
Master’s Thesis

Quality of Service
for Multiplayer Game Provisioning

in Mobile Ad Hoc Networks

Dirk Budke

September 30, 2005

Tutors: Oliver Wellnitz wellnitz@ibr.cs.tu-bs.de
Károly Farkas farkas@tik.ee.ethz.ch

Supervisors: Prof. L. Wolf wolf@ibr.cs.tu-bs.de
Prof. B. Plattner plattner@tik.ee.ethz.ch

Erklärung

Ich versichere, die vorliegende Arbeit selbständig und nur unter Benutzung der
angegebenen Hilfsmittel angefertigt zu haben.

Zürich, September 30, 2005 Dirk Budke

Abstract

Real-time applications, especially real-time multiplayer games, are getting popu-
lar in mobile ad hoc environments as mobile devices and wireless communication
technologies are becoming ubiquitous. However, these applications have strict de-
mands on the underlying network, requiring low latency with a minimum of jitter
and packet loss. Therefore, Quality of Service (QoS) support from the network is
essential to meet the demands of real-time applications, which is a challenging task
in mobile ad hoc networks due to the high level of node mobility, properties of the
wireless communication channel and the lack of central coordination. Employing
a typical multiplayer game scenario, proactive as well as reactive routing protocols
for mobile ad hoc networks have been evaluated in a network simulator. The reac-
tive protocol AODV provides the best overall performance, however, latency and
jitter are still too high to meet the demands of multiplayer computer games.

In order to improve the performance of real-time applications, Quality of Ser-
vice extensions to the AODV routing protocol, the interface queue and the IEEE
802.11 MAC layer have been evaluated in this thesis. Besides common QoS ex-
tensions some new ones, such as real-time neighbour aware rate control, hop con-
strained queueing timeouts and MAC layer based neighbour detection have been
proposed. The QoS extensions have been implemented in the network simulator
NS-2 and in a test environment running Linux.

By gradually applying RTS/CTS adaption, priority queueing with timeouts and
real-time neighbour aware rate control combined with broken link detection and
backup routes, the performance of real-time multiplayer games has been improved
significantly and is more than five times better than without the QoS extensions.
For connections up to three hops the demands of real-time applications like multi-
player games are met in the employed simulation scenario using these QoS exten-
sions.

I

Kurzfassung

Echtzeitanwendungen und insbesondere Mehrbenutzerspiele mit Echtzeitanforde-
rungen in mobilen ad-hoc Umgebungen gewinnen durch die steigende Bedeutung
von mobilen, schnurlosen Kommunikationsgeräten immer mehr an Beliebtheit. Je-
doch stellen sie strikte Anforderungen an das zu Grunde liegende Netz, wie ge-
ringe Latenz, Jitter und minimaler Paketverlust. Auf Grund der hohen Mobilität
der Knoten, spezieller Eigenschaften der schnurlosen Datenübertragung und der
dezentralen Administration von mobilen ad-hoc Netzwerken, ist die Bereitstellung
der Dienstgüte eine große Herausforderung.

In dieser Arbeit wurden mit Hilfe des Netzwerksimulators NS-2 vier proaktive
und reaktive Wegewahlprotokolle in einem typischen Mehrbenutzerspielszenario
analysiert und miteinander verglichen. Dabei lieferte das reaktive Protokoll AODV
die besten Ergebnisse bezüglich Latenz, Jitter und Paketverlust.

Dennoch sind die erzielten Werte nicht ausreichend für Echtzeitanwendun-
gen. Daher wurden weitere Mechanismen zur Verbesserung der Dienstgüte auf
MAC-, Warteschlangen- und Wegewahlebene in den Netzwerksimulator NS-2 in-
tegriert und in einer Testumgebung unter Linux implementiert. Mit Hilfe von Prio-
ritätswarteschlangen mit Zeitüberschreitungs- und Mengenflusskontrolle, kombi-
niert mit dem Abschalten von RTS/CTS und der Bereitstellung von Ersatz-Routen
und Verbindungsunterbrechungserkennung auf MAC Ebene, wurde die Leistung
erheblich verbessert. Dadurch konnte die Dienstgüte für Echtzeitpakete soweit ge-
steigert werden, dass sie die Echtzeitanforderung von Mehrbenutzerspielen erfüllt,
falls die Daten nicht über mehr als drei Knoten weitergeleitet werden.

II

�������� �� ����� 	� �
 ��

	�������� ��
���� �� �� � ��� ��� ��� ��������� ��� �!"�� �#� �����

$%&' () %(*(+& ,'

- ./012 3456 789:9 7; <==> ?@A B7C/3:D0E2FGH2 1256 3 I J@K = ?L = M? N =<>=H2 125CO I J@K = ?L = M? N KM=APPP I 099 4 IQQEEE ;FR7;D: ;9 /S R: ;82Q
T765 ; U 7; V ; P6 15

H W B7C/3:D0E2FG X Y3:9 F9 /9 5 ./7 B29 7F2 R::Z:92[2 /38\2D032 7]2 7R/38 X T6:95CD 0 ==<M X =>@<= B7C/3:D0E2FG

^_`abcdefghi j k lmkn mokkp
qari`sgbctguuabi r va_ whg x `ctg_`_s ght

yz{|}~� �� ���� }�� ��� � z|~}� |{��� �{�� ����}�}��}�� }� � ��}|� �� ��� ��~�����
�g_igsgb `b

�g__b d`bw m hbr�_� m � h_� ^aw�g
x`t_ m�� _ m o�n�pp� j � `hu ¡ saw�g¢hs_ mdc mta�sc mwg

x�shug qw ��d �gtf�_�c `_g cgur��_i`bhcgw f h_gugcc �auth�e�£ bgtf�_�c d��£_hchbi �`_h�ac egtg_�ig�bg�ac ��shug wg�hdgc te`t `_g hbwg£gbwgbt �r `b¤ g¥ hcthbi bgtf�_�hbi hbr_`ct_adta_g `bw d`b sg cgt a£c£�bt`bg�acu¤m �ag t� wg�hdg ��shuht¤ teg bgtf�_� t�£�u�i¤ � `¤ �`_¤ r_g¦agbtu¤m qwwhth�b`uu¤j bgf b�wgc� `¤ g� g_ig `bw § �hb teg `w e�d bgtf�_� feg_g`c g¥ hcthbi b�wgc � `¤ �`bhce `t `b¤ th� g m ¨b �_wg_ t� cgbw£`d�gtc r_�� ` c�a_dg b�wg `uu `u�bi teg f`¤ £`cchbi cg�g_`u hbtg_� gwh`tg b�wgc t� ` wgcthb`th�b b�wg `_�athbi £_�t� d�u hc bggwgw te`t t`�gc wg�hdg ��shuht¤ `bw f h_gugcc bgtf�_� d�bwhth�bc hbt� `dd�abt m
xauth£u`¤g_ ©��£atg_ ª`�gc gb§ �¤ i_g`t £�£au`_ht¤ `bw f hte teg `w�gbt �r £�fg_rau � �shug wg�hdgc£ g�£ ug f�auw uh�g t� £u`¤ i`�gc achbi tegh_ � �shug wg�hdgc m «hbdg d��£atg_ i`�gc j hb £`_thdau`_ _g`u�th� g i`� gc e`�g ct_hdt wg�`bwc �b teg bgtf�_� j ¦a`uht¤ �r cg_�hdg ¬­�«® e`c t� sg £_��hwgw t� d�£g f hteab_guh`sug bgtf�_� d�bbgdth�bc j u�f s`bwf hwte j ehie u`tgbd¤ `bw uh� htgw wg�hdg _gc�a_dgc m
¯{�� �����}�~}��
«t`_thbi f hte ` d�uugdth�b �r bgtf�_�hbi _g¦ah_g� gbtc �r d����b �auth£u`¤g_ i`� gc j t¤£ hd`u i`� g cdgb`�_h�c ce�auw s g ��wguugw hb teg bgtf�_� ch�au`t�_ �«�o hbduawhbi ��shuht¤ `bw d���abhd`th�b £`ttg_bc mqrtg_f`_wc j tegcg cdgb`_h�c ce�auw s g ch�au`tgw g�£u�¤hbi ct`bw`_w `w e�d _�athbi £_�t� d�uc `c fguu
`c gbe`bdgw £_�t� d�uc £_��hwhbi r�_ ¦a`uht¤ �r cg_�hdg m °ehc `uc� hbduawgc teg ��wh±d`th�b �r g¥ hcthbi �_h�£ug�gbt`th�b �r bgf ­�« _�athbi £_�t� d�uc m °eg _gcautc �r teg ch�au`th�bc ce�auw s g g�`ua`tgw `i`hbctteg _g¦ah_g� gbtc �gbth�bgw sgr�_g m °eg _�athbi £_�t� d�uc te`t `de hg�g teg s gct `�g_`ig £g_r�_� `bdgce�auw s g h�£ug� gbtgw hb ²hba¥ `bw g�`ua`tgw hb ` tgct gb�h_�b� gbt m q d�bda__gbt �«�o ³ ²hba¥ h�£ug�� gbt`th�b hc £_grg__gw hr £ �cchsug m ´ hb`uu¤j `b hbtg_r`dg s gtfggb teg _�athbi £_�t� d�u `bw teg «¨µqx¶�r_`� gf�_� ce�auw s g c£gdh±gw `bw h�£ug� gbtgw t� gb`sug «¨µqx¶� achbi ­�« _�athbi `bw `ddgcchbigccgbth`u bgtf�_�hbi £`_`� gtg_c m
� hg ·{z�¸�}~ � �~� ¹{�~ º � ��{~� m � hg � hbfghcg »a_ �a_der vae_abi ��b «tawhgb� j x `ctg_� abw � h£u�� �`_s ghtgb `� ¨^µ chbw »a sg`detgb ¬chgeg ett£ ¡³³fff mhs_ mdc mta�sc mwg³uge_g³`_s ghtgb�e�ft�³® m
�z��{� ���~�||z�� z�� ¼�~��zz�� ½
¾_�r m � _ m ²`_c ¿�ur

� h£u m�¨br�_� m ¶uh�g_ ¿guub ht»

d`bw m hbr�_� m � h_� ^aw�g

Contents

Abstract I

Kurzfassung II

Task Description III

Contents V

1 Introduction 1
1.1 Mobile Ad Hoc Networks . 1
1.2 Focus of this Thesis . 3
1.3 Organisation of the Thesis . 3
1.4 Acknowledgements . 4

2 Fundamentals 5
2.1 Quality of Service . 5

2.1.1 QoS Mechanisms . 6
2.1.2 QoS Architectures . 7

2.2 Wireless Communication . 9
2.2.1 Medium Access Control 9
2.2.2 Wireless LAN IEEE 802.11 12

2.3 Routing Protocols for MANETs 16
2.3.1 Classification of Routing Protocols 16
2.3.2 Destination-Sequenced Distance-Vector 18
2.3.3 Optimized Link State Routing 21
2.3.4 Dynamic Source Routing 25
2.3.5 Ad Hoc On-Demand Distance-Vector 27
2.3.6 Comparison of Routing Protocols 30

2.4 QoS in MANETs . 34

V

CONTENTS MASTER’S THESIS

2.4.1 Challenges . 34

2.4.2 QoS Routing Protocols 35

2.4.3 QoS Frameworks . 37

2.5 Multiplayer Games . 39

2.5.1 Real-Time Game Architectures 39

2.5.2 Network Requirements of Real-Time Multiplayer Games . 40

2.6 Summary . 42

3 Design Concepts 43
3.1 Objective and Challenges . 43

3.2 AODV Enhancements . 45

3.2.1 Local Repair . 46

3.2.2 Backup Route . 46

3.3 Traffic Management . 47

3.3.1 Priority Queue . 48

3.3.2 Timeouts . 50

3.3.3 Real-Time Neighbour Aware Rate Control 51

3.4 MAC Layer Support . 52

3.4.1 Broken Link Detection 52

3.4.2 Neighbour Detection . 53

3.4.3 Signal Strength Monitoring 54

3.4.4 RTS/CTS Adaptation . 55

3.5 Summary . 55

4 Implementation 57
4.1 NS-2 Implementation . 57

4.1.1 AODV Enhancements 58

4.1.2 Traffic Management . 62

4.1.3 MAC Layer Support . 69

4.2 Available QoS Extensions in NS-2 72

4.2.1 Broken Link Detection 72

4.2.2 Local Repair . 72

4.2.3 RTS/CTS Adaptation . 73

4.3 QoS Extensions under Linux . 74

4.3.1 Priority Queue . 74

4.3.2 Broken Link Detection 79

4.3.3 Beacon based Neighbour Detection 81

VI

MASTER’S THESIS CONTENTS

4.3.4 Signal Strength Monitoring 83

4.4 Summary . 84

5 Evaluation 85
5.1 Simulation Environment . 85

5.1.1 Mobility Model . 86

5.1.2 Metrics . 87

5.2 Ad Hoc Routing Protocol Comparison 87

5.2.1 Simulation Settings . 87

5.2.2 Latency and Jitter . 88

5.2.3 Loss Rate . 89

5.2.4 Routing Overhead . 90

5.2.5 Summary . 91

5.3 Effects of the QoS Extensions 92

5.3.1 Simulation Settings . 92

5.3.2 Single Impact of the QoS Extensions 93

5.3.3 Combined Impact of the QoS Extensions 98

5.3.4 Summary of the Overall Impact Using QoS Extensions . . 102

5.4 Further Simulation Results . 103

5.4.1 Broken Link Detection 103

5.5 Test Environment . 104

5.6 Summary . 104

6 Conclusions and Outlook 107
6.1 Conclusion . 107

6.2 Outlook . 110

Appendix 113

A Network Simulator NS-2 115
A.1 OTcl Simulation Scripts . 116

A.1.1 Node Mobility . 117

A.1.2 Traffic Generation . 117

B AODV-UU Overview 119
B.1 Important Macros . 119

B.2 Packet Processing of AODV-UU in NS-2 120

B.2.1 Route Request Processing 120

VII

CONTENTS MASTER’S THESIS

B.2.2 Route Reply Processing 121
B.2.3 Route Discovery . 121
B.2.4 Timer Management . 122

C CD-ROM 123

Bibliography 125

VIII

Chapter 1

Introduction

Online real-time applications such as multiplayer games have become very popu-
lar recently and are a big business in today’s Internet expecting increasing revenue.
Real-time multiplayer games share the common property that the information, for
instance, the game character movements have to be delivered as fast as possible to
the counterparts for a smooth game control. If this data is delayed and arrives too
late the game is not playable any more. Thus, real-time applications like multi-
player computer games have strict demands on the underlying network and require
low latency connections.

1.1 Mobile Ad Hoc Networks

With the constantly increasing amount of powerful mobile devices, such as PDAs,
laptops and mobile phones with wireless networking support, real-time applica-
tions and in particular multiplayer computer games in wireless environments are
gaining much interest. Even though wireless networking infrastructure, such as
base stations or access points, might not be available, various heterogeneous mo-
bile devices can connect to each other setting up spontaneously a self-organising
mobile wireless multihop ad hoc network (MANET) that does not rely on any ex-
isting infrastructure.

However, wireless ad hoc networking reserves several challenges mainly due
to the mobility of the nodes, limited device resources, properties of the wireless
channel and the lack of central coordination. Since the mobile nodes can move
around, the wireless network’s topology may vary frequently and unpredictably.

Additionally, new nodes may emerge and join the MANET, whereas existing
nodes may vanish at any time. Therefore, it is difficult to provide an up-to-date

1

CHAPTER 1 INTRODUCTION

global state of the wireless network topology. In particular, the properties of the
wireless channel can change arbitrarily resulting in unreliable connections with
low bandwidth and high latency making it very difficult to deliver real-time traffic.
The nodes participating in such a network need not be directly in the transmission
range of each other still being able to communicate because every node can act as
both, an end host and a router at the same time, which allows the transmission of
messages via multiple hops. The routing protocol, which is needed to acquire a
route from the source to the destination node via multiple hops, must cope with
these challenges. In addition, it has to be able to satisfy the Quality of Service
requirements of real-time applications as well. Hence, Quality of Service provi-
sioning in mobile wireless ad hoc networks is even more difficult than in wired
networks because of, among others, arbitrary mobility, unreliable wireless links,
signal fading and interference and the used channel access mechanisms. Thus,
meeting the applications’ demands in MANETs is very challenging and has been
an open on-going field of research in the last couple of years.

MANETs can be employed in a broad variety of scenarios with either little or
no communication infrastructure or when the existing infrastructure is too expen-
sive or has been destroyed for instance, in a natural disaster such as earthquakes,
tsunamis and hurricanes. In that case, the rescue team must be able to set up a
new communications network in an ad hoc manner to conduct disaster recovery as
quickly as possible.

Besides disaster recovery and military applications, MANETs are gaining much
popularity in daily life. People would like to have an easily and quickly deployable
network to exchange data or distribute a virtual whiteboard, for instance in interac-
tive lessons or business meetings. In particular, multiplayer games are a promising
application of MANETs, for example, when travelling or at the schoolyard. With
the widespread use of powerful mobile devices people would like to play multi-
player games without the hassle of installing a game or the burden of setting up
any networking infrastructure. To deal with these challenges a distributed ser-
vice provisioning framework called SIRAMON [1] is currently developed at ETH
Zurich [2] that provides for description, indication, deployment and management
of services in MANETs.

2

1.2 Focus of this Thesis CHAPTER 1

1.2 Focus of this Thesis

In this thesis, common Quality of Service extensions, such as priority queueing,
backup route, broken link detection, etc. are analysed and evaluated, and some
new ones, such as real-time neighbour aware rate control and hop constrained
queueing timeouts are proposed to ad hoc routing in IEEE 802.11 [3] mobile ad
hoc networks, focusing on the requirements of real-time applications, specifically
real-time multiplayer computer games. As the starting point of the work, the Ad

Hoc On-Demand Distance-Vector (AODV) [4] routing protocol has been selected
because this protocol had shown the best initial performance in simulations com-
pared to some other ad hoc routing protocols. However, the end-to-end communi-
cation delay and delay jitter experienced using AODV are still too high to meet the
demands of multiplayer computer games. In order to improve the performance of
AODV for real-time applications, enhanced congestion handling and coping with
mobility and the unreliable wireless channel properties are required. Thus, in this
thesis, following a cross-layer design, the following Quality of Service mecha-
nisms have been used: (1) Quality of Service extensions to AODV such as local
repair, backup route; (2) Traffic management mechanisms like priority queueing,
timeouts, real-time neighbour aware rate control; and (3) MAC (Medium Access
Control) layer support mechanisms such as broken link detection, signal strength
monitoring, neighbour detection, RTS/CTS (Ready To Send/Clear To Send) adap-
tation.

1.3 Organisation of the Thesis

The outline of this thesis is organised as follows: Chapter 2 provides the neces-
sary background on Quality of Service, wireless communication, ad hoc routing,
Quality of Service in MANETs and multiplayer computer games. Then, selected
Quality of Service extensions targeting at Quality of Service provisioning for mul-
tiplayer games are presented and discussed in Chapter 3. An overview of the im-
plementation of the Quality of Service extension in the network simulator NS-2 [5]
and in a real test environment is given in Chapter 4. Chapter 5 shows the perfor-
mance results of the routing protocol comparison and Quality of Service extensions
in a typical multiplayer game scenario. Chapter 6 concludes the thesis and presents
an outlook for future work.

3

CHAPTER 1 INTRODUCTION

1.4 Acknowledgements

I would like to express my sincere gratitude to all people that have supported me
during this master’s thesis. Especially, I would like to thank:

Prof. L. Wolf and Prof. B. Plattner who made it possible for me to conduct this
master’s thesis in collaboration with ETH Zurich

Károly Farkas and Oliver Wellnitz for advising and supporting me

Florian Maurer for excellent teamwork and teaching me some Swiss German

Frank Lamm for proof-reading

My family and in particular my girlfriend Uschi Lindert.

4

Chapter 2

Fundamentals

This chapter provides the reader with the essential background information. Qual-
ity of Service principles and architectures commonly employed in wired networks
and the Internet are introduced in Section 2.1. The challenges in wireless com-
munications and in particular problems faced in IEEE 802.11 wireless networks
are addressed in Section 2.2. Next, Section 2.3 introduces four popular routing
protocols for MANETs. Afterwards, existing Quality of Service approaches for
MANETs are described in Section 2.4 and finally, the last section of this chapter
presents the characteristics and requirements of real-time multiplayer games.

2.1 Quality of Service

Various types of popular networked applications have emerged in the past couple
of years with different demands on the network, such as delay, jitter, bandwidth
and reliability.

Delay: determines the end-to-end time it takes to transmit a packet from the source
to the destination. This is often called latency as well. It is important to
distinguish between end-to-end delay and round-trip time (RTT) delay which
measures the time it takes to send a packet to the destination and back to the
source. In particular in wireless networks, the delay might not be symmetric
and a connection can experience a higher delay in one direction than in the
other direction.

Jitter: describes how much the packets vary in latency and is determined by cal-
culating the standard deviation of latency.

5

CHAPTER 2 FUNDAMENTALS

Bandwidth: defines the maximum amount of data the network is able to transmit
within a certain time frame.

Reliability: specifies to which degree the network prevents transmission errors
and thus garbled packets.

The aim of Quality of Service (QoS) provisioning is to assure that these QoS
requirements are met by the network. Table 2.1 illustrates typical networked ap-
plications and their Quality of Service demands (low: - , medium: ◦, high: +)
grouped into three categories: (1) high reliability, (2) minimal jitter and (3) high
demands on latency and jitter. The first five applications require a strictly reliably
transport mechanism, for example, transmission errors during a file transfer session
yielding in a compromised copy of the transferred file are not acceptable. Audio
and video streaming applications demand very low jitter while reliability is of less
importance. Interactive real-time applications such as IP telephony and video con-
ferencing have high demands on both delay and jitter but can cope with garbled
packets to some extent. Real-time multiplayer games have similar demands but are
more sensitive to garbled packets.

Application Delay Jitter Bandwidth Reliability

E-Mail - - - +

File Transfer - - ◦ +

Web ◦ - ◦ +

Remote Access ◦ ◦ - +

Chat ◦ ◦ - +

Audio streaming - + ◦ -

Video streaming - + + -

Voice over IP + + - -

Video Conference + + + -

Multiplayer Games + + - ◦

Table 2.1: Typical Requirements of Popular Networked Applications

2.1.1 QoS Mechanisms

The most general and currently most common approach to allow for QoS in wired
networks is over-provisioning. Similar to the telephone system more resources

6

2.1 Quality of Service CHAPTER 2

are made available as generally consumed by employing commodity high perfor-
mance interconnects. The following well-known QoS mechanisms are frequently
employed in wired networks to meet specifically the QoS demands of networked
applications.

Buffering: to cope with applications that are sensitive to jitter but do not have
stringent delay requirements, such as video or audio streams, buffering the
data at the receiver is very effective.

Priority Queueing: at various layers of the protocol stack, queues are employed
for buffering packets. When using a priority queue, traffic with specific de-
mands, for example on latency, can be handled differently by the queue,
giving it a higher priority.

Traffic Shaping / Rate Control: the idea of traffic shaping is to prevent for traffic
bursts and to limit the maximal bandwidth data flows are allowed to con-
sume, by employing the Leaky Bucket Algorithm (LBA) [6], for instance.

Admission Control: before a new connection can be established it has to pass an
admission controller that determines whether enough resources are available
and accepts or rejects the connection, respectively.

Resource Reservation: before the application starts its data stream transmission
it reserves required resources in the network at each node that is used to carry
the stream, for example using the Resource Reservation Protocol (RSVP) [7].

Multipath Routing: if redundant links to the destination are available these are
used concurrently for data transmission, either to increase reliability or band-
width.

2.1.2 QoS Architectures

In the Internet two different QoS architectures are widely employed for network
traffic engineering. They can be classified into stateful, reservation-oriented or
stateless QoS architectures. A stateful QoS architecture reserves resources at ev-
ery node the data flow passes through employing a resource reservation protocol. A
stateless QoS architecture classifies every packet into different categories depend-
ing on its QoS demands and is handled using only local network state information.
Thus, intermediate nodes do not keep per-flow state information as in stateful QoS
architectures. Both approaches are briefly described in the following two sections.

7

CHAPTER 2 FUNDAMENTALS

Flow based Integrated Services

With IntServ, the user negotiates a Service Level Agreement (SLA) describing the
demands of the application on the underlying network and type of traffic. Then the
host requests a particular Quality of Service which might be granted or denied by
the network. For each flow, resources according to the SLA are reserved at every
intermediate node along the path from the source to the destination before the data
flow starts using RSVP. Thereby, a virtual circuit with sufficient available resources
is established to allow for QoS guarantees. However, all packets referring to the
same flow have to be sent along the same path to benefit from resource reservation.
If multipath routing is used then for each path resources have to be reserved.

Class based Differentiated Services

Central components of Class based Differentiated Services (DiffServ) are traffic
classifiers, traffic shaping and queueing components that support different Per-Hop
Behaviour (PHB). Data packets are classified into different traffic streams by the
traffic classifiers. Depending on the DiffServ Code Point (DSCP) field in the IP
header the appropriate PHB is selected to further process the packet. Expedited
Forwarding [8], for instance, defines two classes, high and low priority. Assured
Forwarding [9] defines four priority classes and three discard probabilities result-
ing in 12 classes. The advantages of DiffServ are that no resource reservation and
end-to-end flow negotiation have to be carried out. Furthermore, it is easy to im-
plement, stateless and does not require intermediate nodes to manage single flows.
Since the differentiation is done at the network layer replacing the original Type

of Service (TOS) field in IPv4 or traffic class byte in IPv6 with the DSCP field, it
is independent of the underlying network technology. However, DiffServ does not
provide strict QoS and allows only for probabilistic QoS guarantees.

8

2.2 Wireless Communication CHAPTER 2

2.2 Wireless Communication

Wireless networks allow for convenient and flexible mobile communication. Fur-
thermore, setting up new wireless networks is often much cheaper than wired net-
works and also easily and very quickly deployable. IEEE 802.16 Wireless In-

teroperability for Microwave Access (WiMAX) [10] has been gaining much in-
terest recently for providing wireless technology to Metropolitan Area Networks

(MAN). In the case of Wireless Local Area Networks (WLAN) IEEE 802.11 [3]
dominates the market and for wireless Wireless Personal Area Networks (WPAN)
IEEE 802.15 Bluetooth [11] has become widespread. In the following sections, the
issues that come along with wireless communications that make QoS provisioning
rather difficult are introduced and the popular WLAN standard IEEE 802.11 that
has been used throughout this thesis is highlighted.

2.2.1 Medium Access Control

Wireless communication faces the challenge of sharing the same wireless medium
with several nodes. Thus, an efficient Medium Access Control (MAC) strategy is
required, that prevents multiple nodes from using the same resources simultane-
ously, which causes collisions and garbled packets. Common MAC protocols for
wireless networks can be categorised as schedule or contention based protocols. In
a schedule based protocol every node has a fixed time slot to transmit data. If the
node does not send data at the particular time slot bandwidth is wasted. When the
contention based protocol Carrier Sense Multiple Access (CSMA) is employed,
the node senses if the channel is free before it starts its transmission. However, the
sender does not know about concurrent transmissions and resulting interference at
the receiving node, which gives rise to the well-known hidden terminal and ex-

posed terminal problems [6]. The most popular contention based protocol hence is
Distributed Coordination Function (DCF) that extends CSMA with a hand-shake
protocol to prevent the hidden terminal problem.

Hidden Terminal Problem

Figure 2.1 illustrates the hidden terminal problem. Node A and C are out of trans-
mission range of each other and A sends packets to B. Before C is going to start
its transmission to node B as well it senses if the medium is available. Since it
will not hear node A, it will falsely conclude that the channel is free and start its
transmission to node B, resulting in garbled packets sent by A. Thus, the cause of

9

CHAPTER 2 FUNDAMENTALS

Figure 2.1: Hidden Terminal Problem

Figure 2.2: Exposed Terminal Problem

the hidden terminal problem is that a sender does not know about other competitors
that are out of transmission range and transmitting to the same destination.

Exposed Terminal Problem

In the exposed terminal scenario depicted in Figure 2.2 node B is transmitting
to node A and node C is going to send to node D, whereas B and C are within
transmission range of each other. Node C senses the medium and falsely concludes
that the transmission to node D will interfere with the data sent by node B and thus
will not start its transmission. However, the two transmissions will not interfere at
the receiver nodes A and D. In contrast to wired communication where the signals
are propagated to all stations, multiple transmissions can occur at the same time
without interference in short-range wireless communication as long as any two
nodes do not transmit to the same node.

10

2.2 Wireless Communication CHAPTER 2

Carrier Sense Multiple Access with Collision Avoidance

To overcome the hidden terminal problem, CSMA / Collision Avoidance (CSMA/CA)
has been introduced. Figure 2.3 illustrates the basic principle of CSMA/CA. Node
B and D would like to transmit to node C resulting in a potential collision, as de-
picted in Figure 2.3. Before node B starts transmission to C a short Ready to Send
frame RTS containing the required data transmission time is broadcast to node C.
Node A also receives the RTS and knows that it is next to node B that requests
permission to send to node C. Node D is out of transmission range and does not re-
ceive the RTS. Node A remains silent long enough that C can send a Clear to Send
frame CTS. Any station that hears the CTS is close to node C and remains silent
for the duration of the data transmission from node B to node C. In this case node
A is not in transmission range of C and does not receive the CTS which allows A
to transmit in parallel without interfering with the data sent by node B. Node D,
however, receives the CTS and waits until the data transmission has been finished
before sending any packets and thus avoiding the hidden terminal problem. The
exposed terminal problem in the scenario in Figure 2.2 is solved as well. However,
in general the exposed terminal problem is intensified by the use of RTS/CTS as
explained in [12]. A node that hears a CTS will not reply to an RTS and waits until
the communication has finished before transmitting its own CTS even though the
parallel communication would not have interfered with the previous one.

Figure 2.3: Ready to Send (RTS) and Clear to Send (CTS)

Furthermore, collisions can still occur when two nodes send RTS frames con-
currently. In this case both senders wait a random timeout using a binary exponen-
tial backoff algorithm and then try again. It is important to notice that, on the one
hand, the hidden terminal problem is alleviated by RTS/CTS when sending packets
that are bigger than a certain threshold and there are many interfering nodes [13],
although, it still remains for RTS frames. On the other hand, RTS/CTS introduces

11

CHAPTER 2 FUNDAMENTALS

Figure 2.4: IEEE 802.11 Protocol Stack

a non-neglectable overhead to CSMA.

2.2.2 Wireless LAN IEEE 802.11

The IEEE 802.11 wireless LAN family [3] is very popular and widespread used for
instance, at private homes, offices, airports, hotels and universities. It can operate
in two modes, such as infrastructure or Basic Service Set (BSS) mode employ-
ing access points and the ad hoc or Independent Basic Service Set (IBSS) mode
forming an ad hoc network depending on no further infrastructure.

Figure 2.4 illustrates the IEEE 802.11 protocol stack. At the physical layer,
IEEE 802.11 defines several different transmission techniques, whereas the most
commonly employed are High Rate / Direct Sequence Spread Spectrum (HR-DSSS)
in IEEE 802.11b that provides up to 11 Mbit/s and Orthogonal Frequency Division
Multiplexing (OFDM) in IEEE 802.11g delivering up to 54 Mbit/s transmission
rate. Furthermore, the transmission rate adapts to the wireless signal quality and
in case of IEEE 802.11b the bit rate is reduced from 11 Mbit/s to 5.5, 2, 1 Mbit/s
when the link quality degrades and many packets have to be retransmitted.

In IEEE 802.11 networks, the data link layer known from the OSI reference
model is split into two separate sub-layers, the Medium Access Control (MAC)
layer and the Logical Link Control (LLC) layer. The MAC layer controls the access
to the shared medium and the LLC layer hides the peculiarities of the different
IEEE 802 protocols and provides a unique interface to the network layer that allows
for simple bridging from wireless to wired networks.

The IEEE 802.11 MAC layer supports two medium access modes, such as the
Distributed Coordination Function (DCF) used in ad hoc and infrastructure mode
and the Point Coordination Function (PCF) that is only used in infrastructure mode.
In the case of DCF, CSMA with Collision Avoidance (CSMA/CA) is used to share
the radio channel in a fair way. It provides physical channel sensing via CSMA

12

2.2 Wireless Communication CHAPTER 2

and virtual channel sensing via RTS/CTS. Since wireless networks are very noisy
and unreliable each unicast data frame is confirmed by ACK frames on the MAC
layer to cope immediately with lost frames and collisions instead of handling this
on the transport layer.

Figure 2.5 illustrates how a node acquires the channel and transmits a data
packet. Before a node can acquire the channel it has to wait for a time slot DCF
Inter Frame Spacing (DIFS). If the medium is free it can start its transmission.
During the communication both nodes have to wait a Short Inter Frame Spacing
(SIFS) before they are allowed to transmit their frames. Other nodes are deferred
from sending and maintain a Network Allocation Vector (NAV) to indicate that the
channel is busy.

Figure 2.5: IEEE 802.11 DCF Contention using RTS/CTS

Ad Hoc IBSS Mode

In contrast to infrastructure mode, where only the access point sends BEACON

management frames, the first active ad hoc node establishes an IBSS and starts
sending BEACONs, which are needed to synchronise the nodes and maintain the ad
hoc network. Other ad hoc nodes can join the network after receiving a BEACON

and accepting the IBSS parameters found in the beacon frame if they have the
same Service Set Identifier (SSID) and thus belong to the same ad hoc network.
All nodes that join the ad hoc network must send a BEACON itself if they do not
hear one from another node after the beacon interval and a short random timeout.
The random timeout minimises the concurrent transmission of multiple BEACONs
from several nodes. After receiving a BEACON, each node updates its local internal
clock with the time-stamp found in the BEACON. This allows an ad hoc network
to be partitioned if the connectivity is broken as well as to be merged.

13

CHAPTER 2 FUNDAMENTALS

Quality of Service in IBSS

IEEE 802.11b IBSS employs DCF to share the channel in a probabilistically fair
way among the nodes. However, there is no guarantee that a node can transmit
at a certain data rate or within a certain time interval. Moreover, the actual bit
rate might be much lower than the maximum 11 Mbit/s due to a weak signal and
the bit rate adaption mechanism, mentioned before. As a result the performance
of other nodes that are still transmitting at a higher rate, for instance 11 Mbit/s,
is considerably degraded due to the CSMA channel access method that allows for
an equal channel access probability for all hosts. A host transmitting a frame at
1 Mbit/s acquires the channel for a longer time and thus, penalises other nodes
that are still running at 11 Mbit/s. Effectively the data rate is limited even below
1 Mbit/s. Furthermore, when just taking the SIFS and DIFS timeouts into account
the maximum theoretical throughput at MAC-Layer is limited to a maximum of
7.74 Mbit/s [14]. Thus, DCF just provides best-effort type of service and does not
guarantee any Quality of Service neither bandwidth nor latency.

There are attempts to add QoS to 802.11 by tweaking the DIFS timeouts. The
IEEE 802.11e draft [15] introduces two new coordination functions, such as a de-
centralised Enhanced DCF (EDCF) for ad hoc networks and a centralised Hybrid
Coordination Function (HCF). Furthermore, IEEE 802.11e defines Traffic Classes

(TC) by prioritising the traffic into classes with short (higher priority) or longer
(lower priority) inter frame spacings. This way, nodes with a shorter inter frame
spacing have a higher probability to access the channel than others. Email traffic
for instance could be assigned a low priority and multiplayer games a high pri-
ority TC. In particular for real-time traffic, latency and jitter can be significantly
reduced. On the other hand, IEEE 802.11e puts an additional overhead and re-
duces the overall throughput by 30 % as reported in [16]. Besides, still no strict
QoS is guaranteed since IEEE 802.11e just provides a probabilistic QoS service.

In [17] the authors mention that IEEE 802.11b suffers from grey zones that ex-
ist at the border of the transmission range where the reception of packets is very
unreliable as illustrated in Figure 2.6. The AODV routing protocol, for example,
uses broadcast HELLO messages for neighbour link management. Broadcast mes-
sages are transmitted with a lower data rate at 1 Mbit/s in contrast to data packets
and do not require an ACK frame. Furthermore, HELLO messages are very small
packets. Thus, HELLO messages have a much higher probability to be received
successfully at the destination than data packets. Node A and B exchange HELLO

messages and node A adds node B to its neighbour list. Next, node A starts data

14

2.2 Wireless Communication CHAPTER 2

Figure 2.6: IEEE 802.11b Gray Zones

transmission to another node and uses B as the next hop. However, the packet will
not arrive at B. If node A just relies on HELLO messages for broken link detection
it will not recognise the broken link and after some retransmissions the packets are
lost. Even if node A gets feedback from the link layer about excessive retransmis-
sions the link will be marked as broken just for a short time until A receives the
next HELLO from node B. Two mechanisms have been proposed in [17] to cope
with grey zones.

Exchanging Neighbour Sets: nodes include their current neighbour set into HELLO

messages. Thereby, the receiver of a HELLO message can detect whether the
link is bidirectional or not.

Signal Strength Threshold: the signal quality of routing control messages is re-
trieved from the MAC layer and compared to a threshold. If the signal quality
is too low the message is discarded.

15

CHAPTER 2 FUNDAMENTALS

Figure 2.7: Node Mobility Changes Network Topology

2.3 Routing Protocols for MANETs

The wireless transmission range of a node is limited, thus, two nodes that are out of
transmission range cannot directly interact with each other. To overcome this, ev-
ery node participating in a cooperative MANET acts as a router and relays packets
for other nodes in contrast to networks that are based on existing infrastructure. In
order to send packets to nodes that are not within its vicinity, a routing algorithm
running at each node provides a means to select the next hop along the path to
the destination. However, due to the nodes’ mobility the topology of the network
may vary abruptly and a new path to the destination is required as illustrated in
Figure 2.7. As node 2 moves towards the destination D the link to node 1 and thus
the path S-1-2-D breaks. The routing protocol has to deal with changes in topol-
ogy and provide for intact routes. In this scenario the routing protocol determines
S-1-3-2-D as the new path.

In this section, basic routing mechanisms for ad hoc networks are introduced
and four popular routing protocols that have been employed in network simulations
are explained.

2.3.1 Classification of Routing Protocols

Many routing protocols optimised for mobile wireless ad hoc networks emerged
recently and they can be classified into topology-based and location-aware pro-
tocols. In this thesis, the focus is on topology-based protocols that make routing
decisions based on a logical model of the network. The topology-based protocols
can be further divided into proactive (table-driven), reactive (on-demand), hybrid
and hierarchical algorithms [18], as illustrated in Figure 2.8.

16

2.3 Routing Protocols for MANETs CHAPTER 2

Figure 2.8: Classification of MANET Routing Protocols

Proactive Routing Protocols

Proactive or table-driven routing protocols hold entries specifying the next hop to
all known nodes in their routing table. Thereby, the entire network topology is, in
theory, known to all nodes. Routing messages are exchanged among the nodes pe-
riodically to update their routing tables. Depending on how significant the topology
changes are, either full scale or incremental update messages are sent. Since a route
to all nodes in the network is maintained in the routing table, data packets do not
experience any additional delay and can be forwarded instantly. On the other hand,
the periodic maintenance of routes, in particular to nodes towards no packets are
currently sent, induces a certain overhead. Popular examples of proactive routing
protocols are Destination-Sequenced Distance-Vector (DSDV) [19] and Optimized

Link State Routing (OLSR) [20].

Reactive Routing Protocols

Reactive or on-demand routing protocols consist of two basic mechanisms, Route

Discovery and Route Maintenance. Global broadcast messages are applied to dis-
cover a route on-demand. If a node S would like to send packets to node D it
primarily has to obtain a route to the destination and starts the Route Discovery
process. A route request message RREQ is disseminated throughout the ad hoc
network. When it reaches the destination node D, it sends a route reply message
RREP to the originator of the RREQ. As soon as node S receives the RREP a route
has been established and it can begin with the transmission of data packets to node
D using that route. Since the topology of a wireless ad hoc network can be very

17

CHAPTER 2 FUNDAMENTALS

dynamic reactive protocols provide a means for Route Maintenance to propagate a
broken link to affected nodes. Typically, route error RERR messages are sent to the
concerned nodes. On the one hand, reactive routing protocols tend to require less
routing overhead than proactive protocols because of the on-demand route discov-
ery. No routing packets are exchanged for routes that are not currently in use. On
the other hand, they take additional time to discover a new route and thus suffer
from higher delays before starting the actual data transmission. Popular examples
of reactive routing protocols are Ad Hoc On-Demand Distance-Vector (AODV) [4]
and Dynamic Source Routing (DSR) [21].

Hybrid Routing Protocols

Hybrid routing protocols attempt to combine the best practises from both approaches
using proactive and reactive techniques. Hybrid routing has been implemented in
the Zone Routing Protocol (ZRP) [22, 23] where the nodes that are reachable within
a certain hop-distance belong to a Routing Zone. Within this zone, a proactive rout-
ing algorithm is employed and for communication outside the routing zone nodes
use a reactive protocol.

Hierarchical Routing Protocols

In Hierarchical routing protocols, nodes are grouped together building a backbone
of the network that consists of several groups. When a node sends data outside
its own group, the packet is first forwarded to the destination’s group and then
delivered to the destination. Thus, the actual path to the destination need not be
known, just a path to the group. This reduces the routing overhead and hierarchical
protocols provide a scalable architecture for very large ad hoc networks. Popular
routing protocols based on hierarchical routing are Core Extraction Distributed Ad

hoc Routing (CEDAR) [24] and LANMAR [25].

In the following sections, four popular reactive and proactive routing protocols
are discussed. In Chapter 5, these protocols have been compared and evaluated in
a typical multiplayer game scenario.

2.3.2 Destination-Sequenced Distance-Vector

Destination-Sequenced Distance-Vector (DSDV) [19] is one of the first proactive
distance-vector routing protocols in particular targeting MANETs. It is based on

18

2.3 Routing Protocols for MANETs CHAPTER 2

the classical Distributed Bellman-Ford algorithm (DBF) [26] that is widely em-
ployed in the Internet and known as the Routing Information Protocol (RIP) [27].

Basic Algorithm

For each destination node x every node i manages a set of distances Dij(x) whereas
j are the neighbours of i. Node i chooses neighbour k as the next hop for packets
to x if Dik(x) = min(Dij(x)) for all neighbours j of node i. Following this strat-
egy the packet is sent along the shortest path to the destination. In order to have an
accurate state of the distances each node periodically broadcasts to its neighbours
the routing table containing the estimated shortest path to every other node in the
network.

Figure 2.9: Basic Distance-Vector Al-
gorithm with Distances to Node D,
Step 1

Figure 2.10: Basic Distance-Vector Al-
gorithm with Distances to Node D,
Step 2

Figure 2.9 and 2.10 illustrate the concept of the distance-vector protocol. In
the example, every link is marked with the distance to node D. In the beginning in
Figure 2.9, it takes 3 hops for node S to send a packet to node D using the path S-
6-5-D. As node 6 moves towards node D as depicted in Figure 2.10 two new links,
6-3 and 6-D, are established after 3 and D sent their routing tables. Then, node
6 broadcasts to its neighbours its own new routing table as depicted in Table 2.2.
As a result, node S updates its routing table as well. Since the new route to D just
takes 2 hops it will choose S-6-D as the new path. Until the next periodic update,
node 1 does not know about the link change and still assumes that it takes 4 hops
to node D. The nodes determine the shortest path in a completely distributed way
without additional coordination but the basic DBF algorithm mainly suffers from
two problems and need to be adapted to properties of MANETs:

Routing Loops: As the topology of the network changes, nodes make routing de-
cision based on stale and thus incorrect information and routing loops oc-

19

CHAPTER 2 FUNDAMENTALS

Destination Hops

6 0

D 1

1 2

2 2

3 1

4 2

5 1

Table 2.2: Routing Table of Node 6

cur. Packets are forwarded in a loop until the maximal hop count has been
exceeded without ever reaching the destination. Additional centralised co-
ordination among the nodes to avoid routing loops is no option because the
network topology can change rapidly in MANETs.

Count-to-Infinity: Assume the link between node S and 6 in Figure 2.9 breaks,
thus node S will not receive the routing table from node 6 any more but still
from node 1. Since node 1 claims to have a route to D with 4 hops, node
S will change its hop count to 5 to account for the additional hop from 1
to S. In the next turn, node 1 receives the updated hop count from D and
increments it to 6 and so forth, until counting to ∞.

Route Management

DSDV works as DBF but takes some precaution to cope with routing loops and the
count-to-infinity problem. It basically marks routes with sequence numbers to dis-
tinguish fresh from stale routes. Each node increments its own sequence number
and broadcasts periodically route advertisements to the neighbours containing the
distance and current sequence number of all known nodes. Always, routes marked
by more recent sequence numbers are preferred. If two routes have the same se-
quence number, the route with the smaller metric such as the number of hops is
chosen. Due to the periodic updates and the fact that fresher links are preferred,
it might happen, that the next hop to a particular node oscillates as illustrated in
Figure 2.11.

Regarding node D, the intermediate node I has the current hop count of 3 and
sequence number 41 in its routing table. Thus, node S can send message to the
destination via 4 hops. Next, node I receives the advertisements from node 1 which

20

2.3 Routing Protocols for MANETs CHAPTER 2

Figure 2.11: Oscillation of Links in DSDV

has a higher sequence number to D and thus is preferred. Therefore, the hop count
is set to 4 and propagated to S which sets the hop count to 5. However, the next
update from node 4 propagates the smaller hop count to I and then to S again. If
the timeouts between the periodic advertisements are high enough the link change
might oscillate. To cope with fluctuation of routes an average settling time for each
route has been introduced. When a node receives new routing information it waits
some seconds, before advertising the new route to prevent for route fluctuation.

When a node receives considerably modified routing information, for instance
due to broken links or change of network topology, this is broadcast to the neigh-
bours immediately. Additionally, the hop count is set to ∞ and the sequence num-
ber is increased. When a node receives a route with a ∞metric and it is aware
of a fresh route, that is a route with a higher sequence number, it propagates this
quickly to its neighbours. Incremental routing updates, containing only changes
since the last full update, are employed to keep routing message overhead at a min-
imum. Furthermore, packets are queued for a specific amount of time if currently
no route to the destination is available. The routing table at each node lists all avail-
able destinations with their number of hops as depicted in Table 2.3. Each routing
table entry is tagged with a sequence number generated by the destination and a
time-stamp when the route had been installed or updated.

Destination Hops Time-stamp Sequence Number

D 3 123 42

Table 2.3: Structure of DSDV Routing Table

2.3.3 Optimized Link State Routing

Optimized Link State Routing (OLSR) specified in the experimental RFC 3626 [20]
is a proactive table-driven routing protocol based on the classical link state algo-
rithm [6]. In link state routing each node periodically broadcasts link state mes-

21

CHAPTER 2 FUNDAMENTALS

sages containing the list of neighbours. The messages are flooded throughout the
network and every node creates a graph with the entire topology of the network.
Next, each node runs Dijkstra’s shortest-path [28] algorithm and stores the results
in its routing table. OLSR attempts to optimise and reduce the routing overhead
caused by flooding. OLSR improves the classical link state algorithm by selecting
particular intermediate nodes to reduce the amount of broadcast routing traffic that
has to be flooded through the entire network. Due to these optimisations OLSR is
in particular suitable for large and dense mobile wireless ad hoc networks. As a
MANET routing protocol OLSR does not require reliable connections and in-order
delivery of routing control messages.

Multipoint Relay Nodes

In particular in wireless networks, the classical link state routing algorithm suf-
fers from high overhead induced by needlessly retransmitted link state information
called traffic control TC messages. OLSR attempts to minimise the routing over-
head caused by flooding TCs by selecting special Multipoint Relay (MPR) nodes,
which forward the link state messages. To prevent for routing loops and to make
sure that nodes can distinguish between stale and fresh link states, every TC carries
a sequence number. Figure 2.12 illustrates the classical link state flooding. Node S
broadcasts the link state information to its neighbours. Next, every blue node for-
wards the message reaching the green nodes which forward the message as well.
However, not all messages are necessary to make sure that every node receives the
TC.

In contrast, OLSR employs MPR nodes to reduce the amount of needlessly
retransmitted TCs as depicted in Figure 2.13. Node S broadcasts the TC to its
neighbours. Since node I is not an MPR node it does not forward the message.
The same holds for the green nodes. Only MPR nodes forward broadcast TCs to
flood the network yielding in less routing messages. In particular in larger networks
this approach can reduce significantly the amount of redundantly transmitted TCs.
However, the nodes have to distributedly determine an optimal set of MPRs under
the condition that every node has at least one MPR as a neighbour or is an MPR it-
self. It has been shown in [29] that calculating the optimal set of MPRs, which form
a dominating set [30], is an NP-complete [31] problem. Therefore RFC 3626 [20]
suggests a heuristic for the calculation of the MPR set.

22

2.3 Routing Protocols for MANETs CHAPTER 2

Figure 2.12: Flooding in Classical Link
State Routing

Figure 2.13: Optimised Flooding based
on MPR Nodes in OLSR

Maintenance of Data Structures

Every node maintains a set of data structures as depicted in Table 2.4. Old entries
time out and are removed from the sets. For maintenance of these data structures
each node broadcasts periodically HELLO messages that contain the current set of
neighbours and a flag that indicates whether the node can be reached via a bidi-
rectional link. Furthermore, it includes a flag determining if the node has been
selected as MPR node. When a node receives an HELLO message it updates its
one-hop neighbour set and the two-hop neighbour set. Furthermore, the node re-
freshes the MPR selector set of neighbours that have chosen that node as an MPR
node.

MPR Selection

Every node in the network selects independently its own set of MPR nodes from
the one-hop neighbour set that have a bidirectional connection to that particular
node and cover the set of two-hop neighbours. The heuristic algorithm works as
follows. First, the one-hop neighbours are selected as MPRs that cover nodes that
are not covered by any other one-hop neighbour. The nodes covered by the selected
MPR node are removed from the two-hop set. If no such node exists the node that
covers most of the nodes that still remain in the two-hop list is selected. If there are
still multiple choices one node is selected randomly. This approach is continued
until all nodes are covered by MPRs. Figure 2.14 illustrates the MPR selection

23

CHAPTER 2 FUNDAMENTALS

Sets Description

neighbours A set of all neighbours in the vicinity of a
node. Neighbours are detected by periodical
exchange of HELLO messages.

two-hop nodes A set of one-hop and two-hop nodes that can
be reached via a neighbour using a bidirec-
tional link.

MPR nodes Set of neighbours that have been selected as
an MPR node by this node.

MPR selector A subset of neighbours that have selected this
node as an MPR node.

Table 2.4: OLSR Data Structures Maintained by Every Node

process running at node S. At first, node S selects node A, which is the only node
that covers node 1, and node B, which covers node 2 exclusively, as MPR nodes.
The green nodes are covered and thus removed from the two-hop set. Nodes C and
D both cover each other and node 4 and thus C is selected by chance finishing the
algorithm. When node S broadcasts the next Hello message it will indicate that it
has selected A,B,C as MPR nodes.

Figure 2.14: Selection of MPR Nodes in OLSR

Topology Control Messages

Only MPR nodes broadcast periodically jittered topology control TC messages
containing the neighbours from the MPR Selector Set. The TC messages are pro-
cessed by all nodes, but forwarded only by MPR nodes. The information about
the nodes that have selected the MPRs is sufficient to create an entire network and
then run Dijkstra’s shortest path algorithm [28] locally at each node. The results
are stored in the routing table and is used to send and forward unicast data packets.

24

2.3 Routing Protocols for MANETs CHAPTER 2

OLSR Optimisations

The reduction of routing overhead is thus due to the following optimisations:

• In classical link state routing, every node broadcasts link state information.
In OLSR, only MPR nodes periodically generate TC messages and thus yield
fewer redundant retransmissions.

• In contrast to classical link state routing, only MPR nodes forward broadcast
messages during the flooding process resulting in fewer broadcast messages.

• Partial link state information containing only the selector nodes is used in
TC messages obtaining smaller packets.

2.3.4 Dynamic Source Routing

Dynamic Source Routing (DSR) [32] belongs to the reactive routing protocols and
has currently reached the status of an Internet draft [21]. DSR employs source
routes [6] and carries in the header of every packet a list of nodes, which com-
prises a path along which the packets should be forwarded by intermediate nodes.
In contrast to AODV, refer to Section 2.3.5, where a new routing decision is made
at every intermediate node, routing is only performed at the source node and in-
termediate nodes do not need to be aware of the route or keep up-to-date routing
information. The basic algorithms consists of two phases Route Discovery and
Route Maintenance.

Route Discovery

Since DSR is a reactive protocol it does not maintain a routing table with entries
for all nodes in the network and thus needs to discover a new route on-demand. If a
node would like to send data packets to a particular destination but does not have a
valid route to that destination in its route cache, it broadcasts a route request RREQ

throughout the ad hoc network and starts the route discovery process. The RREQ

contains the source and destination address as well as a unique RREQ identifier
chosen by the sender. Furthermore, a list of visited intermediate nodes along the
route to the destination is stored in the RREQ. In the beginning this list is empty. At
every hop, intermediate nodes add routing information to the RREQ that make up a
path from the source to the destination. Eventually, the RREQ holds the complete
list of visited nodes when it arrives at the destination node, the source route. If the

25

CHAPTER 2 FUNDAMENTALS

underlying ad hoc network just supports bidirectional links the destination node
can use the path learned from the RREQ to send data packets to the source.

Figure 2.15 illustrates the dissemination of the RREQ that incloses the address
of the source node S. The intermediate nodes 1 and 2 receive the RREQ and popu-
late their routing table with the gained routing information from the RREQ. Next,
they add their own address to the RREQ and broadcast it, as depicted in Figure 2.16.
Node 5 receives a message from node 1 and 2. Due to the source routes included
in the RREQ, node 5 obtains additionally two different routes back to node S. Next,
node 5 adds its own address to the RREQ and forwards the message again.

Figure 2.15: Route Discovery in DSR
based on Route Requests

Figure 2.16: Intermediate Nodes Add
Their Addresses to the Route Request

The destination replies to the RREQ and sends a route reply message RREP

back to the source. Either the RREP is source routed along the path the RREQ took
as depicted in Figure 2.17 or DSR sends the RREP on a different route back to the
source. Hence, DSR can support unidirectional links for the forward and reverse
route. In that case, the destination node discovers a new route to the destination
itself. In order to prevent for routing loops, that might happen if both, source and
destination reply to an RREQ by sending another RREQ, the destination node en-
capsulates the RREP in the RREQ as illustrated in Figure 2.18. Node D broadcasts
the RREQ that piggybacks the original RREP asking for a route to the node D.
Since the link between 1-5 is unidirectional as depicted in Figure 2.18, node S re-
ceives the RREP over the route D-5-2-S. Next, node S sends an RREP using the
confirmed route S-1-5-D to unicast the RREP back to the destination node. Thus,
route S-1-5-D is applied by node S to send data packets to node D. However, node
D employs the route D-5-2-S for transmitting data packets to node S. In order to
reduce the routing overhead caused by dissemination of RREQs intermediate nodes
might reply to an RREQ if they have up-to-date routing information. Furthermore,
they can learn new routes from ”passing-by”RREQs.

26

2.3 Routing Protocols for MANETs CHAPTER 2

Figure 2.17: Forwarding of the Route
Reply Message in DSR

Figure 2.18: The Route Request Piggy-
backs the Route Reply

Route Maintenance

When a node detects a broken link and thus cannot forward a packet according
to the route in the header of the packet it sends a route error packet RERR back
to the source node. The source node can either start Route Discovery again or
can attempt to use a different source route it already has in its cache. Figure 2.19
illustrates the route maintenance procedure. Node S keeps two source routes to the
destination D, S-2-5-D and S-1-5-D. The former route has been selected by node
S to send packets to D. However, node 2 detects the broken link between nodes
2-5 and transmits an RERR to notify node S about the broken link. Node S has
another route to the destination node D in its route cache and starts sending the
data packets using the alternative route S-1-5-D indicated in red.

Figure 2.19: Route Maintenance via Route Error Messages in DSR

2.3.5 Ad Hoc On-Demand Distance-Vector

Ad Hoc On-Demand Distance-Vector (AODV) [4] is a reactive routing protocol for
ad hoc networks and was one of the first protocols that obtained the status of an
RFC (RFC 3561). Many implementations for a variety of operating systems and
network simulators are available. AODV has been designed by the same people

27

CHAPTER 2 FUNDAMENTALS

who invented DSDV and the primary aim was to reduce the amount of system-
wide broadcasts and therefore the core AODV routing algorithm does not depend
on periodic system-wide advertisements. It provides loop-free routes and adapts
quickly to topology changes. By default, AODV requires bidirectional links, how-
ever, extensions exist to enable AODV to cope with unidirectional links. AODV is
a combination of DSDV and DSR. It employs the on-demand route discovery as
in DSR and hop-by-hop table-driven routing as in DSDV. In contrast to DSR, each
node participating in a route from node A to node B does not store the complete
route in the routing table but just the next hop and the hop count to the destination.

Route Discovery

If a node does not have a valid route to the destination it broadcasts a route request

packet RREQ to its neighbours containing a request id to identify the RREQ, its
own sequence number incremented by one and the last known sequence number of
the destination. A recipient of an RREQ verifies if a packet with the same request id
has already been received. If this is the case, the packet is dropped. However, if the
packet has not been received before, the hop count of the RREQ is incremented by
one and the source address of the packet is added to its routing table, thus a reverse

route is created that can be used to send packets into the opposite direction from the
destination to the source. The first steps of the route discovery process are depicted
in Figure 2.20. Node S requires a route to node D and starts the route discovery
process by broadcasting an RREQ. Node 1 and 2 receive the RREQ update their
routing table and create a reverse route to node S, indicated as green arrows. Then,
node 2 and 1 forward the RREQ and node 3 and 5 receive the request and create a
reverse route as illustrated in Figure 2.21 by red arrows. Node 5 has received the
RREQ from node 1 earlier and thus, ignores the RREQ from node 2 and does not
create another reverse route.

The RREQ packet is broadcast again until it reaches the destination or an in-
termediate node that already knows a fresh route to the destination. The route is
fresh if the sequence number is as high or higher than the one used in the RREQ.
Either an intermediate node with a fresh enough sequence number or the destina-
tion itself sends a unicast route reply message RREP to the source node using the
routing information from the received RREQ. The reverse route that has been cre-
ated by propagating the RREQ is used to send the RREP back to the source node.
This time, however, intermediate nodes receiving the RREP create a forward route
to the destination as depicted in Figure 2.22. The destination node D receives the

28

2.3 Routing Protocols for MANETs CHAPTER 2

Figure 2.20: On-Demand Route Dis-
covery by Sending Route Requests

Figure 2.21: Intermediate Nodes For-
ward RREQ and Create Reverse Routes

RREQ and creates a reverse route. Then it unicasts a RREP to node 5 using that
reverse route. Node 5 itself creates a forward route indicated as a red arrow and
forwards the RREP along the reverse path that has been established before.

Figure 2.22: The Destination Sends a
Route Reply Back to the Source Creat-
ing a Forward Route

Figure 2.23: The Source Receives the
Route Reply and Starts Transmitting
Data Packets

As soon as the source node S receives an RREP it can start its data communi-
cation with the destination since both forward route and reverse route have been
created as illustrated in Figure 2.23. The source node S receives the RREP and
starts transmitting data packets along the new route S-1-5-D. If the source does not
receive an RREP within the route discovery timeout the process is started again.

Route Maintenance

RFC 3561 [4] suggests either to employ HELLO messages or link layer mech-
anisms to detect broken links. Broken link detection by the link layer is much
quicker and does not generate additional signalling overhead. However, support
from the link layer might not be always available and to make no assumptions on

29

CHAPTER 2 FUNDAMENTALS

the underlying link layer HELLO messages are often employed. If several succes-
sive HELLOs have not been received the link is considered as broken and active
neighbours that currently use that link are notified by a route error message RERR.
The set of active neighbours is maintained in a precursor list that has been es-
tablished during Route Discovery. The predecessors forward the RERR to their
predecessors and so on until it reaches the source node. The RERR contains the IP
addresses of nodes that have become unavailable and their sequence number that
is increased by the node that has detected the link failure. Figure 2.24 depicts a
scenario where the link between node 5 and the destination has been broken. Node
5 sends a RERR to the precursor node 1 that itself sends a RERR to the source
which might start route discovery to find a new route. Besides, node 5 might de-
cide to repair the broken link locally as illustrated in 2.25. In this case, node 5
broadcasts an RREQ to its neighbours and node 2 answers with an RREP. Since
the new route is much longer node 5 sends an RERR to notify the source about the
changed route. Node S might decide to continue to use the repaired path or start a
new route discovery process.

Figure 2.24: Route Maintenance in
AODV in Case of Broken Links

Figure 2.25: Local Repair Carried Out
by an Intermediate Node

Parameters

AODV provides many parameters that have to be adapted to the actual scenario to
yield the optimal performance. In particular, AODV relies on timers to distinguish
from old routes and keep the routing table as small as possible. Table 2.5 illustrates
some of the important parameters.

2.3.6 Comparison of Routing Protocols

All discussed routing protocols provide for loop-free routes and use the hop count
as a metric to decide which route to the destination is the best one.

30

2.3 Routing Protocols for MANETs CHAPTER 2

Parameter Description

Net Diameter The NET DIAMETER determines the maximum number
of hops between two nodes in the network and is used by
AODV to calculate timers such as the MAX REPAIR TTL and
NET TRAVERSAL TIME. The default value is 35.

Active Route AODV makes heavily use of timers to maintain the
routing table which is updated every time a data or
routing packet is sent, received or forwarded. AC-
TIVE ROUTE TIMEOUT specifies the time interval a
route is marked as active.

Hello Loss If HELLO messages are employed for broken link detec-
tion, this parameter determines the number of successive
HELLO messages a node accepts until the link is consid-
ered as broken.

Hello Interval The time interval a node sends HELLO messages. The de-
fault value is 1 second.

Route Discovery Time interval a node waits until the route discovery is con-
sidered as failed and another RREP is broadcast to find a
route.

Route Delete Time interval after an invalid route is removed from the
routing table.

Table 2.5: AODV Routing Protocol Parameters

DSDV and OLSR benefit from the proactive approach of having routes to all
destinations available and thus new connections are set up quickly. DSDV is com-
putationally efficient and easy to implement with moderate memory requirements
O(n), whereas n is the number of nodes. It recognises one-way links and uses bidi-
rectional links only. However, the worst-case convergence behaviour of DSDV is
not optimal and it may take too long until a change in the topology has been prop-
agated throughout the network [19]. In contrast, OLSR is fairly complex and the
calculation of the MPR nodes and the shortest-path algorithm require continuous
processing power and puts memory burdens on mobile devices. On the other hand,
due to the reduction of broadcast routing messages, OLSR is applicable for large
and dense networks. Moreover, link-state routing has been considered more stable
than distance-vector as mentioned in [6] and allows OLSR to converge within rea-
sonable time. DSDV is no longer a potential candidate for a standardised MANET

31

CHAPTER 2 FUNDAMENTALS

routing protocol and the use of OLSR is recommended instead [20]. Both proto-
cols have the disadvantage, that messages are exchanged periodically, although the
topology of the network might not have changed. Furthermore, the routing tables
hold entries for all destinations in the network even though nodes will very unlikely
communicate with all nodes. The reactive protocols AODV and DSR in contrast
discover routes on-demand and tend to generate less routing overhead, however,
with the cost of additional delay during the set up of a new connection.

The table-driven protocol AODV is more conservative than DSR and always
uses sequence numbers to distinguish between fresh and old routes, whereas DSR
suffers from pollution by stale routes since it does not have a mechanism to expire
old routes. However, AODV requires more route requests, since during a route
discovery cycle the nodes along the path just learn a route to the next hop, source
and destination node. In contrast to DSR, where every node automatically obtains
a route to every other node on that particular route. Therefore, AODV has to rely
on RREQs more often than DSR. Furthermore in DSR, the destination node replies
to all route requests and thus, the source will receive multiple routes that can be
employed as backup routes. AODV replies just to the first RREQ and thus, the
source will not gather routing information about further alternative routes. On the
other hand, source routing as employed by DSR adds some routing overhead to
every data packet. This might be rather inefficient if the data packets are very
small as it is the case with real-time multiplayer game traffic [33].

In contrast to DSR and DSDV, AODV and OLSR are both standardised and ac-
cepted as experimental RFCs by the IETF and several implementations for network
simulators and operating systems exist. As a result of this comparison one has to
conclude that there does not exist an optimal routing protocol for all scenarios and
it is always a trade-off between many factors. Table 2.6 illustrates the features and
compares the four protocols discussed in this section. The proactive protocols rely
on periodic routing control messages. The reactive protocols, in contrast, make
use of periodic HELLO messages for neighbour management only if the employed
MAC layer cannot provide the required information. Besides the features listed
in the table variants of the standard routing protocols exist, for example, multicast
support for AODV. Furthermore, an expired draft version of a QoS enabled AODV
has been proposed in [34]. Currently, none of the mentioned routing protocols deal
with security.

32

2.3 Routing Protocols for MANETs CHAPTER 2

Feature DSDV OLSR DSR AODV

Proactive
√ √

× ×

Reactive × ×
√ √

Loop free
√ √ √ √

Source Routes × ×
√

×

Multiple Routes × ×
√

×

Unidirectional Links × ×
√

×

Metric hops hops hops hops

Periodic messages
√ √

(×) (×)

Multicast × × × (×)

QoS Support × × × ×

Security × × × ×

Table 2.6: Routing Protocol Comparison (DSDV, OLSR, DSR and AODV)

33

CHAPTER 2 FUNDAMENTALS

2.4 QoS in MANETs

This section describes particular QoS provisioning challenges in MANETs and
explains why common QoS mechanisms employed in wired networks cannot by
easily applied in mobile wireless multi-hop networks. The following subsections
introduce QoS aware routing protocols and QoS architectures that have been pro-
posed for MANETs.

2.4.1 Challenges

As mentioned in Section 2.1, the aim of QoS provisioning is to fulfil certain de-
mands on the network and provide guaranteed packet delivery ratio, available band-
width, latency and jitter. However, giving QoS guarantees in MANETs is a very
challenging task due to the dynamic network topology and the lack of any central
coordination which might yield in imprecise network state information. Moreover,
nodes have to share the error-prone wireless medium using distributed medium
access protocols, such as IEEE 802.11 DCF, instead of centralised MAC proto-
cols like Time Division Multiple Access (TDMA). To provide QoS guarantees it
is mandatory that all lower layers support QoS as well. For instance, the IEEE
802.11 DCF is not QoS enabled. Even higher layers that have QoS extensions can-
not give hard QoS guarantees since they do not receive any QoS assurance from
the MAC layer. Furthermore, the available bandwidth of the shared medium is still
scarce and more and more devices and technologies are competing for the shared
medium.

Some QoS mechanisms that are widely employed in wired networks cannot be
used in MANETs because of the special properties of MANETs. In wireless net-
works, the bandwidth of the shared medium is still precious and over-provisioning
that is the simplest approach in wired networks, is very bandwidth consuming.
In addition to that, resource reservation introduces message and state overhead at
every node. Since the topology of MANETs might change frequently reserved re-
sources might not be used efficiently. Furthermore, although resources for instance
bandwidth has been reserved at one particular node A there is no guarantee to re-
ceive the bandwidth because other nodes in the vicinity of the node A might send
packets as well and do not know about the reserved bandwidth at node A. Com-
plex protocols that take this into account suffer from the inability to cope with high
degree of mobility and from message overhead.

34

2.4 QoS in MANETs CHAPTER 2

2.4.2 QoS Routing Protocols

QoS enabled routing protocols attempt to provide routes that meet the QoS de-
mands of the application and recognise and communicate QoS violations to other
nodes. In general, routing protocols employ the hop count as the only metric to find
the shortest path from the source to the destination. The hop count, however, does
not directly relate to latency, jitter and loss rate and even a route with a very low hop
count might experience high latencies and vice versa. Therefore, instead of using
the number of hops, latency, jitter, queue length, signal strength, link loss rate etc.,
might be more appropriate to find a route that meets certain QoS demands. In [35]
the authors distinguish between three different types of metrics or path constraints.
Let (u, u1, u2, ..., uk, v) be the path connecting node u and v. Then, m(u, v) is the
performance of the metric m on the path (u, v).

Additive constraints: the hop count and latency, for example, are additive con-
straints. The summation of the end-to-end delays for every hop along the
path makes up for the total delay. The following equation must hold for ad-
ditive constraints:
m(u, v) = m(u, u1) + m(u1, u2) + ... + m(uk, v)

Multiplicative constraints: a constraint is multiplicative if the constraint equals
the product of the single-hop metric, for example, the loss rate:
m(u, v) = m(u, u1) ∗ m(u1, u2) ∗ ... ∗ m(uk, v)

Concave constraints: the available bandwidth is a concave constraint since it is
defined as the minimum bandwidth between the links on the path (u, v):
m(u, v) = min(m(u, u1),m(u1, u2), ...,m(uk , v))

If the routing protocol has to follow multiple constraints to meet an applica-
tion’s QoS demands, the optimal path selection algorithm gets very complex, es-
pecially, if more than one additive or multiplicative constraint is used. In that case
the problem has been shown to be NP-Complete [36, 31].

QoS for AODV

In [34] the authors suggest to extend the RREQ of the reactive routing protocol
AODV by QoS Objects to specify latency, jitter and bandwidth demands for a cer-
tain path. Every RREQ additionally carries a session ID to identify every single
flow. An intermediate node needs to be aware of average latency and jitter values

35

CHAPTER 2 FUNDAMENTALS

and subtracts the average value from the accumulated value of the QoS parameter
in the RREQ, for instance, the accumulated delay. If the value is negative the RREQ

is not forwarded and discarded. If a node cannot provide the agreed QoS any more
it sends a control packet to the source including the session ID.

The problem of neighbourhood bandwidth utilisation has not tackled and re-
mains as an open issue. Furthermore, intermediate nodes are not allowed to reply
to RREQ carrying QoS extensions and have to forward the RREQ to the destination
node to reserve the resources along the path to the destination, resulting in much
higher routing signalling overhead.

Ad Hoc QoS On-Demand Routing

Ad hoc QoS on-demand Routing (AQOR) [37] follows a similar approach and tries
to accurately measure the available bandwidth and end-to-end delay of the wire-
less channel to reserve resources and provide QoS guarantees. In order to calculate
the available bandwidth at a certain node, AQOR employs periodical HELLO mes-
sages that are exchanged with the neighbours. Resources, such as bandwidth and
end-to-end delay are reserved temporally for each flow during route discovery and
activated if the first data packets are transmitted along a certain path. Furthermore,
reserved resources are released as soon as they are not used any longer. QoS vi-
olations in delay are detected at the destination as every packet is marked with
a time-stamp of the sender. During route discovery the round-trip time (RTT) is
determined and from that the offset of the system clocks of the source and destina-
tion host is calculated, assuming symmetric links. AQOR is compatible to today’s
best-effort MAC protocols but will work with QoS aware MAC protocols as well.

Further QoS Protocols

The hierarchical routing protocol CEDAR [24] provides QoS route computation
with certain bandwidth requirements by core nodes. First, the core nodes are dis-
tributedly elected and form an approximated dominating set [30]. The core nodes
propagate link state information of stable and high bandwidth routes. During route
computation the core nodes provide a route that satisfies the requested bandwidth.

In [38] multi-path extensions for MANET routing protocols are described. The
aim is either to load-balance or to minimise latency by sending the traffic over
multiple links. In reactive protocols, for instance AODV, multi-path routing can be
employed to provide a backup route in case of broken links [39]. Load-aware pro-
tocols on the other hand take the interface queue length, contention delay, number

36

2.4 QoS in MANETs CHAPTER 2

of neighbours and traffic pattern of the neighbours into account to select the best
path, for instance, Load-Aware On-Demand Routing (LAOR) and Load Sensitive
Routing (LSR). Besides, the Signal Stability-based Adaptive (SSA) [40] routing
protocol measures the signal strength of BEACON messages to choose links with
the best signal to noise ratio (SNR). On the other side, link-stability aware routing
protocols select routes with the longest lifetime [41].

2.4.3 QoS Frameworks

In contrast to the QoS routing protocols described in the previous section, this sec-
tion concentrates on existing stateful and stateless QoS frameworks for MANETs.
IntServ, introduced earlier, requires too much processing, memory and signalling
overhead and cannot be applied in MANETs. But using DiffServ instead is not
appropriate since the peculiarities of wireless multi-hop networks have to be taken
into account.

SWAN

Service Differentiation in Stateless Wireless Ad hoc Networks (SWAN) [42] is a
stateless QoS architecture that provides soft real-time QoS relying on standard
best-effort MAC technology, such as IEEE 802.11 and is independent of the em-
ployed routing protocol. It avoids additional signalling and complex control mech-
anisms. Furthermore, data packets pass a classifier that distinguishes between real-
time or high priority and best-effort or low priority traffic. Moreover, it makes
use of rate control for low priority traffic and employs admission control for high
priority UDP traffic. Instead of packet loss as indicator of congestion, SWAN mea-
sures the MAC delay of ACK frames and uses this information to configure the rate
controller of low priority traffic. In addition, it counts the number of flows passing
through the neighbours. Admission control of high priority traffic is carried out
only at the source node which sends a PROBE message to the destination specify-
ing the desired bandwidth. Nevertheless, false admission might happen if several
nodes send PROBE messages at the same time. To indicate a QoS violation or con-
gestion, nodes can set the Explicit Congestion Notification (ECN) flag [43]. If the
destination receives too many packets with the ECN flag set it notifies the source
that might stop or adapt the transmission to the network conditions or probes for a
better route. In [44] the authors suggest to combine DiffServ and SWAN to be able
to distinguish between different real-time flows and handle them separately.

37

CHAPTER 2 FUNDAMENTALS

INSIGNIA

In contrast to the stateless QoS framework SWAN, the idea behind INSIGNIA
[45] is to provide a stateful or reservation-oriented lightweight QoS architecture.
The key component is the in-band signalling protocol that is employed similarly to
the out-band resource reservation protocol RSVP but does not require additional
signalling. Instead, control signals are encapsulated into IP data packets with an
IP INSIGNIA option for doing the necessary resource reservation. Adaptive soft-
state timers are employed to determine for how long a resource has been reserved.
Every data packet that belongs to a flow with QoS demands refreshes the soft-state
timers. Furthermore, the experienced QoS is measured at the destination node that
can send QoS reports to the source to adapt the flow reservation if necessary. For
the routing protocol, any of the protocols discussed in Section 2.3 can be used
which shows the modular architecture and separation between routing, signalling
and admission control in INSIGNIA.

Flexible QoS Model for MANET

A combination of IntServ and DiffServ is the QoS framework Flexible QoS Model

for MANET (FQMM) [46]. Flows with very high real-time requirements follow
the flow-based approach of IntServ. Traffic with lower QoS demands are handled
in the service differentiation style of DiffServ. The classification of the traffic is
carried out at the source node. On the one hand FQMM attempts to exploit the
benefits from both IntServ and DiffServ in a hybrid approach, on the other hand,
the same problems of IntServ and DiffServ remain and in [47] the authors claim
that FQMM does not cope any better with the particular conditions in MANETs.

iMAQ

The Integrated Mobile Ad-hoc QoS framework (iMAQ) [48] makes use of a cross
layer design of the location-aware routing and middleware layer. The framework
relies on a location-based QoS routing protocol to predict movement of the nodes
and network partitioning. Furthermore, it includes an additional middleware for
data replication and service lookup on mobile devices attempting to provide the
best service for data-accessibility to the users. The update protocol floods location
and resource information throughout the network. To minimise the flooding MPR
as in OLSR is used.

38

2.5 Multiplayer Games CHAPTER 2

2.5 Multiplayer Games

Multiplayer games are gaining much interest and almost every new game can
be played in a LAN or the Internet with other players. There are two types of
multiplayer-games: (1) round-based, like chess; and (2) real-time, such as car-
racing simulations. This thesis focuses on real-time multiplayer games which can
be itself classified into (a) first person shooters (FPS), (b) real time strategy (RTS)
and (c) sports games. In the following sections the architectures of real-time mul-
tiplayer games and the requirements on the mobile wireless network are discussed.

2.5.1 Real-Time Game Architectures

Traditionally, multiplayer games follow either the client-server or the peer-to-peer
approach to maintain the game state.

In the client-server game architecture, all clients connect to one central server
that acts as a master of the game. The central server receives game state messages
from the clients, for example avatar movements, and the server verifies that the
actions are compliant to the game rules. Next, the central server recalculates the
global game state upon the information received from the clients and finally shares
the new game state back to the clients. This architecture suffers from mainly two
problems which disqualifies it to be employed in mobile wireless multi-hop net-
works. First, the central server is a single point of failure, that is, if the server is
down or out of transmission range some clients cannot connect to the server any
more and play the game. Second, the centralised architecture does not scale if all
clients have to connect to the same server.

In the peer-to-peer approach every node or so called peer is both client and
server at the same time. Every peer distributes its actions to all other peers in a
completely distributed manner without the need of a central server or any central
coordination. Thus, each peer maintains the game state on its own. This architec-
ture avoids the single point of failure, however, the synchronisation with all other
peers in the network requires much bandwidth and does not scale either. In addi-
tion, peers can easily cheat, since there is no central master server that coordinates
the game.

A combination of both is the zone server architecture [49] that attempts to ex-
ploit the benefits of both approaches mentioned before and provides a robust game
architecture for mobile wireless networks. Instead of just one single server, multi-
ple zone servers are responsible for the clients as illustrated in Figure 2.26. Every

39

CHAPTER 2 FUNDAMENTALS

client connects to the nearest zone server (Z1 or Z2) and sends game state changes.
The zone server recalculates the next game state and disseminates the new game
state to all clients via the other zone servers. If a zone server goes down, the accord-
ing clients can continue the game and connect to another zone server. The problem
of selecting the best appropriate zone servers has been simulated and implemented
in [50].

Figure 2.26: Zone Server Game Architecture

2.5.2 Network Requirements of Real-Time Multiplayer Games

The actual demands of multiplayer games on the network highly depend on the
game type. In case of real-time multiplayer games, end-to-end communication
delay, jitter and packet loss are the most relevant QoS attributes of the network,
while the available network bandwidth is of less importance [33, 51] because cur-
rent wireless networks provide enough bandwidth.

For most real-time multiplayer games, a maximum of 150 ms round trip delay
is acceptable [52]. However, the still tolerable delay highly depends on the par-
ticular game, for instance, in [53] 50 - 100 ms round trip delay has been reported
to be the limit for real-time car-racing simulations. This is due to the fact, that
some games can cope better with latency and jitter and make use of adaptive pre-
diction mechanisms, such as dead-reckoning [54]. In addition to the actions, the
client sends a vector, comprising for example speed and direction of the avatar to
the server that can anticipate the next positions if it has not received data from
the client recently. Therefore, data that arrives too late for the current game state
might be still useful to predict the current position. In general, FPS and other action
games have higher demands on latency than RTS games that can still cope with a
round trip delay up to 300 - 500 ms [55, 51].

The impact of jitter on real-time multiplayer games has not been scrutinised in
depth, yet. Jitter and latency are strongly coupled for games in the Internet [56]

40

2.5 Multiplayer Games CHAPTER 2

and most players focus on reducing latency in selecting an appropriate server with
low round-trip time delays. Furthermore, players’ perception of jitter is game-
dependant, as reported in [57]. In general, a high level of jitter leads to packets
not arriving in time thus requiring the use of prediction mechanisms, as mentioned
before. These prediction mechanisms, however, cannot always anticipate players’
actions accurately. Therefore, a high level of jitter degrades the players’ experience
and must be kept as low as possible.

Moreover, packet loss rate shows a similar impact on real-time multiplayer
games. According to [52], it should be kept below 3 - 5 %, depending on the game.

Other real-time applications like audio conferencing have similar demands on
the network and can be also used by a QoS framework that provides for real-time
multiplayer games. Additionally, many multiplayer games provide online audio
conferencing for team playing.

41

CHAPTER 2 FUNDAMENTALS

2.6 Summary

This chapter has presented the necessary background information for the follow-
ing chapters of the thesis. In the first section, the principle of Quality of Service
has been introduced and the demands of popular networked applications have been
compared. The basic mechanisms that are employed to provide QoS have been de-
scribed and two popular QoS frameworks namely, the stateful reservation-oriented
IntServ that can provide hard QoS guarantees and the stateless DiffServ approach
that provides probabilistic guarantees, have been discussed. Afterwards, the basics
of wireless communications and the challenges that arise, such as the hidden and
exposed terminal have been explained. As this thesis focuses on IEEE 802.11 as
the wireless technology for MANETs, the essential parts of the IEEE 802.11 ad hoc
mode have been discussed. A routing protocol is mandatory to allow for multi-hop
communication and reactive and proactive routing protocols for MANETs have
been described and compared in Section 2.3 These protocols will be simulated and
evaluated with respect to real-time multiplayer game scenarios in the following
chapters. In Section 2.4 the related work on QoS routing and QoS frameworks
for MANETs has been presented and many of the QoS mechanisms will be ap-
plied and analysed in the course of the thesis. Finally, the last section introduced
the architectures and QoS requirements of real-time multiplayer games. The aim
of this thesis is to provide QoS mechanisms and QoS extensions that allow for
playing real-time multiplayer games in mobile wireless multi-hop networks. The
employed and analysed QoS mechanisms are described in the next chapter.

42

Chapter 3

Design Concepts

Real-time applications, especially multiplayer games such as first person shooters,
real-time strategy games, or sports games have strict Quality of Service demands on
the underlying network. Moreover, in wireless mobile ad hoc environments, com-
pared to wired networks like the Internet, these applications encounter additional
problems due to the special challenges reserved by MANETs. In this chapter, the
design of common and some new QoS extensions which are supposed to improve
the performance of mobile ad hoc routing is described. The following chapters
explain the implementation details and simulation results in the network simulator
NS-2 [5].

3.1 Objective and Challenges

The objective is to extend mobile ad hoc routing with QoS mechanisms by which
the performance of the ad hoc routing protocol and the network can meet the de-
mands of real-time multiplayer games. As initial simulations in Section 5.2 show,
latency and loss rate of real-time traffic are far too high and multiplayer games and
other real-time applications cannot be used in mobile wireless networks without
further improvements. Therefore, QoS mechanisms are needed that improve the
performance and reduce latency and loss rate by one order of magnitude to meet
the demands of real-time multiplayer games (refer to Section 2.5). However, giving
QoS guarantees in MANETs is a difficult task and potential QoS extensions have
to face the following challenges:

Mobility: the topology of the ad hoc network might change rapidly and unpre-
dictably resulting in broken links and stale routes. The routing protocol has

43

CHAPTER 3 DESIGN CONCEPTS

to detect broken links quickly and discover a new route if necessary. Addi-
tionally, the routing protocol should not make decisions upon global network
state information since it might be outdated and very expensive to keep up-
to-date.

Congestion: real-time traffic must arrive in-time even if the network is highly
loaded. Although, the bandwidth of wireless networks is increasing con-
stantly, it is still much lower than in wired networks where every node has a
dedicated bandwidth. Hence, it is crucial to avoid wasting scarce bandwidth
and keep routing and management packets to a minimum.

Shared Medium: IEEE 802.11 wireless networks operating in ad hoc mode do
not provide any QoS guarantees at the MAC layer due to the applied con-
tention based medium access mechanism [3]. Furthermore, there is no cen-
tral administration in ad hoc networks like access points and thus applied
algorithms have to be completely distributed.

Wireless Signal: the wireless signal suffers from fading and interference which
gives rise to grey zones [17] and frequent retransmissions.

Resource reservation (refer to Section 2.1) as done in IntServ is very expensive
in mobile wireless networks because some signalling is required to reserve the
resources at every node the traffic flow passes through. Due to the mobility of
the nodes the network’s topology can change and makes maintenance of reserved
resources very difficult. It is very likely that after a change in topology either too
many resources or not enough resources have been reserved. Constantly running
a resource reservation protocol is impractical and consumes too much bandwidth.
The in-band signalling approach followed by INSIGNIA (refer to Section 2.4.3) to
reserve resources is very interesting but requires an additional IP-Options header
for every IP packet. Therefore, a trade-off has been made and a stateless QoS
approach that just relies on local network state information has been followed.
Furthermore, the proposed QoS extensions aim at minimising periodic broadcast
messages and routing protocol signalling. Ad Hoc On-Demand Distance-Vector

(AODV) [4] has been employed as the routing protocol since it has shown the best
performance results in the routing protocol comparison (refer to Section 5.2).

As QoS provisioning is a complex task and should be handled on several layers
in the protocol stack, a cross-layer design has been used in this thesis. Thus, the
collected and proposed QoS extensions provide QoS support on the routing, inter-
face queue and MAC layer, as illustrated in Figure 3.1. They can be classified into

44

3.2 AODV Enhancements CHAPTER 3

the following categories: (1) AODV Enhancements; (2) Traffic Management; and
(3) MAC Layer Support.

Figure 3.1: Quality of Service in a MANET Node’s Protocol Stack

Moreover, the different QoS extensions address different challenges of the mo-
bile ad hoc environment. Table 3.1 depicts the extensions and the corresponding
challenges they are supposed to tackle.

QoS Mechanism Mobility Congestion Shared Medium Signal

AODV Enhancements
Local Repair

√

Backup Route
√

Traffic Management
Priority Queueing

√

Timeouts
√

Rate Control
√ √

Mac Layer Support
Broken Link Detection

√ √

Neighbour Detection
√ √

Signal Strength Monitoring
√

RTS/CTS Adaptation
√

Table 3.1: QoS Extensions

3.2 AODV Enhancements

As the results of the ad hoc routing protocol comparison in Section 5.2 show, the re-
active protocol Ad Hoc On-Demand Distance-Vector (AODV) [4] provides the best
overall performance compared to DSR, DSDV and OLSR. Therefore, the AODV-
UU [58] implementation has been selected as the starting point of the work and ex-
tended by additional QoS mechanisms (refer to 2.3.5 for an introduction to AODV).

45

CHAPTER 3 DESIGN CONCEPTS

Because of its on-demand route discovery behaviour the routing overhead is much
smaller than in proactive routing protocols. Only network state information for
active routes is maintained, in contrast to proactive protocols, where every node
maintains routes to all other nodes. If more broken links are detected more routing
messages are disseminated for discovering and maintaining routes. However, if no
routes are broken, AODV does not sends routing messages. Thus, AODV scales
automatically with the mobility rate. Furthermore, AODV has already achieved
the status of an RFC [4] and implementations are freely available for several plat-
forms and operating systems. To cope with mobility and broken links and further
increase the performance, AODV makes use of a local repair mechanism. In addi-
tion, AODV has been extended with the use of backup routes to repair broken links
transparently and without any delays.

3.2.1 Local Repair

RFC 3561 suggests a local repair mechanism for AODV that allows an intermediate
node that detects link failures, to queue packets temporally while trying to repair
the route. This mechanisms is illustrated in Figure 2.25 and has been explained
in Section 2.3.5 in more detail. The advantage of local repair is that packets that
already have been sent over multiple hops are not dropped if the intermediate node
can find an alternative route to the destination. As a result, the source node does
not have to retransmit affected packets. In the best case, the mechanisms is totally
transparent to the source node and the application will not experience a degraded
performance. On the other side, repaired routes are likely to be longer than the
original route and thus a RERR message has to be sent to the source node which
will start the route discovery process as well. Furthermore, real-time packets might
be delayed too much if they are queued locally and will not arrive in-time.

3.2.2 Backup Route

AODV just stores the next hop entry to a certain destination in its routing table
(refer to Section 2.3.5). If the link to that node breaks a new route discovery process
has to be started which might require too much time for real-time data. The idea
is to provide a backup route right from the beginning that can be used instead.
A backup route is a path with the same hop count as the default path but with
a different next hop. During the route discovery a node might receive multiple
RREQ from different neighbours. Nodes, that receive a RREQ create a reverse path
back to the source in its routing table, as mentioned in Section 2.3.5. However,

46

3.3 Traffic Management CHAPTER 3

if the particular RREQ has already been received from a different neighbour, it is
only processed again if the hop count is lower. Hence, the node is not aware of
an alternative route. For example, assume a scenario as illustrated in Figure 3.2.
Node S broadcasts a RREQ message to find a route to node D. Node I receives two
RREQs, one from node 2 and the other from node 4. Both describe a 3-hop path to
node S with the same sequence number. In this event, node I employs either node
2 or 4 as the next hop and uses the other as backup route. If a link to a neighbour
on an active route breaks the backup route becomes the new active path. If hops
with a higher hop count were used as backup paths, routing loops might occur as
in the following example. Node I receives a RREQ from node 5 with a 5-hop path
to node S but this path contains a routing-loop and cannot be employed as backup
route.

Figure 3.2: AODV Extension Using Backup Routes

3.3 Traffic Management

The goal of traffic management is to differentiate among various types of traffic
and give a higher level of support to high priority traffic at the cost of lower pri-
ority traffic. When employing priority queueing, real-time packets are preferably
transmitted to make sure that even in situations with higher load real-time packets
do not become obsolete. Still, it might happen that real-time packets have to wait
too long in the high priority queue. To prevent for transmission of outdated pack-
ets, hop constrained queue timeouts are used to drop obsolete real-time packets
and thus save bandwidth. In addition, to limit the amount of low priority traffic,
real-time neighbour aware rate control policies are employed, which prevent the
occupation of the communication channel by nodes sending low priority traffic if
other nodes have high priority traffic to be sent.

47

CHAPTER 3 DESIGN CONCEPTS

3.3.1 Priority Queue

To provide priority queueing mechanisms the interface queue sublayer of the net-
work simulator NS-2 [5] has been modified. The interface queue consists of three
sub-queues with different priorities for real-time game traffic (high priority), rout-
ing control messages (medium priority) and best-effort traffic (low priority). Real-
time game traffic and routing control messages are handled in separate queues to
allow for load-aware routing. Nodes that do not send as much high priority traffic
will respond quicker to RREQ messages than nodes that already forward multiple
real-time traffic flows. Every packet is classified into one of the three categories,
as shown in Figure 3.3, employing the Type of Service (TOS) field in the IP header.
All data packets that do not have any particular real-time QoS demands are marked
as low priority, for instance, file transfer and e-mail traffic. AODV routing control
packets such as RREQ, RREP and RERR packets are marked as medium priority.
And finally, real-time data packets are marked as high priority as well as AODV
RREP messages if the high priority flag had been set in the corresponding RREQ.
In contrast to medium and low priority, high priority packets are quickly outdated
and dropped if they cannot be delivered in-time. Low priority packets might on
the one hand experience higher delays, but on the other hand they are forwarded
and delivered to the destination more reliably. Every sub-queue has a limited size
and allows a packet to be queued for a certain time interval. In order to limit the
amount of real-time and routing packets a node is allowed to transmit, the size of
the high and medium priority sub-queues has been restricted to 10 slots. A much
longer queue for real-time and routing packets would result in more outdated pack-
ets. The queue size limit for low priority traffic is 80 packets. This is a trade-off
between queueing as many best-effort packets as possible if the channel is cur-
rently used by high and medium priority traffic and the risk that the topology of
the network has already changed and the next hop in the IP header of low priority
traffic is not up-to-date any more which will result in expensive retransmissions.

As the packets are marked with different priorities they can be handled specif-
ically by the routing protocol and the interface queue. RREQ messages are marked
with medium priority by default. By doing this, the actual current queue length
of intermediate nodes are indirectly taken into account during the route discovery
process in AODV. Nodes that have fewer packets in their high and medium priority
sub-queues will be able to forward their packets quicker than nodes that already
have to forward multiple high priority data streams. However, to minimise the
delay in the event of broken links or unavailable route for high priority data, an ad-

48

3.3 Traffic Management CHAPTER 3

Figure 3.3: Design of the Priority Queue

ditional flag (bit 6 in the AODV RREQ header) has been introduced that indicates
that a RREQ is of high priority to enable nodes speeding up the route discovery
process. But without marking the RREQ the node that replies to the RREQ is not
aware that the reply is urgent. Therefore, when the destination node receives a
RREQ with a high priority flag, the TOS field of the corresponding IP packet that
holds the RREP message is set to high priority to make sure that the RREP is queued
in the high priority sub-queue and returned as quickly as possible.

In addition to the interface queue, AODV itself queues data packets if no route
to the destination is currently available. Because the route discovery process gener-
ally takes much more than 150 ms, high priority packets are not queued by AODV
but are dropped immediately. In order to cope with selfish nodes that simply mark
all packets with high priority, packets can be filtered at the incoming interface to
limit the amount of real-time packets from a certain node.

Before a packet is going to be transmitted either the application or the middle-
ware marks the packet with one of the three priorities. Then the routing protocol
makes its routing decision and passes the packet down to the interface queue (see
Figure 3.1). The following steps need to be carried out when a packet is enqueued
and dequeued, respectively.

Enqueue

The classifier delegates the packets coming from the routing protocol according
to their priority flag to one of the sub-queues as long as enough queueing space is
available. If the corresponding sub-queue is full, the queue is checked for outdated
packets. If the queue is still full the packet is simply dropped. Otherwise, the packet
is put into the particular sub-queue and marked with the current time-stamp.

49

CHAPTER 3 DESIGN CONCEPTS

Dequeue

Every time a packet is passed down to the MAC layer, the packets from the high
priority queue are preferred and afterwards the medium priority queue. If both
queues are empty the packets are taken from the low priority queue. If the next
packet that is going to be dequeued from the queue is a low priority traffic the
rate control system decides whether or not it processes the packet or refrains from
transmitting the low priority packet in favour of neighbouring nodes that might
want to send high priority traffic (refer to Section 3.3.3). If the rate controller ac-
cepts the packet, the current time is compared to the time-stamp the packet entered
the system (refer to Section 3.3.2). If the time interval exceeds the time limit the
packet is dropped and another packet is dequeued if available. If the packet has not
timed-out yet, the packet is passed down to the MAC layer.

3.3.2 Timeouts

Real-time multiplayer games demand low latency connections with less than 150 ms
round trip or 75 ms one-way delays, assuming symmetric latencies as discussed in
Section 2.5. However, packets that are delayed slightly more than 75 ms, might
still be useful to some prediction mechanisms such as dead-reckoning. Therefore,
only packets which take more than 100 ms one-way and thus are clearly obsolete
for real-time applications are dropped by the interface queue. Outdated real-time
packets needlessly consume bandwidth and delay other real-time packets. There-
fore, every packet that is stored in the queue is marked with a time-stamp. When
the packet is dequeued the time the packet spent in the queue is compared with
the queue policy. The maximum timeout for high priority traffic has been set to
100 ms. This timeout interval is further decreased depending on the number of
hops the packet went and still has to go. This information is retrieved from the
local routing table. For every hop the maximal timeout is reduced by 10 ms which
approximates the time it takes to process and forward the packet in the optimal case.
This is still a rather conservative approach and aims at dropping just the packets
that will definitely come too late. The medium priority sub-queue has a timeout
of 500 ms which has shown reasonable performance in the simulations. Since both
priority sub-queues are rather small and the packets are outdated quickly compared
to the low priority sub-queue, additional mechanisms that prevent for starvation of
low priority traffic have not been added

Similar to the QoS for AODV protocol, discussed in Section 2.4.2, an IP-

50

3.3 Traffic Management CHAPTER 3

Options header could have been used instead to measure the accumulated time
of real-time packets at intermediate nodes. Although this approach is more con-
cise, since it calculates the absolute time a packet spent at every node, this is not
necessary as simulations in Section 5.2 and Figure 5.4 show. In general, packets
are either processed and forwarded quickly or they are queued for considerably
more than 100 ms seconds. Moreover, this requires additional signalling in every
real-time packet which might be a huge overhead in particular if real-time packets
are very small.

3.3.3 Real-Time Neighbour Aware Rate Control

The current IEEE 802.11 protocol standards do not support QoS at the MAC layer
and the medium access is carried out by the Distributed Coordination Function
(DCF) handling every node equally. All nodes have the same probability to gain
access to the wireless channel and DCF does not distinguish between high prior-
ity and low priority data traffic. Furthermore, there is no guarantee that a node
will send even high priority data packets within a certain time frame. Therefore,
nodes that send high amounts of low priority data might consume most of the
shared bandwidth. Due to the contention mechanism in DCF, other nodes which
send high priority data might wait too long to access the channel and cannot trans-
mit their high-priority data in time, although a priority queue has been used. The
reason behind this is, that priority queueing works only locally and does not take
neighbouring nodes into account. To solve this problem at the MAC layer is one of
the aims of the new QoS IEEE 802.11e [3] protocol that is still under development
and not yet available. Even with the advent of IEEE 802.11e the current standard
will not be displaced immediately and thus, a mechanism is required that enables
nodes that send real-time data to refrain other nodes from accessing the channel.

The proposal in this thesis to overcome the mentioned limitations of the IEEE
802.11 MAC layer, is to restrain the amount of low priority packets a node is al-
lowed to transmit within a time interval depending on the amount of nodes trans-
mitting real-time traffic in its neighbourhood. Therefore, the interface queue needs
access to the actual number of neighbours sending high priority traffic to adapt the
rate control system of low priority traffic.

For this purpose, every node maintains a time-stamp PRIO TIMEOUT that is
updated when nodes transmit a high-priority packet. If the node has sent real-time
traffic within the last PRIO TIMEOUT seconds the node marks broadcast routing
messages with a real-time flag. Employing the unused bit 5 in the AODV header

51

CHAPTER 3 DESIGN CONCEPTS

of RREQ and RREP messages, a node indicates whether it currently transmits high
priority traffic or not. In addition to that, the routing table entry has been extended
by a time-stamp LAST PRIO. Every time a node receives high priority data or a
routing message with the high priority flag, the LAST PRIO time-stamp for that
particular routing table entry is updated. Now, the actual amount of neighbours
sending high priority traffic with an up-to-date LAST PRIO time-stamp can be de-
rived from the neighbour list and the interface queue can adapt the rate control
of low priority traffic upon the number of neighbours sending real-time traffic. If
the mobility rate of the nodes is low and real-time nodes have not sent routing
messages for a while, the actual number of real-time neighbours might be higher,
however. In addition, selfish nodes might just mark all routing packets with the
priority bit.

3.4 MAC Layer Support

Many features, already implemented in the IEEE 802.11 MAC layer, remain un-
used in higher layers and are implemented again, however, less efficiently. With
broken link detection based on Link Layer Feedback (LLF) the routing protocol is
notified instantly if packets cannot be sent any longer over a certain link. In gen-
eral, routing protocols periodically broadcast messages for neighbour detection.
However, IEEE 802.11 ad hoc networks already broadcast periodic advertisements
(BEACON frames) and thus the periodic routing messages are not required any
more, neither for broken link detection nor for neighbour detection. With the help
of signal strength monitoring more stable routes can be selected. In addition, IEEE
802.11 relies on RTS/CTS (Ready To Send/Clear To Send) to avoid the hidden
terminal problem (refer to Section 2.2). RTS/CTS adaptation to the application’s
requirements is essential to not degrade the overall performance. In order to have
accurate access to the current network state, such as an up-to-date neighbour list
and the wireless signal strength for each neighbour, support from the IEEE 802.11
MAC layer is required.

3.4.1 Broken Link Detection

As mentioned in Section 2.3.5 AODV relies by default on HELLO messages for
neighbour management and broken link detection. If, for example, a node does not
receive three consecutive HELLO messages from a particular neighbour the node
regards the link to that neighbour as broken. It might take several seconds until

52

3.4 MAC Layer Support CHAPTER 3

the node realises the link failure because HELLO messages are sent generally only
every second. To improve the broken link detection system and react fast to link
failures, the Link Layer Feedback (LLF) mechanism provided by NS-2 and the
AODV-UU implementation has been employed. If a packet cannot be transmit-
ted successfully, that is the sender does not receive an ACK from the destination
within a certain time interval, the packet is retransmitted. Excessive retransmis-
sions, however, can be reported by the MAC layer and can be propagated to the
routing protocol to deal with the broken link. Figure 3.4 illustrates this mecha-
nisms. Node A sends a data packet x to node B. However, it does not arrive at B
and after a timeout node A retransmits packet x. After the third timeout node A
gives up and triggers a broken link event to the routing protocol. This mechanism
has two benefits. First, it reacts to broken links by usually one order of magnitude
quicker than relying on HELLO messages and second, HELLO messages used for
broken link detection are not required any more which reduces the routing over-
head. But HELLO messages are still needed to maintain a neighbour list if data
packets are not regularly transmitted to all neighbours. The following mechanism
explains how this can be achieved even without HELLO messages.

Figure 3.4: Broken Link Detection based on Link Layer Feedback

3.4.2 Neighbour Detection

To make routing decisions or management actions in the ad hoc environment every
node requires an up-to-date neighbour list. In order to receive this list, usually each
application implements its own neighbour discovery procedure based on network
probes or HELLO messages. This results in message overhead and waste of the
scarce bandwidth. Since this service is commonly demanded, it makes sense to
provide a common interface to upper layers accessing the neighbour list from the
MAC layer. Unfortunately, NS-2 does not provide a way to maintain a neighbour
list based on management frames from the MAC layer since it employs a simplified

53

CHAPTER 3 DESIGN CONCEPTS

MAC layer that does not uses BEACON frames to manage the ad hoc network.
Within the time constraints of this thesis the NS-2 MAC layer implementation
has not been extended to provide BEACON support. Thus the effects of BEACON

based neighbour detection have not been investigated in NS-2. However, a real
environment implementation relies on BEACON frames that are sent out regularly
every 100 ms by the IEEE 802.11 MAC layer if operating in ad hoc mode. An
implementation of BEACON based neighbour detection has been provided for the
real test environment running Linux (refer to Section 4.3.3).

3.4.3 Signal Strength Monitoring

To provide for link stability and avoid the grey zones mentioned in [17] (refer to
Section 2.2.2) the Signal-to-Noise Ratio (SNR) is measured for routing messages.
If the signal strength of a RREQ is not beyond a certain SNR threshold the request is
not processed. Thus, other neighbours that have received the RREQ with a higher
signal strength will forward the packet and create a more stable route. On the
opposite, intermediate nodes that receive an RREQ that is above a certain SNR
threshold do not forward the RREQ. In this case, it is assumed that these nodes
are very close to the node that has originated the RREQ and thus, will needlessly
broadcast the RREQ as well. Figure 3.5 illustrates both mechanisms. The red nodes
1, 2 are very close to node S and receive the RREQ with a very high SNR value
and thus do not forward the RREQ. Node I receives the routing message as well,
but the SNR value is very low and the link might break soon or does not provide
reliable transport. Therefore, node I does not forward this RREQ. Node 3 and 4,
however, receive the routing message with an SNR value that is in the given range
and forward the RREQ. This time, node I receives a RREQ with a higher SNR value
and forwards it to the destination node D. AODV employs expanding ring search
based on the Time To Live (TTL) field in the IP header for dissemination of RREQ

messages. If a node receives a RREQ which has been sent with the maximal TTL,
it does not drop the RREQ even though the signal strength is below the threshold,
since no better route is available. Due to the limitations of the employed two-ray
ground propagation model in NS-2, signal strength monitoring does not provide
realistic simulation results and has not been used in the evaluation. Within the time
constraints of this thesis a different propagation model has not been implemented in
NS-2. However, signal strength monitoring can be exploited in a real environment
implementation (refer to Section 4.3.4).

54

3.5 Summary CHAPTER 3

Figure 3.5: Signal Strength Dependent RREQ Processing

3.4.4 RTS/CTS Adaptation

NS-2 supports a certain packet size threshold to indicate if RTS/CTS (refer to
Section 2.2.1) should be used. By default the threshold is 0 bytes and RTS/CTS
is always enabled. Without RTS/CTS the transmission channel is shared equally
among the contenting nodes and it requires less bandwidth and presumably reduces
end-to-end delay and delay jitter.

3.5 Summary

In this chapter, several QoS extensions have been proposed to cope with typical
challenges in MANETs: mobility, congestion, shared medium and the wireless
signal. The extensions follow a cross-layer design between the routing, interface
queue and MAC layer. In the following chapter, implementation details of some
QoS extensions for the network simulator NS-2 [5] and if appropriate for Linux are
given.

55

Chapter 4

Implementation

This chapter describes the implementation details of the QoS extensions in the net-
work simulator NS-2 [5] and the Linux operating system. The main focus of the
QoS extensions in NS-2 is on AODV enhancements like backup route and neigh-
bour list provisioning, traffic management such as the priority queue, timeouts and
rate control and the interaction of the priority queue with the routing protocol. QoS
extensions such as local repair, link layer feedback, RTS/CTS adaption are covered
only briefly since the employed routing protocol implementation AODV-UU [58]
or the NS-2 MAC layer already support these features. Furthermore, a prototype
implementation under Linux of selected QoS extensions such as priority queueing
with timeouts, broken link detection, neighbour detection based on IEEE 802.11
BEACONs and signal strength monitoring are described. AODV-UU provides a
concurrent implementation for NS-2 and Linux based on the same source code and
thus has been employed in the real test environment, as well. A brief introduction
to NS-2 and AODV-UU is given in Appendix A and B, respectively.

4.1 NS-2 Implementation

Since NS-2 has just one single thread of execution synchronisation issues that have
to be dealt with in a real system like the Linux kernel do not occur in NS-2. Fur-
thermore, cross-layer design of different layers in the protocol stack, for instance,
the MAC layer, interface queue and routing protocol is much easier to implement in
NS-2 as these modules are linked to a single binary that makes up the network sim-
ulator and does not distinguish between user space and kernel space as in Linux,
for example.

The implementation of the QoS extensions, in particular the traffic manage-

57

CHAPTER 4 IMPLEMENTATION

ment QoS extensions, follow a cross-layer design between the interface queue and
the routing protocol. Existing NS-2 or AODV-UU source code that has been mod-
ified or extended is marked with own flags to allow for conditional compilation.
Thus, the features that have been added in this thesis can be switched on and off
using additional compilation flags listed in Table 4.2 in the Makefile of NS-2.

QoS Mechanism Compilation Flags Dependencies

Backup Route BACKUP ROUTE none
Neighbour List AODV NEIGHBOUR optional LLF HELLO
Priority Queue PRIORITY QUEUEING QOS QUEUE
Timeouts QUEUE TIMEOUTS PRIORITY QUEUEING
Rate Control RATE CONTROL AODV NEIGHBOUR
Signal Monitoring SIGNAL STRENGTH none

Table 4.1: Conditional Compilation Flags

4.1.1 AODV Enhancements

This section focuses on the implementation of the AODV enhancements such as
backup route and neighbour list provisioning in NS-2. Since AODV-UU already
supports local repair, it is not discussed here and Section 4.2.2 explains how the
feature can be enabled or disabled.

Backup Route

In MANETs, packets can often be routed along several potential paths as discussed
in Section 3.2.2. The AODV standard, however, just maintains a single path for a
certain destination, although different routes might be known from other routing
messages. To allow AODV-UU to store a backup route the routing table entry
struct rt table has been extended by the field backup hop to store the next hop on
the backup route. In addition to that, the processing of RREQ and RREP messages
needs to be extended. Listing 4.1 depicts the necessary modifications to verify if
the routing information from a certain RREQ message can be used as a backup
route. At the beginning, the routing table entry for the reverse route of the RREQ is
retrieved from the routing table. In order to use the information from the RREQ as
a backup route a number of conditions have to be met. First, a reverse route must
already exist and second, the sequence number of the RREQ has to be fresh. Third,
the hop count of the RREQ has to be the same as the existing hop count. If a route

58

4.1 NS-2 Implementation CHAPTER 4

with a lower hop count is available this route is used as the default route and not as a
backup route. Fourth, the next hop of the existing route must be different to the one
in the RREQ message. An installed backup route is removed if a new default route
with a lower hop count or fresher sequence number becomes available. The code
for processing RREP messages is analog. If a broken link has been detected, either

// ns/aodv-uu/aodv_rreq.c
// void NS_CLASS rreq_process(RREP * rreq, [..])
#ifdef BACKUP_ROUTE

// retrieve the routing table entry for the reverse route
rev_rt = rt_table_find(rreq_orig);

// found a backup route with the same hop count
// and up-to-date destination number
if (rev_rt && rev_rt->dest_seqno <= rreq_dest_seqno &&

rreq_new_hcnt == rev_rt->hcnt &&

rev_rt->next_hop.s_addr != ip_src.s_addr) {

if (rev_rt->backup_hop.s_addr == 0)

// different strategy possible
rev_rt->backup_hop = ip_src;

}

#endif

Listing 4.1: Installing a Backup Route

by relying on link layer feedback or employing HELLO messages, an available
backup route can be used as shown in Listing 4.2. The source code deals with two
cases. Both have in common that a packet from the interface queue could not be
transmitted successfully. In the first case, a route has changed but still packets
might exist in the interface queue that are marked with the old route that does not
exist any longer. Thus, the packet cannot be transmitted successfully and the error
handler is called. Instead of dropping the packet it is passed to the interface queue
again using the latest information from the routing table. In the second case, the
next hop of the packet and the next hop according to the routing table are the same.
Thus, the current routing table entry is broken, as well. If a backup route exists,
the next hop is taken from the backup route and the packet is retransmitted.

Neighbour List

By default, AODV does not use HELLO messages any longer if the link layer based
broken link detection mechanism is employed. One disadvantage is that without
a neighbour detection mechanism like HELLO messages neighbours are only de-

59

CHAPTER 4 IMPLEMENTATION

// ns/aodv-uu/ns/aodv-uu.cc
// void NS_CLASS packetFailed(Packet *p)
#ifdef BACKUP_ROUTE

// packet has been sent over an old next hop
if (rt->next_hop.s_addr != next_hop.s_addr) {

// next hop mismatch - changing next hop, backup route
sendPacket(p, rt->next_hop, 0.0);

goto end;}

// packet has been sent over the current next hop
else if (rt->next_hop.s_addr == next_hop.s_addr &&

rt->backup_hop.s_addr != 0 &&

rt->next_hop.s_addr != rt->backup_hop.s_addr) {

// next hop is broken use the backup
rt->next_hop = rt->backup_hop;

sendPacket(p, rt->next_hop, 0.0);

goto end;}

#else

Listing 4.2: Applying the Backup Route

tected by AODV control messages, such as RREQ, RREP and RERR. Thus, the
number of neighbours in the vicinity of a certain node can be higher if some nodes
have not sent or forwarded a RREQ for a while. To avoid extra signalling for
neighbour detection IEEE 802.11 BEACON based neighbour detection has been
proposed in Section 3.4.2. However, since the employed NS-2 MAC layer does
not support BEACON frames in ad hoc mode according to the IEEE 802.11 stan-
dard, the NS-2 implementation of AODV-UU has been extended to employ HELLO

messages for neighbour management although link layer feedback for broken link
detection is enabled to obtain a more accurate neighbour list. This feature can be
enabled and disabled by the conditional compilation flag LLF HELLO.

In order to provide a neighbour list to other modules, for instance, the inter-
face queue (refer to Section 4.1.2) and the application layer, every module inter-
ested in the neighbour list can register itself at the routing protocol. Whenever the
neighbour list is modified all registered modules are notified by the routing proto-
col following the observer design pattern [59]. The neighbour list neigbors and
the callback list nbListenerList are defined in ns/aodv-uu/aodv neighbor -

callback.h and declared in ns/aodv-uu/aodv neighbor.h. AODV-UU’s generic
list management C macros (file ns/aodv-uu/list.c) are taken from the Linux ker-
nel to allow the same list manipulation functions to be used with different types of

60

4.1 NS-2 Implementation CHAPTER 4

lists. In addition to the list declaration several list management functions have been
added, as shown in Listing 4.3. Neighbours can be added, removed and searched
for by specifying a particular routing table entry as an index. Furthermore, the total
amount and the amount of priority neighbours can be retrieved, for example, when
a callback function is executed.

// ns/aodv-uu/aodv_neighbor.h
void addNeighbor(rt_table_t *rt);

int removeNeighbor(rt_table_t *rt);

neighbor_t* findNeighbor(rt_table_t *rt);

unsigned int getNumNeighbors();

unsigned int getNumPrioNeighbors(unsigned int timeout);

// retrieves the neighbour list, nb is output parameter
unsigned int getNeighborList(list_t * nb);

// callback is a function pointer
void addNeighborListener(NeighborCallback callback, void * data);

Listing 4.3: Neighbour Management Functions

In order to determine whether a neighbour sends real-time traffic and thus is
a high priority neighbour the routing table entry structure needs to be extended
by the field last prio to indicate the last known reception time of a high prior-
ity packet from a certain neighbour. If a node receives real-time traffic from a
particular neighbour the time-stamp last prio of the corresponding routing table
entry is updated to mark the node as high priority. Other neighbours that do not
receive real-time traffic from this node will not consider the neighbour as high pri-
ority since with this mechanism only neighbouring nodes that send real-time traffic
directly to the concerning node are taken into account. If a neighbour sends real-
time traffic to a different node it is still a high priority neighbour but the mentioned
mechanism will not account for that. Therefore, routing control messages in par-
ticular RREQ messages that are broadcast to all neighbours are marked with a flag
if the node sends high priority traffic. To accomplish this every node maintains a
time-stamp prio time that indicates when it has sent the last high priority packet.
Depending on this time-stamp, bit five of the AODV header is set in all routing
messages if the current node has sent high priority traffic within three seconds
(ACTIVE PRIO TIMEOUT). Since RREQ messages are broadcast, all neighbours get
to know if the node sends high priority traffic as soon as the corresponding bit has

61

CHAPTER 4 IMPLEMENTATION

been set. The number of high priority neighbours can be determined by iterating
the neighbour list and comparing the last prio time-stamp with the current time.
If the time difference is smaller than ACTIVE PRIO TIMEOUT the node is regarded
as a high priority neighbour. The corresponding code can be found in the function
getNumPrioNeighbors in file ns/aodv/aodv neighbor.c.

4.1.2 Traffic Management

This section describes the implementation of the priority queue extended by time-
outs and rate control of low priority traffic. Furthermore, the necessary integration
with the routing protocol is explained.

Priority Queue

Figure 4.1 shows the class diagram of involved classes of the new priority inter-
face queue using the Unified Modeling Language (UML). In NS-2 every interface
queue has to be derived from class Queue. To be as compatible as possible to
the original NS-2 queue implementation and still allow for a flexible solution the
class QoSQueueAdapter is a sub-class of Queue and hides all NS-2 peculiarities
and can employ own queue implementations that are of type QoSQueueInterface.
Furthermore, the class QoSQueueAdapter holds a reference to the AODVUU routing
agent to be able to access the routing table from the interface queue to retrieve
the number of priority neighbours used in the rate control mechanism and to pro-
vide hop dependent queueing timeouts. Since the used interface between AODVUU

and QoSQueueAdapter is very small the code can be easily ported to other routing
protocols. The class AODVUU had to be modified as well to create the bidirectional
association as shown in the UML class diagram. Listing 4.4 is part of the ini-
tialisation code of the routing protocol AODVUU and shows how the bidirectional
association is created. If QOS QUEUE is defined the object obj that comes from the
tcl simulation file is casted into QoSQueueAdapter. By calling the member func-
tion setRoutingAgent(this) on the queue object the QoSQueueAdapter obtains
a reference to the routing agent. Finally, the reference is stored in the member vari-
able ifqueue that is of type Queue to be compatible with other interface queues, as
well. This has been also changed because the original version of AODV-UU relies
on the NS-2 class PriQueue.

The class QoSQueue is a simple First In First Out (FIFO) queue and the class
QoSPriorityQueue models the priority queue that has been described in Sec-
tion 3.3.1. Both queues are sub-classes of QoSQueueInterface as depicted in Fig-

62

4.1 NS-2 Implementation CHAPTER 4

// ns/aodv-uu/ns/aodv-uu.cc
#ifdef QOS_QUEUE

QoSQueueAdapter* queue = (QoSQueueAdapter *) obj;

queue->setRoutingAgent(this);
ifqueue = queue;

#else
ifqueue = (Queue *)obj;

#endif

Listing 4.4: Association between AODV-UU and the QoSQueue

���������
	 ���
	 �
����������
��� ��������������� �"!#�"!
�%$&��������������� �"!'��!
�%(������&�)�*�'��� �"!'��!

+-,�./+*0"1'0�1"2 3#4 1�5�6 7'8�1
9;: !"< =*>#��>'?�@ < A)B C#�D@ E�<
9;: !"< ��@ FG!'B C#�H@ E�<
9 !#E��#�"!'��!'B ��>�?�I)!"<"�DJ%>�?�I)!�< C��
K��#@ L
9 L�!��#�"!'��!'B C#�DJ%>�?�I)!�<

�*�'�������%���
�#�'�"!'��!����DM'@ N�<

� �������
9 !#E��#�"!'B �">�?�I)!"<��DJ�>'?�I)!"< C#�
K��#@ L
9 L�!��#�"!'B C��DJ�>�?�I)!"<
9�O @ � < !#P B C#�
K���@ L
9 � !�E : < ("B C#�
K���@ L

���������������"Q�R'S#TU� �%�
�'�#�"!'��!������������ �"!#�"!�V E�< !#P O >�?H!
��P > : !#E�< ���
W#X�Y�Z%[�[

�����������%����\'] ��^_��`U�
����>'?�I)!"< ���DJ�>'?�I)!"<
��< @ $_!'�%< >#$&�H���D@ E�<

������\�a#b"�%TU�c	 ��`
��$dN : ������< P @ E :

����������������\Ua�b"��TU�c	 �#`�����/��S�b�e��"�cf��g�#T�\�a#b"�%TU�c	 ��`
���">�?�I)!"< ���DJ%>�?�I)!�<

Q�h�f#i-j�j
9 P !'?)K)B C��
K��#@ L

Figure 4.1: UML Diagram of the QoS Queue

ure 4.1. Thus, instances of these classes can be employed by the QoSQueueAdapter.
The QoSPriorityQueue is made up of three sub-queues of type QosQueue to model
the low, medium and high priority queues (refer to Section 3.3.1). It does not pro-
vide its own queue implementation and thus delegates all function calls to one of its
three sub-queues. That is, the main queue implementation is in the class QoSQueue
that stores packets wrapped in QoSQueueElement in its internal list. During the
queue operations enqueue or dequeue exceptions might occur. If the queue is
empty and the function dequeue is called a QoSQueueException is thrown, for in-
stance. The same happens if the queue is full and the queue attempts to put another
element into the queue. In addition to that, a QoSPacketDropException is thrown
if a packet is dequeued but the packet has already been timed-out. All exceptions
are caught and handled by the class QoSQueueAdapter.

63

CHAPTER 4 IMPLEMENTATION

In order to use the QoSQueue or the QoSPriorityQueue in simulations the type
of the queue and the length of the queue need to be specified, as illustrated in
Listing 4.5. If the priority queue is selected the timeouts and queue lengths of the
QoSQueue sub-queues are defined in the constructor of the class QoSPriority-

Queue.

ns/tcl/lib/ns-defaults.tcl
1 FIFO QoSQueue , 2 Priority QoSPriorityQueue
Queue/QoSQueue set queueType_ 2

Queue/QoSQueue set queueLimit_ 100

Listing 4.5: QoSQueue Parameters

The tcl file that describes the NS-2 application traffic pattern has to mark the
packets with priorities using the prio field, as shown in Listing 4.6.

udp is an UDP agent that sends UDP traffic
0 low priority , 1 medium priority , 2 high priority
$udp set prio_ 2

Listing 4.6: UDP Agent sends Priority Traffic

Queue Timeouts

The code that is specific for queueing timeouts resides in the files qosqueue/-

qosqueue.h and qosqueue/qosqueue.cc. If a packet is going to be enqueued the
QoSQueueAdapter delegates the function call to its private queue that is either of
type QoSQueue if priority queueing is disabled or of type QoSPriorityQueue. In
the latter case the function call is delegated to the corresponding QoSQueue sub-
queue. Listing 4.7 shows the according code of the method enqueue of class QoS-
Queue. At the beginning the current simulation time is retrieved from the simulator
using the QoSQueueAdapter which itself accesses the simulator’s Scheduler. If
no space is available in the queue the method dropOldPackets is called to delete
packets that are stored in the queue but are already out of date. If some packets
have been deleted the current queue size is smaller than the queue capacity and a
new QoSQueueElement that holds the packet p and the current time-stamp is put
either at the front or at the back of the queue depending on the flag front. Urgent
RREP packets that have been sent as high priority are queued at the front of the
high priority sub-queue. If no space is left in the queue and the packet could not be

64

4.1 NS-2 Implementation CHAPTER 4

added a QoSQueueException is thrown that has to be handled by the caller, in this
case the QoSQueueAdapter.

// ns/qosqueue/qosqueue.cc
void QoSQueue::enqueue(const Packet &p, bool front) {

Time now = QoSQueueAdapter::getCurrentTime();

#ifdef QUEUE_TIMEOUTS

if(getSize() >= getCapacity()) {

dropOldPackets();

}

#endif
if(getSize() < getCapacity()) {

if (front)

queue_.push_front(new QoSQueueElement(p,now));

else
queue_.push_back(new QoSQueueElement(p,now));

}

else throw QoSQueueException("Queue is full");}

Listing 4.7: Method QoSQueue::enqueue

// ns/qosqueue/qosqueue.cc
const Packet& QoSQueue::dequeue() {

if (getSize() > 0) {

QoSQueueElement *qqe = queue_.front();

queue_.pop_front();

Time now = QoSQueueAdapter::getCurrentTime();

const Packet &p = qqe->getPacket();

#ifdef QUEUE_TIMEOUTS

if (isOldPacket(qqe)) {

delete qqe;

throw QoSPacketDropException("Packet has timed-out", p);

} // no else
#endif

delete qqe;

return p;

}

else throw QoSQueueException("Queue is empty");}

Listing 4.8: Method QoSQueue::dequeue

Every time a packet is taken from one of the sub-queues the steps accord-
ing to Listing 4.8 are carried out. If the queue is empty a QoSQueueException is

65

CHAPTER 4 IMPLEMENTATION

thrown. Otherwise, the front element of the queue is taken from the queue and
the method isOldPacket verifies whether the packet is outdated and if not the
packet is returned. If the packet has already been stored in the queue for too long a
QoSPacketDropException is thrown that is caught by the QoSQueueAdapter and
triggers another execution of the method dequeue. The member function isOld-

Packet compares the current time with the time-stamp of the packet. Additionally,
it subtracts a hop penalty of 10 ms (HOP PENALTY) for every hop the packet al-
ready went or still has to be forwarded from the maximum queueing timeout. The
idea is to account for the queueing delays of real-time packets that are transmit-
ted over several hops. Listing 4.9 depicts how the timeout penalty is calculated.
The adapter object in the mentioned code is of type QoSQueueAdapter and de-
termines the number of hops the packet already went and the remaining hops to the
destination from the routing agent. For every hop the timeout hop penalty is in-
creased by HOP PENALTY as defined in qosdefs.h. The following example explains
the calculation of the hop dependent queueing timeout of a high priority packet that
is sent over a route that takes four hops. The maximum queueing timeout of a high
priority packet at every node is 100 ms. Since the high priority packet requires four
hops to reach the destination the queueing timeout is reduced by the hop penalty of
4*10 ms. Thus, the packet is only allowed to be queued for 60 ms at every node. In
the worst case the packet spends 60 ms in every interface queue and it reaches the
destination too late after more than 240 ms. However, if the packet spends 60 ms in
one and 5 ms in the other three interface queues the packet can still arrive in-time
with a latency of 75 ms.

// ns/qosqueue/qosqueue.cc
float QoSQueue::getHopPenalty(const Packet &p) {

struct in_addr dest = QoSQueueAdapter::getDest(p);

struct in_addr src = QoSQueueAdapter::getSrc(p);

int hops_dest = adapter_->getRemainingHops(dest);

int hops_src = adapter_->getRemainingHops(src);

int hops = hops_dest + hops_src;

float penalty = (float)(hops*HOP_PENALTY)/1000;
return penalty;}

Listing 4.9: Calculation of the Hop Penalty

66

4.1 NS-2 Implementation CHAPTER 4

Number of Real-time Neighbours Reduction of Low Priority Traffic

0 10 %

1 14 %

2 20 %

>=3 33 %

Table 4.2: Rate Control Parameters

// ns/qosqueue/qospriorityqueue.cc
// const Packet& QoSPriorityQueue::dequeue()
// take packet from low priority sub-queue
if (lpq_.getSize() > 0) {

#ifdef RATE_CONTROL

if(rand() % getRateControl() == 0)

throw QoSQueueException("Rate Control

of Low Priority Traffic");

#endif } [..]

#ifdef RATE_CONTROL

unsigned int QoSPriorityQueue::getRateControl() {

unsigned int rate = 10;

if(numPrioNeighbors_ >= 1) {

rate = 7;

if (numPrioNeighbors_ >= 2)

rate = 5;

if (numPrioNeighbors_ >= 3)

rate = 3;

} return rate; }

#endif

Listing 4.10: Rate Control of Low Priority Traffic

Rate Control

The rate control system has been implemented in class QoSPriorityQueue and is
shown in Listing 4.10. As mentioned in Section 3.3.3, rate control of low prior-
ity traffic adapts to the amount of neighbouring nodes that transmit high priority
traffic. To accomplish this, the routing protocol monitors high priority neighbours
as described in Section 4.1.1 and the interface queue registers at the routing agent
during initialisation to be notified if the neighbour list has been updated.

ragent_->addNeighborListener(&neighborCallback, this);

67

CHAPTER 4 IMPLEMENTATION

Depending on the number of neighbours that transmit high priority traffic the rate
controller reduces the amount of low priority traffic a node is allowed to send.
Table 4.2 depicts the relation between real-time neighbours and the reduction of
low priority traffic, for instance, if a node has two high priority neighbours the
maximum low priority traffic transmitted by this node is reduced by 20 %. In initial
simulations these values delivered a reasonable performance. However, further
simulations have to be carried out to find the optimal set up. The corresponding
source code is illustrated in Listing 4.10. If a low priority packet is dequeued from
the priority queue, a uniformly distributed random number is generated. If this
random number modulo the according rate control value from Table 4.2 equals
zero a QoSQueueException is thrown that is handled by QoSQueueAdapter. The
adapter returns NULL to the MAC layer that will not use the channel this time and
allows other nodes that are in its vicinity to send their high or medium priority
traffic.

// ns/aodv-uu/ns/packet_input.cc
// void NS_CLASS processPacket(Packet * p)
// no route to the destination available
// ih : IP header of packet p
#ifdef PRIORITY_QUEUEING

if (ih->prio() == PRIORITY_HIGH)

drop(p);

else
packet_queue_add(p, dest_addr);

#else
packet_queue_add(p, dest_addr);

#endif [..]

// start route discovery and set high priority flag if necessary
#ifdef PRIORITY_QUEUEING

if (ih->prio() == PRIORITY_HIGH) {

rreq_flags |= PRIO_ROUTING_FLAG;

}

#endif

Listing 4.11: Service Differentiation of Data Packets in AODV-UU

Traffic Management in AODV

The parts in AODV that have been modified to account for different traffic types are
marked with PRIORITY QUEUEING. The function processPacket deals with rout-

68

4.1 NS-2 Implementation CHAPTER 4

ing and forwarding of data packets. By default, AODV queues packets that are
waiting for a new route becoming available. However, high priority packets are
quickly out-dated and hence are not queued and can be dropped instead. This is
shown in the first part of Listing 4.11. In the second part, the high priority flag
PRIO ROUTING FLAG is set in the AODV header if the packet that is waiting for a
new route is a real-time packet. This allows the node that replies to the RREQ

to set the Type of Service (TOS) field of the RREP to high priority and thus can
be privileged by the interface queue as mentioned in Section 3.3.1. In addition

// ns/aodv-uu/aodv_socket.c
// void NS_CLASS aodv_socket_send(AODV_msg * aodv_msg, [..])
#ifdef PRIORITY_QUEUEING

// AODV route request packet
if (aodv_msg->type == AODV_RREQ)

ih->prio() = PRIORITY_MEDIUM;

// AODV route reply packet
else if (aodv_msg->type == AODV_RREP) {

RREP* rrep = (RREP*) aodv_msg;

if (rrep->h)

ih->prio() = PRIORITY_HIGH;

else
ih->prio() = PRIORITY_MEDIUM;

}

// AODV route error packet
else if (aodv_msg->type == AODV_RERR)

ih->prio() = PRIORITY_MEDIUM;

#endif

Listing 4.12: Service Differentiation of Routing Packets in AODV-UU

to data packets, also routing packets are marked with different priorities, as de-
picted in Listing 4.12. Function aodv socket send is used by AODV to transmit
any type of control routing messages. RREQ and RERR messages are always set
to PRIORITY MEDIUM while RREP messages are set to PRIORITY HIGH if the corre-
sponding priority flag (bit six in the header of the RREQ) has been set.

4.1.3 MAC Layer Support

Support from the MAC layer is mandatory to perform efficient routing with low
signalling overhead and provide QoS, as discussed in Section 3.4. The employed
NS-2 MAC layer does not fully support the IEEE 802.11 IBSS standard and does

69

CHAPTER 4 IMPLEMENTATION

not provide BEACON messages for network management. Hence, neighbour de-
tection based on IEEE 802.11 BEACON messages has not been implemented in
NS-2. However, Section 4.3.3 shows how BEACON messages can be captured by
a Linux device driver and employed for neighbour management in a real environ-
ment. Broken link detection based on link layer feedback is already implemented
in the NS-2 MAC layer and in AODV-UU. Section 4.2.1 illustrates how the link
layer feedback mechanism can be used by routing protocols. The following sec-
tion explains which parts of NS-2 and AODV-UU have been modified to provide
basic signal strength monitoring support.

Signal Strength Monitoring

The two-ray ground propagation model [60] used by NS-2 does not support the
actual Signal to Noise Ratio (SNR) value of a captured packet. Instead, the signal
strength only depends on the distance of two nodes and has always the same value
if the distance between two nodes does not change. To get more realistic values
a different propagation model that provides more accurate SNR values needs to
be developed for NS-2. Due to the time constraints of this thesis a new propaga-
tion model has not been developed. In the following it is assumed that the used
two-ray ground propagation model in NS-2 already provides accurate SNR values.
The source code shows which parts have to be modified to enable AODV-UU to
make routing decisions upon the signal strength of a received packet, for instance,
to cope with grey zones (refer to Section 2.2.2). First, the packet structure struct

hdr cmn has been extended by the field rxSignal to hold the signal strength that
is retrieved from the NS-2 MAC layer, as shown in Listing 4.13. With the currently
employed two-ray ground propagation model the signal strength is not accurate. If

// ns/mac/wireless-phy.cc
// int WirelessPhy::sendUp(Packet *p)
Pr = propagation_->Pr(&p->txinfo_, &s, this);
#ifdef SIGNAL_STRENGTH

hdr_cmn *hdr = HDR_CMN(p);

hdr->rxSignal() = Pr;

#endif

Listing 4.13: Signal Strength Monitoring in NS-2

AODV receives a RREQ message the function rreq process is executed. Within
this function the signal strength is compared against two threshold values, as illus-

70

4.1 NS-2 Implementation CHAPTER 4

trated in Listing 4.14 and Listing 4.15, respectively. If the signal strength is below
the threshold RREQ SIGNAL THRESH the RREQ is ignored since the route might not
be very stable. However, if the time to live (TTL) field has been set to the maximum
value NET DIAMETER the route request is not discarded. In that case, the node as-
sumes that no better route exists and continues processing the RREQ. On the other

// ns/aodv-uu/aodv_rreq.c
// void NS_CLASS rreq_process(RREQ * rreq, [..])
#ifdef SIGNAL_STRENGTH

// Discard RREQ due to low signal strength
if (rreq_new_hcnt + ip_ttl < NET_DIAMETER &&

rxSignal < RREQ_SIGNAL_THRESH)

return;
#endif

Listing 4.14: Discarding RREQs with Weak Signal Strength

hand, the signal strength of the received packet might be very high if the recipient
node is very close to the sender. As mentioned in Section 3.4.3, the recipient need-
lessly forwards the RREQ as this node does not cover a significantly larger area.
Hence, the node ignores the RREQ if the signal strength is higher than a certain
threshold RREQ SIGNAL MAX THRESH. In order to obtain meaningful simulation re-

// ns/aodv-uu/aodv_rreq.c
// void NS_CLASS rreq_process(RREQ * rreq, [..])
#ifdef SIGNAL_STRENGTH

// Do not forward RREQ due to high signal strength
if (rreq_new_hcnt + ip_ttl < NET_DIAMETER &&

rxSignal > RREQ_SIGNAL_MAX_THRESH) {

return;
#endif

Listing 4.15: Discarding RREQs from Close Neighbours

sults a different, more probabilistic propagation model has to be employed in NS-2.
Then, the introduced code can be reused to allow for signal strength aware routing
in AODV-UU.

71

CHAPTER 4 IMPLEMENTATION

4.2 Available QoS Extensions in NS-2

Some of the employed QoS extensions have already been implemented either in
AODV-UU or NS-2. This section describes where the particular sections can be
found in the source code and explains how the given features can be enabled or
disabled.

4.2.1 Broken Link Detection

By default, AODV-UU employs HELLO messages to detect broken links. How-
ever, this approach requires additional signalling and does not respond quickly
enough to link changes as the simulation results in Section 5.4.1 show. The so-
lution to that is to rely on the information from the MAC layer as described in
Section 3.4.1. To accomplish this, the protocol that is interested in feedback from
the link layer registers a callback function and the MAC layer calls this function
if the packet could not be delivered. Right before passing the packet to the inter-
face queue AODV-UU registers the callback link layer callback, as illustrated
in Listing 4.16. If a broken link due to excessive retransmissions has been detected

// ns/aodv-uu/ns/aodv-uu.cc
if (llfeedback) {

ch->xmit_failure_ = link_layer_callback;

ch->xmit_failure_data_ = (void *) this;}

Listing 4.16: Link Layer Feedback in AODV-UU

by the MAC layer the callback function executes packetFailed to deal with the
broken link. The mechanism can be globally activated in the configuration file
ns/tcl/lib/ns-defaults.tcl, as shown in Listing 4.17.

ns/tcl/lib/ns-defaults.tcl
1 - enable ; 0 - disable
Agent/AODVUU set llfeedback_ 1

Listing 4.17: Enabling / Disabling Link Layer Feedback

4.2.2 Local Repair

If AODV cannot deliver a packet due to a broken link it can either decide to repair
it locally or to notify the source of the packet by sending a RERR message. List-

72

4.2 Available QoS Extensions in NS-2 CHAPTER 4

ing 4.18 depicts the necessary steps. First, the packet that could not be delivered is
queued in the routing queue. In addition, all packets from the interface queue that
are supposed to be sent over the same next hop are removed and put into the routing
queue, as well. Next, the route is marked to be repaired and neighbour management
functions are called. Finally, the local repair process and a new route discovery is
started. AODV’s local repair mechanism can be enabled in the configuration file
ns/tcl/lib/ns-defaults, as shown in Listing 4.19.

// ns/aodv-uu/ns/aodv-uu.cc
// void NS_CLASS packetFailed(Packet *p)
packet_queue_add(p, dest_addr);

interfaceQueue((nsaddr_t) next_hop.s_addr, IFQ_BUFFER);

rt_next_hop->flags |= RT_REPAIR;

neighbor_link_break(rt_next_hop);

rreq_local_repair(rt, src_addr, NULL);

Listing 4.18: Local Repair Mechanism

ns/tcl/lib/ns-defaults.tcl
1 - enable ; 0 - disable
Agent/AODVUU set local_repair_ 1

Listing 4.19: Enabling / Disabling Local Repair

4.2.3 RTS/CTS Adaptation

NS-2 supports a packet size threshold for the use of RTS/CTS. If the packet is
bigger than the defined threshold, RTS/CTS is applied otherwise it is disabled. By
default the threshold is 0 and thus RTS/CTS is always applied. This threshold can
be defined in the main NS-2 simulation tcl file, as illustrated in Listing 4.20. In
this case, RTS/CTS is only activated for packets that are bigger than 1000 bytes.

simulation.tcl
Mac/802_11 set RTSThreshold_ 1000

Listing 4.20: Setting RTS/CTS Threshold

73

CHAPTER 4 IMPLEMENTATION

4.3 QoS Extensions under Linux

This section describes the implementation of selected QoS extensions in a real test
environment using Linux. The main focus is on QoS support by the MAC layer
and priority queueing using timeouts. DLink DWL-G650 that is IEEE 802.11/b/g
compatible has been employed as the wireless network interface. Since some ex-
tensions require the modification of the device driver of the employed network card
these extensions are not compatible with other network cards that depend on a dif-
ferent chip-set. The DLink card employs an Atheros chip-set and the corresponding
Linux Multiband Atheros Driver for WiFi (MADWIFI) [61] driver is well designed
and supports all the required features to implement the MAC layer QoS extensions
mentioned in Section 3.4. Previously, the Lucent Orinoco Gold and Cisco Aironet
cards have been tested, as well. However, these cards cannot be used to provide
neighbour detection based on IEEE 802.11 BEACON messages, as recommended
in Section 4.3.3.

4.3.1 Priority Queue

Linux supports several different built-in interface queues called queueing disci-
plines or qdisc, such as First In First Out (FIFO), Priority FIFO (PFIFO), PRIO,
Random Early Detection (RED), Class Based Queueing (CBQ), as explained in
[62]. A qdisc can be either class-less or class-based. Class-less qdiscs like FIFO
and PFIFO do not allow to employ other qdiscs as sub-queues. Class-based qdiscs
like PRIO and CBQ might have further sub-queues, for instance, a PRIO qdisc
might consist of three class-less FIFO sub-queues. Each network interface has one
egress root queueing discipline called root qdisc which forms a tree of qdiscs with
class-based qdiscs as inner qdiscs and class-less qdiscs as leaves. By default the
root qdisc is the class-less PFIFO FAST queueing discipline that supports priority
queueing and consists of three built-in sub-queues called bands which are actual
FIFO queues. Based on the Type of Service (TOS) flag in the IP header the pack-
ets are queued into one of the bands. If the high priority band is empty packets
are taken from the medium and then from the low priority band. Thus, the basic
architecture is very similar to the queueing system proposed in Section 3.3.1. Un-
fortunately, the PFIFO FAST queueing discipline and all other existing qdiscs do
not support the queueing timeout mechanism that has been shown to be very pow-
erful in the simulations (refer to Section 5.3.2). The queueing discipline PRIO is
similar to PFIFO FAST, however, since it is class-based other queueing disciplines

74

4.3 QoS Extensions under Linux CHAPTER 4

can be applied as sub-queues. The idea is to employ the PRIO queueing discipline
as the egress root qdisc and instead of the default FIFO sub-queues, three class-less
qdiscs called QoSQueue derived from the FIFO qdisc and extended with timeouts
are used.

In order to modify the qdisc or install a different queueing discipline for a
particular network interface at run-time the command tc (traffic control) can be
used. tc -s qdisc depicts the current interface queue configuration for all known
network interfaces. Hence, if a new qdisc implementation is added to the Linux
kernel tc has to be extended and recompiled, as well, to be able to configure the
new qdisc. The next section describes the Linux kernel module qosqueue.ko that
provides the qdisc QoSQueue. Afterwards the modifications to tc are presented.

QoSQueue Linux Kernel Module

The QoSQueue qdisc has been implemented as a Linux kernel module and is based
on the Linux kernel FIFO queue in file linux/net/sched/sch fifo.c. The defini-
tion of the data structure that describes the configuration parameters of the queue-
ing discipline are stored in the Linux kernel header file pkt shed.h, as illustrated
in Listing 4.21. In the following, important functions of the QoSQueue qdisc are

// include/linux/pkt_sched.h
struct tc_qosqueue_qopt {

__u32 limit; /* Length of the queue */
__u32 timeout; /* Timeout in ms */

};

Listing 4.21: QoSQueue Options

explained. Listing 4.22 illustrates the necessary code to enqueue a packet. If the
queue is full all out-dated packets are removed from the queue to make space for
up-to-date packets. Before the packet skb is added to the list of queued packets it
is marked with the current time-stamp skb->stamp by calling do gettimeofday.
Every time a packet is removed from the queue the time-stamp is compared with
the current time. If the packet has not been out-dated the packet is returned, as
shown in Listing 4.23. A pointer to the top element of the queue is stored in the
socket buffer skb. If the packet is not NULL the current time is compared with the
time the packet had been enqueued. If the packet is still valid according to the
queue timeout policy q->timeout the packet is returned. Otherwise, the packet is
dropped and another packet is dequeued from the queue. The traffic control tool

75

CHAPTER 4 IMPLEMENTATION

// linux/qosqueue/qosqueue.c
static int qosqueue_enqueue(struct sk_buff *skb, struct Qdisc* sch) {

struct qosqueue_sched_data *q = qdisc_priv(sch);

struct sk_buff *skb_q; // skb in the queue
if (sch->q.qlen >= q->limit) {

skb_q = qosqueue_dequeue(sch);

if(skb_q)
qosqueue_requeue(skb_q, sch);

}

// this is not an else branch
if (sch->q.qlen < q->limit) {

do_gettimeofday(&skb->stamp);

__skb_queue_tail(&sch->q, skb);

[..]}}

Listing 4.22: Linux QoSQueue Enqueue Function

// linux/qosqueue/qosqueue.c
static struct sk_buff * qosqueue_dequeue(struct Qdisc* sch){

struct timeval now;

struct qosqueue_sched_data *q = qdisc_priv(sch);

struct sk_buff *skb;

while ((skb = __skb_dequeue(&sch->q)) != NULL) {

do_gettimeofday(&now);

__u64 diff = timeval_diff(&now,&skb->stamp);

if (diff > q->timeout*1000) { // usecs
sch->qstats.drops++;

kfree_skb(skb);

} else
return skb;

}

return skb;

Listing 4.23: Linux QoSQueue Dequeue Function

tc employs the Netlink [63] interface to allow user space programs to interact with
the Linux kernel. In order to configure the QoSQueue and set parameters like the
queue length and the maximum timeout the function qosqueue init is called (List-
ing 4.24). If no options have been applied default values are used. Otherwise the
queue size and the timeout are stored in q->limit and q->timeout, respectively.
In order to retrieve the current qdisc configuration the tc employs the qosqueue -

dump function. Both queue size and timeout are stored in opt and sent via Netlink

76

4.3 QoS Extensions under Linux CHAPTER 4

// linux/qosqueue/qosqueue.c
static int qosqueue_init(struct Qdisc *sch, struct rtattr *opt) {

struct qosqueue_sched_data *q = qdisc_priv(sch);

if (opt == NULL) {

q->limit = sch->dev->tx_queue_len ? : 1;

q->timeout = 10000;

} else {

struct tc_qosqueue_qopt *ctl = RTA_DATA(opt);

if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))
return -EINVAL;

q->limit = ctl->limit;

q->timeout = ctl->timeout;

}

return 0;}

Listing 4.24: Linux QoSQueue Init Function

to the tc tool, as illustrated in Listing 4.25.

// linux/qosqueue/qosqueue.c
static int qosqueue_dump(struct Qdisc *sch, struct sk_buff *skb) {

struct qosqueue_sched_data *q = qdisc_priv(sch);

unsigned char *b = skb->tail;

struct tc_qosqueue_qopt opt;

opt.limit = q->limit;

opt.timeout = q->timeout;

RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);

return skb->len;

rtattr_failure:

skb_trim(skb, b - skb->data);

return -1;}

Listing 4.25: Linux QoSQueue Read Configuration Function

Traffic Control Extension

The tc traffic control tool as part of the iproute2-2.6.9 Debian Linux source
packet has been extended with support for the QoSQueue queueing discipline. The
file q qosqueue.c in iproute/tc/ sub-directory has been added and describes
how tc interacts with the Linux kernel module qosqueue.ko. In addition to that,
the iproute/tc/Makefile has been modified to compile the new file as well.
Furthermore, a local version of include/linux/pkt sched.h that is part of the

77

CHAPTER 4 IMPLEMENTATION

iproute source code has been extended as described in Listing 4.21. The addi-
tional code to manage the QoSQueue is in file q qosqueue.c. It parses command
line parameters such as queue length and queue timeout and sends these parame-
ters via Netlink to the particular instance of the QoSQueue qdisc. This is described
in the following section. In the opposite direction, the user can retrieve the current
qdisc configuration with the command tc -s qdisc.

Testing the QoSQueue

First the QoSQueue and the wireless card modules of the Madwifi driver have to be
loaded into the Linux kernel, as shown in Listing 4.26. The modules do not depend
on each other and can be loaded in any order. In contrast to insmod, the program
modprobe is used to load automatically all other kernel modules the Madwifi device
driver ath pci depends on.

insmod qosqueue.ko

modprobe ath_pci

Listing 4.26: Loading QoSQueue and Madwifi Linux Kernel Modules

tc qdisc add dev ath0 root handle 1: prio

tc qdisc add dev ath0 parent 1:1 handle 10: # high priority
qosqueue limit 10 timeout 100

tc qdisc add dev ath0 parent 1:2 handle 20: # low priority
qosqueue limit 80 timeout 10000

tc qdisc add dev ath0 parent 1:3 handle 30: # medium priority
qosqueue limit 10 timeout 500

Listing 4.27: Linux QoSQueue Qdisc Configuration using TC

Listing 4.27 installs for the wireless interface ath0, that is used by default by
the Madwifi driver, the PRIO queueing discipline as root qdisc. Then, three sub-
queues of type QoSQueue are plugged into the root qdisc. Using default settings of
the PRIO qdisc, the first sub-queue models the high priority queue and has a size
of 10 packets and a timeout of 100 ms. Hop dependent timeouts as implemented
in NS-2 are currently not supported and thus the timeout is set to a fixed value, in
this case 100 ms. The second sub-queue handles best-effort or low priority traffic
and has a size of 80 packets and a queue timeout of 10 s. The third sub-queue
is responsible for medium priority traffic and has a maximum queue size of 10

78

4.3 QoS Extensions under Linux CHAPTER 4

packets and a timeout of 500 ms (refer to Section 3.3.1 for more details regarding
the selected queue parameters). The PRIO qdisc classifies packets based on the
TOS field of the IP header into one of the three sub-queues using its default priority
map settings.

To illustrate how the priority queue works a UDP traffic generator that makes
use of the TOS field has been developed. The commands in Listing 4.28 illustrate
three UDP connections with different priorities. With the help of tc the current
status of the queue can be monitored. When the AODV-UU routing daemon is
started, routing messages are enqueued into the medium priority queue and best-
effort traffic into the low priority queue according to the priority map of the PRIO
qdisc.

// usage : ./udpc <Server-IP> <Packet Size> <TOS>
./udpc 192.168.0.1 42000 0 // low priority best-effort traffic
./udpc 192.168.0.2 200 8 // medium priority routing traffic
./udpc 192.168.0.2 64 16 // high priority game traffic

Listing 4.28: Using the UDP Traffic Generator

4.3.2 Broken Link Detection

Broken link detection based on feedback from the link layer allows AODV to aban-
don HELLO messages and detect broken links very quickly, as discussed in Sec-
tion 3.4.1. This requires some communication between the device driver in kernel
space and the routing protocol in user space. AODV-UU already provides a Netlink

// ns/aodv-uu/llf.c
// llf_print_event(struct iw_event *event, [..])
// Decode the NETLINK event
switch (event->cmd) {

case IWEVTXDROP:

if (mac_to_ip(&event->u.addr, &ip,

this_host.devs[0].ifname) != 0)

return 0;

rt = rt_table_find(ip);

if (rt)

neighbor_link_break(rt);

Listing 4.29: Reception of a Broken Link Event in AODV-UU

79

CHAPTER 4 IMPLEMENTATION

interface to receive messages from the Linux kernel and in particular IWEVTXDROP
events. To activate the code the following compilation flag has to be set in the
AODV-UU Makefile:

DEFS=-DLLFEEDBACK

If the routing protocol receives the IWEVTXDROP event, triggered by the device
driver due to excessive retransmissions, AODV-UU regards the according link as
broken. Listing 4.29 illustrates the existing code in AODV-UU to process wire-
less event messages. First, the destination hardware address of the packet that
has not been transmitted successfully is translated into an IP address. This IP
address is used to index the routing table and retrieve the corresponding routing
table entry. Finally, the routing table entry is invalidated by calling the function
neighbor link break.

// madwifi/ath/if_ath.c
// static void ath_tx_processq([..])
if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) {

struct net_device *dev;

struct sk_buff *skb;

struct sockaddr *mac;

union iwreq_data wrqu; // wireless request data
struct ieee80211_frame *wh; // IEEE 802.11 frame

dev = ic->ic_dev; // get device handle
skb = bf->bf_skb; // get socket buffer
mac = &wrqu.addr; // will hold MAC address
// retrieves IEEE 802.11 frame from the socket buffer
wh = (struct ieee80211_frame *) skb->data;

mac->sa_family = ARPHRD_ETHER;

// copy the MAC address into the wrqu struct
IEEE80211_ADDR_COPY(mac->sa_data, wh->i_addr1);

// send wireless event
wireless_send_event(dev, IWEVTXDROP, &wrqu, NULL);

Listing 4.30: Madwifi Device Driver triggers Broken Link Event

In order to send the event message to the routing protocol the Madwifi driver
has been modified. Listing 4.30 shows the extension of the error handling routine
that is called if a packet has not been transmitted successfully. Basically, the data of
the socket buffer skb is casted into an IEEE 802.11 frame to access the hardware
address of the frame’s destination. The address is stored in the wireless request

80

4.3 QoS Extensions under Linux CHAPTER 4

data union wrqu. Finally, the IWEVTXDROP event and the union containing the MAC
address are sent to the routing protocol using the Netlink interface.

The implementation works very reliably in the test environment. However, one
disadvantage of the reactive approach of this mechanism is that a broken link is
only detected if a packet is sent over the particular link. If no packets are sent,
the link is still going to be considered as active until the route times out. If also
BEACON based neighbour detection is employed the neighbour timeout should be
reduced to detect lost neighbours faster.

4.3.3 Beacon based Neighbour Detection

Normally AODV HELLO messages are employed for both, broken link and neigh-
bour detection since the AODV standard does not suggest additional mechanisms
for neighbour detection. If broken link detection based on link layer feedback,
as discussed in Section 3.4.1, is employed AODV does not maintain an accurate
neighbour list any longer. The idea is to use the BEACON messages from the MAC
layer that are periodically transmitted by every node to maintain the ad hoc network
(refer to Section 2.2.2) for neighbour detection, as well. In order to implement this
QoS extension, AODV and the Madwifi device driver have been extended. For
communication between the device driver in kernel space and the routing protocol
in user space the existing Netlink interface has been used again. Every time the

// ns/aodv-uu/llf.c
// llf_print_event(struct iw_event *event, [..])
// Decode the NETLINK event
switch (event->cmd) {

[..] // handle IWEVTXDROP event
case IWEVREGISTERED:

// convert MAC to IP address
if (mac_to_ip(&event->u.addr, &ip,

this_host.devs[0].ifname) != 0)

return 0;

rt = rt_table_find(ip);

if (!rt)

rt_table_insert(ip, ip, 1, 0, ACTIVE_ROUTE_TIMEOUT,

VALID, 0, this_host.devs[0].ifindex);

else
rt_table_update_timeout(rt, ACTIVE_ROUTE_TIMEOUT);

Listing 4.31: Processing a Beacon Event in AODV-UU

81

CHAPTER 4 IMPLEMENTATION

device driver captures a BEACON message an IWEVREGISTERED event is triggered
and passed to the routing protocol. In general, this event is employed by access
points to announce new nodes.

Listing 4.31 shows the required code to act upon the reception of an IWEV-

REGISTERED event in AODV-UU. First, the MAC address is translated into an IP
address. If a routing table entry does not already exist, a new neighbour has been
found and is inserted into the routing table. If the routing table entry already exists
the entry is updated. With the help of this QoS extension AODV does not rely on
periodic HELLO advertisements any more and can maintain an accurate neighbour
list without any additional signalling. In order to translate remote MAC addresses
into IP addresses the Address Resolution Protocol (ARP) table has to be fully pop-
ulated since the AODV-UU mac-to-ip implementation does not employ Reverse
ARP (RARP) [64] to send a request to the corresponding node. If AODV-UU can-
not translate the MAC address into an IP address the event is discarded. In order
to gain the full power of BEACON based neighbour detection RARP should be
integrated in future work.

// madwifi/ath/if_ath.c
// static void ath_recv_mgmt([..], struct sk_buff *skb,[..])
switch (subtype) {

case IEEE80211_FC0_SUBTYPE_BEACON:

struct net_device *dev;

struct sockaddr *mac;

union iwreq_data wrqu;

struct ieee80211_frame * wh;

dev = ic->ic_dev;

mac = &wrqu.addr;

wh = (struct ieee80211_frame *) skb->data;

mac->sa_family = ARPHRD_ETHER;

IEEE80211_ADDR_COPY(mac->sa_data, wh->i_addr2);

wireless_send_event(dev,IWEVREGISTERED, &wrqu, NULL);

Listing 4.32: Generating a Beacon Event for Neighbour Detection

Before using the DLink wireless card some tests have been carried out with
Lucent Orinoco and Cisco Aironet cards. However, both cards do not allow the
device driver to capture BEACON frames if the card operates in ad hoc mode. Only,
in monitor or rfmon mode the cards can capture all packets, but then they cannot
transmit packets any more. According to the author of the Aironet device driver
this is due to some limitations of the employed firmware. The Madwifi card in

82

4.3 QoS Extensions under Linux CHAPTER 4

contrast can operate in ad hoc mode and capture BEACON frames at the same
time and therefore has been employed in this thesis. The device driver function
ath recv mgmt is called every time an IEEE 802.11 management frame has been
received. In case of BEACON frames the code in Listing 4.32 is executed to send a
wireless event to the routing protocol. In contrast to the previous code the source
MAC address of the BEACON is stored in the wireless request union wrqu and the
event IWEVREGISTERED is passed to the routing protocol.

4.3.4 Signal Strength Monitoring

The Linux kernel module part of AODV-UU already provides some support for
signal strength monitoring of routing control messages to cope with the grey zone
problem, discussed in Section 2.2.2. IEEE 802.11 defines the signal strength as
Received Signal Strength Indication (RSSI) which is a vendor dependent measure-
ment in arbitrary units and does not directly refer to the Signal to Noise Ratio
(SNR). The employed DLink wireless cards are based on an Atheros chip-set that
provides a maximum RSSI value of 60. In [65] some hints are given on how to
convert RSSI values from common vendors into SNR. In order to pass a packet
from the device driver to the Linux networking system socket buffers skb are em-
ployed. Extending the struct sk buff to hold the RSSI value is an obvious step,
however, it involves compiling and installing a new Linux kernel. Therefore, a
different approach has been taken. The struct sk buff has a control buffer field
cb, where protocols can put their private data. This field has been used to store the
RSSI value. The Madwifi driver has been extended, as illustrated in Listing 4.33,
and puts the RSSI value into the skb->cb array before the packet is passed to the
Linux networking system. If the packet is an AODV-UU routing control packet

// madwifi/net80211/ieee80211_input.c
// int ieee80211_input([..], struct sk_buff *skb, int rssi) {

int *prssi =(int*) skb->cb;

*prssi = rssi;

netif_rx(skb);

Listing 4.33: Passing the RSSI to the Routing Protocol

and the RSSI value is below a certain threshold, that can be specified at start-up of
the AODV-UU daemon, the packet is dropped, as shown in Listing 4.34.

83

CHAPTER 4 IMPLEMENTATION

// aodv-uu/lnx/kaodv-main.c
// static unsigned int kaodv_hook([..], struct sk_buff **skb)

int *prssi = (int*)(*skb)->cb;
qual = *prssi;

if (qual && qual < qual_th) {

pkts_dropped++;

return NF_DROP;}

Listing 4.34: Evaluating the Packet Signal Strength

4.4 Summary

In this chapter the implementation details of the proposed QoS extensions in NS-2
and under Linux have been presented.

The QoS extensions that have been implemented in NS-2 focus on AODV en-
hancements, priority queueing and the interaction with the AODV-UU routing pro-
tocol. The new QoS extensions can be enabled and disabled using conditional
compilation flags. The backup route extension for AODV-UU attempts to provide
a new route without starting a time-consuming route discovery process. The pro-
cessing of RREQ and RREP messages has been extended to find further routes with
the same hop count and sequence number but a different next hop as the existing
route in the routing table. Such a route can be employed as a backup route. In order
to provide an up-to-date neighbour list to other modules within NS-2 the routing
agent provides an interface to register callback functions that are called if the neigh-
bour list has changed. For traffic management a new priority QoSQueue consisting
of three sub-queues using hop dependent queueing timeouts has been implemented
in NS-2 to support high, medium and low priority traffic. Furthermore, the priority
queue makes use of rate control to limit the amount of low priority traffic in favour
of high priority neighbours.

The implementation of QoS extensions under Linux, and in particular those ex-
tensions that are currently not available in NS-2, have been described. Based on the
Madwifi device driver solutions for broken link detection, BEACON based neigh-
bour detection and signal strength monitoring have been presented. Furthermore,
a new Linux queueing discipline that supports queueing timeouts to construct the
priority queue has been discussed. Standard rate control of low priority traffic can
be added to the queueing system by plugging in a token bucket filter.

84

Chapter 5

Evaluation

This chapter starts with a comparison of four routing protocols for MANETs and
presents the simulation results of the QoS extensions in the light of the demands
of real-time multiplayer games. The single impact as well as the accumulated ef-
fects when gradually applying the QoS extensions are presented. QoS extensions
that yielded varying results for different simulation scenarios are discussed next.
A summary of experiments of the QoS extensions in a real test environment com-
pletes this chapter.

5.1 Simulation Environment

The main reason for employing a network simulator to evaluate mobile wireless ad
hoc networks is that it is very difficult to run experiments with many mobile nodes
in a real test-environment. Furthermore, the experiments are time-consuming,
error-prone and difficult to reproduce. Moreover, hardware components might not
yet be available and simulation is the only way to have a first glance at new tech-
nology. On the other side, however, carrying out realistic network simulations,
in particular of mobile wireless ad hoc networks, is very challenging, since most
network simulators assume a simplified wireless channel and, for instance, do not
account for obstacles. In addition to that, the simulation results highly depend on
the network scenario consisting of the employed traffic and mobility model.

The simulations have been performed with the discrete event network simulator
NS-2 [5] including the wireless extensions from the Monarch group [66, 67] to
model the IEEE 802.11 MAC layer, node mobility, radio network interfaces and
physical layer. Throughout the simulations, each mobile node shares a 2 Mbit/s
radio channel with its neighbouring nodes, using the IEEE 802.11 MAC protocol

85

CHAPTER 5 EVALUATION

and two-ray ground reflection model [60]. The transmission range of each node is
250 m, which is a typical value for WLAN in a free area without any obstacles.

5.1.1 Mobility Model

Many mobility models, in particular for mobile ad hoc networks, have been devel-
oped recently [68]. The most frequently employed mobility model is the Random

WayPoint (RWP) model that is supposed to model the movement of nodes, for
instance conference or museum visitors, quite reasonable compared to other mod-
els [69]. In the RWP model a node chooses randomly a location in the simulated
area and moves directly towards the destination at a uniformly distributed speed.
If the node arrives at the destination it pauses for some time and then randomly
selects a new position as illustrated in Figure 5.1. The RWP model, however, has

Figure 5.1: Random Waypoint Mobility Model

some serious drawbacks as well. It does not consider groups of nodes and models
every node independently of all other nodes. Furthermore, the direct node move-
ment towards the destination is not very realistic, for example, inside buildings or
when modelling vehicular nodes. Moreover, the density of nodes in the centre of
the simulated area is much higher than at the borders [69].

In addition to the mobility model a traffic model is needed that describes the
traffic behaviour of applied applications, in this case, typical traffic of real-time
multiplayer games. In general, multiplayer-games make use of small UDP packets
that are exchanged between the client and server (refer to Section 2.5). According
to the traffic analysis of the popular first person shooter Counter-StrikeTMclient and
server traffic are very similar, while client traffic tends to be more bursty [33]. On

86

5.2 Ad Hoc Routing Protocol Comparison CHAPTER 5

the average very small UDP packets with the size of 64 bytes are employed at a
constant rate of 20 packets/second.

5.1.2 Metrics

In order to evaluate the performance of ad hoc routing protocols and the investi-
gated QoS mechanisms, the following metrics have been used:

Latency: the average time in ms it takes to transmit a packet from the source to
the destination.

Jitter: it describes how much the packets vary in latency and is determined by
calculating the standard deviation of the latency.

Loss rate: the loss rate determines the amount of sent packets in relation to the
amount of packets that have not been received successfully at the destination.

Routing overhead: the routing overhead has been calculated as the relation be-
tween the amount of routing packets and the amount of successfully trans-
mitted data packets or bytes, respectively.

5.2 Ad Hoc Routing Protocol Comparison

An initial ad hoc routing protocol comparison has been performed to find out,
which protocol has the best performance and can be used as the starting point of the
work in this thesis. Four different protocols, namely Ad Hoc On-Demand Distance-

Vector (AODV) [4], Dynamic Source Routing (DSR) [21], Destination-Sequenced
Distance Vector (DSDV) [19] and Optimized Link State Routing (OLSR) [20] have
been evaluated (refer to Section 2.3 for a detailed description of the mentioned
routing protocols). NS-2’s built-in implementations of DSR and DSDV, AODV-
UU [58] from University of Uppsala and UM-OLSR [70] from University of Mur-
cia have been employed in the simulations.

5.2.1 Simulation Settings

The simulation scenario consists of 20 nodes in an area of 650x650 m2, for example
a schoolyard. All nodes follow the RWP model with an uniformly distributed speed
between 0-3 m/s and a pause time of 180 s. On the average 15 randomly selected
unidirectional UDP data flows transmit game traffic for 150 s. For every routing

87

CHAPTER 5 EVALUATION

protocol 60 game sessions have been simulated with a duration of 600 seconds
using different seed values. The detailed simulation parameters are depicted in
Table 5.1. The gained simulation results have been averaged and are presented in
the following sections.

Parameter Value

Simulation Time 600 s

Nodes 20

Mobility Model Random Way Point (RWP)

Area 650x650 m2

Speed 0-3 m/s

Pause Time 180 s

Traffic Type CBR with 20 packet/s

Connections 15 parallel unidirectional, 150 s

Packet Size 64 bytes

Table 5.1: Parameters of the Ad Hoc Routing Protocol Comparison

5.2.2 Latency and Jitter

Figure 5.2: Comparison of Latency Figure 5.3: Comparison of Jitter

Figure 5.2 and Figure 5.3 illustrate the performance of latency and jitter for the
four routing protocols AODV, DSR, OLSR and DSDV. AODV shows the lowest
average latency of 125 ms. All other protocols have much higher latency values, in
particular DSR, that has the highest latency of 218 ms, which is far from meeting

88

5.2 Ad Hoc Routing Protocol Comparison CHAPTER 5

the demands of multiplayer games. When comparing jitter, the reactive protocols
DSR and AODV provide the lowest delay jitter around 300 ms while the proac-
tive protocols OLSR and DSDV suffer from higher jitter values of 400 ms and 450
ms, respectively. Since the jitter in AODV is rather high compared to latency, one
can assume, that latency is either rather small or very high and rarely in between.
Figure 5.4 illustrates the latency characteristics of an optimal 2.3-hop connection
using AODV. Due to the on-demand behaviour, AODV has to discover new routes
in the first seconds of a new connection and the packets are thus delayed. Further-
more, right at the beginning, the network is highly loaded because all nodes start in
parallel their route discovery process and disseminate RREQ messages throughout
the network. After the starting phase, latency is much lower and mainly around
20 ms. Due to link breakages and retransmissions, there are several peaks at 100-
150 ms and higher. In particular, connections that experience more data loss the
graph looks differently and the amount of peaks is much higher.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160

La
te

nc
y

in
 m

ill
is

ec
on

ds
 [m

s]

Simulation time in seconds [s]

AODV

Figure 5.4: High Latency at the Beginning of AODV Connections

5.2.3 Loss Rate

The reactive protocols DSR and AODV show the lowest loss rate, namely 7 %,
as depicted in Figure 5.5. The proactive protocols OLSR and DSDV have a loss
rate of 13 % and 19 %, respectively, which is more than twice as high. Better loss
rate results for the proactive protocols might be achieved by increasing the rate of
periodic route advertisements to propagate link changes faster. Reactive protocols
automatically adapt to the given scenario and send more routing messages in case
of broken links to discover a new route.

89

CHAPTER 5 EVALUATION

Figure 5.5: Comparison of Loss Rate

5.2.4 Routing Overhead

DSR and DSDV have the lowest packet overhead about 1 % as illustrated in Fig-
ure 5.7. The packet overhead of AODV and OLSR is of one magnitude higher,
whereas AODV shows the highest overhead of 14 %. The reason that DSR has
such a low packet overhead is due to intermediate nodes that can update their own
routing table without any additional signalling since DSR makes use of source

routing. Moreover, DSR operates in promiscuous mode and listens to data pack-
ets from the neighbours to learn new routes and thereby can reduce the amount
of RREQs and RREPs further. DSDV sends periodically route advertisements in a
very high interval and only a few routing messages are disseminated. In contrast,
AODV and OLSR both broadcast periodically HELLO messages for neighbour and
link management and AODV has to discover a new route more often than DSR
because it does not benefit from source routes.

When looking at the byte overhead, as illustrated in Figure 5.6, AODV and
DSR show a very similar routing overhead of 9 % and almost 8 %. This is due to
the source routes employed by DSR. Every single packet contains the complete
route from the source to the destination. AODV, in contrast, relies on very small
routing packets. The simulated scenarios had on the average 2-hop connections.
This is an advantage for DSR, that would show worse results, if the connections
were longer and took 3 or more hops. DSDV has still the lowest routing overhead,
however OLSR shows an overhead of 26 %. Although it does not send as many
routing packets as AODV the packets are much bigger in size.

The proactive routing protocols DSDV and OLSR showed an almost constant

90

5.2 Ad Hoc Routing Protocol Comparison CHAPTER 5

routing overhead in all simulations. The routing overhead of on-demand protocols,
in contrast, increases as the mobility of the scenario rises and thus adapts to the
scenario.

Figure 5.6: Comparison of Byte Rout-
ing Overhead

Figure 5.7: Comparison of Packet
Routing Overhead

5.2.5 Summary

With regard to latency and jitter, AODV showed the best average performance
while all other protocols showed much higher latency and jitter in the range of
some hundred milliseconds. DSR’s performance was by far the worst in these com-
parisons. Concerning loss rate, the reactive protocols (AODV and DSR) showed
the best performance with less than 10 % packet loss while the proactive protocols
(DSDV and OLSR) produced significantly higher losses. In [71] the authors iden-
tified the routing overhead in AODV is mostly due to broadcast RREQ messages
whereas the routing overhead in DSR is due to unicast RREP and RERR messages.
They claim that broadcast messages less utilise the wireless channel since no ACK

messages and retransmissions are carried out. Furthermore, they show that AODV
outperforms DSR in scenarios with increased load. Based on these initial simu-
lation results, AODV has been selected as the routing protocol of choice for the
following simulations. Nevertheless, for real-time applications, additional QoS
mechanisms are required to reduce the peaks in latency and loss rate and ensure
that real-time traffic arrives in-time.

91

CHAPTER 5 EVALUATION

5.3 Effects of the QoS Extensions

The QoS extensions discussed in the previous two chapters that aim at providing
QoS for real-time multiplayer games in MANETs are evaluated in this section. The
simulations of the QoS extensions have been run independently to show the single
impact of each QoS extensions. Furthermore, step-wise extended simulations show
the accumulated simulation results and total performance improvement.

5.3.1 Simulation Settings

The simulation settings have been chosen slightly differently from the protocol
comparison, as shown in Table 5.2, to provide high priority game and low priority
background traffic and distinguish between player nodes and those that are not
involved in the game. AODV has been employed as the routing protocol since it
has shown the best average performance in the routing protocol comparison (refer
to Section 5.2).

The simulation scenario consists of 20 nodes in an area of 650x650 m2. The
nodes that do not take part in the multiplayer game follow the RWP model with
a uniformly distributed speed between 0-3 m/s and a pause time of 180 seconds.
Player nodes are assumed to move only rarely, within a distance of 0-15 meters,
since it is rather difficult to move and play at the same time with today’s available
mobile gaming devices.

The multiplayer game traffic has been simulated as described in Section 5.1
and consists of three high priority bidirectional UDP data flows with a Constant Bit
Rate (CBR) traffic of 20 packet/second and a packet size of 64 bytes. In general,
there is only one game server or multiple zone servers as discussed in Section 2.5
and all clients connect to the game servers. However, the bidirectional high priority
traffic flows are selected randomly among the nodes instead of connecting all to the
same server node since the choice of one single game server affects the simulation
results. This thesis does not deal with the optimal choice of game server nodes
and to alleviate the problem the connections are selected randomly. As mentioned
before, real-time multiplayer games tolerate round-trip delays in the range of 50 -
150 ms. Some packets that are slightly more delayed up to 100 ms might be still
meaningful to prediction mechanisms such as dead-reckoning. Hence, real-time
packets that take more than 100 ms are regarded as lost. Consequently latency and
jitter of high priority packets are reduced significantly in all simulated scenarios,
while the loss rate increases the more packets are outdated. Therefore, the main

92

5.3 Effects of the QoS Extensions CHAPTER 5

focus will be on minimising the loss rate when looking at the following QoS ex-
tensions.

In addition to the high priority traffic, five bidirectional low priority data flows
between any two random nodes have been simulated as background traffic using the
same traffic pattern as the game traffic. For every QoS extension 10 game sessions
with a duration of 600 seconds and different seed values have been simulated while
the simulation results have been averaged. The detailed simulation parameters are
depicted in Table 5.2.

Parameter Value

Simulation Time 600 s

Nodes 20

Mobility Model Adapted Random Way Point (RWP)

Area 650x650 m2

Speed 0-3 m/s

Pause Time 180 s

Traffic Type CBR with 20 packet/s

Low Priority Traffic 5 bidirectional connections, switching every 150 s

High Priority Traffic 3 bidirectional connections, game session 600 s

Packet Size 64 bytes

Table 5.2: Simulation Scenario Parameters for QoS Extension Evaluation

5.3.2 Single Impact of the QoS Extensions

In the following, every QoS extension is compared to a basic configuration without
any QoS extensions just relying on RTS/CTS which is the default setting in NS-
2. This configuration has been labelled with No QoS in the figures. It has to be
noted, that in real environments, such as the Linux wireless sub-system, RTS/CTS
is not activated by default. The loss rate, latency and jitter of high and low priority
traffic are separately analysed. The simulations have been carried out in the order
of expected performance improvement. Only the queue timeouts and the rate con-
trol system require the priority queue and thus could not be simulated completely
independently. Figures 5.8, 5.9 and 5.10 illustrate the loss rate, latency and jitter
performance of high priority traffic in relation to the hop count for each QoS ex-
tensions. Since all real-time packets that arrive after 100 ms are regarded as lost,
latency and jitter is rather low and do not show much variation and therefore the

93

CHAPTER 5 EVALUATION

critical metric is the loss rate. Figure 5.11 and 5.12 show the effects of the QoS
extensions on low priority traffic.

RTS/CTS Adaptation

RTS/CTS adaptation has a huge impact on all metrics for both high and low priority
traffic. In all cases the performance has been significantly improved by disabling
RTS/CTS. The average loss rate of high priority traffic, as illustrated in Figure 5.8,
has been reduced by 50 %. When looking at 2-hop connections the loss rate is even
five times lower. Latency and jitter have been reduced from 18 ms to 13 ms. On
top of that, the loss rate of low priority traffic has been reduced by more than 50 %
to 12 %, as depicted in Figure 5.12, and latency is four times lower than before.
Furthemore, jitter has been half cut, as shown in Figure 5.11.

As a result, RTS/CTS should not be activated by default and instead a threshold
should be maintained by the system that depends on the number of neighbours and
the size of the data packets that have to be transmitted. A RTS/CTS threshold value
of 800 bytes for five contending nodes and 180 bytes for 25 contending nodes has
been reported as the optimal threshold in [72]. In [13] the authors came to a similar
conclusion and suggest a RTS/CTS threshold of 500 bytes for 20 nodes and a data
rate of 2 Mbit/s. Since the employed packet size in the simulation scenario is only
64 bytes RTS/CTS should be disabled.

Broken Link Detection

Broken link detection based on direct feedback from the link layer did not show
the expected improvements in loss rate of high priority traffic as depicted in Fig-
ure 5.8. On the average the loss rate is even slightly higher than without this QoS
extension. As link layer feedback has been considered very promising these results
are rather surprising and Section 5.4.1 describes another scenario where link layer
feedback has shown significant improvements. The reason it could not perform
well in this scenario is that the mobility of the game players is very low and thus
high priority traffic cannot benefit as much from this feature as low priority traf-
fic does as depicted in Figure 5.11 and 5.12. Furthermore, the scenario is heavily
loaded and congested and therefore the link layer reports more broken links than
actually exist.

94

5.3 Effects of the QoS Extensions CHAPTER 5

Priority Queue

By applying the priority queue the average loss rate of high priority traffic has been
reduced by 15 % from 55 % to below 40 %, as depicted in Figure 5.8. In particu-
lar three-hop connections benefit from priority queueing and the loss rate has been
reduced by almost 30 %. A reason for this is that without priority queueing the
probability that a high priority packet reaches the destination within the 100 ms
time constraint is very low, as a packet loss rate of more than 70 % shows. With
the help of priority queueing, however, real-time packets are preferred and have
a higher chance to be delivered in-time and thus reduces the loss rate. In case of
four-hop connections this effect is alleviated and even with priority queueing many
packets do not reach the destination in-time. Latency and jitter remain almost un-
changed in two-hop connections. For connections with more than two hops latency
and jitter have been increased by 5 ms, which might be due to the same reason men-
tioned before. However, regarding low priority traffic, latency and jitter have been
more than doubled and show values around 2400 ms, as depicted in Figure 5.11.
The loss rate of low priority traffic has been increased by 1 %. These results for the
low priority traffic have been expected since the priority queue prefers high priority
traffic in favour of low priority traffic.

Queue Timeouts

The queue timeout mechanism is based on the priority queue and therefore the
simulation results can only be compared to the configuration that uses the priority
queue. The average loss rate of high priority traffic is reduced from 40 % to 32 %
by applying queue timeouts while latency and jitter have been slightly increased in
all cases. At the first glance this might be surprising since high priority packets are
dropped on purpose and at the same time the loss rate has been reduced. However,
only already outdated packets that most likely will not arrive within the 100 ms
time constraint are dropped by the queue timeout mechanism. These packets can-
not be used by the destination node and are discarded and thus needlessly have
consumed bandwidth. Queue timeouts have a very positive effect on low priority
traffic since latency and jitter can be reduced by 50 %. Furthermore, the loss rate
is reduced from 30 % to 25 % as shown in Figure 5.12. Since this timeout mech-
anism, in general, drops only real-time packets that are quickly out-dated, it has
been expected that low priority traffic will benefit from queue timeouts. Due to
the same reason high prioritry packets benefit, as well, because the available band-
width can be used for up-to-date real-time packets that still have a chance to arrive

95

CHAPTER 5 EVALUATION

in-time.

Backup Route

The backup route mechanism does not show any changes in the performance of
high and low priority traffic and the values remain the same. This mechanisms, as
well as broken link detection, that has not performed very well, attempt to improve
the performance in case of higher mobility. As mentioned before, the mobility of
players is very low (range of 15 m) in the employed schoolyard scenario and this
might be a reason why it does not show any improvements in case of high priority
traffic.

Local Repair

The built-in local repair mechanism does not work well in this scenario and slightly
increases the loss rate of high and low priority traffic as illustrated in Figure 5.8 and
Figure 5.12. Latency and jitter remain almost unchanged in both cases. One reason
might be that repaired routes are very likely to be longer than the original route.
In that case a routing control message is sent to the source node that will start the
route discovery process on its own again and thus creates double routing overhead.

Rate Control

The rate control system relies on the priority queue as well and is compared to the
performance results of the priority queue. Loss rate of real-time traffic is further
reduced by 3 % in the average case whereas the loss rate of low priority traffic is
increased by 1 % as shown in Figure 5.8 and Figure 5.12, respectively. Latency of
low priority traffic remains unchanged at a very high level of 2500 ms and jitter
has been increased by 100 ms from 2450 ms to 2550 ms. This outcome has been
expected since the rate control mechanism limits low priority traffic.

Summary of Single Impact QoS Extensions

RTS/CTS adaptation, priority queueing, timeouts and rate control showed the high-
est gain in improving the loss rate of high priority traffic as illustrated in Figure 5.8.
The AODV enhancements broken link detection based on link layer feedback and
back up route were not convincing and did not improve the performance. Local
repair even showed worse loss rate performance results. Regardless of the applied
QoS mechanisms the loss rate highly depends on the number of hops. The higher

96

5.3 Effects of the QoS Extensions CHAPTER 5

Figure 5.8: Loss Rate of Game Traffic wrt Hop Count

Figure 5.9: Latency of Game Traffic wrt Hop Count

Figure 5.10: Jitter of Game Traffic wrt Hop Count

97

CHAPTER 5 EVALUATION

Figure 5.11: Latency and Jitter of Back-
ground Traffic

Figure 5.12: Loss Rate of Background
Traffic

the hop count, the more high priority packets are discarded since they arrive too
late at the destination.

5.3.3 Combined Impact of the QoS Extensions

In the following, the effects of step-wise applying the QoS extensions are inves-
tigated and the simulation results are presented. The basic AODV protocol is ex-
tended by the different QoS mechanisms such as RTS/CTS adaptation, broken link
detection, priority queue, timeouts, backup routes, local repair and rate control as
in the previous section. If an extension does not show the expected improvement
and even degrades the performance it is not applied for the simulation of further
QoS extensions. The results of the real-time traffic packet loss rate in case of end-
to-end connections with different hop counts and the average loss rate is illustrated
in Figure 5.13. Since latency and jitter are in the range of 25 ms-35 ms and 15 ms-
22 ms, as shown in the previous section, the main focus is on reducing the loss rate
of high priority traffic and keeping track of the effects of the QoS extensions on
low priority traffic as depicted in Figure 5.16 and Figure 5.17.

RTS/CTS Adaptation

Since the simulation settings are the same as in the previous simulation please
refer to Section 5.3.2 for a discussion of RTS/CTS adaptation. In the following
simulations, RTS/CTS has been disabled.

98

5.3 Effects of the QoS Extensions CHAPTER 5

Figure 5.13: Loss Rate of Game Traffic wrt Hop Count - Combined Impact

Figure 5.14: Latency of Game Traffic wrt Hop Count - Combined Impact

Figure 5.15: Jitter of Game Traffic wrt Hop Count - Combined Impact

99

CHAPTER 5 EVALUATION

Figure 5.16: Latency and Jitter of Back-
ground Traffic - Combined Impact

Figure 5.17: Loss Rate of Background
Traffic - Combined Impact

Broken Link Detection

Using the broken link detection mechanism based on Link Layer Feedback (LLF)
of the MAC layer, broken links can be detected very quickly. Although, the per-
formance could not be improved significantly when broken link detection has been
simulated independently, as discussed in Section 5.3.2, it reduces the loss rate of
real-time game traffic by 3 % from 27 % to 24 %, as illustrated in Figure 5.13. This
is rather surprising since the movement pattern of the nodes is the same in both
simulations. However, the previous simulation with RTS/CTS and broken link
detection (refer to Section 5.3.2) has been heavily loaded and congested. In that
case the link layer might falsely report more broken links than actually exist. This
can be researched by increasing the number of allowed retransmissions at the MAC
layer and monitoring the amount of broken links. Figure 5.16 and Figure 5.17 show
that latency, jitter and loss rate of low priority traffic have been improved as well.
Still, broken link detection does not show the expected level of improvement which
might be due to the limited mobility of player nodes.

Priority Queue

When employing the priority queue, the average loss rate of high priority packets
has been substantially reduced from 24 % to 13 %, as illustrated in Figure 5.13,
while the loss rate of two-hop connections is already below 5 %. As in the single
impact simulation, three-hop connections benefit most from priority queueing and
the loss rate is 22 % lower. Latency and jitter of low priority traffic are increased
by 70 ms and 120 ms, respectively, as shown in Figure 5.16 and are not as much
affected as in the single impact simulation where latency and jitter have been more

100

5.3 Effects of the QoS Extensions CHAPTER 5

than doubled. One reason for this is that priority queueing in this simulation does
not suffer from congestion caused by the RTS/CTS mechanism in the single im-
pact simulation (refer to Section 5.3.2). The loss rate has been reduced by 1 % as
depicted in Figure 5.17 which is very similar to the single impact simulations.

Queue Timeouts

When adding timeouts to the priority queue, the loss rate of high priority traffic is
slightly reduced further. Connections with up to two or three hops have a loss rate
of 2 % and 8 %, respectively. 4-hop connections still have a very high loss rate over
20 % and the average loss rate is over 10 %, as illustrated in Figure 5.13. In addi-
tion, jitter and latency of low priority traffic can be also reduced. The behaviour is
anlog to the single impact simulation. Again, high priority as well as low priority
traffic can benefit from queue timeouts.

Backup Route

The backup route mechanism increases the loss rate of high priority traffic for
two-hop connections slightly to 3 %. On the other hand, the loss rate of three-hop
connections is now reduced to 5 % while the average latency and jitter are below
20 ms. Thus, two- and three-hop connections can be employed for real-time mul-
tiplayer games. The average loss rate of high priority traffic is just slightly below
10 %. Connections with four hops still suffer from a very high loss rate about 23 %
and therefore cannot be used for real-time applications. The reason is that on the
average high priority packets that are transmitted over four hops cannot be queued
for more than 25 ms in each queue to be still able to arrive within the 100 ms time
constraint. Furthermore, a four-hop connection covers a large part of the simulation
area when taking the transmission ranges of the nodes on that path into account. If
there is congestion somewhere in the ad hoc network the probability that the four-
hop connection will be affected is high. Using the route backup mechanism, low
priority traffic yields the lowest latency in all scenarios below 250 ms as depicted
in Figure 5.16. The loss rate of low priority traffic is reduced as well. Although
backup route did not show convincing performance results in the previous single
impact simulation, it improves the average loss rate of high priority traffic and
yields the best values for low priority traffic. These simulation results are inter-
esting and further investigations have to be carried out to find out the reason why
the backup route mechanism does not show any improvements in the single impact

101

CHAPTER 5 EVALUATION

simulation and how potential interactions with other QoS extensions might look
like.

Local Repair

The local repair mechanism degrades the packet loss rate of high and low priority
traffic as in the single impact simulation. In particular, the average loss rate of high
priority connections is increased by 5 %, as illustrated in Figure 5.13. First, this
is due to the fact that the local repair process takes too much time for delivering
real-time packets. Second, repaired routes tend to be longer than the original route
and in this case the node sends an additional route error RERR message to the
source which itself will restart the route discovery process again. Therefore, it is
not recommended to use the built-in local repair mechanism of AODV in case of
real-time traffic and the following QoS extension does not employ local repair.

Real-Time Neighbour Aware Rate Control

Applying the rate control mechanism the loss rate of high priority traffic has been
reduced to 2 % and 4.5 % for two-hop and three-hop connections, respectively, as
shown in Figure 5.13. Four-hop connections show a loss rate of 17 %, which is still
too high for real-time applications. The loss rate, latency and jitter of low priority
traffic are slightly affected, as depicted in Figure 5.16 and Figure 5.17. The gained
improvements for high priority traffic, however, are of more importance.

5.3.4 Summary of the Overall Impact Using QoS Extensions

Interestingly, the well-known mechanisms like RTS/CTS to cope with the hidden
terminal problem and local repair to handle broken links degrade the overall perfor-
mance of both real-time and low priority traffic. Gradually applying the discussed
QoS extensions, except AODV’s local repair and the default RTS/CTS mechanism,
the packet loss rate for connections up to three hops can be reduced below 5 %
while the end-to-end delay and delay jitter remain in the range of 25 - 30 ms and
15 - 20 ms, respectively. Hence, for connections up to three hops the demands of
real-time multiplayer games can be met by applying the QoS extensions. With the
help of these QoS extensions the average loss rate of high priority traffic is more
than six times lower. Deactivation of the default RTS/CTS mechanism and the
use of priority queueing with timeouts showed the greatest impact in reducing the
loss rate of high priority traffic. Moreover, the effect on the background traffic is

102

5.4 Further Simulation Results CHAPTER 5

also tolerable and it has not been punished drastically in favour of real-time traffic.
Thus, other, not real-time applications can still use the network at the same time.

5.4 Further Simulation Results

In this section further observations of the behaviour of broken link detection in a
different mobility scenario is presented.

5.4.1 Broken Link Detection

As mentioned in Section 5.3, the broken link detection mechanism did not show
the expected impact. This is due to the employed simulation scenario as shown in
this section. The same simulation settings as depicted in Table 5.1 have been used
to test the behaviour of broken link detection in a simulation scenario with higher
mobility. Since 15 short-living unidirectional UDP connections are employed the
probability of experiencing broken links is much higher.

Figure 5.19 and Figure 5.18 depict the performance of broken link detection
with Link Layer Feedback (LLF) enabled and disabled, respectively. Latency can
be decreased by 50 ms and jitter is more than three times lower if LLF is activated.
In addition, the loss rate can be reduced from 7 % to below 5 %. Moreover, the
routing overhead is much smaller if LLF is used. In particular, the packet overhead
can be reduced by four times to 3 %. The byte overhead is even below 3 %. Since
AODV does not require HELLO messages for broken link detection any more if
LLF is applied, the packet overhead is much lower. Latency is more than two and
half times higher and jitter is almost four times higher without link layer feedback
as illustrated in Figure 5.19. The behaviour of loss rate and overhead are very sim-
ilar. The lost rate is almost doubled and the routing overhead is almost five times
higher if link layer feedback is not activated, as shown in Figure 5.18. The higher
routing overhead is due to HELLO messages that are periodically exchanged by the
nodes. As a result, it is crucial to provide an implementation that supports link
layer feedback when latency and jitter need to be minimised. Link layer feedback,
though only simulations with AODV-UU have been carried out, is beneficial for all
on-demand routing protocols and to some extent for proactive protocols as well.
However, in proactive routing protocols the routing overhead cannot be reduced as
significantly because the basic routing principle relies on periodic advertisements.
Moreover, the amount of routing traffic is much smaller if LLF is used since AODV
does not require HELLO messages for broken link detection any more.

103

CHAPTER 5 EVALUATION

Figure 5.18: Comparison of Overhead
and Loss Rate wrt Link Layer Feedback

Figure 5.19: Comparison of Latency
and Jitter wrt Link Layer Feedback

5.5 Test Environment

The QoS extensions BEACON based neighbour detection, broken link detection,
signal strength monitoring and priority queueing with timeouts have been tested
in a real environment consisting of two PCs and two laptops running Linux. Two
laptops have been equipped with the modified Madwifi network driver to be able
to test the QoS extensions. In case of neighbour detection, AODV-UU currently
cannot translate remote MAC addresses into IP addresses and the Reverse Address
Resolution Protocol (RARP) should be used in order to detect new nodes that do
not yet have an entry in the local ARP table. For management of existing neigh-
bours this mechanism works fine. The other mechanisms work as expected but the
test environment needs to be extended to be able to carry out reproducible perfor-
mance measurements. In order to test the broken link detection mechanism one of
the laptops sends packets to the other laptop. When the wireless lan card of the
destination laptop is disabled the sender receives a broken link detection message.

5.6 Summary

In this chapter the performance of four popular ad hoc routing protocols have been
compared and evaluated. AODV has shown the best performance and has been
used for the evaluation of the QoS mechanisms. First the QoS mechanisms have
been simulated independently and RTS/CTS adaptation, priority queueing, time-

104

5.6 Summary CHAPTER 5

outs and rate control showed the highest impact on improving the loss rate of high
priority traffic. Next, the QoS mechanisms have been gradually applied yielding
an average loss rate of real-time game traffic that is more than six times lower.
Two- and three-hop real-time connections provide a packet loss rate that is below
5 % while the end-to-end delay and delay jitter remain in the range of 25 - 30 ms
and 15 - 20 ms, respectively. Thus, the goal to meet the demands of real-time mul-
tiplayer games has been achieved for connections taking up to three hops. De-
activating the default RTS/CTS mechanism and the use of priority queueing with
timeouts showed the most impact in reducing the loss rate of high priority traffic as
in the simulation before. Moreover, the effect on the background traffic is also tol-
erable and it has not been punished drastically in favour of real-time traffic. Thus,
other, not real-time applications can still use the network at the same time. In the
last part of this chapter, it has been shown that the use of link layer feedback based
broken link detection makes a huge difference in latency, jitter and packet loss in
scenarios with higher mobility. Finally, the results of the QoS extensions in the
real test environment have been described briefly.

105

Chapter 6

Conclusions and Outlook

This chapter concludes the thesis with the presentation of the achieved results and
gives some ideas and proposals for future work and following projects.

6.1 Conclusion

Quality of Service provisioning in mobile wireless ad hoc networks for real-time
applications, such as multiplayer games, has been investigated and evaluated in
this thesis. Real-time multiplayer games demand low latency and jitter connections
with a maximum round-trip delay of 150 ms and packet loss rate of 5 %. Packets
that have an end-to-end delay of up to 100 ms can be still useful to prediction
mechanisms. It has been shown in network simulations employing standard routing
protocols that meeting these demands in a mobile wireless ad hoc network is a
challenging task.

Four popular routing protocols, AODV, DSR, DSDV and OLSR particularly
targeting at MANETs have been compared and evaluated in the network simulator
NS-2. The simulation results show that the reactive routing protocol AODV out-
performs the other routing protocols in the employed multiplayer game scenario
and provides the lowest end-to-end delay of 125 ms or 250 ms round-trip delay as-
suming a symmetric connection, respectively. Together with the reactive protocol
DSR, AODV also shows the lowest loss rate of 7 %. The proactive routing proto-
cols DSDV and OLSR do not cope as well with mobility and show much higher
loss rates of 19 % and 13 %. Since AODV provides the lowest latency it has been
employed as the basic routing protocol throughout this thesis for further investiga-
tion.

AODV’s average end-to-end latency of 125 ms is still too high to meet the

107

CHAPTER 6 CONCLUSIONS AND OUTLOOK

demands of real-time multiplayer games. This is mainly due to four challenges
real-time applications are facing in MANETs: (1) mobility, (2) congestion, (3)
shared medium and (4) wireless signal. In order to tackle specifically these chal-
lenges, AODV enhancements, traffic management and MAC layer support QoS
extensions have been analysed. In addition to the built-in mechanisms of NS-2 and
AODV, the QoS extensions backup route, neighbour list, priority queue with hop
dependent queueing timeouts and real-time neighbour aware rate control have been
implemented in the network simulator NS-2. Since BEACON based neighbour de-
tection requires major changes to the NS-2 IEEE 802.11 MAC layer it could not be
implemented in NS-2 within the time constraints of this thesis. To the same reason
signal strength monitoring has not been used in the simulations since the signal
strength values provided by the employed two-ray ground propagation model are
not accurate enough.

The results of the QoS extension simulations show how the different QoS
mechanisms influence the performance of real-time multiplayer games. Packets
that do not arrive at the destination within 100 ms are regarded as dropped as they
are not meaningful to the multiplayer game anymore. Thus, in all QoS extension
simulations latency and jitter are in the range of 20 - 35 ms and 15 - 22 ms, respec-
tively, in cost of the loss rate that is in the average case more than 55 %. Therefore,
the main focus has been on reducing the loss rate to below 5 % to meet the demands
of real-time multiplayer games. When comparing the QoS extensions separately,
RTS/CTS adaption, that is, disabling RTS/CTS in the case of small real-time pack-
ets, has the biggest impact and the average loss rate of real-time traffic has been
reduced by more than 50 %. Another huge impact makes priority queueing that
reduces the loss rate by 15 %, followed by queueing timeouts with 10 % and neigh-
bour aware rate control with 3 %. Backup route and broken link detection do not
reduce the loss rate in the expected way. This is due to the employed simulation
scenario. Nodes that act as game players and send real-time traffic do not experi-
ence much mobility in the employed scenario. Since the average hop count is two
hops, the influence of other nodes with a higher mobility rate is low. In a differ-
ent simulation scenario with higher mobility it has been shown that broken link
detection significantly improves latency and loss rate.

By gradually applying RTS/CTS adaption, priority queueing with timeouts and
real-time neighbour aware rate control combined with broken link detection and
backup routes, the average loss rate has been reduced significantly from more than
55 % to below 10 %. Again, the biggest impact was shown by RTS/CTS adaption

108

6.1 Conclusion CHAPTER 6

and priority queueing with timeouts. However, broken link detection has reduced
the loss rate as well this time. Since there is less network congestion the proba-
bility of interference and collisions is lower and fewer links are falsely regarded
as broken. For connections up to three hops AODV with the applied QoS mecha-
nisms meets the demands of real-time multiplayer games and the loss rate has been
scaled down more than 15 times from 35 % to below 3 % for 2-hop and from 70 %
to 5 % for 3-hop connections, respectively. Longer connections taking more than
three hops have been also improved significantly. The loss rate is four times lower
in the case of 4-hop connections but they still suffer from a very high loss rate of
about 17 %. Furthermore, it has been shown that priority queueing and rate control
do not excessively affect low priority background traffic. The average latency and
jitter of low priority traffic is around 300 ms and the loss rate of 7 %. Moreover,
it has been shown that common mechanisms like local repair of AODV and using
RTS/CTS for small real-time packets degrade the overall performance and should
not be employed in case of real-time traffic.

Signal strength monitoring, BEACON based neighbour detection, broken link
detection and priority queueing with fixed timeouts have been implemented in a
real test environment running Linux. To accomplish this, the Madwifi wireless card
Linux device driver has been extended with support for BEACON based neighbour
detection, broken link detection and signal strength monitoring. For communi-
cation between the device driver and the routing protocol AODV-UU the Netlink
interface has been used. Furthermore, the priority queueing system extended with
queueing timeouts has been implemented as a Linux kernel module. These QoS ex-
tensions have been installed and tested in a test environment and can be employed
by real-time applications or by the service provisioning framework SIRAMON.

In this thesis, it has been shown in the network simulator NS-2 that with the
proposed QoS extensions the demands of real-time multiplayer games employing
standard IEEE 802.11 technology can be met for short connections up to three
hops. Due to the probabilistic nature of IEEE 802.11 this still does not allow to
give any hard QoS guarantees. Furthermore, the results have been achieved for
particular game scenarios with 20 nodes including three game players. In a differ-
ent scenario with more game players it is likely that the QoS demands cannot be
met anymore. Furthermore, it is not possible to transfer these results directly to
the real world due to the simplifications that have been used throughout the simu-
lations within the network simulator NS-2 (mobility model, traffic model, wireless
channel). Nevertheless, this thesis shows which QoS extensions are promising to

109

CHAPTER 6 CONCLUSIONS AND OUTLOOK

improve Quality of Service and gives some hints how the mechanisms can be im-
plemented in a real wireless network environment.

6.2 Outlook

As faster wireless network technologies will be available soon, for instance, IEEE
802.11n aiming at a theoretical bandwidth of 540 Mbit/s and Multiple Input Multi-

ple Output (MIMO) technology providing separate antennas in a wireless network
card to be able to send and receive data at the same time more players will be able
to play a real-time multiplayer game concurrently. Nevertheless, without modify-
ing the actual contention based medium access mechanism of IEEE 802.11 MAC
layer, the same problems that have been discussed in this thesis remain and funda-
mental changes to the MAC layer are required to overcome the problems of today’s
IEEE 802.11 distributed medium access.

There are various interesting directions to extend the work and further inves-
tigate Quality of Service in mobile wireless ad hoc networks based on the results
achieved in this thesis. Some of them are presented in the following:

AODV / NS-2 Improvements: The reactive routing protocol DSR benefits from
source routing during the route discovery process. AODV can be extended
using AODV option headers to employ source routing in RREQ and RREP

messages, as well. First, this will reduce the amount of required routing
control messages and second, other mechanisms like backup route can also
benefit since a node is aware of more routes. Furthermore, it has been shown
that the reactive protocols AODV and DSR outperform proactive routing
protocols in scenarios with higher mobility. However, for high priority con-
nections in combination with signal strength monitoring, periodic dissemi-
nation of low priority RREQ can proactively find stable routes before a route
breaks. Thereby, the queueing system has to be extended to provide for a low
priority queue with short timeouts. BEACON based neighbour detection and
management showed excellent results in the test environment. This feature
should be implemented into the NS-2 MAC layer to be able to simulate it
under various conditions. In addition to that, the IEEE 802.11e QoS enabled
MAC protocol which provides some QoS directly on the MAC layer should
be investigated and integrated into the existing QoS extensions in NS-2.

Simulation Scenarios: As it has been shown in the case of broken link detec-
tion the actual performance of the QoS extensions highly depend on the em-

110

6.2 Outlook CHAPTER 6

ployed simulation scenario. The QoS extensions should be simulated under
various scenarios with different mobility and traffic pattern to find out which
QoS extensions are most effective under particular simulation conditions.
Thereby, it is important to apply as realistic simulation scenarios as possible.

QoS Guarantees: In order to give any QoS guarantees the system has to be able
to detect QoS violations. Either this is handled by every application which
might be rather inefficient or the system provides a means to do this. An
interesting approach that does not require additional signalling is to measure
the delay between sending a frame on the MAC layer and the reception of
the corresponding acknowledgement frame as it is done in the SWAN frame-
work. If the delay is constantly increasing and still some real-time packets
are sent over that particular link the routing protocol can try to proactively
find a better route.

Prediction Models: Based on some measurements from the MAC layer such as
the signal strength and the delay between transmission of a frame and the
reception of the ACK frame mobility prediction models and congestion pre-
diction models can be investigated. With the help of such prediction models
the routing protocol can proactively cope with the situation and for instance,
discover a better route or notify the application to reduce the bit rate of high
priority traffic and so forth.

Test Environment: Although, network simulation is currently the only practical
tool to investigate and evaluate large mobile wireless networks, a proper test
environment is mandatory to make sure that the simulation and the real en-
vironment show confirming results. A test-bed needs to be set up that allows
to easily configure and measure different mobility and traffic scenarios in a
reproducible manner.

111

Appendix

113

Appendix A

Network Simulator NS-2

NS-2 is a discrete event network simulator that is used by many researchers. It
is freely available and open source. In this thesis, the ns-allinone package release
2.28 (released February 3, 2005) as it is available on the NS-2 homepage [5] has
been employed. This package contains all required components used for running
NS-2 and is available for several platforms and computer architectures. The core
of NS-2 is written in C++ while it provides an object oriented version of the script
language Tcl, called OTcl, as user interface for configuration scripts. In addition to
that, there is an interface that allows to access C++ objects from OTcl scripts and
vice versa. The combination of both languages provide a powerful means in sense
of performance and ease of use of the simulator. However, in some cases the dis-
tinction between C++ and OTcl is not consistent any more and fundamental parts
of the network simulator are implemented in OTcl, as well. In general, wireless
simulations in NS-2 involve the following steps:

1. Implementation or modification of a protocol, for instance, routing protocol
in C++ and OTcl

2. Specification of the simulation settings, mobility model and traffic model in
OTcl

3. Running the simulations

4. Analysis of the trace files and visualisation in the Network Animator (NAM) [73]

115

APPENDIX A NETWORK SIMULATOR NS-2

A.1 OTcl Simulation Scripts

Listing A.1 shows a typical OTcl simulation template script that defines the simu-
lation settings and includes the mobility and traffic models that are itself written in
OTcl (refer to Section A.1.1 and A.1.2).

ns-2/sim/wifi-sim.tcl
create a new ns simulator object
set ns [new Simulator]

enable tracing
set nstrace [open $opt(tr) w]

$ns trace-all $nstrace

create a rectangle like area
set topo [new Topography]

$topo load_flatgrid $opt(x) $opt(y) 1

create a wireless channel
set channel [new $opt(chan)]

basic node configuration
$ns node-config -adhocRouting $opt(rp)\ ;# AODV-UU

-llType $opt(ll)\

-ifqType $opt(ifq)\ ;# QoSQueue
-ifqLen $opt(ifqlen)\;#
-macType $opt(mac)\ ;# Mac/802_11
-antType $opt(ant)\ ;# OmniAntenna
-propType $opt(prop)\ ;# TwoRayGround
-phyType $opt(netif)\ ;# WirelessPhy
-topoInstance $topo\

-channel $channel

creating the nodes
for {set i 0} {$i < $opt(nn) } {incr i} {

set node($i) [$ns node]

}

include mobility model
source $opt(scene)

include traffic model
source $opt(traffic)

add an event to shutdown the simulation
$ns at $opt(stop)1 "stopSimulation"

start the actual simulation
$ns run

Listing A.1: NS-2 Wireless Simulation OTcl Script

116

A.1 OTcl Simulation Scripts APPENDIX A

A.1.1 Node Mobility

The OTcl mobility model file describes at which time and speed nodes move from
one point in the simulation field to another. Listing A.2 shows an exemplary move-
ment pattern for node(1). First, the start position of node(1) is determined. At
simulation time 5.0 and 130.0 node(1) moves towards a new position. More com-
plex mobility patterns have to be modelled using the basic primitive setdest.

initial position of node(1)
$node(1) set X_ 320

$node(1) set Y_ 620

$node(1) set Z_ 0 ;# z-axis is always 0 in NS-2

event to move to location (18,356) at a speed of 1.0 m/s
$ns at 5.0 " $node(1) setdest 18 356 1.0"

event to move to location (572,525) at a speed of 0.5 m/s
$ns at 130.0 " $node(1) setdest 572 525 0.5"

Listing A.2: OTcl Node Mobility Script

A.1.2 Traffic Generation

NS-2 provides several application protocols, such as Constant Bit Rate (CBR) and
File Transfer Protocol (FTP) and the transport protocols UDP and TCP among
others. Listing A.3 illustrates a OTcl script to set up a UDP connection sending
CBR traffic from node(1) to node(2). In order to generate mobility and traffic
files for different scenarios a Java tool, called Mobigen, has been developed.

117

APPENDIX A NETWORK SIMULATOR NS-2

create a UDP agent
set udp(1) [new Agent/UDP]

mark the flow with an id
$udp(1) set fid_ 1

mark the flow as high priority
$udp(1) set prio_ 2

attach the UDP agent to node(1)
$ns attach-agent $node(1) $udp(1)

create a UDP sink object
set null(1) [new Agent/Null]

attach the UDP sink to node(2)
$ns attach-agent $node(2) $null(1)

create traffic at a constant bit rate
set cbr(1) [new Application/Traffic/CBR]

64 byte packets
$cbr(1) set packetSize_ 64

send 20 packets / second
$cbr(1) set interval_ 0.05

attach the traffic generator to the UDP agent
$cbr(1) attach-agent $udp(1)

transmit 3000 packets in total
$cbr(1) set maxpkts_ 3000

connection between node(1) and node(2)
$ns connect $udp(1) $null(1)

start the transmission at 5.0
$ns at 5.0 " $cbr(1) start "

Listing A.3: OTcl UDP Traffic Script

118

Appendix B

AODV-UU Overview

AODV-UU [58] has been developed at the University of Uppsala and is available
for NS-2 and Linux, both sharing the same code for the core routing algorithm.
Thus, the routing algorithm can be extended and verified in NS-2 and then tested
in a real test-bed using Linux. The original version of AODV-UU has been imple-
mented in C for Linux and later ported to NS-2 using C++. Still the same code
base is used. The Linux kernel specific part of the code resides in the lnx sub-
directory whereas the code that contains NS-2 specific parts can be found in the
ns sub-directory. The main directory contains the core routing algorithm that is
employed in both versions. In this thesis, AODV-UU 0.9 has been employed and
later manually upgraded to AODV-UU 0.91.

B.1 Important Macros

In order to achieve a concurrent implementation for Linux in C and NS-2 in C++,
AODV-UU makes extensive use of conditional compilation. The main macros are
defined in defs.h:

NS PORT: this macro is used to indicate NS-2 specific code and provides a glue
layer to map the networking system in NS-2 to Linux.

NS CLASS: stands for AODV-UU:: in NS-2 and is used to provide a C++ version
of AODV-UU. If AODV-UU is compiled for Linux this macro is just empty.

119

APPENDIX B AODV-UU OVERVIEW

B.2 Packet Processing of AODV-UU in NS-2

Every time the AODV-UU routing agent receives a packet the function recv in the
class AODV-UU is called. Either the packet has been sent by a different node or by an
application at the same node. In both cases the recv function is called. Depending
on the packet type either recvAODVUUPacket in the case of AODV routing control
packets or processPacket for data packets is called. In the first case, the packet
is converted from the NS-2 packet format into the Linux format. Next, the func-
tion aodv socket process packet is called which delegates the AODV message
depending on its type to one of the processing routines. In the latter case, the data
packet has either reached the destination node and can be handed to the applica-
tion layer target ->recv() or if a route is available the packet is forwarded to the
next hop calling sendPacket. Otherwise, the route discovery process is started.
AODV’s packet processing steps are described in more detail in the following sec-
tions whereas the sender of a route request RREQ message is always the source

and the sender of a route reply (RREP) message is always the destination node.

B.2.1 Route Request Processing

If the packet is a RREQ message the function rreq process is executed. At the
beginning several consistency checks are performed to make sure that the size of
the packet is valid, the originator is not the local node and the RREQ has not been
processed before. If the message passes these checks the RREQ is stored to avoid
repetitively processing the same RREQ. Afterwards, potential RREQ extensions
are processed. Next, if the routing entry to the originator of the RREQ is unknown,
a new routing table entry is inserted into the routing table using the previous hop
of the RREQ as the next hop on the route to the originator of the RREQ.

An existing routing entry timer rt->rt timer is updated either if the RREQ

has a more up-to-date sequence number of the originator than the existing routing
table entry or when they are equal or the hop count of the RREQ is lower or the
routing table entry was marked INVALID. To update the routing entry and the timer
rt table update and rt table update timeout are called, respectively. The life-
time of the new entry depends on the hop count of the received RREQ. If the
hop count is low the lifetime is higher and vice versa. If the route has become
VALID and some packets are waiting for delivery to that destination they are de-
queued from the routing queue and forwarded to the destination in the function
packet queue set verdict.

120

B.2 Packet Processing of AODV-UU in NS-2 APPENDIX B

If the node is the destination of the RREQ, a RREP is created (rrep create)
and unicast to the originator (rrep send). If the node is an intermediate node all
along the way from the source to the destination the node can reply to the RREQ if it
knows an active route and the sequence number is at least as fresh as the one in the
RREQ. Additionally, the destination only d-flag in the header of the RREQ must
not be set. The intermediate node sends a RREP to the originator and if the g-flag

is set it sends a RREP to the destination, as well. Finally, if the node does not
know the route it reduces the ttl field and broadcasts the RREQ to its neighbours
(rreq forward).

B.2.2 Route Reply Processing

If the packet is a RREP message the function rrep process is executed. At the
beginning, the hop count field of the RREP is incremented to account for the addi-
tional hop and optional RREP extensions are processed. Next, if no forward route
to the destination exists, a new route is created. Otherwise, an existing route is
updated. If the A-RREP flag is set an ACK-RREP message is send back to the
destination. If the current node is not the source the RREP is forwarded along the
reverse route towards the source.

B.2.3 Route Discovery

If currently no route to a particular node is available and packets have to be deliv-
ered to that node, the route discovery process is started in rreq route discovery.
Before sending a RREQ the seek list is searched for any on-going route discov-
ery processes to that particular destination. If it finds a valid entry another route
discovery is not started again. If no entry can be found, a new RREQ message is
created in rreq create and then the node broadcasts the RREQ to its neighbours
(aodv socket send). If expanding ring search is disabled the ttl field is set to
NET DIAMETER. Otherwise the first RREQ is sent applying either the last known
hop distance as ttl to avoid multiple timeouts or ttl is set to TTL START. The
tll is increased by TTL INCREMENT each time if the RREQ could not discover
a route within the timeout RING TRAVERSAL TIME. If the route discovery times out
route discovery timeout is called and the discovery process is started again with
a higher ttl and higher timeout. The new timeout is calculated using an exponen-
tial backoff algorithm. If the ttl is higher than TTL THRESHOLD, NET DIAMETER is
used as the maximum ttl. The route discovery process is started RREQ RETRIES

121

APPENDIX B AODV-UU OVERVIEW

times with ttl set to NET DIAMETER, until an error messages is presented to the ap-
plication layer and all packets for that destination are removed and dropped from
the routing queue.

B.2.4 Timer Management

AODV relies heavily on timers to maintain the routing table. Active routes time-
out if they have not been used for a while and are marked as INVALID. After another
timeout the entry is finally removed from the routing table to save memory. The
routing table timer rt->rttimer is updated by the function rt table update timeout

every time a data packet has been received or an AODV message has been pro-
cessed.

122

Appendix C

CD-ROM

Figure C.1 shows the directory tree of the CD-ROM. Every directory contains a
README file that describes the packages and programs in the particular directory.

Figure C.1: Directory Structure of the CD-ROM

123

Bibliography

[1] K. Farkas. SIRAMON - Service provIsioning fRAMework for self-Organized
Networks. ETH Zurich, January 2005.
http://www.csg.ethz.ch/research/projects/siramon/.

[2] ETH Zurich. Computer Engineering and Networks Laboratory.
http://www.tik.ee.ethz.ch.

[3] IEEE-SA Standards Boards. Part11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications. 12 June 2003.
http://standards.ieee.org/getieee802/802.11.html.

[4] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.

[5] Information Sciences Institute ISI. The Network Simulator ns-2, April 2005.
http://www.isi.edu/nsnam/ns/.

[6] Andrew S. Tanenbaum. Computer networks (4th ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 2003.

[7] S. Herzog. RSVP Extensions for Policy Control. RFC 2750 (Proposed Stan-
dard), January 2000.

[8] B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-
Hop Behavior). RFC 3246 (Proposed Standard), March 2002.

[9] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding
PHB Group. RFC 2597 (Proposed Standard), June 1999. Updated by RFC
3260.

125

BIBLIOGRAPHY MASTER’S THESIS

[10] IEEE-SA Standards Boards. Part16: Air Interface for Fixed Broadband Wire-
less Access Systems. 13 May 2004.
http://standards.ieee.org/getieee802/802.16.html.

[11] IEEE-SA Standards Boards. Part 15.1: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area
Networks (WPANs(tm). 14 June 2002.
http://standards.ieee.org/getieee802/802.15.html.

[12] A. Jayasuriya, S. Perreau, A. Dadej, and S. Gordon. Hidden vs. Exposed
Terminal Problem in Ad Hoc Networks. 2004.

[13] Z. Kong, D. Tsang, and B. Bensaou. Adaptive RTS/CTS Mechanism for
IEEE 802.11 WLANs to Achieve Optimal Performance. In Proceedings of
IEEE International Conference on Communications, volume 1, 2004.

[14] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance
Anomaly of 802.11b. In Proceedings of IEEE INFOCOM 2003, San Fran-
cisco, USA, March-April 2003.

[15] IEEE 802.11 WG. Draft Amendment to Standard Information Technology-
Telecommunications and Information Exchange Between Systems- Local and
Metropolitan Area Networks- Specific Requirements- Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specifications:
Medium Access Control (MAC) Enhancements for Quality of Service (QoS).
February 2004. IEEE 802.11e/Draft 8.0.

[16] Priyank Garg, Rushabh Doshi, Russell Greene, Marry baker, Majid Baker,
Majid Malek, and Xiaoyan Cheng. Using IEEE 802.11e MAC for QoS over
Wireless. In 22nd IEEE International Performance Computing and Commu-

nications Conference (IPCCC), Phoenix, Arizona, USA, April 2003.

[17] Henrik Lundgren, Erik Nordström, and Christian Tschudin. Coping with
communication gray zones in IEEE 802.11b based ad hoc networks. In WOW-
MOM ’02: Proceedings of the 5th ACM international workshop on Wireless

mobile multimedia, pages 49–55, New York, NY, USA, 2002. ACM Press.

[18] Charles E. Perkins. Ad Hoc Networking. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2001.

126

MASTER’S THESIS BIBLIOGRAPHY

[19] Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile computers. In SIG-
COMM ’94: Proceedings of the conference on Communications architec-

tures, protocols and applications, pages 234–244, New York, NY, USA,
1994. ACM Press.

[20] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR).
RFC 3626 (Experimental), October 2003.

[21] David B. Johnson, David A. Maltz, and Yih-Chun Hu. The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR). Internet-draft, IETF
MANET Working Group, July 2004. Expiration: January 2005.

[22] Zygmunt J. Haas and Marc R. Pearlman. The Zone Routing Protocol
(ZRP) for Ad Hoc Networks. Internet-draft, IETF MANET Working Group,
November 1997. Expiration: May, 1998.

[23] Zygmunt J. Haas. A New Routing Protocol For The Reconfigurable Wireless
Networks. In Proceedings of 6th IEEE International Conference on Uni-

versal Personal Communications, IEEE ICUPC’97, October 12-16, 1997,
San Diego, California, USA, volume 2, pages 562–566. IEEE, IEEE, October
1997.

[24] Prasun Sinha, Raghupathy Sivakumar, and Vaduvur Bharghavan. CEDAR:
A Core-Extraction Distributed Ad Hoc Routing Algorithm. In Proceedings
IEEE INFOCOM 1999, pages 202–209, March 1999.

[25] Guangyu Pei, Mario Gerla, and Xiaoyan Hong. LANMAR: Landmark Rout-
ing for Large Scale Wireless Ad Hoc Networks With Group Mobility. In
MobiHoc, pages 11–18, 2000.

[26] Dimitri P. Bertsekas and Robert Gallager. Data Networks. Prentice Hall,
1991.

[27] C.L. Hedrick. Routing Information Protocol. RFC 1058 (Historic), June
1988. Updated by RFCs 1388, 1723.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition. The MIT Press, September
2001.

127

BIBLIOGRAPHY MASTER’S THESIS

[29] L. Viennot. Complexity Results on Election of Multipoint Relays in Wireless
Networks. Technical report, INRIA, 1998.

[30] S. Guha and S. Khuller. Approximation Algorithms for Connected Dominat-
ing Sets. Algorithmica, 20(4):374–387, 1998.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, New York,
New York, USA, 1983.

[32] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc
Wireless Networks. In Thomasz Imielinski and Hank Korth, editors, Mo-
bile Computing, volume 353, chapter 5, pages 153–181. Kluwer Academic
Publishers, 1996.

[33] Johannes Faerber. Network Game Traffic Modelling. In Proceedings Work-
shop on Network and System Support for Games, pages 53–57, April 2002.

[34] C. E. Perkins and E. M. Belding-Royer. QoS for Ad hoc On-Demandn Dis-
tance Vector Routing. Internet-draft, IETF MANET Working Group, October
2003. Expiration: April, 2004.

[35] I. Jawhar and J. Wu. M. Cardei, I. Cardei, D.-Z. Du (Eds.), Resource Manage-
ment in Wireless Networking, chapter :Quality of Service Routing in Mobile
Ad Hoc Networks. Kluwer, 2004.

[36] Z. Wang and J. Crowcroft. QoS Routing for Supporting Resource Reserva-
tion. IEEE Journal on Selected Areas in Communications, 14:1228–1234,
1996.

[37] Qi Xue and Aura Ganz. Ad Hoc QoS On-Demand Routing (AQOR) in Mo-
bile Ad Hoc Networks. J. Parallel Distrib. Comput., 63(2):154–165, 2003.

[38] S. Mueller, R. P. Tsang, and Dipak Ghosal. Multipath Routing in Mobile Ad
Hoc Networks: Issues and Challenges. volume 2965, pages 209–234, April
2004.

[39] S. Yusuke. AODV Multipath Extension Using Source Route Lists with Op-
timized Route Establishment. In Proceedings of International Workshop on
Wireless Ad-hoc Networks (IWWAN ’04), May 2004.

128

MASTER’S THESIS BIBLIOGRAPHY

[40] C. Siva Ram Murthy and B. S. Manoj. Ad Hoc Wireless Networks. Prentice
Hall International, 2004.

[41] Geunhwi Lim. Link Stability and Route Lifetime in Ad-hoc Wireless Net-
works. In ICPPW ’02: Proceedings of the 2002 International Conference on

Parallel Processing Workshops, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[42] Gahng-Seop Ahn and Andrew T. Campbell and Andras Veres and Li-Hsiang
Sun. SWAN: Service Differentiation in Stateless Wireless Ad Hoc Networks.
In Proceedings IEEE INFOCOM 2002, pages 457–466, June 2002.

[43] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Conges-
tion Notification (ECN) to IP. RFC 3168 (Proposed Standard), September
2001.

[44] H. Arora, L. Greenwald, U. Rao, and J. Novatnack. Performance Compar-
ison and Analysis of two QoS Schemes: SWAN and DiffServ. In Drexel
Universitiy Research Day, April 2003.

[45] Xiaowei Zhang and Seoung-Bum Lee and Gahn-Seop Ahn and Andrew T.
Campbell. INSIGNIA: An IP-based Quality of Service Framework for Mo-
bile Ad Hoc Networks. In Journal of Parallel and Distributed Computing,

Special Issue on Wireless and Mobile Computing and Communications, vol-
ume 60, pages 374–406. Academic Press, Inc., April 2000.

[46] H. Xiao, W. Seah, A. Lo, and K. Chua. A Flexible Quality of Service Model
for Mobile Ad-Hoc Networks. In Proceedings IEEE Vehicular Technology
Conference, pages 445–449, May 2000.

[47] Christian Bonnet and Navid Nikaein. A Glance at Quality of Service Models
for Mobile Ad Hoc Betworks. In 16eme Congrès DNAC (De Nouvelles Ar-

chitectures pour les Communications), December 2-4, 2002, Paris, France,
Dec 2002.

[48] Kai Chen, Samarth H. Shah, and Klara Nahrstedt. Cross-Layer Design for
Data Accessibility in Mobile Ad Hoc Networks. Wirel. Pers. Commun.,
21(1):49–76, 2002.

129

BIBLIOGRAPHY MASTER’S THESIS

[49] S.M. Riera, O. Wellnitz, and L. Wolf. A Zone-based Gaming Architecture for
Ad-Hoc Networks. In Proceedings of the Workshop on Network and System
Support for Games (NetGames2003), Redwood City, USA, May 2003.

[50] F. Maurer. Service Management Procedures Supporting Distributed Services
in Mobile Ad Hoc Networks. Master’s thesis, ETH Zurich, Computer Engi-
neering and Networks Laboratory, 31st August 2005. MA-2005-14.

[51] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel
Agu. The Effect of Latency on User Performance in Warcraft III. In
NETGAMES ’03: Proceedings Workshop on Network and System Support
for Games, May 2003.

[52] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel
Agu, and Mark Claypool. The Effects of Loss and Latency on User Perfor-
mance in Unreal Tournament 2003. In Proceedings Workshop on Network
and System Support for Games, pages 144–151, August 2004.

[53] Lothar Pantel and Lars C. Wolf. On the Impact of Delay on Real-Time Mul-
tiplayer Games. In NOSSDAV ’02: Proceedings of the 12th international

workshop on Network and operating systems support for digital audio and
video, pages 23–29, New York, NY, USA, 2002. ACM Press.

[54] Sudhir Aggarwal, Hemant Banavar, Amit Khandelwal, Sarit Mukherjee, and
Sampath Rangarajan. Accuracy in Dead-Reckoning Based Distributed Multi-
Player Games. In SIGCOMM 2004 Workshops: Proceedings of ACM SIG-

COMM 2004 workshops on NetGames ’04, pages 161–165, New York, NY,
USA, 2004. ACM Press.

[55] Marcel Busse, Bernd Lamparter, Martin Mauve, and Wolfgang Effelsberg.
Lightweight QoS-Support for Networked Mobile Gaming. In SIGCOMM

2004 Workshops: Proceedings of ACM SIGCOMM 2004 workshops on
NetGames ’04, pages 85–92, New York, NY, USA, 2004. ACM Press.

[56] Grenville Armitage and Lawrence Stewart. Limitations of using Real-World,
Public Servers to Estimate Jitter Tolerance of First Person Shooter Games. In
Proceedings ACM SIGCHI ACE2004, pages 257–262, 2004.

[57] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of Factors Affecting
Players’ Performance and Perception in Multiplayer Games. In Proceedings

130

MASTER’S THESIS BIBLIOGRAPHY

Workshop on Network and System Support for Games, Hawthorne, USA, Oc-
tober 2005.

[58] Erik Nordström, Henrik Lundgren, and Björn Wiberg. AODV-UU Webpage.
http://core.it.uu.se/AdHoc/AodvUUImpl.

[59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[60] T. S. Rappaport. Wireless Communications, Principles and Practice. Prentice
Hall International, 1996.

[61] Sam Leffler. Multiband Atheros Driver for WiFi (MADWIFI), 2005.
http://sourceforge.net/projects/madwifi/.

[62] Bert Hubert, Gregory Maxwell, Remco van Mook, Martijn van Oosterhout,
Paul B Schroeder, and Jasper Spaans. Linux Advanced Routing and Traffic

Control HOWTO. Linux Documentation Project, 7 2002.

[63] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device

Drivers, 3rd Edition. O’Reilly, 2005. ISBN=0596005903.

[64] R. Finlayson, T. Mann, J.C. Mogul, and M. Theimer. Reverse Address Reso-
lution Protocol. RFC 903 (Standard), June 1984.

[65] J. Bardwell. Converting Signal Strength Percentage to dBm Values, Novem-
ber 2002.
http://web.archive.org/web/20040405102601/http://www.wildpackets.com/-
elements/whitepapers/Converting Signal Strength.pdf.

[66] David A. Maltz. The CMU Monarch Project’s Wireless and Mobility Exten-
sions to NS-2, August 1999.
http://www.monarch.cs.cmu.edu/.

[67] J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, and J. Jetcheva. A Perfor-
mance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Pro-
tocols. In Proceedings of ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom), pages 85–97, October 1998.

[68] Q. Zheng, X. Hong, and S. Ray. Recent Advances in Mobility Modeling for
Mobile Ad Hoc Network Research. In ACM-SE 42: Proceedings of the 42nd

131

BIBLIOGRAPHY MASTER’S THESIS

annual Southeast regional conference, pages 70–75, New York, NY, USA,
2004. ACM Press.

[69] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad
Hoc Network Research. Wireless Communications & Mobile Computing

(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5):483–502, 2002.

[70] P. Ruiz and F. Ros. UM-OLSR Webpage.
http://ants.dif.um.es/masimum/.

[71] Samir Ranjan Das, Charles E. Perkins, and Elizabeth M. Belding-Royer. Per-
formance Comparison of Two On-demand Routing Protocols for Ad Hoc Net-
works. In INFOCOM, pages 3–12, 2000.

[72] M. Natkaniec and A. Pach. An Analysis of the Influence of the Threshold
Parameter on the IEEE 802.11 Network Performance. In Proceedings of IEEE
Wireless Communications and Networking Conference (WCNC), volume 2,
pages 819–823, Chicago, IL, USA, September 2000.

[73] Information Sciences Institute ISI. Nam: Network Animator, July 2003.
http://www.isi.edu/nsnam/nam/.

132

	Abstract
	Kurzfassung
	Task Description
	Contents
	Introduction
	Mobile Ad Hoc Networks
	Focus of this Thesis
	Organisation of the Thesis
	Acknowledgements

	Fundamentals
	Quality of Service
	QoS Mechanisms
	QoS Architectures

	Wireless Communication
	Medium Access Control
	Wireless LAN IEEE 802.11

	Routing Protocols for MANETs
	Classification of Routing Protocols
	Destination-Sequenced Distance-Vector
	Optimized Link State Routing
	Dynamic Source Routing
	Ad Hoc On-Demand Distance-Vector
	Comparison of Routing Protocols

	QoS in MANETs
	Challenges
	QoS Routing Protocols
	QoS Frameworks

	Multiplayer Games
	Real-Time Game Architectures
	Network Requirements of Real-Time Multiplayer Games

	Summary

	Design Concepts
	Objective and Challenges
	AODV Enhancements
	Local Repair
	Backup Route

	Traffic Management
	Priority Queue
	Timeouts
	Real-Time Neighbour Aware Rate Control

	MAC Layer Support
	Broken Link Detection
	Neighbour Detection
	Signal Strength Monitoring
	RTS/CTS Adaptation

	Summary

	Implementation
	NS-2 Implementation
	AODV Enhancements
	Traffic Management
	MAC Layer Support

	Available QoS Extensions in NS-2
	Broken Link Detection
	Local Repair
	RTS/CTS Adaptation

	QoS Extensions under Linux
	Priority Queue
	Broken Link Detection
	Beacon based Neighbour Detection
	Signal Strength Monitoring

	Summary

	Evaluation
	Simulation Environment
	Mobility Model
	Metrics

	Ad Hoc Routing Protocol Comparison
	Simulation Settings
	Latency and Jitter
	Loss Rate
	Routing Overhead
	Summary

	Effects of the QoS Extensions
	Simulation Settings
	Single Impact of the QoS Extensions
	Combined Impact of the QoS Extensions
	Summary of the Overall Impact Using QoS Extensions

	Further Simulation Results
	Broken Link Detection

	Test Environment
	Summary

	Conclusions and Outlook
	Conclusion
	Outlook

	Appendix
	Network Simulator NS-2
	OTcl Simulation Scripts
	Node Mobility
	Traffic Generation

	AODV-UU Overview
	Important Macros
	Packet Processing of AODV-UU in NS-2
	Route Request Processing
	Route Reply Processing
	Route Discovery
	Timer Management

	CD-ROM
	Bibliography

