
Analysis of Dynamics in Mobile Ad-Hoc
Networks

Student Project

Student: Jörg Wagner
Advisors: Vincent Lenders, Martin May

Professor: Bernhard Plattner

31. July 2005

Task Formulation

Summary

Small and mobile devices such as handhelds (PDAs) with wireless communication capabilities
(e.g. WLAN) are becoming more and more ubiquitous. Nowadays, the use of WLAN with such
devices is mostly limited to downloading messages or surfing the Web via a fixed access point.
Ad hoc networking is a promising communication paradigm where devices form a network in
a dynamic and self-organizing manner without any fixed infrastructure support such as access
points or dedicated routers. Therefore, communication is no more limited to fixed places con-
trolled by network operators but becomes in principle possible anywhere as long as cooperative
nodes are available in the neighborhood. In order to develop protocols for ad hoc networks,
researchers have made a set of assumptions on the user mobility. However, very few people have
validated these assumptions with real networks. The goal of this thesis is to empirically analyze
the mobility behavior of users and the resulting network characteristics. For this purpose, the
student should collect data from a testbed consisting of approximately 20 handhelds carried
by mobile users . The first task of the student is to develop the required tools and programs
to monitor the desired network characteristics. Then, the student should distribute the hand-
helds to test users (e.g. TIK members) and conduct the relevant measurements. When enough
data is collected, the student should analyze the collected data and extract characteristics on
relevant network metrics.

Tasks

• Make a survey of different developer platforms for Windows Mobile Edition 2003.

• Choose one platform and familiarize yourself with it

• Learn how to use the WLAN interface.

• Define a set of relevant network metrics that you want to assess.

• Implement the required tools to assess the metrics.

• Distribute the handhelds to test users and make the necessary measurements.

• Analyze the collected data and extract characteristics for the relevant network metrics.

Acknowledgement

I want to thank my supervisors Vincent Lenders and Martin May for their strong commitment,
which compared to student fellows’ experiences concerning supervision of student projects was
out of the ordinary and posed additional motivation to me.

Jörg Wagner

Abstract

Performance of routing algorithms nowadays is mainly analyzed based on mobility models,
such as the well-known random waypoint model. It is not clear, however, whether these models
actually reflect real user behavior. Therefore data is collected from a real network and analyzed
with respect to node degrees, path lengths, route stability under different routing metrics, and
connectivity to a fixed gateway in this student project. The underlying testbed consists of
20 iPAQs connected through Wireless LAN in ad-hoc mode. The main contributions are two
mathematical models on the issue of route stability enabling the separation of route interrup-
tions due to user mobility and due to critical links. This separation also enables a comparison
of data collected from the testbed with the outcome of simulations based on mobility models.
It is demonstrated that with respect to connection time between nodes the random waypoint
model shows good match with the empirical network data. Perfect match is achieved with
the random reference point mobility model, which is one of the most general group mobility
models.

Contents

1 Introduction 1

2 Testbed 3
2.1 Measurement Application . 3

2.1.1 Threads and Their Tasks . 3
2.1.2 Estimation of Caused Traffic . 5
2.1.3 BSSID Partitioning . 5

2.2 Experiment Setup . 7
2.3 Evaluation Methodology . 8

3 Results 12
3.1 General Network Characteristics . 12

3.1.1 Degree Distribution and Clustering Coefficient 12
3.1.2 Multihop-Neighbors and Shortest Path Routes 14
3.1.3 Gateway Connectivity . 16

3.2 Breaking Routes –
Two Fundamental Causes and Their Separation 19
3.2.1 Outline . 20
3.2.2 A Word about Notation . 20
3.2.3 Statistical Model . 21
3.2.4 Estimation Procedure . 23
3.2.5 Online Estimation of Route Interruption Reasons 28
3.2.6 Comparison with Mobility Models . 29
3.2.7 Dynamic Characterization Employing

Auto-Covariance Functions . 32
3.3 Comparison of Route Stabilities under HOP, PER and RTT Metrics 34

4 Conclusion 39

A Measurement Application 41

B Implementation of Mobility Models 51
B.1 Random Waypoint Model . 51

i

B.2 Random Reference Point Mobility Model . 52

C Windows CE Developer Platforms 55
C.1 Microsoft Development Tools . 55

C.1.1 eMbedded Visual C++ 4.0 . 55
C.1.2 Visual Studio .NET . 56

C.2 Java Based Development Tools . 56

ii

List of Figures

2.1 Illustration of BSSID partitioning. 6
2.2 Floor plan with single users’ offices. 9

3.1 Node degree distributions for single devices. 13
3.2 Node degree distribution averaged over all devices. 14
3.3 PMF of number of multi-hop-neighbors for each single device. 15
3.4 PMF of number of multi-hop-neighbors averaged over all devices and distribution

of shortest path between any two devices. 16
3.5 Distribution of distance to gateway (in hops) for each single device. 17
3.6 Number of received (blue) and forwarded (red) gateway packets. 18
3.7 Importance of single devices for network covering. 19
3.8 Route stability in mobile, partially mobile and static ad hoc networks. 22
3.9 Empirical route stability and its least squares approximation. 24
3.10 CDFs for Trtl,l,e and Trtl,l,o approximated based on pe(t) and po(t). 25
3.11 Plots of the PDF of the Weibull distribution for different β. 26
3.12 PDFs for residual lifetimes and lifetimes corresponding to CDFs in Fig. (3.10) 27
3.13 CDFs of residual link lifetimes as resulting from the random waypoint model

under different ranges and thinking times. The CDFs for Trlt,l,o (solid) and Trlt,l

(dashed) as measured during the experiment for comparison. 30
3.14 CDFs of residual link lifetimes as resulting from the random reference point

group mobility model and as extracted from the measured data from the exper-
iment. 31

3.15 Sketch of auto-covariance functions with contributions from stable (blue) and
critical (red) nodes. 33

3.16 Autocovariance functions of node degree courses. 35
3.17 50th percentile of remaining route durations under HOP, PER and RTT metric. 36
3.18 PMF of no. of hops in routes established based on HOP, PER and RTT metric. 38

iii

List of Tables

2.1 Overall traffic generated by D devices within five seconds. 5

3.1 Summary of relevant random variables. 21
3.2 Values for pe and po for different time intervals t. 25
3.3 Mean and standard deviation of PDFs. 28

iv

Chapter 1

Introduction

Wireless ad-hoc networking is a more and more emerging communication alternative to in-
frastructure networks and a major object of current research. Routing in such networks is of
particular interest, as it is a much more sophisticated issue than in wired networks. A difficulty
in this context is the degraded stability of routes, which is an immediate consequence of the
mobility of the network nodes. Further the packet forwarding process itself causes much more
costs than in wired networks, as the data cannot be directed to the next relay device by simply
choosing the appropriate wire, but also constitutes traffic disturbing other nodes’ channels.

So far experimental investigation of ad-hoc networks has mainly focused on static networks:
In [1] different routing metrics for static ad hoc networks are investigated, [2] focuses on link
level characteristics in such networks. The performance of routing protocols in mobile ad-hoc
networks has mainly been investigated in terms of simulations based on mobility models, e.g.
the popular random way point model. It is not clear, however, whether these models can
actually yield reasonable matches with real networks.

In this thesis measurements are conducted in a mobile ad-hoc network consisting of 20 iPAQs
equipped with 802.11b WLAN modules. The testbed is described in detail in the second
chapter of the report. The measurements mainly aim to enable the reconstruction of the
logical topology at discrete points of time as well as the according link levels in terms of packet
error rates and round trip times. The received signal strength – although a value of interest
in this context – could not be determined due to limitations of the WLAN module. In order
to further determine connectivity to a backbone network the network is flooded by a virtual
gateway node periodically.

The investigated network characteristics may be classified into two categories. First some gen-
eral network properties such as the node degree distribution, the clustering coefficient and the
average shortest path length, which actually completely characterize a static network (see [3])
are discussed. The second part of the evaluation is mainly about mobility specific characteristics
afterwards, in particular about the issue of route stability. In this context two mathematical
models are proposed which enable the separation of route interruptions due to user mobility
and due to critical links. Further the empirical data is compared with the outcome of simu-

1

lations based on two common mobility models, namely the random waypoint model and the
random reference point group mobility model.

The obtained results in general have to be evaluated against the background of the chosen
experiment environment, which in this case is a research lab of ETH Zurich.

2

Chapter 2

Testbed

2.1 Measurement Application

2.1.1 Threads and Their Tasks

In this section the rough structure of the application running on the iPAQs for conducting the
experiment is described. It consists – the graphical user interface not taken into account – of
six threads, which are listed in the following.

The code for the key functions of these threads is shown in the appendix. The application
essentially shall enable the reconstruction of the logical topology at discrete points of time
as well as some link level measures, namely packet error rates and round-trip times. The
received signal strength which also would be a parameter of interest is not measured due to
technical limitations of the WLAN module. Actually signal strength values could be read from
the network interface card, however, these turned out to be mixtures of several devices’ signal
contributions. In addition to the measurements of those parameters, which essentially are
all measured by single-hop packet exchange between nodes, a single virtual gateway initiates
packet flooding over the whole network periodically. If these packets are received by a certain
node this is interpreted as the device having a connection to the gateway.

All network traffic generated by the application is handled by UDP sockets based on the
Winsock API, which is supported by the eMbedded Visual C++ 4.0 IDE to a large extent.

In the following a short summary of the single threads and their tasks is listed:

• Main-Thread

– Provides user interface for getting nickname.

– Starts other threads.

– Runs message loop for receiving messages from other threads and – based on these
– serving the GUI threads.

3

• Client-Thread

– Sends broadcast packets containing device ID, time stamp and packet index every
500 ms.

– Scans for BSSIDs in order to reduce effect of BSSID partitioning (see section 2.1.3).

– Asks the (possibly blocked) gateway thread, whether it has received any packets
from the gateway within the last five seconds (necessary for being able to display
whether a connection to gateway is currently available or not).

• Server-Thread

– Receives broadcast packets from other devices’ client-threads and writes their in-
formation to logfiles (new logfiles are created whenever the current one reaches a
size of 1 MB).

– Computes packet error rate.

– Wakens the RTT-request-thread by informing it, which devices currently are in
range and need to be addressed, every five seconds.

– Sends messages to the main-thread every five seconds in order to update the display.

• RTT-Request-Thread

– Receives message from server-thread with devices which are currently in range.

– Sends (UDP) unicast packets (withouht RTS/CTS) with a time stamp to all devices
listed by the server-thread (waits 200 ms between two such packets).

• RTT-Acknowledge-Thread

– Receives request packets from other devices RTT-Request-Threads and immediately
bounces them back.

– Receives packets from other devices RTT-Acknowledge-Threads, gets current time,
computes RTT and writes it to logfiles.

• Gateway-Thread

– Receives packets from gateway or relays.

– Adds the own device as relay in the packet, forwards (via broadcast) and logs it if
it has not seen it yet.

The gateway device shares the first five threads with the applications running on the other
devices. Its gateway thread has to be different of course. It just sends indexed broadcast
packets every 2.5 seconds on the gateway.

The periodic broadcast packets send by the client-thread actually are redundant as all the
information they contain could be retrieved from the MAC-layer beacon packets. Windows

4

Packet Type Pkts per 5 sec
Client-Broadcasts 10 ·D

RTT-Request D2

RTT-Acknowledge D2

Gateway-Forward 2 ·D
Total 2 ·D2 + 12 ·D

Table 2.1: Overall traffic generated by D devices within five seconds.

Mobile 2003, however, does not support raw sockets, which are necessary in order to have
access to those beacon packets on transport layer.

2.1.2 Estimation of Caused Traffic

To estimate the overall traffic we have a look at an artifical scenario, where there are D devices
all being in each other’s ranges. In this case within five seconds the traffic in the air is as shown
in Tab. (2.1.2).

Each packet contains 62 header bytes (24 802.11 MAC, 20 IP, 8 UDP), 48 bytes payload and
thus 110 bytes in total. The transmission rate is 11 megabit per second. Assuming the worst
case scenario that D = 20 this results in a time occupation of

1040packets
5s · 110 bytes

packet · 8 bits
byte

11 · 106 bits
s

= 1.7%. (2.1)

Although beacon packets sent by the MAC layer are neglected in this rough estimation, there
should not be a huge number of collisions even under that extreme condition.

2.1.3 BSSID Partitioning

When doing the first test runs for the handheld experiment the following problem emerged:
Although two devices A and B were separated less than some meters they could not receive
each other’s packets. On the other hand each device A or B itself could receive packets from a
couple of other nodes, which again were not seen by the other device B and A.

When sniffing packets with tcpdump on a notebook the problem became obvious: some packets,
although being assigned to the same service set identifier (SSID), contained different basic
service set identifiers (BSSID). The BSSID is a concept making lots of sense in infrastructure
mode. If a wireless station is in the range of two access points with equal SSID, it clearly has
to decide in favor of one of them. Therefore it only picks up packets containing the access point
specific BSSID (which is related to its MAC-address) in their header.

5

Figure 2.1: Illustration of BSSID partitioning.

Unfortunately this BSSID is of relevance even in WLAN networks driven in ad-hoc mode.
Instead of the access points each network node itself is able to advertise a own BSSID to the
other devices. Whenever two devices meet each other they agree on one common BSSID, which
they again advertise to newly arriving devices in the following. If a single device now gets in
range of this network it recognizes that there already exists an ad-hoc network and attaches
to it without problems. If one wants to establish a static ad-hoc network BSSID partitioning
therefore is not a major problem. As long as one just adds one device after another to the
network, all nodes will finally share the same BSSID.

The actual problem emerges in mobile ad-hoc networks, whenever two single nodes meet outside
the main network and finally get into its range simultaneously. Since the devices had met
without any other network being available, they will have set up their own network specified
by one of the BSSIDs they had advertised. In the moment they get in range of the main
network therefore two independent networks collide. The problem emerging is that not only
the devices in the 2-node-network are willing to attach to the larger network in that case, but
even vice versa. Each node in both networks will recognize that there are two networks it could
attach to, some will attach to the one, some to the other. Each device thus starts randomly
hopping forth and back between the two nets. Without any handling it actually took up to
half an hour until this process reached its steady state, when all devices finally were united in
one network.

Although plugging a lot of time into handling that issue, I did not manage to completely get rid
of it. However, I could reduce the time span until two colliding networks converge to a single
one significantly by making use of the network device interface specification (NDIS) driver
development library provided by Windows. With this utility I scanned for access points (which
correspond to networks and their BSSIDs in ad-hoc mode) in parallel to the network card
driver. Scanning for access points in this context means not only scanning, but when detecting

6

more than one BSSID with the desired SSID connecting to one of them (not necessarily the
one with stronger signal strength as it turned out in some tests). If such a scan is followed
by a change to a lower BSSID the application running on the device (unfortunately not the
driver) stops scanning. As on the other devices, which have changed to or still are at the higher
BSSID, still both, driver and application, are scanning, the probability that they switch to the
lower BSSID is larger than the one that devices at the lower BSSID switch to the higher one.

Clearly this does not solve the BSSID partitioning problem. But in experiments it turned out,
that the stabilization process that took up to half an hour previously was completed in less
than two minutes in most cases afterwards.

Unfortunately this procedure does its job very well for two colliding networks only. For three
or more colliding BSSIDs the convergence in one single network still takes a lot of time. This
actually happened every morning, when people started to work at different ends of the floor
and the network was unified by new devices arriving in the middle of them. I got rid of
that problem, by starting evaluating the measured data not till that transient phase had been
completed. However, in some cases there also were such periods up to 15 minutes, when groups
of devices returned from the mensa after lunch, which actually influenced the measurements.

I actually wanted to register the number of networks with the same SSID, a device sees while
scanning for access points. Unfortunately that plan failed due to a bug in my software.

When searching the internet I noticed, that there have been even other experiments conducted,
where BSSID partitioning was an issue. When MIT people set up their ”Roofnet”, a wireless
802.11b multihop network (see [2]), they kept exchanging the network cards until they finally
found some that do not suffer from that problem. Several cards from Senao finally turned out
to work fine.

2.2 Experiment Setup

In this section the experiment setup is described in detail. The network being investigated in
this thesis consisted of 20 nodes (HP iPAQs hx2200) – 19 of these nodes were mobile and carried
by members of a research group of ETH Zurich and some students doing student projects with
that group. The 20th one was fixed and considered as a virtual gateway to a backbone network,
e.g. the internet. The network was based on 802.11b WLAN technology and organized in ad-
hoc mode. The users spent most of the time at their desks. They mainly moved for going to
the lavatory, having lunch, taking coffee breaks, picking up printouts or meeting each other for
discussions. While some participants took along their devices wherever they went, some others
now and then forgot the iPAQs in their office. Although those people where encouraged not to
do that, I do not regard this as major falsification source of my measurements, since in a real
world application this would be their natural behavior.

The experiment ran for five days within one week from 10 am to 5 pm in each case. While the
virtual gateway was always active during that period, the mobile nodes where allowed to leave

7

the floor. In particular some participants started to work later than 10 am, finished earlier
than 5 pm or left for meetings outside ETH. During lunch devices where taken along to the
mensa, where they often formed a new independent network.

Fig. (2.2) shows a site plan of the floor the experiment was conducted on. The inserted numbers
indicate the locations where the corresponding nodes lingered most of the time, i.e., the desks
of their users. Four devices changed their user during the week, as some became sick, had two
days off resp. where abroad over more than one day due to conferences. In these cases the
devices where redistributed among other group members in order not to shrink the long-term
network size. Two devices thereby had to be moved to different offices (depicted in orange in
Fig. (2.2)).

As mentioned previously I did not manage to completely get rid of BSSID partitioning. The
problem arising with that difficulty was grave in particular, when more than two independent
networks met each other. This of course was the case in the morning, when people started
to work at different ends of the floor and the network was unified by a new device arriving
in the middle of both. I got rid of that problem, by starting evaluating the measured data
not till that transient phase had been completed. However, in some cases there also were such
periods up to 15 minutes, when groups of devices returned from the mensa after lunch, which
actually influenced the measurements. Further there were some short adaption periods up to
two minutes for unifying two meeting networks (e.g. when a pair of users returned from a coffee
break) throughout the whole day.

2.3 Evaluation Methodology

Before actually being evaluated in Matlab the measured data somehow had to be converted
from their raw version in the logfiles into a representation Matlab can deal with. Further I had
to remove the time shifts which emerged due to the enormous clock drifts in the iPAQs (more
than a second during one day). The corresponding tool I developed in C++ mainly consisted
of three parts.

The first part managed to figure out and remove the time shifts between the device clocks. This
is done by investigating a devices logfile and comparing the temporal order of packet receptions
and the assigned origination time.

The second part translated the pure logfiles in actual network topologies G(V, E) with vertices
V and edges E. These are represented in N ×N adjacency matrices A, with N the number of
iPAQs denoted as vertices u1 . . . uN in use, where

aij =

{
1 if uiuj ∈ E

0 else.
(2.2)

Note that this is not an adjacency matrix in a mathematically strict sense, since it is not

8

F
ig

u
re

2.
2:

F
lo

or
p
la

n
of

G
-fl

o
or

in
th

e
E

T
Z

b
u
il
d
in

g.
N

u
m

b
er

s
in

d
ic

at
e

th
e

si
n
gl

e
u
se

rs
’
offi

ce
s.

V
ir

tu
al

ga
te

w
ay

is
sh

ow
n

in
b
lu

e,
d
ev

ic
es

w
it

h
ch

an
gi

n
g

u
se

rs
ar

e
sh

ow
n

in
or

an
ge

.

9

symmetric necessarily. This is as there might occur scenarios, where one device sees another
one, but not vice versa, e.g. if one of them has lots of hidden nodes around it and the other
one has not.

The topology is sampled every seven seconds. This is to make sure that at least one RTT scan
has been completed within that period. Every sample is represented in an element of a linked
list. Each such element contains

• The according topology in an adjacency matrix A.

• An identically organized matrix P containing the packet error rates between each pair
of nodes.

• Another such matrix R containing the RTT between each pair of nodes, as well as a
matrix that indicates whether a round trip time was actually measured or copied from
the last sample due to a current packet loss (necessary in order not to copy RTTs more
than once).

For detailed descriptions on how a link between two devices is defined, and how packet error
rate and round trip time are computed see section (3.3).

The third task of the analysis tool finally is to extract some information out of the topology,
that can be interpreted in Matlab afterwards. In particular the tool extracts

• The distribution of the number of single-hop-neighbors each single device has over all
samples. For device i the number of single-hop-neighbors ns,i in the current sample can
be found as

ns,i =
N∑

j=1

aij . (2.3)

• The distribution of the number of multi-hop-neighbors each single device has over all
samples: This is done by constructing spanning trees (one per subnet) over the network
by applying the breadth-first-algorithm. A slight inaccuracy emerges in this context as
A is assumed symmetric for that purpose.

• The contact and inter-contact times between the devices: This is done by considering
the difference between two successive topology samples δA = Ai − Ai+1. If a δaij = −1
the end of a contact is detected and logged and the according inter-contact time counter
reset to 0, if a δaij = 1 a new contact is detected, the inter-contact time logged and
the according contact time counter reset to 0. If finally a δaij = 0 both contact and
inter-contact time counter for that device pair are incremented by one.

• The path lengths between all device pairs under different routing metrics: These can be
found by applying Dijkstra’s Algorithm, where edges in the network graph are assigned
a certain weight depending on the metric of interest.

10

• The time spans over which the routes are stable under these metrics depending on their
lengths: This is done by taking a found route and traversing the linked list as long as
all links the route consists of are stable. Further also the time a route is actually the
optimal one with respect to a particular metric is registered.

The extracted data resp. the matrices and vectors finally are transferred to Matlab. This is
done by establishing a pipe to the Matlab process via the Matlab Engine API.

11

Chapter 3

Results

In this chapter the various results – both extracted from the measurements and from mathe-
matical models – are discussed. The chapter is subdivided in three sections. First some general
network characteristics, such as node degree distribution, path lengths and gateway connectiv-
ity are evaluated. This section shall mainly give some intuition on the network structure. The
second section contains the key contributions of this thesis, namely two mathematical models
which enable the separation of route interruptions due to user mobility and critical links. The
proposed procedures are applied to the data collected from the testbed. The outcome of one
of them afterwards is compared to two mobility models. Finally the performances of three
routing metrics with respect to stability are compared in the third section.

3.1 General Network Characteristics

Complex (static) networks are often assumed to be reasonably characterized by three parame-
ters, namely the degree distribution of their nodes, the clustering coefficient and the average
shortest-path length [4]. These and some additional characteristics are discussed in the follow-
ing subsections.

3.1.1 Degree Distribution and Clustering Coefficient

The degree of a node in a network graph is equal to the number of its immediate neighbors k,
i.e., those nodes which are reachable within one hop. We look at the node degree distribution
not in terms of the distribution within a particular realization of a topology, but average over
all realized topologies.

In random graphs all nodes are assumed to follow the same distribution law. In real mobile
networks this is not the case of course, but strongly depending on the behavior of the cor-
responding user. This is confirmed in Fig. (3.1), where degree distributions for all 20 nodes
are shown. By considering centrally located nodes such as device no. 1 (refer to Fig. (2.2)

12

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 1

P
M

F

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 2

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 3

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 4

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 5

P
M

F

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 6

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 7

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 8

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 9

P
M

F

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 10

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 11

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 12

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 13

P
M

F

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 14

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 15

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 16

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 17

P
M

F

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 18

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 19

1 2 3 4 5 6 7 8 910
0

0.2

0.4
dev 20

Figure 3.1: PMF of number of single-hop-neighbors for each single device.

13

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of immediate neighbors

P
M

F

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

number of immediate neighbors

P
M

F

Figure 3.2: PMF of number of single-hop-neighbors empirical (averaged over all devices)
(left) and for a random network with connection probability 0.2 (right).

for comparison) one recognizes that these have more neighbors than nodes often located at
the network boundary such as device no. 2. If one nevertheless wants to consider the degree
distribution averaged over all nodes one ends up with the distribution shown in Fig. (3.2). The
peak of the distribution is somewhere between three and four neighbors, its mean is 4.25. In a
random graph with N nodes and connection probability p the degree ki of node i would follow
a binomial distribution [4] according to

Pr(Ki = k) =
(

N − 1
k

)
· pk · (1− p)N−1−k; (3.1)

The PMF of a corresponding distribution with p = E[K]/N = 4.25/20 = 0.213 is plotted for
comparison and shows a surprisingly good match with the empirical data.

As the clustering coefficient is defined as C = E[K]/N this p is also equal to the clustering
coefficient.

3.1.2 Multihop-Neighbors and Shortest Path Routes

Let’s consider the distributions of multi-hop neighbors li the single devices have next. The ac-
cording PMFs are shown in Fig. (3.3). One can observe that several nodes (1,5,6,8,12,13,14,18,19
and 20) have a very strong peak at l = 9. This is as the link between devices 8 resp. 18 and
16 (refer to Fig. (2.2) for orientation) turned out to be very lossy. Therefore during a lot of
time there was a separation of the network at this transition. As the network was very dense
in the region from device 8 to device 6, this subnet usually was not further subdivided and
consequently all devices being contained have had the same number of multi-hop neighbors at
a time. One might ask, why there is no such characteristic peak in the distributions of the
remaining nodes. This is as the second large subnet by far was not that dense on the one hand

14

5 10 15 20
0

0.2

0.4

dev 1

P
M

F

5 10 15 20
0

0.2

0.4

dev 2

5 10 15 20
0

0.2

0.4

dev 3

5 10 15 20
0

0.2

0.4

dev 4

5 10 15 20
0

0.2

0.4

dev 5

P
M

F

5 10 15 20
0

0.2

0.4

dev 6

5 10 15 20
0

0.2

0.4

dev 7

5 10 15 20
0

0.2

0.4

dev 8

5 10 15 20
0

0.2

0.4

dev 9

P
M

F

5 10 15 20
0

0.2

0.4

dev 10

5 10 15 20
0

0.2

0.4

dev 11

5 10 15 20
0

0.2

0.4

dev 12

5 10 15 20
0

0.2

0.4

dev 13

P
M

F

5 10 15 20
0

0.2

0.4

dev 14

5 10 15 20
0

0.2

0.4

dev 15

5 10 15 20
0

0.2

0.4

dev 16

5 10 15 20
0

0.2

0.4

dev 17

P
M

F

5 10 15 20
0

0.2

0.4

dev 18

5 10 15 20
0

0.2

0.4

dev 19

5 10 15 20
0

0.2

0.4

dev 20

Figure 3.3: PMF of number of multi-hop-neighbors for each single device.

and secondly the users on this floor site (students and support group) where much more mobile
than the ones on the other side of the building (PhD students).

Again we consider the distribution averaged over all devices. This of course is dominated by
the peak of the devices of the large subnet. The course to the left and the right follows no
particular shape and is rather uniform. When regarding the probability of all devices being
united in one subnet one has to take into account that most of the time at least one device was
not around due to absence of its user.

When regarding the distribution of multi-hop neighbors another point of interest is the dis-
tribution of the shortest paths between the devices. It is shown in Fig. (3.4). The average
shortest path length is 2.03 hops. While single-hop pathes are most likely, there are never-
theless (shortest) pathes with up to eight hops between source and destination node. Such a
shortest path might have existed between device 6 and device 12, e.g.. Keep this distribution

15

5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

averaged over all devices

P
M

F

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

shortest path length

P
M

F

Figure 3.4: PMF of number of multi-hop-neighbors averaged over all devices and distri-
bution of shortest path between any two devices.

in mind when later regarding the stability of routes over several hops. It will turn out namely,
that the stability worsens drastically for increasing numbers of hops. The (in this case rather
short) radius of the network consequently is very important measure for the design of routing
algorithms.

3.1.3 Gateway Connectivity

As mentioned in chapter (2.1) device no. 20, which was considered as a virtual gateway sent
broadcast packets every 2.5 seconds, which then spread over the whole network by being flooded.
This experiment is subject of investigation in this subsection.

Clearly the number of hops it takes a packet to arrive at a particular destination device again
strongly depends on the location of the users’s office. This can be seen from Fig. (3.5). While
devices 1, 5, 8 and 18, whose users’s offices are next to the gateway are reached with one hop
throughout most of the time, devices mainly located at the other end of the floor such as 2, 3
and 7 often are reached over four, five or six hops. Devices 5 and 19 originally were located at
the upper floor side, however, spent a considerable amount of time on the lower side as well.
Therefore their characteristics show two peaks – one at one resp. two hops and one at four
hops.

Let’s have a look at the number packets the single nodes have received and further the number
of packets received by other devices, which have been relayed by these nodes. Note that the
latter number can be larger than the first one, since a single relayed packet, which is received
by more than one node in the following is counted as being relayed more than once only. By
considering Fig. (3.6) one can see that the devices on the lower floor side are connected to the
gateway much more often than the ones on the other side. This is – as discussed in previous

16

1 2 3 4 5 6 7 8
0

0.5

1

dev 1

P
M

F

1 2 3 4 5 6 7 8
0

0.2

0.4

dev 2

1 2 3 4 5 6 7 8
0

0.5

dev 3

1 2 3 4 5 6 7 8
0

0.5

1

dev 4

1 2 3 4 5 6 7 8
0

0.5

1

dev 5

P
M

F

1 2 3 4 5 6 7 8
0

0.5

1

dev 6

1 2 3 4 5 6 7 8
0

0.5

dev 7

1 2 3 4 5 6 7 8
0

0.5

1

dev 8

1 2 3 4 5 6 7 8
0

0.2

0.4

dev 9

P
M

F

1 2 3 4 5 6 7 8
0

0.5

dev 10

1 2 3 4 5 6 7 8
0

0.5

1

dev 11

1 2 3 4 5 6 7 8
0

0.5

1

dev 12

1 2 3 4 5 6 7 8
0

0.5

dev 13

P
M

F

1 2 3 4 5 6 7 8
0

0.5

1

dev 14

1 2 3 4 5 6 7 8
0

0.2

0.4

dev 15

1 2 3 4 5 6 7 8
0

0.5

1

dev 16

1 2 3 4 5 6 7 8
0

0.5

1

dev 17

P
M

F

1 2 3 4 5 6 7 8
0

0.5

1

dev 18

1 2 3 4 5 6 7 8
0

0.5

1

dev 19

Figure 3.5: Distribution of distance to gateway (in hops) for each single device.

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

device index

no
. o

f p
ac

ke
ts

received
relayed

Figure 3.6: Number of received (blue) and forwarded (red) gateway packets.

sections – due to the lossy link between device 8 and 16 and due to the larger user mobility on
the upper floor side.

The importance of the single nodes for the spanning of the whole network becomes obvious by
comparing the number of packets a device has received and the number of packets which reach
other devices after having been relayed by the device. Device 16 seems to be a key device in
this context. Each received packet is forwarded to more than one further device on average.
This is as the node can be considered as kind of an entry point to the subnet on the upper side
of the floor. Devices 4, 11 and 15, which show similar characteristics, are also very important
for spanning a large network as they serve as major relays for covering the not so dense upper
floor side. A device whose importance cannot be seen from this representation is device 8,
which serves as a ”bridge” between gateway and upper floor side. This is as it receives much
more packets than it can actually forward to device 16 due to the lossy link. Its large absolute
value of forwarded packets indicates its importance nevertheless.

Indeed one can find a better representation based on which the importance of the single devices
for the overall range coverage can be estimated. Therefore one considers the probability that
device xi has served as a relay, if device xj receives a packet from the gateway along the route
Xj . The proposed importance measure consequently is

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

device index i

w
ei

gh
t w

i

Figure 3.7: Importance of single devices for network covering.

wi =
N−1∑

j=1

Pr(Xj 3 xi). (3.2)

The corresponding plot for all devices is shown in Fig. (3.7). Here the devices 8 and 16 are the
most important ones, what finally matches the expectation.

3.2 Breaking Routes –

Two Fundamental Causes and Their Separation

This section forms the core of this thesis and contains the key contributions. It is subdivided
in several subsections for reasons of clearness. Each subsection is dedicated to one major step
in the chain of thoughts.

19

3.2.1 Outline

There are two reasons causing an interruption of a route in a wireless mobile ad-hoc network.
The first one is a link error due to a heavily loaded, deeply faded or strongly noisy channel be-
tween two source, relay or destination devices (denoted as interruption event I in the following).
A second interruption event is immediately related to the mobility in a mobile ad-hoc network,
namely a route interruption due to one or more moving nodes (denoted as interruption event
II in the following). These two interruption events have different implications on the design
of routing protocols. Just one example: While it might be promising to reuse a route that
temporarily was not available due to lots of traffic or a deep fade, a route which was broken
due to movement of its user might hardly be recovered in near future. If it was possible to
reasonably estimate, whether a route was interrupted by event I or II one could exploit this
information in the design of a routing protocol.

In this section a statistical model for the stability of routes in dependence of their length is
introduced first. Based on this model a procedure is proposed to reconstruct two separated
density functions of residual link lifetimes for interruption event I or II from empirically mea-
sured residual route lifetimes. Applied to our data set it will yield two clearly separated regions
of residual link lifetime – each one strongly dominated by one of the two interruption events.
The extraction of the influence of the user mobility will further enable a fair comparison of
the so gathered data with the outcome of simulations based on various mobility models. In
this context the random waypoint model and the random reference point group mobility model
are considered. Finally the two types of route interruptions are investigated from a different
angle based on temporal correlation in the topology, which might be rather suitable for online
estimations.

3.2.2 A Word about Notation

To follow the subsequent derivations it is important to be aware of slight, but very important
differences in notions.

When talking about route stability one has to differentiate whether this is done in terms of
lifetime of the route or its residual lifetime at a certain time instance when the route already
has reached a certain age. While the last two terms are taken one to one from renewal theory,
lifetime actually relates to the inter-arrival time. As this notion is not very intuitive in the
context of route stability it has been replaced here.

A link denotes a connection between two immediate neighbors, i.e., two devices that are sepa-
rated by no more than one hop. A route consists of one or several links and denotes a connection
between an arbitrary pair of nodes.

With this in mind a list of all random variables considered in the following discussions is given
as a reference in Tab. (3.1). All random variables are meant to describe the (residual) lifetime
of a route picked at a random instance of time. This means that we consider the routes from
the angle of a reactive routing protocol, when it discovers a new route.

20

RV Description
Trlt,r residual lifetime of a route
Tlt,r lifetime of a route
Trlt,l residual lifetime of a link
Tlt,l lifetime of a link

Trlt,l,e residual lifetime of a link in absence of mobility
Tlt,l,e lifetime of a link in absence of mobility
Trlt,l,o residual lifetime of a link in absence of noise/fades/collisions
Tlt,l,o lifetime of a link in absence of noise/fades/collisions

Table 3.1: Summary of relevant random variables.

3.2.3 Statistical Model

The probability of a link interruption between two nodes within the time interval t caused
by errors due to collisions, fading and noise is denoted by pe(t). The probability that a node
moves within the interval in a way that it causes a link interruption is denoted by po(t). The
according probability for a link interruption then is 2 ·po(t)−po(t)2. Consequently we can state
the CDFs of Trlt,l,e and Trlt,l,o for links between two mobile nodes as follows:

Pr(Trlt,l,e < t) = pe(t) (3.3)
Pr(Trlt,l,o < t) = 2 · po(t)− po(t)2. (3.4)

These are the quantities of interest that shall be derived in the course of this section, as they
form CDFs for Trlt,l,e and Trlt,l,o. The task of estimating those CDFs will be accessed through
first estimating pe(t) and po(t). The underlying mathematical model, which describes the
stability of a route in dependence of its length, is introduced in the following.

Basic Model

The overall probability that a route is stable over a particular range in time in a mobile wireless
ad-hoc network assuming

• Trlt,l,e ⊥ Trlt,l,o

• IID moving nodes

• IID distributed link qualities

can be written as
Pr(Trlt,r > t) = (1− pe(t))N · (1− po(t))N+1, (3.5)

21

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Hops N

P
r(

T
rlt

,r
>

t)
noise/fade interruptions only
device mobility taken into account
10 mobile, 10 static devices

Figure 3.8: Probability that the residual lifetime of a route is larger than t vs. the number
of hops for static (red), mobile (green) and partially mobile (blue) ad-hoc networks if
pe = 0.1 and po = 0.05.

where N denotes the number of hops between source and destination node and N +1 therefore
is the number of nodes involved into the transmission. The first factor represents the necessity
of N non-disturbed links, the second one accounts for the fact that none of the nodes may be
moved out of the ranges of its two neighbors in the path.

When considering this expression one recognizes that the route stability vs. hops characteristic
experiences a significant modification compared to the case of a static network, which is only
influenced by interruption event I, at this point. In the latter case it was simply given by
Pr(Trlt,r > t) = (1 − pe(t))N . The fact that pe and po are contained in bases of different
exponents will be the starting point for the density separation procedure in the next subsection.

The impact of the second route interruption reason is illustrated by the red and green curves
in Fig. (3.8). On the one hand there is an offset – as an additional route interruption event
clearly has to result in worth route stability performance, on the other hand the exponential
decay does not go with exponent N any longer.

Extension for Fixed Nodes

So far we have assumed equally behaving nodes in the network. This is an assumption hardly
satisfied in our experiment, since some of the users left there devices on their desk even when
they were moving. Further also the virtual gateway constituted a static node. We therefore
categorize nodes in moving and fixed nodes. Eq. (3.5) consequently has to be generalized for

22

a network containing both mobile and fixed nodes. For simplicity it is assumed that the nodes
are spatially distributed in a fashion that the probability of a fixed/mobile node being the next
hop destination in the route is equal to the number of remaining fixed/mobile stations divided
by the total number of remaining devices.

We first state that the overall probability of a route being stable over the interval t is equal to
the sum of all conditioned probabilities given that M of the N +1 devices within the route are
mobile:

Pr(Trlt,r > t) =
N+1∑

m=0

Pr(Trlt,r > t|M = m) · Pr(M = m). (3.6)

According to equation (3.5) the conditioned probability expression is given by

Pr(Trlt,r > t|M = m) = (1− pe(t))N · (1− po(t))m. (3.7)

The probability that a particular route contains M mobile nodes due to our assumption re-
garding the spatial arrangement of the nodes is hypergeometric distributed. If M is the set of
mobile nodes and F the set of fixed nodes in the network this results in

Pr(M = m) =

(|M|
m

) · (|F|
N+1−m

)
(|M|+|F|

N+1

) . (3.8)

Substituting (3.7) and (3.8) into (3.6) finally yields

Pr(Trlt,r > t) =
N+1∑

m=0

(1− pe(t))N · (1− po(t))m ·
(|M|

m

) · (|F|
N+1−m

)
(|M|+|F|

N+1

) (3.9)

A sample curve for |M| = |F| = 10 is shown in blue in Fig. (3.8) for comparison.

3.2.4 Estimation Procedure

Based on the model proposed above the densities of link lifetime and residual link lifetime
between two mobile nodes – both for interruption event I and II – shall be estimated from
empirically measured overall residual route lifetimes. This will be done in two major steps:

• Estimation of pe(t) and po(t) by fitting Eq. (3.9) to the empirical data in a least square
sense for several residual lifetimes t. With (3.4) and (3.4) this yields empirical CDFs of
the desired distributions.

• Approximation of the CDFs by an adequate analytical distribution and derivation of
density functions – two for lifetimes and two for residual lifetimes.

23

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Hops N

P
r(

T
rlt

,r
>

5
m

in
)

empirical data
least squares approximation

Figure 3.9: Empirical route stability and its least squares approximation according to
(3.9). Resulting interrupt probabilities are pe = 0.33 and po = 0.04, 15 mobile and 5
fixed nodes are assumed.

24

t [min] 5 10 15 20 25 30 35 40 45 50 55
pe 0.33 0.40 0.44 0.46 0.50 0.54 0.55 0.57 0.60 0.61 0.65
po 0.04 0.18 0.30 0.40 0.47 0.54 0.63 0.69 0.74 0.79 0.82

Table 3.2: Values for pe and po for different time intervals t.

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Residual Lifetime t
rlt

 [s]

C
D

F

CDF T
rlt,t,e

 approximated
CDF T

rlt,t,e
 empirical

CDF T
rlt,t,o

 approximated
CDF T

rlt,t,o
 empirical

Figure 3.10: CDFs for Trtl,l,e and Trtl,l,o approximated based on pe(t) and po(t).

Estimation of Empirical CDFs

A sample of a least squares approximation is shown in Fig. (3.9). The maximum number of
hops taken into account is max((N : f(N) > 0)− 2, 2) in order not to get in the region where
hardly any routes have been registered in the experiment. The routes we consider have been
discovered according to a HOP metric. The estimated values of pe(t) and po(t) are shown in
Tab. (3.2). The consequent CDFs according to Eq. (3.4) and (3.4) and also their analytical
approximation as derived in the subsequent subsection are plotted in Fig. (3.10).

At this point we can already state that the resulting CDFs basically make a lot of sense. One
could have expected that pe(t) À 2 · po(t)− po(t)2 for short intervals t, i.e., that interruptions
due to collision/fading/noise occur much more often than due to node location changes (see
Tab. (1)) in the immediate future. For very long intervals t vice versa it is not surprising that
2 · po(t) − po(t)2 becomes larger than pe(t) at a certain point. Stated differently this means

25

0 1 2 3 4 5
0

0.5

1

β=1

0 1 2 3 4 5
0

0.5

1

β<1

0 1 2 3 4 5
0

0.2

0.4

β>1

Figure 3.11: Plots of the PDF of the Weibull distribution for different β.

that very stable links tend to be terminated by node movements. For intuition consider a link
that has not been corrupted by collisions, fades or noise in a way that the link is declared
broken for a very long time. It therefore can be expected that the packet error rate is far below
the corresponding threshold (50 percent in our case), what again implies very low interruption
probability for the future. This is a significant difference to a scenario where link interruptions
occur memoryless over time, i.e., the corresponding lifetimes are distributed exponentially.

Fitting to Analytical Distributions

Next we have to choose a distribution for the approximation of the empirical CDFs. In re-
liability theory lifetimes are modelled by Weibull distributions. Their density functions with
parameters α and β are given by

fT (t) =
{

0, t < 0,
α · β · tβ−1 · exp(−α · tβ), t ≥ 0.

(3.10)

The Weibull distribution is a generalization of several well known distributions, such as the
exponential distribution or the Rayleigh distribution. It is capable of describing monotonically
increasing (β > 1), constant (β = 1) and monotonically decreasing (β < 1) failure rates (see
[6]). Some characteristic sample courses are shown in Fig. (3.11).

Pr[Trlt,l,e < t] and Pr[Trlt,l,o < t], however, are CDFs of residual link lifetimes – not of lifetimes.
We therefore have to somehow relate these quantities. This can be achieved by using the law
of total probability:

fTrlt,l
(t) =

∫ ∞

−∞
fTrlt,l|Tlt,l

(t|τ) · fTlt,l
(τ) · dτ. (3.11)

26

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Residual Lifetimes t
rlt,l,e

 amd t
rlt,l,o

 [s]

P
D

F

t
rlt,l,e
t
rlt,l,o

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Lifetimes t
lt,l,e

 and t
lt,l,o

P
D

F

t
lt,l,e
t
lt,l,o

Figure 3.12: PDFs for residual lifetimes and lifetimes corresponding to CDFs in Fig.
(3.10)

As the distribution of Trlt,l given Tlt,l = τ is uniform between 0 and τ , we get

fTrlt,l
(t) =

{ ∫∞
0

1
τ · I{0 < t < τ} · α · β · τβ−1 · exp(−α · τβ) · dτ, t ≥ 0,

0, t < 0.
(3.12)

=
{ ∫∞

t α · β · τβ−2 · exp(−α · τβ) · dτ, t ≥ 0,
0, t < 0.

(3.13)

The desired CDF now can be found by integration

FTrlt,l
(t) =

{ ∫ t
0

∫∞
η α · β · τβ−2 · exp(−α · τβ) · dτ · dη, t ≥ 0,

0, t < 0.
(3.14)

Non of the appearing integrals can be solved analytically.

Eq. (3.14) now can be used to approximate the empirical CDFs in Fig. (3.10). This is done
by using the Matlab optimization toolbox and the the Matlab ode45 integrator. The results are
already indicated by the solid lines in Fig. (3.10). The corresponding estimated parameters
are α̂ = 1.35 · 10−6, β̂ = 1.725 for FTrlt,l,o

(·) and α̂ = 0.021, β̂ = 0.43 for FTrlt,l,e
(·).

We are now also able to reconstruct the densities of lifetime and residual lifetime. They are
shown in Fig. (3.12). Mean and standard deviations can be evaluated numerically. They are
shown in Tab. (3.3).

The shown densities further point up what was already visible from the according CDFs: When
regarding the densities for Trlt,l,e we see that interruption event I – exaggerated stated – occurs

27

RV Mean [min] Std. Dev. [min]
Trlt,l,o 19 17
Trlt,l,e 216 724
Tlt,l,o 38 22
Tlt,l,e 432 1233

Table 3.3: Mean and standard deviation of PDFs.

either very soon after the link discovery or never. To see that also the results for Trlt,l,o make
sense we consider the according density of the lifetime. Here we see that the majority of links
break at an age of 10 to 50 minutes. There are hardly links breaking either immediately after
their emergence or more than two hours later.

3.2.5 Online Estimation of Route Interruption Reasons

From Fig. (3.10) one can see that there are two clearly separated regions – each one dominated
by one of both interruption events. This might be exploited by a reactive routing protocol
in order to estimate the actual route interruption reason based on the duration the route has
existed.

The according optimal decision rule is a simple threshold decision. This can be seen by recog-
nizing that given a route interruption after t seconds the probability of a correct decision is
maximized by choosing the event with higher a priori probability. The threshold is therefore
given by the intersection point of the densities for Trlt,l,e and Trlt,l,o in the case of a 1-hop route,
in our case at t = 110 s.

In order to find the decision thresholds for routes larger than 1 hop, we have to derive the
appropriate probability densities. These can be found by considering the CDF for the residual
lifetime of a route with N hops first, which is given by

Frlt,r(t) = 1− Pr(Trlt,l > t)N = 1− (1− F (rlt, l)(t))N . (3.15)

The PDF now is found by taking the derivative

frlt,r(t) = N · f(rlt, l)(t) · (1− F (rlt, l)(t))N . (3.16)

Comparing frlt,r,e(t) and frlt,r,o(t) yields the following decision thresholds:

N 1 2 3 4 5 6
tth [s] 106 83 66 53 44 38

In the following we compute the probability of a wrong decision under the optimal decision
rule. In order to do this we have to consider two events resulting in a wrong decisions. The first

28

one is the probability of a link interruption through node movements earlier than tth seconds,
the secondly a wrong decision occurs, if a link breaks later than tth through a link error.

We compute the first probability

Pr[error|Trlt,r < tth] = Pr[Trlt,r,o < Trlt,r,e|Trlt,r < tth] (3.17)

=
Pr[Trlt,r,o < Trlt,r,e, Trlt,r < tth]

Pr[Trlt,r < tth]
. (3.18)

Analogously

Pr[error|Trlt,r > tth] = Pr[Trlt,r,o > Trlt,r,e|Trlt,r > tth] (3.19)

=
Pr[Trlt,r,o > Trlt,r,e, Trlt,r > tth]

Pr[Trlt,r > tth]
. (3.20)

The overall probability of error now is given by

Pr(error) = Pr(error|Trlt,r < tth) · Pr(Trlt,r < tth) + Pr(error|Trlt,r > tth) · Pr(Trlt,r > tth)(3.21)
= Pr[Trlt,r,o < Trlt,r,e, Trlt,r < tth] + Pr[Trlt,r,o > Trlt,r,e, Trlt,r > tth] (3.22)

=
∫ tth

0

(
fTrlt,r,o

(t) · (1− FTrlt,r,e
(t))

) · dt +
∫ ∞

tth

(
fTrlt,r,e

(t) · (1− FTrlt,r,o
(t))

) · dt.(3.23)

These expressions again can be analyzed numerically. The error probabilities for different
numbers of hops are

N 1 2 3 4 5 6
Pr(error) [%] 27.6 30.2 29.8 28.7 27.4 25.9

3.2.6 Comparison with Mobility Models

In subsection (3.2.4) separated distributions for route interruptions due to critical links and
due to user mobility have been derived. By taking the latter distribution one has extracted the
real influence of user mobility on the route stability. Therefore we are now able to compare our
data set with simulation results from various mobility models. In this subsection we compare
link stabilities in the test network with those in the random waypoint model and the random
reference point model. These models and their properties are described in [9] in detail.

Random Waypoint Model

The implementation of the random waypoint model in Matlab is shown in the appendix. It is
used in its purest version in this thesis, i.e., each node

29

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Residual Lifetime [s]

C
D

F

t
th

=15, r
th

=15
t
th

=15, r
th

=20
t
th

=15, r
th

=25
t
th

=30, r
th

=15
t
th

=30, r
th

=20
t
th

=30, r
th

=25
t
th

=30, r
th

=15
t
th

=45, r
th

=20
t
th

=45, r
th

=25

reconstructed
including link errors

Figure 3.13: CDFs of residual link lifetimes as resulting from the random waypoint model
under different ranges and thinking times. The CDFs for Trlt,l,o (solid) and Trlt,l (dashed)
as measured during the experiment for comparison.

• chooses its destination randomly in a plane according to a uniform distribution,

• moves with deterministic velocity,

• waits for a deterministic period after arriving its target.

The plane size is chosen to be 100 x 20 meters. This roughly corresponds to the effective size
of the floor, as nodes on the upper and nodes on the lower floor side had no connection to each
other. The user velocity is chosen to be 1 m/s. While plane size and user velocity are fixed,
thinking time and range are varied in order to achieve match with the empirical data.

In Fig. (3.13) a set of curves for the CDF of Trlt,l,o as found by simulating according to the
random waypoint model is shown. It covers the range of reasonable values for range and
thinking time. The solid line shows the CDF as extracted from the experiment data. It can be
seen that indeed good match is achieved with the curve for a range of 25 meters and a thinking
time of 30 minutes. On the other hand one can see that the dashed line representing the overall
residual link lifetime, i.e., including link errors, cannot be matched by the model, as it is much
more concave than the set of reasonable curves.

30

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Residual Lifetime [s]

C
D

F

Model
Experiment

Figure 3.14: CDFs of residual link lifetimes as resulting from the random reference point
group mobility model and as extracted from the measured data from the experiment.

Random Reference Point Group Mobility Model

The random reference point group mobility model is implemented as two encapsulated random
waypoint entities (again see appendix for Matlab code). On the one hand members of a group
move completely randomly within a rectangular sub-plane around the group center. The group
center again moves randomly according to the random waypoint model, such that the sub-
planes do not exceed the boundaries of the large plane.

The model has more degrees of freedom than the random waypoint model. Again plane size
(100 x 20 m) and sub-plane sizes (33 x 20 m) are fixed. Further 10 groups of sizes 6, 3,2, 2, 2,
1, 1, 1, 1 and 1 are assumed. Both group centers and users within the group move with velocity
1 m/s. The course of the CDF is matched to the one from the experiment by varying thinking
times of users and group centers as well as the range. For thinking times of 63 minutes for the
group and 32 minutes for the users and a range of 15 meters the curve is matched perfectly to
the one resulting from the measurements. Both are shown in Fig. (3.14).

31

3.2.7 Dynamic Characterization Employing
Auto-Covariance Functions

In section (3.2.5) decision thresholds for the estimation of a route interruption reason have been
derived. These thresholds, however, can be assumed to strongly depend on the user behavior
in a particular network. Therefore each node has to figure out the dynamic network properties
online in order to choose the thresholds appropriately. What is needed is another dynamic
model of significantly reduced complexity, which – instead of determining thresholds based on
detailed distributions – only needs some key parameters for a reasonable estimation. Besides
the low complexity of the model the threshold estimation procedure will be based on another
demand is the practicability on a single node without extensive data exchange in the network,
i.e., the estimation should mainly be based on data that can be collected locally by each single
device. One way of characterizing the dynamic in the network from the angle of a particular
node contained in it, is to determine the auto-covariance function of its node degree. This
function generally is a measure for the correlation between two topologies and satisfies our
requirements of being computed both with low complexity and based on locally available data.

In order to determine decision thresholds one is particularly interested in how the two discussed
types of link interruptions influence the covariance function. In order to solve this question
analytically, we assume the following:

• There are two kinds of links: first there are stable links, secondly there are critical links.
When regarding the number of neighbors of a particular node analogously we differentiate
neighbors connected by a stable link, whose number is denoted by S(t), and neighbors
connected by a critical link, whose number is denoted by C(t). The total neighbor
number of a node consequently is N(t) = S(t) + C(t).

• We assume stable links to be stable (i.e. free of link errors) forever, critical links are
assumed to be present with probability p at time t independently of C(t − t0), i.e.,
C(t) ⊥ C(t− t0) ∀t0 ∈ R \ {0}.

• The number of stable neighbors and the number of critical neighbors are independent,
i.e., S(t1) ⊥ C(t2)∀ t1, t2.

• Both S(t) and C(t) are wide sense stationary random processes, i.e., KNN(t, τ) = KNN(τ).

Denoting the mean of the processes N(t), S(t) and C(t) mN, mS and mC, we consider the
covariance function KNN(τ) of the total number of neighbors of a particular node:

32

Figure 3.15: Sketch of auto-covariance functions with contributions from stable (blue)
and critical (red) nodes.

KNN(τ) = E [(N(t + τ)−mN) · (N(t)−mN)] (3.24)
= E [(S(t + τ) + C(t + τ)−mS −mC) · (S(t) + C(t)−mS −mC)] (3.25)
= E[S(t)S(t + τ)] + 2E[S(t)C(t + τ)] + E[C(t)C(t + τ)]− (mS + mC)2 (3.26)
= E[S(t)S(t + τ)]−m2

S + 2E[S(t)C(t + τ)]− 2mSmC + E[C(t)C(t + τ)]−m2
C(3.27)

= KSS(τ) + 2 · KSC(τ) + KCC(τ) (3.28)
= KSS + σ2

Cδ(0). (3.29)

The last line follows from our assumptions that there is no cross-correlation between S(t) and
C(t) and that C(t) is spectrally white. One recognizes that the only contribution from critical
neighbors appears at τ = 0 s.

When considering Fig. (3.16), which shows the auto-covariance functions as determined by
the nodes in the experiment, one notices that assuming C(t) being a white process was too
optimistic. Instead the peak is quite washed out. Nevertheless, the two contributions – one
from KSS(τ) and one from KCC(τ) – can be clearly distinguished for most of the nodes, e.g. 4,
12, 13, 17, in Fig. (3.16). A sketch of how the contributions of stable and critical neighbors
might look like is shown in Fig. (3.15).

In order to actually find an optimal way of determining decision thresholds from auto-covariance
functions, measurements from networks with different dynamic behavior would have to be col-
lected and analyzed with respect to the relation between both quantities. Possible approaches
are threshold estimations based on

33

• the ratio of the peak level at τ = 0 to the level of the flat base,

• the time shift with a certain steepness in the curve,

• the ratio of time shifts where full resp. 50 % de-correlation is reached.

The first approach is the nearest at hand as it reflects the ratio of ”power” in the processes
S(t) and C(t). However, it might be difficult in some cases to determine the base level (see
curve for device no. 1 e.g.).

3.3 Comparison of Route Stabilities under HOP, PER

and RTT Metrics

In this section differences in the stability of routes established under different metrics, in partic-
ular under HOP-, PER- and RTT-metric are compared. Originally also signal strength based
routing should be investigate. The NIC interface of the iPAQs, however, did not assign the
measured values to the according source devices. Before actually discussing the differences with
respect to route stability the metrics shall be specified in the way they are used in this context:

• Hop Count (HOP): This metric aims to minimize the number of hops a packet traverses
from source to destination. A link is declared as broken, if the current packet error rate
(see next item on how this is determined) drops below 50 percent. The shortest path in
a network can be computed by applying the Dijkstra algorithm, where each edge in the
network graph has weight 1.

• Packet Error Rate (PER): The metric aims to minimize the probability of a packet
loss on the way from source to destination. The current packet error rate is estimated
based on indexed broadcast packets each device distributes among its neighbors each 500
ms. This is done by averaging over the last 15 received packets. If the PER drops below
50 percent or a device has not received any packet for more than 7.5 seconds, the PER is
set to 1. The most reliable path in a network can be computed by applying the Dijkstra
algorithm, where each edge in the network graph has weight − log pij .

• Round Trip Time (RTT): The metric aims to minimize the round trip time between
source and destination. The current round trip time is estimated by pinging all devices
that are known to be immediate neighbors in the moment every five seconds and waiting
for their acknowledgment. Should a packet get lost the round trip time of the previous
measurement is used. After two subsequent packet losses the link is declared as broken.
The path with the smallest overall round trip time in a network can be computed by
applying the Dijkstra algorithm, where each edge in the network graph has weight tRT,ij .

In order to asses the route stabilities under theses metrics, we consider the 50th percentiles of
the residual route lifetimes for different numbers of hops. The corresponding plots are shown
in Fig. (3.17).

34

−
10

00
0

10
00

0

0.
51

de
v1

Covariance

−
20

00
0

20
00

0

0.
51

de
v2

−
20

00
0

20
00

0

0.
51

de
v3

−
20

00
0

20
00

0

0.
51

de
v4

−
20

00
0

20
00

0

0.
51

de
v5

Covariance

−
20

00
0

20
00

0

0.
51

de
v6

−
20

00
0

20
00

0

0.
51

de
v7

−
20

00
0

20
00

0

0.
51

de
v8

−
40

00
−

20
00

0
20

00
40

00
0

0.
51

de
v9

Covariance

−
20

00
0

20
00

0

0.
51

de
v1

0

−
20

00
0

20
00

0

0.
51

de
v1

1

−
20

00
0

20
00

0

0.
51

de
v1

2

−
50

00
0

50
00

0

0.
51

de
v1

3

Covariance

−
50

00
0

50
00

0

0.
51

de
v1

4

−
10

00
0

10
00

0

0.
51

de
v1

5

−
20

00
0

20
00

0

0.
51

de
v1

6

−
20

00
0

20
00

0

0.
51

de
v1

7

tim
e

sh
ift

 ∆
t [

s]

Covariance

−
40

00
−

20
00

0
20

00
40

00
0

0.
51

de
v1

8

tim
e

sh
ift

 ∆
t [

s]
−

40
00

−
20

00
0

20
00

40
00

0

0.
51

de
v1

9

tim
e

sh
ift

 ∆
t [

s]
−

20
00

0
20

00
0

0.
51

de
v2

0

tim
e

sh
ift

 ∆
t [

s]

F
ig

u
re

3.
16

:
A

u
to

co
va

ri
an

ce
fu

n
ct

io
n
s

of
n
o
d
e

d
eg

re
e

co
u
rs

es
.

35

1 2 3 4
0

100

200

300

400

500

600

number of hops

t 0: P
r(

T st
ab

le
>

t 0)=
0.

5

HOP
PER
RTT

Figure 3.17: 50th percentile of remaining route durations under HOP, PER and RTT
metric.

36

In order to discuss the route stabilities we first recall the two different route interruption events.
First there might be a link interruption due to collisions, fading or noise (denoted interruption
event I in the following). Secondly a link will be interrupted whenever a device is moved out
of the range of its neighbor (denoted interruption event II in the following).

The problem coming with these sources of an interruption is that the minimization of their
occurrence probability pe resp. po follows different principles. While it is clear that it is
recommendable to guide a packet via several reliable hops instead of one very lossy hop in
order to minimize the probability of interruption event I, this contradicts the minimization
strategy for the occurrence probability of interruption event II, namely to use as few hops as
possible.

There probably might be both scenarios, where one metric outperforms the other or vice versa.
A case where the HOP metric is superior to the PER metric might occur in networks with very
high user mobility. As this is not the case in our experiment setup it is not very surprising,
that the PER yields more robust routes.

The route stability achieved by the RTT metric finally lies somewhere in the middle between
the metrics just discussed. As the round trip time is a measure for the amount of traffic
oneself and a neighbor device (queuing and contention delay) is loaded with, rather than for
the distance in indoor applications it is strongly related to the number of packet collisions that
device experiences. Therefore it accounts for packet losses due to collisions on the one hand,
but ignores packet losses due to low SNR. This means in some cases it decides similar to the
PER metric, in the other case similar to the HOP metric. This is in correspondence with
the empirical result in Fig. (3.17), where it performs better than HOP, but worse than PER.
Therefore it might be the metric that is most robust in both high and low mobility networks,
but never the optimal one.

Having a closer look at Fig. (3.17) one recognizes that the PER metric outperforms the other
metrics in particular for increasing numbers of hops. This can be understood intuitively quite
well. Consider the scenario, in which the HOP metric yields a route over two hops. This will
only be the case if there is no straight link to the destination device. Therefore one can be
sure that the average error probability over all such two hops links will be higher than the
average error probability over the one hop links to its immediate neighbors. Under the PER
metric this is not the case necessarily, since a two hop route might also be established in order
to improve the route reliability. With this in mind one expects, that the stability gap between
one and two hop routes is larger under the HOP-metric than under the PER-metric – and this
is exactly what is observed in Fig.(3.17). The same argument holds for the transition from 2
to 3 and from 3 to 4 hops. At four hops the PER metric already yields links that are twice as
stable as those generated by the HOP metric.

Fig. (3.18) finally shows the PMFs of the number of hops under the three discussed metrics.
Their courses are as they are expected. While the PER metric yields links with up to 14 hops,
the HOP metric of course chooses shorter routes. As discussed previously the RTT metric
shares some commonness with both other metrics and therefore its PMF extends to more hops

37

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of hops

P
r[

nu
m

be
r

of
 h

op
s]

hop
per
rtt

Figure 3.18: PMF of no. of hops in routes established based on HOP, PER and RTT
metric.

than the one of corresponding to HOP, but to less than the one corresponding to PER.

38

Chapter 4

Conclusion

In this thesis data from a real mobile ad-hoc network was collected, analyzed with respect to
node degrees, path lengths, clustering, connectivity to gateway, as well as route stability under
different routing metrics, and compared with two mobility models. Key contributions are two
mathematical models on the topic of route stability which provided a method for extracting
the influence of user mobility on the stability of routes and thus also enabled a fair comparison
between empirical data and simulation results from mobility models. It was shown that a
mobile node can estimate the reason of a route interruption based on the time the route was in
use until the interruption. Nodes might exploit this information for deciding on how to react
on such an interruption. It was further demonstrated that even simple mobility models, such as
the random waypoint and the random reference point group mobility model, yield good match
with the empirical data from the real network with respect to route stability. When comparing
three different routing metrics it turned out that a metric aiming to minimize the packet error
rate yielded the stablest routes for our particular experiment network.

39

Bibliography

[1] R. Draves, J. Padhye and B. Zill, ,,Comparison of Routing Metrics for Static Multi-Hop
Wireless Networks“.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd and R. Morris, ,,Link Level Measurements from
an 802.11b Mesh Network.“

[3] L. Li, D. Alderson, R. Tanaka, J.C. Doyle and W. Wilinger, ,,Towards a Theory of Scale-
Free Graphs: Definition, Properties, and Implications (Extended Version)“.

[4] R. Albert and A.-L. Barabasi, ,,Statistical Mechanics of Complex Networks“.

[5] A. Chaintreua, P. Hui, J. Crowsoft, C. Diot, R. Gass adn J. Scott, ,, Pocket Switched
Networks: Real-World Mobility and its Consequences for Opportunistic Networking“.

[6] H. Weber, ,,Einfuehrung in die Wahrscheinlihckeitsrechnung und Statistik fuer Inge-
nieure“.

[7] P. Bremaud, ,,An Introduction to Probabilistic Modelling“.

[8] A. Tanenbaum, ,,Computer Networks“.

[9] , T. Camp, J. Boleng and V. Davies, ,,A Survey of Mobility Models for Ad Hoc Network
Research“.

40

Appendix A

Measurement Application

Client-Thread

int client() {

//

// DECLARATION AND INITIALIZATION STUFF //

//

// general variables

long cycles=0, lItems = 0, lNumItems = 0, rc;

int dur=0, ipaqnets = 0, i, day, hour, min, sec, startday, wait=-1;

char buf[256], ref[20],comp[20];

MAC_ADDR my_mac_address, my_old_mac_address;

transobj to;

SOCKET s;

SOCKADDR_IN addr, loopback;

CTime theTime;

UCHAR Ssid[32] = {0}, BSsid[32] = {0}, refSsid[32]={0}, compSsid[32]={0};

FILE *in, *bssidlog;

// NDIS related variables

WRAPI_NDIS_DEVICE *pDeviceList = NULL;

HRESULT hRes;

AP_DATA *pAP_list = NULL;

CHAR *pSSId = "UCSD";

ULONG lSSIdLength = strlen(pSSId);

// get my user’s name

in=fopen("myname.txt","r");

fscanf(in,"%s",&myname[0]);

fclose(in);

DeleteFile(TEXT("myname.txt"));

// open file for logging bssids

bssidlog=fopen("\\CF Card\\bssidlog.txt","a");

// initialize NDIS

Ssid[0]=’\0’;

CWRAPIApp theApp;

if(!theApp.InitInstance())

printf("Initialisation failed!\n");

hRes=theApp.EnumerateDevices(&pDeviceList, &lItems);

while(lItems==0)

{

// get the list of Devices in the System

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("the wlan module is switched off! please enable it again!"),NULL,MB_SETFOREGROUND);

hRes=theApp.EnumerateDevices(&pDeviceList, &lItems);

}

hRes=theApp.GetBSSId(my_mac_address, pDeviceList[0].pDeviceName);

hRes=theApp.GetBSSId(my_old_mac_address, pDeviceList[0].pDeviceName);

// print list of devices obtained

for (i = 0; i < lItems; i++)

{

printf("===========================\nDecive no: %d\n",i+1);

printf("Desciption: %S\nName: %S\n===========================\n", pDeviceList[i].pDeviceDescription, pDeviceList[i].pDeviceName);

41

}

// create and initialize client-socket

rc=startWinsock();

if(rc!=0)

{

printf("Fehler: startWinsock, fehler code: %d\n",rc);

getchar();

return 1;

}

else

{

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("client is active!"),TEXT("Notification"),MB_SETFOREGROUND);

}

s=socket(AF_INET,SOCK_DGRAM,0);

if(s==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

addr.sin_family=AF_INET;

addr.sin_port=htons(1234);

addr.sin_addr.s_addr=inet_addr("192.168.0.255");

loopback.sin_family=AF_INET;

loopback.sin_port=htons(4321);

loopback.sin_addr.s_addr=inet_addr("127.0.0.1");

// get current time

theTime=CTime::GetCurrentTime();

startday=theTime.GetDay();

///////////////////

// THE MAIN LOOP //

///////////////////

while(1)

{

// update packet index and time and write it to transmit struct

cycles++;

theTime=CTime::GetCurrentTime();

day=theTime.GetDay();

hour=theTime.GetHour();

min=theTime.GetMinute();

sec=theTime.GetSecond();

sprintf(to.time,"%d.%d.%d.%d", day, hour, min, sec);

sprintf(to.name,"%s", myname);

to.index=cycles;

memcpy(&buf, &to, sizeof(transobj));

// transmission via client-socket

rc=sendto (s,buf,sizeof(transobj)+1,0,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN));

if(rc==SOCKET_ERROR)

{

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("unable to send!\nensure that WLAN is activated!"),NULL,MB_SETFOREGROUND);

printf("Fehler: sendto, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

// bssid partitioning check every APSCAN cycles

if(!(cycles%APSCAN))

{

if(wait>0)

{

wait--;

printf("wait: %d\n", wait);

}

else if(wait==0)

{

hRes=theApp.GetBSSId(my_mac_address, pDeviceList[0].pDeviceName);

hRes=theApp.GetBSSId(my_old_mac_address, pDeviceList[0].pDeviceName);

wait--;

}

else

{

hRes=theApp.GetBSSId(my_mac_address, pDeviceList[0].pDeviceName);

sprintf(ref,"%02x%02x%02x%02x%02x%02x", my_mac_address[0],my_mac_address[1],

my_mac_address[2],my_mac_address[3],my_mac_address[4],my_mac_address[5]);

42

sprintf(comp,"%02x%02x%02x%02x%02x%02x", my_old_mac_address[0],my_old_mac_address[1],

my_old_mac_address[2],my_old_mac_address[3],my_old_mac_address[4],my_old_mac_address[5]);

if(ref[11] < comp[11])

{

wait=WAITSCANCYCLES;

}

else

{

hRes=theApp.GetBSSId(my_old_mac_address, pDeviceList[0].pDeviceName);

for (i = 0; i < DEVICES; i++)

apscanflag[i]=INTERLEAVE;

hRes=theApp.GetAPList(&pAP_list, &lNumItems ,pDeviceList[0].pDeviceName);

}

}

fprintf(bssidlog,"%02x%02x%02x%02x%02x%02x %d.%d.%d.%d\n",my_mac_address[0],my_mac_address[1],

my_mac_address[2],my_mac_address[3],my_mac_address[4],my_mac_address[5] , day,hour,min,sec);

}

// ask gateway thread, whether there is a connection

if(!(cycles%ALERTGWCHECK))

{

to.index=-1;

memcpy(&buf, &to, sizeof(transobj));

rc=sendto (s,buf,sizeof(transobj)+1,0,(SOCKADDR*)&loopback,sizeof(SOCKADDR_IN));

if(rc==SOCKET_ERROR)

{

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("unable to send!\nensure that WLAN is activated!"),NULL,MB_SETFOREGROUND);

printf("Fehler: sendto, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

}

// wait

Sleep(SLPER);

}

return 0;

}

Server-Thread

int server()

{

//

// DECLARATION AND INITIALIZATION STUFF //

//

// variables

long lastseen[DEVICES], probestart[DEVICES], rc, cnt=0, idx=1;

int recvcount[DEVICES], remoteAddrLen=sizeof(SOCKADDR_IN), seen[DEVICES], i;

double per[DEVICES], packets=PACKETS;

char namebuf[DEVICES][20], *id, filename[100], dum[4], buf[sizeof(transobj)+1];

bool flag=true;

SOCKET s;

SOCKADDR_IN addr;

SOCKADDR_IN remoteAddr;

CTime curtime, oldtime, dtime;

CTimeSpan tspan=CTimeSpan(0,0,0,DEVICEPERIOD);

FILE *out;

// find current logfile

while(flag)

{

strcpy(filename,"\\CF Card\\logfile");

_itoa(idx,dum,10);

strcat(filename,dum);

strcat(filename,".txt");

out=fopen(filename,"r");

if(out==NULL)

flag=false;

else

{

idx++;

}

fclose(out);

}

//some (important!!!) initializations

for(i=0;i<DEVICES; i++)

43

{

namebuf[i][0]=’\0’;

lastseen[i]=-PACKETS-1;

probestart[i]=-PACKETS-1;

}

for(i=0;i<DEVICES;i++)

seen[i]=0;

// create, initialize and bind socket

rc=startWinsock();

if(rc!=0)

{

printf("Fehler: startWinsock, fehler code: %d\n",rc);

return 1;

}

s=socket(AF_INET,SOCK_DGRAM,0);

if(s==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

addr.sin_family=AF_INET;

addr.sin_port=htons(1234);

addr.sin_addr.s_addr=ADDR_ANY;

rc=bind(s,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN));

if(rc==SOCKET_ERROR)

{

printf("Fehler: bind, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

// get current time

curtime=CTime::GetCurrentTime();

oldtime=CTime::GetCurrentTime();

dtime=CTime::GetCurrentTime();

///////////////////

// THE MAIN LOOP //

///////////////////

while(1)

{

// receive incoming packets

rc=recvfrom(s,buf,sizeof(transobj)+1,0,(SOCKADDR*)&remoteAddr,&remoteAddrLen);

if(rc==SOCKET_ERROR)

{

printf("Fehler: recvfrom, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

else

{

id=inet_ntoa(remoteAddr.sin_addr);

id=id+10;

if(seen[atoi(id)-1]==0)

{

seen[atoi(id)-1]=1;

sprintf(namebuf[atoi(id)-1],"%s", ((transobj*)buf)->name);

}

// check whether system was rebooted

if(((transobj*)buf)->index < probestart[atoi(id)-1])

{

probestart[atoi(id)-1]=((transobj*)buf)->index;

lastseen[atoi(id)-1]=((transobj*)buf)->index;

per[atoi(id)-1]=0.0;

}

// check whether there was an AP scan (was not sure whether this would yield packet losses)

if(apscanflag[atoi(id)-1]>0)

{

// AP scan exception handling

if(((transobj*)buf)->index-lastseen[atoi(id)-1]<PACKETS)

{

for(i=lastseen[atoi(id)-1]+1;i<=((transobj*)buf)->index;i++)

{

//log possibly lacking entries here!!!

44

out=fopen(filename,"a");

fprintf(out,"%s %d *\n",id, i); // * instead of time stamp

fclose(out);

}

lastseen[atoi(id)-1]=((transobj*)buf)->index;

apscanflag[atoi(id)-1]--;

}

else

{

apscanflag[atoi(id)-1]=0;

}

}

else

{

// new device has just come (back) in range *

if(((transobj*)buf)->index-lastseen[atoi(id)-1]>PACKETS)

{

per[atoi(id)-1]=0.0000000;

lastseen[atoi(id)-1]=((transobj*)buf)->index;

probestart[atoi(id)-1]=((transobj*)buf)->index;

}

// not enough packets received by a newly arrived device yet

else if((((transobj*)buf)->index-lastseen[atoi(id)-1]<PACKETS) && (((transobj*)buf)->index-probestart[atoi(id)-1]<PACKETS))

{

if(((transobj*)buf)->index != lastseen[atoi(id)-1])

{

per[atoi(id)-1]=per[atoi(id)-1]+(((transobj*)buf)->index-lastseen[atoi(id)-1]-1)/packets;

lastseen[atoi(id)-1]=((transobj*)buf)->index;

}

}

// per computation in steady state

else if((((transobj*)buf)->index-lastseen[atoi(id)-1]<PACKETS) && (((transobj*)buf)->index-probestart[atoi(id)-1]>=PACKETS))

{

if(((transobj*)buf)->index != lastseen[atoi(id)-1])

{

per[atoi(id)-1]=per[atoi(id)-1]-(((transobj*)buf)->index - lastseen[atoi(id)-1]) * per[atoi(id)-1] / packets;

per[atoi(id)-1]=per[atoi(id)-1]+(((transobj*)buf)->index - lastseen[atoi(id)-1]-1)/packets;

lastseen[atoi(id)-1]=((transobj*)buf)->index;

}

}

else

printf("error\n");

}

// check, whether it is time to waken rttsend-thread

curtime=CTime::GetCurrentTime();

dtime=curtime-tspan;

// if so, do it

if(dtime>oldtime)

{

ids[0]=’\0’;

names[0]=’\0’;

frames[0]=’\0’;

rtt[0]=’\0’;

for(int i=0;i<DEVICES; i++)

{

if(seen[i]==1)

{

rttcandidate[i]=1;

sprintf(ids,"%s%i\n",ids,i+1);

sprintf(names,"%s%s\n",names,namebuf[i]);

sprintf(frames,"%s%f\n",frames,per[i]);

sprintf(rtt,"%s%i\n",rtt,rtts[i]);

rtts[i]=0;

//printf("%i\n",rtts[i]);

//recvcount[i]=0;

seen[i]=0;

}

}

// ask main thread to initiate window update

InvalidateRect(hwndMain,&rectId,true);

InvalidateRect(hwndMain,&rectName,true);

InvalidateRect(hwndMain,&rectFrames,true);

InvalidateRect(hwndMain,&rectRtt,true);

InvalidateRect(hwndMain,&rectGw,true);

oldtime=curtime;

PostThreadMessage(rttsendThreadId,WM_NOTIFY,NULL,NULL);

}

//check current logfile size, create new one if too large

cnt++;

45

if(cnt > MAXFILESIZE)

{

idx++;

cnt=0;

strcpy(filename,"\\CF Card\\logfile");

_itoa(idx,dum,10);

strcat(filename,dum);

strcat(filename,".txt");

}

// log received pacekt

out=fopen(filename,"a");

fprintf(out,"%s %i %s\n",id,((transobj*)buf)->index,buf);

fclose(out);

}

}

return 0;

}

RTT-Request-Thread

int rttrequest() {

//

// DECLARATION AND INITIALIZATION STUFF //

//

// variables

long rc;

int i;

SOCKET s;

SOCKADDR_IN addr;

char addrdum[13]={’1’,’9’,’2’,’.’,’1’,’6’,’8’,’.’,’0’,’.’,’\0’,’\0’,’\0’}, id[3], buf1[20], buf2[20];

MSG msg;

// all sent packeets start with ’r’ for request

buf2[0]=’r’; // request flag

buf2[1]=’\0’;

// socket creation and initialization

rc=startWinsock();

if(rc!=0)

{

printf("Fehler: startWinsock, fehler code: %d\n",rc);

getchar();

return 1;

}

s=socket(AF_INET,SOCK_DGRAM,0);

if(s==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

addr.sin_family=AF_INET;

addr.sin_port=htons(2345);

///////////////////

// THE MAIN LOOP //

///////////////////

while(true)

{

// wait for "wake up" message and rtt candidates from server-thread

GetMessage(&msg,NULL,WM_NOTIFY,WM_NOTIFY);

// send requests to all neighbors

for(i=0;i<DEVICES;i++)

{

if(rttcandidate[i]==1)

{

sprintf(id, "%d", i+1);

strcat(addrdum,id);

addr.sin_addr.s_addr=inet_addr(addrdum);

_itoa(GetTickCount(),buf1,10);

strcat(buf2,buf1);

rc=sendto (s,buf2,strlen(buf2)+1,0,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN));

if(rc==SOCKET_ERROR)

46

{

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("unable to send!\nensure that WLAN is activated!"),NULL,MB_SETFOREGROUND);

printf("Fehler: sendto, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

addrdum[10]=’\0’;

buf2[1]=’\0’;

rttcandidate[i]=0;

Sleep(SLPERRT2);

}

}

}

return 0;

}

RTT-Acknowledge-Thread

int rttacknowledge() {

//

// DECLARATION AND INITIALIZATION STUFF //

//

// variables

FILE *out;

char filename[100], dum[4],buf[20];

long rc, tics, idx=1;

int remoteAddrLen=sizeof(SOCKADDR_IN), day, hour, min, sec, cnt=0;

CTime curTime;

SOCKET recvs, sends;

SOCKADDR_IN addr;

SOCKADDR_IN remoteAddr;

bool flag=true;

// find current logfile

while(flag)

{

strcpy(filename,"\\CF Card\\rttlog");

_itoa(idx,dum,10);

strcat(filename,dum);

strcat(filename,".txt");

out=fopen(filename,"r");

if(out==NULL)

flag=false;

else

{

idx++;

}

fclose(out);

}

// create and initialize sockets

rc=startWinsock();

if(rc!=0)

{

printf("Fehler: startWinsock, fehler code: %d\n",rc);

return 1;

}

recvs=socket(AF_INET,SOCK_DGRAM,0);

if(recvs==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

sends=socket(AF_INET,SOCK_DGRAM,0);

if(sends==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

}

addr.sin_family=AF_INET;

addr.sin_port=htons(2345);

addr.sin_addr.s_addr=ADDR_ANY;

rc=bind(recvs,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN));

if(rc==SOCKET_ERROR)

{

printf("Fehler: bind, fehler code: %d\n",WSAGetLastError());

getchar();

}

47

///////////////////

// THE MAIN LOOP //

///////////////////

while(true)

{

// wait for incoming pacekts

rc=recvfrom(recvs,buf,20,0,(SOCKADDR*)&remoteAddr,&remoteAddrLen);

if(rc==SOCKET_ERROR)

{

printf("Fehler: recvfrom, fehler code: %d\n",WSAGetLastError());

getchar();

}

// check, whether it is a req or ack

else if(buf[0]==’r’)

{

// req => reply

buf[0]=’a’;

remoteAddr.sin_port=htons(2345);

rc=sendto (sends,buf,20,0,(SOCKADDR*)&remoteAddr,sizeof(SOCKADDR_IN));// reply

if(rc==SOCKET_ERROR)

{

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("unable to send!\nensure that WLAN is activated!"),NULL,MB_SETFOREGROUND);

printf("Fehler: sendto, fehler code: %d\n",WSAGetLastError());

getchar();

}

}

else if(buf[0]==’a’) // acknowledge

{

// ack => compute rtt, log it

tics=GetTickCount();

rtts[atoi(inet_ntoa(remoteAddr.sin_addr)+10)-1]=tics-atoi(buf+1);

curTime=CTime::GetCurrentTime();

day=curTime.GetDay();

hour=curTime.GetHour();

min=curTime.GetMinute();

sec=curTime.GetSecond();

// if logfile larger than 1 MB create new one

cnt++;

if(cnt > MAXFILESIZE)

{

idx++;

cnt=0;

strcpy(filename,"\\CF Card\\rttlog");

_itoa(idx,dum,10);

strcat(filename,dum);

strcat(filename,".txt");

}

// log rtt

out=fopen(filename,"a");

fprintf(out,"%s %d %d.%d.%d.%d\n", inet_ntoa(remoteAddr.sin_addr)+10,rtts[atoi(inet_ntoa(remoteAddr.sin_addr)+10)-1],day, hour, min, sec);

fclose(out);

}

else

{

printf("received rtt buffer truncated\n");

printf("\n***********\n%c\n*********\n",buf[0]);

}

}

return 0;

}

Gateway-Thread

int gatewayconnect() {

//

// DECLARATION AND INITIALIZATION STUFF //

//

//variables

char *id=NULL, dummy[1000], filename[100], buf[sizeof(transobj)+1];

long gwstamp=0, recvgwstamp=0, dum=0, hops=0;

int remoteAddrLen=sizeof(SOCKADDR_IN), gateway=0,i, day, hour, min, sec;

long rc, cnt=0, idx=1;

48

bool flag=true;

FILE *out;

SOCKET sends, recvs;

SOCKADDR_IN addr;

SOCKADDR_IN remoteAddr;

CTime curTime, oldTime;

CTimeSpan span=CTimeSpan(0,0,0,GATEWAYTIME);

// find current logfile

while(flag)

{

strcpy(filename,"\\CF Card\\gatewaylog");

_itoa(idx,dummy,10);

strcat(filename,dummy);

strcat(filename,".txt");

out=fopen(filename,"r");

if(out==NULL)

flag=false;

else

{

idx++;

}

fclose(out);

}

// update display by calling main thread

sprintf(gws,"looking for gateway\n");

InvalidateRect(hwndMain,&rectGw,true);

// creating, initialzing and binding sockets

rc=startWinsock();

if(rc!=0)

{

printf("Fehler: startWinsock, fehler code: %d\n",rc);

return 1;

}

recvs=socket(AF_INET,SOCK_DGRAM,0);

if(recvs==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

sends=socket(AF_INET,SOCK_DGRAM,0);

if(sends==INVALID_SOCKET)

{

printf("Fehler: Der Socket konnte nicht erstellt werden, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

addr.sin_family=AF_INET; // my address

addr.sin_port=htons(4321); // different port chosen!!!

addr.sin_addr.s_addr=ADDR_ANY;

rc=bind(recvs,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN));

if(rc==SOCKET_ERROR)

{

printf("Fehler: bind, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

addr.sin_family=AF_INET; //destination address

addr.sin_port=htons(4321);

addr.sin_addr.s_addr=inet_addr("192.168.0.255");

// get current time

curTime=CTime::GetCurrentTime();

oldTime=curTime;

///////////////////

// THE MAIN LOOP //

///////////////////

while(true)

{

// wait for incoming packets

rc=recvfrom(recvs,buf,sizeof(transobj)+1,0,(SOCKADDR*)&remoteAddr,&remoteAddrLen);

if(rc==SOCKET_ERROR)

{

printf("Fehler: recvfrom, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

49

}

else

{

gwstamp=((transobj*)buf)->index; // gwindex in index field

hops=atoi(((transobj*)buf)->time); // no of hops in time field

// if message from own device update display

if(gwstamp==-1) // message from own device

{

curTime=CTime::GetCurrentTime();

if(curTime-span>oldTime) // check whether received message from gateway within last 20 sec

{

gateway=0; // if not set gateway to 0

sprintf(gws,"no connection to gateway\n");

InvalidateRect(hwndMain,&rectGw,true); //update rect in window

}

}

else

{

// check whether there was a reboot

if(gwstamp<recvgwstamp-100)

{

recvgwstamp=gwstamp;

}

// if packet has not been seen yet, log and forward it

if(gwstamp>recvgwstamp)

{

// forwarding

id=inet_ntoa(remoteAddr.sin_addr);

id=id+10;

hops++;

_itoa(hops,dummy,10);

sprintf(((transobj*)buf)->time,"%s",dummy); // hops updated

if(strcmp(id,"20"))

{

sprintf(((transobj*)buf)->name,"%s %s",((transobj*)buf)->name,id); // relays updated

}

rc=sendto (sends,buf,sizeof(transobj)+1,0,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN)); // forward message

if(rc==SOCKET_ERROR)

{

PlaySound (TEXT("Alert"), NULL, SND_SYNC);

MessageBox(NULL,TEXT("unable to send!\nensure that WLAN is activated!"),NULL,MB_SETFOREGROUND);

printf("Fehler: sendto, fehler code: %d\n",WSAGetLastError());

getchar();

return 1;

}

// register packet as received and update display string

recvgwstamp=gwstamp;

sprintf(gws,"gateway reached - %d hop(s)\nrelays: %s", hops,((transobj*)buf)->name);

// logging

curTime=CTime::GetCurrentTime();

oldTime=curTime;

day=curTime.GetDay();

hour=curTime.GetHour();

min=curTime.GetMinute();

sec=curTime.GetSecond();

// check whether log file has reached maximum size

cnt++;

if(cnt > MAXFILESIZE)

{

idx++;

cnt=0;

strcpy(filename,"\\CF Card\\gatewaylog");

_itoa(idx,dummy,10);

strcat(filename,dummy);

strcat(filename,".txt");

}

// log packet

out=fopen(filename,"a");

fprintf(out,"%d %d %s %d.%d.%d.%d\n", hops,gwstamp,((transobj*)buf)->name,day, hour, min, sec);

fclose(out);

}

}

}

}

return 0;

}

50

Appendix B

Implementation of Mobility Models

B.1 Random Waypoint Model
% rectangular floor

a=100; b=20;

%number of devices

DEVICES=20;

% initial positions and targets

xt=a*rand(DEVICES,1);

yt=b*rand(DEVICES,1);

x=a*rand(DEVICES,1);

y=b*rand(DEVICES,1);

% number of considered samples

SAMPLES=5000;

% time between to samples in s

st=7;

% velocity in m/s

v=1.0;

d=v*st%*ones(DEVICES,1);

% thinking time in s (has to be a multiple of sample time)

t0=floor(.5*1806*rand(DEVICES,1)/7)*7; %3*1750

t=.5*1806*ones(DEVICES,1);

% threshhold for contact

rth=25;

% open file

fid=fopen(’C:\\Documents and

Settings\\tikadmin\\Desktop\\AnalyseTool\\netlist.txt’,’w’);

for i=1:SAMPLES

i

% set new target if thinking time has elapsed, otherwise sustain old target

xt=a*rand(DEVICES,1).*(t0==0)+xt.*(t0~=0);

yt=b*rand(DEVICES,1).*(t0==0)+yt.*(t0~=0);

% determine distance to walk (either maximum or till destination)

d0=(d < sqrt((yt-y).^2+(xt-x).^2)).*d + (d >= sqrt((yt-y).^2+(xt-x).^2)).*sqrt((yt-y).^2+(xt-x).^2);

% check whether target is arrived with this step

arrived=(sqrt((yt-y).^2+(xt-x).^2) == d0);

% walk if t0<=0, wait otherwise

x0=x;

xt0=xt;

y0=y;

yt0=yt;

x=(x0+d0.*(xt0-x0)./sqrt((yt0-y0).^2+(xt0-x0).^2)).*(t0<=zeros(DEVICES,1))+x0.*(t0>0);

y=(y0+d0.*(yt0-y0)./sqrt((yt0-y0).^2+(xt0-x0).^2)).*(t0<=zeros(DEVICES,1))+y0.*(t0>0);

% decremeant thinking time

51

t0=t0-st;

t0=t.*arrived+t0.*(1-arrived);

% reset after having arrived at target

xt=-100*arrived+xt.*(1-arrived); % ensure that arrived flag is

yt=-100*arrived+yt.*(1-arrived); % not set again in next round

arrived=zeros(DEVICES,1);

% get radii

Xq=(kron(ones(1,DEVICES),x)-kron(x’,ones(DEVICES,1))).^2;

Yq=(kron(ones(1,DEVICES),y)-kron(y’,ones(DEVICES,1))).^2;

R=sqrt(Xq+Yq);

% convert R to adjadcence matrix

A= R < (rth * ones(DEVICES,DEVICES));

% write netlist to logfile

for aa=1:DEVICES

for b=1:DEVICES

fprintf(fid,’%d’,A(aa,b));

end

end

fprintf(fid,’b’);

end

fclose(fid);

B.2 Random Reference Point Mobility Model
% number of devices

DEVICES=20;

% open file

fid=fopen(’C:\\Documents and

Settings\\tikadmin\\Desktop\\AnalyseTool\\netlist.txt’,’w’);

% rectangular floor

a=100; b=20;

% groups and their size

groups=[1,6;7,9;10,11;12,13;14,15;16,16;17,17;18,18;19,19;20,20];

groupsize=groups(:,2)-groups(:,1)+1;

% threshhold for contact

rth=15;

% number of considered samples

SAMPLES=5000;

% time between to samples in s

st=7;

% velocity in m/s

v=1.0; d=v*st;

%thinking time in s (has to be a multiple of sample time)

t0c=round(1.05*3605*rand(length(groupsize),1)/7)*7;

tc=round(1.05*3605*ones(length(groupsize),1)/7)*7;

t0e=round(1.05*1806*rand(DEVICES,1)/7)*7; %3*1750

te=round(1.05*1806*ones(DEVICES,1)/7)*7;

% initial positions and targets

xte=.33*a*rand(DEVICES,1); yte=b*rand(DEVICES,1);

xe=.33*a*rand(DEVICES,1); ye=b*rand(DEVICES,1);

xtc=.66*a*rand(length(groups),1); ytc=zeros(length(groups),1);

xc=.66*a*rand(length(groups),1); yc=zeros(length(groups),1);

52

for i=1:SAMPLES

i

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RANDOM WALK OF CENTER POINTS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% set new target if thinking time has elapsed, otherwise sustain old target

xtc=.66*a*rand(length(groupsize),1).*(t0c==0) + xtc.*(t0c~=0);

ytc=0*b*rand(length(groupsize),1).*(t0c==0) + ytc.*(t0c~=0);%b*rand(length(groupsize),1).*(t0c==0)+ytc.*(t0c~=0);

% determine distance to walk (either maximum or till destination)

d0c=(d < sqrt((ytc-yc).^2+(xtc-xc).^2)).*d + (d >= sqrt((ytc-yc).^2+(xtc-xc).^2)).*sqrt((ytc-yc).^2+(xtc-xc).^2);

% check whether target is arrived with this step

arrivedc=(d >= sqrt((ytc-yc).^2+(xtc-xc).^2));

% walk if t0<=0, wait otherwise

xtc0=xtc;

xc0=xc;

ytc0=ytc;

yc0=yc;

xc=(xc0+d0c.*(xtc0-xc0)./sqrt((ytc0-yc0).^2+(xtc0-xc0).^2)).*(t0c<=0)+xc0.*(t0c>0);

yc=(yc0+d0c.*(ytc0-yc0)./sqrt((ytc0-yc0).^2+(xtc0-xc0).^2)).*(t0c<=0)+yc0.*(t0c>0);

% decrement thinking time

t0c=t0c-st;

t0c=tc.*arrivedc+t0c.*(1-arrivedc);

% reset after having arrived at target

xtc=(-rand(1,1)-100)*arrivedc+xtc.*(1-arrivedc); % ensure that arrived flag is

ytc=(-rand(1,1)-100)*arrivedc+ytc.*(1-arrivedc); % not set again in next round

arrivedc=zeros(length(groupsize),1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RANDOM WALK OF MOBILE NODES %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xte=.33*a*rand(DEVICES,1).*(t0e==0)+xte.*(t0e~=0);

yte=b*rand(DEVICES,1).*(t0e==0)+yte.*(t0e~=0);%b*rand(length(groupsize),1).*(t0c==0)+ytc.*(t0c~=0);

% determine distance to walk (either maximum or till destination)

d0e=(d < sqrt((yte-ye).^2+(xte-xe).^2)).*d + (d >= sqrt((yte-ye).^2+(xte-xe).^2)).*sqrt((yte-ye).^2+(xte-xe).^2);

% check whether target is arrived with this step

arrivede=(sqrt((yte-ye).^2+(xte-xe).^2) == d0e);

% walk if t0<=0, wait otherwise

xte0=xte;

xe0=xe;

yte0=yte;

ye0=ye;

xe=(xe+d0e.*(xte-xe)./sqrt((yte-ye).^2+(xte-xe).^2)).*(t0e<=zeros(DEVICES,1))+xe.*(t0e>0);

ye=(ye+d0e.*(yte-ye)./sqrt((yte-ye).^2+(xte-xe).^2)).*(t0e<=zeros(DEVICES,1))+ye.*(t0e>0);

% decremeant thinking time

t0e=t0e-st;

t0e=te.*arrivede+t0e.*(1-arrivede);

% reset after having arrived at target

xte=-100*arrivede+xte.*(1-arrivede); % ensure that arrived flag is

yte=-100*arrivede+yte.*(1-arrivede); % not set again in next round

arrivede=zeros(DEVICES,1);

% overlay movements

tmp=[];

for k=1:length(groupsize)

tmp=[tmp;kron([xc(k),yc(k)],ones(groupsize(k),1))];

end

x=tmp(:,1)+xe;

y=tmp(:,2)+ye;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TOPOLOGY RECONSTRUCTION %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get radii

Xq=(kron(ones(1,DEVICES),x)-kron(x’,ones(DEVICES,1))).^2;

Yq=(kron(ones(1,DEVICES),y)-kron(y’,ones(DEVICES,1))).^2;

53

R=sqrt(Xq+Yq);

% convert R to adjadcence matrix

A= R < (rth * ones(DEVICES,DEVICES));

% write netlist to logfile

for aa=1:DEVICES

for b=1:DEVICES

fprintf(fid,’%d’,A(aa,b));

end

end

fprintf(fid,’b’);

end

fclose(fid);

54

Appendix C

Windows CE Developer Platforms

This chapter shall provide a survey of available development environments for Windows CE
based operating systems such as ”Windows Mobile 2003”, which is run by the handhelds used
in this project. Most environments are provided by Microsoft itself. However there are also
some Java based environments.

C.1 Microsoft Development Tools

C.1.1 eMbedded Visual C++ 4.0

Short Description: Microsoft eMbedded Visual C++ 4.0 is a stand-alone integrated devel-
opment environment, i.e., it does not require any additional development environments, such as
Microsoft Visual Studio. It allows to create applications and system components for Windows
CE 4.2 based devices. In order to generate code for a specific device it requires a Software
Development Kit (SDK) depending on the platform to target. eMbedded Visual C++ 4.0 in-
cludes the native code C and C++ compilers and is therefore well suited for the development of
drivers or any other device applications that run natively on the device. It provides a just-in-
time debugger for diagnosing unhandled exceptions, C++ structured exception handling and
integration with the Pocket PC emulator provided by Microsoft. eMbedded Visual C++ code
is based on the Win32 API, the Microsoft Foundation Classes and the ATL APIs. Generally
speaking appearance and handling are very similar to the classical Visual C++ in the Visual
Studio environment for desktop machines. In contrast to Visual Studio .NET (see next section)
the standard Visual Studio environment does not support development for Windows CE based
systems.

Purchasing: eMbedded Visual C++ 4.0 and several SDKs are available for free download on
the Microsoft web pages.

eMbedded Visual C++ 4.0 is the development tool chosen for the accomplishment of this
student project, since it is the only tool that allows immediate access to the network interface
card. Further it is the only environment supporting C or C++ respectively. Using C/C++

55

is of particular importance as the network device interface specification (NDIS) provided by
Microsoft for accessing network cards can be easily used by these languages.

C.1.2 Visual Studio .NET

Short Description: The Visual Studio .NET environment known from desktop programming
is the second widely spread IDE provided by Microsoft suitable for development for Windows
CE. As embedded Visual C++ it requires a specific SDK and toolkit in order to target the
device. Unlike eMbedded Visual C++ it supports the languages C# and Visual Basic .NET
and therefore builds managed instead of native code. Consequently it is easily portable be-
tween different devices running an appropriate interface, but on the other hand not capable of
accessing any devices immediately. Instead of Win32 API, MFC and ATL it uses the .NET
Compact Framework interface, which has to be installed on the handheld device. The .NET
Compact framework is a smaller and slightly different version of the full .NET framework for
desktop devices. The extensive class library available through the .NET Compact Framework
allows applications to be written much faster than with eMbedded Visual C++ 4.0.

Purchasing: Depending on the edition Visual Studio. NET costs between 800 and $2500.

C.2 Java Based Development Tools

Short Overview: There are several JVMs for the Pocket PC (J2ME) on the market. Most of
them, however, suffer from more or less severe problems: Sun’s PeronalJava is not supported
anymore, SuperWaba and EWE are not fully Java compatible, some others are on sale to OEMs
only or out of date. Essentially IBM’s J9 JVM and NSICOM’s CrEme JVM are the only ones
that are both fully Java compatible and supported.
vspace0.3cm Since J2ME/CDC APIs are close to regular desktop Java (J2SE) APIs, in the
majority of cases it is possible to use regular Java IDEs such as Eclipse, JBuilder, or Sun Java
Studio.

The advantages and disadvantages of Java based development tools are similar to those of
Visual Studio .NET. Of course the hardware abstraction done by the JVM does not allow
immediate access to devices or memory any more. However applications written in Java are
portable to any device running a JVM.

Purchasing: The first one can be purchased from www.handango.com for $5.99, NSICOM’s
CrEme JVM is available as a free trial download under www.nsdicom.com, developer licenses
can be purchased for $25.

56

