
Scalable Localized Histogram Aggregation for

P2P MMOGs

Master Thesis

Patrice Müller

patrice@student.ethz.ch

Prof. Roger Wattenhofer

Distributed Computing Group

ETH Zurich

Switzerland

wattenhofer@tik.ee.ethz.ch

Prof. Junehwa Song

Network Computing Laboratory

Division of Computer Science

KAIST

Republic of Korea

junesong@cs.kaist.ac.kr

July 8, 2005

Abstract

Overview maps are a highly demanded feature in Massively Multi-

player Online Games. Current server-based techniques will be replaced

by distributed networks due to scalability and investment costs. In a P2P

MMOG it is more complex to calculate a local histogram map for every

player in the virtual environment than with a centralized approach. In

this work a process is proposed which aggregates local information to a

2-dimensional histogram for all players. The aggregation performs on a

dynamic Delaunay triangulation network with compass routing in a clus-

tered virtual space. It is shown that the aggregation is consistent and the

Delaunay triangulation can be maintained with the proposed dislocation

limitation algorithm. Furthermore, it was mathematically proved that the

localized histogram aggregation process is asymptotically average optimal

in message complexity.

1

CONTENTS 2

Contents

1 Introduction 5
1.1 Background . 5

1.1.1 Massively multiplayer online games 6
1.1.2 Peer to peer . 7

1.2 Idea . 8
1.2.1 MMOGs using P2P technology 8
1.2.2 Localized histogram aggregation in distributed virtual space 9

1.3 Applications . 9
1.3.1 Neighborhood map . 9
1.3.2 Exceptional neighbors . 10
1.3.3 Ranking system . 11

2 Related work 11
2.1 Aggregation algorithms . 11

2.1.1 Tree based . 12
2.1.2 Epidemic dissemination 12
2.1.3 Hierarchical gossiping aggregation 13
2.1.4 Hypercube . 13

2.2 Overlay networks . 14
2.2.1 Supernodes . 14
2.2.2 Distributed Hash Tables 15
2.2.3 Virtual environment overlays 15

3 Aggregation 16
3.1 Taxonomy of aggregates . 17

3.1.1 Distributive . 17
3.1.2 Algebraic . 17
3.1.3 Unique . 18
3.1.4 Content-sensitive . 18
3.1.5 Holistic . 19

3.2 Area of interest . 19
3.2.1 Global . 19
3.2.2 Regional . 20
3.2.3 Localized . 20

4 Geometric graphs and networks 21
4.1 Planar graphs . 21

4.1.1 Closest Pair (CP) . 21
4.1.2 Nearest Neighbor Graph (NNG) 21
4.1.3 Minimal Spanning Tree (MST) 21
4.1.4 Relative Neighborhood Graph (RNG) 22
4.1.5 Gabriel Graph (GG) . 23
4.1.6 Delaunay Triangulation (DT) 23
4.1.7 Hierarchical relation among planar graphs 24

4.2 Routing in geometric networks 25
4.2.1 Compass (CMP) . 25
4.2.2 Random Compass (RCMP) 26
4.2.3 Greedy (GRDY) . 26

CONTENTS 3

4.2.4 Greedy Compass (GCMP) 26
4.2.5 Most Forwarding (MF) 27
4.2.6 Nearest Neighbor (NN) 27
4.2.7 Farthest Neighbor (FN) 27
4.2.8 Right Hand Rule (RHR) 28

5 Static localized histogram aggregation 28
5.1 Overview . 28

5.1.1 Clustered virtual space . 28
5.1.2 Independent cluster aggregation 29
5.1.3 Broadcast aggregation . 30

5.2 Routing . 30
5.2.1 Spanning tree on Delaunay triangulation 30
5.2.2 Routing to static node . 31
5.2.3 Routing to geometric location 32
5.2.4 Routing distance . 33

6 Dynamic localized histogram aggregation 34
6.1 Parent changes . 35

6.1.1 Another parent . 35
6.1.2 Parent-child link dropped 36
6.1.3 Parent-neighbor link dropped 36

6.2 Waiting Rules . 36
6.2.1 Functionality of rules . 36
6.2.2 Implementation of rules 38
6.2.3 Non-blocking aggregation 38

7 Dynamic Delaunay triangulation maintenance 38
7.1 Requirements for dynamic aggregation 39

7.1.1 Flips only . 39
7.1.2 No overlapping �ips . 40

7.2 Degenerated cases . 40
7.2.1 Collinearity . 40
7.2.2 Cocircularity . 41

7.3 Local Delaunay violation detection 41
7.3.1 Adjacent empty-circle properties 42
7.3.2 Local detection of empty-circle violations 42

7.4 DeDiLi: Delaunay Dislocation Limitation algorithm 43
7.5 Algorithm analysis . 45

7.5.1 Requirements ful�llment 45
7.5.2 Worst case analysis of edge �ip 45

8 Analysis of message complexity 46
8.1 Straight forward aggregation . 47
8.2 In network aggregation . 48
8.3 Clustered aggregation . 48
8.4 Comparing algorithms . 49

9 Conclusion 50

10 Future work 51

LIST OF FIGURES 4

List of Figures

1 Neighborhood map of local virtual space 10
2 Areas of interest . 20
3 Planar graphs . 22
4 Local properties of planar graphs 23
5 Max-min angle property of Delaunay triangulation 24
6 Localized routing techniques . 25
7 Aggregation process overview . 29
8 Spanning tree on Delaunay triangulation 31
9 Geometric routing on Delaunay triangulation 32
10 No circling guarantee . 34
11 Parent changes on �ips in DT . 35
12 Triangle types . 37
13 Flip properties of Delaunay triangles 39
14 Degenerated cases in DT . 40
15 Adjacent empty-circles . 42
16 Recursive timely violation requirement 43
17 Worst case quadrilateral �ip . 46

1 INTRODUCTION 5

1 Introduction

At the early ages of computers they were mainly used for academic purposes
to perform scienti�c calculations. As those universal calculators became fast,
smaller and more a�ordable people started to use them more widely. Nowadays
almost any business fully depends on PCs. Besides using personal computers
only at work people also started to use them for their own enjoyment. Computer
games developed at an early stage and improved their quality of animation and
realism tremendously.

Computers started to be interconnected through the World Wide Web where
they could exchange messages mutually. Multiplayer games emerged where more
than one player interacts in the same virtual environment. Two or more players
can interact with each other by exchanging useful information during the course
of action among the programs connected. Here our notion of how these games
are connected with each other is rather ambiguous. There are many di�erent
approaches on how these players are connected. In any case a certain prede�ned
topology is necessary such that two or more players can communicate with
each other e�ciently. As we are dealing with games where online interaction is
very important the e�ciency aspect of communication is crucial. Once a user
interaction is taken by one player which a�ects other players, those players need
to be aware of this fact as soon as possible. Depending on the gender of game
the meaning of as soon as possible can vary but to avoid out-of-date information
the sooner is always the better.

In the following parts of this introduction we show the background of Mas-
sively Multiplayer Online Games MMOGs and the Peer to Peer P2P topology
approach. Then we formulate our idea of aggregating information of players in a
local area where the players are connected in a P2P topology. We also mention
the idea of clustering the virtual space wherein the players move around and
how aggregations can be reused among nodes. These ideas will then be further
developed and focused on in the main part of this report. As a last part of this
introduction several examples of possible future applications in P2P MMOGs
are presented to give an idea about what could be done with the results of this
research.

1.1 Background

Before we can start to describe our idea and solution approach we need to have
a general understanding of massively multiplayer online games as well as the
peer to peer characteristics. First we should understand in more detail what
MMOGs are. In the following subsections a de�nition of MMOG is given. The
current server-based technique with its limitations is shown and we do a simple
cost analysis. Then a selected list of popular MMOGs with their number of
subscribed users is presented.

In the second subsection we look at the peer to peer characteristics. We
discuss the scalability of P2P systems and why this approach can be very useful.
The required topology construction and maintenance is indicated and we would
also like to put a viewpoint on the investment and maintenance costs for P2P
systems versus server-based systems. At the end some widely used applications
using a P2P approach are listed.

1 INTRODUCTION 6

1.1.1 Massively multiplayer online games

1.1.1.1 De�nition Until now we have used the term MMOG referring to
Massively Multiplayer Online Games but no de�nition about what it is was
given. The following quotation is a de�nition by the internet community.

A massively multiplayer online game (MMOG) is a type of com-
puter game that enables hundreds or thousands of players to si-
multaneously interact in a game world they are connected to via
the Internet. Typically this kind of game is played in an online,
multiplayer-only persistent world.1

There are three main points in this de�nition giving a detailed description

• Hundreds or thousands of players: Very many players need to be involved
in the game concurrently. Meridian 59, which is considered to be the Ne-
anderthal game of MMOGs, launched in 1996 and registered a maximum
of 3000 players distributed on 12 servers.2

• Over the internet: To interact with the game environment all the commu-
nication necessary needs to be transmitted over the internet. In that sense
every player has the same possibilities to connect to a dedicated server(s)
or directly to other players.

• Persistent world: It is the virtual fantasy world used for online role-playing
games. All events therein happen persistently. Even when some of the
players are not online the world continues to live and changes can occur.
When a player is online then it can in�uence and change the persistent
world.

1.1.1.2 Current technique To our knowledge all current running imple-
mentations of MMOGs use a server-based approach. In such an environment all
players act within one persistent world which is managed by a central server.
Actions taken by players are sent by internet to the central server. There all
events are gathered and the fantasy world is updated according to the games'
objective. Afterwards the outcome is returned to all individual players where
the local updates can be performed. At any time very numerous players may
be involved in the game. This is exactly the idea of MMOGs but can cause
a problem on the server side. In practice many central servers are intercon-
nected in a cluster to provide the required computation speed and bandwidth
for communication.

1.1.1.3 Limitations To have an idea about how many clients can be han-
dled by one server we reference the keynote speech of Bill Gates at WinHEC
2005. During the presentation of the 64-bit software architecture he mentioned
that today's MSN messenger3 servers are capable of accepting 60'000 connec-
tions each. Instant messaging only forwards IP packages from the sender to
the receiver. MMOGs have much higher requirements on their servers as events

1De�nition of MMOG from http://en.wikipedia.org/wiki/MMOG.
2Historical information from http://archive.gamespy.com/amdmmog
3An instant messaging program of Microsoft Corporation.

1 INTRODUCTION 7

are processed on the central servers and in general communication frequency is
much higher than for instant messaging. It is easy to see that when a very high
number of players want to play together that a big and more importantly an
extremely expensive cluster of servers is required.

1.1.1.4 Cost analysis A company projecting a new MMOG is faced with
high development costs for programming and high investments for the central
cluster. Even after the launch of the developed game maintenance costs apply.
This causes a cerain market entrance barrier to �nancially weak companies. To
cover the initial investments and the maintenance costs companies most likely
want their players to subscribe to a service fee. We will see in the peer to peer
approach that these problems are much smaller or even disappear.

1.1.1.5 Popular MMOGs and its number of users As we already men-
tioned Meridian 59 can be considered as the �rst MMOG. Thereafter various
games were realized and caught on wide public especially in Korea, Taiwan and
Japan. Some of the top names in MMOGs include EverQuest, Lineage, Lin-
eage II, Ultima Online, World of Warcraft. Lineage reached a total number of
subscribers over 1 million already at the beginning of 2000 and its climax was
above 3 million subscribers in 2003. Nowadays more and more MMOGs push
into the market but in May 2005 Lineage and Lineage II together still came
up with almost 50% of market share of subscribers to MMOGs. For further
information we would like to reference to [1, 2].

1.1.2 Peer to peer

1.1.2.1 No central server Whenever the term P2P is mentioned it refers
to a virtual network connecting computers without the use of a central server.
In this model every computer or also called node is both a client as well as a
server. The nodes maintain their virtual network themselves. Links are updated
as required by joining, leaving or possibly for moving nodes. As no central server
is required the network can be scalable to the number of users. With more
nodes joining the network the total computation power also increases linearly.
In addition a P2P network does not su�er from a bandwidth bottleneck as every
node is responsible for its own connection and practical P2P networks will only
cause a small overhead to maintain the topology.

1.1.2.2 Topology control With the absence of a central server messages
cannot be sent directly from the source to the target in general. Otherwise
every node would require global view which is already unfeasible with a fairly
small number of nodes. A logical topology among the nodes must be maintained
which forms the virtual network. Over this network all nodes are interconnected
by multiple hops. A suitable routing algorithm ensures a correct path from the
source to the target for exchange messages. At any time individual nodes may
leave the network or get disconnected. Therefore, a P2P topology must be able
to perform correctly even with failing nodes and be able to recover up to a
certain degree of failing nodes.

1 INTRODUCTION 8

1.1.2.3 Cost analysis A peer to peer network needs to be decentralized and
self-managed. This means that there are no or very minimal investment costs
necessary for maintaining such a network. People using the network basically
provide their own computation power and bandwidth. For P2P there are no
such market entrance barriers as exist for current MMOGs. It is also possible
for capitally weak companies or groups to provide some application as long as
they come up with the implementation.

1.1.2.4 Popular application P2P protocols have been around since the
beginning of the internet. The BGP protocol for IP address routing let the
internet community grow so seamlessly as it is decentralized, scalable and fault
tolerant. However, P2P applications for public use started many years later as
music �le sharing became popular. Until now �le sharing has remained the most
popular application of the P2P technology but much more can be realized in a
distributed manner. Within the last few months the internet telephone appli-
cation Skype [4] started to attract a very wide public. By using a proprietary
P2P network it achieves free internet calls with very good sound quality. Until
May 2005 it reached almost 3 million4 concurrent online users.

1.2 Idea

The provided background gives a good overview of MMOGs and P2P networks.
Today's server-based technique for online games is not scalable to the number
of users and involves a market entrance barrier to low capital companies. These
existing problems could be solved by taking MMOGs one step further in their
development and implementing them on top of a peer to peer environment. We
will further describe this idea in the �rst subsection. In the second subsection
we describe the main idea of this work about localized histogram aggregations
in a distributed virtual space.

1.2.1 MMOGs using P2P technology

We believe that the only way to keep up with the fast growing number of
online gamers and the increasing bandwidth requirements due to more complex
games can only be achieved by using a peer to peer approach in the future.
Every game needs some sort of virtual space where individual players can move
around. Since computers will be connected in a P2P network this virtual space
is distributed and every player is located at one position therein. Players shall
be able to move around as the game goes on and they shall also be able to
communicate with their local neighborhood in the virtual space. For most
MMOGs it will be su�cient to have a local view as the players can act where
they are located. After moving to another location they will be capable of acting
in that environment with other players as their neighbors. In subsection 4.1.6
we list the properties of a Delaunay triangulation and in section 7 we present
an algorithm to maintain the triangulation among moving nodes. This will be
the basis for our 2-dimensional virtual environment overlay network.

4Number registered from within a running Skype application.

1 INTRODUCTION 9

1.2.2 Localized histogram aggregation in distributed virtual space

We have mentioned that players in a MMOG can interact with their neighbor-
hood however there is one particular functionality that is required by almost
any multi-user game. Players want to collect information from other players.
Since those players interact with each other online they also want to know more
details about other players. However in a MMOG there can be a huge amount
of players located in a small area of interest. In this case detailed information
about every individual player can result in an information over�ow easily. Hu-
mans cannot interpret too much information at a time and during a game the
players just want to know and see relevant information.

To overcome the problem of information over�ow the general technique of
aggregation can be applied. For a detailed description about aggregates and
their properties we would like to refer to section 3. Now we further explain the
idea of aggregates in the virtual space of MMOGs. In our model every player of
the game is located at a particular position in the 2-dimensional virtual environ-
ment. Once a player would like to know more details about its local surrounding
it would be convenient to have some localized aggregation mechanism at hand
which can be applied to this distributed 2-dimensional virtual world. A player
may be interested in a simple aggregation value for its local surrounding but it
may also be interested in a more detailed analysis of its surrounding. To be able
to receive a detailed overview we would like to focus our work on a localized
histogram aggregation. With histogram data a player knows the aggregation
values in di�erent areas of its surrounding and thereby has a better notion as
by a simple aggregation with one value.

In this paper we show how a localized histogram aggregation can be made
scalable by clustering the virtual space. We will show in detail how the values in
the clusters are aggregated in a static (section 5) as well as a dynamic (section
6) environment. Furthermore we will give a message complexity analysis of a
collective aggregation where all the nodes in the whole virtual environment want
to have the same aggregated information about their individual surrounding
area.

1.3 Applications

The mentioned idea is a rather general case. In this section we would like to
show three concrete applications to our aggregation idea. All three applications
are of di�erent genre which shows how widely our localized technique can be
used. We can also see that di�erent taxonomies of aggregates can be calculated
as long as the desired function allows in network5 aggregation [11].

1.3.1 Neighborhood map

In a MMOG or more precisely in a MMORPG6 where players act individually
in the virtual world they may require to see where other players are located in
their surrounding. In a main screen the players will see their proximity where
close-by neighbors are displayed one by one in the exact positions. Besides the

5In network aggregation is the technique developed for MANETs to reduce energy require-
ments and to make it scalable.

6Massively Multiplayer Online Role-Playing Game.

1 INTRODUCTION 10

Figure 1: Neighborhood map of local virtual space

main screen a smaller window could show a much bigger surrounding where
accumulations of players are displayed.

In Figure 1 we see an example of such an overview window on the upper
left side. It gives the player a quick idea of where other players are located
relatively to its current position. In the 2-dimensional virtual space the players
are shown as business men in a city. The local player is the highlighted one
located in the center of the city. Its view may be very limited due to obscuring
buildings. With the overview window the game application can show each user
where other players are located. As this additional information is to help the
player it must be limited to the amount of information the player is interested
in. Subareas of the overview window are aggregated separately and are shown
as independent units. Our research and development was exactly focused on
achieving this task. Once we have a localized histogram aggregation mechanism
for MMOGs in a distributed virtual environment then we can easily construct
a neighborhood map as described in this speci�c application. The aggregation
function will simply add up the number of players within each area or cluster
as we will introduce it in section 5.1.1. Once the aggregation values from all
clusters are received then the application can display the neighborhood map
with highly and sparse populated areas as in the example given.

1.3.2 Exceptional neighbors

For many game strategies the most dangerous or the best players are of great
interest. It may be necessary for a player to �ee from the most dangerous gamers
or to attack the best players in hope of increasing one's ranking. Whenever a
player wants to �nd exceptional players in its vicinity, all players in the area
contribute to the �nal result by deciding whether they are among the exceptional
players or not. To make this searching process scalable we need a mechanism
other than centralized selection.

Finding the best player in the local surrounding is equivalent to a max ag-
gregation for �nding the highest score among the local nodes. Our localized
histogram aggregation function �nds the best players in local subareas. There-
after a histogram map can be built by combining the partial result. At this
point we are not interested in histogram data but in an overall (still local) ag-
gregation value. As we will see in section 3.1 about taxonomy of aggregates,
the max function belongs to the distributive aggregation functions. This means
that the overall maximal value can be deduced easily from the partial maximal

2 RELATED WORK 11

values. Consequently, our localized histogram aggregation mechanism can also
�nd information e�ciently about exceptional neighbors in the virtual space of
MMOGs.

1.3.3 Ranking system

A main goal for gamers to continue playing a MMOG is to increase their skills
and top other players with their talent. However in a P2P approach where
players only communicate with close-by neighbors it is more di�cult to measure
one's abilities in comparison with other players. For MMOGs that use a central
server it is fairly easy to calculate and maintain a ranking among all players.
To achieve a similar global ranking of the top most players in the P2P virtual
environment a global dmax 7 aggregation would be required. Several techniques
are already existent to solve such an aggregation as can be seen in the related
work section 2.

We believe that it is not always necessary to have a complete global view to
construct some ranking system and motivate players to improve their cleverness.
If there are numerous players in the local aggregation area a statistical ranking
system can be implemented. By aggregating simultaneously the average of x (x)
and the average of x2 (x2) as described in the subsection 3.1.2 about algebraic

aggregates, we get the variance as σ2 =
√

x2 − x2. Using the variance σ2

and the average x a normal distribution is constructed. The sum of all x and
the private value of x let us calculate the estimated rank in either absolute or
relative �gures. Our localized histogram aggregation technique can therefore
also be used to realize an estimated but e�cient ranking system without global
view.

2 Related work

There exists already a good selection of work dealing with aggregation prob-
lems and P2P overlay networks. We are only interested in distributed aggrega-
tions for our P2P MMOG approach. In this section we give an overview over
some techniques that can be applied in distributed envrionments. Besides ex-
isting work about aggregation algorithms an overview about overlay networks
is given. For our localized histogram aggregation in a distributed virtual space
the existing work about aggregations and about overlay networks is of interest.
However, there is no related work speci�cally dealing with localized histogram
aggregations.

2.1 Aggregation algorithms

Several techniques can be applied to aggregate information among distributed
nodes. The techniques that can be applied depend strongly on the topology
the nodes are located in. Wireless ad-hoc networks are not capable of building
up the same topologies as can be done in a fully connected environment. We
are not going to focus our work on aggregations in MANETs but the existing
work can give us a good idea about what is important for e�cient and scalable
aggregations.

7The d highest values are aggregated.

2 RELATED WORK 12

A technique called in-network aggregation is the key to make the aggre-
gation process scalable. Instead of collecting all the values of the nodes and
calculating the aggregation value at once (which is equivalent to a centralized
approach) many intermediate steps are taken. This mechanism is possible for
distributive and algebraic aggregation functions as they don't require a global
view. This in-network technique can be implemented in various ways. In the fol-
lowing subsections we list two very general techniques (tree based and epidemic)
and two more speci�c implementations (hierarchical gossip and hypercube) for
aggregating information.

2.1.1 Tree based

Many papers [6, 11, 12, 13, 23] are published that use some sort of tree to
aggregate information either in a wireless ad-hoc environment or on a prede�ned
overlay network. To simplify and abstract the aggregation process in wireless
ad-hoc networks Madden et al. proposed a technique to retrieve aggregates
with SQL queries. In [11, 12] they showed how in-network aggregation can be
conducted in sensor networks. In the �rst phase the query is injected into the
network by pushing it down any routing tree. In the second phase the values
are aggregated by propagating the partial aggregation values from children to
their parents. While pushing the query into the network TAG requires parents
to include a maximum waiting time until they want to receive the results from
their children. It was shown that this technique is e�cient and results in an
order of magnitude bandwidth reduction over centrally aggregating solutions.
The weak point of this work is that it was not shown what happens with moving
sensors. When the routing tree changes during the aggregation process, then
the result may become meaningless without notice.

Building an aggregation tree on top of a DHT has been investigated by Ji Li
et al. [6, 13]. The key point of their idea is to use a prede�ned parent function.
Every node in the DHT can locate its parent by using that function applied to
the node's location in the DHT. If the prede�ned function is well suited then
it can assure to build a spanning tree of �nite height. The tree is constructed
using a bottom-up approach with the parent function and it is maintained using
soft-state. Using soft-state means that the parent function chooses a parent
without any previous information (such as its previous parent or children). A
moving node8 would persistently connect to the node which ful�lls the parent
function of the current location.

2.1.2 Epidemic dissemination

A very di�erent approach to aggregations than what we might think of at the
beginning is the use of an epidemic dissemination. Epidemic studies have a long
history and date back to the nineteenth century. In [8] Eugster et al. showed in
detail how information can be distributed exponentially in a P2P environment
on the Internet or in ad-hoc networks. One node starts the infection and sends
the information to a random subset of neighbors. Every node receiving a mes-
sage forwards it to a random subset of its neighbors. At each node O(log(n))
neighbors are randomly chosen. After O(log(n)) rounds all nodes of the system

8DHT was not constructed for moving nodes but the players in our MMOG virtual envi-
ronment are moving around.

2 RELATED WORK 13

are infected (did receive the information) with high probability. This epidemic
spreading is robust and highly resilient to failing nodes. Several problems remain
open or uncertain and are areas for future research.

Montresor et al. applied the epidemic dissemination technique to overlay
networks for the purpose of aggregating global information. Every node repeat-
edly exchanges its current local value with its neighbors, updates its local value
as required by the aggregation function with the value received from the neigh-
bor and continues with other neighbors. This process of exchanging values with
local neighbors is called gossiping. The basic idea of this process is to keep the
aggregation value among all nodes constant but to decrease the variance of the
values. In [7] it was shown that the variance converges exponentially. When the
gossiping stops the estimated aggregation result is either the local value or a
mathematical result thereof. The desired aggregation result is estimated by the
local value or a mathematical function of it after the gossiping process stops.
Every node in the overlay knows the aggregation result right away as every node
has done the same converging gossip algorithm. This aggregation process is also
very fault-tolerant and e�cient for random topologies. It is however unclear how
good the algorithm behaves on well structured overlay topologies.

2.1.3 Hierarchical gossiping aggregation

Global epidemic dissemination is quite fault-tolerant to failing nodes but can
be time consuming to ensure a good completeness. It would be nice to have a
fault-tolerant aggregation mechanism which includes the values of all nodes in
the �nal aggregation result with a high probability. In [9] a hierarchical aggrega-
tion technique is proposed. All nodes are distributed in grid boxes of prede�ned
constant size. The algorithm starts by aggregating these grid boxes indepen-
dently using the gossiping technique where knowledge about known nodes is
disseminated in the limited space of the individual boxes. When this phase has
completed phase two starts by repeatedly combining grid boxes hierarchically in
rounds. For this task also a randomly choosing gossiping is performed to avoid
wrong results due to failing nodes. After every round all the nodes evaluate
the partial aggregation value before they move to the next round for combining
with other grid boxes. The algorithm terminates when all grid boxes have been
combined together.

It could be shown that applying this algorithm guarantees a good complete-
ness probability. This assures an accurate value as the global aggregation result.
In addition to accuracy it is also poly-logarithmically sub-optimal in time and
message complexity. The drawback of this method is that all members should
know about each other at the beginning. This requirement can be relaxed as
mentioned in the paper. However, more than completely local neighbor infor-
mation in a virtual space is required as gossiping among independent grid boxes
(for hierarchically combining) could only start very slowly otherwise.

2.1.4 Hypercube

In network aggregations can be calculated easily by using a hypercube topol-
ogy. All nodes of the P2P network are located at an edge of a d-dimensional
hypercube. Acting in rounds, every node increasingly moves through all dimen-
sions of the hypercube and sends the aggregation value of the sub-cube up to

2 RELATED WORK 14

the current dimension to the neighbor in that dimension. This process allows
a pipelined aggregation in Θ(log n) rounds. In [10] it was shown how such a
hypercube topology can be constructed and it was show that it is also resilient
to dynamic adversarial churn. Placing and maintaining Θ(log n) peers at every
edge of the hypercube makes it very worst-case fault-tolerant. The dimension
is dynamically adapted and nodes are moved around among neighbors to keep
Θ(log n) peers at every edge. The drawback of this approach for P2P MMOGs
is that nodes cannot choose where they get connected to the network whereas
in MMOGs players want to be locally connected to other players in their virtual
surrounding.

2.2 Overlay networks

The domain of overlay networks is rather broad. The basic idea is that a vir-
tual communication structure is logically laid over (or established on top of) a
physical network. This virtual structure may allow speci�c functionalities which
are not directly provided by the underlaying network. Distributed data storage
and lookup, distributed computation, fault-tolerant routing and multicast are
examples of such functions. With its enhanced capabilities it is creating a more
'intelligent' network as the physical network is on its own.

With the evolution of overlay networks many di�erent topologies, routing
mechanisms and applications have been proposed. In this section we give three
di�erent concepts of overlay networks in historical order of evolution. It is to
be noted that for various applications di�erent requirements exists. Therefore,
older concepts are not necessarily worse for all applications and may be well
suited for their particular purpose.

2.2.1 Supernodes

A �rst step to distribute calculations and bandwidth bottlenecks was achieved
by a two-level P2P network. Instead of having one central server or a cluster
of servers, the server functionalities are distributed among selected nodes of the
network. The popular peer-to-peer �le sharing program Kazaa by Shareman
Networks [3] implements this technique.

Nodes with high available capacities for calculation and bandwidth are se-
lected to become Supernodes within the network. Regular or client nodes con-
nect to a couple of Supernodes which are their local servers. In the case of the
�le sharing application the Supernodes store a list of content available at their
local clients. This allows clients to search for a �le by asking their Supernodes
in the same way as clients ask a server in the client-server based model. How-
ever those Supernodes only know their locally connected clients. As every client
wants to be able to search for �les globally the Supernodes need to interact with
each other. Once it receives a search from a client it �rst searches within its
local content list and then forwards the search to connected Supernodes. This
process can be seen as the �rst results arrive very quickly and then more and
more results arrive which must be from other Supernodes by traveling multiple
hops.

The Kazaa protocol was introduced in March 2001 and still remains a very
popular application with 3 million concurrent online users in average9. The Su-

9Historical and current information about Kazaa from http://en.wikipedia.org/wiki/Kazaa.

2 RELATED WORK 15

pernode approach seems to work rather well for �le sharing which requires only
a distributed data lookup service. Little bandwidth and calculation is required
for searching which allows many peers to connect to one Supernode. In addition
location awareness is unimportant as nodes are not restricted where they get
connected to the network. For applications where frequent and complex calcula-
tions need to be performed only a few peers could connect to every Supernode.
This leads to the idea of having a one-level P2P network where every node has
equal rights and duties.

2.2.2 Distributed Hash Tables

All peers are represented by a hash number of prede�ned size as all nodes
within the system should be clients and servers without any functional di�er-
ences among the nodes. Most research about DHTs has focused on the use of
a one-dimensional space shaped in a circle for continuity. A multi-dimensional
DHT (CAN) has also been proposed but it has a fragmentation problem when
several adjacent nodes leave the network. The main idea behind a hashed vir-
tual space is that everything is hashed to a certain location therein and every
peer (which is also hashed into the DHT) is responsible for a certain range.
Most likely the range is de�ned as the space from one node's hash value to the
next node's value in the DHT.

The only thing that is supported by such a distributed hash table is a simple
lookup(key) function which returns the network location of the peer currently re-
sponsible for that key. In [5] two di�erent techniques to �nd the network address
to a given key are explained. These techniques were developed for the concepts
of several DHTs. It was shown that these techniques ful�ll interesting properties
such as global searching in O(log n), robustness and scalability. As 'good' hash
functions randomly distribute original objects uniformly into the DHT, there
is no correlation between the content of the object and the hashed location.
Current DHTs don't cover the properties required for location-dependent appli-
cations where the proximity of objects is important. Neighboring objects in the
real world may not be able to �nd each other in the hash table anymore.

2.2.3 Virtual environment overlays

The latest research areas in overlay networks have been semantic overlays. For
these networks objects are speci�cally mapped to a virtual world to suit the
needs of a particular application. Many applications require a local awareness
within the virtual space or in other words a virtual environment that allows
location based services. Such applications include MMOGs but also P2P auc-
tions and other local services. Many papers [14, 16, 17, 18, 20, 21] have been
published that deal with virtual environment overlays. Some specify it very
detailed by focusing on MMOGs and others mention it just brie�y.

An important approach to location based services was done with a Geo-
graphical Hash Table GHT [14] in sensornets. Objects are hashed into the
two-dimensional world of sensors. Hashes are unlikely to fall into a sensor's
location however there is always one unique sensor responsible for any location.
The node closest to the hash value is responsible and that node can be found by
applying the proposed GPSR algorithm. The idea is similar to the Supernode
concept by dividing the geographical plane into areas with one sensor.

3 AGGREGATION 16

The papers [20, 17] focused on P2P architectures for MMOGs. The former is
designed on top of a Pastry DHT. This assures fast lookups and global routings
among nodes in the game but is fully location unaware. On top of Pastry
a Scribe infrastructure is proposed which allows application level multicasts
in membership groups. The later paper divides the virtual space into zones
with one zone owner each. This owner has similar functionalities as a central
server but it is a regular node in the game which resembles again the Supernode
concept. It was shown that this architecture is favorable up to 500 players
(which we do not consider to be a true MMOG due to its small number of
users). Both techniques group players in memberships or zones and therefore
are not fully location aware due to cutting the virtual space into areas.

The well known mathematical structures Delaunay triangulation (section
4.1.6) and Voronoi diagram10 are used in [18] and [16]. The �rst proposes
GeoPeer: A location-aware peer-to-peer system uses a Delaunay triangulation
as its overlay network. The system is not dynamic as nodes cannot move around
in the overlay but geographically scoped queries are supported. There is exactly
one node responsible for any location in the geographical world and long range
contacts are discussed for e�cient global connections also in unbalanced areas.
In the second paper a Voronoi-based P2P networked virtual environment is con-
structed and maintained. Every node connects to all nodes whose Voronoi area
intersects its variable-sized area of interest. This approach allows nodes to move
around but it was not speci�ed how much they can move in order to keep a con-
sistent Voronoi diagram. For a big area of interest very many connections may
be required and it is not clear how large areas could be aggregated e�ciently.

SOLIPSIS is another approach for creating a virtual world as an overlay
for a large number of users. Every node connects to a number of local nodes.
The algorithm assures local awareness and global connectivity. The nodes can
move around freely and even teleportation is described among an unlimited
number of entities. The radius of area of interest is variable and can be adapted
to the local density such that every node's physical capacity is su�cient for
maintaining all connections. As mentioned in [16] SOLIPSIS has a discovery
problem of approaching nodes and therefore has a problem for guaranteeing
consistency. Besides this problem it is not evident how local (in a larger region
than the awareness area) information could be aggregated e�ciently.

3 Aggregation

The process of aggregation refers to the general process of collecting data from
di�erent sources but of the same gender and combining those data samples
into a single representation. This technique is already very well known from
database systems and started to pull attention for MANETs in recent years
[9, 11, 12]. Especially in sensor networks the measured value of a single sensor
may not be very meaningful due to local variances. In many cases an aggregated
value of several sensors is more signi�cant as the calculated value represents
the true value with a higher probability. In addition to a higher precision the
aggregation also simpli�es the data available and makes further use of it simpler.
Particularly humans would be overwhelmed very easily with too much data. For

10The Voronoi diagram is the dual to the Delaunay triangulation. It partitions the space
into areas of closeness to every Delaunay point.

3 AGGREGATION 17

them a rough overview of analyzing aggregates ful�lls all their needs in most
cases.

In this section we would like to show what di�erences exist between diverse
aggregates. Collecting all data values �rst at a central place and then calculating
the aggregation value is trivial. Once we start to optimize by decentralizing the
whole process several interesting topic arise. First we will see that there exists
a taxonomy classifying aggregates by equal behavior about how data can be
collected. In the second part di�erences in the area of interest are presented.

3.1 Taxonomy of aggregates

In practical cases mathematical functions that can be calculated with computers
are used to receive a simplifying overview over data values. Due to the nature
of mathematics these functions can be divided unambiguously into 5 classes.
Some of them favor in network aggregations and some require more data load
towards the aggregating node.

3.1.1 Distributive

The class of distributive aggregates is the most favorable for in network aggre-
gation. It allows partial data to be aggregated and combined with other partial
aggregates or new data values. There is no limitation on how often the math-
ematical function is applied as long as every data value is only added once in
its original form. The partial states are exactly the aggregation values of the
respective partitions.

partial state = aggregation of partition data

This fundamental property of distributive aggregates can also be expressed
with the mathematical property

f(N) = f({f(N1), · · · , f(Ni)}), N = N1 ∪ · · · ∪Ni

Functions such as min, max, sum and count belong to this class. One can
verify easily that these functions have the required property. Therefore we know
that these basic and widely used functions can be calculated inside the network
without any further di�culty.

3.1.2 Algebraic

Algebraic aggregates are a little bit more complex and do not allow in network
aggregation out of the band. For these functions it is not longer true that the
partial states are just the aggregation of the partial data. It is necessary to store
some more information within the partial state such that it can be further used
for more global aggregates. By de�nition of algebraic functions the amount of
information necessary to store for partial states is of constant size.

partial state = constant size

The functions average and geometric average belong to this class. The par-
tial state of the average function contains the partial sum and the number of

3 AGGREGATION 18

values which is the count function. A partial state containing these two val-
ues can be combined with other partial states. When everything necessary is
aggregated the �nal average value can be evaluated by a simple division.

f(N1) = < sum1, count1 >

f(N2) = < sum2, count1 >

...

f(Ni) = < sumi, counti >

f(N) = < sum1 + · · ·+ sumi, count1 + · · ·+ counti >

= < sumN , countN >, N = N1 ∪ · · · ∪Ni

avg(N) =
sumN

countN

To calculate the geometric average the same procedure can be applied. The
sum only needs to be replaced by the product of the values and at the end k-th
root has to be taken where k is the number of values aggregated.

3.1.3 Unique

In the class of unique aggregates in network aggregation gets even more di�cult
and requires more data for partial states. For unique functions a constant size
is not su�cient as intermediate results. Partial results require a size that is
proportional to the number of distinct values as those partial states cannot be
combined further without the loss of required information.

partial state = proportional size to distinct values in partition

The fact that partial states require more than constant size an in network
calculation can become unfeasible due to scalability. Having more distinct val-
ues will eventually require more data to be sent among nodes and will be a
bottleneck for a large value space.

The function count distinct belongs to the unique aggregations. Without
keeping track of all distinct values it is not possible to calculate the number of
distinct values. Therefore the size of partial states is of size equivalent to the
number of unique values.

3.1.4 Content-sensitive

In certain cases the size required for partial states also depends on the values to
be aggregated but is not simply proportional to the number of distinct values.
The size can be proportional to any property of the data in the partition. It
may also be that the size depends on some statistical property of the content
provided.

partial state = proportional size to some proptery of data (statistical)

For this class it may be very di�cult to predict how much data is required
for intermediate results. Depending on the content given it cannot be decided a
priori whether a certain function can be aggregated in network or whether the

3 AGGREGATION 19

partial states would require unfeasible size. The same bottleneck as for unique
functions is also true on content-sensitive functions.

One out of many functions in the content-sensitive class is the constant-width
histogram. The size of partial states obviously depends on the data and an a
priori estimate of the width of the histogram cannot be given.

3.1.5 Holistic

With certain functions no in network aggregation can be preformed. This means
that the data collected at nodes cannot be combined until everything is collected
and then gets evaluated completely. Holistic aggregations are therefore adverse
to optimizations. The partial states cannot do any combination of data. The
size just grows by the number of values.

partial state = size of respective partial data

= not containing any partial aggregation

As all data needs to be sent to the aggregating node in its original form, in
network aggregation increases the message size dramatically. It can be chosen to
perform either in network aggregation with increasing message size or straight
forward aggregation with increasing number of messages. Therefore the func-
tions contained within the holistic class are the most problematic functions and
scalability cannot be achieved for large groups.

The function median belongs to the holistic class. To evaluate the median
value of a group of values no intermediate partial results can be calculated.
All values are required for the �nal evaluation. We can see that even a trivial
function may cause problems to aggregate considering scalability issues.

3.2 Area of interest

The area of interest must be decided for every aggregation before its execution.
Only the values of the nodes within the speci�ed area will be included in the
�nal aggregation. With a database point of view all aggregations are global and
get restricted by some condition clause. However in a distributed environment
the aggregation cannot be calculated as straight forward as can be done for a
centrally stored database. Messages need to be exchanged to perform the same
task on distributed nodes. The number of messages that can be exchanged
is limited by a certain bandwidth and should not be exploited unnecessarily.
Restricting the area where messages are exchanged to the area of interest is the
very �rst approch to reduce the total number of messages sent for aggregations.
Following are the three di�erent types of aggregation areas described.

3.2.1 Global

The �rst and most simple aggregation is to include all the nodes into the cal-
culation. There is no restriction on the area by any sense. Therefore the area
of interest is global. In a distributed network the aggregation can be evaluated
in many di�erent ways as long as all nodes are taken into consideration and no
node promotes its value multiple times.

3 AGGREGATION 20

(a) Regional area of interest (b) Localized area of interest

Figure 2: Areas of interest

3.2.2 Regional

The regional aggregation introduces a certain restriction on the number of nodes
that are included in the evaluation process. The aggregation doesn't represent a
global view anymore. In a distributed virtual world, where every node is located
at some speci�c geographical location, aggregating only within a geographical
area can be useful. The area must be prede�ned before the aggregation is
started and the area must consist of exactly one n-space in the n-dimensional
Euclidean space. In the practical case of a 2-dimensional virtual space the area
is a bound and connected face. For many applications a circle with a radius r
or a square with a diameter d around a central node makes most sense. Besides
being reasonable the circular and square areas can be de�ned by only two values
(circle and radius). Even though the regional area is not limited to a circle or
square, more complex geometrical shapes require more information to be de�ned
and therefore can be impractical to setup in a distributed fashion.

The aggregating node(s) do not need to lie within the area of interest but
are not prohibited to do so either. This means that a node may want to know
some information about an area far away from itself. In Figure 2 we can see an
example of a rather complex regional area of interest with the aggregating node
lying outside of it.

3.2.3 Localized

When the area surrounding the aggregating node is of interest then it refers to
a localized aggregation. The node performing the aggregation lies within the
area of interest and more restrictively it is center of the area of interest in some
sense. For simplicity the area can be thought of as a circle with the center
located at the aggregating node and a certain radius r. In Figure 2 this simple
area of interest is illustrated. The area however doesn't need to be circular and
can be of virtually any form as long as the aggregating node is its center. For
practical applications only simple geometrical shapes such as circles, ellipses,
squares, rectangles or simple symmetrical polygons seams to be of importance.

In the case where the whole or part of the virtual environment needs to be
aggregated with several localized aggregations the shape of the area of interest
receives another restriction. Besides being local it also needs to cover a certain

4 GEOMETRIC GRAPHS AND NETWORKS 21

area without overlapping. Circles and ellipses provably cannot ful�ll this restric-
tion. The simple solution to this problem is by using square areas of interest
lying next to each other. We will use this approach later on for solving our
localized histogram aggregation.

4 Geometric graphs and networks

Long before computers existed geometric graphs were examined. Nowadays,
many problems in computer science can be solved by using mathematically de-
�ned structures. In this section we would like to give an overview of geometrical
graphs and methods that can be of interest for a virtual world overlay. First
we present various planar graphs as well de�ned structures which may be used
as two-dimensional computer networks. In the second part we list several tech-
niques used for routing messages in geometric graphs. Some of those techniques
are also applied to unstructured networks such as wireless ad-hoc networks.

4.1 Planar graphs

There are countless possibilities on how to connect points in a plane. A subset
of all variations forms the group of planar graphs. Their special property by
de�nition is that no two edges intersect each other in the plane. This property
simpli�es many problems (such as routing and dynamic node discovery) in dis-
tributed networks. Every planar graph has a well de�ned property such that for
a given set of points the edges connecting those points are set unambiguously.
In Figure 3 we can see the six common planar graphs which we describe in more
detail in the following subsections.

4.1.1 Closest Pair (CP)

As we can see in Figure 3 in the �rst graph there is only one edge connecting
two nodes. Having the set of vertices {v1, v2, . . . , vN} the edge e = vivj =
min(d(vi, vj)) | i 6= j is selected. It is the edge with the shortest distance
between any two vertices. Here d(vi, vj) is the Euclidean distance from vertex
vi to vj . A closest pair graph leaves most vertices without any connected edge.
Obviously it is not connected and therefore of little use for communication
networks.

4.1.2 Nearest Neighbor Graph (NNG)

If we want our set of vertices to have at least one connected edge per vertex
then a nearest neighbor graph has to be constructed. It selects for every vertex
vi ∈ {v1, v2, . . . , vN} the edge ei = min(d(vivj)) | i 6= j. Consequently, the
number of edges in the graph is |E| ≤ N . The graph is not necessarily connected
and most likely it is partitioned into smaller subgraphs in a tree structure as
can be seen in Figure 3.

4.1.3 Minimal Spanning Tree (MST)

A spanning tree connects every vertex in a graph with any other vertex with
exactly one path of consecutive edges. The minimal spanning tree is a special

4 GEOMETRIC GRAPHS AND NETWORKS 22

(a) Closest pair (b) Nearest neighbor
graph

(c) Minimal spanning
tree

(d) Relative neighbor-
hood graph

(e) Gabriel graph (f) Delaunay triangula-
tion

Figure 3: Planar graphs

case of a spanning tree. It is the tree that has the smallest sum of edge lengths.
The following two conditions are met by any minimal spanning tree

• ∀vivj∃{e1, . . . , ek} |

 ei ∈ E
e1 = (viv.) ∧ ek = (v.vj)
ei = (v.vx) → ei+1 = (vxv.)

• MST = min(
∑

e∈{e1,...,ek} d(e)).

This is the graph with the shortest possible global connectivity which makes it
interesting for various applications. In computer networks where the number of
hops is more important than the distance traveled between two nodes, a MST
may not be an optimal solution.

4.1.4 Relative Neighborhood Graph (RNG)

Another graph which has potentially more edges than a tree is the relative
neighborhood graph. Its idea is to connect two vertices that are 'relatively
close' to each other. By de�nition two points pi and pj are 'relatively close' when
d(pi, pj) ≤ max[d(pi, pk), d(pj , pk)]∀K = 1, . . . , n, k 6= i, j. This local property
is illustrated in Figure 4. An edge between two vertices vi and vj exists if and
only if the intersection of the two local discs with radius r = d(vi, vj) doesn't
contain any other vertex. More details about the RNG and how it can be
constructed centrally can be found in [29]. In Figure 3 we see that the graph
is well connected but doesn't form well de�ned shapes. This may make it more
di�cult to route messages in communication networks of moving peers.

4 GEOMETRIC GRAPHS AND NETWORKS 23

(a) Relative neighbor-
hood property

(b) Gabriel graph
property

(c) Delaunay triangu-
lation property

Figure 4: Local properties of planar graphs

4.1.5 Gabriel Graph (GG)

The Gabriel graph is also a globally connected graph with a simple local prop-
erty. For every edge e = (vivj) it requires that the disc(vi, vj) does not contain
any other nodes [30]. This local property is illustrated in Figure 4. The com-
plete graph is rather well connected as we can see in the set of vertices in Figure
3. Many triangles are formed but there can be exceptions which prevent the
Gabriel graph from being a true triangulation. However this graph is of big
interest as the indicated local property can be checked very easily.

4.1.6 Delaunay Triangulation (DT)

We will use the Delaunay triangulation later in this paper and therefore we
give a closer look at this graph's properties here. As the name already suggests
it constructs a triangulation with special properties. With a set of vertices
there are potentially many triangulations possible. In general the Delaunay
triangulation de�nes a unique triangulation out of all possibilities [25, 26]. There
are degenerated cases we won't look at in more detail here but we will come
back to them later on when we deal with a dynamic Delaunay maintenance.

4.1.6.1 Local empty-circle The very fundamental property of every De-
launay triangulation is the local empty-circle property shown in Figure 4. For
every triangle ∠v1v2v3 where all edges are selected {v1v2, v2v3, v3v1}∂E there
exists no other vertex inside the circum circle of that triangle.

• @vi∀∠v1v2v3 |

 {v1v2, v2v3, v3v1}∂E
i 6= 1, 2, 3
d(vi, cc(v1, v2, v3)) < d(v1, cc(v1, v2, v3))

11

This property assures that there is no vertex inside any triangle of the Delaunay
triangulation. Furthermore, there is a certain empty space outside the triangle
next to its edges.

4.1.6.2 Max-min angle For any two adjacent triangles having a convex
hull (forming a diamond shape) two inner edges are possible. The Delaunay
triangulation selects one of those two possibilities unambiguously. When the
quadrilateral is divided into two triangles with one inner edge then six inner

11cc is the circum center of three given vertices.

4 GEOMETRIC GRAPHS AND NETWORKS 24

angles exists. The smallest angles of both inner edges are compared with each
other. The edge with the larger minimum angle is selected for the Delaunay
triangulation. In the example in Figure 5 the inner edge e1 is selected as it
forms the max-min angle.

Figure 5: Max-min angle property of Delaunay triangulation

4.1.6.3 Locally optimal Every inner edge that ful�lls the local empty-
circle property or the max-min angle property is called to be locally optimal.
In fact these two properties are equivalent for all inner edges. A triangulation
is a Delaunay triangulation i� all inner edges are locally optimal.

4.1.6.4 Global connectivity For a communication network it is very im-
portant that a graph is globally connected. As we will se in section 4.1.7 the DT
is a superset of the MST. As the minimum spanning tree is globally connected
by de�nition we know that the Delaunay triangulation also must be connected.

4.1.6.5 No edge intersections The Delaunay triangulation is part of the
planar graphs which assures us that there cannot be any crossing connections
between vertices. This property is particularly important for routing issues and
delivery guarantees. We will use this knowledge later for routing on edges of
triangles dividing the plane into lots.

4.1.7 Hierarchical relation among planar graphs

Up to here we have listed several planar graphs and their properties. In the
presented order we could realize that latter graphs always have more edges than
former graphs. Figure 3 also supports this theory and it even indicates that
former graphs are subgraphs of later graphs. This intuition was proved in [29]
and the following relation among the presented planar graphs holds

CP (V) ⊆ NNG(V) ⊆ MST (V) ⊆ RNG(V) ⊆ GG(V) ⊆ DT (V). (1)

Some relations are quite trivial to see and others need a more detailed analy-
sis. The relation among the �rst three graphs is obvious and could already be
seen in the above explanations. The relative neighborhood graph is located be-
tween the minimal spanning tree and the Gabriel graph. In [29] it was shown
that MST (V) ⊆ RNG(V) ⊆ DT (V) . To show that the Gabriel graph lays in
between the RNG and the DT a simple geometrical analysis is su�cient. By
looking at the local-empty properties of the RNG and the GG (see Figure 4)
we can see that the RNG has a larger local empty area. In addition RNG's
empty area encloses GG's empty area which clearly makes the RNG a subset of
the GG. The relation between the GG and the DT can be shown in a similar

4 GEOMETRIC GRAPHS AND NETWORKS 25

(a) CMP (b) RCMP (c) GRDY (d) GCMP

(e) MF (f) NN (g) FN (h) RHR

Figure 6: Localized routing techniques

way. Delaunay's empty area of a whole triangle is always fully covered by the
corresponding circles for a Gabriel graph. Therefore all relations in 1 are shown.

4.2 Routing in geometric networks

In communication networks a connecting graph is not su�cient for e�cient and
guaranteed message exchanges. To send a message from one peer to another
a prede�ned routing mechanism must be used if �ooding needs to be avoided.
Many general routing techniques have been studied in geometric graphs as well
as wireless networks. In this section we present a selection of eight routing mech-
anisms and give information about their de�nitions and delivery guarantees for
routing in triangulations. All eight localized routing techniques are illustrated
in Figure 6. We only consider localized routing algorithms [22, 28, 30] since
our P2P virtual world will be distributed and a global view of the graph is
unavailable.

4.2.1 Compass (CMP)

A very simple mechanism for routing messages is the compass routing. Every
node u needs to select one directly connected node v in the network as its
successor to whom it will forward messages from a source s to a destination d.
Compass routing selects the node v with the smallest angle in direction to the
destination as its successor. This selection can be mathematically described as
follows

min
v∈n(u)

(]vud)

In the above formula n (u) indicates all local neighbors of u. It was shown
that the compass routing algorithm cannot be defeated by any regular trian-
gulation [24]. This means that it is guaranteed that a message will be routed
correctly from a source to a destination in any case. Compass routing also guar-
antees correct routing in a Delaunay triangulation as the following relationship
among triangulations exists.

DT ⊆ RT ⊆ T ⊆ CS |

DT = Delaunaytriangulation
RT = Regular triangulation
T = Triangulation
CS = Convex subdivision

(2)

4 GEOMETRIC GRAPHS AND NETWORKS 26

The algorithm always succeeds in routing but it cannot guarantee a c-
competitive Euclidean routing path in a Delaunay triangulation. This means
that the 'travel distance' (the sum of the lengths of all edges utilized) from
source s to destination d is not necessarily limited by c ‖sd‖ for any constant
c. However a c-competitive path exists on a DT and it can be found with a
parallel Voronoi routing algorithm [24]. In wired communication networks the
number of hops may be of much bigger interest though as it is the main factor
for routing delays.

4.2.2 Random Compass (RCMP)

A probabilistic selection among two candidates as the successor is performed
with the random compass routing algorithm. In a �rst step it selects the two
local neighbors with the smallest angle clockwise and counter clockwise from
the direction to the destination. In a second step it randomly selects one of
those two nodes (each with probability p = 0.5) as its successor.

rand

(
min
v1

(−→
]v1ud

)
,min

v2

(−→
]duv2

))
We introduce the notation

−→
]xyz, which indicates that the angle is measured

at y in clockwise orientation between −→yx and −→yz. The routing guarantee for a
randomized algorithm can be give if the probability for routing a message from
the source to the destination is not zero. In [24] it was proved that the random-
ized compass routing is more powerful than the standard compass routing. It
was also shown that it guarantees routing in any triangulation. However, the
routing path from a source to the destination is not deterministic which makes
in network aggregation complicated for dynamic peers.

4.2.3 Greedy (GRDY)

The greedy routing method is also a very intuitive mechanism as it tries to
approach the destination as close as possible with the selected successor. A
node u forwards a message to the node v which is closest node to the destination
among all neighbors of u and u itself.

min
v

(‖vd‖)

It is easy to see that the greedy algorithm reduces the distance to the des-
tination with every single step. Eventually it will reach the destination or get
trapped at a distant node. The algorithm guarantees a correct delivery in a
Delaunay triangulation. However, in supergroups of the Delaunay triangulation
(see the relationship of triangulations in 2) the delivery cannot be guaranteed.
Later we will also see that the greedy algorithm is not su�cient for our special
routing requirement in a Delaunay triangulation.

4.2.4 Greedy Compass (GCMP)

Greedy compass routing combines the two ideas of selecting the smallest angle
and distance to the destination. First the two nodes with the smallest angle
clockwise and counter clockwise towards the destination are nominated. Then

4 GEOMETRIC GRAPHS AND NETWORKS 27

the node with the shorter Euclidean distance to the destination is selected among
the two nominees.

min
{v1,v2}

(‖vid‖) |

 v1 = minv

(−→
]vud

)
v2 = minv

(−→
]duv

)
This method is more reliable than both its two individual routing techniques

as it assures correct routing in any triangulation [30]. This property can be
particularly interesting as it guarantees correct routing in triangulations without
using probabilities as in the randomized compass routing. A message being
routed with greedy compass always reaches the destination.

4.2.5 Most Forwarding (MF)

This technique seems to be interesting as the projected distance to the destina-
tion decreases with every step on the straight line from s to d. A successor v of
a nodes u is selected such that it minimizes the distance to the destination on
sd. All local neighbors are �rst projected perpendicular onto sd and then the
peer v is selected.

min
v

(‖ṽd‖) | ṽ = −→uv · −→ud

It is easy to construct a graph in which this routing technique will drift away
from the straight line sd. Therefore it will not reach the destination. Also in
the special case of a Delaunay triangulation the delivery cannot be guaranteed
which makes it impractical in such a graph.

4.2.6 Nearest Neighbor (NN)

The nearest neighbor routing protocol selects the closest peer to the current
node within an angle α to the destination.

min
v

(‖uv‖) |]vud ≤ α

Also this method can be defeated easily by a specially constructed graph. For
wireless networks this approach may make sense though as shorter connections
require less transmission energy.

4.2.7 Farthest Neighbor (FN)

The farthest neighbor routing protocol does the exact opposite of the nearest
neighbor routing by selecting the node farthest way within a given cone.

max
v

(‖uv‖) |]vud ≤ α

This method does not route properly either on any graph and can be defeated
by Delaunay triangulations as well. But it can be very e�cient focusing on the
number of hops in dense wireless environments where its result can be similar
to the one of the greedy routing protocol.

5 STATIC LOCALIZED HISTOGRAM AGGREGATION 28

4.2.8 Right Hand Rule (RHR)

A di�erent approach to routing than the above rules is the right hand rule
routing. This routing mechanism ignores all the connections intersecting the
straight line from the source s to the destination d. On this subgraph the
message is routed counter clockwise on the face containing s and d on its circum
and the straight line sd in its interior. To achieve this face routing mechanism
[15] a node u must know from which node t a message came from and where the
source s and destination d are. Then at node u the node v with the smallest
angle measured clockwise from the direction to u′s predecessor t is selected.
The condition of intersecting the straight line sd much be always checked and if
the selected node is intersecting then another local neighbor with a larger angle
needs to be selected. This selection process can be described mathematically as

min
v

(−→
] tuv

)
|
{

t ≺ u
−→
sd q −→uv

In the above formula the symbol ≺ indicates that the peer t is the preceding
peer of u (the message arrived from t at u) on a message's path from s to d. The

symbol q indicates that the two vectors
−→
sd and −→uv do not intersect each other.

The right hand rule routing is very powerful as it can route correctly in any
planar graph. The disadvantage of this method is that it requires the location
of the source for every intermediate routing decision. It is not clear how an in
network aggregation could be performed with this requirement on a dynamic
network.

5 Static localized histogram aggregation

We divide the description of our localized histogram aggregation method into
two sections. In a �rst and simpler step we present the process in a static
environment where the nodes (or players in a MMOG) cannot move around.
With the overview the reader can see the whole process of collecting, aggregating
and distributing the values in our aggregation. The aggregating part is central
to our method and needs a much closer look at routing on top of the chosen
Delaunay triangulation. In a second step in section 6 we present solutions to
make our solution applicable to dynamic players.

5.1 Overview

Our design makes it possible that every player in the MMOG can know details
about its local neighborhood in the virtual world without overloading the P2P
overlay network. The whole process is split into three parts. In the following
subsections we describe these parts in detail.

5.1.1 Clustered virtual space

The whole virtual environment is partitioned into clusters. We cluster the en-
vironment with a 2-dimensional grid of square cells. This allows us to divide
the whole virtual world without having any overlapping areas and still covering
the entire space. This grid is of prede�ned constant size depending on the im-
plementation and the gender of the MMOG. The size and location of the grid

5 STATIC LOCALIZED HISTOGRAM AGGREGATION 29

(a) Clusted virtual space (b) Independant cluster ag-
gregation

(c) Broadcast aggregation

Figure 7: Aggregation process overview

�elds is known by every node at startup of the MMOG and cannot be changed
once the network is operating. It can be seen as a static part of the virtual
environment. If an aggregation function should deliver a very �ne histogram
map then small grid �elds are required. If a rough histogram map is su�cient
than much fewer grid �elds are necessary in the virtual world. However, all grid
�elds have the same side length which makes it possible to identify the enclosing
grid �eld given any location in the virtual space.

For the histogram aggregation process every cluster is regarded as a unit
which cannot be divided. When an aggregation is performed a cluster can either
be included entirely in the result or left out completely. In Figure 7 the clustered
virtual space can be seen with the locations of players in the game. We can also
see that the local aggregated area is not the exact local environment of every
node but the environment of all its surrounding clusters. We limit the precision
of the aggregation function to the size of the static clusters. This allows us to
aggregate every cluster once and reuse the same result numerously for every
node that is interested in that cluster. All the nodes within the same cluster
will therefore receive the same aggregation result even if their locations are not
exactly the same. We believe that this approach is reasonable for minimizing
message exchanges (as we will see in section 8) since the nodes within the same
cluster are close together in the virtual world and therefore the view of their
distant surrounding is very similar.

5.1.2 Independent cluster aggregation

After the virtual world is divided into clusters those grid �elds are aggregated
separately. As the clusters cannot be split for any aggregation process all the
nodes in its area need to be aggregated to one result. In the distributed environ-
ment of a P2P MMOG this process needs to be well coordinated and requires
most of our e�ort in this paper. The value of every node in a cluster should be
included exactly once in the �nal aggregation result. In addition the process of
exchanging messages should require as little messages as possible to minimize
the message complexity of the overall aggregation.

We propose to use a tree-based aggregation in every cluster. This allows us
to perform in network aggregations wherever tree branches join at a node. The

5 STATIC LOCALIZED HISTOGRAM AGGREGATION 30

nodes at the boarder of the cluster (those that have no child node in the same
cluster) initiate the aggregation by sending their value to a parent node in the
tree. The tree also needs to have a root somewhere in the cluster. We designed
the tree such that it has its root at the center of every cluster (see Figure 7). In
order to establish this tree we choose the geometrically well de�ned Delaunay
triangulation as overlay. It allows us to construct the distributed tree, route
messages to the center and assure in network aggregation even with dynamic12

nodes.

5.1.3 Broadcast aggregation

Once a cluster has aggregated its value it needs to be sent to the nodes who want
to know it. This can be done by broadcasting the value over the same tree as
for the aggregation but extended to the whole area of interest. This procedure
can be seen in the third picture of Figure 7. This mechanism is particularly
useful when all the players want to have the same aggregation of the same area
of interest at the same time. The overview map of the virtual space is such an
application as all the players want to see the number of players in di�erent areas
updated in certain intervals. The area of interest can be �xed in the MMOG to
show a prede�ned area in a subwindow on every player's screen.

When we analyze the in network aggregation in a dynamic environment
the possible topology changes in the Delaunay triangulation convince us that
broadcasting informs all the nodes. As this broadcasting uses the Delaunay
triangulation it may require many hops to distribute the information to distant
nodes in dense areas. It seems to be possible to establish long range contacts
(LRCs) as described in [18] to minimize the distribution delay. For our focus
on the message complexity of the aggregation problem the proposed broadcast-
ing allows us to make the overall process scalable. Therefore and due to time
constraints we do not focus in more detail on the broadcasting part.

5.2 Routing

To assure that our independent clusters are aggregated correctly we need to
de�ne how the messages are aggregated using in network aggregation. As we
already mentioned we propose to aggregate the value of each cell towards its
center. First we show how a spanning tree is constructed on top of the Delaunay
triangulation which is required for an in network aggregation. Then we show
how a value is routed from a node to a static node on the Delaunay triangulation
and last we extend this routing to a geometric location which is the main interest
for our overall aggregation technique.

5.2.1 Spanning tree on Delaunay triangulation

If we can build up a spanning tree on the Delaunay overlay network then the
in network aggregation can be performed using this tree. Wherever branches of
the tree join a partial aggregation is calculated and forwarded to the next parent
in the tree. In this way the links towards the root of the tree are used only once

12The dynamic needs to be limited to maintain the Delaunay triangulation which can be
done with the DeDiLi algorithm of section 7.4.

5 STATIC LOCALIZED HISTOGRAM AGGREGATION 31

compared to a straight forward aggregation where every value is routed to the
root individually.

The following requirements are necessary for our tree to support a distributed
aggregation:

1. One unique parent exists for every node in the network

2. One unique path exists from every node to the root

3. Local geometric information determines the tree

4. Children and parents can identify themselves mutually

Requirements 1 and 2 assure us that a spanning tree is constructed. Require-
ment 3 allows the tree to be constructed and maintained with local neighborhood
information. The requirement 4 lets a child forward its value to its parent node
which on the other hand waits on all its children (that are well known due to
this requirement) before performing the in network aggregation and forwarding
the result.

Figure 8: Spanning tree on Delaunay triangulation

In every intersecting triangle in the Delaunay triangulation a parent-child
link can be identi�ed. Our de�nition of an intersecting triangle is a triangle
that contains one node whose direct line to the center intersects with the edge
of the other two nodes. Such an intersecting triangle can be seen in Figure
8. The parent-child identi�cation is done with compass routing. As we can
see in Figure 8 every node in the network chooses its parent by selecting the
neighbor in its intersecting triangle with the smaller angle to the root [19]. It
is easy to verify that every node intersects exactly one neighboring triangle
towards the root ful�lling requirement 1. As compass routing is correct on the
Delaunay triangulation for every node, a spanning tree is built up rooted at
the destination (requirement 2). We described how a parent is identi�ed. In
a similar way children can be identi�ed by analyzing the neighbors' locations
of a node. Therefore also requirements 3 and 4 are ful�lled giving us a locally
constructed spanning tree on a Delaunay triangulation rooted at one of its nodes.

5.2.2 Routing to static node

As we have seen in the previous section a spanning tree is built up locally
using the compass routing rule. To perform the overall aggregation every node
identi�es its parent and all its children. If a node has no children, no children
in the same cluster or has received all partial aggregates from all children then

5 STATIC LOCALIZED HISTOGRAM AGGREGATION 32

(a) Overall routing process (b) Compass routing decision (c) Failing geometric
greedy routing on DT

Figure 9: Geometric routing on Delaunay triangulation

it can send its partial result to its parent. Executing this process at every
node eventually aggregates all nodes of a cluster at the root of the spanning
tree. Since a spanning tree connects all nodes of a cluster and compass routing
guarantees delivery on a Delaunay triangulation, all values are properly included
in the �nal result.

5.2.3 Routing to geometric location

Until now the messages are routed and aggregated towards a root node. Our ag-
gregation process however should work in a dynamic environment of a MMOG.
Therefore, we proposed to take the center of ever cluster as a �xed root. As
there is no node at the exact location of the center in general one node must
take responsibility as the root. For aggregation purposes the node 'closest' to
the center is chosen. The closest node in the Delaunay triangulation is the one
which is closest among the three nodes enclosing the center with a triangle.

The complete routing to a geometrical location can be split in two parts.
First, a message is routed from a source to one of the three enclosing nodes of
the center c. Second, the message is sent to the central node nc. We will further
specify the details in the following subsections and show that the routing is
correct. The �rst graph in Figure 9 shows the idea of routing from a source s to
the central node nc. This will give us the possibility of using geometric routing
for our aggregation process in a dynamic environment (see section 6).

5.2.3.1 Routing to a node enclosing the destination As the �rst step
of routing a message to the central node nc we want the message to route
correctly to one of the three nodes enclosing the center. On the way to the
center in network aggregation is performed wherever routing routes join at one
node. This routing process is done in the same way as routing to a static node
with compass routing. Nodes far away from the central triangle Tc build up the
same spanning tree as if one of the enclosing nodes {n1, n2, n3} were the root
of the tree. Nodes closer to the center do not need to have the same parent for
all of the three central nodes. However we show now that one of the enclosing
nodes is always reached from any node sending a message with compass routing
over the Delaunay triangulation.

In the second graph of Figure 9 the compass routing decision is illustrated.
We can see that the direction from any node to the center is always in between
the directions to two nodes (n1, n2) of Tc. As the message is forwarded using

5 STATIC LOCALIZED HISTOGRAM AGGREGATION 33

compass routing the following node (parent) is also in between the parents of
routing to n1 and n2. In addition cycling is not possible when routing to a node
using compass routing on a Delaunay triangulation [24]. Therefore it is also not
possible to cycle around Tc or cycling around a �ctive node at the center would
be possible. The two properties of 'in between direction' and 'non-cycling' make
the triangle Tc behave like a single node.

Conclusion Compass routing to a geometric location in a Delaunay triangu-
lation always arrives at one of the enclosing nodes of the central triangle.

5.2.3.2 Routing from an enclosing node to the closest node Once
the cluster has been aggregated on the de�ned spanning tree then the partial
results are located at the three enclosing nodes. To get the �nal result little is
left to be done. Those three nodes need to aggregate their partial result to the
overall cluster result which then will be broadcasted. The three nodes n1, n2, n3

are connected with each other and can therefore mutually identify the node
closest to the center nc. The partial results are sent to nc who is the current
root of that cluster. Doing so completes the aggregation of a cluster in a static
environment with the center of the cluster as the root.

5.2.3.3 Non-universal delivery guarantee In the previous two subsec-
tions we have shown and proved that the compass routing algorithm applied
to a geometric routing on top of a Delaunay triangulation is correct. We also
mentioned that the enclosing triangle behaves like a single node. However, it
cannot be universally assumed that when a routing to a node is correct that the
same routing technique is also correct routing to a geometric location. We show
a counter example with the greedy routing to prevent future mislead delivery
assumption. The third graph in Figure 9 shows clearly that node n3 is closest
to the center but is not part of the enclosing triangle. Therefore, a message
arriving at node n3 should be forwarded to the central node nc. This however
is not possible with the greedy routing algorithm as n3is the closest node to the
center in the whole cluster.

Conclusion The delivery guarantee for routing on a Delaunay triangulation is
not universally equivalent for node and geometric routing.

5.2.4 Routing distance

It was shown in [24] that the Euclidean routing distance in a Delaunay trian-
gulation using compass routing is not upper bound by a constant factor to the
Euclidean distance between source and destination. The routing distance in the
virtual environment on our spanning tree is of small interest. In general the
virtual distance among nodes is in no correlation with the distance among the
actual nodes. It is much more relevant how many hops a message requires to
be routed from the source to the destination. This gives a much better idea on
how far and how long a message has to 'travel' on the Delaunay triangulation.

First we show that circling around the destination in the Delaunay triangu-
lation is not possible. For the sake of contradiction let us assume the circling
exists. Such a routing path is illustrated in Figure 10. The gray shaded area

6 DYNAMIC LOCALIZED HISTOGRAM AGGREGATION 34

Figure 10: No circling guarantee

inside the spiral cannot contain any nodes connected to a spiral node. Other-
wise that node would have been chosen for routing due to a smaller angle to
d. However, all nodes in the shaded area need to be connected (with multiple
hops) somewhere to the spiral. This is necessary as all nodes are connected
with each other in a correct Delaunay triangulation and all nodes n /∈ CH are
connected with edges spread at most 180 degrees (to ful�ll the triangulation
requirement). We conclude that the destination node d is in contradiction with
the circling compass routing path. Therefore, circling around the destination is
not possible.

It is easy to see that the previous property can be extended such that circling
around any point in the DT is not possible either as cycling was show to be
impossible. With this property we know that compass routing uses a linear
routing path from the source to the destination. The whole 2-dimensional virtual
environment is covered with n−2 triangles, where n is the total number of nodes
in the environment. On a linear path across the 2-dimensional environment

√
n

triangles are passed in average. Every triangle is passed with one routing step.

Conclusion The average number of hops on a Delaunay triangulation with
compass routing is

√
n for the diameter of the network with n nodes.

6 Dynamic localized histogram aggregation

In this section we focus on the aggregation process in a dynamic environment.
The di�erence to the previous section is that the nodes in the Delaunay trian-
gulation are not located at a static position anymore. For any realistic MMOG
players need to be able to change their positions in the virtual world. We have
seen how to aggregate correctly on a spanning tree using the in network tech-
nique. The spanning tree used is no longer static in the dynamic environment.
As the tree is build up locally it can always be constructed properly. However,
among moving nodes the parent function (compass routing) can change a node's
parent depending on that node's neighbors' locations. This involves no problem
for routing individual messages to the center, but for our aggregation process
the in network aggregation becomes more complicated.

In this section we show all the parent changes that can occur and we present
our solution to resolve all those changes with the Waiting Rules. We show
that these rules are e�ective to aggregate properly in network and do not block
the overall aggregation process. First we need to de�ne what we understand
of a dynamic Delaunay triangulation. It is obvious that nodes cannot move
arbitrarily or the triangulation cannot be maintained locally. From now on we
are using the following assumption on dynamic.

6 DYNAMIC LOCALIZED HISTOGRAM AGGREGATION 35

(a) Another parent

(b) Parent-child link dropped

(c) Parent-neighbor link dropped

Figure 11: Parent changes on �ips in DT

Assumption Only flips of inner edges can occur in our dynamic Delaunay
triangulation between topology updates.

A flip occurs when two adjacent triangles change their inner edge to the one
which was not in the Delaunay triangulation before. In the example of Figure 5
the edge e1 is deleted and the edge e2 is added to the DT. In section 7 we will
show an algorithm to assure that only �ips occur in a Delaunay triangulation
network. This will ensure our assumption which we take as granted for now.

6.1 Parent changes

In this subsection all possible structural changes under the assumption are ana-
lyzed. This is necessary in the dynamic environment as the in network aggrega-
tion requires a controlled aggregation from the nodes towards the root. When
a child in the spanning tree sends its partial aggregation to its parent, the child
assumes that the parent is still waiting on that child's value. If the nodes move
and the child receives a di�erent parent (always chosen with compass routing)
which has already forwarded its partial aggregation value then there is a problem
for the in network aggregation technique. Following the three possible changes
involving a parent-child connection are shown.

6.1.1 Another parent

The parent of a node can change without any topology change in the Delaunay
triangulation as a child selects its parent solely by the smallest angle to the
center. We can see this happening in the �rst graph of Figure 11. First the

6 DYNAMIC LOCALIZED HISTOGRAM AGGREGATION 36

node 1 is the parent of node 3. After a slight movement of the node 3 it receives
node 2 as its parent node. In this case the parent has changed for node 3 and
the DT topology was unchanged.

6.1.2 Parent-child link dropped

When a �ip occurs and the parent-child link is dropped it is obvious that the
parent of the child is changed. The new parent will be a neighbor of the previous
parent. In Figure 11 we see that node 2 is the new parent of node 3. This is
due to the fact that the edge (n1, n2) intersects the direct line from the child
node 3 to the center. Here the parent of the node 3 changes to a node which
was already a neighbor of the child before the movement.

6.1.3 Parent-neighbor link dropped

In the case when a parent-neighbor link is �ipped among the adjacent quadri-
lateral a new edge gets connected to the child. If this new edge has the smallest
angle to the center then the child's opponent node on this edge will be the new
parent. This means that the child node 3 did not have any knowledge of the
new parent node 2 before the �ip as is illustrated in the last graph of Figure 11.
However, the new parent was and still is a local neighbor of the previous parent
node 1.

6.2 Waiting Rules

Parent changes as discuss in the previous subsection are a problem for the in
network aggregation. If it were possible to assure that all nodes changing parents
would select new parents that have not yet sent their partial aggregation value
then the parent changes are no problem for the in network aggregation. It is not
possible to select a new parent depending on its status of having sent the value
or not. This is due to the fact that compass routing is used which assures a
correct geometrical spanning tree at all times in the dynamic environment. The
second possibility is to let nodes wait on forwarding their partial aggregation
value. All potential parents should wait on forwarding their message until no
further node can become its child anymore.

6.2.1 Functionality of rules

We propose to use three Waiting Rules (WR1, WR2, and WR3) that assure
that all the parent changes are 'covered'. By 'covered' we mean that any new
potential parent cannot send its partial aggregation towards the center until the
potential has vanished. Following are the three Waiting Rules:

1. Parents wait on children

2. Intersecting triangle: only the far node can send its value

3. Non-intersecting triangle: node facing the center must wait on neighbors

For an explanation of an intersecting triangle go to section 8. In Figure 12 an
example of an intersecting and a non-intersecting triangle is given. In addition
the terms used in the Waiting rules are illustrated in the same Figure. The

6 DYNAMIC LOCALIZED HISTOGRAM AGGREGATION 37

far node is the node in an intersecting triangle that intersects an edge of the
triangle by its straight line to the center. The node facing the center is the node
in a non-intersecting triangle that is not part of the convex hull of the triangle's
nodes and the center. It is the node of that triangle facing the center.

(a) Intersecting triangle (b) Non-intersecting triangle

Figure 12: Triangle types

Now we want to show that the proposed Waiting Rules cover all parent
changes and assure a correct in network aggregation. This can be assured by
showing that the aggregation is performed from the leaves to the root in the
spanning tree and all parent-child changes do not in�uence the correctness of
the aggregation. At any point in time an aggregation value is sent to its current
parent.

WR1 prevents the current parent from sending its partial aggregation as
long as there is a child that has not forwarded its partial result yet. This rule
assures that the aggregation is performed on the spanning tree from the leave
nodes (those without any children in the same cluster) to the triangle enclosing
the cluster.

WR2 assures that another parent and parent-child link dropped is resolved.
In both case we can see in Figure 11 that the node 3 changes its parent from 1
to 2. The WR2 does not allow the node 2 to send its partial aggregation value
until the node 3 has sent its result to the current parent. In the event of a
parent change the node 3 can still send its value to the new parent 2 and the in
network aggregation process can continue correctly.

WR3 in conjunction with WR2 assures that also the parent-neighbor link
dropped is resolved. In the case of two intersecting triangles as in Figure 11
the WR2 prevents the new parent 2 from sending its value before 3 has sent its
value. This is due to the fact that WR2 makes node 4 wait which recursively
forces node 2 to wait as well. In the case where the new parent 2 is the node
facing the center in a non-intersecting triangle then WR3 is required. It assures
that the node 2 also cannot send its value until node 1 and 4 have sent theirs.
Therefore, any new parent of a node after a parent-neighbor link drop is still
waiting on a potential new child.

The three Waiting Rules guarantee a proper spanning tree aggregation. All
possible parent changes caused by structural and link changes (under the as-
sumption of dynamic given) do not obscure the aggregation process.

Conclusion The 3 Waiting Rules assure correct in network aggregation in a
dynamic Delaunay triangulation with only �ipping edges.

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 38

6.2.2 Implementation of rules

The mentioned Waiting Rules should not only work properly but should also
be implemented somehow. The three rules make nodes wait until a certain
condition about their neighbors is ful�lled. The �rst Waiting Rule is easily
implemented as parents can identify all their children. Then a parent just
needs to wait until it has received the values from all children. A child node
c explicitly informs its parent p that c is not blocking p anymore by sending
c′s partial aggregation value to p. The second Waiting Rule needs additional
communication among the nodes to be implemented. The waiting node in an
intersecting triangle as seen in Figure 12 can identify itself as it has knowledge of
the neighboring nodes in the Delaunay triangulation. Therefore, it can wait but
needs to be noti�ed once the far node has sent its value. This can be achieved
if the far node sends its partial aggregation to its parent and the waiting node.
The third Waiting Rule also requires a noti�cation to the node facing the center.
A node forwarding its value therefore needs to send the value to neighboring
nodes of non-intersecting triangles.

In a general Delaunay triangulation there are few edges connected to every
node. In average every node has exactly 6 connections which make the addi-
tional message exchange for the Waiting Rules a constant factor in average.
Consequently, the proposed Waiting Rules are not only technically functional
but can also be implemented practically.

6.2.3 Non-blocking aggregation

Waiting Rules allow a correct in network aggregation and now we show that the
proposed Waiting Rules also do not block the overall aggregation at any point
in time. We show this with the number of nodes that can be blocked within one
triangle and the nodes that are obscured from adjacent triangles.

The WR1 blocks a maximum of 1 node in an intersecting triangle. WR2
also blocks 1 node in maximum. Having 2 blocking nodes there is always 1
node in an intersecting triangle that is not blocked by the triangle itself. In
a non-intersecting triangle WR3 may block 1 node. The WR1 may also block
the node facing the center by its two neighbors. But this is just the same node
as is blocked by WR3 already. Therefore, there can only be 1 blocked node in
maximum within a non-intersecting triangle.

It is easy to verify that adjacent triangles cannot block the node that is not
blocked by the triangle itself with the Waiting Rules 2 and 3. However the
'unblocked' node can be blocked with the WR1 from an outside triangle. But
the WR1 only guarantees that the in network aggregation is performed on the
current spanning tree. The leaves of the tree cannot be obscured from outside
triangles anymore and initiate the aggregation. Then the spanning tree shrinks
and �nally converges to the central triangle where the �nal result is evaluated.
Hereby the three Waiting Rules are su�cient and necessary for a correct in
network aggregation.

7 Dynamic Delaunay triangulation maintenance

So far our overall aggregation process performs correctly on a static and dynamic
virtual environment using a Delaunay triangulation as overlay network. To allow

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 39

(a) Flip of quadrilateral (b) Maximum non-
overlapping �ips

Figure 13: Flip properties of Delaunay triangles

the in network aggregation stay consistent we had to impose an assumption on
the dynamic of the nodes in the Delaunay triangulation. In this section we show
how the assumption of having only �ips in adjacent triangles can be enforced. To
do so the requirements for a dynamic aggregation focusing on �ips is analyzed.
Then the possible degenerated cases are presented which make the DT change
its structure. After showing that any violation in the DT can be detected locally
the DeDiLi algorithm is introduced. We will see that this algorithm allows the
nodes to be dynamic and still assures the �ip assumption.

7.1 Requirements for dynamic aggregation

In section 6 we proposed three Waiting Rules that allowed us to aggregate
correctly as long as only inner edges of quadrilaterals13 can be exchanged. In
this subsection we analyze more precisely what it means for individual nodes
and triangles to have a �ip in the overall Delaunay triangulation. First we show
what happens locally when a quadrilateral gets �ipped. Afterwards the maximal
number of changes in adjacent triangles to a node is indicated.

7.1.1 Flips only

Let us remember the empty-circle property of the Delaunay triangulation from
subsection 4. Any triangle cannot contain any other node within its circum-
circle. This rule is particularly interesting for adjacent triangles. Since two
adjacent triangles always have one common inner edge there exist two di�erent
circumcircles. Both circles cover partly the area of the adjacent triangle but
they do not contain the third node of the adjacent triangle. In a dynamic en-
vironment all nodes should be able to move around by changing their location
in the virtual space. The empty-circle property must hold at any point in time.
The circles continuously change their locations and size according to their trian-
gle's nodes. When the nodes of a quadrilateral move into a position where the
circumcircles enclose the adjacent node then the inner edge of those two adja-
cent nodes needs to be �ipped. This adjustment of the Delaunay triangulation
can be seen in the �rst graph of Figure 13. It can be veri�ed that performing

13Two adjacent triangles having a convex hull. It is also said that the two triangles are in
diamond shape.

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 40

(a) Collinearity (b) Cocircularity

Figure 14: Degenerated cases in DT

this �ip of the inner edge preserves the empty-circle property of the DT as the
new edge with its circumcircles cannot cover the adjacent node anymore.

7.1.2 No overlapping �ips

We have seen that quadrilaterals are allowed to switch their inner edge as nodes
move around. Now we consider the whole Delaunay triangulation with all its
triangles. Many quadrilaterals are overlapping by sharing a common triangle.
Two overlapping quadrilaterals that move their nodes such that both want to
�ip their edges would result in an unpredictable outcome of the new connecting
inner edges. It is trivial to see that the proposed Waiting Rules cannot cover
all possibilities of such overlapping �ips. Therefore, it must be prevented.

Any two overlapping quadrilaterals contain exactly one node that is con-
nected to every other node of those quadrilaterals. It must be this nodes re-
sponsibility to limit the movement of the involved nodes such that a maximum
of one quadrilateral can �ip its inner edge. In the second graph of Figure 13
node n is taking that responsibility for its adjacent nodes. In the graph the
absolute maximum number of allowed �ips in node n′s local environment can
be seen.

7.2 Degenerated cases

In [25, 26] it was shown that only (i, j)-transitions (i ≥ 2, j ≤ d, d = dimension)
of adjacent (d + 1)-tuples can occur in DT (S′) (S′ = S ∪∞) except for degen-
erated cases. In our case where d = 2 only (2, 2)-transitions (= flips) occur.
This is exactly what we wanted. Now we consider the degenerated cases that
need to be avoided in our Delaunay triangulation overlay network.

7.2.1 Collinearity

There exists a degenerated case when more than d + 1 nodes are coplanar [26].
In the 2-dimensional case the Delaunay triangulation is de�ned by the empty-
circle property. The degenerated case happens when two adjacent triangles with
its 4 nodes become aligned on a straight line (see Figure 14). In the context of
moving nodes the triangles will be de�ned again once the nodes have passed the
collinearity. However, it can be seen that major changes in connecting edges to

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 41

surrounding nodes may become necessary. This can involve much more complex
topology changes than �ips and must be strictly prevented.

A �rst approach to keep the dislocation of a node local and lowering the
possibility of passing collinearity is to use the local Voronoi area. We de�ne
the local Voronoi area of a node such that every node can identify it with its
neighbor information.

De�nition The local Voronoi area of a node n is the combination of the areas
in every triangle closest to the node n.

In Figure 14 the local Voronoi areas can be seen. In every adjacent triangle of
a node the local Voronoi area is given individually by the edges or the triangle
and their perpendicular bisectors. This method prevents nodes from moving
too far and still leaves the possibility to move in every direction. However, it
cannot avoid all occurrences of collinearity among moving nodes as is shown
in the �rst graph of Figure 14. Therefore, the Delaunay dislocation limitation
algorithm in section 7.4 also has to prevent collinearity.

7.2.2 Cocircularity

For our analysis the Delaunay triangulation is in general position14 at the begin-
ning. Nodes moving around in a dynamic environment can violate the empty-
circles of other triangles. Not every violation needs to be avoided as they are
necessary for �ips to occur. However, there exists a degenerated case when more
than d + 2 points lie in a hypersphere in the d-dimensional space [26]. In the
2-dimensional virtual world of a MMOG the degenerated case happens when
more than 4 points become cocircular.

A distributed network does not support continuous updates among nodes.
Therefore, we cannot consider the event of 4 or more nodes becoming cocircular.
There need to be discrete location updates and veri�cations for the degenerated
case. We transform the continuous requirement into a discrete requirement. In
the discrete context no more than one node can move into any empty-circle
between topology updates. In the second graph of Figure 14 we can see two
adjacent nodes moving into the same empty-circle within their local Voronoi
area. Such an event must be prevented before the topology gets updated. If
we can show that an empty-circle violation can be detected locally then the
responsible node of overlapping quadrilaterals (as mentioned in subsection 7.1.2)
can be the solution to this problem.

7.3 Local Delaunay violation detection

In this subsection we show that any empty-circle violation can be detected by
analyzing the movements of adjacent nodes. By adjacent nodes to a triangle we
mean the three nodes that are double connected to the triangle. Those nodes
form the adjacent triangles. In the following subsections we will see the prop-
erties of adjacent empty-circles and their impact on the detection possibility.
Then we proof recursively that violations can always be identi�ed locally. In
addition it can be shown that the time of encounter with the empty-circle can
be evaluated e�ciently as long as all nodes move on a linear path with constant
speed.

14The empty-circle property including its boundary is ful�lled.

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 42

(a) Adjacent empty circles (b) Identical empty cir-
cles

(c) Impossible Delau-
nay circles

Figure 15: Adjacent empty-circles

7.3.1 Adjacent empty-circle properties

Every triangle in the Delaunay triangulation has its own empty-circle. This
circumcircle overlaps the triangle in three partitions next to every edge. The
violation of the empty-circle can occur in any of those three partitions. For
the simplicity of the analysis we focus on only one partition without the loss of
generality. In the �rst graph of Figure 15 such a partition with its edge is shown.
The two adjacent empty-circles sharing this common edge are illustrated. Both
centers of the circles lie on the perpendicular bisector of the common edge. It
is also necessary that the centers' mutual location corresponds to the side on
which the third nodes are located in respect to that edge. The center c1 is on the
left of c2 and c1's circle also contains the adjacent triangle node to the left of the
common edge and vice versa for c2 on the right. Due to this mutual location
of the centers on the perpendicular bisector the partition of c1 on the right
of the edge is fully covered by c2's circle. Covered means that the mentioned
partition is protected against violating nodes by the adjacent empty-circle when
the nodes move continuously. Only the third node on c2's circle can move into
c1's partition without destroying other empty-circles beforehand.

In the case when the two centers reside at the same location then the 'two'
circumcircles are identical (see Figure 15). Since our Delaunay is assumed to
start always in a general position the empty-circles cannot coincide. The third
graph in Figure 15 shows the circumcircles when their centers are in inversed
mutual locations on the perpendicular bisector. This situation cannot exist for
any Delaunay triangulation as c1's circle covers the c2's partition on the side of
the common edge where it should have its third adjacent node.

7.3.2 Local detection of empty-circle violations

In this subsection we show recursively that an empty-circle cannot be violated
�rsthand by any node other than its adjacent nodes. For the sake of contradic-
tion let us assume that a non-adjacent node can enter the empty-circle. The
previous subsection gives the property that an adjacent empty-circle must be
destroyed beforehand. In our example of Figure 16 this means that the empty-
circle e2 must be violated before e1 can be violated in e2's partition. The same
is true for e3 as it must be destroyed prior to e2. Recursively adjacent empty-
circles need to be violated before the local empty-circle can be violated by a node
other than the three adjacent nodes. At some point the recursion path arrives

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 43

(a) Adjacent circles towards CH (b) Timely violation requirement

Figure 16: Recursive timely violation requirement

at the convex hull of the Delaunay triangulation where no further empty-circle
exists.

In fact the whole Delaunay triangulation can be put in a timely violation
requirement among triangles for every starting triangle. Adjacent triangles al-
ways need to have an earlier timestamp which decreases towards the bounding
convex hull (see Figure 16). For every edge of the convex hull no node lies on
the half-plane opposite the triangulation network. Therefore, there exists no
node that could violate the empty-circle containing the edge of the convex hull
in that edge's partition. This is in contradiction to the required timely relation
where the empty-circle on the convex hull should be violated �rst.

Conclusion It is su�cient to check the three adjacent nodes to any triangle in
the Delaunay triangulation for detecting its empty-circle violation.

7.4 DeDiLi: Delaunay Dislocation Limitation algorithm

With the knowledge that Delaunay violations of moving nodes can be detected
locally, we can implement an algorithm that limits the dislocation of every node
such that the DT can be maintained. Our approach is to prevent the degener-
ated cases and overlapping �ips from occurring by limiting the movements of
nodes before they change their position. The following two functions CCW and
INCIRCLE allow us to check nodes on collinearity and cocircularity respec-
tively. We will need these in our DeDiLi algorithm.

CCW (x, y, z) = det

 xx xy 1
yx yy 1
zx zy 1

 (3)

CCW (x, y, z)

 > 0 → z lies on left of −→xy
< 0 → x, y, z are collinear
= 0 → z lies on right of −→xy

(4)

INCIRCLE (x, y, z, d) = det

xx xy x2

x + x2
y 1

yX yy y2
x + y2

y 1
zx zy z2

x + z2
y 1

dx dy d2
x + d2

y 1

 (5)

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 44

Algorithm 1 DeDiLi: Delaunay Dislocation Limitation

1: choose ñ (=desired new location);
2: send ñ to neighbors (n); receive ñ [1..N] from neighbors (n);
3: sort ñ [1..N] clockwise according to n [1..N];
4: t := 1;
5: t [1..N] := 1;
6: flipped [1..N] := 0;
7: rand [1..N] := rand ({1, 2, . . . , N}) ;
8: for i := 1 to N
9: j := rand [i] ;
10: t̃ := mint∈[0,1] (CCW (nj−1 (t) , n (t) , nj (t)) > 0) ;
11: t̃ := mint∈[0,1]

(
t̃, CCW (nj (t) , n (t) , nj+1 (t)) > 0

)
;

12: if (flipped [j − 1] == 1‖flipped [j + 1] == 1) then
13: t̃ := mint∈[0,1]

(
t̃, INCIRCLE (nj−1 (t) , n (t) , nj (t) , nj+1 (t)) < 0

)
;

14: else if (INCIRCLE (nj−1 (t) , n (t) , nj (t) , nj+1 (t)) ≥ 0)
15: flipped [j] := 1;
16: t := min

(
t, t̃

)
;

17: t [j − 1] := min
(
t [j − 1] , t̃

)
;

18: t [j] := min
(
t [j] , t̃

)
;

19: t [j + 1] := min
(
t [j + 1] , t̃

)
;

20: for i := 1 to N
21: send t [j] to neighbor j;
22: receive t [j] from neighbor j;
23: t := min (t, t [1..N]) ;
24: dislocate to n (t);

De�nitions:
n (t) := n + (ñ− n) t;
nj (t) := n [j] + (ñ [j]− n [j]) t;

INCIRCLE (x, y, z, d)

 > 0 → d inside circle (x, y, z)
< 0 → d outside circle (x, y, z)
= 0 → d on circle (x, y, z)

(6)

We want the nodes to negotiate with their neighbors about how far they
can move. For this process every node needs to select a desired new location ñ
to where it would like to move until the next topology update. We make the
following assumption on how the nodes move between update.

Assumption Nodes move linearly with constant speed between topology up-
dates.

This means that a node will be at position n (t) = n + (ñ− n) t at time t where
n is the old position and ñ is the desired new position before the next topology
update. Using linear motions of nodes n (t) as the inputs in the above equa-
tions 3 and 5 gives us polynomials of degree 3 and 4. Evaluating the smallest
root (t ∈ [0, 1]) of the polynomial returns the time of the occurrence of a �rst
collinearity or empty-circle violation. This root can be found e�ciently due to
the low degree of the polynomials. If no root exists in t ∈ [0, 1] then the new

7 DYNAMIC DELAUNAY TRIANGULATION MAINTENANCE 45

desired locations of the examined nodes do not require any topology updates
in the Delaunay triangulation. Those nodes don't need to be limited by them-
selves and t = 1 can be chosen. However, if a root exists collinearity must
be prevented and edge �ips (equivalent to an INCIRCLE violation) must be
avoided if an overlapping quadrilateral was already allowed to �ip. A maximum
allowed dislocation can be found by setting the new maximum possible t of
all involved nodes just before the root that must be prevented. Choosing the
smallest dislocation t all neighbors agree on prevents degenerated cases from
happening and the whole Delaunay triangulation can be maintained (see sub-
section 7.5.1 for a more detailed maintenance requirement). The DeDiLi pseudo
code in Algorithm 1 on the preceding page presents the mentioned idea more
formally.

7.5 Algorithm analysis

The given DeDiLi algorithm proposes a distributed algorithm that allows a
Delaunay triangulation to maintain its topology among dynamic nodes. The
nodes cannot freely choose their new location as they get limited in the distance
they can move in a desired direction. In this subsection we show that the
requirements for maintaining the Delaunay triangulation are ful�lled and we
give a simple worst case of a �ipping edge.

7.5.1 Requirements ful�llment

From subsection 7.1 we know that to maintain a dynamic Delaunay triangulation
only �ips of adjacent triangles are allowed and that no overlapping �ips shall
occur. In addition the degenerated cases from subsection 7.2 cases must be
prevented. The DeDiLi algorithm is executed at every node which means that
for every quadrilateral there are two nodes that are connected to all four nodes.
The algorithm randomly processes all its neighbors (line 8 in Algorithm 1).
Performing the INCIRLCE function on line 13 detects the �rst occurrence of
an empty-circle violation if an adjacent neighbor was allowed to �ip already
(checked in line 12). Therefore, adjacent neighbors cannot both be �ipped.
This assures that only �ips occur as no overlapping quadrilaterals can both
change their inner edge. It is also the requirement necessary to prevent the
degenerated case of cocircularity (see Figure 14).

The second degenerated case (collinearity) is prevented with the lines 10 and
11. There the maximum dislocation of the adjacent triangles to the checked node
is strictly limited such that node collinearity among three nodes exists. Since
we do not allow collinearity among three nodes to occur it also cannot happen
among four and more nodes.

The algorithm considers the limitations of all neighbors (line 20 through 23).
It decides on the maximum dislocation that is allowed by all neighbors (line 23).
Doing so assures that only �ips as desired can occur in the Delaunay topology
between location updates.

7.5.2 Worst case analysis of edge �ip

The DeDiLi algorithm prevents nodes from moving too far such that overlap-
ping quadrilaterals cannot �ip at the same time. A worst case occurs when a

8 ANALYSIS OF MESSAGE COMPLEXITY 46

Figure 17: Worst case quadrilateral �ip

quadrilateral wants to �ip and all its overlapping quadrilaterals also want to
change their inner edge. Such a situation is illustrated in Figure 17. The edge
P1P3 wants to be exchanged by the edge P2P4 and all other inner edges should
change as well for the desired new locations. We want to show that the edge
P1P3 can still have a chance to �ip and the DeDiLi algorithm does not deadlock
in such a situation.

The DeDiLi algorithm randomly checks quadrilaterals around every node. In
the worst case all quadrilaterals want to �ip. The quadrilateral that is checked
�rst is allowed to �ip and the overlapping ones will be prevented. In the example
given the nodes P1 and P3 are the key points that the �ip of the dotted line
can occur. Both of them need to check the dotted edge before they check the
two adjacent double edges. This happens with a probability of Pr = 1/3. The
nodes P2and P4 cannot prevent the �ip from happening directly and will block
the double edge after they receive the maximum dislocations from P1 and P3.
Therefore, the deadlock is prevented with a probabilityPr = 1/3 ∗ 1/3 = 1/9.

8 Analysis of message complexity

In this section we are analyzing the number of messages needed to send among
nodes to perform a localized histogram aggregation. First, the message com-
plexity in two simple aggregation techniques is evaluated. Then our clustered
algorithm is analyzed. The analyses are based on a collective aggregation among
the nodes. This is the type of aggregation that is best supported by our clus-
tered aggregation procedure and it is also the aggregation that is of very high
interest for future MMOGs.

De�nition A collective aggregation uses the same aggregation function and the
same size of area of interest at the same time for all node.

The neighborhood map mentioned in the application examples of subsection 1.3
uses exactly such a collective aggregation. Every player in the game wants to
see its own neighborhood map. For this application a simple count is used as
the aggregation function. All players want their neighborhood map updated
frequently which means that all of them are interested in the aggregation result
whenever it is available. In other words all players 'consume' the aggregation at
the same time. The size of area of interest can be prede�ned by the implemen-
tation of a MMOG. The neighborhood map therefore is an application of high
interest requiring a collective aggregation.

8 ANALYSIS OF MESSAGE COMPLEXITY 47

8.1 Straight forward aggregation

For this �rst analysis of how many messages need to be sent for a collective
aggregation the most pragmatic way (straight forward) of aggregating locally is
used. The value of every node within the radius gets routed to the aggregating
node individually. We are interested in the �nal result that shows the number
of messages sent per node in average.

De�nition In a straight forward aggregation all values within the area of inter-
est are individually routed to the aggregating node.

Following we de�ne some variables which we are using in our mathematical
evaluation.

• n = number of nodes in the whole virtual environment

• r = radius of aggregation

• 4r2 = aggregation area (square with side length 2r)

We also make some assumptions on the virtual environment.

• Environment area = 1 (→ node density = 1)

• Node locations are uniformly distributed

First we calculate the number of nodes within one node's aggregation area N =
4nr2 which is the aggregation area times the node density. Now the average
number of hops to send a message from a source to the target is needed. We
use the conclusion from subsection 5.2.4 which tells that

√
n hops are required

in average to cross the diameter of an uniformly distributed environment with
n nodes. The analysis used the compass routing on a Delaunay triangulation
but the

√
n seems to be a reasonable average bound for any virtual environment

with only local connections. We want to know how many hops are necessary
for a Euclidean distance e which is

h (e) =
√

ne (7)

The in�nitesimal square area at a distance e from the aggregating node is

a (e) = 4 (r + dr)2 − 4r2

= 4r2 + 8r dr + 4dr2 − 4r2

= 8r dr + 4dr2

≈ 8r dr (8)

It follows that there are approximately n (e) ≈ 8nr dr nodes in the in�nites-
imal area at distance e. Using this result and equation 7 we can integrate over
the distance from the aggregating node to the radius of the aggregation area.

8 ANALYSIS OF MESSAGE COMPLEXITY 48

This gives us the average number of messages sent in the environment for the
aggregation value at one node.

m =
∫ r

0

√
nr · 8nr dr

= 8n3/2

∫ r

0

r2 dr

=
8n3/2r3

3

= O
(
n3/2r3

)
(9)

All nodes in the environment require the same amount in average. Therefore,
the above result also represents the average number of messages every single
node in the environment needs to send for a collective localized aggregation.

8.2 In network aggregation

Instead of routing values individually partial aggregates can be calculated on
the way to the aggregating node. This in network aggregation can be applied
to distributive and algebraic aggregation functions. In this analysis we do the
in network aggregation wherever it is possible at nodes of joining routes. Any
spanning tree rooted at every node extending to the radius of the aggregation
area is used. This allows only one aggregation value (no histogram information)
for the whole range which deteriorates the notion about the node's local envi-
ronment. The same de�nitions and assumptions as in the previous subsection
are used.

Since every node is linked to a parent node in the spanning it only needs to
send 1 message for every aggregating node. No messages need to be forwarded
since the nodes wait until they can send the partial aggregation value of their
subtree. Consequently, the number of messages sent for the aggregation of
one node is equivalent to the number of nodes within its area of interest. It
also represents the number of messages a nodes needs to send in average for a
collective environment aggregation with radius r

m = 4nr2

= O
(
nr2

)
(10)

8.3 Clustered aggregation

In this subsection we analyze our proposed localized histogram aggregation tech-
nique. The virtual environment is clustered in independent square cells. Every
cell aggregates on its own with the in network technique on a spanning tree.
Then the result is broadcasted to the radius of the area of interest on the ex-
tended spanning tree. At this point it is important that a collective aggregation
is performed. Only if all nodes have the same universal radius r then the broad-
casting to r can assure delivery. Otherwise the required broadcasting radius
is unknown to the cells. There might be nodes far away with a large area of
interest that would not receive the required broadcast of a smaller radius.

For the mathematical analysis we need two additional de�nitions

8 ANALYSIS OF MESSAGE COMPLEXITY 49

• f = number of clusters in the virtual environment

• g = number of clusters in the universally sized area of interest

As in the previous subsection every node sends exactly 1 message for the in
network aggregation process. Since there are no overlapping spanning trees due
to clustering the total number of messages for the aggregation process is is also
1. We need to consider the additional messages required for the Waiting Rules
of the dynamic aggregation. In subsection 6.2.2 we proposed to send a value to
the parent and to the neighbors who need to know when the message was sent.
In average a Delaunay triangulation has 6 neighbors at each node. We take
another 6 messages per node into our average calculation which is de�nitely an
upper bound for the average case. We do not include the messages required to
maintain the Delaunay triangulation as we consider the topology maintenance
apart from the aggregation process. After the aggregation of every cluster those
results are broadcasted which involves again 1 message per node on the spanning
tree of every cluster. The total number of messages mc required for broadcasting
one cluster equivalent to the average number of nodes in its radius.

mc = 4nr2

The total number of messages M in the whole virtual environment is com-
posed of the aggregation, Waiting Rule and broadcasting messages

M = n + 6n + f · 4nr2

This leads to an upper bound on the average number of messages every single
node needs to send for a collective aggregation. The property g = 4fr2 that the
number of cluster in the area of interest is in relation with the total number of
cluster and the radius is used in the evaluation.

m = 4fr2 + 7
= g + 7
= O (g) (11)

If a node wants to build up a clustered histogram it needs to receive at least
as many messages as there are clusters in its area of interest. When every node
in the environment wants such a histogram then the number of outgoing and
incoming messages is the equal in average. This leads to the lower bound of
sending messages per node for a clustered histogram aggregation.

m = Ω(g)

Conclusion The localized histogram aggregation is asymptotically average op-
timal in message complexity.

8.4 Comparing algorithms

Considering the asymptotical average number of messages (equations 9 and 10)
required per node, we see that the in network algorithm performs better than the

9 CONCLUSION 50

straight forward aggregation. On the other hand straight forward aggregation
can handle any aggregation function whereas with in network only distributive
(min, max, sum, prod) and algebraic (avg, geometric avg) functions are sup-
ported. In addition the in network algorithm does not support a histogram
aggregation which results in less detailed information for the aggregating node.

Our clustered algorithm is the only one which does not contain n in its
message complexity. This means that it is the only one among the three that is
fully scalable to the number of users in the virtual environment. The clustered
aggregation however comes with an o�set in precision as the aggregation cells
are prede�ned and the exact aggregation range cannot be calculated. It allows
like the in network algorithm the distributive and algebraic functions. These
'simple' functions are of high importance and cover all the example applications
given in subsection 1.3. We can also see that the number of messages in dense
areas does not increase as it depends solely on the clusters.

In a sample virtual environment with n = 106 players and an aggregation
radius r = 0.05 with f = 104 clusters there are g = 100 clusters inside the area
of interest. With these 'reasonable' assumptions for a future MMOG we show
the numerical message complexity for the above three aggregation techniques.

1. m ≈ 333′333 for straight forward aggregation

2. m ≈ 10′000 for in network aggregation

3. m ≈ 107 for clustered aggregation

The above numerical analysis shows a decrease of 2 magnitudes in message com-
plexity in favor of the newly proposed localized histogram aggregation technique.
The message complexity stays at a low degree for massively players whereas the
complexity of the �rst two algorithms is completely out of bound.

9 Conclusion

In the presented work there are several achievements that count towards our
contribution. First we identi�ed the need for a localized histogram aggregation
for future MMOGs based on a P2P topology. Without the existence of related
work about distributed histogram aggregations we proposed a clustered virtual
space to reduce the message complexity for collective aggregates. The overview
of the whole aggregation process was designed independent from the under-
laying topology using the idea of aggregating in network to the center within
each cluster. It allows the calculation of distributive and algebraic aggregation
functions by exchanging messages of constant size in the network.

The Delaunay triangulation was chosen as the overlay topology. It supports
the distributed construction of a spanning tree (required for in network aggrega-
tion) with compass routing and mutual parent-child identi�cation. We showed
that the three introduced Waiting Rules assure a correct aggregation among dy-
namic nodes in the virtual world. The dynamic of the nodes had to be limited
such that only �ipping edges in the Delaunay triangulation can occur. However,
we believe that this assumption is acceptable as all possible movements can be
performed with subsequent �ips.

10 FUTURE WORK 51

We could prove that Delaunay triangulation violations can be detected lo-
cally. Using this knowledge the Delaunay Dislocation Limitation (DeDiLi) al-
gorithm was created to assure only non-overlapping �ips. Therefore, we are
able to maintain the Delaunay triangulation as required for the correct dynamic
aggregation. The dynamic can be limited very much but our worst case analysis
shows that a �ipping edge always has a certain chance to do so.

The average message complexity at every node of a collective aggregation was
evaluated to the lower bound of a localized histogram aggregation. Therefore, an
asymptotical average optimal message complexity could be shown. We believe
that our process is a �rst approach to a localized histogram aggregation for P2P
MMOGs that is scalable to the number of players in the game.

10 Future work

The purpose of this work was to �nd a scalable aggregation technique. The
message complexity was analyzed and found to be optimal in average. Appli-
cations in a P2P MMOG such as the neighborhood map want their data to
be updated frequently. Since every player would like to see the current local
overview of players the aggregation data should be up to date. Our broadcasting
step requires

√
nr hops in average to reach all players in the area of interest.

This can cause long delays for clusters at the border of the reception area. Long
range contacts (LRCs) as proposed in [18] could be a future improvement to the
aggregation speed.

In our analysis we showed how an aggregation can be performed on reliable
peers. However, in any P2P overlay network nodes can join, leave or fail. The
overall network should be able to remain in a consistent state and recover from
the topology changes. The solution presented in [27] to construct a Delaunay
overlay network incrementally might be used for a local and fast reconstruction
of the neighborhood of a failing node. Together with a consistent aggregation a
fault-tolerant overlay network could be constructed.

The proposed Delaunay Dislocation Limitation algorithm (subsection 7.4)
assures that the Delaunay triangulation can be maintained with only �ips. How-
ever, it limits the movements of nodes between topology updates. In future work
the dynamic should be analyzed and possibly improved with a more advanced
limitation algorithm.

10 FUTURE WORK 52

Acknowledgment

I would like to express my very warm thank you to Professor Roger Wattenhofer
and Professor Junehwa Song. Their open-minded and international thinking
gave me the exceptional opportunity to write my master thesis in South Korea
in collaboration between ETH Zurich (Swiss Federal Institute of Technology
Zurich) and KAIST (Korean Advanced Institute of Science and Technology). A
great thank you also goes to Dr. Jaesun Han, Sungwon Choe, Sunghwan Ihm,
Hyonik Lee and Jinwon Lee who helped in many meetings and discussions to �nd
the right tracks. Many other members of Professor Song's Network Computing
Laboratory gave useful inputs in discussions and shall be mentioned herein.

A very special thank you goes to my parents who supported me during all
my studies. I owe them the accomplished international experiences that gave me
an extremely valuable insight into various cultures on this planet. My friends
from the Swiss lifesaving swim team SLRG helped me recharge my brain after
hours of studying. Thankful for everyone's support I come to the completion of
my Master of Science ETH in Computer Science.

REFERENCES 53

References

[1] Gamespy.com, http://archive.gamespy.com/amdmmog.

[2] MMOGCHART.COM, http://www.mmogchart.com.

[3] Kazaa, http://www.kazaa.com.

[4] Skype - Free Internet telephony that just works, http://www.skype.com.

[5] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Looking Up Data in P2P Systems. Communications of the ACM,
46(2), pages 43-48, February 2003.

[6] Ji Li and Dah-Yoh Lim. A Robust Aggregation Tree on Distributed Hash
Tables. In Proc. MIT Student Oxygen Workshop (SOW), Ashland, MA,
USA, September 2004.

[7] Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Robust Aggrega-
tion Protocols for Large-Scale Overlay Networks. In Proc. of the 2004 In-
ternational Conference on Dependable Systems and Networks (DSN), pages
19-28, Florence, Italy, June 2004. IEEE Computer Society.

[8] P. Th. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié. From
Epidemics to Distributed Computing. IEEE Computer, 37(5), pages 60-67,
May 2004.

[9] I. Gupta, R. van Renesse, and K. P. Birman. Scalable Fault-tolerant Ag-
gregation in Large Process Groups. In Proc. of the 2001 International Con-
ference on Dependable Systems and Networks (DSN), pages 433-442, Gote-
borg, Sweden, July 2001. IEEE Computer Society.

[10] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-Repairing
Peer-to-Peer System Resilient to Dynamic Adversarial Churn. In Proc.
of the 4th Inter-national Workshop on Peer-To-Peer Systems (IPTPS),
Ithaca, New York, USA, February 2005.

[11] Samuel Madden, Michael J. Franklin, Joseph Hellerstein, and Wie Hong.
TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Networks. In Proc.
of the 5th Symposium on Operating Systems Design and Implementation
(OSDI), Boston, MA, USA, December 2002.

[12] Samuel Madden, Rober Szewczyk, Michael J. Franklin, and David Culler.
Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor Networks. In
Proc. of the 4th IEEE Workshop on Mobile Computing Systems and Ap-
plications (WMCSA), pages 49-58, Callicoon, New York, USA, June 2002.
IEEE Computer Society.

[13] Ji Li, Karen Sollins, and Dah-Yoh Lim. Implementing Aggregation and
Broadcast over Distributed Hash Tables. To appear in ACM Computer
Communication Review, 2005.

[14] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh
Govindan, Li Yin, and Fang Yu. Data-Centric Storage in Sensornets with
GHT, a Geographic Hash Table. Mobile Networks and Applications, 8(4),
pages 427-442, August 2003.

REFERENCES 54

[15] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing
with Guaranteed Delivery in Ad Hoc Wireless Networks. In Proc. of 3rd
ACM Int. Workshop on Discrete Algorithms and Methods for Mobile Com-
puting and Communications (DIAL), pages 48-55, Seattle, USA, August
1999.

[16] Shun-Yun Hu and Guan-Ming Liao. Scalable Peer-to-Peer Networked
Virtual Environment. In Proc. of ACM SIGCOMM 2004 workshops on
NetGames '04: Network and system support for games, pages 129-133,
Portland, Oregon, USA, August 2004.

[17] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned Feder-
ation of Game Servers: a Peer-to-peer Approach to Scalable Multi-player
Online Games. In Proc. of ACM SIGCOMM 2004 workshops on NetGames
'04: Network and system support for games, pages 116-120, Portland, Ore-
gon, USA, August 2004.

[18] Filipe Araújo and Luís Rodrigues. GeoPeer: A Location-Aware Peer-to-
Peer System. In Proc. of 3rd IEEE International Symposium on Network
Computing and Applications (NCA), pages 39-46, Cambridge, MA, USA,
August 2004. IEEE Computer Society.

[19] Jörg Liebeherr and Michael Nahas. Application-layer Multicast with Delau-
nay Triangulations. In Proc. of IEEE Globecom 2001, San Antonio, Texas,
USA, November 2001.

[20] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-Peer
Support for Massively Multiplayer Games. In Proc. of the twenty-third An-
nual Joint Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM 2004), pages 96-107, Hong Kong, China, March 2004.

[21] Joaquín Keller and Gwendal Simon. SOLIPSIS: A Massively Multi-
Participant Virtual World. In Proc. of International Conference on Par-
allel and Distributed Techniques and Applications (PDPTA 2003), CSREA
Press 2003, Vol. 1, pages 262-268 ,Las Vegas, Nevada, USA, June 2003.

[22] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass Routing
on Geometric Networks. In Proc. of 11th Canadian Conference on Compu-
tational Geometry, pages 51-54, Vancouver, BC, Canada, August 1999.

[23] Richard Gold. Self-Organizing Route Aggregation for Active Ad-Hoc Net-
works. In Proc. of 4th IEEE Conference on Open Architectures and Network
Programming (OPENARCH 2001), Anchorage, Alaska, April 2001.

[24] Prosenjit Bose and Pat Morin. Online Routing in Triangulations. In Proc. of
the 10th International Symposium on Algorithms and Computation (ISAAC
1999), pages 113-122, Chennai, India, December 1999.

[25] Thomas Roos. Voronoi diagrams over dynamic scenes. Discrete Applied
Mathematics, 43(3), pages 243-259, June 1993.

[26] Gerhard Albers, Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas
Roos. Voronoi Diagrams of Moving Points. International Journal of Com-
putational Geometry and Applications, 8(3), pages 365-380, 1998.

REFERENCES 55

[27] Masaaki Ohnishi, Ryo Nishide, and Shinichi Ueshima. Incremental Con-
struction of Delaunay Overlaid Network for Virtual Collaborative Space.
In Proc. of the Third International Conference on Creating, Connecting
and Collaborating through Computing (C5'05), pages 75-82, Kyoto, Japan,
January 2005.

[28] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed Con-
struction of a Planar Spanner and Routing for Ad Hoc Wireless Networks.
In Proc. of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM 2002), New York, USA, June,
2002.

[29] Godfried T. Toussaint. The Relative Neighborhood Graph of a Finite Pla-
nar Set. Pattern Recognition, Vol. 12, pages 261-268, 1980.

[30] Xiang-Yang Li and Yu Wang. Quality Guaranteed Localized Routing for
Wireless Ad Hoc Networks. In Proc. of the International Workshop on Mo-
bile and Wireless Networks (MWN 2003), Providence, Rhode Island, USA,
May 2003.

