

Contents

1: Introduction 1

2: Technologies 3
2.1 Java 2 Micro Edition . 3
2.2 Bluetooth . 4
2.3 Wireless Messaging API . 4

3: Requirement Analysis 5
3.1 Analysis of BlueDating and Bluetella 5

3.1.1 User Interface . 5
3.1.2 Object Description . 6
3.1.3 Matching . 6
3.1.4 Device Discovery . 6
3.1.5 Data Exchange . 7

3.2 Additional Requirements . 7
3.2.1 Log . 7
3.2.2 Routing . 8
3.2.3 BlackList . 8
3.2.4 Synchronisation . 8
3.2.5 Security . 9

4: BlueFramework Architecture 11
4.1 User Interface Module . 12

4.1.1 User Interface API . 12
4.1.2 XML Document . 13

4.2 Object Description Module . 17
4.2.1 Library . 17
4.2.2 Development Tool . 18

4.3 Matching Module . 19
4.3.1 Exact Match . 19

i

Contents

4.3.2 Partial Match . 21
4.4 Discovery Module . 22
4.5 Communication Module . 23

4.5.1 Connection Setup . 24
4.5.2 Data Exchange . 25

4.6 Log Module . 25
4.6.1 Write to a Log . 27
4.6.2 Read from a Log . 27

4.7 Routing Module . 28
4.8 Blacklist Module . 28
4.9 Synchronisation Module . 30
4.10 Security Module . 31

5: Implementation BlueFramework 33
5.1 User Interface Module . 33
5.2 Object Description Module . 34

5.2.1 Library . 34
5.2.2 Development Tool . 35

5.3 Matching Module . 35
5.3.1 Exact Match . 35
5.3.2 Partial Match . 37

5.4 Discovery Module . 38
5.4.1 Service Cache . 38
5.4.2 Bluetooth Client . 38

5.5 Communication Module . 39
5.5.1 Data Transfer Scheme . 40

5.6 LogModule . 40

6: BluePinboard 43
6.1 Use Cases . 44

6.1.1 Post a message to the pin board 44
6.1.2 Read a message from the pin board 44
6.1.3 Delete messages . 44
6.1.4 Discover a user . 45

6.2 Architecture . 45
6.2.1 User Interface . 45
6.2.2 Object Description . 48
6.2.3 Matching . 48
6.2.4 Device Discovery . 49

ii

Contents

6.2.5 Communication . 50
6.2.6 Log . 50

6.3 Implementation . 50

7: Evaluation of BlueFramework 53

8: Conclusion 55
8.1 Results . 55
8.2 FutureWork . 55

A: Assignment 57

B: Time schedule 61

C: XML Schema 63
C.1 ProfileTemplateSchema . 63
C.2 GUISchema . 63

D: CD Content 67

iii

Contents

iv

Figures

4-1 Survey BlueFramework . 11
4-2 User interface module . 12
4-3 MIDP user interface class hierarchy 13
4-4 Structure of an XML document to generate an user interface 14
4-5 Form as XML document . 15
4-6 Structure of an XML document to generate a ProfileTemplate . . . 19
4-7 Exact match . 20
4-8 Partial match . 21
4-9 Discovery module . 22
4-10 Communication module . 23
4-11 Log module . 26
4-12 Routing module . 28
4-13 BlackList module . 29
4-14 Synchronisation module . 29
4-15 Data exchange in the synchronisation module 30
4-16 Security module . 31

5-1 Class hierarchy object description module 34
5-2 Attribute matching in an exact match 36
5-3 Attribute matching in a partial match 37
5-4 Classes in the communication module 40

6-1 Use cases BluePinboard . 43
6-2 Modular design BluePinboard . 45
6-3 User interface pin board device . 46
6-4 User interface user device . 47
6-5 Message exchange in BluePinboard 49
6-6 Survey BlueFramework . 51

v

Figures

vi

Abstract

Semester theses developped lately within the scope of the BlueStar project [1]
at the ETH dealt with the development of applications for Java enabled mobile
phones that communicate over a Bluetooth connection. An analysis pointed out
that those applications share a lot of functionality. The overall goal of this thesis
is the design and implementation of a framework which provides common func-
tional blocks in a generic library and development tools to reduce development
time and costs of future mobile applications. The main modules include functions
for device discovery, user interface generation, object description, matching, com-
munication and logging.
To validate BlueFramework, an example application, BluePinboard, has been
successfully implemented and tested on mobile phones. The developed frame-
work has proven to be efficient and time-saving.

vii

1
Introduction

The mobile phone industry has grown explosively over the last few years.
Nowadays almost everyone owns a cellular phone. The rapid evolution in mobile
computing made it possible that today’s embedded devices provide the function-
ality that was limited to large personal computers years ago. We are currently
moving towards a "many computers per user" era where technology will have
a large impact on our daily lives. The release of Java 2 Micro Edition brings
the advantages of Java to resource constrained devices, such as mobile phones,
personal assistants or pagers. The fact that J2ME enables applications to run on
different operating systems and on different kind of hardware caused that many
mobile phone vendors now support J2ME programs. Because of its portability
J2ME has high potential to become the technology for future mobile applications.

The number of wireless Internet devices is increasing and soon Bluetooth will be
embedded in every mobile device. Although Bluetooth provides only a fraction
of the transmission power of Wireless LAN, it has its advantages in certain
applications. Because Bluetooth communication is within short range, it is an
interesting technology for location related applications. In additon, it consumes
considerable less power and causes lower costs.

Two semester theses developped lately within the scope of the BlueStar [1]
project at the ETH dealt with the development of J2ME applications for
Bluetooth enabled mobile phones: Bluetella, a file sharing application, and
BlueDating, a dating application. Even though the applications are intended for
a completely different use, they share a lot of functionality.

The goal of this thesis is to design and implement a framework which comes up
with a generic API and development tools to simplify J2ME application program-

1

Chapter 1: Introduction

ming. To show the framework in use and to validate its functionality, the thesis
also includes an example application developped by means of BlueFramework.
BluePinboard, a pin board application for Bluetooth enabled mobile phones, has
been successfully developed and tested on mobile phones.

The following chapter gives a brief overview over the technologies used for the
development of BlueFramework. Chapter 3 takes a closer look at the applica-
tions BlueDating and Bluetella and describes the functional blocks they have
in common. This analysis forms the basis for defining the required functionali-
ties of BlueFramework. The focus of Chapter 4 of this documentation is on the
modular design of BlueFramework. It determines the functionality blocks Blue-
Framework consists of and describes each of them in detail. The sixth chapter
discusses the implementation of the modules introduced in Chapter 5. Chapter
7 describes BluePinboard, the example application developped with the API and
the development tools provided by BlueFramework. An evaluation of the the ex-
ample application is contained in Chapter 8. Closing remarks and a summary of
the thesis are contained in the last chapter.

2

2
Technologies

2.1 Java 2 Micro Edition
The micro edition of the Java 2 platform is an application development environ-
ment for devices with limited resources. J2ME includes two Java virtual ma-
chines with different configurations. Profiles and optional packages for certain
classes of devices extend configurations with additional functionalites..

Configurations
Configurations are a minimal set of class libraries. Currently, there are two J2ME
configurations:

• The Connected Limited Device Configuration(CLDC) [6] is aimed at
devices having limited memory, slow processors and operating on batteries.
CLDC defined on top of a kilobyte virtual machine (KVM) which is espe-
cially designed for devices like as mobile phones, pagers or personal orga-
nizers.

• The Connected Device Configuration(CDC) is intended for devices with
more memory and faster processors. In contrary to CLDC, this configura-
tion is defined on top of virtual machine that is similar to the Java virtual
machine included in J2SE.

As the framework developed in this thesis is intended for mobile devices with
limited resources, the CLDC is used in this context.

Profiles
Although configurations offer a J2ME application runtime environment, their
functionality is usually not sufficient for a certain kind of device. To provide a

3

Chapter 2: Technologies

complete solution, the configuration has to be extended with a J2ME profile,
which is a collection of additional APIs. The most import profile in the context
of application programming for mobile phones is the Mobile Device Information
Profile (MIDP) [5], which is built on top of CLDC. MIDP provides a complete Java
runtime environment with APIs for:

• user interface components

• networking

• persistant storage

Optional Packages
In addition to profiles and configurations, optional packages provide additional
APIs for devices equipped with specific technologies. There are for example op-
tional packages for Bluetooth communication [8], wireless messaging [7] or file
system access [9].

2.2 Bluetooth
Bluetooth is a communication protocol which enables ad hoc wireless networks
between electronic devices. Bluetooth technology is an open specification devel-
oped by the Bluetooth Special Interest Group (SIG), a group initially formed by
Ericsson, IBM, Nokia and Toshiba. Interest in Bluetooth increased, and the SIG
currently counts more than 2000 member companies. Bluetooth has the following
characteristics:

• Bluetooth is a radio technology which operates at 2.4 GHz anywhere in the
world.

• It is a short-range technology which reaches a maximum distance of about
10 meters. The transmission speed is about 1Mb/s.

• Because radio waves within short distances consume low power, it is a suit-
able protocol for small, battery supplied devices.

The Bluetooth API for Java has been specified in the Java Specification Request
82 (JSR-82) [8]. It provides functionality to discover Bluetooth enabled devices,
to establish connections and to exchange data.

2.3 Wireless Messaging API
The Wireless Messaging API(WMA) [7] is an optional package for sending and
receiving messages using the short message service (SMS) or the Cell BroadCast
Service (CBS) on GSM networks. The WMA specification has been developed un-
der the Java Specification Request 120 (JSR-120) and is implemented by most of
the phone vendors.

4

3
Requirement Analysis

This chapter identifies common functional blocks of BlueDating [2] and Bluetella
[3] and describes how these functionalities should be adapted and extended in
order to provide a generic library of functions and useful development tools in
BlueFramework.

3.1 Analysis of BlueDating and Bluetella
3.1.1 User Interface
Both applications, Bluetella and BlueDating, include a user interface to guide a
user through the application. The user interface of both applications is built up
in the same way, it consists of a hierarchy of screens, each of them composed of
elements and commands defined by the javax.microedition.lcdui package.
Programming a user interface is not complicated, once this hierarchy is defined
and the functions behind each command are known. But adapting and changing
a user interface can be quite time consuming. A change on one screen can
cause adaption of other screens of the user interface. For this reason, an applica-
tion developer should be appropriately supported in user interface programming.

BlueFramework shall provide a tool which helps to create and adapt a user
interface fast and easily. Instead of programming the entire class, the application
developer simply has to determine the screens, the order they are linked and the
elements and commands they have appended. Provided with this information,
BlueFramework is supposed to generate the Java class which defines the user
interface for the mobile application.

5

Chapter 3: Requirement Analysis

3.1.2 Object Description
Bluetella provides methods for describing the files available on a mobile phone
as well as for describing a file search. A search request holds information about
the file as for example the size, the type, the name or the genre.
BlueDating includes the description functionality as well. In BlueDating how-
ever, persons are described instead of objects. A BlueDater, looking for the
partner of his dreams, describes himself and the character he expects from his
future partner in a profile.

BlueFramework needs to offer a module to manage any kind of data de-
scription. The module is supposed to include classes with methods to generate
profiles describing persons or objects. Features and natures of objects shall be
expressed by different attributes. In addition to profiles and attributes, there
must be a structure which defines the scope of all possible attributes allowed for
the description of objects of an application.

3.1.3 Matching
Bluetella as well as BlueDating exchange only data matching certain criteria. In
BlueDating for instance, the detailed information about an encountered person
will only be sent if the base and the core description of the BlueDaters match.
Also in Bluetella, a search request and the file information are compared prior
to the file exchange.

In order to exchange data selectively, BlueFramework is supposed to offer
a structure to match two object description profiles. Two objects are similar or
identical if the profile which describes them match. The following matching
algorithms have to be provided:

• Exact Match
An exact match compares two profiles accurately. To accomplish a match,
all attributes of the profiles must match.

• Partial Match
Compared to an exact match, a partial match verifies if the profiles match to
a certain degree. The basic idea of the partial match is to calculate a match-
ing score. If this score reaches a certain threshold, a match is accomplished
although there might be small deviations between attributes.

3.1.4 Device Discovery
BlueDating and Bluetella are intended for Bluetooth enabled mobile phones.
In BlueDating for example, each time a partner search is initiated, BlueDating
scans the environment for other mobile phones running the same application. To
retain discovered devices, BlueDating defines a known devices list, storing the

6

3.2. Additional Requirements

Bluetooth address together with the last date of contact.
Bluetella works in a similar way. The device discovery is implemented with a
timer, searching in regular time intervals for other Bluetella devices in proxim-
ity. Bluetella also maintains a list of already discovered mobile phones.

BlueFramework should not only offer the functionality to discover Blue-
tooth devices in the area, it has to provide a structure to remember already
encountered mobile phones as well. This structure has to include methods to
access and manage the information gathered while discovering. The discovery
procedure is supposed to run in the background, an application using the
BlueFramework for Bluetooth discovery will be notified when another Bluetooth
device is in its proximity.

3.1.5 Data Exchange
Once another mobile phone has been located, Bluetella and BlueDating establish
a connection in order to exchange data.
An objective of BlueFramework is to provide methods for sending and receiving
data. Each mobile device should be able to listen to incoming data as well as
sending data. BlueFramework has to take on the task of serialisation and dese-
rialisation of objects sent and received. An application developer shall not have
to care about the serialisation of a profile or an attribute, it has to be all included
in a module for communication. In additon to communication over Bluetooth,
BlueFramework needs to include communication over SMS as well. The API for
sending and receiving data has to be the same, regardless of the underlying tech-
nology.

3.2 Additional Requirements
The analysis of BlueDating and Bluetella builds a base of requirements Blue-
Framework should meet. In order to provide a complete solution for the develop-
ment of mobile applications, BlueFramework has to meet the following require-
ments as well:

3.2.1 Log
Logging output for J2ME applications in not trivial. The System.out stream is
defined but not usable on many mobile devices because there is no console the
output can be directed to. BlueFramework shall provide this missing functional-
ity. The following features are expected:

• Statement classification
The module has to allow a classification of the log statements in different
levels. An error statement for instance should be distinguishable from an
information statement.

7

Chapter 3: Requirement Analysis

• Different log targets
Log statements are to be written in different persistant data repositories as
well as to screens of mobile devices.

• Selective reading
The module should allow to read logs selectively, for example all log state-
ments written in a certain time period, all log statements written in a cer-
tain class or all log statements of a specified level.

3.2.2 Routing
Data exchange between two devices raises the question of routing. BlueFrame-
work needs to provide a module which provides algorithms and data structures
to route data from a sender device to a receiver device. If data cannot directly
be transmitted to the receiver, the routing module should allow mechanisms to
find out alternative paths along which data can be sent to reach the receiver. The
module needs to maintain a routing table storing the best routes to various de-
vices.
Bluetooth currently only supports point-to-multipoint connections for mobile
phones. Building up a network structure is not possible. Bluetella [3] provides
a solution to work around this incapability. It spreads data using a "store and
forward" algorithm, which profits from the user’s mobility. The objective of Blue-
Framework is to generalize this routing approach in order to make it available
to future mobile applications.

3.2.3 BlackList
When interacting with other devices, it might happen that a device does not send
the data expected. To avoid reception of corrupt or false data again, the device
should be put on a blacklist and not be contacted any more. In addition to the
security mechanisms, BlueFramework needs to provide a list structure holding
information about corrupt devices. Using this list in an application will avoid
establishing a connection to a device which has recently sent corrupt data. This
blacklist module should not only include methods to put devices to a blacklist,
there should also be the possibilty to remove them again. Supplementary to the
blacklist structure, the module shall also supply a whitelist. The whitelist keeps
track of known and trusted devices.

3.2.4 Synchronisation
In combination with the module for communication, BlueFramework is supposed
to provide methods for data synchronisation between devices. The functions
offered by the synchronisation module ensure that devices are automatically
updated with the latest version of the data they want to share.

A simple form of synchronisation just copies non-existing data from one

8

3.2. Additional Requirements

device to another without remembering versions. If both devices involved are
already in possession of the same data, it is not possible to judge which device
has the more recent version. To allow proper synchronisation, all data need to
have a unique ID or date and time of the last update. There are two alternative
method to keep track of the synchronisation status:

• ID of the data
A device must remember which data has been sent to which device already.
This information has to be stored in a structured form. When the next syn-
chronisation takes place, it can be determined which data has yet to be
transferred.

• Date and time of last synchronisation
Instead of keeping the IDs of data transferred, each device remembers the
date and time the last synchronisation with another device took place.

A more sophisticated synchronisation mechanism keeps track of different ver-
sions as well and can synchronize the most recent information to the other de-
vice. In this case all data has to include a unique ID and the date and the version
(e.g. the date and time of the last update).

3.2.5 Security
J2ME applications run on resource constrained devices. Because security mech-
anisms usually need a lot of CPU, the implementation of security aspects have
so fare been neglected. Nevertheless, a MIDlet is exposed to different kind of
threats, especially when sensitive data or money is involved. Currently, there
exists no general security solution for applications intended for mobile devices.
Configurations, profiles and optional packages address a limited number of secu-
rity issues. The objective of BlueFramework is to assembly the existing security
concepts and to extend them with the missing functionality. In order to provide a
secure mobile environment, BlueFramework has to include the following security
concepts:

Authentication

Authentication is the procedure to determine whether someone or something is
who or what it pretends to be. With the existing security features, authentication
can be done trough PIN codes and digital certificates. JSR-82 involves PIN for
authentication. When Bluetooth devices communicate for the first time they
have to agree on a PIN. JSR-82 allows only authentication of a device, there are
no means to verify a user’s identity.

MIDP 2.0 brings in the new concept of trusted MIDlets [12]. A trusted MI-
Dlet is digitally signed based on X.509 Public Key Infrastructure. Each mobile
device holds a set of root certificates to verify a MIDlet signature. This new
concept enables authentication of the MIDlet signer.

9

Chapter 3: Requirement Analysis

In addition to the concepts mentioned, BlueFramework is supposed to implement
a generally usable mechanism for the authentication of devices as well as the
persons using them.

Confidentiality

A mobile device may contain sensitive data. It the data is transmitted to other
mobile devices, the security of the data depends on the security of the network.
To protect it from eavesdroppers intercepting the transmission, the data has to
be encrypted. MIDP 1.0 lacks of a secure network protocol as well as encryption
algorithms. In MIDP 2.0, end-to-end security is provided through the HTTPS
standard, cryptographic algorithms however are still not implemented.

Applications interacting over a Bluetooth link could also use JSR-82 which
allows encryption of data transmission. For this purpose symmetrical encryption
is used. Encryption of information is completely transparent, it is all done by the
underlying JSR-82 implementation.

As encryption is limited to Bluetooth connections, BlueFramework needs to
provide classes for data encryption and decryption.

Integrity

When data is transmitted, the receiver of the data has to be provided with
methods for verifying if the data has been changed or replaced during transmis-
sion. The concept of trusted MIDlets mentioned earlier in this chapter allows
verification of a MIDlet’s integrity as well. When a MIDlet is downloaded to
a device, the device has the possibilty to verifiy its integrity with a set of root
certificates. For the development of signed and trusted MIDlets, a certificate
conform the X.509 Public-Key Infrastructure is necessary.

As integrity is not only important for MIDlet download but also for data
transmission, the security module of BlueFramework must include mechanisms
to verify integrity.

10

4
BlueFramework Architecture

As a result of the requirement analysis in Chapter 3, BlueFramework is com-
posed of the modules shown in Figure 4-1. It consists of development tools and
Java class libraries to simplify the development of future applications for mobile
devices. The shaded boxes represent the development tools, the white ones rep-
resent libraries. The object description module is both a development tool and

SynchronisationSynchronisation

CommunicationCommunication

Device-/ Service
Discovery

Device-/ Service
Discovery

Object
Description

Object
Description

U
se

r I
nt

er
fa

ce
U

se
r I

nt
er

fa
ce

S
ec

ur
ity

S
ec

ur
ity

Lo
g

Lo
g MatchingMatching BlackListBlackList

RoutingRouting

Dataflow dependencies

Figure 4-1
Survey BlueFramework

11

Chapter 4: BlueFramework Architecture

<GUI>
<screen>
……

</screen>
</GUI>

public class GUI{
…….
…….

}

XML Document Java Class

User Interface
Module

User Interface
Module

Figure 4-2
User interface module

a library. Eventual data flow dependencies are indicated by arrows between the
modules. The three upright blocks on the left of the figure interact with all of the
modules shown on the right. The following sections focus on the design goals of
each module in more detail.

4.1 User Interface Module
The user interface module is a development tool to generate and adapt a user in-
terface fast and easily. A user interface can be seen as a collection of screens, each
of them composed of elements and commands to interact with the user. Building
up the entire screen hierarchy is a quite time consuming and not very challenging
programming task. A change on one screen can cause adaption of other screens of
the user interface. For this reason, an application developer should be appropri-
ately supported in user interface programming. The module illustrated in Figure
4-2 generates a user interface class directly from an XML document. The XML
document holds all necessary information to define screens and the appended
elements and commands.

4.1.1 User Interface API
The package javax.microedition.lcdui includes a set of features for imple-
mentation of user interfaces for MIDP applications. The API is divided in high-
level and low-level APIs. With the low-level API, the programmer has exact con-
trol over position and appearence of the elements on the screen. A MIDlet1 pro-
grammed with the low-level API might not be portable to other devices. Because
BlueFramework aimes at supporting a wide range of devices, the user interface
module is programmed with the high-level API. Contrary to the low-level APIs,
high-level APIs only define the content of a screen, whereas its appearence is
set by the device running the application. Figure 4-3 gives an overview over the
1 A MIDP application is called a MIDlet.

12

4.1. User Interface Module

Display

Displayable

Screen

Alert

Form

TextBox

List

Item

ChoiceGroup

TextField

Gauge

ImageItem

DateField

StringItem

Ticker

Command

0 - n 1 - n

Figure 4-3
MIDP user interface class hierarchy

high-level class hierarchy. A MIDlet consists of exactly one Display object which
allows to place different Displayable elements on the screen, but only one at a
time. As shown in Figure 4-3, there are four different subclasses of Screen: Form,
List, TextBox and Alert. Their significance is discussed in the following section.

4.1.2 XML Document
The XML schema GUISchema.xsd provided in C.2 specifies the elements and
attributes that can appear in an XML document in detail. Figure 4-4 gives an
overview about the structure of the XML documents used for user interface de-
finition. The oval boxes represent XML elements, square boxes stand for XML
attributes. Dashed lines signal that the occurrence of the attribute or element
is optional. The structure of the Form element shaded in grey is shown in Fig-
ure 4-5. Every document has a main element GUI and a number of subelements
Screen which represent one of the four Screen objects. The parameters necessary
to define one of those elements are defined as XML attributes. One XML attribute
they all have in common is objectname. It refers to the name of the object defining
the screen. All Screens may have appended Commands.

• List
A List consists of list items which include a StringPart and an optional
ImagePart. A List has a title and a type. The type defines if only one list item
can be selected (Choice.EXCLUSIVE) or if multiple selection is possible

13

Chapter 4: BlueFramework Architecture

Screen

GUI

Alert FormTextBoxList

Ticker

Item

Command

ImagePart

StringPart

NextScreenAction

type

objectname

title

objectname

constraints

maxSize

title

text

type

text

image

title

objectname

priorityobjectname label type

objectname

Figure 4-4
Structure of an XML document to generate an user interface

14

4.1. User Interface Module

Form

Ticker

Command Gauge DateField

TextField

ImageItem

StringItem

ChoiceGroup

maxValue

interactive

initialValue

objectname

objectname

timezone

mode

label

label

text

constraints

label

objectname

objectname

label

Choice

ImagePart

StringPart

label

text objectname

maxSize

altText

layout

image

objectname

type

label

objectname

titleobjectname

Figure 4-5
Form as XML document

(Choice.MULTIPLE). In case only the highlighted item can be chosen the
type must be set to Choice.IMPLICIT. The attribute title refers to the list
title displayed on the screen. Each of the list items can have a number of
appended Commands.

• Alert
An Alert is a pop-up like screen to display an information or error message
for a short period of time. As a List item, an Alert has a title which will be
displayed on the screen. An optional attribute is type which can be set to
ALARM, CONFIRMATION, ERROR, INFO and WARNING. An Alert may include
an image or a text which will be shown to the mobile phone user.

• TextBox
A TextBox is an element, through which a user can enter and edit text. It is
possible to define constraints on the size (maximum number of characters)
and the type of text the TextBox supports. The attribute constraints can be
set to ANY, EMAILADDR, NUMERIC, PHONENUMBER, URI and DECIMAL.

• Form
A Form is a screen which can contain: a TextField, a StringItem, an Im-
ageItem, a ChoiceGroup, a Gauge or a DateField. The attribute title will be
displayed as title of the screen.

The structure of a Form element is shown in Figure 4-5. There are different items
that can be added to a Form:

15

Chapter 4: BlueFramework Architecture

• StringItem
A StringItem is a non editable item containing text to be displayed. It is
defined by the attributes objectname, label and text.

• ImageItem
An ImageItem holds a reference to an image. The attribute altText defines a
String to be set instead of the image in case the image exceeds the capacity
of the display. The attribute layout is to determine where the image has to
appear on the screen.

• TextField
A TextField has the same features as a TextBox.

• DateField
A DateField is an editable component of a Form for presenting dates and
time. Apart from the label and objectname attributes, there needs to be
defined the time zone and the input mode. Three modes are supported: A
mode which allows only date information to be set, a mode which allows
only time information and one which allows both, time and date values.

• ChoiceGroup
As indicated by the name, a ChoiceGroup allows to display a group of
choices. Each choice is composed of a StringPart holding text and an Im-
agePart holding the reference to an image to be shown. The attribute type
determines if a single choice has to be made (Choice.EXCLUSIVE) or if
multiple choice are allowed as well (Choice.MULTIPLE).

• Gauge
A component for displaying bars of different levels, it is often used in con-
text of progress indication. A Gauge may be interactive or non-interactive;
interactive has to be set true if the Gauge is interactive, to false otherwise.
The attributes initalValue and maxValue represent integers indicating the
the level of the lowest and highest bar of the Gauge object.

To interact with the user, a screen has appended commands. Commands are used
to invoke an action and to change between screens. The module needs to know
which function has to be invoked and which screen should be displayed next.
For this reason, the XML element command has two subelements nextscreen
and action, holding the next screen’s object name and the name of the method
to be called. The information about a Command object is encapsulated in the
four XML attributes: objectname refers to the name of object, the label holds
the command name which is visible on the screen. The attribute type specifies
the type of command. Possible types are the following: OK, BACK, CANCEL,
EXIT, HELP, ITEM, STOP and SCREEN. The first four are most commonly
used. By priority it is possible to define a commands priority compared to the
other commands appended on the same screen.
An other common object which can be appended to any screen is a Ticker. A
Ticker is set in the upper part of a screen. The information it contains scrolls

16

4.2. Object Description Module

continously across the display. For the definition of a Ticker object the objectname
is needed.

Any XML document conform to GUISchema.xsd acts as input of the
GUIGenerator, the class which parses the document and generates a user
interface java class. The application GUIGenerator has to be invoked to gen-
erate a Java user interface class. The name of the XML document to parse as
well as the class name of the generated java class are passed as command-line
arguments.

4.2 Object Description Module
The goal of the object description module is to offer mechanisms to describe ob-
jects or persons accurately. The module is divided into two parts, a class library
and a development tool.

4.2.1 Library
Profile

The main class for object description is Profile. It is useful for two purposes:

• Object description
An object or a person can be described with an instance of Profile, which
is a collection of Attributes. Each of them describes a character/ feature
of the person/object.

• Search description
A Profile describing a search is similar to an object description. Instead
of Attributes, a search profile is composed of SearchAttributes which
provide a more specific structure to describe a search coherently.

A valid Profile, regardless of the purpose it is used for, has to be composed of
Attributes being within the ranges defined by a ProfileTemplate. For this
reason, a ProfileTemplate has to be set up initally.

Attribute

Attributes are components of a Profile. An Attribute acts as container hold-
ing:

• an ID to identify the Attribute within the Profile.

• a type determing whether the Attribute is of type String, Long or
Integer.

• a value. Contrary to the first two parameters, the value is not manda-
tory. Attributes without a value are called unlimited, which means that any
value of the specified type can be used instead. In context of a Profile, an

17

Chapter 4: BlueFramework Architecture

unlimited Attribute expresses indifference. In BlueDating for instance,
an unlimited Attribute can be used to state a BlueDaters indifference
about a future partner’s character.

SearchAttribute

A SearchAttribute extends the Attribute with two additional variables:

• an operator, used in combination with the attribute value. For an
Attribute, the operator is "=" by default. For a SearchAttribute how-
ever, it is possible to set it to <, > , == or !=.

• a link operator which specifies how to link the SearchAttributes of a
Profile having the same ID. Logical AND and OR are allowed. In case the
Profile is composed of Attributes, the link operator is by default set to
OR.

ProfileTemplateAttribute

ProfileTemplateAttributes are the components of a ProfileTemplate.
Compared to a regular Attribute, a ProfileTemplateAttribute allows the
definition of an attribute value range. For Integer and Long typed attributes, it
is possible to define a start and an end value of a range.

ProfileTemplate

A ProfileTemplate is a collection of ProfileTemplateAttributes. It tar-
gets at predefining the range of Attributes a Profile can contain.

4.2.2 Development Tool
A ProfileTemplate can be generated by means of the development tool
included in the object description module. The tool works in a similar way
as the user interface module described in Chapter 4.1: An XML docu-
ment is parsed to generate a Java class. The XML document defines the
ProfileTemplateAttributes and their possible value ranges. When
ProfileTemplateGenerator is run, it parses the document and creates
a ProfileTemplate.

The structure of the XML document to parse is illustrated in Figure 4-6.
Oval boxes represent XML elements, square boxes stand for attributes, the
dashed line signals that the element value is optional. The main XML element is
ProfileTemplate which can be viewed as a collection of ProfileTemplateAttribute
elements. A ProfileTemplateAttribute has two attributes and a choice of two
subelements: value and range. The XML attribute type serves to define the type
of the ProfileTemplateAttribute. The value can either be String, Integer or
Long, ID refers to the ID of the ProfileTemplateAttribute. The element value
is optional, it keeps a ProfileTemplateAttribute’s value. If no value is set, the

18

4.3. Matching Module

ProfileTemplateAttribute

ProfileTemplate

value

fromValuetoValue

type

range

ID

Figure 4-6
Structure of an XML document to generate a ProfileTemplate

ProfileTemplateAttribute will be unlimited. In case the ProfileTemplateAttribute
defines a range of values, the start and the end value have to be provided in the
XML elements fromValue and toValue.

4.3 Matching Module
The matching module aims at finding out if or to which degree the attributes
of two Profiles correspond. The module provides two different matching algo-
rithms: an exact and a partial match.

4.3.1 Exact Match
The exact matching algorithm compares a profile A with a profile B. Pro-
file A is a search profile, a profile composed of search attributes. The method
exactMatch(Profile A, Profile B) returns true if A and B match exactly.
An exact match is accomplished if:

1. The number of attributes in profile B is at least the number of attributes in
profile A.

2. All attributes of A are also defined in profile B.

3. Each attribute of A matches the corresponding attribute of B according to
the operators defined in A.

To check these constraints, the method has to loop through all attributes of A.
For every attribute, it is verified if its values and operators evaluate to true. If all

19

Chapter 4: BlueFramework Architecture

Figure 4-7
Exact match

20

4.3. Matching Module

Start
partialMatch(A, B,

threshold)

numA: number of attributes in A
numB: number of attributes in B
maxScore: maximum score
score: actually reached score
numRatio: numB*100/numA

numRatio < =
threshold?

A and B do NOT
matchyes

Get attribute att of Profile A

no

no

Another
untested

Attribute in A?

yes

A and B match

yes

matchRatio = score*100/
maxScore

no

Is matchRatio
>= threshold?

yes

no

Is att
unlimited?

Match att partially with
attributes of B to get

the score
score = score + Score(att)

Figure 4-8
Partial match

attributes of A match according to the operators, an exact match is accomplished.

4.3.2 Partial Match
An alternative algorithm to the exact match explained in the previous sec-
tion it the partial match. Compared to the exact match, the second method
partialMatch(Profile A, Profile B, int threshold) compares the

21

Chapter 4: BlueFramework Architecture

cacheTimeout

cacheSize

searchInterval

connectionURL

serviceUUID

Device-/ Service
Discovery

Device-/ Service
Discovery

Figure 4-9
Discovery module

profiles in more detail and pays attention to the deviation of attribute values.
It has an additional parameter threshold, an integer between 0 and 100, indi-
cating the percentage of matching score, which still can be interpreted as match.
As in the exact match, the attributes of A are compared with the attributes of
B. Contrary to the previous matching algorithm, the partial matching algorithm
assigns a score to each attribute. If an attribute of A and B match exactly, it will
get the maximum score. Otherwise, the score obtained depends on the matching
level of the attributes, the closer they are, the higher the score is. For unlim-
ited attributes expressing an indifference, the score is evaluated on the basis of a
standard deviation. The sum of the scores of each attribute of A are then divided
by the sum of all maximum scores. The ratio must be equal or bigger the the
threshold in order to return a partial match. A partial match of profile A with
profile B is accomplished if:

1. The number of attributes in profile B is at least threshold % of the number
of attributes in profile A.

2. The ratio of maximal score to the actually reached score is at bigger or equal
threshold %.

The detailed procedure is illustrated in figure 4-8.

4.4 Discovery Module
The main objective of the discovery module is to locate all devices in proxim-
ity, which are running a certain service. As a result of this search, the discovery
module returns a connectionURL, which is the information needed by the com-
munication module to establish a Bluetooth connection. As stated in 3.1.4, the
module should include a structure to remember recently discovered devices with
their connectionURL. Already discovered devices are therefore stored in a cache.

22

4.5. Communication Module

SMS

send setupConnection

receive abort

Communication Module

Bluetooth

Figure 4-10
Communication module

This structure has the advantage to prevent from unnecessary repetitions. As
illustrated in figure 4-9, the discovery module needs four input parameters:

• The serviceUUID identifies the service the module has to search for.

• The searchInterval (in seconds) determines the time interval before the dis-
covery starts again.

• The cacheSize specifies the maximum number of cache entries.

• The cacheTimeout is the period of time a cache entry is stored before it
expires.

The discovery module allows an application to run a device discovery in the
background. The application will only be notified, if a Bluetooth device, which
runs the searched service is nearby. All the functionality is provided by the
class DiscoveryModule. To create a new instance of this class, the vari-
ables mentioned above are necessary. A BluetoothStateException is thrown
to signal that Bluetooth is not available on the device running the applica-
tion. Once the DiscoveryModule is instantiated, the discovery process can be
started with the method startDiscovery() and will be terminated by a call
of stopDiscovery(). The class includes two methods to retrieve the connec-
tion information of discovered Bluetooth devices. If discoverServices(long
timeout) is invoked, the connectionURL of all discovered devices will be re-
turned. If no device has been located so far, the method waits for a maximum
delay of timeout. A call of waitForServices() waits until at least one device
has been found and returns the corresponding connectionURL of all discovered
devices.

4.5 Communication Module
Once the discovery module has found out all nearby devices with the services they
offer, the communication module shown in Figure 4-10 can establish a Bluetooth

23

Chapter 4: BlueFramework Architecture

connection for data exchange. If a connection is set up, data can be exchanged
by means of the methods for sending and receiving data. The module not only
allows interaction based on a Bluetooth connection, it also offers data exchange
via SMS. The API for sending and receiving data is the same, regardless of the
underlying technology. For data exchange via SMS, an alternative method for
discovering and registering devices (and in particular the phone number) would
be needed.

4.5.1 Connection Setup
Before sending or receiving objects, the connection has to be set up and opened.
Therefore, the method setupConnection(Object settings)has to be in-
voked. It creates a connection by passing a settings Object which provides all
necessary details for the connection setup. Depending on the underlying technol-
ogy, the settings is an instance of BluettoothSettings or of SMSSettings.

• BluetoothSettings
Bluetooth follows a server client model for communication. A Blue-
tooth server is an application which provides some kind of service to
a client device over a Bluetooth communication. A server listens to
client requests, whereas a client takes on the active part and initi-
ates the communication to a server. Connection setup on server side
is different from the one on the client side. BluetoothSettings
takes into account this difference and provides two methods for con-
nection initalisation. With setServerSettings(UUID serviceUUID,
String serviceName) a server side connection is setup. The serviceU-
UID refers to the unique idenfier of the service, the server offers;
the second argument serviceName desribes the service in words. When
setClientSettings(String connectionURL) is invoked, a client side
connection will be established. The arguement connectionURL results
from a device discovery via the discovery module.

• SMSSettings
The wirless messaging protocol is based on a server client structure as well.
The wireless messaging API (WMA) allows J2ME devices to run server ap-
plications which will automatically process and respond to incoming mes-
sages of client devices. Unlike Bluetooth servers, SMS servers are identi-
fied by their telephone number and a port number. SMS based applications
should agree on a port for passing messages. The method setPort(String
port) is used to set a server side, as well as a client side port for sms
exchange. If no port is set, the incoming messages is handled by the mo-
bile phone’s inbox. Before sending data, the client has to set the recipient’s
phone number by calling setPhoneNumber(String phoneNumber).

Connection establishment can fail for different reasons. A mobile phone might
not support Bluetooth or wireless messaging, or it is attempted to communicate

24

4.6. Log Module

over a port, which is not permitted. In both situations, the failure will be signaled
with an ConnectionSetupException.

4.5.2 Data Exchange
Once a Bluetooth or an SMS connection has successfully been established,
the devices are ready for data exchange. The functionality for sending and
receiving data is implemented in the classes BluetoothCommunicator and
SMSCommunicator. Both of them have the same interface:

• send(Object object)
Method for sending an object to a mobile phone. The module allows to send
a Profile, a list of ProfileTemplateAttributes, a BlueMessage , a
String, an Integer or an ErrorMessage object. An ErrorMessage is
used to send error codes. A BlueMessage is an object storing a text message
and an ID of a Profile describing the message content.
In case data is transmitted via SMS and exceeds the payload allowed, the
data is split into several SMS. An attempt of sending a null object will
result in a NullPointerException.

• receive()
Method for receiving data. It supports reception of the objects mentioned
above.

If no connection has been set up, a call of either of the methods will cause a
CommunicationException. In case data transmission is not possible due to a
failure while sending or receiving, a CommunicationException will be thrown.

4.6 Log Module
The log module is intended for debugging and monitoring purpose. It writes the
state of the program at various stages of its execution to some repository and
provides a detailed context for application behaviour and failures. The Log class
represents a log and offers several methods to write in as well as to read from a
data repository. A log statement includes the following information:

• The date the statement was written

• The class from which the statement was written

• The level to classify the statement whether it is an INFO, an ERROR, a
DEBUG, a FATAL or a statement for the USER.

• The information to be logged.

As shown in figure 4-11the log module should support different data repositories.
This functionality is implemented in the class LogTarget. It allows the the log
statements to be written to a:

25

Chapter 4: BlueFramework Architecture

Log

Log Target
Levels: INFO

DEBUG

Log Target
Levels: ERROR

DEBUG

Log Target
Levels: INFO

USER

Log Target
Levels: FATAL

WARN

Registered
Log Targets

read

write

Figure 4-11
Log module

• File
Log statements are written into a file stored on the mobile phone. This
kind of log target is restricted to mobile phones supporting file systems.
Neither CLDC nor MIDP include APIs for access to file systems on mobile
phones. The FileConnection Optional Package, which is a part for JSR 75
[9], provides an API enabling J2ME applications to create, read and write
files and directories.

• RecordStore
MIDP provides a solution to persistently store data, the record management
system (RMS). RMS contains multiple record stores, which can be accessed
and managed by MIDlets. A record store can be viewed as a collection of
records holding binary data. Record store access is restricted to one MIDlet
only, it is not possible to view another applications data.

• Screen
An alternative to keep log information for a short time but not persistently
is to display the statements on the screen of the mobile phone.

• Ticker
A ticker is another alternative to the screen log target. In a ticker, set in
the upper part of the mobile phone screen, a log statement scrolls continu-
ously across the display. This log target has the disadvantage that only one
statement can be viewed at a time.

26

4.6. Log Module

4.6.1 Write to a Log
In order to write log statements, the log has to keep track of all existing
log targets. The method registerLogTarget(LogTarget target, int[]
levels) of the class Log is thought to fulfill this purpose. The first parame-
ter refers to the log target to register, the second parameter defines which level
of log statements the log target stores. The following example demonstrates how
to write to a log:

/** Log initialisation */
Log log = new Log();
LogTarget tt = new LogTarget(Log.TICKER,

"tickerTarget", new int[]{Log.USER,Log.INFO});
LogTarget ft = new LogTarget(Log.FILE, "C:\\Nokia\log",

new int[]{Log.DEBUG, Log.ERROR});

/** LogTarget registration with max number of log entries */
log.registerLogTarget(rst,20);
log.registerLogTarget(ft,35);

/** set the current display for the ticker LogTarget */
tt.setTickerDisplay(display);

/** add a log statement */
log.write(Log.INFO, "testClass", "this is a log statement");

As shown in the code example above, a LogTarget of type TICKER needs addi-
tional information. Before writing log entries, the current display has to be set.

4.6.2 Read from a Log
The class Log has different methods to read statements selectively. All methods
take a Display object as argument to display the log statements to the user.

• read(int level, Display logDisplay) for instance, reads all log en-
tries of the specified level from the log targets.

• read(String class , Display logDisplay) displays all statements
written in class.

• read(Date from, Date to, Display logDisplay) scans the log tar-
gets for statements written in the time period between from and to.

• read(Date from, Date to, String class , Display
logDisplay) allows a combination of the methods above. All log en-
tries written in the given time period in the specified class are returned.

27

Chapter 4: BlueFramework Architecture

current address Routing
Module

Routing
Moduletarget address

next address

Figure 4-12
Routing module

• read(Date from, Date to, int level , Display logDisplay)
is another combination of read methods. All log entries of a certain level
written in the given time period are read.

4.7 Routing Module
The objective of the routing module is to provide the algorithms and data struc-
tures to route data from a sender to a target device. If data cannot directly be
transmitted to the target, the next device to forward the information can be de-
termined by means of the routing module. For this purpose a routing table storing
the best routes to various devices is maintained. This routing table is a list struc-
ture storing address pairs. The routing module takes the address of the sender
address and the receiver address as input and determines the address of the de-
vice, to which the data has to be transmitted next in order to finally reach the
target device. The result of this look up is returned as Figure 4-12 illustrates.

4.8 Blacklist Module
The blacklist module prevents the application from receiving corrupt data. Once
corrupt data is received, the sending device is put to a blacklist and is not con-
tacted anymore. If the device recovered from its failure and does not send corrupt
data anymore, there is a procedure to remove it again from the blacklist. The
module illustrated in Figure 4-13 provides methods to add and to remove a de-
vice from either the blacklist or the whitelist. If a device is added to the blacklist
it will automatically be removed from the whitelist.

28

4.8. Blacklist Module

blacklist

add(device)

remove(device)

Blacklist Module

whitelist

Figure 4-13
BlackList module

Date
Repository

Synchronise (SynchProfile)

Synchronisation Module

ID
Repository

Communication
Module

Figure 4-14
Synchronisation module

29

Chapter 4: BlueFramework Architecture

device Bdevice A

SynchProfile

data

Figure 4-15
Data exchange in the synchronisation module

4.9 Synchronisation Module
As explained in Chapter 3.2.4, the synchronisation module is intended to syn-
chronise data between two devices. For information transmission the synchroni-
sation module profits of the methods of the communication module. Figure 4-14
shows the structure of this module. It provides two alternatives to keep track of
the synchronisation status:

• The date repository is a list structure storing date and time of the last syn-
chronisation with another device took place. The Recordstore Management
System (RMS) provided in MIDP will be best for saving this information.

• Similar to the date repository, the ID repository is a list in the Recordstore
Management System remembering which data has been sent to which de-
vice.

The device initialising a synchronisation invokes the method
synchronise(SynchProfile). The parameter SynchProfile is passed
to indicate whether a synchronisation based on the ID or on the date takes place.
Figure 4-15 illustrates data synchronisation between device A and device B. A is
the one starting the process. Device B will respond will all information available
according to the SynchProfile. Assuming the SynchProfile holds the date of
the last synchronisation, device B will send all objects created after this specific
date.

30

4.10. Security Module

MIDP 2.0

generateKey

decrypt

Security Module

JSR-82

Cryptographic library

encrypt

CreateMessageDigest

signMIDlet

VerifyMessageDigest

Figure 4-16
Security module

4.10 Security Module
Although J2ME is powerful for mobile application development, it provides only
limited security. This originates from the fact that security functions require a
lot of CPU and memory resources which is limited on devices running J2ME ap-
plications. The Bluetooth optional package however provides different levels of
security.
Today’s mobile phones support internet protocols like HTTP or WAP, they may
have open GSM, GPRS or Bluetooth connection, which represent potential secu-
rity hazards. According to [10], security for a mobile environment includes two
aspects: The mobile device has to be protected against malicious mobile software
and the mobile software must be protected against malicious mobile phones. As
no general security solution for mobile applications is available, the security mod-
ule combines the already existing ones and extends them with the implementa-
tion of missing security mechanisms. If BlueFramework wants to provide mech-
anisms to build up a secure mobile environment, it has to add the security issues
shown in Figure 4-16:

• Encrypt data using asymmetric and symmetric cryptography
The requirement analysis in Chapter 3.2.5 pointed out that that no mecha-
nisms for encryption and decryption are available. As encryption of informa-
tion is important to grant any security concept, BlueFramework provides a
cryptographic library of functions used to encryt and decrypt data using
symmetric and asymmetric cryptography. Instead of reimplementing the
entire functionality, BlueFramework could take advantage of an already
existing cryptographic library like the Bouncy Castle [11].The Legion of
Bouncy Castle is an open source library providing a lightweight crypthog-

31

Chapter 4: BlueFramework Architecture

raphy API intended to work with J2ME.

• Create message digests
In order to grant the integrity of data, the security module provides func-
tions to create a message digest, a digital finger print of the data. This
fingerprint could for example be generated by means of a one-way hash
function. A one-way function is easy to calculate but hard to invert. Before
data is transmitted, a digital fingerprint is calculated. The data in clear
text will then be transmitted together with the message digest. For veri-
fying data integrity the receiver simply has to recalculate the digest and
comparing it to the original data. The security module should provide both:
methods to create a message digest and methods to compare messages and
their digests.

• Work with digital signatures
In order to profit of the concept of trusted MIDlets introduced in MIDP 2.0,
the security module includes mechanisms to work with digital signatures.
The module provides methods to sign developed MIDlets as well as to vali-
date a MIDlets certificate. Therefore the security module has also to include
methods to safely store root certificates for MIDlet validation.

32

5
Implementation BlueFramework

This chapter takes a closer look at the implementation ot the modules introduced
in the previous chapter. All modules which were necessary for the development
of the BluePinbaord application have been implemented. This modules are: the
user interface module, the object description module, the matching module, the
discovery module, the communication module, the blacklist module and the log
module.

5.1 User Interface Module
The development tool to generate new user interfaces for J2ME applications is
implemented in the class GUIGenerator. It parses the XML document passed
in the first command-line argument and creates a Java class with the name of
the second command-line argument. The generated class implements the GUI
interface of BlueFramework. For parsing the XML document, SAX 1 is used.
To obtain a SAX parser, the module uses a new instance of SAXParserFactory
of the package javax.xml.parsers:

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();

As the parser reads an XML document, it invokes methods of a given
DefaultHandler to handle events appropriately. The class GUIGenerator ex-
tends the DefaultHandler class of the package org.xml.sax.helpers. It
overrides the callback methods for the following events:

• startElement(String namespaceURI, String localName,
String qName,Attributes attrs)

1 the Simple API for XML

33

Chapter 5: Implementation BlueFramework

Development Tool

implements

Function Library

implements

implements

generates

Figure 5-1
Class hierarchy object description module

As a documents content is parsed, the parser will invoke this method at the
beginning of every element in the XML document. In GUIGenerator, the
method reads the XML attributes which are needed to define the elements
and commands of a screen.

• endElement(String uri, String localName, String qName)
Method invoked by the parser at the end of each element in the XML docu-
ment. GUIGenerator then writes the object definitions to the correspond-
ing file.

• characters(char[] ch, int start, int length)
Method to retrieve the characters between two XML elements.

5.2 Object Description Module
5.2.1 Library
The object description module consists of the classes Attribute,
SearchAttribute, ProfileTemplateAttribute and the interface
ProfileTemplate. SearchAttribute and ProfileTemplateAttribute

34

5.3. Matching Module

are derived from Attribute and provide more specific structures. Unfortu-
nately, J2ME does not include the interface java.io.Serializable, which
allows objects to be serialised and deserialised. Because serialisation will be nec-
essary in the communication module, BlueFramework defines its own interface
Serializable with the methods readObject(InputStream in) to read an
Object from an InputStream and writeObject(OutputStream out) to write
one to an OutputStream. The class hierarchy of the object description module is
shown in figure 5-1. The blue box represents the development tool included in
the object description module, the yellow box shows the classes and interfaces of
the library.

5.2.2 Development Tool
In addition to the library for object description, the module includes a develop-
ment tool. As mentioned in the previous section, a ProfileTemplate is only
an interface. The actual implementation of ProfileTemplate is done through
the development tool implemented in ProfileTemplateGenerator. This has
the advantage that BlueFramework has not to be recompiled each time an new
ProfileTemplate has been defined. As figure 5-1 demonstrates, the example
class Template generated by ProfileTemplateGenerator implements the
ProfileTemplate interface. The structure of ProfileTemplateGenerator is
similar to the one of the user interface module. SAX is used for parsing the XML
document as well.

5.3 Matching Module
The general use of the matching module has already been described in Chapter
4.3. This chapter focuses on the matching procedure and score calculation in more
detail. The matching module is implemented in the class MatchingModule.

5.3.1 Exact Match
In order to accomplish a match between a profile A and a profile B, each attribute
of A has to be defined in B and must match the the corresponding attribute in B.
Figure 5-2 illustrates the process of matching an attribute att of profile A with
the attributes of profile B.
First of all, all attributes having the same ID than att are retrieved from A. If att
is the only, the method evaluateExactly(att, B) is called. True is returned
if att is also defined in B and if it matches the corresponding attribute. In case
profile A consists of more than one attribute having att’s ID, they are stored in the
list attID. In this case the match depends on att’s link operation. If the attributes
are linked with a logical OR only one of the attributes of the list attID must
evaluate to true. If they are linked with a logical AND however, there must be an
attribute in B which fulfills all contraints implied by the attributes of attID. The
method evaluateAllExactly(attID,B) tests these contraints.

35

Chapter 5: Implementation BlueFramework

Figure 5-2
Attribute matching in an exact match

36

5.3. Matching Module

Match att with attributes
of B partially

att: Attribute of Profile A
attID: Attributes of the same ID than att
attsA: Attributes of Profile A
attsB: Attributes of Profile B
scoreResult: score att reached
score: temporary score

More attributes
of att’s ID in

attsA?

att has a final matching
score of resultScore

Get attribute a of attID

resultScore =
evaluatePartially

(att, attsB)

Save Attributes with
same ID in attID

Are they linked
with OR?

More untested
attributes in

attID?

resultScore =
evaluateAllExactly

(attID, attsB)

yes

yes

no

no

yes

score =
evaluatePartially

(a, attsB)

score >
resultScore?

resultScore = score

resultScore = 0

no

yes

no

Figure 5-3
Attribute matching in a partial match

5.3.2 Partial Match
The partial match between a profile A and a profile B shown in figure 5-3
proceeds in a similar way than the exact match. There is also a distinction
between AND and OR linked attributes. The difference to the previous algorithm
lies in the evaluation of the attributes. Compared to an exact match, the partial
match invokes evaluatePartially and evaluateAllPartially. Instead

37

Chapter 5: Implementation BlueFramework

of a boolean return value, those methods give back the score the attribute
reached.
The method evaluatePartially(Attribute attribute, Vector
attributes) returns the score attribute reached when matched with the
ones in list attributes. For String typed attributes, the score is either 0 or the
maximum score, it is not possible to calculate a matching level.
For attributes of type Long and Integer however it makes sense to compare
their values and to express an eventual deviation in a reduced score. In case an
attribute in not defined in B, it receives score 0. With evaluateAllPartially
the AND linked attributes are evaluated.

5.4 Discovery Module
The module is composed of the classes BTClient, ServiceCache,
ServiceCacheEntry and DiscoveryModule, where DiscoveryModule
is the only one accessible from outside the BlueFramework.
When an application starts a discovery by a call of startDiscovery(), the
thread in BluetoothClient starts running. It scans the environment for
devices offering the desired service. Once one or more devices have been located,
their connectionURLs are passed to the application over a shared object which
is a list in the class DiscoveryModule. To make sure, both threads do not
access this list simultaneously, the threads have to lock it when reading or
writing its content. The discovery thread notifies the application thread when
new connectionURLs are ready and the application thread notifies the discovery
thread when the connectionURLs have been retrieved.
The functionality of each class involved in discovery process are explained in the
following sections.

5.4.1 Service Cache
The service cache remembers discovered services for the time period defined by
the argument cacheTimeout in DiscoveryModule. A ServiceCacheEntry
represents a service in the cache. It consists of a String holding the connec-
tionURL of the service and the date the cache entry expires. If the number of
cache entries exceeds the cacheSize, the expired entries will be deleted. If none
of the entries has expired, the oldest ones will be replaced.

5.4.2 Bluetooth Client
In every Bluetooth communication a server and a client are involved. A
Bluetooth server runs a service which is made available to clients. The class
BTClient takes on the client role in the discovery procedure. It is assumed that
a server listening for connection requests is provided by the application using
the framework.

38

5.5. Communication Module

The Bluetooth specification separates discovery of devices and discovery of ser-
vices in two proceeding processes. A device discovery starts with the issue of an
inquiry request to which other devices in the area respond with their Bluetooth
address. The Bluetooth address is a 6-byte unique identifier assigned to each
Bluetooth device by the manufacturer. DiscoveryListener and Discovery-
Agent provided by JSR-82 are important in this context. The following lines
start the search for Bluetooth devices in range:

LocalDevice device = LocalDevice.getLocalDevice();
DiscoveryAgent agent = device.getDiscoveryAgent();
agent.startInquiry(DiscoveryAgent.GIAC, btClient);

When a new device is found, the system calls the method deviceDiscovered()
and inquiryCompleted()at the end of the device inquiry process. Once a device
has been discovered, the service discovery process asks a device whether it has
the desired service to offer using the following method:

discoveryAgent.searchService(attrSet, uuidSet, rd, this);

The first two arguments describe the service requested, rd refers to the de-
vice inquired for services and this represents the DiscoveryListener used
to handle service search events. For every device offering the desired service,
servicesDiscovered() is called to receive a ServiceRecord to retrieve
the connectionURL from. To verify if the service has been discovered lately,
the client calls ServiceCache.containsValidService(String service).
If the service is known, the client continues the discovery. In case the ser-
vice does not appear in the cache, the connection URL will be added to the
service cache by calling the method ServiceCache.addCacheEntry(entry)
and DiscoveryModule.setFoundServices(urls) to notify the module that
the service discovery has been successful. When the search is over the method
serviceSearchCompleted()is invoked.

5.5 Communication Module
The main classes of the communication module and their dependencies
are illustrated in Figure 5-4. The interface Communicator forms the main
part of the module. It is implemented by BluetoothCommunicator and
SMSCommunicator. The advantages of this structure are:

• Abstraction from underlying technology. API and ExceptionHandling are
similar for Bluetooth as well as for SMS based communication.

• The communication module can easily be extended by a third communica-
tion technology.

39

Chapter 5: Implementation BlueFramework

Figure 5-4
Classes in the communication module

5.5.1 Data Transfer Scheme
As already mentioned in Chapter 5.2, Profiles and Attributes implement
the interface Serializable, which enables objects to be serialised and deseri-
alised easily. The communication module takes advantage of the fact that the
communication is stream based for both technologies. The first int written to
or read from a stream stands for the type of data which will be transferred. The
data followed by this definition depends on the object sent or received. The mod-
ule makes us of a DataInputStream to read data and of a DataOutputStream
to write data into a stream. These classes provide serialisation and deserialisa-
tion of primitive Java data types.

5.6 LogModule
The module for logging has been implemented in the classes Log, LogTarget,
LogStatement FileAccess. Their functionalities are as follows:

• Log
The main class accessible from outside the framework. It acts as a container
storing the registered log targets. When a method to write to or to read from
a log is called, it looks up the corresponding LogTarget and invokes the
appropriate methods.

• LogTarget

40

5.6. LogModule

The actual methods for writing and reading from a data repository are im-
plemented in this class. It provides method for selective reading.

• LogStatement
Object holding all information about a log entry: the date it was written,
the class in which it was written, the level and the statement itself. In
order to write a LogStatement easily into a recordstore or a file as well
as to read it again from there, the class implements the BlueFramework’s
interface Serializable. One problem to handle in the context of a file
LogTarget is the conversion of a String into a Date object. As J2ME
offers only a reduced set of APIs, this conversion has been omitted. The
class LogStatement provides the method getDateFromString(String
date) to accomplish the conversion.

• FileAccess
The FileAccess class provides methods to access the file system of a mo-
bile phone if one is availabe. The API specifying this functionality is pro-
vided in an optional package [9].

41

Chapter 5: Implementation BlueFramework

42

6
BluePinboard

BluePinboard is a pin board application for Bluetooth enabled mobile phones.
This application is intended to validate the BlueFramework functionality. It is
programmed with the modules offered by BlueFramework.

BluePinboard

post messages

read messages

delete messages

discover users

user pin board

Figure 6-1
Use cases BluePinboard

43

Chapter 6: BluePinboard

6.1 Use Cases
In the BluePinboard application two different kind of Bluetooth devices interact:
pin boards and users. Users post messages on the pin board and read messages
from the pinboard. The message writer can define the expiration date of a mes-
sage and restrict the readability to a group. With BluePinboard, the user has the
possibility to retrieve only messages he is really interested in. As shown in figure
6-1, the application has the following use case scenarios:

6.1.1 Post a message to the pin board
A pin board is described by a pin board profile. The profile specifies which kind of
messages can be attached and where the pin board is located. The user stores the
messages ready for upload on his mobile phone in the upload list. When the pin
board and the user device are close, the pin board checks if the user has messages
in his upload list. To prevent from uploading the same message twice, the user
device remembers the date the last update took place. On a subsequent upload,
only messages created after this date will be transferred.

6.1.2 Read a message from the pin board
A user registers in a profile in which topics he is interested in and on which pin
board locations he usually passes by. This profile is stored on his mobile phone.
Every message attached to the pin board is also described by a message profile,
saving the meta information of the message. Each time the user is in front of a pin
board, the pinboard verifies if the user’s profile matches the profile of one of its
messages. If so, the message is downloaded to the users device. This interaction is
based on a Bluetooth connection. As in the upload scenario it has to be made sure
that the same message is not transferred twice. For this reason the pin board
device remembers the date it encountered the user the last time for message
download. The next time the user is in the pin boards area, only messages posted
after this date are considered for exchange.

6.1.3 Delete messages
To reduce the risk of memory overflow, the messages saved on the pin board as
well as on the user device have to be deleted once they expire. Pin board and user
device store a certain number of messages and their profiles, which cannot be
exceeded . If attempted to add another message after the maximum number has
already been reached, the messages will be deleted in this order:

• Deletion of all expired messages and the corresponding profiles

• If none of the messages has expired, delete the oldest one and its profile

44

6.2. Architecture

CommunicationCommunication

Device-/ Service
Discovery

Device-/ Service
Discovery

Object
Description

Object
Description

U
se

r I
nt

er
fa

ce
U

se
r I

nt
er

fa
ce

Lo
g

Lo
g MatchingMatching

Figure 6-2
Modular design BluePinboard

6.1.4 Discover a user
As the application consists of two different kind of devices, both of them could be
responsible for discovering other devices in the area. Because a user moves and
not necessarily wants to discover a pin board all the time, it is easier for the fixed
pin boards to discover the users.

6.2 Architecture
As mentioned in the previous section BluePinboard distinguishes two different
types of devices: pin boards and users. From a technical point of view, it would
be possible for a device to be a pin board and a user at the same time. Because
a pin boards contains location related information, the BluePinboard application
is divided into a user and a pin board MIDlet.
The following sections focus on the use of BlueFramework in BluePinboard. For
a detailed description of each of the modules, refer to chapter 4.

6.2.1 User Interface
As there is a distinction between pin board and user device, a user interface for
each kind of device has to be designed. Figure 6-3 gives an overview the screens
in the pin board user interface. The user interface of the user device is shown in
Figure 6-4.

45

Chapter 6: BluePinboard

Start
View Messages
Settings
View Log
Stop

Pin board

Exit
Select

Attached messages
will be displayed here

Messages

Close

Modify Settings
Add Parameter
Set Scan Interval
Set Message Lifetime

Settings

Back
Select

Message topics:
() courses
() appartements
() sports

Designated readers:
() students
() professors
() PhD

Pin board location:
() F-Floor
() G-Floor
() Gloria Bar

Pin board Settings

Back
Save

Log Statements will be
displayed here

Log

Close

Parameter :
() topics
() readers
() locations

Add value:
< value >

Parameters

Back
Add

Set scan interval
(in s) :
 < value >

Scan Interval

Back
Set

Set message lifetime
(in days) :
 < value >

Message Lifetime

Back
Set

Figure 6-3
User interface pin board device

46

6.2. Architecture

Figure 6-4
User interface user device

47

Chapter 6: BluePinboard

6.2.2 Object Description
In order to match messages with the user’s interests and pin board definitions,
different profiles are necessary:

• Message profile to store the meta information of a message.

• User profile to remember the users interests.

• Pin board profile to describe the pin board, which messages it has at-
tached and where it is located.

Attribute ID Attribute type Attribute values
topic String [courses, events, apartments]
readers String [students, PhD students, professors]
location String [F-Floor, F-Floor, Gloriabar]
creation date Long Long representation of creation date
upload date Long Long representation of upload Date
expiry date Long Long representation of expiry Date
writer String Bluetooth address of writer

Table 6-1: possible attributes

All of the three profiles consist of the same attributes. Initially, BluePinboard
uses the attributes listed in Table 6-1 in the above mentioned profiles. When a
user creates a new message, he can describe its content with the attributes topic,
readers and location. All other attributes are added by the application and do
not depend on the users input. The attribute creationDate for instance refers to
the date, the message was written, uploadDate remembers the date the message
was attached on the pin board and expiry date holds the date, the message will
expire. The attribute writer stores the Bluetooth address of the device, on which
the message was written. This attribute is used to make sure, a user device does
not receive its own messages back.
As shown in pin board user interface in Figure 6-3, there is a choice add pa-
rameter in the settings menu. Through this menu, a pin board administrator is
allowed to add new attribute values. He could for example add a new message
topic "sports".

6.2.3 Matching
Matching of profiles is done in two situations:

1. Message upload
To guarantee that only messages which are conform to the pin boards de-
scription will be attached, the message profile and the pin board profile have
to be compared using the matching module.

2. Message download
As the message upload the message download process includes a matching

48

6.2. Architecture

pin board profile

messages

pin board user

User device is in range

Match pin board profile with all
message profiles ready of the

messages ready to upload

message profilesStore the received
messages and profiles
on the mobile phone

user profileMatch user profile with all
message profiles of the

attached messages

messages Store the received messages
and profiles on the mobile

phone and display the
messages to the user

message profiles

PinboardProfileTemplates

Figure 6-5
Message exchange in BluePinboard

as well. In this case, the user profile is matched with the profile of all at-
tached messages. It is necessary to assure that the user receives only the
messages of his interests.

Because a pin board profile and a user profile has the same structure, the same
matching algorithm can be applied to both situations. An exact match will be
sufficient for that purpose.

6.2.4 Device Discovery
Pin board devices scan their environment for user devices. The discovery module
will take care of this task. With each user device within proximity, a message
exchange is initiated. Already discovered devices are remembered in the cache,
which prevents from unnecessary data transfer to the same device after a short
time period.

49

Chapter 6: BluePinboard

6.2.5 Communication
The diagram in Figure 6-5 demonstrates the exchange of messages. After
a pin board has discovered a user device, the data exchange starts with
the message upload followed by the download. The pin board sends its
ProfileTemplateAttributes to the discovered user device. On reception,
the user device compares the received attributes with the ones contained in its
ProfileTemplate. Unknown ProfileTemplateAttributesare added to the
ProfileTemplate. The ProfileTemplateAttributes are followed by the
pin board profile which describes the messages allowed to be attached on the pin
board. The user device loads all messages ready for upload and matches their
profiles with the received pin board profile. The matching messages are sent
back to the pin board device together with the corresponding message profile.
The pin board stores the messages and the profiles in a recordstore.

After all upload messages have been transferred, the user device sends the
user profile. This is the beginning of the message download. The pin board
matches the user’s profile with all message profile of the attached messages. The
ones matching the user’s interests are sent back to the user. The user device
stores the received messages and profiles and displays the messages to the user.

Both the pin board and the user device remember the date the last mes-
sage exchange took place. When the devices are in reach for the next time, only
messages attached or created after this date will be exchanged.

6.2.6 Log
The BluePinboard application uses a log to keep track of the programm’s state
as well as application failures during execution. In case communication fails for
instance the cause will be written to the log. As log target BluePinboard uses the
Recordstore Management System (RMS) provided by MIDP.

6.3 Implementation
Figure 6-6 gives an overview over the classes which implement the BluePinboard.
The blue shaded ones represent classes which were generated by means of the
provided development tools; the white ones are the ones which had to be imple-
mented.
UserMIDlet is the MIDP application running on the user device. Its counter
part it the BoardMIDlet, the application running on the pin board device.
The BoardMIDlet creates a new instance of the discovery module and runs
a discovery for user devices in the area. Both MIDlets include a user inter-
face which allows the user to navigate through the application. The content
of this user interface is displayed in Figure ?? and ??. Classes responsible for
the connection between a user and a pin board are ConnectionToBoard and

50

6.3. Implementation

Figure 6-6
Survey BlueFramework

ConnectionToUser. The establish a Bluetooth connection and run a thread to
exchange messages.

51

Chapter 6: BluePinboard

52

7
Evaluation of BlueFramework

The goal of this final chapter is to evaluate the functionality provided by
BlueFramework. An evaluation is not trivial since no reference application is
available. Ideally the BluePinboard application should have been implemented
twice: once using the modules provided by BlueFramework and once without the
framework. Only this situation would allow a quantitative evaluation.

Nevertheless, the following points express the advantages of application
development by means of BlueFramework in numbers. Based on the experience
gained in the development of BluePinboard, the following facts point out that
complexity and time of application development can be reduced.

• Number of generated classes
The BluePinboard application consists of nine classes. As shown in the class
survey of BlueFramework introduced in Figure 6-6, three of those have been
generated by means of a development tool offered by BlueFramework. The
programming effort can therefore be reduced by one third.

• Number of Input- and OutputStreams
In BluePinboard neither an InputStream nor an OutputStream has to be
opened and closed manually. Methods for data serialisation and deseriali-
sation are provided by BlueFramework. An application developer has not
to care about object serialisation.

• Number of Threads
With the use of BlueFramework, the BluePinboard application could be re-
duced by one thread. The thread for discovery is included and controlled by
the framework. BluePinboard does not have to take care about controlling
the discovery thread. Once a discovery has been initiated, the application
will be notified if a desired device is in the area.

53

Chapter 7: Evaluation of BlueFramework

Furthermore, application programming by means of BlueFramework has the fol-
lowing qualitative advantages:

• Reduction of development time
As a lot of functionality is already provided by BlueFramework, application
development time can obviously be reduced by a significant factor. For a
proper quantitative evaluation of implementation time, the same applica-
tion should have been implemented twice, once with and without using the
framework as stated above.

• Ease of implementation
There is no need to get familiar with J2ME, MIDP and every optional pack-
age including Bluetooth communication in detail. It is sufficient to know
the methods included in the libary and the development tools provided by
BlueFramework to develop a mobile application.

• Structured code
Frequently used functions for mobile applications are already implemented
in BlueFramework. Application developers can access the modules of Blue-
Framework instead of reimplementing the same functions for every new
J2ME applicaton. This also leads to a better structured and less complex
code.

• Exception handling
Exception handling is easier when the module of BlueFramework are used
because most exceptions are already handled by BlueFramework.

54

8
Conclusion

8.1 Results
Former thesis developed lately within the scope of the BlueStar project have
been analysed. Common functional blocks have been identified and described
in a detailed concept. In order to provide a general library of functions to be
used for future application development, the framework has been extended with
additional modules.

The functionality of the framework has been validated with the develop-
ment of BluePinboard, a pin board application intended for Bluetooth enabled
mobile phones. All modules needed for the development of BluePinboard have
been implemented. BluePinboard was tested successfully in the emulator [14]
and on Nokia mobile phones [15].

Testing of BluePinboard on mobile phones has shown that the applications
do not necessarily produce the same result on mobile phones as in an emulator.
In additition to the limited resources available, a mobile phone is influenced
by other Bluetooth devices in the area. If too many Bluetooth devices scan
the environment at the same time, it might be possible that neither of them
discovers a device although they are physically close.

8.2 FutureWork
Security concepts
The security issues discussed in this thesis have not been implemented yet. Data
encryption was not necessary in the context of BluePinboard because no sensi-
tive data had to be transferred. A digital pin board is not exposed to more threats

55

Chapter 8: Conclusion

than a public pin boards with attached paper notices. In a future step, the Blue-
Framework security module has to be implemented.

Routing
Also routing was not of major importance in the BluePinboard application. The
routing module still has to be implemented. This module will be of higher impor-
tance, once additional communication technologies have been added.

New communication technologies
Because BlueFramework follows a modular design it is easily extensible with
new functionalites. The communication module for example could be extended
with a third technology. It the mobile phone industry continues evolving they
way it actually does, every mobile phone will soon be able to transmit data over
wireless LAN and BlueFramework could provide the methods for transferring
data over this technology.

BlueLocation
Other existing theses which were developed within the BlueStar project could
be added to the BlueFramework. BlueLocation for instance provides means to
determine the distance between two devices. It would be an advantage to include
this location functionality in future application for mobile devices.

56

A
Assignment

57

Chapter A: Assignment

Institut für
Technische Informatik und
Kommunikationsnetze

Sommer 2005

Masterarbeit

für

Nicole Hatt

Tutor: Matthias Bossardt

Co-Tutors: Vincent Lenders, Martin May

Ausgabe: 4.4.2005

Abgabe: 2.10.2005

BlueFramework - Application Framework for

Bluetooth Enabled Mobile Phones

1 Introduction

Mobile phones of the latest generation feature a Java virtual machine (J2ME) and a Bluetooth

stack for short range communications. In the context of the Blue* project [1], a number of

networking applications for Bluetooth-based ad-hoc networks have been developed [3, 4, 2].

We noticed that such applications share a lot of common functionality. As consequence, the

development of new applications could be simplified, if a framework implementing the common

functional blocks and providing the corresponding development tools were available.

2 Assignment

2.1 Objectives

The goal of this thesis is to design and implement a framework for Bluetooth-based networking

applications. The framework consists of a Java library implementing commonly used functional

blocks and (possibly) a set of development tools. To validate this work, a new application,

58

BluePinboard, has to be implemented based on the proposed framework. BluePinboard consists

of two different types of Bluetooth-enabled devices, one implements the pinboards, whereas

the other type of devices is carried by the users. BluePinboard should work similarly to public

pinboards like the ones found in the corridors of ETH.

2.2 Tasks

• Get familiar with the J2ME and related APIs provided by the latest models of mobile

phones. In particular study the Bluetooth-API.

• Get familiar with the former semester theses on BlueDating [2] and Bluetella [3, 4].

• Identify common functional blocks among the different applications.

• Specify the functionality and interfaces of functional blocks for the framework.

• Implement the framework.

• Specify and design the BluePinboard application.

• Implement the BluePinboard application using the blocks of the framework.

• Define and set up a demonstrator of the BluePinboard. Preferably the demonstration

should run on currently available mobile phones.

• Document your work in a detailed and comprehensive way. We suggest you to continually

update your documentation. New concepts and investigated variants must be described.

Decisions for a particular variant must be justified.

3 Deliverables and Organisation

• Generally students and advisor meet on a weekly basis to discuss progress of work and

next steps. If problems/questions arise that can not be solved independently, the students

may contact the advisor anytime.

• At the end of the third week, a detailed time schedule of the semester thesis must be given

and discussed with the advisor.

• At half time of the semester thesis, a short discussion of 15 minutes with the professor

and the advisor will take place. The student has to talk about the major aspects of the

ongoing work. At this point, the student should already have a preliminary version of the

table of contents of the final report. This preliminary version should be brought along to

the short discussion.

• At the end of the semester thesis, a presentation of 15 minutes must be given during the

TIK or the communication systems group meeting. It should give an overview as well as

the most important details of the work. Furthermore, it should include a small demo of

the project.

2

59

Chapter A: Assignment

• The final report may be written in English or German. It must contain a summary

written in either English or German, the assignment and the time schedule. Its struc-

ture should include an introduction, an analysis of related work, and a complete doc-

umentation of all used software tools. Related work must be referenced correctly. See

http://www.tik.ee.ethz.ch/flury/tips.html for more tips. Three copies of the final report

must be delivered to TIK.

• Documentation and software must be delivered on a CDROM.

Literatur

[1] The BlueStar Project. http://www.csg.ethz.ch/research/running/Blue_

star.

[2] Christian Braun and Sandro Schifferle. BlueDating - A Dating Application for Bluetooth

Enabled Mobile Phones, February 2005.

[3] Ganymed Stanek. Bluetella: A Java application for new mobile phones, July 2003.

[4] Andreas Weibel and Lukas Winterhalder. Bluetella: A File Sharing Application for Blue-

tooth Enabled Mobile Phones, February 2005.

Zürich, den 3.5.2005

3

60

B
Time schedule

61

Chapter B: Time schedule

W
ee

k
nu

m
be

r
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26

W
ee

k
st

ar
tin

g
at

 …
4-

A
pr

11
-A

pr
18

-A
pr

25
-A

pr
2-

M
ay

9-
M

ay
16

-M
ay

23
-M

ay
30

-M
ay

6-
Ju

n
13

-J
un

20
-J

un
27

-J
un

4-
Ju

l
11

-J
ul

18
-J

ul
25

-J
ul

1-
A

ug
8-

A
ug

15
-A

ug
22

-A
ug

29
-A

ug
5-

S
ep

12
-S

ep
19

-S
ep

26
-S

ep
G

et
 fa

m
ili

ar
 w

ith
 J

2M
E

 a
nd

 a
nd

 re
la

te
d

A
P

Is
,

in
 p

ar
tic

ul
ar

 th
e

B
lu

et
oo

th
 A

P
I.

G
et

 fa
m

ili
ar

 w
ith

 B
lu

eD
at

in
g

an
d

B
lu

et
el

la
.

Id
en

tif
y

co
m

m
on

 fu
nc

tio
na

l b
lo

ck
s.

S
pe

ci
fy

 th
e

fu
nc

tio
na

lit
y

an
d

in
te

rfa
ce

s
of

 fu
nc

tio
na

l
bl

oc
ks

 fo
r t

he
 fr

am
ew

or
k.

Im
pl

em
en

t t
he

 fr
am

ew
or

k

S
pe

ci
fy

 a
nd

 d
es

ig
n

th
e

B
lu

eP
in

bo
ar

d
ap

pl
ic

at
io

n.

Im
pl

em
en

t t
he

 B
lu

eP
in

bo
ar

d
ap

pl
ic

at
io

n
us

in
g

th
e

bl
oc

ks
 o

f t
he

 fr
am

ew
or

k.

D
ef

in
e

an
d

se
t u

p
a

de
m

on
st

ra
to

r o
f B

lu
eP

in
bo

ar
d

on

re
al

 m
ob

ile
 p

ho
ne

s.

D
oc

um
en

t t
he

 w
or

k.

P
re

pa
re

 h
al

f-t
im

e
di

sc
us

si
on

.

P
re

pa
re

 fi
na

l p
re

se
nt

at
io

n.

Ti
m

e
to

 fi
x

bu
gs

, r
em

ai
ni

ng
 p

ro
bl

em
s.

M
ile

st
on

es
:

B
lu

eF
ra

m
ew

or
k

an
d

B
lu

eD
at

in
g

sp
ec

ifi
ca

tio
n

do
ne

.

B
lu

eF
ra

m
ew

or
k

im
pl

em
en

te
d.

B
lu

eP
in

bo
ar

d
ru

nn
in

g
on

 e
m

ul
at

or
.

B
lu

eP
in

bo
ar

d
ru

nn
in

g
on

 m
ob

ile
 p

ho
ne

s.

62

C
XML Schema

C.1 ProfileTemplateSchema
C:\Program Files\Altova\XML Spy Suite\Examples\ProfileTemplateSchema.xsd 09/29/05 18:54:16

(c)1998-2001 Altova GmbH http://www.xmlspy.com Page 1Registered to Matthias Bossardt (ETH Zurich)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="ProfileTemplate">
<xs:complexType>

<xs:sequence>
<xs:element name="ProfileTemplateAttribute" maxOccurs="unbounded">

<xs:complexType>
<xs:choice>

<xs:element name="value" minOccurs="0"/>
<xs:element name="range">

<xs:complexType>
<xs:sequence>

<xs:element name="fromValue"/>
<xs:element name="toValue"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>
<xs:attribute name="ID" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

C.2 GUISchema

63

Chapter C: XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="GUI">
<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="Screen" maxOccurs="unbounded">

<xs:complexType>
<xs:choice>

<xs:element name="List">
<xs:complexType>

<xs:sequence>
<xs:element name="Item" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="StringPart"/>
<xs:element name="ImagePart" type="xs:string" minOccurs="0"/>
<xs:element name="Command" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Action" type="xs:string"/>
<xs:element name="NextScreen" type="xs:string"/>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="priority" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Ticker" minOccurs="0">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="title" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Form">

<xs:complexType>
<xs:sequence>

<xs:element name="ChoiceGroup" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="Choice" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="StringPart" type="xs:string" minOccurs="0"/>
<xs:element name="ImagePart" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="TextField" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="text" type="xs:string" use="optional"/>
<xs:attribute name="maxSize" type="xs:string" use="required"/>
<xs:attribute name="constraints" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="StringItem" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="text" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="ImageItem" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

64

C.2. GUISchema

<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="image" type="xs:string" use="required"/>
<xs:attribute name="layout" type="xs:string" use="required"/>
<xs:attribute name="altText" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="DateField" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="mode" type="xs:string" use="required"/>
<xs:attribute name="timeZone" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Gauge" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="interactive" type="xs:string" use="required"/>
<xs:attribute name="maxValue" type="xs:string" use="required"/>
<xs:attribute name="initialValue" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Command" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Action" type="xs:string" minOccurs="0"/>
<xs:element name="NextScreen" type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="priority" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Ticker" minOccurs="0">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="title" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Alert">

<xs:complexType>
<xs:sequence>

<xs:element name="Command" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="Action" type="xs:string" minOccurs="0"/>
<xs:element name="NextScreen" type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="priority" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="title" type="xs:string" use="required"/>
<xs:attribute name="text" type="xs:string" use="optional"/>
<xs:attribute name="image" type="xs:string" use="optional"/>
<xs:attribute name="type" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="TextBox">

<xs:complexType>
<xs:sequence>

<xs:element name="Command" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="Action" type="xs:string" minOccurs="0"/>
<xs:element name="NextScreen" type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="priority" type="xs:string" use="required"/>

</xs:complexType>

65

Chapter C: XML Schema

(c)1998-2001 Altova GmbH http://www.xmlspy.com Page 3Registered to Matthias Bossardt (ETH Zurich)

</xs:element>
<xs:element name="Ticker" minOccurs="0">

<xs:complexType>
<xs:attribute name="objectname" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="objectname" type="xs:string" use="required"/>
<xs:attribute name="title" type="xs:string" use="required"/>
<xs:attribute name="text" type="xs:string" use="optional"/>
<xs:attribute name="maxSize" type="xs:string" use="required"/>
<xs:attribute name="constraints" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

66

D
CD Content

67

Chapter D: CD Content

FOLDER CONTENT

documentation\report\ Includes the final documentation of the
thesis

documentation\presentation\ Includes the slides of the final presenta-
tion

Framework\dist\ Contains the compiled version of Blue-
Framework (JAR and JAD files)

Framework\nbproject\ Contains the Netbeans project used to
develop BlueFramework

Framework\src\ Contains the Java source code of Blue-
Framework

Pinboard\dist\ Contains the compiled version of Blue-
Pinboard (JAR and JAD files)

Pinboard\nbproject\ Contains the Netbeans project used to
develop BluePinboard

Pinboard\src\ Contains the Java source code of Blue-
Pinboard

Pinboard\XML\ Contains the XML documents used for
the develoment tools

Tools\GUI\bin\ Contains the compiled version of the user
interface module

Tools\GUI\src\ Contains the source code of the user in-
terface module

Tools\GUI\XML\ Contains the XMLSchema defining the
XML input of the user module

Tools\Template\bin\ Contains the compiled version of the ob-
ject description tool

Tools\Template\src\ Contains the source code of the object de-
scription tool

Tools\Template\XML\ Contains the XMLSchema defining the
XML input of the object description tool

68

Bibliography

[1] The BlueStar project.
http://www.csg.ethz.ch/research/projects/Blue_star
(30.09.2005)

[2] Christian Braun und Sandro Schifferle. BlueDating - A Dating Application
For Bluetooth Enabled Mobile Phones, Semester Thesis TIK, ETH Zürich,
February 2005.

[3] Andreas Weibel und Lukas Winterhalter. Bluetella - A File Sharing Appli-
cation for Bluetooth Enabled Mobile Phones, Semester Thesis TIK, ETH
Zürich, February 2005.

[4] Ganymed Stanek. Bluetella - A Java Application For New Mobile Phones,
Semester Thesis TIK, ETH Zürich, July 2003.

[5] Sun Microsystems. Mobile Information Device Profile 2.0 (JSR-118)
http://www.jcp.org/en/jsr/detail?id=118 (30.09.2005)

[6] Sun Microsystems. Connected Limited Device Configuration 1.1 - Specifica-
tion (JSR-139)
http://www.jcp.org/en/jsr/detail?id=139 (30.09.2005)

[7] Sun Microsystems. Wireless Messaging API WMA(JSR-120)
http://www.jcp.org/en/jsr/detail?id=128 (30.09.2005)

[8] Sun Microsystems. JavaTM APIs for BluetoothTM Wireless Technology (JSR-
82)
http://www.jcp.org/en/jsr/detail?id=82 (30.09.2005)

[9] Sun Microsystems. PDA Optional Packages for the J2METM Platform (JSR-
75 File Connection)
http://www.jcp.org/en/jsr/detail?id=75 (30.09.2005)

69

Bibliography

[10] Otto Kolsi. MIDP 2.0 Security Enhancements, Helsinki University of
Technology, 2004.
http://doi.ieeecomputersociety.org/10.1109/HICSS.2004.1265679
(30.09.2005)

[11] The Legend of Bouncy Castle. Bouncy Castle Cryptographic API
http://www.bouncycastle.org (30.09.2005)

[12] Forum Nokia.MIDP 2.0: Tutorial On Signed MIDlets
forum.nokia.com/ndsCookieBuilder?fileParamID=5075 (30.09.2005)

[13] B. Hopkins, R. Anthony. Bluetooth and Java, a!Press, 2004.

[14] The Netbeans IDE
http://www.netbeans.org (30.09.2005)

[15] Nokia 6630
http://www.nokia.com/nokia/0,8764,58711,00.html (30.09.2005)

70

