: if(fullconnected)
18: v=neighborWithHighestPriority
19: reportFullConnected(v)
20: fi
21: fi
22: fi
23:
24: else if(myStatus==EXT_CANDIDATE or myStatus==DOMINATEE)
25: if(highestPriority() or haveLeafNeighbor
26: or fullConnected_reported)
27: myStatus=DOMINATOR
28: if(fullconnected)
29: v=neighborWithHighestPriority
30: reportFullConnected(v)
31: fi
32: fi
33: fi
34:
35: else if(myStatus==DOMINATOR)
36: if(!stillRequired)
37: myStatus=DOMINATEE
38: fi
39: fi
40: od

Figure 3.13: Pseudo Code of the PBS Algorithm

down or new links that are coming up. It is the task of the algorithm to rebuild the Dominating

Set if there are changes detected in the network, because the interruption of the service should

not be noticeable to the users of the service itself. Therefore, it is also preferable in general

to keep the existing Zone Servers because the transfer of the Zone Server functionality and the

data creates a lot of overhead. In general, if a node detects some changes in its neighborhood it

starts a new round of the algorithm by sending a neighborlist as shown in Fig.3.14where the

node is waiting in the Wait state until a new or lost link is detected. Similar, if a node that is

in the EXT CANDIDATE status and wants to join the game session, it will change its status to

INT CANDIDATE and starts sending out neighborlists as well. In the following, some cases for

new and lost connections from the view of the nodes and their current status will be discussed:

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 47

Figure 3.14: Flow Chart of the PBS Algorithm

EXT CANDIDATE node:

If an EXT CANDIDATE node detects some new or lost nodes, or a new INTCANDIDATE

node it simply starts a new round of the PBS algorithm to inform the other nodes about the

changes.

INT CANDIDATE node:

If a node still have INTCANDIDATE status, the DS computation process is still going on and

the node is still sending out neighborlists. The network changes will be updated in the neigh-

borlists that are sent out.

DOMINATEE node:

After the detection of the changes in the network, the node checks if it is still connected to a

DOMINATOR node. If this is not the case, it switches its status back to INTCANDIDATE

before it resends the neighborlist and starts a new round of the algorithm.

48 CHAPTER 3. ZONE SERVER SELECTION

DOMINATOR node:

Note that a DOMINATOR node will remain a DOMINATOR node, even if its clients are covered

by other DOMINATOR nodes. A DOMINATOR node will only switch back to DOMINATEE

status if there are no DOMINATEE nodes left in its neighborhood. This is due to the shown

oscillation problem in section4.2 that can arise if the DOMINATOR nodes switch back to

DOMINATEE if its connected DOMINATEE nodes are covered by other DOMINATOR nodes

with a higher ID.

3.2.3 Extensions

In section3.1.2, it has been assumed that it is not mandatory to build a Dominating Set that is

connected for the support of the selection of Zone Servers. But anyway, based on the compu-

tation of a DS from the previous section and with some modification a Connected Dominating

Set can be built. The following modifications are required:

Neighborlist: A new field has to be added to the exchanged neighborlists, called ’Dominator

Neighbors’. This field contains the DOMINATOR nodes that are reachable within 1 or

2 hops for the neighbor node. For the DOMINATOR nodes reachable within 2 hops the

intermediate node that has to be traversed for reaching the DOMINATOR node is stored

as well.

DOMINATOR list: If a node has the status of a DOMINATOR, it will also store a list contain-

ing the DOMINATOR nodes that are up to three hops away in the network in addition to

the Neighborlist. A DOMINATOR list contains the following entries:

• ID

Node ID of the DOMINATOR node.

• Path

Contains the path to this node. I.e., the IDs of the intermediate nodes (max. 2 nodes)

that have to be traversed to reach the DOMINATOR node.

• Path Weight

The weight of this path. Contains the lowest node weight that has to be traversed

and the sum of the edge weights.

It is possible that there exist several paths for one DOMINATOR neighbor node. This

information will be needed to build a connected DS.

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 49

DOMINATOR piece: A DOMINATOR piece is defined by DOMINATOR nodes that are di-

rectly connected. In the worst case, a piece consists of only one DOMINATOR node. In

the best case, when a CDS is built there is only one piece in the whole graph because all

DOMINATOR nodes are connected with each other.

It is obvious that after the computation of the DS from the previous section it is not guaranteed

that the nodes of the DS are already connected. But to build a CDS of a given DS is a typical

Steiner Tree problem as introduced in section2.3.9. Based on the given graphG(V,E) a CDS

has to be built that includes the nodesR ⊆ V , whereasR contains all nodes from the DS built

by the main PBS algorithm. To connect these nodes inR some of the DOMINATEE nodes that

are intermediate nodes between two DOMINATOR nodes will switch to DOMINATOR status

as well and build the final CDS. Note that there are at most 2 intermediate nodes between two

DOMINATOR nodes. In section2.3.9, some algorithms that solve such Steiner Tree problems

have been presented. But different to the situations there, where it is assumed that every node

has minimal knowledge of the network, the second phase of the PBS algorithm can be based

on the information that the nodes got in the first phase of the algorithm: Every node knows its

neighborhood up to a distance of two hops. In addition, every DOMINATOR node knows all its

DOMINATOR neighbors that are in a distance of 1, 2, and 3 hops away based on the informa-

tion from the DOMINATOR list.

The main idea of building a connected DS is that the DOMINATOR nodes compare the different

possible paths to their DOMINATOR neighbors and choose the best ones that reduce the num-

ber of DOMINATOR pieces. Note that the graph and the built DS of the main PBS algorithm

can be separated in common DOMINATOR neighborhoods.

A common DOMINATOR neighborhoodis defined by a set of DOMINATOR nodes that can

reach each other with a maximum distance of 3 hops. In Fig.3.15, a graph is shown where the

nodes 2, 4, 6 and 8 joined the DS in the first phase. This graph consists of two common DOMI-

NATOR neighborhoods. The nodes 2, 4, 6 are part of the first common neighborhood, and all of

these nodes can reach each other by a distance less or equal 3 hops, and the nodes 6 and 8 build

the second common neighborhood. In the first step of this extension, the DOMINATOR nodes

will exchange their DOMINATOR lists between the DOMINATOR nodes that are reachable

within 3 hops in order to be able to detect these common DOMINATOR neighborhoods. For

example, in Fig.3.15, DOMINATOR node 4 exchanges its DOMINATOR list with nodes 2 and

6. It detects that it is part of the common DOMINATOR neighborhood consisting of nodes 2,

4, and 6. Because all of its DOMINATOR nodes in the DOMINATOR list, nodes 2 and 6, can

50 CHAPTER 3. ZONE SERVER SELECTION

reach each other as well within 3 hops. Different for node 6, after exchanging the DOMINATOR

lists, it detects that it is part of two common DOMINATOR neighborhoods. Because node 8 is

only reachable by itself and not from the nodes 2 and 4, and therefore it is part of two common

DOMINATOR neighborhoods.

Figure 3.15: A Graph Containing Two Common DOMINATOR Neighborhoods

Every common DOMINATOR neighborhood containingk nodes has to be connected with max-

imumk − 1 paths. A path is concerned as a better path than another, if

1. the lowest node weightalong the path (there are at most two nodes) between two DOM-

INATOR nodes is higher;

2. if tie: the path has thelower edge weight.

Note that different to the node weight where in the case of two nodes between two DOM-

INATOR neighbors the lower weight has to be considered, the edge weights in the case

of multiple hops between two neighbors have to be summed up.

If the best paths have been determined, for every chosen path the DOMINATOR node with the

lower node ID sends a ”connect” message to the first intermediate node on this path. This node

will change its status to DOMINATOR and forward the ”connect” message if existing to the

second node on the path. This second node will also change to DOMINATOR and discards the

message.

To sum up, this enhancement of the PBS algorithm consists of the following actions for a DOM-

INATOR node:

• Send DOMINATOR list to all DOMINATOR neighbors that are two or three hops away

• Receive DOMINATOR lists from all DOMINATOR neighbors

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 51

• Among the DOMINATOR neighborhood where the node is part of it, determinek − 1

best paths that reduce the number of pieces.

• If a path is chosen where the node is attached to and it has the lower ID than the DOMI-

NATOR node on the other end, send the ”connect” message to the first intermediate node

on this path.

Or in pseudo code:

1: send_dominator_list()

2: receive_dominator_list()

3: common_neighborhoods = determine_common_neighborhoods();

4: for every common_neighborhoods do

5: k = numOfDOMINATORS(neighborhood);

6: paths = determineBestPaths(neighborhood);

7:

8: for all paths do{

9: if(attached(path) && lowerID(path)){

10: send_connect();

11: }

12: }

13: }

By exchanging the DOMINATOR lists every DOMINATOR node gets the complete view with

the different edge weights inside its DOMINATOR neighborhood and is able to determine the

best paths that have to be chosen. The number ofk − 1 paths can be reduced if there are any

common paths (meaning the same intermediate nodes) from several DOMINATOR neighbors to

reach another DOMINATOR neighbor as shown, for example, in Fig.3.16. DOMINATOR node

6 can only be reached from DOMINATOR nodes 1 and 3 via the nodes 4 and 5, and therefore

there is only one path required to build a CDS.

Because the DOMINATOR nodes are exchanging only once their DOMINATOR lists it is pos-

sible that after building the CDS cycles occur. Consider Fig.3.17where the constructed DS

after the main PBS algorithm is shown. After using this extension to build a Connected DS all

nodes will have DOMINATOR status. Because, for example, node 1 does not know that nodes

4 and 10 are also connected via node 7, and sends a ’connect’ message to nodes 2 and 12 to

force them to join the DS. Similar, node 4 sends a ’connect’ message toward nodes 5 and node

52 CHAPTER 3. ZONE SERVER SELECTION

Figure 3.16: Graph Where Only One Path is Required to Build CDS

7 toward node 8. At the end all nodes are DOMINATOR nodes and there is one path too much

chosen, and the CDS could consist of two nodes less. Only cycles up to 9 nodes can be detected

by exchanging the neighborlists once. It is possible to extend this capability to detect cycles by

exchanging the DOMINATOR lists several times. For every extra round it is possible to detect

a cycle that consists of 3 more nodes. On the other hand in a cycle of DOMINATOR nodes,

there are always maximum 2 nodes that are reducable in the CDS. Therefore, for longer cycles

the extra needed time performance is much higher compared to the received improvement of the

MCDS approximation and the disadvantage of the possibility of having cycles with more than

9 nodes in the CDS will be neglected.

Figure 3.17: The Cycle Cannot Be Detected and All Nodes Will Switch to DOMINATOR

3.2.4 Examples

In this section two examples of the PBS algorithm are shown and should provide a deeper un-

derstanding of how this algorithm works. Also the extension of the algorithm is shown, that

constructs a Connected Dominating Set.

Example 1:

In Fig. 3.18a typical graph is shown with different node weights and different delays on the

edges. The delays are only used for the extended PBS algorithm. The following actions per

round take place:

Round 1: All nodes send their neighborlists to all neighbors. Based on this list node 4 changes

its status to DOMINATOR because it has the highest node weight among its neighbors

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 53

and therefore the highest priority. Also node 7 changes to DOMINATOR status because

there are no neighbor nodes with higher priorities. Node 1 has indeed the same node

weight but a lower span value. The situation after the first round is outlined in Fig.3.19.

Round 2: Nodes 4 and 7 inform their neighbors via the sent neighborlists that they changed to

DOMINATOR. Due to this message all other nodes change to DOMINATEE because all

of them are covered by node 4 or 7.

Round 3: Again the neighborlists are exchanged. Based on this node 7 is informed by node

3 and 6 that they can reach DOMINATOR node 4. Node 7 stores this information in its

DOMINATOR list. Node 4 is informed as well by nodes 3 and 6 that they can reach

DOMINATOR node 7 and stores this information as well in its DOMINATOR list. But

also the other nodes 1, 2, 5, and 6 store the information about the available DOMINA-

TOR nodes. For example, node 2 is informed by node 1 and node 3 that they can reach

DOMINATOR node 7 and DOMINATOR node 4, respectively.

Round 4: One further round where the neighborlists are exchanged. Now the DOMINATOR

nodes get the information about the other DOMINATOR nodes that are reachable within

a distance of 3 hops. For example, node 7 is informed by node 2 that DOMINATOR node

4 is also reachable via nodes 2 and 3.

The main algorithm is now completed (Fig.3.20). Note that the DOMINATOR list is only used

by the extension of the PBS algorithm to build a Connected DS. Due to this list the determined

DOMINATOR nodes 7 and 4 know all paths how to reach each other. If required, the extension

will now be started and performs some additional rounds:

Round 5: The two nodes 4 and 7 exchange their DOMINATOR lists and detect that there exists

only one neighborhood containing only DOMINATOR node 4 and 7. Based on that, both

nodes decide that the best path to connect them is via node 6, because it has a higher node

weight than for example node 3, and also the time delays of the edges have better values.

Round 6: Because node 4 has the lower ID it sends a ’connect’ message to node 6, and node

6 changes as well to DOMINATOR status. Because this is only a 2 hop path with one

intermediate node, node 6 does not have to forward the message, and phase 2 is finished.

The final CDS chosen by the extended PBS algorithm for this graph is shown in Fig.3.21.

54 CHAPTER 3. ZONE SERVER SELECTION

Figure 3.18: Example 1 - Graph Figure 3.19: Example 1- After first round

Figure 3.20: Example 1 - Chosen DS Figure 3.21: Example 1 - Chosen CDS

Example 2:

In this example, the algorithm is applied to a graph consisting of 12 nodes as shown in Fig.

3.22. All nodes have the same weight values and all edges the same time delays. Because the

priorities have to be compared based on the ID (except the nodes in the corner that have a less

span value), the DOMINATOR nodes have to be determined step by step. The main algorithm

requires 9 rounds to determine the DS as shown in Fig.3.23. Afterward, the DOMINATOR

nodes exchange their DOMINATOR lists and the connect message is sent from node 2 via node

3 to node 4. The second phase needs 3 rounds. The final CDS that has been determined by the

PBS algorithm in 12 rounds is shown in Fig.3.24.

Figure 3.22: Example 2 - Graph

3.2.5 Performance Analysis

In the last section a Zone Server Selection algorithm based on comparing priorities has been

presented. In this section the performance and the correctness based on the requirements from

chapter3.1will be investigated for this PBS algorithm.

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 55

Figure 3.23: Example 2 - Chosen DS

Figure 3.24: Example 2 - Chosen CDS

Node weighted:

If the algorithm compares the priorities, the first criterion to get a high priority is the weight of

the node. Therefore, only nodes with high weights will be chosen into the DS.

Even by the extension, the different paths are compared according to the smallest node weight

along this path. If there is a choice, the path and consequently the nodes with the higher node

weights will be chosen into the DS. If there is only one path between two DOMINATOR nodes,

and this path is needed to build a connected DS, the nodes along this path will switch to DOM-

INATOR nodes independent from their node weight. But there is no other choice due to the

requirement of building a CDS.

Minimum number of DOMINATOR nodes:

It is guaranteed that there are at least two DOMINATOR nodes for any network topology (of

course, the network should consist of at least two nodes). If there is a node fully connected with

every other node, this node will force another node to turn to DOMINATOR status if required.

If there is no fully connected node in the graph withn nodes, the maximum possible degree for

a node isn − 2. This means, that if a node change to DOMINATOR status, there is minimum

one node left that will not be covered by this node, and a second DOMINATOR node will be

determined by the algorithm.

Completely distributed:

The decisions of a node to turn to DOMINATOR or DOMINATEE status are only based on

56 CHAPTER 3. ZONE SERVER SELECTION

the received information by exchanging the neighborlists with the direct neighbors. Thus, the

algorithm is completely distributed and runs locally on every node.

Connected DS:

Due to the presented extension, it is possible to construct optionally a Connected Dominating

Set. The task of the extension is to reduce the number of DOMINATOR pieces until there is

only one piece left. Therefore, after the extension it is guaranteed that the DS is connected.

Mobility maintenance: The algorithm can react to links that are going down or coming up.

If a node detects new or lost links it will start new rounds of the algorithm to distribute the infor-

mation about the link changes and to determine the status of possible new INTCANDIDATE

nodes.

The task of the performance analysis is to give a lower and upper bound for the time and mes-

sage complexity of the PBS algorithm. This means that for both of them a worst case scenario

as well as a best case scenario will be investigated.

Good MDS approximation:

The approximation factor of the PBS algorithm is strongly influenced by the distribution of the

node weights. In the worst case, the nodes with the lowest span values will have the highest

node weights deteriorating the approximation factor. If all nodes have the same weight or the

nodes with the highest span values have also the highest weights, the span value will determine

the priority between the different nodes. This is similar to the greedy algorithms [21] and the

approximation factor at the beginning of the algorithm islog(∆). During the game session due

to node mobility the approximation factor can change and become worse, because the algorithm

tries to keep the existing DS even if there could be a better MDS approximation achieved. How-

ever, we assume that changing Zone Servers and the required transfer of the game states are

more expensive than having some additional servers.

Low time complexity:

The required number of rounds to determine the DS can be rapidly reduced if as many nodes as

possible can change from INTCANDIDATE status to either DOMINATOR or DOMINATEE

status per round. However, there are some worst case scenarios where the higher priority can

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 57

only be determined by comparing the node IDs. This means that the DOMINATOR nodes have

to be chosen step by step. For example, in Fig.3.25a fragment of a graph is shown, where all

nodes have the same node weights and all edges are identical. At the beginning, all nodes have

INT CANDIDATE status. The white numbers in the black boxes show the current span values

of the nodes. In this case, there is a chain of nodes whose priorities can be compared only based

on the unique node IDs.

Figure 3.25: Worst Case Scenario Concerning Time Complexity

In the first round, node 2 declares itself as a DOMINATOR because it has the lowest node ID

among the nodes with span value 3. In the second round, node 1 and 3 change to DOMINATEE.

In the third round, node 4 gets the information about the new status of node 3. Node 5 recognizes

the situation as shown in Fig.3.26only in the fourth round and changes itself to DOMINATOR

because it has the lowest node ID among the remaining nodes with span value 3.

Figure 3.26: Situation in the Worst Case Scenario After 3 Rounds Applying the PBS Algorithm

This means that before node 5 as the next DOMINATOR can be determined 3 rounds have

been required. During this time 3 nodes changed their status from INTCANDIDATE to either

DOMINATOR or DOMINATEE. Therefore, in the worst case when a graph consists only of

such fragments shown in Fig.3.25, the PBS algorithm can be upper bounded withO(n) rounds.

In general, if

DEG = {deg(v1), ..., deg(vn)} (3.5)

is the set of the different node degrees in a graph, and

δ = min(DEG\{deg(vi)|deg(vi) = 1}) (3.6)

the minimum degree (excluding degree 1 for leaf nodes), and it is assumed that in the worst case

∀vi ∈ V, deg(vi) = δ (3.7)

58 CHAPTER 3. ZONE SERVER SELECTION

then it is possible to changeδ+1
3 nodes from the INTCANDIDATE status to either DOMINA-

TOR or DOMINATEE in one round. Therefore, in total

n
δ+1
3

=
3

δ + 1
n (3.8)

rounds are needed for determining all nodes and the time complexity can be upper bounded with

O(n).

The required time for building the DS is influenced by the way the node weights are assigned

and the span values that the nodes with high weights have. In the best case, already in the

first round DOMINATOR nodes are determined that cover all remaining nodes. Then the PBS

algorithm requires only 3 rounds to determine the status of all the nodes: In the first round,

the nodes exchange their neighborlists and some of the nodes change to DOMINATOR. In the

second round, the remaining nodes change to DOMINATEE and finally in the third round every

node recognizes that all nodes changed to either DOMINATEE or DOMINATOR. Therefore,

the time complexity can be lower bounded withΩ(3). For the extension of the algorithm that

constructs a Connected DS, the number of rounds can be lower bounded byΩ(4). There is one

round more required, because the Dominator lists need to be exchanged as well. The upper

bound isO(n), as well.

Low message complexity:

In general, every node sends a neighborlist to its neighbors and every node can have maximum

∆ neighbors. Therefore, per round∆n messages will be sent, and the message complexity can

be upper bounded withO(∆n). Note that this bound can be drastically reduced, if the differ-

ent nodes are connected via a broadcast medium like in case of WLAN. In such a medium, all

nodes that are in the transmission range of a certain node can receive all messages from this

node. Because a node sends the same neighborlists to all its neighbors, it is enough to send

the message once to the broadcast address with the TTL (Time To Live) field set to one. For

a broadcast medium the message complexity can be upper bounded withO(n) messages that

need to be sent per round. In general, only the nodes that detected new or lost links and their

neighbors up to a distance of 2 hops will exchange neighborlists. The upper bounds will only

be achieved at the beginning of the algorithm and if all nodes need to update their neighborlists

due to mobility maintenance.

The size of a message is determined by the number of entries in the neighborlist. A neighborlist

contains for all neighbors and the node itself an entry and its size can be upper bounded with

O(k(∆ + 1)) bytes, whereask represents the size of an entry in the neighborlist in bytes. The

3.2. PRIORITY BASED SELECTION (PBS) ALGORITHM 59

lower bound of a message size isΩ(k(δ + 1)). These bounds can be decreased as well, if only

incremental updates are sent instead of sending always the full neighborlist.

3.2.6 Summary

In this chapter a distributed Dominating Set computation algorithm called PBS (Priority Based

Selection) has been presented. This algorithm provides service management support in self-hoc

networks for real-time applications. As the first approach, PBS offers continuous maintenance

of the computed DS even if the network graph changes dynamically. Though the development

of the PBS algorithm was mainly motivated by multiplayer games supporting the zone-based

architecture, the algorithm can even be used in other real-time applications, such as collabora-

tive working, which have similar requirements to multiplayer games.

The Priority Based Selection (PBS) algorithm constructs a Dominating Set based on comparing

priorities of different nodes. A node has a higher priority than another node if

1. the node has a higher node weight;

2. if tie: the node has a higher span value;

3. if tie: the node has more neighbors with DOMINATOR status;

4. if tie: the node has a lower ID.

During the algorithm a node can have one of the following states: INTCANDIDATE,

EXT CANDIDATE, DOMINATOR, or DOMINATEE. In the beginning every node has the sta-

tus of an INTCANDIDATE if it wants to join the game session, or EXTCANDIDATE if it will

not participate in the game session. During the DS computing process all INTCANDIDATE

nodes change their status to either DOMINATOR (the node is in the DS and will act as Zone

Server) or DOMINATEE (the node is not in the DS but is covered by a DOMINATOR node).

Based on the requirement of co-operative behavior (see section3.1.1) it is also possible that a

node with EXTCANDIDATE status will join the DS and change its status to DOMINATOR.

The main idea of the algorithm is that every node exchanges the information about its neighbors

in neighborlists between its neighbors and gets a 2-hop view of the network. Based on these

received information every node is able to determine its own status. The algorithm performs in

rounds. Every round consists of three steps, such as sending the own neighborlist, receiving the

60 CHAPTER 3. ZONE SERVER SELECTION

neighborlist from the neighbors and recalculation of the own status. A pseudo code implemen-

tation and a flow chart of the algorithm can be seen in Fig.3.13and Fig. 3.14, respectively.

In addition, an extension to the PBS algorithm has been presented that guarantees that the con-

structed Dominating Set will be connected.

It could be shown, that the PBS algorithm fulfills all requirements from chapter3.1 that are

needed to support the Zone-based Architecture. The performance calculations of the algorithm

are shown in Table3.2. The MDS approximation factor is only listed for the case if all nodes

have the same node weights. Otherwise, the upper bound is dependent on the current distribu-

tion of the node weight and the movement of the nodes.There exist two upper bounds for the

message complexity. One if the node generates for every neighbor an own message, and one if

a broadcast medium is used, and the message is sent only once to the broadcast address. The

parameterk used by the Message Size represents the size of an entry in the neighborlist in bytes.

The values shown in the table can be compared to the Table2.10and2.11that contain the same

evaluation factors for the existing DS calculation algorithm.

Evaluation Upper bound Lower bound

Connected Optional

Approximation O(log n) if equal node weights

Rounds O(n) Ω(3)

with Extension:

O(n) Ω(4)

Messages O(∆n) Ω(n)

Broadcast Medium:O(n)

Message Size O(k(∆ + 1)) Ω(k(δ + 1))

Table 3.2: Performance Results of PBS Algorithm

Chapter 4

Simulations and Evaluation

The testing and evaluation of protocols and applications for mobile ad hoc networks in a real

environment can be rather costly and complex, especially if large networks are considered.

Therefore, simulation is an important tool to improve or validate an implementation. In this

chapter, the performance of the PBS algorithm will be evaluated based on simulation results.

For these simulations the PBS algorithm has been implemented in the Network Simulator 2

(NS-2) [10]. NS-2 is a discrete event driven simulator to support networking research. Its target

is for designing new network protocols, comparing different protocols and traffic evaluations.

NS-2 follows closely the OSI model and provides substantial support for simulation of TCP,

routing and multicast protocols over wired and wireless networks.

The implementation of the algorithm in the NS-2 simulator is shown in appendixA. In the

first section of this chapter, the used simulation settings and scenarios are described, and in the

second section, the results of the simulations are shown.

4.1 Simulation Settings

For the simulation with the NS-2 simulator, the PBS implementation as described in appendix

A has been used, and the wireless extensions developed at CMU [30]. Throughout the simu-

lations, each mobile node shares a 2 Mbps radio channel with its neighboring nodes using a

two-ray ground reflection model [31] and IEEE 802.11 MAC [32] protocol. Three different sce-

narios have been simulated that have been run twice. First with 15 nodes, where 10 nodes are

participating in a game session, and second with 35 nodes where 25 of them are participating in

a game in average. The following scenarios have been used in the simulations:

62 CHAPTER 4. SIMULATIONS AND EVALUATION

School Yard Scenario:

The School Yard scenario can be characterized by a group of people that are standing on a school

yard of 400x400 m2 and are gaming a multiplayer game together. Because in general, there are

no huge obstacles on a school yard the transmission range of a device is assumed as 250 meters,

which is a typical value for WLAN in a free area. Due to this wide transmission range, most

of the players will have 1 hop connections to each other. The movements of the nodes are sim-

ulated with Random Way Point (RWP) models [30] in which the non-participating nodes will

move freely on the whole area of the school yard between different destination points, since the

distance between two destination points of the participating nodes is uniformly distributed in

the range of 0-15 meters. It is assumed, that people that are in a current game session will only

slightly move, because it is quite difficult to move and play at the same time for most of the

existing games nowadays. The speed of the nodes is uniformly distributed in the range of 0-6

km/h.

Train Scenario:

In the second scenario, a train is assumed where some passengers are playing with each other.

For the simulation with 15 nodes the geometrical dimensions are 240x5 m2 (about 8 wagons),

and 450x5 m2 (about 15 wagons) for 35 nodes. Due to the narrow but long area and the assump-

tion that the disjunction between the wagons will reduce the transmission range of the devices

(it is assumed as 40 meters), most of the nodes will be connected by several intermediate hops

between each others. Because every playing passenger is expected to sit most of the time during

a game session, we use the probability value of 50% that they will move around. This move-

ment can be characterized by moving towards a destination point like the toilet or restaurant

wagon, spending some time there and moving back to the seat. Non-participating nodes will

move around more and will not implicitly move back to the original starting-point. The speed

of the nodes are again uniformly distributed in the range of 0-6 km/h.

Test Scenario:

For testing the robustness and reliability of the PBS algorithm we have used a testing scenario

that faces the algorithm with some more challenging conditions than in the previous scenarios.

This scenario has the geometric dimension of 400x400 m2 for the simulation with 15 nodes

4.1. SIMULATION SETTINGS 63

and 800x800 m2 for 35 nodes, respectively. All the nodes are moving around with uniformly

distributed speeds in the range of 0-30 km/h using again the RWP models. The increased speed

leads to much more mobility of the nodes and causes the algorithm to recalculate the Dominat-

ing Set more frequently.

In every scenario 10 game sessions have been simulated with a duration of 900 seconds using

different seed values and then averaged the results. The game joining and leaving points in time

of the players were randomly distributed during the simulations. To simulate a real environment

some traffic between the nodes has been generated, as well. For every client participating in the

game session a constant bitrate data flow (20 packets/second with 64 byte packet size) simulating

the game traffic [8] has been used. Some background traffic with the following parameters has

also been added: In the scenarios with 15 nodes, the background traffic was generated by 5

parallel connections being active at the same time during the whole simulation between any

two random nodes. Per connection, the sender produced 10 packets/second with 64 byte packet

size for 30 seconds, then a new connection was established. In the scenarios with 35 nodes,

the number of parallel connections being active at the same time has been increased to 15.

Moreover, the node weights have been set randomly using uniform distribution between 0 and

99, and 9 bytes have been used to describe a node in the PBS neighborlist packet. The simulation

settings are summarized in Table4.1.

Scenarios School Yard, Train, Test

Number of nodes 35 (with 25 participants), 15 (with 10 participants)

Node weight Uniform distribution between 0-99

Number of game sessions 10

Duration of game sessions 900 s

Game joining and leavig points Randomly distributed

Game traffic Constant bitrate: 20 packets/s of 64 bytes

Background traffic Constant bitrate: 10 packets/s of 64 bytes

5 (15 nodes) and 15 (35 nodes) parallel connections

Size of neighborlist entry 9 bytes

Table 4.1: Simulation Settings

64 CHAPTER 4. SIMULATIONS AND EVALUATION

4.2 Simulation Results

To evaluate the performance of the PBS algorithm, the time the PBS algorithm requires to com-

pute and maintain a Dominating Set of the network graph and the signaling traffic generated

during this time have been investigated. The following metrics have been used:

Bandwidth: It indicates the percentage of the used bandwidth by the PBS algorithm comparing

to the total available bandwidth (2 Mbps in these simulations) from the viewpoint of a node. The

used bandwidth is strongly influenced by the size of the sent messages and will increase as more

neighbors a node has. To avoid counting some messages several times, only the sent messages

have been considered. The results of the bandwidth measurements are shown in Table4.2 (we

calculated the minimum, maximum, average and standard deviation values based on the simula-

tion traces). The traffic characteristics of the nodes contain some peaks, because the nodes only

start exchanging neighborlists, if some changes in the network topology have been detected and

no messages will be sent if nothing changes in the neighborhood up to a distance of 2 hops. In

Fig. 4.1the amount of sent data of a single node during a game session is shown. It can be seen

that at the beginning of the game session a lot of data will be sent, but once the DS is built, the

peak behavior can be detected. There are some time periods where no data is sent, because there

are no changes in the network’s topology. From the table it can be seen that in the School Yard

scenario the required bandwidth is increasing from 0.020% to 0.661% on average if the number

of nodes increases from 15 to 35 nodes. The reason is, as we already mentioned, that there are

more 1 hop neighbors in the second case. In the Test scenario with 35 nodes the simulation area

has been expanded from 400x400 m2 to 800x800 m2 and the required bandwidth has decreased

to 0.091% comparing with the School Yard scenario because there are less 1 hop connections.

Moreover, using higher speed wireless interfaces in the self-hoc network (e.g., 11 or 54 Mbps

according to the IEEE 802.11x standards [32]) the required bandwidth by the PBS algorithm

won’t cause any serious problems.

Determination Delay: This delay indicates the time that is needed until a node gets a neighbor-

ing DOMINATOR node or becomes itself a DOMINATOR. This happens at the beginning of a

game session, or during the game when the connection to a DOMINATOR node gets lost due

to the node’s mobility and a new DOMINATOR node needs to be selected in order to rebuild

4.2. SIMULATION RESULTS 65

Scenario min max avg σ

School Yard w/ 15 nodes 0.005 0.040 0.020 0.008

Train w/15 nodes 0.001 0.015 0.006 0.003

Test w/15 nodes 0.008 0.086 0.045 0.015

School Yard w/35 nodes 0.138 1.006 0.661 0.180

Train w/35 nodes 0.001 0.049 0.021 0.011

Test w/35 nodes 0.004 0.268 0.091 0.053

Table 4.2: Used Bandwidth [%]

Figure 4.1: Sent Data of a Node During a Game Session

the Dominating Set. The results of the determination delay measurements are shown in Table

4.3. We can see that in all the three scenarios with 15 nodes, the average delay is in the same

order between 0.111 and 0.185 seconds. However, the maximum delay in the Train scenario is

much higher (1.039 seconds) than in the other two scenarios. This is, because the narrow but

long area in a train creates a situation similar to the worst case scenario as shown in Fig.3.25

of section3.2.5. This ‘chain’ topology can lead to situations where the DOMINATOR nodes

need to be determined step by step. With the increasing number of nodes, the determination

delay will increase as well. In the scenarios with 35 nodes, there are considerable differences in

the average values of the determination delay that are caused by the different number of 1 hop

neighbors, but the maximum values are all in the same order.

Number of Required Changes: This metric indicates from the view of a node how often it

looses the connection to a neighboring DOMINATOR node and a new node has to be deter-

mined as DOMINATOR. Obviously, this number should be as small as possible. As we can see

66 CHAPTER 4. SIMULATIONS AND EVALUATION

Scenario min max avg σ

School Yard w/ 15 nodes 0.018 0.690 0.159 0.172

Train w/15 nodes 0.007 1.039 0.111 0.178

Test w/15 nodes 0.021 0.674 0.185 0.188

School Yard w/35 nodes 0.003 1.358 0.510 0.311

Train w/35 nodes 0.004 1.175 0.153 0.193

Test w/35 nodes 0.012 1.130 0.283 0.251

Table 4.3: Determination Delay [sec]

observing the determination delay it can take more than one second until a new DOMINATOR

is determined. During this time the client needs to connect to a server that is more than 1 hop

away if this is possible. In Table4.4, we indicated how often a node had lost the connection

to its DOMINATOR node in the scenarios being used. We can notice that the average values

are between 0.1 and 0.4. This means that most of the nodes will have constant connection to a

neighboring DOMINATOR node during the whole game session. In the Train scenarios, how-

ever, a node can loose its DOMINATOR node more frequently because of the narrow but long

geometrical shape of the train and the limited transmission range if the DOMINATOR node

starts moving around. Clearly, the higher level of mobility also has essential influence on the

number of required changes. For example, in the Test scenarios this number is relatively high

because the topology can change much faster and the Dominating Set needs to be recomputed

more frequently. An interesting observation is that there are nodes in all scenarios never losing

their DOMINATOR nodes.

Scenario min max avg σ

School Yard w/ 15 nodes 0 1 0.1 0.2

Train w/15 nodes 0 2 0.2 0.4

Test w/15 nodes 0 2 0.4 0.7

School Yard w/35 nodes 0 2 0.1 0.4

Train w/35 nodes 0 3 0.2 0.6

Test w/35 nodes 0 4 0.2 0.7

Table 4.4: Number of Required Changes

4.2. SIMULATION RESULTS 67

Number of DS Changes:This metric is used to give an indication about the stability of the

DS. It shows how often the initial Dominating Set needs to be changed during a game session

from a global viewpoint. Note that in our implementation, a DOMINATOR node will remain

a DOMINATOR node, even if its clients are covered by other DOMINATOR nodes. A DOMI-

NATOR node will only switch back to DOMINATEE status if there are no DOMINATEE nodes

left in its neighborhood. We choose this solution, because it can lead to an oscillation problem

if a DOMINATOR node having the lowest priority switches back immediately when it detects

other DOMINATOR nodes also covering its DOMINATEE neighbors. In Fig.4.2, the number

of DOMINATOR nodes during the simulated time in the School Yard scenario with 35 nodes

is shown when the DOMINATOR nodes don’t switch back to DOMINATEE status at all. We

can see, that after building the initial Dominating Set consisting of 2 nodes, 4 further nodes

were added to this set until the end of the simulation which lead to 4 changes in the DS during

the whole session. In Fig.4.3, the same situation is outlined if the DOMINATOR nodes im-

mediately turn to DOMINATEE status when they detect that their clients are covered by other

DOMINATOR nodes. This causes a frequent oscillation in the number of DS nodes massively

increasing the number of DS changes. The oscillation can be alleviated if a DOMINATOR node

waits a given amount of time than checks again whether it is still not required. Fig.4.4depicts

the situation when a DOMINATOR node waits 10 seconds before switching back to DOMINA-

TEE status. Concerning the approximation factor of the DS, the results shown in Fig.4.3 and

4.4 are better than we can see in Fig.4.2 because the number of DOMINATOR nodes in av-

erage is less decreasing the synchronization complexity for the application. On the other hand,

the various changes force the clients to switch between servers more frequently which causes a

lot of overhead. Therefore, we selected and used in all the scenarios presented in this thesis the

solution when a DOMINATOR node never switches back to DOMINATEE status. To avoid the

oscillation problem but still get a good approximation of MDS a possible improvement can be

the use of some node movement prediction. In this case, the node movement also could influ-

ence the node weights forcing only those nodes to join the DS with a high probability that they

will not move away. This would guarantee a quite stable DS.

In Table4.5, the number of DS changes in all the different scenarios is summarized. With the in-

creasing number of nodes and the higher mobility level in the Test scenario the required changes

are also increasing.

Number of DOMINATOR Nodes: This metric indicates the number of DOMINATOR nodes

68 CHAPTER 4. SIMULATIONS AND EVALUATION

Figure 4.2: Number of DOMINATOR Nodes if a DOMINATOR Doesn’t Switch Back to DOM-

INATEE Status

Figure 4.3: Number of DOMINATOR Nodes if a DOMINATOR Switches Back Immediately to

DOMINATEE Status

Figure 4.4: Number of DOMINATOR Nodes if a DOMINATOR Waits 10 Seconds Before

Switching Back to DOMINATEE Status

in the computed DS. We collected the minimum and maximum number of DOMINATOR nodes

in case of the different scenarios (moreover the minimum, maximum, average values and the

4.2. SIMULATION RESULTS 69

Scenario min max avg σ

School Yard w/ 15 nodes 0 1 0.6 0.5

Train w/15 nodes 0 4 1.6 1.3

Test w/15 nodes 0 2 0.8 0.6

School Yard w/35 nodes 2 5 3.6 0.8

Train w/35 nodes 3 7 4.4 1.2

Test w/35 nodes 1 9 5.6 2.6

Table 4.5: Number of DS Changes

Scenario min max avg σ

School Yard w/ 15 nodes 2 3 2.4 0.5

Train w/15 nodes 2 4 3.1 0.5

Test w/15 nodes 2 3 2.4 0.8

School Yard w/35 nodes 2 4 3.2 1.1

Train w/35 nodes 6 13 7.6 1.9

Test w/35 nodes 5 8 7.0 0.6

Table 4.6: Minimum Number of DOMINATOR Nodes

Scenario min max avg σ

School Yard w/ 15 nodes 2 4 2.9 0.9

Train w/15 nodes 3 6 4.5 1.5

Test w/15 nodes 2 4 3.0 0.5

School Yard w/35 nodes 5 9 6.6 0.6

Train w/35 nodes 10 16 12.6 1.7

Test w/35 nodes 10 17 13.0 1.8

Table 4.7: Maximum Number of DOMINATOR Nodes

standard deviation of these numbers through the several runs with different seed values of a

given scenario) in Table4.6and4.7. Investigating Table4.6we can notice, that in all the scenar-

ios the DS consists always of minimum 2 nodes as required. However, the average value of the

Train scenario is a bit higher than in the other two scenarios (3.1 and 7.6) because the reduced

transmission range and the narrow but long geometry require more DOMINATOR nodes. In

regard to the maximum number of DOMINATOR nodes (cf. Table4.7) we can observe very

70 CHAPTER 4. SIMULATIONS AND EVALUATION

similar tendency. Moreover, the number of DOMINATOR nodes is increasing with the increas-

ing size of the geometrical area and the increasing number of nodes, such as in the Test scenario,

which is not so surprising. The interesting thing is, however, that the Train and Test scenarios

show very similar behavior from this respect. This indicates to us, that the careful selection

of the scenario and the mobility pattern are very important and they should capture real world

situations as much as possible.

Distribution of the Node Weights: For the shown simulation results above, the node weight

has been distributed between 0 and 99. With this choice, most of the nodes will have different

weight values and the PBS algorithm can determine the priority based on these weights. This

simulates also the situation that every node will have different capabilities to act as server due

to different hardware configurations and other factors as remaining battery power. But for in-

vestigating the difference to the case where most of the nodes will have the same node weights,

the School Yard scenario with 35 nodes has been run as well with the node weights distributed

only between 0-4. Now, the other criteria to determine the priority as described in section3.2.2

get more importance. Such a node weight distribution can be used, if the nodes are only divided

in some categories like ’mobile phone’, ’pda’, or ’laptop’ that indicates the node’s server capa-

bility. The results of the different node weight distribution is shown in Table4.8. It can be seen,

that the second case where the node weights are distributed between 0-4 requires slightly more

time to determine the servers. But the differences are not really significant. From the view of

the Determination Delay both node weight distributions are usable but the first one should be

preferred. Because with a big range of node weights it is possible to classify the node’s server

capability and it is guaranteed that really the ”best” nodes will be chosen in the DS.

Scenario min max avg σ

Node weights 0-99 0.003 1.358 0.510 0.311

Node weights 0-4 0.016 1.369 0.521 0.296

Table 4.8: Determination Delay for School Yard w/ 35 Nodes Scenario

4.3. SUMMARY 71

4.3 Summary

Different to the performance analysis of section3.2.5, in this chapter the PBS algorithm has been

evaluated based on simulations of real world scenarios. Three different scenarios has been used:

The School Yard scenario simulates a group of people that are standing on a school yard and

are gaming a multiplayer game together. In the Train scenario, a train is assumed where some

passengers are playing with each other. And for testing the robustness and reliability of the PBS

algorithm a Test scenario has been used that faced the algorithm with some more challenging

conditions than the other two scenarios. The simulations have been run with 15 nodes, where

10 nodes participated in a game session, and with 35 nodes where 25 of them participated in the

game. The following metrics have been used to evaluate the performance of the algorithm:

Bandwidth: This metric indicates the used bandwidth by the PBS algorithm comparing to the

total available bandwidth (2 Mbps in these simulations) from the viewpoint of a node. It

could be shown that the created overhead of the algorithm and the required bandwidth

will not cause any serious problems.

Determination Delay: This metric indicates the time that is needed until a node gets a neigh-

boring DOMINATOR node or becomes itself a DOMINATOR. In average the delay is in

the order of 100-200 ms for 15 nodes and 100-500 ms for 35 nodes for the different sce-

narios. It could be seen that the Train scenario creates a ’chain’ topology that is similar to

the worst case scenario as discussed in section3.2.5and leads to maximum delay values

of 1 second.

Number of Required Changes: This metric indicates from the view of a node how often it

looses the connection to its DOMINATOR node and a new DOMINATOR node has to be

determined. The averaged values are all between 0.1 and 0.4. This means that most of the

nodes had constant connections to the DOMINATOR node. It is evident that the higher

level of mobility also influences the number of required changes.

Number of DS Changes:This metric shows how often the initial Dominating Set needs to be

changed during a game session from a global viewpoint. Note that in the simulations, a

DOMINATOR node will remain a DOMINATOR node, even if its clients are covered by

other DOMINATOR nodes. Otherwise, it could be shown that an oscillation problem can

arise and nodes always join and leave the DS. Similar to the previous metric, the increas-

ing number of nodes and the higher mobility level (for example in the Test scenario) the

required DS changes are also increasing. In average the number of changes are between

72 CHAPTER 4. SIMULATIONS AND EVALUATION

0.6 and 1.6 for the simulations with 15 nodes, and 3.6 and 5.6 for 35 nodes.

Number of DOMINATOR Nodes: This metric indicates the number of DOMINATOR nodes

in the computed DS. The number of DOMINATOR nodes is increasing with the increasing

size of the geometrical area and the increasing number of nodes. For example, the values

for the Train scenario are a bit higher because the reduced transmission range and the

narrow but long geometry leading to a ’chain’ topology require also more DOMINATOR

nodes to build a DS.

In addition to the measured metrics above, different distributions of the node weights has been

investigated, as well. In the shown simulation results above, the node weights have been dis-

tributed between 0 and 99. With this choice, most of the nodes will have different weight values

and the algorithm determines the priority based on these weights. It could be shown, that there

are no significant differences to the Determination Delay if the node weights are only distributed

between 0 and 4. With this distribution, the other criteria (span value, number of DOMINATOR

neighbors, and node ID) for determining the priority of a node become more important. There-

fore, the first distribution should be preferred because then the different hardware configurations

and other factors as remaining battery power can really be mapped to the node weight and indi-

cate the node’s capability to act as server.

In appendixB, the implementation of the algorithm in a real testbed will be described. This

implementation can be used to collect practical experiences.

Chapter 5

Implementation

In this chapter a general overview of the implementation of the PBS algorithm in the SIRAMON

framework [11] will be given. More specific information can be found in appendixB.

5.1 About SIRAMON

SIRAMON (Service provIsioning fRAMework for self-Organized Networks) is a service pro-

visioning framework based on a decentralized and modular design. SIRAMON has to integrate

the functions required to deal with the full lifecycle of services, such as service specification,

lookup, deployment and management of not only trivial but also complex services (e.g., mobile

ad hoc group game applications). Every device runs an instance of SIRAMON which han-

dles the control and synchronization among the devices, as well. The different functions of the

different service provisioning phases are placed into different modules:

Service Specification:The Service Specifiaction module defines a universal service descrip-

tion language to describe the heterogeneous services and assists applications in the usage

of this language. For the service description XML Information Sets [33] are used. Such

an XML infoset defines an abstract data set in a tree structure and is normally described

using a well-formed XML document [34].

Service Indication: The Service Indication module of the framework enables to advertise and

discover services. Due to the mobile environment, the service indication is completely

distributed and no central service directory can be used.

Service Deployment: The Service Deployment module is responsible for deploying a service.

Deploying a service requires the following actions that are covered by this module:

74 CHAPTER 5. IMPLEMENTATION

• Requesting and downloading software according to the specification.

• Discovering and gathering of resources.

• Mapping of this specification to resources.

• Configuring and installing the downloaded software.

• Activating the service in a synchronized manner along with the other service partic-

ipants.

• Transferring the control to the Service Management module.

Service Management:The Service Management module is responsible for the maintenance of

running services. Maintenance includes the control of the service execution, the dynamic

service adaptation to resource and environment variations, as well as user triggered ser-

vice adjustment, and the support of the communication between both local and remote

services.

Environment Observer: The Environment Observer module monitors the network, node and

user context and makes this information available to the framework and its services. An

application can query the Environment Observer about certain resource characteristics. It

is also possible to register watch statements, therewith the application is informed when a

resource characteristics falls below or rises above a certain threshold.

In Fig. 5.1, a device model for the SIRAMON framework is shown. It can be seen that the

framework, integrating the service provisioning functions, is located as a management middle-

ware layer. This layer provides an interface between the device’s resources and the applications.

The framework is implemented using Java to be independent of the used platform.

5.2 Implementation Overview

The task of this implementation was to port and integrate the evaluated algorithm from the NS-2

simulator implemented in C++ (see appendixA) into the SIRAMON framework that is writ-

ten in Java. Therefore, in both implementations the main core of the algorithm is implemented

using a Finite State Machine (FSM) that can easily be ported between the two programming

languages and guarantees that the evaluated algorithm from the simulator is implemented in the

framework with the same properties, behavior, and performance results. The description of the

FSM can be found in appendixC. The implementation of the PBS algorithm required different

changes, respectively additional implementations in the different modules:

5.2. IMPLEMENTATION OVERVIEW 75

Figure 5.1: Ad Hoc Device Model with SIRAMON

Service Specification:

A service needs the possibility to indicate if it requires the Zone Server Selection functionality of

the framework. Therefore, two additional attribute fields have been added to the service descrip-

tion XML document. The fields are shown in Table5.1 and are added under the DEMANDS

element (path SERVICE/IMPLEMENTATION/CODE/ENVIRONMENT/DEMANDS). A de-

scription about the structure of the service description files in SIRAMON can be found in [12].

Both fields are optional, and it is assumed, if they are not specified, that no Zone Server Selec-

tion is needed.

Attribute Description

zss Indicates if the service requires Zone Server Selec-

tion or not. Possible values are ’true’ or ’false’.

zssserver Contains the server component that will be started,

if the node is selected as server respectively DOMI-

NATOR.

Table 5.1: Two New Attribute Fields of the DEMANDS Element

76 CHAPTER 5. IMPLEMENTATION

Service Management:

The Zone Server Selection functionality has been implemented in the Service Management

module. If a service is started that set the ’zss’ attribute field to true, a new instance of the PBS

algorithm will be initiated. To distinguish between different instances a unique session ID is

generated as well for the different instances that is used in the sent packets between the differ-

ent nodes. Based on this session ID, the receiver of the framework knows to which instance a

received packet containing a neighborlist belongs.

Environment Observer:

Because the PBS algorithm needs to know the current 1-hop neighbors of the node, a simple

net monitor that monitors the 1-hop neighborhood has been implemented in the Environment

Observer module of the framework. This monitor is used by the PBS algorithm to get the infor-

mation about changes in the neighborhood.

Chapter 6

Conclusions and Outlook

This chapter gives a summary of the achievements by this Master’s Thesis and give some pro-

posals for the further development of the project.

6.1 Conclusions

New communication paradigms like mobile ad hoc networks (MANETS) can offer new ways

and unique features for real-time multiplayer games and there are high expectations toward

the wireless gaming market potentials. The different mobile devices need to collaborate as a

self-organizing mobile ad hoc system, and therefore a service provisioning framework specially

adapted for such environments are required. One functionality of such a framework, is the pre-

sented Zone Server Selection of this thesis.

It could be shown, that different to the today’s game architectures, like centralized server or

peer-to-peer models, a Zone-based architecture is better suited to support the demands of mul-

tiplayer games in ad hoc networks. In the zone-based model, the player nodes are divided into

separated zones. In every zone, a dedicated server node handles the players belonging to the

zone and synchronizes with the other Zone Servers. These server nodes should be selected in

an efficient and distributed way. The main contribution of this thesis is the development of an

algorithm that selects the most powerful nodes as servers. The algorithm is called PBS (Priority

Based Selection) and computes in a distributed manner a Dominating Set in a given graph. The

nodes in the DS will act as server. Note that there exist already several distributed algorithms

that construct Dominating Sets as presented in this thesis. But most of them have been devel-

oped for the purpose of providing routing functionality in ad hoc networks and do not fulfill all

the requirements for selecting servers for a Zone-based architecture.

78 CHAPTER 6. CONCLUSIONS AND OUTLOOK

For this selection a Node Weighted Dominating Set has to be constructed. This means every

node needs an assigned weight that represents the node’s capability to act as Zone Server. In

addition, every node needs an ID that is unique within the network and which can be used as

tie breaker by the algorithm. Independent from the network topology there has to be minimum

two nodes in the DS that are acting as server for redundancy reasons. The algorithm has to run

locally on every node and the time and message complexity should be kept minimal for saving

resources. And as the first approach, the algorithm has to offer continuous maintenance of the

computed DS even if the network graph changes dynamically due to the node’s movement.

The PBS algorithm fulfills all these requirements and is well suited to provide service man-

agement support in ad hoc networks for real-time applications:

The algorithm performs in rounds and is based on exchanging neighborlists that contain the

relevant information about the neighbors. In every round the algorithm sends the current neigh-

borlist to its neighbors, receives the neighborlists from them and determines its own status. A

node can be in DOMINATOR (acts as server), DOMINATEE (regular client), INTCANDIDATE

(participates in the game, but not yet determined if DOMIANTOR or DOMINATEE) or

EXT CANDIDATE (does not participate in the game, but can be chosen as DOMINATOR)

status. The algorithm compares the priorities of the nodes, and chooses the highly prioritized

nodes as DOMINATORs. The priority is based on the node weight, the span value, the number

of DOMINATOR neighbors, and finally the node’s ID.

The algorithm has been evaluated first in an analytical way and it could be shown that the

performance of the algorithm can keep up with the already existing algorithm. In the simula-

tions, the algorithm has been evaluated based on some real world scenarios. It has been shown

and discussed, how much overhead is produced by the algorithm, how quick and robust PBS is,

how good and stable the computed DS is, and some hints about how oscillations within the DS

could be avoided.

Finally, the PBS algorithm has also been implemented in the real SIRAMON testbed for getting

some practical experience and for the further development of the algorithm. Though the task of

this project was mainly motivated by multiplayer games, the zone-based architecture with PBS

can be used even in other real-time applications, such as collaborative working, which have

similar requirements to multiplayer games.

6.2. OUTLOOK 79

6.2 Outlook

Based on the work of this Master’s Thesis, there exist numerous possibilities to investigate and

develop the Zone Server Selection, and especially the PBS algorithm, further:

Synchronization vs. Zone Server Transferring: Some deeper investigations concerning the

mechanisms that are required to support a Zone-based architecture are required. Based

on the simulations, the question arose what is more expensive: Having a lot of DOM-

INATOR nodes acting as server or having less servers but a higher probability that due

to the mobility of the nodes new Zone Servers have to be determined during the game

session. This can also lead to that the clients need to change to another server. Having a

lot of DOMINATOR nodes increases the complexity of the required synchronization and

consistency mechanism between the servers and can slow down a game session. On the

other hand, new Zone Servers needs first to transfer the game states from another Zone

Server, and there is a game interruption if a client changes the server. Therefore, some

investigations for different types of games about the complexity of the synchronization

mechanisms, the cost of transferring the game states from one Zone Server to another,

and changing server from the view of a client are needed.

Mobility Prediction Model: As shown in section4.2, there exist an oscillation problem if a

DOMINATOR node switches back to DOMINATEE if its clients are covered by other

DOMINATOR nodes and it has the lowest ID among these DOMINATOR nodes. It

should be investigated how mobility prediction can facilitate the stability of the computed

DS and if a mobility prediction model can be developed. If there exists such a model,

this could influence the node weights forcing only those nodes to join the DS with a low

probability to move away.

Real-time Multiplayer Game: A real-time multiplayer game is needed, that uses the Zone-

based architecture and uses the PBS algorithm for selecting the Zone Servers. Based on

the practical experiences with the algorithm, the scalability limits of the algorithm can be

investigated and improvements in the performance can be done.

Appendix A

NS-2 Implementation

In this appendix, a rough overview of the implementation of the PBS algorithm in the NS-2

simulator will be given. The source of this implementation, and a detailed sourcecode docu-

mentation can be found at the project homepage [35]. This implementation has been used for

the simulations as described in section4 and is based on the Ns-allinone package release 2.28

(released Feb 3, 2005) as it was available at the NS-2 homepage [10]. This package contains all

required components used for running NS-2.

A.1 About Network Simulator NS-2

NS-2 is developed and maintained by a large amount of researches and part of the Virtual In-

terNetwork Testbed (VINT) project [36]. It is distributed freely and open source. Versions are

available for several kinds of Unix and Windows platforms.

The simulator core is written in C++. An object oriented variant of the script language Tcl,

called OTcl, is used for the configuration scripts. The combination of these two languages of-

fers a compromise between performance and ease of use of the simulator.

The simulation of a specific protocol under NS-2 consists of four steps:

1. Implementation of the protocol by C++ and OTcl code

2. Description of the simulation scenarios in OTcl

3. Running the simulation

4. Analysis of the generated trace files

82 APPENDIX A. NS-2 IMPLEMENTATION

For viewing network simulation traces and real word packet trace data a Tcl/TK based animation

tool, called Network Animator (NAM) [37] can be used.

A.1.1 PBS Implementation in NS-2

The PBS algorithm has been implemented as agent (ZSSpbsAgent) in the core part of the NS-2

simulator that can be attached to different nodes in the simulation configuration scripts. This

agent is inherited from a main Zone Server Selecting agent called ZSSAgent that provides some

general functionality for selecting Zone Servers. This provides the possibility to implement

modified PBS agents or completely different approaches using other Zone Server Selecting

Agents by just adding a new agent that is inherited from ZSSAgent. For the communication

between the agents, an own protocol (PTZSS) and packet format have been defined that consist

of a content and a content length field, and can be used by any Zone Server Selection imple-

mentation. In TableA.1, the used directory structure of the implementation is shown. It can be

seen, that all the necessary files are below the ns-2.28 main directory. TableA.2 shows the files

used for the implementation in the C++ core of the simulator and a short description. The use

of the PBSagent in the Tcl script files for running simulations is shown in sectionA.3.

Directory Description

ns-2.28 The ns-2 main directory.

ns-2.28/zoneserver The zoneserver main directory.

ns-2.28/zoneserver/utils Contains some utils for the ZSS agents.

ns-2.28/zoneserver/doc Contains the sourcecode documentation.

ns-2.28/zoneserver/tcl/wired Contains the Tcl scripts for wired environments.

ns-2.28/zoneserver/tcl/wirelessContains the Tcl scripts for wireless environments.

Table A.1: Directory Structure of the PBS Implementation in NS-2

To cope with the node’s mobility and to detect changes in the topology of the network a basic

net monitor has been implemented as well. In the current implementation this monitor is based

on periodically sent ’alive’ messages. If a node sends longer than a specified amount of time no

message, it is assumed as disappeared and it will be removed from the neighborlist. New nodes

can easily be detected based on newly received ’alive’ messages.

Because the final goal of this project is to implement the PBS algorithm in the SIRAMON

framework, that is written in Java, a way had to be found that guarantees a correct porting from

the C++ code to the required Java code. Therefore, the workflow and the required actions of

the algorithm has been controlled by a Finite State Machine (FSM) defined by states and trans-

A.2. GENERAL ARCHITECTURE 83

File Description

zss{.h .cc} The main class for any ZSS implementation.

zsspbs{.h .cc} Implements the PBS algorithm.

timer pbs{.h .cc} Timer functionality used by the PBS algorithm.

neighborlist{.h .cc} Stores and handles the relevant information about the

neighbors.

nodeinformation.h Contains the structure of a node entry in the Neighborlist

and the structure of the sent packets by the PBS algorithm.

monitor{.h .cc} Monitors the 1-hop neighborhood.

timer monitor{.h .cc} Timer functionality used by the monitor.

debugger{.h .cc} Debugger used to write outputs.

utils/fsm{.h .cc} Implementation of a Finite State Machine (FSM).

utils/state{.h .cc} State of the FSM.

Table A.2: Used Files of the PBS Implementation in NS-2

actions between the states, that will be executed based on incoming events. With the use of

an FSM, the port from the simulator to the framework is much easier and guarantees that the

simulated algorithm and its behavior is implemented in the same way in the framework.

A.2 General Architecture

In Fig. A.1 the basic architecture of the PBS agent in the NS-2 simulator is shown. For the

communication between the agents an own packet format containing the neighborlist and using

UDP has been defined. Every agent has a recv() function where the packets destined for this

PBS agent arrive. This function handles the incoming packets, stores the relevant information

from the packet in the own neighborlist and sends an event to the FSM. Based on the received

event, the FSM performs the corresponding action.

The details and specification of the Finite State Machine can be found in AppendixC. Because

the same state machine has also been used for the implementation in the SIRAMON framework.

A.3 Typical Tcl File

To run simulations in NS-2 Tcl scripts are used to build different topologies and to simulate dif-

ferent scenarios. A good tutorial for getting started with the Tcl script language and some basic

84 APPENDIX A. NS-2 IMPLEMENTATION

Figure A.1: Architecture of the Implementation in NS-2

examples for simple topologies in NS-2 can be found at ”Marc Greis’ Tutorial for the network

simulator ns” [38] for wired and wireless scenarios. In Fig.A.2, the basic Tcl commands used

for attaching the PBS agent to a node is shown. Note that the shown script does not build a

topology between the nodes or add some movements of the nodes. The information about that,

can be found as well in Marc Greis’ Tutorial.

To generate the scenarios as described in section4, Mobigen has been used. Mobigen is a small

hand made script generator, written in Java, that outputs some Tcl files that can be used for the

simulations in NS-2. All of the used Tcl files and the generated scenarios can be found in the

ns-2.28/zoneserver/tcl directory.

A.4 Getting Started...

For using the PBS algorithm implementation, the following steps are required:

1. Download the Ns-Allinone package from the official NS-2 homepage [10] and install it

according to the instructions.

2. Copy the zoneserver directory containing the implementation into the ns-2 main directory

(e.g., ns-allinone-2.28/ns-2.28).

3. Some changes in some of the ns source files are required to add the new agent, especially

because a new packet format is used:

A.4. GETTING STARTED... 85

• Add to the file ”common/packet.h ” the new packet protocol ID ”PT ZSS” to

the second last line of theenum packet t {}. In the same file you have to add

the linename [PT ZSS]="zss"; to thep info() function.

• The file ”tcl/lib/ns-default.tcl ” has to be edited, too. This is the file

where all default values for the Tcl objects are defined. Insert the lineAgent/ZSS

set weight 0 to set the default weight for Agent/ZSS.

• The new packet has also to be added in the file ”tcl/lib/ns-packet.tcl ” in

theforeach prot loop with the entry ”ZSS”.

• The last change is a change that has to be applied to the ”Makefile ”. All source-

files has to be added after theOBJ CC=list:

zoneserver/zss.o zoneserver/zss pbs.o zoneserver/debugger.o

zoneserver/timer pbs.o zoneserver/timer monitor.o

zoneserver/monitor.o zoneserver/neighborlist.o

zoneserver/utils/fsm.o zoneserver/utils/state.o .

4. Recompile ns by usingmake clean; make depend; make .

5. After recompilation the Tcl scripts can be used to run simulations with the commandns

example.tcl .

For viewing network simulation traces and real word packet trace data the Tcl/TK based an-

imation tool, called Network Animator (NAM) [37] can be used. In the NAM tool, the PBS

agent colors the DOMINATOR nodes red, the DOMINATEE nodes blue, the INTCANDIDATE

nodes black, and the EXTCANDIDATE nodes gray. In Fig.A.3, a print screen of the NAM

tool illustrating a School Yard scenario with 35 nodes at time 7.42s is shown. It can be seen,

that at this time instance there are 3 DOMINATOR nodes (node 22, 24, and 32) determined. All

other nodes are DOMINATEE or EXTCANDIDATE nodes.

86 APPENDIX A. NS-2 IMPLEMENTATION

1: set ns [new Simulator]

2:

3: #create 3 nodes

4: set node(0) [$ns node]

5: set node(1) [$ns node]

6: set node(3) [$ns node]

7:

8: #create agents

9: set agent(0) [new Agent/ZSS/PBS]

10: set agent(1) [new Agent/ZSS/PBS]

11: set agent(2) [new Agent/ZSS/PBS]

12:

13: #attach agents to the nodes

14: $ns attach-agent node(0) agent(0)

15: $ns attach-agent node(1) agent(1)

16: $ns attach-agent node(2) agent(2)

17:

18: #set node weights

19: $agent(0) set weight_ 10

20: $agent(1) set weight_ 20

21: $agent(2) set weight_ 30

22:

23: #Schedule events

24: $ns at 0.00001 "$agent(0) init_zss"

25: $ns at 0.00001 "$agent(1) init_zss"

26: $ns at 0.00001 "$agent(2) init_zss"

27: $ns at 0.1 "$agent(0) join"

28: $ns at 0.1 "$agent(1) join"

29: $ns at 0.1 "$agent(2) join"

30: $ns at 900.0 "finish"

Figure A.2: Tcl Commands for PBS Agent

A.4. GETTING STARTED... 87

Figure A.3: School Yard Scenario Shown in NAM

Appendix B

SIRAMON Implementation

In this appendix more detailed information about implementation of the PBS algorithm in the

SIRAMON framework [11] is given. The sourcecode of this implementation and the corre-

sponding sourcecode documentation can be found at the project homepage [35].

B.1 PBS Implementation in SIRAMON

As already mentioned, the Zone Server functionality and the PBS algorithm has been imple-

mented in the Service Management module of the SIRAMON framework. Similar to the im-

plementation in the NS-2 simulator, the PBS algorithm is implemented in a class ZSSPBS

that is inherited from a basic class ZSS that provides some general functionality for select-

ing Zone Servers. This provides the possibility to implement modified algorithms or com-

pletely different approaches for Zone Server Selection for future projects. The Service Man-

agement module is implemented in an own java package (Siramon.Management) inside the

framework. For the Zone Server Selection two subpackages, Siramon.Management.zss and Sir-

amon.Managament.zss.utils, have been added. A short description of these new packages can

be found in TableB.1. TableB.2 shows the files and a short description that are contained in the

packages.

Package Description

Siramon.Management.zss Contains the main classes needed by the ZSS functionality.

Siramon.Management.zss.utilsContains some utils for the ZSS functionality like a basic

debugger and the Finite State Machine (FSM)

Table B.1: New Packages Containing ZSS Functionality

90 APPENDIX B. SIRAMON IMPLEMENTATION

File Description

ZSS.java The main class for any ZSS implementation.

ZSSPBS.java Implements the PBS algorithm.

ZSSPBSfsm.java Implements the FSM used by the PBS algorithm.

ZSSPBSpacket.java Used packet format to be sent in the content part of the

SIRAMON packet.

TimerPBS.java Timer functionality used by the PBS algorithm.

Neighborlist.java Stores and handles the relevant information about the

neighbors.

NodeInformation Used by the Neighborlist to store the information about a

neighbor.

utils/Debugger.java Debugger used to write outputs.

utils/FSM.java Basic implementation of a Finite State Machine (FSM).

utils/State.java State of the FSM.

Table B.2: Used Files of the PBS Implementation in SIRAMON

B.2 Packet Format

For the communication between the different nodes, the existing infrastructure provided by the

framework has been used. The neighborlists are embedded in the message part of the defined

SIRAMON packets. In order to be able to distinguish between different running instances of a

ZSS algorithm supporting different services, a unique Session ID is assigned to every instance.

This ID needs to be included as well in the header of a SIRAMON packet. Based on this infor-

mation, the network receiver thread of the framework is able to detect to which instance a packet

belongs. In addition, also the information about the server component that needs to be started,

has to be transmitted inside the packet. Because an EXTCANDIDATE node, that receives a

packet from a neighbor needs to know which Server Component needs to be started in case it

becomes a DOMINATOR node. The used fields of a SIRAMON packet are shown in TableB.3.

The most important information is in the Service Identifier and the Message fields. The Service

Identifier contains beside the identifier value ”zss” also the Session ID and the Server Compo-

nent information separated by a semicolon. In the Message field the neighborlist containing the

information about the neighbors is stored.

The SIRAMON packets are sent within UDP packets and according to the algorithm, the packets

B.3. NET MONITOR 91

Field Description

Prefix ”Siramon”

Source address Contains the address of the sending node.

Flooding Flag Not used

Timestamp Not used

Service Identifier ”zss:<SessionID>:<ServerComponent>”

Message Contains the neighborlist.

Table B.3: Used Packet Fields of a SIRAMON Packet

should be sent to the 1-hop neighbor of a node. For saving resources, the packets are not sent

using unicast to these neighbors, but it is enough to send it once to the broadcast address with

the Time-to-live (TTL) value set to one. Due to the restriction of Java, that the TTL field can

only be set to multicast sockets, every node joins to a specified multicast address and sends the

packet containing the neighborlist to this address with TTL set to one.

B.3 Net Monitor

Because the PBS algorithm needs to know the 1-hop neighbors a simple net monitor that detects

the neighbors is implemented in the Siramon.Network package of the SIRAMON framework.

The used classes are shown in TableB.4. The monitor sends periodically broadcast messages

with TTL set to 1 into the network and receives the messages from the neighbors. If a neighbor

sent longer than a specified amount of time no message, the monitor assumes that the neighbor

is disappeared. If a class wants to be informed by the Net Monitor about changes in the neigh-

borhood, it has to implement the NetMonitorCallback interface and add itself to the listeners

of the monitor.

File Description

NetMonitor.java The monitor that sends and receives packages to detect the

1-hop neighbors.

NetMonitor Callback.java Callback interface used by other classes to be informed

about changes in the neighborhood.

Table B.4: Used Files of the Net Monitor Implementation in SIRAMON

Appendix C

Finite State Machine (FSM)

In this chapter, the used Finite State Machine (FSM) [39] as used in the implementation of the

PBS algorithm in the NS-2 simulator and in the SIRAMON framework is described. A FSM is

a model of behavior composed of states, transitions and actions. Between different states of the

machine some transitions are defined that based on incoming events perform the defined actions.

The specification of the used FSM in the PBS algorithm implementation is shown in Fig.C.1.

Figure C.1: Finite State Machine (FSM)

94 APPENDIX C. FINITE STATE MACHINE (FSM)

C.1 The States

The FSM consists of 4 states: ”idle”, ”msgsent”, ”roundfinished”, and ”finished”. The ”idle”

state is the initial state of the FSM. Once the PBS algorithm is started, the algorithm performs in

rounds. In every round it sends the Neighborlist to its neighbors and waits in the ”msgsent” state

for the neighborlists from the neighbors. If all required neighborlists are arrived or the timeout

timer has expired, it goes to the ”roundfinished” state and determines the own status. If there

are still INT CANDIDATE neighbors, the neighborlist is resent and the FSM is again waiting

in the ”msgsent” state. If all INTCANDIDATE neighbors have switched to DOMINATEE or

DOMINATOR status, the FSM goes to the ”finished” state. It is waiting in the ”finished” state

unless there are some changes in the network topology detected or there are again some new

INT CANDIDATE neighbors. If this is the case, a new round of the PBS algorithm will be

started and the FSM turns again to the ”msgsent” state.

C.2 The Transitions and Actions

In TableC.1, all transitions, the corresponding events, and a short description of the action are

listed:

C.2. THE TRANSITIONS AND ACTIONS 95

From State To State Event Action

idle msgsent join The node joins the Game Session and

starts sending out neighborlists.

idle msgsent receivedmsg The node is still waiting in the idle

state, but received a neighborlist. It

starts now sending out neighborlists as

well.

msgsent msgsent timerRESEND The resend timer expired and not all

neighbors sent a neighborlist back.

Therefore, the already sent neighborlist

will be resent.

msgsent roundfinished receivedmsg All required neighborlists have arrived.

The node determines its own status.

msgsent roundfinished timerTIMEOUT Not all required neighborlists arrived,

but the timeout timer expired and the

node determines its own status.

roundfinished msgsent resend There are still INTCANDIDATE

neighbors and a new round of the PBS

algorithm needs to be started.

roundfinished finished finished All nodes determined their status.

There are no INTCANDIDATE neigh-

bors left.

finished finished receivedmsg Handles incoming neighborlist even

the node is already in the finished state.

If required it sends a neighborlist back.

finished msgsent resend Changes in the network and/or some

INT CANDIDATE neighbors have

been detected. A new round of the

PBS algorithm needs to be started.

Table C.1: The Transitions of the Finite State Machine (FSM) Implemented in the PBS Agent

Appendix D

Used Abbreviations

ad hoc for this (latin); for a particular case without any form of centralized administration.

CDS Connected Dominating Set; If all nodes of a Dominating Set (DS) induce a connected

subgraph, the DS is connected.

DS Dominating Set; A dominating set of a graph, is a subset of nodes such that all nodes are

neighbor of a node in the DS or are itself in the DS.

EUI-48 Extended Unique Identifier; Better known as MAC address. In computer networking

a MAC address is a unique identifier attached to most forms of networking equipment.

Most layer 2 network protocols use one of three numbering spaces managed by the IEEE:

MAC-48, EUI-48, and EUI-64, which are designed to be globally unique.

FSM Finite State Machine; A FSM is a model of behavior composed of states, transitions and

actions.

GPRS General Packet Radio Service; The General Packet Radio Service (GPRS) is a new non-

voice value added service that allows information to be sent and received across a mobile

telephone network. It supplements today’s Circuit Switched Data and Short Message

Service.

GSM Game Scalability Model; A model that provides a possibility to compare the scalability

of network topologies [8].

IETF Internet Engineering Task Force; The IETF is the protocol engineering and development

arm of the Internet.

MAC Medium Access Control; Handles access to a shared medium.

98 APPENDIX D. USED ABBREVIATIONS

MANET Mobile Ad hoc Network; Temporary network in which devices want to communicate

with each other, with a continuously changing network topology and without any form of

centralized administration. MANET is also the name of an IETF working group, that is

working in the field of ad hoc networks.

MDS Minimum Dominating Set; A Dominating Set (DS) is called a MDS if the number of

nodes in the DS is minimal.

NAM Network Animator; Tool to view network simulation traces and real word packet trace

data from the NS-2 simulator.

NS-2 Network Simulator 2; NS-2 is a discrete event driven simulator to support networking

research.

NWDS Node Weigted Dominating Set; If the nodes of a graph have weights, the NWDS is the

smallest weighted subset of the nodes forming a Dominating Set (DS).

OSI Model Open System Interconnection Model; Networking framework for implementing

protocols in seven layers.

OTcl MIT Object Tcl; An extension to Tcl/Tk for object-oriented programming.

P2P Peer-to-peer; Network that does not have fixed clients and servers, but a number of peer

nodes that function as both clients and servers to the other nodes on the network. Any

node is able to initiate or complete any supported transaction.

PBS Priority Based Selection; An algorithm that selects the Zone Servers supporting a zone-

based architecture based on comparing priorities of the nodes.

SIRAMON Service Provisioning Framework for Mobile Ad-hoc Networks; A proposal of a

generic, decentralized service provisioning framework for mobile ad hoc networks [11].

SLP Service Location Protocol; Scalable framework for the discovery and selection of network

services [40].

TCP Transmission Control Protocol; Highly reliable host-to-host protocol between hosts in

packet-switched computer communication networks.

UDP User Datagram Protocol; Unreliable host-to-host protocol between hosts in packet-switched

computer communication networks.

99

UDG Unit Disk Graph; A geometric graph in which there is an edge between two nodes if and

only if their distance is at most one [19].

UMTS Universal Mobile Telecommunications Service; The name for the third generation mo-

bile telephone standard in Europe.

URI Uniform Resource Identifier; Internet standard that consists of a compact string of charac-

ters for identifying an abstract or physical resource.

URL Uniform Resource Locator; Internet standard that formalizes information for location and

access of resources via the Internet.

WLAN Wireless Local Area Network; In a WLAN the device (e.g. a laptop, PDA, etc.) com-

municates via a wireless connection with a WLAN Access Point which is connected (just

like a normal computer) via a cable to the Internet or the local network. As the devices are

not wired up the users are mobile. This is the advantage of a WLAN. The indoor range

depends on structural factors and is considerably lower than outdoors, where WLAN con-

nections are possible over more than 200 metres.

XML Extensible Markup Language; Simple, very flexible text format for electronic publishing

and data exchanging, standardised by the World Wide Web Consortium (W3C).

ZSS Zone Server Selection; The selection procedure for choosing the Zone Servers supporting

a zone-based architecture.

Bibliography

[1] Department of information technology and electrical engineering. http://www.ee.ethz.ch/.

[2] Swiss federal institute of technology zurich. http://www.ethz.ch/.

[3] ETH Zurich. Computer engineering and networks laboratory. http://www.tik.ee.ethz.ch.

[4] Game Developers Conference. San Francisco, California, USA, March 2005.

http://www.gdconf.com/conference/gdcmobile.htm.

[5] K. Farkas, L. Ruf, M. May, and B. Plattner. Real-Time Service Provisioning in Sponta-

neous Mobile Networks. InProceedings of the Students Workshop of The 24th Annual

Conference on Computer Communications and Networking, (IEEE INFOCOM 2005), Mi-

ami, Florida, USA, March 2005.

[6] T. Henderson and S. Bhatti. Networked games: a QoS-sensitive application for QoS-

insensitive users. InProceedings of the ACM SIGCOMM workshop on Revisiting IP QoS,

Karlsruhe, Germany, Aug. 2003.

[7] R. Steinmetz. Human perception of jitter and media synchronization.IEEE Journal on

Selected Areas in Communicatons, 14(1):61–72, 1996.

[8] J. Muller and S. Gorlatch. GSM: A Game Scalability Model for Multiplayer Real-time

Games. InProceedings of The 24th Annual Conference on Computer Communications

and Networking, (IEEE INFOCOM 2005), Miami, Florida, USA, March 2005.

[9] S.M. Riera, O. Wellnitz, and L. Wolf. A Zone-based Gaming Architecture for Ad-Hoc

Networks. InProceedings of the Workshop on Network and System Support for Games

(NetGames2003), Redwood City, USA, May 2003.

[10] Information Sciences Institute ISI. The Network Simulator ns-2, February 2005.

http://www.isi.edu/nsnam/ns/.

101

102 BIBLIOGRAPHY

[11] K. Farkas. Siramon - service provisioning framework for self-organized networks. ETH

Zurich, January 2005. http://www.csg.ethz.ch/research/projects/siramon/.

[12] R. Grueninger. Service provisioning in mobile ad hoc networks. Master’s thesis, ETH

Zurich, Computer Engineering and Networks Laboratory, 17th September 2004. MA-

2004-12.

[13] GNU.org. The gnu general public license. http://www.gnu.org/licenses/licenses.html#TOCGPL.

[14] E. Cronin, B. Filstrup, and A. Kurc. A distributed multiplayer game server sys-

tem. Um eecs589 course project report, University of Michigan, May 2001.

http://warriors.eecs.umich.edu/games/papers/quakefinal.pdf.

[15] M. Mauve, S. Fischer, and J. Widmer. A generic proxy system for networked computer

games. InNetGames 2002 Proceedings, pages 25–28, Braunschweig, Germany, April

2002.

[16] S. Helal, N. Desai, V. Verma, and C. Lee. Konark A Service Discovery and Delivery

Protocol for Ad-Hoc Networks. InProceedings of the Third IEEE Conference on Wireless

Communication Networks (WCNC), New Orleans, March 2003.

[17] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York, New York, USA, 1983.

[18] R. M. Karp. Reducibility Among Combinatorial Problems. InProceedings of the Sympo-

sium on the Complexity of Computer Computations, pages 85–103, New York, New York,

USA, 1972.

[19] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit Disk Graphs.Discrete Mathematics,

86:165–177, 1990.

[20] R. Wattenhofer. Chapter 8 - Dominating Sets. Course material mo-

bile computing, Distributed Computing Group, ETH Zurich, 2004.

http://dcg.ethz.ch/lectures/ss04/mobicomp/lecture/8/Chapter8DominatingSets4Slides.pdf.

[21] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for constructing small

dominating sets.Distributed Computing, 15(4):193–205, December 2002.

[22] J. Wu and H. Li. Handbook of wireless networks and mobile computing, chapter A

Dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks, pages 425–450.

2003. ISBN:0-471-41902-8.

BIBLIOGRAPHY 103

[23] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating Set Approxima-

tion. In Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing

(PODC’03), pages 25–32, Boston, Massachusetts, USA, July 2003.

[24] K. M. Alzoubi, P-J. Wan, and O. Frieder. Message-optimal Connected Dominating Sets

in Mobile Ad Hoc Networks. InProceedings of the 3rd ACM International Symposium on

Mobile Ad Hoc Networking & Computing 2002, pages 157–164, Lausanne, Switzerland,

June 2002.

[25] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast Distributed

Algorithms for (Weakly) Connected Dominating Sets and Linear-Size Skeletons. InPro-

ceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms 2003, pages

717–724, Baltimore, Maryland, USA, January 2003.

[26] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted

steiner trees.Journal of Algorithms, 19:104–115, 1995.

[27] S. Guha and S. Khuller. Improved methods for approximating node weighted steiner trees

and connected dominating sets.Information and Computation, 150:57–74, 1999.

[28] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets.Algo-

rithmica, 20(4):374–387, 1998.

[29] Y. Wu, Y. Xu, G. Chen, and K. Wang. On the construction of virtual multicast backbone

for wireless ad hoc networks. In1st IEEE International Conference on Mobile Ad-hoc and

Sensor Systems, pages 294–303, Florida, USA, 2004.

[30] J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, and J. Jetcheva. A performance comparison

of multi-hop wireless ad hoc network routing protocols. InProceedings of ACM/IEEE

International Conference on Mobile Computing and Networking (MobiCom), pages 85–

97, October 1998.

[31] T. S. Rappaport.Wireless Communications, Principles and Practice. PRENTICE HALL

INTERNATIONAL, 1996. ISBN: 0-13-042232-0.

[32] IEEE-SA Standards Boards. Part11-wireless lan medium access con-

trol (mac) and physical layer (phy) specifications. 12 June 2003.

http://standards.ieee.org/getieee802/802.11.html.

[33] World Wide Web Consortium (W3C). Xml information set. http://www.w3.org/TR/xml-

infoset/.

104 BIBLIOGRAPHY

[34] World Wide Web Consortium (W3C). Extensible markup language (xml).

http://www.w3.org/XML/.

[35] Florian Maurer. Master’s thesis of florian maurer, August 2005. http://www.siramon.org.

[36] Information Sciences Institute ISI. Virtual InterNetwork Testbed (VINT) project, October

1997. http://www.isi.edu/nsnam/vint/index.html.

[37] Information Sciences Institute ISI. Nam: Network Animator, July 2003.

http://www.isi.edu/nsnam/nam/.

[38] Marc Greis. Tutorial for the Network Simulator ns.

http://www.isi.edu/nsnam/ns/tutorial/index.html.

[39] Wikipedia. Finite state machines. http://en.wikipedia.org/wiki/Finitestatemachine.

[40] IETF. Openslp homepage. http://www.openslp.org.

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Task Description
	Introduction
	Tasks and Working Plan
	General Regulations

	Related Work
	Game Architectures
	Comparing Different Architectures

	Zone-Based Game Architecture
	Characteristics of Zone Servers
	Task of Zone Servers
	Detection of Zone Servers
	Selection of Zone Servers

	Existing Dominating Set Computation Algorithms
	Problem Definition
	Notations and Evaluation
	Largest-ID Algorithm
	Local Randomized Greedy Algorithm
	Marking Algorithm
	LP-Relaxation Algorithm
	Dominator Algorithm
	Removing Cycles Algorithm
	Steiner Tree Algorithms
	Conclusions

	Zone Server Selection
	Requirements
	Prerequisites
	Properties of Dominating Set
	Requirements for Zone Server Selection Algorithm
	Summary

	Priority Based Selection (PBS) algorithm
	Notations and Prerequisites
	Dominating Set Computation
	Extensions
	Examples
	Performance Analysis
	Summary

	Simulations and Evaluation
	Simulation Settings
	Simulation Results
	Summary

	Implementation
	About SIRAMON
	Implementation Overview

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendix
	NS-2 Implementation
	About Network Simulator NS-2
	PBS Implementation in NS-2

	General Architecture
	Typical Tcl File
	Getting Started...

	SIRAMON Implementation
	PBS Implementation in SIRAMON
	Packet Format
	Net Monitor

	Finite State Machine (FSM)
	The States
	The Transitions and Actions

	Used Abbreviations
	Bibliography

