
Master Thesis

eQuus: A Provably Robust and Efficient
Peer-to-Peer System

Thomas Locher
lochert@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer 2005

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisor: Stefan Schmid

Abstract

Peer-to-peer systems (p2p) are highly dynamic in nature and the topology of
these networks changes rapidly. Such a system may consist of millions of peers
joining only for a limited period of time, resulting in hundreds of join and
leave events per second. While there has been a lot of research on peer-to-
peer computing over the last few years, we believe that the dynamics of such
systems has not received the appropriate amount of attention. In this thesis,
we introduce eQuus, a novel distributed hash table (DHT) suitable for highly
dynamic environments. eQuus guarantees that lookups are always fast—as far
as both the total number of hops as well as the effective distance traveled is
concerned—, although peers may join and leave the network at any time and
concurrently. All desirable properties such as a small peer degree, small network
diameter and small stretch are maintained without incurring a large message
overhead.

Contents

1 Introduction 5

2 Related Work 9

3 System Overview 11
3.1 Link Structure . 11
3.2 Description of the JOIN Algorithm 17
3.3 Description of the MERGE Algorithm 18
3.4 Description of the SPLIT Algorithm 20
3.5 Description of the LOOKUP Algorithm 21

4 Fault Tolerance 29
4.1 Communication Failures . 29
4.2 Dealing with Churn . 30

5 Locality 33
5.1 Formal Analysis of the Locality Properties 33
5.2 Simulation of the Locality Properties 37

6 DHT Mechanism 41
6.1 Definitions of the Hashing Functions 41
6.2 Description of the PUBLISH Algorithm 42
6.3 Description of the RETRIEVE Algorithm 44
6.4 Formal Analysis of the DHT Mechanism 45

7 Outlook 49
7.1 ID assignment . 49
7.2 Security . 50
7.3 Fairness . 51

8 Conclusion 53

3

Chapter 1

Introduction

Much research in the last few years has been devoted to the development of
efficient, structured peer-to-peer network overlays and a plethora of peer-to-
peer systems [17, 20, 22, 25, 28] has been proposed. Nowadays, file sharing
applications, which clearly have popularized peer-to-peer systems, still require
servers for various purposes such as resolving queries or bootstrapping newly
arriving peers, much like the first popular file sharing application Napster [18].
However, structured peer-to-peer systems appear to be emerging slowly as e.g.
the file sharing application eMule [8] contains an early implementation of the
Kademlia protocol [17]. All the proposed structured peer-to-peer systems belong
to the class of distributed hash tables (DHT). A DHT is a decentralized and
distributed system that partitions an ID space among all participating peers
which are responsible for all keys that lie in their respective fraction of the ID
space. The resulting structure is referred to as an overlay network, a common
term for a network built on top of an underlying network. In a DHT, looking
up the peer that is responsible for any key can be done efficiently, typically
requiring O(log n) hops, where n denotes the current number of peers in the
system. Practically all of the proposed DHTs further guarantee small routing
tables at each participating peer and also a good load balancing among all peers.

In a peer-to-peer network, any node1 might disappear or fail at any given
time, while new nodes strive to join the network. Therefore it is essential that
the system adapt itself quickly to changes, and both random and correlated
failures be detected and compensated efficiently. The permanent joining and
leaving of peers at high rates, inflicting constant changes in the system, is called
“churn.”

Apparently, in order to attain these additional goals of providing a high re-
silience to churn and correlated failures, more communication among the nodes
is needed, thus these goals conflict with the objective to reduce the communi-
cation overhead to a minimum. Apart from those aspects, it is also desirable,
when trying to find a particular node, to route along paths that are not much
longer than the direct paths, i.e. we want a system guaranteeing a low stretch.
Hence, other aspects, including fault tolerance, dealing with churn, locality etc.
are also of great importance.

Most systems, however, do not take these fundamental aspects into account

1In the rest of the thesis, the terms “node” and “peer” are synonymous.

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: An example network consisting of 5 cliques is shown. Nodes that are

close-by belong to the same clique and share the same ID. All nodes within the same

clique are responsible for the same set of data items.

or only a small subset thereof. In general, most basic peer-to-peer overlays
merely provide the functionality to find a particular node efficiently, given a
key. As a result, any such basic overlay that does not consider these factors
must be enhanced in order to meet these additional requirements.

We present a novel DHT, called eQuus2, specifically designed to cope with
high dynamics and failures without incurring a substantial message overhead.
Furthermore, the system guarantees a low expected stretch, i.e. lookup paths are
not much longer than the direct paths in expectation. The routing tables have
size O(log n) and keyed lookup requires O(log n) messages with high probability,
even if the network exhibits a highly dynamic behavior where nodes join and
leave at a fast pace. Due to all these features, eQuus is ideal for large and
dynamic networks.

As in many other DHTs, e.g. [17, 25], nodes are arranged in a hypercubic
topology. In eQuus, however, groups of nodes that are close to each other ac-
cording to the chosen proximity metric form the vertices of a partial hypercube.
Within such a group, all nodes share the same node ID and all nodes know
about each other3. Since the nodes in each group form a complete graph, these
groups are denoted cliques.

In addition to the links to all other clique members, i.e. nodes that belong
to the same clique, each node has links to nodes in other cliques. These ad-
ditional links ensure that the entire system is connected and that paths from
any node to another node are short. Data items are replicated among all nodes
of a particular clique thereby introducing a natural form of redundancy. Since
these nodes are close to each other, consistency can be maintained efficiently.

2Currently the most popular p2p network is the eDonkey network [7]. Equus is the latin
word for horse which is a stronger and quicker animal than a donkey. Horses are gregarious
animals which band together in order to protect each other, comparable to how robustness is
established in the system by grouping nodes together.

3We will say that “node v knows about w” or alternatively “there is a link between node
v and w”, if node v stores the address of node w in its routing table.

7

What is more, this approach strongly reduces the communication overhead in
the network in general, since nodes joining and leaving cliques only trigger com-
munication among the nodes in the same clique and all other nodes in the
system are not affected. Changes in the routing tables are only necessary if
entire cliques appear or disappear, due to the arrival or departure of a large
number of nodes. This entails that the dynamics of the network can be con-
trolled better, for the life time of cliques is much longer than the life time of
individual nodes.

Figure 1.1 depicts an example network consisting of 5 cliques. Apart from
the affiliation of nodes to cliques, it is further shown how the nodes of the various
cliques are interconnected.

Throughout this thesis, we assume that all nodes are uniformly distributed in
a two dimensional Euclidean space. While this assumption is clearly not an ideal
approximation of the node distribution in large networks such as the Internet,
it allows for a simple formal analysis of some of the system’s properties. Those
results provide a good intuition that eQuus performs well in any real network.

The rest of the thesis is organized as follows. In Chapter 2, related work in
this field is summarized. The design of the entire DHT is described in detail
in Chapter 3. The ability of eQuus to cope with random failures and highly
dynamic networks is treated in Chapter 4. The results of the simulations that
have been run to demonstrate the good locality properties as well as the theo-
retical results are presented in Chapter 5. Chapter 6 shows how data items can
be published and retrieved in eQuus. Directions for future research are outlined
in Chapter 7, and Chapter 8 concludes.

Chapter 2

Related Work

Subsequent to the seminal work of Plaxton et al. [19], many p2p systems have
been developed, e.g. [4, 5, 11, 13, 16, 17, 20, 25, 28]. All of these systems
are scalable and provide fast lookups while each individual peer needs to store
only a small amount of information about other peers in the network. In order
to effectively cope with churn, any p2p system further has to provide specific
mechanisms ensuring a high degree of fault-tolerance. While some solutions
have been analyzed in this respect, it seems that only a few systems inherently
incorporate fault-tolerance in the sense that robustness was a clear design goal
from the beginning. We believe that this stands in contrast to the high dynamics
observed in today’s p2p networks.

In the following, we first review relevant related work on fault-tolerance.
Fiat, Saia et al. [9, 23] have studied peer failures occurring in a worst-case
fashion, for example caused by an adversary or a p2p worm exploiting the
overlay network structure. The authors introduce a system where, with high
probability, (1 − ε)-fractions of peers and data survive the adversarial removal
of up to half of all nodes. However, the whole network has to be rebuilt from
scratch if the total number of peers changes by a constant factor. Also Li et
al. [15] analyze their system from a worst-case perspective. Using rigorous,
formal proofs they show that their system tolerates concurrent, ongoing and
asynchronous joins and leaves of peers. Unfortunately, leaving peers are not
allowed to crash; instead, they have to execute an appropriate exit protocol.
A more practical study by Rhea et al. [21] compares DHTs by simulation and
shows that several structured p2p overlays cannot handle churn rates as high as
those observed in today’s p2p networks.

eQuus shares the most commonalities with the work by Kuhn et al. [14].
Similarly to eQuus, [14] achieves a better robustness by having more than one
peer responsible for each ID, as opposed to assigning a unique ID to each node.
In contrast to our work, their system has higher maintenance costs as it requires
a background process estimating the current network size in order to balance
the ID assignment through a global operation. On the contrary, eQuus reacts
to imbalances using local merges or splits of adjacent IDs only. An additional
advantage of eQuus is that it has a low expected stretch, as described in a later
chapter.

In order to evaluate the performance of lookup operations in p2p systems,
usually only the total number of hops is considered. In systems such as [14]

9

10 CHAPTER 2. RELATED WORK

or [25], the neighbors of a given peer are determined by applying hash functions
to the peer’s IP address and potentially other parameters. Thus, the resulting
structure is completely independent of the actual geographic peer locations. It
is therefore possible that, with each hop, a node on a different continent is
contacted, even if the target node is close-by, which is clearly not desirable.
Furthermore, when data items are replicated among nodes with numerically
close identifiers, constantly ensuring that the data items are stored on the correct
nodes is potentially a costly operation, since these nodes might be very far away.

The approach taken by Pastry [22] when performing a lookup is to choose
the peer that is the geographically closest among a possible set of neighbors.
According to their simulations, Pastry achieves a low stretch of around 1.3 to
1.4. However, in contrast to our work, this is a heuristic approach and there are
no provable bounds on the achieved stretch. While solutions with provably low
stretches are well-known (e.g. [1, 2]), they usually lack the robustness property.

In contrast, eQuus tries to combine all these properties while at the same
time having a low maintenance overhead.

Chapter 3

System Overview

In eQuus, groups of nodes that are close-by form cliques. Within such a clique
c, each node has the same ID c.id, which is a bit string of a predefined length
d. The length d of the IDs is referred to as the dimension of the network.
Every clique has its own unique ID. The ith bit is denoted c.id[i] and the sub-
ID in the range [i, j], i > j is denoted c.id[i, j]. Note that the highest order
bit is the leftmost bit. Since these nodes share the same identifier, they are
also responsible for the same fraction of the ID space. This has two interesting
properties. First of all, these nodes ensure a certain degree of redundancy that
is required lest data is lost due to the sudden departure or failure of a particular
node. Second, if those nodes storing the same information are close to each
other, establishing consistency among those nodes can be done quickly due to
the short distance between them. The distance between nodes is measured with
the metric c : V ×V → IR+

0 , where V denotes the set of all nodes in the system.

Since the degree of each node should not exceed O(log n), the number of
nodes in a clique has to be limited. Once the number of nodes undershoots
a certain threshold, we are confronted with a higher probability of data loss.
This observation entails that, once the number of nodes reaches a specific upper
bound, this clique has to be split into two cliques. Likewise, if the number of
nodes reaches a certain lower bound, the remaining nodes in the clique have to
join another clique, thus the two cliques have to merge. Hence it follows that,
apart from the standard operations, such as JOIN and LOOKUP, two additional
operations, namely MERGE and SPLIT, are essential in eQuus.

We will first present the link structure that guarantees connectivity and
fast lookups. Subsequently, the JOIN procedure is specified, followed by a
detailed description of the MERGE and SPLIT procedure. In the last part of
this chapter, the LOOKUP procedure is presented.

Note that there is no need for a specific LEAVE protocol. After a node could
not be contacted by any clique member for a certain period of time, it is simply
excluded from the clique and thus, from the system.

3.1 Link Structure

A certain amount of links between the nodes in the network has to be main-
tained and updated periodically, in order to establish a structured network in

11

12 CHAPTER 3. SYSTEM OVERVIEW

which lookups are fast, the permanent joining and leaving of nodes is handled
efficiently and a high degree of resilience to random as well as correlated failures
is guaranteed.

As mentioned in the previous chapter, each node v knows about all other
members of its clique c. Apart from these links, each node v has links to nodes in
other cliques in order to guarantee connectivity and fast lookups in the network.

The routing is basically a generalized form of routing on hypercubes, where
b bits are corrected in each hop. The number of bits b that can be corrected in a
single hop is denoted the base of the system. In this kind of routing mechanism,
referred to as prefix-routing, for each of the 2b − 1 other values for the highest
order block of b bits of its ID, a clique is stored in the routing table whose ID
starts with the corresponding block of b bits. In addition, for each of the 2b− 1
other values for the second block of b bits, a clique is stored whose ID shares
the same highest order block and the second block matches the corresponding
block of b bits etc. For example, setting b := 2, a node in the clique with ID
10001101 would store cliques whose IDs start with the following prefixes:

Block Prefixes
1 00, 01, 11
2 1001, 1010, 1011
3 100000, 100001, 100010
4 10001100, 10001110, 10001111

This procedure is very similar to the one described for instance in [22], the
main difference being that in eQuus, each entry represents an entire clique and
not a single node. Let Πb

c denote the set of prefixes that are relevant for clique
c with ID c.id, given base b.

In order to ensure permanent connectivity, a constant number of k nodes are
known in each of the approximately (2b−1)⌈log2b n⌉ cliques in the routing table,
thus in total k(2b − 1)⌈log2b n⌉ links are stored in the routing table, for a given
base b. The average lookup path requires about ⌈log2b n⌉ hops, as we will show

in Section 3.5. In comparison to b = 1, by setting b := 4, only 24−1
4 = 3.75 times

more contacts have to be stores, but the number of hops is reduced by a factor
of 4. It is checked periodically if the nodes in the routing table are still alive.
Every time a node in a specific clique is contacted, it returns a fresh, random
list of k live nodes in the corresponding clique and this list is stored, replacing
the old list in the routing table. In case all k nodes of a certain clique stored
in the routing table have failed since the last request, which is an improbable
event, another node in the own clique can be contacted in order to get a fresh
list of nodes in this clique. Because all nodes in a clique store links to the same
cliques, however they do not share the same subset of nodes in this clique, it is
very likely that there is another clique member storing the address of a node in
the corresponding clique that is still alive.

Additional k links lead to nodes in the clique that is the predecessor in the
ID space and another k links lead to nodes in the successor clique. Thus, the
total number of links is bounded by U +k(2b−1)⌈log2b n⌉+2k = O(log n) links,
where U denotes the upper bound on the number of nodes in a clique. Knowing
both the predecessor clique and the successor clique is necessary for the MERGE
and also the SPLIT operation. We say that a clique c, or any node in clique c, is

3.1. LINK STRUCTURE 13

responsible for a data item, if its key is in the range [c.id, c.successor.id), where
c.successor.id denotes the ID of the successor clique of c. In the following, let
Nv denote the neighborhood of node v consisting of all cliques in its routing
table.

The routing table consists of the PRED/SUCC table, storing the IDs of the
predecessor clique and the successor clique, the link table, storing the IDs of
approximately ⌈(2b − 1) log2b n⌉ other cliques and the clique tables, storing the
links to nodes for each clique.

Figure 3.1: An example network consisting of 7 cliques is shown. It is further

displayed how these cliques are interconnected. The base b of the network is 2.

Another network, depicted in Figure 3.1, is used in order to demonstrate the
use of the various tables. The base b of the network is 2 in this example. Note
that there are both bidirectional links, which are depicted using thick lines, and
unidirectional links, depicted using thin lines, between the cliques. There is
a unidirectional link from clique c to clique c′ if the ID c′.id is stored in the
routing table of c but not vice versa. This is the case if the other clique has a
different entry for this specific prefix in its routing table. Dashed lines connect
neighboring cliques in the ID space. In the following, some of the routing tables
of the clique with ID 1010 are presented.

PRED/SUCC table of clique 1010
Predecessor Successor

1000 1011

14 CHAPTER 3. SYSTEM OVERVIEW

Link table of clique 1010
Prefix Clique ID

00 0001
01 0101
11 1110

1000 1000
1001 -
1011 1011

Note that there can be “holes” in the link table. In the example, there is
no clique whose ID starts with 1001, thus the link table entry for this prefix
remains empty.

Each node stores a clique table for each clique in the PRED/SUCC and
link table. In those clique tables, the addresses of k nodes that belong to the
corresponding clique are stored, together with the distance to this node, if this
information is known. There is one clique table that is special, denoted clique
member table. This particular clique table stores the addresses of each node in
its own clique plus the distances to those nodes, thus the difference to a regular
clique table is that it contains up to U entries, since cliques can contain up to
U nodes. All the information about the data item this clique is responsible for
is stored in the data table. This table is the subject of a latter chapter.

1: for all π ∈ Πb
c do

2: if ζ(π) /∈ [c.id, c.successor.id) then
3: if linkTable.hasEntry(π) then
4: UPDATE LINK(π);
5: else
6: response = LOOKUP(ζ(π));
7: c̃ = response.getClique();
8: if ψ(ζ(π), c̃.id) ≥ |π| then
9: linkTable.setLink(π, c̃.id);

10: cliqueTable = cliqueTables.getTableForPrefix(π);
11: [a1, . . . , ak] = response.getAddresses();
12: cliqueTable.setAddresses([a1, . . . , ak]);
13: end if
14: end if
15: end if
16: end for

Algorithm 3.1: UPDATE ROUTING TABLE (Code for node v in clique c)

It is essential to keep the entries in the routing tables accurate. The al-
gorithm that ensures the accuracy of routing information is depicted in Algo-
rithm 3.1. Note that the algorithm is correct for arbitrary bases b.

The following functions are used in this algorithm as well as in several other
algorithm in this chapter. The function ζ : {0, 1}l → {0, 1}d appends zeros to
a bit string of length l ≤ d, i.e. ζ(s) := s || 0d−|s| where |s| ≤ d. The function
ψ : {0, 1}l × {0, 1}l → {0, . . . , l} determines the length of the shared prefix of
two bit strings of length l, for example ψ(101, 100) = 2.

3.1. LINK STRUCTURE 15

All prefixes π ∈ Πb
c have to be checked in the algorithm. However, if a string

ζ(π) is in the range [c.id, c.successor.id), there is no need to check this specific
prefix π, because either the clique c itself is responsible for any bit string with
this prefix or the ID of the successor clique starts with this prefix, thus no other
clique has to be found for this prefix. If this is not the case and there is an entry
for this prefix, UPDATE LINK(π) has to be called. Otherwise, there is a hole
at this position and we have to search for the clique that is responsible for this
prefix. If the responsible clique has a prefix of the desired length, it is added to
the link table and the addresses of k nodes in this clique are stored in the clique
table for this prefix.

1: ID = linkTable.getIDForPrefix(π);
2: cliqueTable = cliqueTables.getTableForPrefix(π);
3: received = FALSE;
4: while cliqueTable.hasEntry() and not received do
5: w = cliqueTable.getNode();
6: try{
7: send([LINK UPDATE REQUEST,π,ID]) to w;
8: response = receiveMessage();
9: received = TRUE;

10: }catch(timeOut){
11: cliqueTable.remove(w);
12: }
13: end while
14: if received then
15: if response.getType() == LINK OK then
16: [a1, . . . , ak] = response.getAddresses();
17: cliqueTable.setAddresses([a1, . . . , ak]);
18: else if response.getType() == NEW LINK then
19: newID = response.getID();
20: [a1, . . . , ak] = response.getAddresses();
21: linkTable.setLink(π, newID);
22: cliqueTable.setAddresses([a1, . . . , ak]);
23: else
24: linkTable.removeEntry(π);
25: end if
26: else
27: linkTable.removeEntry(π);
28: end if

Algorithm 3.2: UPDATE LINK(π) (Code for node v in clique c)

If there is an entry in the routing table, then UPDATE LINK(π) is invoked,
see Algorithm 3.2. This procedure sends LINK UPDATE REQUESTs to nodes
in the targeted clique, until it receives an answer. Depending on the type of
the received message, the link table entry and the corresponding clique table
are updated. If the link is still up-to-date (LINK OK), the k fresh addresses
are retrieved and stored. If a new and somewhat superior link is available
(NEW LINK), the link table entry for this prefix and the clique table are up-
dated accordingly. Otherwise, the message indicates that the clique does no

16 CHAPTER 3. SYSTEM OVERVIEW

longer exist and no suitable replacement has been found (LINK LOST). Con-
sequently, the entry for the prefix π is removed.

1: {Received from node u in clique ĉ for prefix π with ID id in its table}
2: c̃ = arg maxc′∈{Nv∪{c}} | ψ(ζ(π),c′.id)≥|π| ψ(c′.id[d− |π|, 1], ĉ.id[d− |π|, 1]);
3: if c.id == id and c == c̃ then
4: [a1, . . . , ak] = getNodesFromClique(c);
5: send([LINK OK,π, [a1, . . . , ak]]) to u;
6: else
7: if c̃ 6= ∅ then
8: [a1, . . . , ak] = getNodesFromClique(c̃);
9: send([NEW LINK,π, c̃.id,[a1, . . . , ak]]) to u;

10: else
11: send([LINK LOST,π]) to u;
12: end if
13: end if

Algorithm 3.3: LINK UPDATE REQUEST RECEIVED (Code for node v in
clique c)

How a node reacts upon receiving a LINK UPDATE REQUEST is described
in Algorithm 3.3. The node first computes the best possible clique for prefix π
and the ID of the requesting clique among all cliques stored in its routing table
and also the clique it belongs to itself.

The best possible clique is determined using a strategy that we call low
indegree strategy. Among all those cliques, it chooses the clique with the longest
matching suffix following the specified prefix. The function ψ is used in order to
determine the clique with the longest matching suffix, by considering only the
part of the ID after the shared prefix. Provided that the clique that the request
has been sent to is still the clique with the longest matching suffix and the ID id
stored in the routing table of node u is still correct, then a newly compiled list of
k clique members can be returned. If either the ID is no longer correct, due to a
recent merging, or if there is a better clique in the neighborhood (or both), then
node u is informed about this new contact, by sending a NEW LINK message.
In case there is no node anymore with the desired prefix, a LINK LOST message
is sent back to node u in order to invalidate this obsolete link table entry.

Using this low indegree strategy has two consequences. First, when looking
at a network in which all updates after MERGE and SPLIT operations have
been performed, the link structure is well-defined. This is interesting, given the
high flexibility of the link table entries. The second property is more technical-
oriented: The expected indegree is bounded by O(log n).

The explanation is simple. In expectation, the same amount of clique IDs
are “around” the ID of node v as there are cliques whose IDs are numerically
close to the clique in the link table entry for a certain prefix. This means that
a constant number of links point to the own clique while others point to cliques
with a numerically closer ID. This holds for all prefixes, thus the expected
indegree is O(log n) and hence the name of the strategy. Figure 3.2 shows how
a link table entry is updated after a clique split.

It is clear that each entry in the link table can be updated in constant
time. For those prefixes in Πb

c for which there is no entry in the link table, a

3.2. DESCRIPTION OF THE JOIN ALGORITHM 17

Figure 3.2: The nodes in the clique with ID 011 will learn that the clique with ID

110 split as soon as a NEW LINK message is received. The nodes in the clique with

ID 011 can then update their routing tables accordingly.

single lookup call determines whether a clique with the desired prefix exists in
the network. Even if there is no such clique, a small number of nodes in the
clique that is responsible for this fraction of the ID space can be stored. The
next update can then be started at this clique, which will very likely result in
lookups requiring not more than one or two hops.

3.2 Description of the JOIN Algorithm

In order to ensure that all nodes belonging to the same clique are close to each
other and also that good locality properties such as a low stretch are maintained,
a newly arriving node must join the closest clique in the system.

1: counter = 0;
2: progressMade = TRUE;
3: [bestNode, bestDist] = getBootstrapNode();
4: while counter < Λ and progressMade do
5: send(JOIN REQUEST) to bestNode;
6: [v1, . . . , vz] = receiveSet();
7: sendToSet(MEASURE DISTANCE) to [v1, . . . , vz];
8: [(v1, l1), . . . , (vz, lz)] = receiveMeasurements();
9: shortestDist = li | (vi, li) ∈ [(v1, l1), . . . , (vz, lz)] ∧ li ≤ lj∀j ∈ [1, z];

10: closestNode = vi | (vi, li) ∈ [(v1, l1), . . . , (vz, lz)] ∧ li ≤ lj∀j ∈ [1, z];
11: if shortestDist < bestDist then
12: bestNode = closestNode;
13: bestDist = shortestDist;
14: else
15: progressMade = FALSE;
16: end if
17: counter = counter + 1;
18: end while
19: send(JOIN) to bestNode;
20: stateInformation = receiveStateInformation();

Algorithm 3.4: JOIN (Code for node v joining the system)

18 CHAPTER 3. SYSTEM OVERVIEW

How a given node determines the closest clique is straightforward, see Algo-
rithm 3.4. The overall procedure is similar to the mechanism described in [27].
In the first step, a node contacts an arbitrary bootstrap node. The contacted
node returns the address of one node of each clique in its routing table. Let
z denote the number of cliques stored. The new node then contacts all those
nodes and determines the closest one, e.g. by sending several ping messages
and waiting for the replies. Subsequently, a JOIN request is sent to the closest
node which again returns addresses of cliques in its routing table. This step is
repeated until the closest clique has been found, which will happen in O(log n)
rounds. In practice, an upper bound on the number of rounds ought to be spec-
ified in order to avoid looping between cliques. In Algorithm 3.4, the number
of rounds is bounded by Λ, which should be in the order of d

b
, because each

round basically determines additional b bits of the ID of the closest clique. Af-
ter sending a JOIN message to a node in the closest clique, this contacted node
will inform all the other nodes in the clique about the arrival of a new node
and give the new node all the information it needs to become a fully integrated
clique member, which includes the ID of the clique, the addresses of all other
clique members, the routing table and also the necessary information about all
data items whose keys lie in this clique’s fraction of the ID space. The routing
table can be copied from any other clique member, since they all share links to
the same cliques. The total message complexity is obviously O(log2 n), since
O(log n) messages have to be sent in each of the O(log n) rounds.

The first clique in the system bears the ID 0d. As soon as it contains U
nodes, it is split into two cliques, each obtaining half of the nodes. One clique
keeps the ID 0d while the other clique gets the new ID 10d−1. The new clique
with ID 10d−1 is the successor clique of the clique with ID 0d and vice versa.
Different strategies as to how the two sets are constructed can be applied. A
good strategy, as far as maintaining a good locality is concerned, is to find
the U

2 nodes that are closest to nodes in the preceding clique in the ID space.
Those nodes keep their ID while the other half changes their ID and forms a
new clique. This strategy does not work at the beginning, because there is only
one clique in the system. A solution to this problem is to find the node in the
“center” of the clique and have it decide how the nodes are to be split up. The
nodes with ID 0d are then responsible for all data items whose key is in the
range [0d, 01d−1] and the nodes with ID 10d−1 are responsible for the keys in
the range [10d−1, 1d] in the ID space. A newly arriving node always joins the
closest clique. This clique is split again once its size reaches U and the new
clique gets the ID in the middle between the ID of the current clique and the
successor clique etc.

Nodes within a clique have to communicate permanently in order to keep
their routing tables consistent. Since all members of a clique are likely to be
close to each other according to the chosen proximity metric and since links to
cliques far away have to be checked only occasionally, a high percentage of the
generated traffic is over short distances.

3.3 Description of the MERGE Algorithm

In case a node joins or leaves a clique, it has to be verified that the number of
nodes in the clique is still in the range [L,U], where L and U denote the lower and

3.3. DESCRIPTION OF THE MERGE ALGORITHM 19

upper bound on the number of nodes in a clique, respectively. It is important
to set both L and U to reasonable values, such that enough redundancy is
introduced and data loss can be avoided, but the routing tables do not become
too large. In the following, let L := d

2 +1 and U := 2d−1, which yields adequate
values for typical values for d, such as 64 or 128.

Once the size of a clique reaches L−1 = d
2 , it has to merge with the preceding

clique in the ID space. We assume that each clique has a leader, e.g. the node
with the lowest IP address. Note that there is no need for a leader election since
all nodes in a clique know about each other. What is more, the leader neither
has any particularly hard tasks nor is he a focal point in any procedure, thus the
leader is never a bottleneck. Having a leader is required due to the asynchronous
nature of communication between nodes. The leader acts as a synchronizer for
both MERGE and SPLIT operations. In case the leader fails while performing
any of these two operations, the new leader can—upon determining that the
old leader failed—resume the operation without much delay. When the leader
realizes that after a clique member left, the clique merely contains d

2 nodes, the
procedure MERGE is called.

1: sendToSet(MERGE PENDING) to cliqueMembers;
2: [answer1, . . . , answerm] = receiveSet();
3: if MERGE NACK ∈ [answer1, . . . , answerm] then
4: establishConsistency();
5: else
6: send([MERGE REQUEST,stateInformation]) to u ∈ c.predecessor;
7: newState = receiveStateInformation();
8: sendToSet([MERGING,newState]) to cliqueMembers;
9: send([NEW PRED,c.predecessor.id]) to w ∈ c.successor;

10: c.id = c.predecessor.id;
11: c.predecessor = newState.getPredecessor();
12: cliqueMembers = cliqueMembers ∪ newState.getCliqueMembers();
13: linkTable = newState.getLinkTable();
14: dataTable = dataTable ∪ newState.getDataTable();
15: end if

Algorithm 3.5: MERGE (Code for leader v in clique c)

The MERGE operation is summarized in Algorithm 3.5. At first, the leader
asks the other m clique members, if they are ready to merge. This is denied if
there is no consensus on the number of nodes in the clique. In this situation,
the procedure establishConsisteny() aims at reestablishing the necessary con-
sistent state. This procedure is not further discussed. Otherwise, the request
to merge is sent to a node belonging to the predecessor clique, along with all
the necessary state information, i.e. the addresses of all clique members, the ID
of the successor clique and also the information stored in the data table about
all data items this clique has been responsible for. In return, it receives the
state information it needs to update its tables, which is forwarded to all clique
members. The successor clique is also informed about the merging in order to
adapt its predecessor link. All nodes in the merging clique have to adopt the ID,
the predecessor clique and also the entire link table of their former predecessor
clique. Both the clique member tables and the data tables of the two previously

20 CHAPTER 3. SYSTEM OVERVIEW

separated cliques have to be combined. Nodes in all other cliques that have
links to the clique that has just merged will be informed about the topology
change as soon as they update the corresponding routing table entry.

1: {Received request and state information newState from node u}
2: send(MERGE REQ RECEIVED) to leader;
3: response = receiveMessage();
4: if response == MERGE OK then
5: sendToSet([ADD STATE INFO,newState]) to cliqueMembers;
6: send(stateInformation) to u;
7: c.successor = newState.getSuccessor();
8: cliqueMembers = cliqueMembers() ∪ newState.getCliqueMembers();
9: dataTable = dataTable ∪ newState.getDataTable();

10: else
11: timeOut() { Retry after timeout }
12: end if

Algorithm 3.6: MERGE REQUEST RECEIVED (Code for node v)

The node receiving the MERGE REQUEST first contacts the leader which
coordinates the MERGE and SPLIT operations. If the leader sends a MERGE OK
message, state information is forwarded to the other clique members which up-
date their state information accordingly.

It is possible that after the merging of two cliques, they are split again al-
most immediately. This is the case if one clique consists of at least 3

2d nodes.
By merging two cliques and splitting them again, as opposed to merely moving
nodes from the clique with fewer nodes to the larger clique, an improved parti-
tioning of the ID space is achieved. For example, if the clique with ID 1010 has
to merge with its predecessor clique with ID 1001 and its successor clique has
ID 1111, then splitting clique 1001 afterwards results in a clique with ID 1100
between the two cliques with IDs 1001 and 1111, respectively. Hence, the ID
space is partitioned locally in an optimal manner.

3.4 Description of the SPLIT Algorithm

In case the size of a clique exceeds U , the SPLIT procedure is initiated in which
half of the nodes form a new clique. The nodes in the old and the newly created
clique are then responsible for approximately half of the data items they were
responsible before. In order to ensure a certain locality, the nodes closer to the
preceding clique in the ID space keep their ID while the others get the new,
higher ID, which is the ID between the current ID and the ID of the successor
clique. The closest node to the preceding clique determines the set of nodes
that will keep the old ID and the set of nodes that will get a new ID. The new
ID is determined using the σ-function, see Algorithm 3.7.

The procedure SPLIT is described in greater detail in Algorithm 3.8. In this
procedure, the leader initiates the splitting by asking for measurements of the
distance to the predecessor clique. Each of the m clique member returns the
closest distance measured to any node in the predecessor clique.

The successor clique is informed that it has a new predecessor clique, by
sending a NEW PRED message including the ID σ(c.id, c.successor.id) of its

3.5. DESCRIPTION OF THE LOOKUP ALGORITHM 21

1: newID = (c.id+ c.successor.id) ≫ 1;
2: if c.id[d] > c.successor.id[d] or c.id = c.successor.id then
3: newID = newID ⊕ 10d−1;
4: end if
5: return newID;

Algorithm 3.7: σ-function applied to clique c.

1: sendToSet(SPLIT PENDING) to cliqueMembers;
2: [answer1, . . . , answerm] = receiveSet();
3: if SPLIT NACK ∈ [answer1, . . . , answerm] then
4: establishConsistency();
5: else
6: sendToSet(PREDECESSOR DIST) to cliqueMembers;
7: [(v1, l1), . . . , (vm, lm)] = receiveMeasurements();
8: u = getClosestNodeFromPredecessor();
9: allDist = [(v1, l1), . . . , (vm, lm)] ∪ [(v, u)];

10: closestNode = vi | (vi, li) ∈ allDist ∧ li ≤ lj∀j ∈ [1,m+ 1];
11: send(FORM CLIQUES) to closestNode;
12: send([NEW PRED,σ(c.id, c.successor.id)]) to w ∈ c.successor;
13: end if

Algorithm 3.8: SPLIT (Code for leader v in clique c)

new predecessor to a node belonging to the successor clique. The leader sends
a FORM CLIQUES message to the node that is closest among all clique mem-
bers. This particular node v is then responsible for the actual operation, see
Algorithm 3.9.

Node v partitions all nodes into two sets of equal size. The set keepID
consists of the nodes that are closest to v, including node v itself. The other
half of the nodes belongs to the set changeID. The nodes in the set changeID
are those nodes that will form a new clique with the ID σ(c.id, c.successor.id).
In the next step, it forwards the set keepID to all other clique members. The
clique members can then, depending on whether they belong to the set keepID
or not, update their PRED/SUCC table and their clique member table. The
nodes in the set changeID further have to build a new link table; however, they
can very likely keep the higher entries in the table. It is easy to see that the
length of the prefix shared with the old ID determines the number of link table
entries that can be kept.

Both cliques are then responsible for approximately half of the data items
that they were responsible before and can remove the information about the
data items whose keys do not lie in their respective ranges [c.id, c.successor.id)
from their data tables.

3.5 Description of the LOOKUP Algorithm

The main operation that the network has to be able to perform is lookup a clique,
given a specific key s ∈ {0, 1}d. We define the metric δ : {0, 1}d × {0, 1}d →
{0, . . . , d} as follows. For any bit two strings s, s′ of length d, δ(s, s′) = i ⇐⇒
s[d, i + 1] = s′[d, i + 1] ∧ s[i] 6= s′[i], where s[i, j], i > j, denotes the substring

22 CHAPTER 3. SYSTEM OVERVIEW

1: keepID = getClosestCliqueMembers(); { including v }
2: changeID = cliqueMembers - keepID;
3: sendToSet([KEEP ID,keepID]) to cliqueMembers;
4: if v ∈ keepID then
5: cliqueTable = cliqueTables.getSUCCTable();
6: [a1, . . . , ak] = chooseAddresses(changeID);
7: cliqueTable = cliqueTable.setAddresses([a1, . . . , ak]);
8: c.successor.id = σ(c.id, c.successor.id);
9: cliqueMembers = keepID;

10: else
11: cliqueTable = cliqueTables.getPREDTable();
12: [a1, . . . , ak] = chooseAddresses(keepID);
13: cliqueTable = cliqueTable.setAddresses([a1, . . . , ak]);
14: c.predecessor.id = c.id;
15: c.id = σ(c.id, c.successor.id); { New ID }
16: cliqueMembers = changeID;
17: linkTable.cutToRange([d, d− ψ(c.id, c.predecessor.id) + 1]);
18: end if
19: dataTable.cutToRange([c.id, c.successor.id));

Algorithm 3.9: FORM CLIQUES RECEIVED (Code for node v in clique c)

of s in the range [i, j]. Thus, δ(s, s′) is the position of the highest order bit at
which the two bit strings s and s′ differ. It holds that δ(s, s′) ≥ 0 and d(s, s′) =
0 ⇐⇒ s = s′. Furthermore, d(s, s′) = d(s′, s) (symmetry) and d(s, s′′) ≤
d(s, s′) + d(s′, s′′) (triangle equality). The triangle equality holds because if
d(s, s′′) = i, then either d(s, s′) = i or d(s′, s′′) = i and the fact that distances
are always positive. For any two bit strings s, s′, |s| = |s′| = d, it further holds
that δ(s, s′) + ψ(s, s′) = d. This metric allows for a simple specification of the
lookup protocol. It is further useful when it comes to analyzing the locality
properties of eQuus.

The following simple algorithm performs this task independent of the chosen
base, see Algorithm 3.10. It is first checked if node v in clique c is responsible for
the key s, by testing if s lies between its ID and the ID of the successor clique.
If this is not the case, it will forward the request to a node in a clique with a
longer matching prefix. If there is no such node in the routing table, two cases
have to be considered. If s > v.id, the request is forwarded to the clique with
the largest ID in Nv, subject to the constraint that the length of the matching
prefix is not reduced. Otherwise, i.e. v.id > s, the request is simply forwarded
to a node in the predecessor clique.

The following theorems summarize the properties of the LOOKUP algorithm
of eQuus. In this analysis, it is assumed that all routing tables are accurate, i.e.
each node knows about all other cliques that currently exist in the system and
are relevant for its routing table. Note that this does not mean that all lists of
k nodes for each clique must be up-to-date. Merely the information about the
existence of cliques must be accurate and at least one of the k nodes of each
clique stored in the routing table must be still alive.

Theorem 3.5.1 The LOOKUP algorithm is correct, i.e. it always finds the
clique responsible for any key, if the routing table entries are accurate.

3.5. DESCRIPTION OF THE LOOKUP ALGORITHM 23

1: {u started LOOKUP request for key s}
2: if s ∈ [c.id, c.successor.id) then
3: send(LOOKUP DONE,c.id) to u;
4: else
5: c̃ = arg minc′∈Nv

δ(c′.id, s);
6: if not δ(c̃.id, s) < δ(c.id, s) then
7: if s > c.id then
8: c̃ = arg maxc′∈Nv:δ(c′.id,s)=δ(c.id,s) c

′.id;
9: else

10: c̃ = c.predecessor;
11: end if
12: end if
13: n =getNodeFromClique(c̃);
14: send(LOOKUP,u,s) to n;
15: end if

Algorithm 3.10: LOOKUP (Code for node v in clique c)

Proof. Let the start node be v in clique c. It tries to find the clique
responsible for the key s. If the key is in its own fraction of the ID space, i.e.
s ∈ [c.id, c.successor.id), then the LOOKUP procedure terminates correctly.
Otherwise, it checks its routing table for a clique whose ID has a longer matching
prefix. If such a clique exists, then the request will be forwarded to this clique.
The new clique is closer to the responsible clique, since the matching prefix is
at least one bit longer.

If there is no such clique in Nv, two cases have to be distinguished. If
s > c.id, then we have to forward the request to a clique with a larger ID. Let
i = δ(c.id, s), thus c.id[i] = 0, s[i] = 1 and c.id[j] = s[j] for all i < j ≤ d. We
assume that routing tables are accurate, thus there is no clique c̃ in the network
whose ID is larger than the ID of c, δ(c̃, s) = i and c̃.id[i] = 1, otherwise v
would know about it. Thus, it is best to forward the request to the clique with
the largest ID among all cliques c̃ in Nv for which it holds that δ(c̃, s) = i.
There is always at least one clique satisfying this constraint. Assuming no such
clique exists in the routing table, then it follows that δ(c.successor.id, s) > i
and therefore c.successor.id > s, in contradiction to the assumption that s /∈
[c.id, c.successor.id).

Similarly, if c.id > s, it holds that c.id[i] = 1 and s[i] = 0. If there is no
clique c̃ such that δ(c̃.id, s) < δ(c.id, s), then it holds for all cliques with a lower
ID than c that their identifiers are lower than s. Naturally, this also holds for
the predecessor of c and thus the lookup terminates at the predecessor, because
c.predecessor.id < s < c.id.

Therefore, requests are routed closer and closer to the destination in every
step, which concludes the proof.

�

It is also essential to bound the number of hops required to reach the target
clique. The following theorem states that, w.h.p.1, the number of hops does not
exceed ⌈log2b n⌉ plus a small constant.

1By “with high probability,” or short “w.h.p.,” we mean with probability at least 1 −

1

n
,

where n is the number of nodes in the system.

24 CHAPTER 3. SYSTEM OVERVIEW

Theorem 3.5.2 If all n nodes are uniformly distributed, then a LOOKUP ter-
minates successfully after at most ⌈log2b n⌉ + o(1) hops w.h.p., if the routing
table entries are accurate.

Proof. In the first step, we will show that the number of hops is upper
bounded by the number of bits that are needed to uniquely identify all cliques.

Let node v in clique c be the node initiating the LOOKUP call for key s and
let δ(c.id, s) = i. Note that if there is no clique c̃ such that δ(c̃.id, s) < δ(c.id, s),
we cannot correct the ith bit, thus we cannot argue that the distance measured
with the metric δ decreases in each step. However, we can argue that the number
of bits that still have to be considered is decreasing with each hop. Apparently,
if there is a clique c̃ such that δ(c̃.id, s) < δ(c.id, s), forwarding the request to
this clique will fix at least the ith bit and all bits in the range [i, d] do not have
to be considered anymore, thus the search space will be reduced by at least one
bit. If we are in the situation that there is no such clique, then we know that
the ith bit does no longer have to be corrected, since there is no clique that
could fix it. Hence, the search space is reduced by at least one bit in each step.

Similarly, for general bases b, each step reduces the search space by at least
b bits, if all (2b − 1)⌈log2b n⌉ cliques in the routing table are still alive.

Now we will show that ⌈log n + 4⌉ bits suffice with high probability to
uniquely identify all cliques. Let the ball Bv(α) denote the set of nodes around
node v at a distance of at most α. For all x ∈ [0, 1], it holds that

p(|Bv(x∆)| ≥ 2d) =

n
∑

i=2d

(

n

i

)

(x2π)i(1 − x2π)n−i

<

(

n

2d

)

(x2π)2d

<
(ne

2d

)2d

(x2π)2d,

where ∆ denotes the diameter of the network. Let the random variable X
denote the event that there is a node v such that |Bv(x∆)| ≥ 2d. Setting

x :=
√

2(d−lnn)
neπ

, it follows that

p(X) ≤
∑

v∈V
p(|Bv(x∆)| ≥ 2d) <

(

nex2π

2d

)2d

n

<

(

ne2(d− lnn)π

neπ2d

)2d

n <

(

1 − 2 lnn

2d

)2d

n

< e−2 lnnn <
1

n
.

Thus, with high probability, there are less than 2d nodes at a distance of
at most x∆ for each node. All cliques and consequently all IDs are spread in
a two dimensional Euclidean space. Whenever a clique splits into two, both
cliques occupy half of the original space and the diameter of each of those two
subspaces is only a factor of 1√

2
of the original diameter in expectation. It has

to be determined how often the Euclidean space must be partitioned until the
diameter of each subspace is at most x∆. If this is the case, there is no subspace

3.5. DESCRIPTION OF THE LOOKUP ALGORITHM 25

that contains 2d or more nodes and thus no subspace has to be divided any
further, with high probability. The Euclidean space must be partitioned i times
so that 1√

2
i ∆ ≤ x√

2
∆. This holds if i := log n+4, and thus logn+4 bits suffice,

since each splitting costs one bit.
Hence, with high probability, the number of hops is at most ⌈ logn+4

b
⌉, for a

specific base b.

�

Figure 3.3: The average number of hops depending on the number of nodes in the

system and the chosen base b is displayed. For each number of nodes n and for each

base b, 10’000 lookups initiated at a random node and searching for a random key

have been performed. The dimension d of the network is 64 in each run.

While the number of hops is already small with high probability, even fewer
hops are required on average. According to simulations, the average number
of hops is lower than ⌈log2b n⌉, if nodes are uniformly distributed. Figure 3.3
depicts the average number of hops required in a network of dimension d = 64,
consisting of up to one million nodes. 10’000 lookups initiated at a random node
and searching for a random key s have been performed for base b = 1, 2, and
4. As long as the number of nodes is lower than 2d = 128, the entire network
is a complete graph in which each node is responsible for the entire ID space,
therefore the number of hops is always 0. The main reason why the average
number of hops is less than ⌈log2b n⌉ is because there are only Θ(n

d
) cliques.

It is worth noting that the distribution of the number of hops required varies
remarkably, depending on the base b, see Figure 3.4. While the distribution
resembles a normal distribution for b = 1, the distribution for b = 4 is one-sided
and a large fraction of all lookups require about the average number of hops.

In Figure 3.5, an example network consisting of 10’000 nodes is displayed.
The nodes that belong to cliques whose IDs have the prefixes 00, 01, 10, and 11
are marked blue, red, yellow, and grey, respectively. The dimension d is 64 and
there are 119 cliques in total. A single lookup with base b = 1 is depicted, in
which a node in the clique with ID 0011001 contacts a node in the clique with

26 CHAPTER 3. SYSTEM OVERVIEW

Figure 3.4: In a network of dimension d = 64 containing 1’000’000 nodes, 10’000

lookups initiated at a random node and searching for a random key s have been

performed for base b = 1 and 4. The distribution of the number of hops required in

those 10’000 lookups is displayed for both cases.

ID 1111100. The lookup path consists of four hops and is merely a factor of
1.472 times longer than the direct path.

Figure 3.5: In this example network of dimension d = 64 and base b = 1, 10’000

nodes are distributed in a two dimensional Euclidean space. The nodes in the cliques

whose IDs have the prefixes 00, 01, 10, and 11 are marked with different colors. A

lookup path consisting of four hops is shown, starting at a node in the clique with ID

0011001 and terminating at a node in the clique with ID 1111100. The total path

is only 1.472 times longer than the direct path.

Since each node has k links to all cliques in its routing table, it is very
likely—this probability depends on the choice of k—that the lookup will reach
the destination, because the request can be forwarded to another node, in case
one node on the path does no longer respond.

So far, we have assumed that all routing entries contain correct information
about the state of the network, which is—even though changes, i.e. MERGE and
SPLIT operations can be performed fast and do not occur often locally—overly

3.5. DESCRIPTION OF THE LOOKUP ALGORITHM 27

optimistic.
For example, it is possible that a clique has just been split and the ith

bit could have been corrected directly, had the node forwarding the request
already learnt about it, resulting in an additional hop. The LOOKUP algorithm,
however, is still correct. More accurate lookups can be achieved by asking for
an update in case the request cannot be forwarded to a clique that reduces the
distance according to the metric δ. The drawback of this approach is that more
messages have to be exchanged and, as a result, searching takes longer. Since
this situation rarely occurs and the LOOKUP algorithm behaves correctly in
each scenario, this matter is not further investigated.

Chapter 4

Fault Tolerance

Replicating data by creating cliques of nodes that all cover the same portion of
the ID space ensures a certain degree of robustness by itself. Even in case of a
correlated failure of d2 nodes, there is at least one node left that can merge with

the previous clique, because each clique consists of more than d
2 nodes. Ensuring

that no data is ever lost is one of the main objectives of any fault-tolerant system.
In the first part of this chapter, we will show that the probability of data loss
is very low, even if communication in the entire network failed for a relatively
long period of time.

Apart from preventing data loss, it is essential to keep up the network struc-
ture, even in the presence of churn. In order to quantify the resilience of eQuus
to churn, it is desirable to derive bounds on the induced message overhead, de-
pending on the number of JOIN and LEAVE events and the size of the network.
This is the subject of the second part of this chapter.

4.1 Communication Failures

Under normal operation, each node refreshes its routing table by regularly re-
questing new lists of k live nodes from each clique stored in its routing table. By
performing this update frequently, the probability that a considerable fraction
of the nodes whose addresses are stored in the routing table are no longer alive
is negligible.

In fact, the probability that any data is lost is even very low in case all
communication ceases for a long period of time. Let λ(p) be the period in
which each node disappears with probability p. For instance, in a network of
dimension d = 64 consisting of one million nodes, the probability that no data
is lost, if no communication occurs in a period of λ(1

2) is higher than 0.99999.
Increasing the number of nodes to one billion, the probability is still higher than
0.99. This holds because an entire clique has to fail before being able to merge
and the probability that any clique fails is less than p

d
2 . The total number of

cliques is lower than 2n
d

and thus the probability that no data is lost is higher

than (1 − p
d
2)

2n
d .

If the life time of nodes and the total number of nodes that will ever par-
ticipate simultaneously can be estimated, the probability of data loss will be
arbitrarily small by setting the update frequency to an appropriate value.

29

30 CHAPTER 4. FAULT TOLERANCE

4.2 Dealing with Churn

eQuus effectively deals with churn, by reducing the number of topology changes
that affect nodes in different cliques. Whenever a node joins or leaves the net-
work, communication is primarily needed between members of the corresponding
clique and no other routing table update is required due to this event. Changes
in the routing tables of various cliques are only required if a clique either splits
or merges with its predecessor. Hence, in order to evaluate the resistance to
churn, it suffices to show that it takes a large number of join and leave events
globally, before any clique either has to split or merge.

In the following, we consider a system in a steady state, where it is equally
probable that the next global event will be either a node joining or a node leaving
the system. After an initial period of growth, the number of nodes that are
simultaneously in the system does not change quickly anymore, because every
node joining is basically compensated by another node leaving the system. We
model this behavior by setting p(JOIN) = p(LEAV E) = 1

2 .

Definition 4.2.1 (Stable Network) A network is said to be in a stable state,
if the probability that the next event is a JOIN event is equal to the probability
that the next event is a LEAVE event, i.e. p(JOIN) = p(LEAV E) = 1

2 .

After a clique split, the two new cliques contain d nodes each, unless the
clique had to split because it had previously merged with another clique, in
which case both cliques could consist of up to 5

4d. The average size of a clique is
evidently in the order of d. In order to simplify the analysis, an idealized form
of our system in which each clique consists of exactly d nodes is considered.

Definition 4.2.2 (Balanced Network) A network is said to be balanced, if
all cliques have size d, where d denotes the dimension of the network.

In a stable and balanced system, many JOIN and LEAVE events have to
occur locally, before a specific clique has to either merge or split. What is more,
only a small fraction of all global operations affect any specific clique, assuming
that those events are uniformly distributed.

The following lemma bounds the expected number of JOIN and LEAVE
events on a single clique, before this clique has to either split or merge.

Lemma 4.2.1 In a stable network, d2

2 JOIN/LEAVE events on a single clique
are required in expectation, before a MERGE or SPLIT operation has to be
performed.

Proof. The clique is split if the number of nodes in it has reached 2d, and
it is merged with another clique if its size has been reduced to d

2 . This can

be interpreted as a random walk starting at position d
2 in the range [0, 3

2d].
Let the random variable Si denote the number of steps that are required until
one of the endpoints of the specified range is reached when starting at position
i. In general it holds that E[Si] = 1 + 1

2 (E[Si−1] + E[Si+1]), thus E[Si+1] =
2(E[Si] − 1) − E[Si−1]. By induction it follows that E[Si] = i(3

2d − i). This
holds for i = 0 and i = 3

2d, because S0 = S 3
2d

= 0. Assuming that it holds for

4.2. DEALING WITH CHURN 31

all values ≤ i, the induction step works as follows.

E[Si+1] = 2(E[Si] − 1) − E[Si−1]

= 2(i(
3

2
d− i) − 1) − (i− 1)(

3

2
d− (i− 1))

= (i+ 1)(
3

2
d− (i+ 1)).

This concludes the inductive proof. Setting the starting point to d
2 , the expected

number of events is E[S d
2
] = d

2 (3
2d− d

2) = d2

2 , and the claim follows.

�

Let N denote the number of cliques in the network and let m denote the
number of JOIN/LEAVE events. The probability that the next event occurs at
any given clique is 1

N
, according to our uniform distribution model. It is essential

to estimate the expected maximum number of JOIN and LEAVE occurring at
any clique.

Lemma 4.2.2 If the network consists of N cliques and m JOIN/LEAVE events
occur, the expected maximum number of JOIN/LEAVE events on any clique is
bounded by O(m

N
+ logN).

Proof. Let the random variable Xi
N (m) denote the number of events occurring

at clique i in a network consisting of N cliques in which m JOIN/LEAVE events
occur. We want to derive a bound for E[max1≤i≤N Xi

N (m)]. It holds that

E[2max1≤i≤N Xi
N (m)] ≤ E[

N
∑

i=1

2X
i
N (m)]

≤ N · E[2X
i
N (m)]

≤ N ·
(m

∑

j=0

2j
(

m

j

) (

1

N

)j (

1 − 1

N

)m−j)

≤ N ·
(m

∑

j=1

(

me

j

)j (

2

N

)j

e−
m−j

N + 1

)

≤ N ·
(m

∑

j=1

(

2me

jN

)j

e−
m−j

N + 1

)

≤ N ·
(m

∑

j=1

e(
2me
jN

−1)je−
m−j

N + 1

)

≤ N ·
(m

∑

j=1

e−j+
2me

N
−m

N
+ j

N + 1

)

≤ N ·
(

e
(2e−1)m

N

m
∑

j=0

e(
1
N

−1)j

)

≤ N ·
(

e
(2e−1)m

N
1

1 − e−
1
2

)

= O(N2O(m
N

))

32 CHAPTER 4. FAULT TOLERANCE

Due to the convexity of expectation it holds that 2E[X] ≤ E[2X] for all random
variables X. Hence it follows that

E[max
1≤i≤N

Xi
N (m)] ≤ log(E[2max1≤i≤N Xi

N (m)]) = O(
m

N
+ logN).

�

Now we are in the position to derive a lower bound for the expected number
of global events before any clique has to either merge or split, depending on the
number of nodes currently in the system.

Theorem 4.2.1 If the number of nodes in a stable and balanced network is n
and the nodes are uniformly distributed, then Ω(n log n) JOIN/LEAVE events
are required in expectation before either a MERGE or SPLIT operation has to
be performed.

Proof. By Lemmas 4.2.1 and 4.2.2, a MERGE or SPLIT operation has to

be performed if d2

2 = O(m
N

+ logN). Therefore, it holds that m = Ω(Nd2 −
N logN). Due to the fact that it is a balanced network, it further holds that
n = Nd. Since d = Ω(log n), we get that

m = Ω(n log n− n

d
log

n

d
) = Ω(n log n).

�

This implies that, in this model, the system’s resilience to churn increases
as the network grows, since the number of cliques increases and most updates
are limited to updates within the cliques.

We can now remove the constraints that the network has to be stable and
balanced and give a more general theorem.

Theorem 4.2.2 If there are n nodes in a network and the nodes are uniformly
distributed, then Ω(n) JOIN/LEAVE events are required in expectation before
either a MERGE or SPLIT operation has to be performed.

Proof. In the general case, only Θ(d) events are required before any clique has
to either merge or split. This holds, since the expected number of nodes in a
clique is Θ(d) and thus Θ(d) nodes have to either join or leave, independent of
the probabilities of those events, before a MERGE or SPLIT operation has to
be performed. It follows that m = Ω(Nd−N logN). Since N = Θ(n

d
), it holds

that
m = Ω(n− n

d
log n+

n

d
log d) = Ω(n).

�

These theorems show that, in expectation, a large number of JOIN and
LEAVE events is required before any relevant topology change occurs. Conse-
quently, in large networks, the permanent joining and leaving can be handled
efficiently. Due to the rare occurrence of those relatively costly operations, it
is simple for the network to update the routing tables in due time and thus
maintain the desired structure.

Chapter 5

Locality

In the first part of this chapter, the locality properties of eQuus are analyzed
formally in the uniform distribution model. The second part presents results of
the system in the same model obtained by simulation. The goal of the formal
analysis is to derive upper bounds on the expected total path lengths and the
expected stretch, while the second part presents results of several simulations
run in order to determine the locality properties in an emulated environment.

We assume in this chapter that the proximity metric is simply the Euclidean
distance, i.e. c(u, v) = ||u − v||2, on the two dimensional Euclidean plane in
which all nodes lie. This assumption is obviously not an optimal approximation
for large networks such as the Internet. However, if the delay is used as the
proximity metric, then our assumption is reasonable, since there is a correlation
between distance and delay [29].

5.1 Formal Analysis of the Locality Properties

Some other DHTs do not consider the problem of having potentially long lookup
paths. In expectation, each hop incurs a delay of ∆

2 , where ∆ denotes the
network diameter, thus the expected path length of a path consisting of h hops
is h

2 ∆. If h is large, these paths can become very long, although the destination
node might be very close to the node initiating the lookup call, see Figure 5.1.
The goal is to guarantee that all paths are only a small factor longer than the
direct paths.

Unfortunately, our JOIN procedure does not yield a good worst-case bound
on the stretch. The following lemma states that the stretch can become very
large in the worst case.

Lemma 5.1.1 If the dimension of the network is d and the base is 1, the stretch
is Ω(2d) in the worst case.

Proof. Let c(v, w) = ∆, where v and w are nodes that belong to the cliques
with IDs 0d and 10d−1, respectively. Let the clique with ID 11d−2 be “in the
middle” between the other two cliques, but slightly closer to the clique with ID
10d−1. Repeating this step, cliques with IDs 1i0d−i can be positioned closer and
closer to the clique with ID 0d, see Figure 5.2.

33

34 CHAPTER 5. LOCALITY

Figure 5.1: Node v initiates a lookup call. Each hop leads to a node that is far away.

Thus, the total path is long, even though the target node w is close to v.

Figure 5.2: In this scenario, the stretch of a lookup path from a node in the clique

with ID 0d to a node in the clique with ID 1d is Ω(2d).

For arbitrarily small epsilon, the stretch of the path from a node in the clique
with ID 0d to a node in the clique with ID 1d is

lim
ǫ→0

∆
∑d−1
i=0 (1

2)i − ǫ
∆

2d−1 + ǫ
=

∆(2 − 1
2d−1)

∆
2d−1

= 2d − 1.

�

The worst-case stretch can be reduced by choosing a larger base. However,
the stretch remains exponential in d in the worst case.

Lemma 5.1.2 If the dimension of the network is d and the base is b, the stretch
is Ω(2d−b) in the worst case.

Proof. We use the same technique as in the previous proof. Let c(v, w) = ∆,
where v and w are nodes that belong to the cliques with IDs 0d and 1b0d−b,
respectively. By continuously positioning a clique with ID 1b+j0d−b−j between
the cliques with IDs 0d and 1b+j−10d−b−j+1, where j ∈ [1, d−b−1], the resulting
stretch of the path from a node in the clique with ID 0d to a node in the clique
with ID 1d is

lim
ǫ→0

∆(2 − 1
2d−b) − ǫ

∆
2d−b + ǫ

= 2d−b+1 − 1.

�

5.1. FORMAL ANALYSIS OF THE LOCALITY PROPERTIES 35

Not only the stretch can be large in the worst case, but also the maximum
path length. In order to show this, the notion of a full clique has to be intro-
duced.

Definition 5.1.1 (Full Clique) A clique c is said to be full, if it contains 2d
nodes and it cannot split anymore, i.e. c.id+ 1 = c.successor.id.

The following lemma states that solely Ω(d2) nodes have to join the network
before any clique is full.

Lemma 5.1.3 At least d2 +2d nodes have to join the network before any clique
can be full.

Proof. As soon as 2d nodes join the clique with ID 0d, it is split into two
cliques with IDs 0d and 10d−1. The clique with ID 10d−1 is split again if d
additional nodes join this clique. Inductively, it follows that after d + 1 steps,
the clique with ID 1d is created. Since d nodes have to join in each step, the
total number of JOIN operations is at least (d+1)d. The cliques with IDs 1d−10
and 1d, respectively contain only d nodes, thus d nodes still have to join either
one of those cliques in order to turn them into full cliques. Thus, in total at
least (d+ 1)d+ d nodes have to join.

�

We can use the fact that each clique has only a limited capacity to prove that
the longest path between any two nodes can be very long in the worst case. In
fact, if the base is 1, there is a joining sequence of nodes such that the maximum
path length between any two nodes is d∆, which is the longest possible path.

Lemma 5.1.4 If the dimension of the network is d and the base is 1, the max-
imum path length is d∆ in the worst case.

Proof. We will construct a worst-case example. After the clique with ID 0d is
split into the cliques with IDs 0d and 10d−1, all cliques with IDs in the range
[0d, 10d−1] are filled. This “filler set” is denoted F1, see Figure 5.3.

If newly arriving nodes close to the clique with ID 0d join the network, they
have to join the clique with ID 10d−1, since all cliques with lower IDs are full.
Thus, if the clique with ID 10d−1 is split, the clique with ID 110d−1 is far away
from the clique with ID 10d−1 and close to the clique with ID 0d, in contrast to
the desired locality property. Repeating this step, we let a second filler set F2

of nodes close to the clique with ID 10d−1 join the network. These nodes fill up
the entire ID space in the range [10d−1, 110d−2]. If newly arriving nodes close
to the clique with ID 10d−1 join the network, they have to join the clique with
ID 110d−2, resulting in a new clique with ID 1110d−3 after a split operation,
which is closer to the clique with ID 10d−1 than to the clique with ID 110d−2,
leading again to a possibly maximum distance according to the proximity metric.
Inductively, in each of the d steps, the distance is ∆, thus the maximum path
length is d∆.

�

36 CHAPTER 5. LOCALITY

Figure 5.3: By using several “filler sets” Fi and forcing a specific joining sequence

of nodes, the locality-aware joining mechanism of the system can be subverted. As

a result, each hop incurs a maximum cost of ∆ in the worst case.

By choosing larger filler sets, this result even holds for arbitrary bases. Note,
however, that this case is not only highly improbable, but also unrealistic for
a large ID space. The first filler set alone consists of d2d nodes, since each
of its 2d−1 cliques has to consist of 2d nodes in order to be full. If only a
relatively moderate fraction of the ID space is ever to be populated, this worst-
case behavior cannot occur. Thus, it is appropriate to study the average case
behavior.

Let ∆(S) denote the diameter of the network consisting of all nodes in the
set S. If node v in clique c performs a lookup for key s, where δ(c.id, s) = i, only
the subset Biv of all nodes u in any clique c̃ for which it holds that δ(c̃.id, s) ≤ i
have to be considered, due to the property of the LOOKUP procedure that the
length of the shared prefix can only increase with each hop. More formally, let V
be the set of all nodes in the network, then Biv := {u ∈ V | u ∈ c̃∧δ(c̃.id, s) ≤ i}.

The following lemmas are used in order to establish our main result. The
first lemma states that the expected diameter of the network consisting of all
nodes in Biv is small if and only if i is small, i.e. the key s and the ID of clique
c that node v belongs to share a long prefix.

Lemma 5.1.5 Let node v in clique c be the node initiating the lookup call for
key s. If δ(c.id, s) = i, then it holds that E[∆(Biv)] ≤ ∆

(
√

2)d−i
.

Proof. After a clique split into two, the area both cliques are responsible
for is only half of the original area in expectation. A clique is responsible for
a certain area if newly arriving nodes in this area send a JOIN message to
a node in this clique. Since the area is halved in expectation, it holds that
the diameter is a factor of

√
2 shorter in expectation. Therefore it holds that

E[∆(Bi−1
v)] = 1√

2
E[∆(Biv)], and due to the fact that ∆(Biv) ≤ ∆ for all v ∈ V ,

the claim follows.

�

For the keys are random, any node in Biv has an equal chance to be the
destination node of the lookup. Due to the uniform distribution of all nodes,
the expected distance to the destination node is half of ∆(Biv).

5.2. SIMULATION OF THE LOCALITY PROPERTIES 37

Lemma 5.1.6 Let v in clique c be the node initiating the lookup call for key s
and let u be the destination node. If δ(c.id, s) = i, then the expected distance

between v and u is
∆(Bi

v)
2 .

These lemmas suffice to prove the following upper bound on the expected
stretch.

Theorem 5.1.1 The expected stretch of lookup calls in eQuus is at most 2
b
2
+1

2
b
2 −1

for a particular base b.

Proof. Let node v in clique c be any node initiating a lookup call for key s,
let u be the destination node of the lookup and let δ(c.id, s) = i. Lemma 5.1.6

states that E[c(v, u) | d(c.id, s) = i] =
∆(Bi

v)
2 . This is true independent of the

base b.
Since b bits are corrected with the first hop to node w in clique c̃, it holds

that δ(c.id, c̃.id) ≤ i − min{b, i} and, according to Lemma 5.1.5, the expected

diameter of Bδ(c̃.id,s)w ⊆ Biv is bounded by 2−
b
2 ∆(Biv).

Inductively, the total path length is therefore at most 1

1−2− b
2
∆(Biv). The

expected stretch is upper bounded by the ratio between the expected maximum
total path length and the expected distance to the destination. Hence, it holds
that

E[Stretch] ≤
1

1−2− b
2
∆(Biv)

∆(Bi
v)

2

=
2

b
2+1

2
b
2 − 1

.

�

Note that the expected total path length between any two nodes is at most
2

b
2

2
b
2 −1

∆ in expectation, independent of the dimension d and the number of hops.

Setting b to a moderately large value will incur an expected stretch of around
2. If b = 4, the expected stretch is already less than 3, which is already a
satisfactory result. In the following section, this result is supplemented and
affirmed by simulation.

5.2 Simulation of the Locality Properties

Various simulations have been run in order to study the locality properties of
the system. In particular, the expected stretch has been analyzed. In Figure 5.4,
the average stretch of lookups in networks of dimension d = 64 with up to one
million nodes are depicted for the bases b = 1, 2 and 4.

10’000 lookups have been performed for each network size and base. Obvi-
ously, the stretch factor is 1 as long as each node has links to nodes in all other
cliques. The stretch slowly increases, as the networks grows because more hops
are needed in order to reach a node in the desired clique. However, the stretch
only grows as long as it is below the constant expected stretch for the given
base, a bound that is seemingly reached at around 1.5 for base b = 4. This is a
much better result than the upper bound of 8

3 on the expected stretch for b = 4
derived in the previous section.

38 CHAPTER 5. LOCALITY

Figure 5.4: The average stretch depending on the number of nodes in the system

and the chosen base b is displayed. For each number of nodes n and for each base

b, 10’000 lookups initiated at a random node and searching for a random key have

been performed. The dimension d of the network is 64 in each run.

In the second simulation, the effect of the dimension d on the stretch has
been tested. Again 10’000 lookups have been performed for each network of size
up to one million nodes for b = 4. The results for dimension d = 32, 64 and 128
are summarized in Figure 5.5. As expected, the stretch does not depend on the
dimension directly. Choosing a large dimension will result in a slightly lower
stretch, mainly due to the lower number of cliques in the network.

The results of these simulations show that the system has good locality
properties, such as a low expected stretch and a low expected total path length.
They further indicate that the analytical results are conservative, since the
simulations yield better results.

5.2. SIMULATION OF THE LOCALITY PROPERTIES 39

Figure 5.5: The average stretch depending on the number of nodes in the system

and the dimension d of the system is displayed. For each number of nodes n and

for each dimension d, 10’000 lookups initiated at a random node and searching for

a random key have been performed. The base b is set to 4 in each simulation.

Chapter 6

DHT Mechanism

Data items can be published and retrieved using a limited amount of messages.
A DHT mechanism specifies how data items are published and retrieved and
also where the necessary information is stored. In this chapter, we will present
a two-phase publishing and retrieval mechanism suitable for eQuus and also for
many other distributed hash tables. A node v of clique c is responsible for a data
item d, if the hash h(d) of the data item lies in the range [c.id, c.successor.id).
Typically, each file shared in the system is hashed using a consistent hash func-
tion such as SHA-1, providing a fairly good load balancing. These hash functions
h further guarantee that it is hard to find two data items d1 and d2, such that
h(d1) = h(d2). Guaranteeing a high degree of collision resistance is desirable,
because each data item ought to have a unique key in the system.

The problem with this approach is that you cannot easily search specific
data elements, unless you know the corresponding hash value. Each data item
typically has a name. If it were possible to search using the name of the desired
data item, then finding it would easier. This could be achieved by hashing the
names and using these hashed names as indices in the hash table. Clearly, this
approach has several drawbacks. First of all, if the name is slightly changed,
then finding the data item is not possible anymore when the old name is used
as the key. Second, even if a data item is found with the desired name, there is
no guarantee that this is the desired data item.

The idea is to combine both approaches, i.e., use both hashed data items
and hashed names in the hash table. In the next section, data items and the
operations performed on those items are defined formally. Subsequently, the
publishing and retrieval of data items using simple key words is presented.

6.1 Definitions of the Hashing Functions

Data items are triples (d, ν, i), where d is the actual data, ν is the name of
the data item and i is meta information about the data item, e.g., the format
or quality. We will use the following set of data items to illustrate both the
publishing and retrieval of data items.

• (d1, 〈τ1, τ2〉, i1)

• (d1, 〈τ1, τ3〉, i2)

41

42 CHAPTER 6. DHT MECHANISM

• (d2, 〈τ1, τ2〉, i3)

• (d3, 〈τ3〉, i4)

• (d3, 〈τ1〉, i5)

Each name ν consists of a sequence of terms or words τi, i.e. ν = 〈τ1,τl〉,
where l is the number of terms in the name ν. Let T be the set of all term
sequences and let γ : T → T be a function that given a name, i.e. a sequence of
terms, as input, returns a globally ordered sequence of the same terms. Due to
this global ordering, permutations of the terms do not have to be considered.
Let F be the set of all data elements d. Furthermore, let H : F → {0, 1}d be
the consistent hash function that maps data elements to bit strings of length d
and let h : T → {0, 1}d be the consistent hash function that maps names to bit
strings of length d. We further generalize the hash function h and the global
ordering function γ, by allowing lists of names as input. The results are simply
the list of all the corresponding hash values and the list of all the corresponding
ordered sequences of terms, respectively: h : [T1, . . . , Tm] → [h(T1), . . . , h(Tm)]
and γ : [T1, . . . , Tm] → [γ(T1), . . . , γ(Tm)]. Using these generalized functions, we
can now easily express the essential function when it comes to indexing data
items in the network. The basic form of the function is Ψ : T → h(γ(2T)), where
2X denotes the power set of X. The idea is that, for each subsequence of the
terms, the γ-function is applied, thus the terms are ordered in each subsequence.
Subsequently, each element of this list of ordered term sequences is hashed,
producing a list of 2|T | hash values. This function has to be modified, since we
do not want this list of hash values to be arbitrarily large. We therefore modify
the γ-function in two ways. First, in the ordered list, all terms that bear little
significance are removed. For example, terms like “a” or “the” can typically
be dropped without losing any information. Second, if after the removal of
insignificant terms the number of terms still exceeds log d, then other terms are
ignored as well, in order to reduce the number of terms to log d. This is not
a serious restriction, since every data element can usually be described using a
few terms only. How the additional terms are removed is not investigated any
further. A simple heuristic would be to take the first log d terms and remove the
last ones, because typically the first few terms contain the essential information
about the data item. Let γ∗ be this modified function. We can then modify our
index function and get

Ψ∗ : T → h(γ∗(2T)).

Note that the resulting list of hash values has a length of at most d − 1, since
the empty sequence is always removed.

6.2 Description of the PUBLISH Algorithm

If a node has a data item (d, ν, i) that has to be inserted in the network, the
following steps are carried out.

First, the hash of the file H(d) is computed. The clique that is responsible
for this bit string is looked up using a SEARCH call with H(d) as its argument.
Once a list of nodes in this clique is obtained, a PUBLISH notification is sent
to such a node, including the hash H(d), ν and i. The node that received this
message verifies if it is really responsible for this data item by checking if the

6.2. DESCRIPTION OF THE PUBLISH ALGORITHM 43

hash value lies between the ID of its own clique and the ID of its successor. If
this is the case, it is checked if there is already an entry for this hash value in
the data hash table. The data hash table contains, for each hash value H(d),
a list of the addresses of all currently active nodes in the system possessing a
copy of the data item (d, ν, i) and also all meta information received for this
data item. For example, assuming there is a clique that is responsible for both
H(d1) and H(d3), its data hash table contains the following entries.

Hash Titles Meta Information Holders

H(d1) 〈τ1, τ2〉, 〈τ1, τ3〉 i1, i2 a1, . . . , ar
H(d3) 〈τ3〉, 〈τ1〉 i4, i5 a1, . . . , as

If there is no entry for this particular hash value, an entry is created. Then,
it is checked if the title ν is already stored under this hash value. If it is not,
the title is added, together with the meta information i. Only if this is a new
title in the data hash table, for a new or an old hash value, the hash values
Ψ∗(ν) of the name ν are computed and the necessary information, i.e. H(d), ν
and i, is forwarded to all other members of the clique, in order for them to
update their data hash tables as well. Otherwise, the clique members only have
to learn that a new holder of the data item d has joined the network. Subse-
quently, for each hash in Ψ∗(ν), an ADD INDEX message is sent to a node in
the clique responsible for the specific hash value, probably after looking it up,
together with the hash H(d) and the name ν. Each node that receives such an
ADD INDEX message also verifies if it is truly responsible for this hash value.
If this is the case, the node checks if there is a table for this hash value in its
name hash table. This table consists of multiple tables, namely one for each
hash value. For each of those tables, the hash value acts as its ID. There is an
entry in such a table for each name ν that contains a subset s whose hash value
h(γ∗(s)) matches the ID of the table and for each such name, the hash values of
the data items bearing this particular name are stored. For example, all nodes
in the clique responsible for h(〈τ1〉) contain the following table.

h(〈τ1〉)
Titles Hashes

〈τ1, τ2〉 H(d1),H(d2)
〈τ1, τ3〉 H(d1)
〈τ1〉 H(d3)

Note that there are both several titles for the same data hash value and several
data hash values for a particular title.

If there is no table for this particular hash value h, a new table with ID h is
created. Afterwards, it is checked whether the name ν is already stored in this
name hash table. If it is not stored, it is added to the table, together with the
hash value H(d). This hash value and the title are also sent to all other nodes
in the clique, thereby ensuring that all name hash tables are kept consistent.
This operation concludes the publishing of a data item.

Figure 6.1 summarizes the whole publishing process. Node v publishes a
data item, by sending a PUBLISH message to the clique responsible for this
data item, which is clique c1 in this case. An update message is sent to all other
nodes in this clique and all other cliques that are responsible for the hashes in

44 CHAPTER 6. DHT MECHANISM

v

c

c

c

c

1

2

3

4

PUBLISH

ADD_INDEX

ADD_INDEX

ADD_INDEX

Figure 6.1: The messages sent in order to publish a data item.

Ψ∗(ν), which are cliques c2, c3 and c4. Within those cliques, this information is
broadcast in order to establish consistency.

6.3 Description of the RETRIEVE Algorithm

When a node wants to retrieve a certain data item, it has to choose an appro-
priate search string σ = 〈τ1, . . . , τp〉, in order to find the desired item.

The functions γ∗ and h are applied to this search string and the clique c
responsible for this hash value is looked up. A node in this clique is queried,
using σ as the argument. A node receiving such a query verifies if it is in-
deed responsible for it, by computing h(γ∗(σ)) and checking if its in the range
[c.id, c.successor.id). After this has been verified, the node returns a list of
all names ν1, . . . , νt such that σ ⊆ νj , i.e. the name νj contains all terms of
the search string σ, for all 1 ≤ j ≤ t and all the data hashes associated with
those names. However, it is more useful to have a list of all hash values and,
for each hash value, a list of all the names associated with this hash value.
The node answering the query can perform this transformation and return the
transformed list straight away or the node issuing the query might transform
the list after receiving it. Either way, the transformation has to be performed,
since the issuing node is primarily interested in obtaining a list of hash values.
The various names associated with a particular hash value is merely a criterion
for the node to determine if it is interested in the corresponding data item.
As a second and arguably more accurate and effective criterion for the quality
of a data item, a node can obtain additional information of a particular data
item, by inquiring all meta information available from any node in the clique
responsible for the hash value of the data item. If the meta information were
already stored in the name hash table, then this lookup would not be necessary.
However, since the meta information is strongly connected to the hash value of
the data item itself and not to the hash of any name the data item might have,
it is reasonable to store this information in the data hash table. What is more,
all nodes that possess a copy of the data item contact the nodes in the clique
that is responsible for the hash of the data item, thus all meta information is
naturally accumulated in the data hash table, which is not true for the name

6.4. FORMAL ANALYSIS OF THE DHT MECHANISM 45

hash table.
If all meta information has been received and the node is interested in ac-

quiring a copy, it will send another request to a node in the clique responsible
for the particular data item. Upon receiving such a request, the node in this
clique will return the list of all addresses of the holders that are currently in the
system. The issuing node can then contact any number of those nodes in order
to initiate the transfer, potentially from many sources at once.

A clear advantage of obtaining a list of several or even all holders as opposed
to solely querying the immediate surroundings in order to find the nearest holder
according to a suitable proximity metric1 is that it is more robust in the sense
that a new request only has to be started if all nodes in the received list have
disappeared. By sending ping messages, it cannot only be controlled which
nodes are still alive, but it also provides a simple way to continuously select the
closest source—or sources—among all live nodes.

5)

c

c

c

1

2

3

v

4

u

c

1)

2)

3)

4)

Figure 6.2: Messages sent in order to retrieve a particular data item.

Figure 6.2 depicts the process of finding nodes that possess a copy of the
desired data item. In the first step, node u sends its search string σ to a node in
the clique responsible for this search string, which is clique c3 in this example.
Upon receiving a list of all hashes in the second message, node u sends a message
to a node in clique c1 in order to obtain a list of all the nodes that own a copy
of the data item. After receiving this list, node u can obtain a copy, e.g. by
requesting a transfer from node v, which is a holder of the desired data item.

6.4 Formal Analysis of the DHT Mechanism

A pivotal concern of any publishing and retrieval mechanism of a DHT is the
load balancing among all participating nodes in the system. The assignment of
nodes to cliques in eQuus ensures that no node is responsible for much more
data items than any other node. The following theorem states that the amount
of data each node is responsible for is only a logarithmic factor larger than in
the optimal case, with high probability.

1Other systems do so, mainly in order to ensure good locality properties such as a low
stretch.

46 CHAPTER 6. DHT MECHANISM

Theorem 6.4.1 If all n nodes are uniformly distributed in a network of dimen-
sion d, each node is responsible for O(D d log n

n
) data elements w.h.p.

Proof. The probability that a fraction ξ of the ID space is not divided by
N cliques is clearly (1 − ξ)N . Thus the probability that a fraction 2−i is not

divided by q2i lnN cliques is (1 − 2−i)q2
i lnN < e−q lnN = N−q. By setting

i := log(N
q logN), we get that the probability that a fraction q lnN

N
is not divided

by N cliques is less than N−q. There are at most N such fractions, thus the
probability that any of them is not divided is less than N · N−q = N−q+1.

By choosing q ≥ 3, such that n > (2d)
q−1
q−2 , it follows that N−q+1 < 1

n
, since

N > n
2d . Because N = Θ(n

d
), it follows that each node has to store at most a

fraction of O(D d logn
n

) of all D data elements.

�

Guaranteeing that both the publishing and retrieval of data items can be
accomplished fast is another objective of a DHT mechanism. In particular, the
time and message complexities of both the PUBLISH and RETRIEVE operation
are of interest. The following theorem summarizes the results for the PUBLISH
operation.

Theorem 6.4.2 If all n nodes are uniformly distributed in a network of dimen-
sion d and base b, The publishing of a data item has O(log2b n) time and O(d2)
message complexity w.h.p.

Proof. First, we will proof that the message complexity is O(d2). After routing
to the clique responsible for the data item, which requires O(log2b n) messages
w.h.p. according to Theorem 3.5.2, another O(d) messages are required in order
to broadcast this information within the clique. Apart from that, indexing
messages have to be sent to at most d − 1 cliques that are responsible for the
indexing. Each of those lookups requires O(log2b n) messages w.h.p. In each
of those up to d − 1 cliques, this indexing information has to be broadcast,
which requires O(d) messages in each clique. In total, the message complexity
is O(log2b n) + O(d) + (d− 1) · O(log2b n) + (d− 1) · O(d) = O(d2). This holds
due to the fact that d is much larger than log2b n for all reasonable values n.
Routing to the clique that is responsible for the data item takes O(log2b n) time
w.h.p. Broadcasting the information within the clique can be achieved in O(1)
time. Sending the indexing messages in parallel to all up to d − 1 cliques that
are responsible for the indexing requires O(log2b n) time w.h.p. Broadcasting
within those cliques requires again only constant time, thus the overall time
complexity is O(log2b n) + O(1) + O(log2b n) + O(1) = O(log2b n) w.h.p.

�

The RETRIEVE operation has even better complexities. For the sake of
completion, we will state and proof the following theorem.

Theorem 6.4.3 If all n nodes are uniformly distributed in a network of dimen-
sion d and base b, the retrieval of a data item has O(log2b n) time and O(log2b n)
message complexity w.h.p.

6.4. FORMAL ANALYSIS OF THE DHT MECHANISM 47

Proof. In order to find the clique that is responsible for the hash value of the
search string, O(log2b n) messages are required w.h.p. This lookup also requires
O(log2b n) time. Once the necessary hashes are obtained, the clique responsible
for the chosen hash value can be found requiring again O(log2b n) messages
in O(log2b n) time w.h.p. At this point, the addresses of all holders can be
obtained directly, thus both the time and message complexities are O(log2b n)+
O(log2b n) + O(1) = O(log2b n) w.h.p.

�

Chapter 7

Outlook

While several essential aspects have been studied, some other important criteria
still need to be considered. In the following sections, a variety of additional
problems is presented. Section 7.1 deals with the issue of achieving an expedient
assignment of nodes to cliques, thereby ensuring short lookup paths and a good
load balancing. In Section 7.2, security problems in p2p systems are addressed.
Lastly, Section 7.3 touches upon the subject of guaranteeing fair access to data
items for all participating nodes. The goal is to design a scheme in which it is
impossible or at least undesirable for any node to act selfishly.

7.1 ID assignment

Theorem 6.4.1 states that the load is balanced quite well among all nodes, if
the nodes are uniformly distributed. The uniform distribution of nodes further
ensures that, with high probability, lookup paths consist of at most ⌈log2b n⌉+
o(1) hops, according to Theorem 3.5.2.

The question is how a good ID assignment can be enforced such that the load
is spread roughly equally among all nodes and the maximum number of hops
remains low, even if the true node distribution does not bear any resemblance to
a uniform distribution. One approach to solve this problem is to derive results
for a more general class of node distributions. An often used assumption about
the network density is the following. If there are κ nodes at a distance of at
most r from any node v, then there are at most κ times a constant nodes within
a radius of 2r. Such a network is said to be growth-bounded.

Definition 7.1.1 (Γ-Growth-Bounded) A network is Γ-growth-bounded for
a constant Γ > 1, if for all nodes v and radiuses r > 0 such that |Bv(r)| > 0, it
holds that |Bv(2r)| ≤ Γ|Bv(r)|.

Unfortunately, no acceptable worst-case bound can be derived in this model.
On the contrary, it can be shown that a vast imbalance can be caused by a certain
joining sequence of nodes, without violating the growth-bounded property.

Lemma 7.1.1 If the minimum distance between any two nodes is 1, there is a
joining sequence in a growth-bounded network such that the cliques whose IDs
start with 1 are responsible for O(Γlog ∆) times more data items than the cliques
whose IDs start with 0.

49

50 CHAPTER 7. OUTLOOK

Proof. Let the first 2d nodes in the system be close to each other, such that
after the clique split, the distance between the cliques with IDs 0d and 10d−1 is
around 1. The next batch of nodes joins at a distance of 2 to the clique with
ID 0d and distance 1 to the clique with ID 10d−1. There can be up to Γ more
cliques at distance 2. In general, approximately Γi cliques can join the system
at a distance of 2i to the clique with ID 0d in the ith step. After log ∆ times,
the maximum diameter is reached. All those nodes join a clique whose ID has
the prefix 1, thus there are O(Γlog ∆) times more cliques whose IDs bear the
prefix 1.

�

It is easy to see that there are also worst-case joining sequences in growth-
bounded networks that lead to a large number of bits required to identify all
cliques and thus resulting in lookup paths consisting of a potentially large num-
ber of hops. Of course, such joining sequences are improbable and will not occur
in any real network. Therefore, the result does not measure the quality of the
joining mechanism accurately.

Instead of trying to find likely node distributions for which it can be shown
that the load is balanced with high probability, it is worthwhile to modify and
extend the protocols in such a way that the desired properties hold indepen-
dently of the node distribution. These load balancing mechanisms have to op-
erate given the limited knowledge of any node in the system alone. Similar to
the load balancing mechanism described in [20], in eQuus a clique can request
the size of its predecessor and successor clique and use this knowledge in order
to decide if some of its nodes have to migrate to one of those two cliques. Nat-
urally, the clique with the lowest ID cannot send nodes to its predecessor clique
and the clique with the highest ID cannot deliver nodes to its successor clique,
since these cliques are potentially far apart. Ideally, the number of nodes in a
clique is proportional to the size of the fraction of the ID space it is responsible
for. This means that a clique that is responsible for twice as much data items
than his predecessor clique ought to contain approximately twice as many nodes
in order to increase the changes of splitting and thereby halving its fraction of
the ID space.

In expectation, such a mechanism would obviously improve load balancing
for any node distribution. It is, however, not easy to devise a simple, local load
balancing scheme that provides good worst-case bounds. Moreover, this scheme
has to cope with the permanent joining and leaving of nodes. This entails that
the protocol has to react quickly, but without causing a large message overhead.

7.2 Security

We have shown in Section 4.1 that permanent node failures can be handled
efficiently in eQuus. The system is inherently resistant to correlated failures,
because there are always more than d

2 nodes in each clique. In case a much
larger number of nodes fail, possibly due to a power outage, data loss cannot be
avoided. This problem can again be tackled by extending the basic protocols.

The system can protect itself against correlated failures through backup
cliques. The entire data table of any clique c is replicated on another clique
c̃, its backup clique. The clique c̃ should be far away from c and it should be

7.3. FAIRNESS 51

clear for all other cliques which clique acts as a backup for any other clique. This
can be accomplished e.g. by choosing c̃ such that c.id ⊕ 10d−1 ≈ c̃. There has
to be an additional sophisticated protocol that initiates the mending of the ring
structure once a certain fraction of cliques has failed. All the data tables have
to be copied from the backup cliques to the cliques that are now responsible for
these data items, once the ring structure has been reestablished.

Nodes that do not adhere to the protocols are another threat to the system.
Such a mischievous node could pretend to belong to any clique, neglect its task
to store certain information or refrain from forwarding requests etc. A node
could ask other clique members whether a suspected node really belongs to this
clique, thus there has to be a certain trust in the cliques. Since nodes in a clique
are close-by, it is possible that an entire clique is dishonest. As in other p2p
systems where potentially misbehaving nodes are ignored, the same can be done
with cliques in eQuus. However, it is not clear what is supposed to happen to
good nodes that belong to such evil cliques.

Another concern is the JOIN algorithm. It has to be guaranteed that a node
joins the closest clique, otherwise the locality properties will be impaired. A
mischievous node could pretend to have measured the distance to other cliques
or fake those measurements in order to join its desired clique. It is not clear to
what extend this behavior can be prevented.

Controlled attacks against the system pose another major security risk for
any p2p system. A simple approach to circumvent a Sybil Attack [6] would
be to limit the number of nodes in the system with the same IP address. In
order to launch an attack, many computers would be needed in this case. The
number of nodes in the system that share the same IP address can be found by
hashing the IP address using a consistent hash function and asking the clique
that is responsible for this bit string. Thus, cliques would further have to store
information about the IP addresses of nodes in their data tables. There are many
other attacks that can be launched against a p2p system. Specific algorithms
have to be designed that allow for both a quick detection of such attacks and
an effective recovery from them, before the system becomes unable to function.

7.3 Fairness

In p2p systems, nodes downloading data items from other nodes but without
offering any data items themselves are often referred to as free riders. Free riding
is a prevalent, undesirable phenomena in today’s p2p networks. Studies have
shown that a small fraction of peers in the Gnutella network [10] actually provide
data items, while most peers are only consumers [3, 24]. Several proposals on
how this problem can be tackled and a certain kind of “fair trading” can be
established have been published in the last few years.

One particular approach is to introduce a currency in the system. In the
economic framework for p2p resource sharing called KARMA [26], each down-
load costs a certain fee which the node downloading this data item or chunk
of a data item has to pay. By means of digital signatures, it is verified that
the node has actually uploaded the chunk and that it got paid by the node
that downloaded it. A set of nodes, denoted the bank-set, is responsible for the
transactions of a certain node. This approach has several drawbacks. Since it
has to be proved that the transactions were successful and that the accounts of

52 CHAPTER 7. OUTLOOK

the nodes involved have been updated correctly, the message overhead is quite
large. Moreover, the system suffers from inflation and deflation, because nodes
are joining and leaving quickly, thereby adding to or subtracting from the total
amount of credits in the system. A global operation is required to compensate
for this effect.

Another intuitive approach is the use of reputations. In EigenRep [12], each
node has a reputation depending on how all other nodes rate it. Among those
other nodes, the ratings of those nodes that have a good reputation themselves
outweigh the rating of the nodes that have a low rating. While this approach
is much simpler as it does not require complex transactions, it also has some
considerable drawbacks. In order to compute each node’s reputation, the left
principal eigenvector of the matrix consisting of the ratings of each node about
all other nodes has to be computed in a distributed and iterative fashion. This
operation has to be performed quickly, because it ought to be repeated regu-
larly in order to include new nodes in the computations and avoid outdated
reputations in the system.

The question is whether there are simpler methods to reduce free riding
without elaborate transactions and global computation-heavy operations. One
idea is to continuously reward the nodes that have uploaded the most. In a
certain period of time, each node selects one node that has uploaded the most
and sends a reward notification to the clique that is responsible for the gratifi-
cation of this node, e.g. the clique that is responsible for a hash of the node’s IP
address. A node uploads to nodes that have recently received the most rewards
among all nodes requesting data items from this node. An advantage of this
approach is that nodes cannot harm one another. They can merely benefit from
uploading and thereby collecting rewards. The drawback of this simple method
is that colluding nodes might reward each other without providing anything to
the system in reality. It is desirable to find a simple and effective scheme that
reduces the occurrence of free riding remarkably without providing a basis for
collusion.

Chapter 8

Conclusion

We presented a novel p2p system, called eQuus, that inherently exhibits a strong
resilience to churn and peer failures. Moreover, the maintenance overhead is
relatively low. Most communication triggered by the maintenance protocols is
local in nature, thus maintenance operations can be performed quickly and not
much wide-area traffic is induced. Each peer stores O(log n) links and keyed
lookup requires O(log n) messages. eQuus further has good locality properties,
such as a low expected stretch. It is therefore a suitable network overlay for
large and highly dynamic networks.

While important factors such as fault tolerance and locality are considered,
the system can still be augmented in various ways. When considering deliberate
attacks on the network, the appearance or disappearance of a large number of
peers in a short time span becomes realistic and appropriate actions need to be
taken. While attacks can be launched against any p2p system, other security
threats mainly pertain to eQuus, e.g. it is easier to spoof the own ID by claiming
to belong to a different clique, since IDs in eQuus are not associated with IP
addresses in a fraud resistant manner.

A comparison between several p2p systems as far as the message overhead
is concerned—in an environment with high and low dynamics—would give ad-
ditional insights. These are interesting and challenging directions for future
research.

53

Bibliography

[1] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron. Practical Locality-
Awareness for Large Scale Information Sharing. In Proc. 4th Int. Workshop on Peer-To-
Peer Systems (IPTPS), 2005.

[2] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + ε) Locality-Aware
Networks for DHTs. In Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 550–559, 2004.

[3] E. Adar and B. A. Huberman. Free Riding on Gnutella. First Monday, 2000.

[4] J. Aspnes and G. Shah. Skip Graphs. In Proc. 14th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 384–393, 2003.

[5] B. Awerbuch and C. Scheideler. The Hyperring: A Low-Congestion Deterministic Data
Structure for Distributed Environments. In Proc. 15th Ann. ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 318–327, 2004.

[6] J. R. Douceur. The sybil attack. In Proc. 1st Int. Workshop on Peer-to-Peer Systems
(IPTPS), pages 251–260, 2002.

[7] eDonkey. www.edonkey2000.com.

[8] eMule. www.emule-project.org.

[9] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Addressable Networks.
In Proc. 13th Symp. on Discrete Algorithms (SODA), 2002.

[10] Gnutella. www.gnutella.com.

[11] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A
Scalable Overlay Network with Practical Locality Properties. In Proc. 4th USENIX
Symp. on Internet Technologies and Systems (USITS), 2003.

[12] S. Kamvar, M. Schlosser, and H. Garcia-Molina. Eigenrep: Reputation Management in
P2P Networks. In Proc. 12th International World Wide Web Conference (WWW 2003),
2003.

[13] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An Architecture for Global-
scale Persistent Storage. In Proc. of ACM ASPLOS, 2000.

[14] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing Peer-to-Peer System Resilient
to Dynamic Adversarial Churn. In Proc. 4th Int. Workshop on Peer-to-Peer Systems
(IPTPS), 2005.

[15] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology Maintenance. In
Proc. 18th Ann. Conference on Distributed Computing (DISC), 2004.

[16] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In Proc. 21st Ann. Symp. on Principles of Distributed Computing
(PODC), pages 183–192, 2002.

[17] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system based
on the XOR metric. In Proc. 1st Int. Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[18] Napster. www.napster.com.

[19] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of Replicated
Objects in a Distributed Environment. In Proc. 9th Ann. ACM Symp. on Parallel
Algorithms and Architectures (SPAA), pages 311–320, 1997.

55

56 BIBLIOGRAPHY

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content
Addressable Network. In Proc. of ACM SIGCOMM 2001, 2001.

[21] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In Proc.
USENIX Ann. Technical Conference, 2004.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and
Routing for Large-Scale Peer-to-Peer Systems. In Proc. 18th IFIP/ACM Int. Conference
on Distributed Systems Platforms (MiddlewareS), 2001.

[23] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically Fault-Tolerant Content
Addressable Networks. In Proc. 1st Int. Workshop on Peer-to-Peer Systems (IPTPS),
2002.

[24] S. Saroiu, P. Gummadi, and S. Gribble. A Measurement study of Peer-to-Peer File
Sharing Systems. In Proc. SPIE Multimedia Computing and Networking (MMCN2002),
2002.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. In Proc. ACM SIGCOMM
Conference, 2001.

[26] V. Vishnumurthy, S. Chandrakumar, and E. Sirer. KARMA: A Secure Economic Frame-
work for Peer-to-Peer Resource Sharing. In Proc. 1st Workshop on Economics of Peer-
to-Peer Systems (P2PECON), 2003.

[27] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay Network. In Proc. 1st
Workshop on Hot Topics in Networks (HotNets-I), Princeton, NJ, USA, 2002.

[28] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A
Resilient Global-scale Overlay for Service Deployment. IEEE Journal on Selected Areas
in Communications, 22(1), 2004.

[29] A. Ziviani, S. Fdida, J. F. de Rezende, and O. C. M. B. Duarte. Toward a measurement-
based geographic location service. In Proc. of the Passive and Active Measurement
Workshop (PAM), Lecture Notes in Computer Science (LNCS) 3015, pages 43–52, An-
tibes Juan-les-Pins, France, 2004.

