
A Variability Characterization Curve Editor

Pascal Gamper

June 30, 2005

2

Abstract

In the recent five years a method for real-time performance analysis for em-
bedded systems has been developed at the Institute TIK at ETH Zurich.
Variability Characterization Curves are used to describe different quantities.
To create and edit the curves, a flexible software tool was asked. The curve
editor provides different editors to edit a curve and import and export func-
tionalities for the filesystem.

This report is divided into three main sections. The first section describes
the theoretical background and presents the curve editor in the context. The
second section shows the software architecture and the third section provides
guides for developers and users.

Contents

1 Introduction 6

1.1 Problem Description . 6

1.2 Approach . 6

1.3 Related Work . 7

2 Theoretical Background 8

2.1 Overview . 8

2.2 The Performance Network Approach 9

2.3 VCC’s in conjunction with this Thesis 12

3 Curve Editor Context 13

4 Design Reflections 15

4.1 Finding the key concept . 15

4.2 Finding the right data structures 15

4.3 Curves and the file system . 16

4.4 Functionality Evaluation . 17

4.5 Ideas for additional features 17

5 Software Architecture 18

5.1 Design Concept . 18

5.2 Package Hierarchy . 19

5.3 Modular Framework Implementation 20

5.3.1 The singleton class CurveEditor 20

5.3.2 Models . 20

5.3.3 Config Files . 23

5.3.4 Dynamic Class Loading 23

5.3.5 Module Communication 24

5.4 Graphical Module Implementation 25

5.5 Tools Dialog Implementation 26

3

4 CONTENTS

6 Conclusions and Outlook 28

A Developer’s Guide 30
A.1 The config folder . 30
A.2 Writing a file filter . 31

A.2.1 file importer . 31
A.2.2 file exporter . 32

A.3 Writing a module . 32
A.4 Writing a wizzard . 34
A.5 Writing and registering additional methods 34

B User’s Guide 35
B.1 Getting Curve Editor to work 35
B.2 The GUI . 35
B.3 Opening a curve . 36
B.4 Creating a new curve . 37
B.5 Editing a curve . 38
B.6 Menus . 38
B.7 Curve Window . 40
B.8 Preferences Dialog . 40
B.9 Graphical Module . 41

B.9.1 Drawing Curve Segments 41
B.9.2 Selecting Curve Segments 42
B.9.3 Zooming and Shifting the Coordinates 42
B.9.4 Options . 44

B.10 XML Module . 45
B.11 Tools Dialog . 46

C Framework API 47

D Framework Class Diagram 49

E Known Bugs 50

List of Figures

2.1 A simple performance network illustrating the abstract streams 10
2.2 Event Streams and the related curves 11

3.1 The different packages of a complete RTC software tool 13

5.1 The modular views on the active curve 18
5.2 The package hierarchy . 19
5.3 Class layout of CurveEditor 21
5.4 Class diagram of the module model 22
5.5 The classes of the file model 22
5.6 The classes of the wizzard model 23
5.7 The interface UpdatedCurvesCommitable 24
5.8 Simplified class diagram of the graphical module 26

B.1 The GUI without any curve opened 36
B.2 Open a curve . 37
B.3 Dialog to select the curves to open 37
B.4 The different possibilities to create a curve 37
B.5 A wizzard to create empty curves 38
B.6 The different menus (without the help menu) 39
B.7 The curve window . 40
B.8 The graphical view . 41
B.9 The popup button to delete the selection 43
B.10 The options dialog for the graphics module 44
B.11 The different parsing outputs 45
B.12 The tools dialog . 46

D.1 Simplified class diagram of the framework 49

5

Chapter 1

Introduction

1.1 Problem Description

Embedded systems can nowadays be found in almost every technical field
of application. Since the time-to-market pressure in the embedded systems
industry has become very high, performance analysis plays an important role
in the design of embedded systems. The earlier an analysis methodology can
be applied within the development process the more efficient the production
becomes.

For this reason, an analysis method for embedded systems, called Real
Time Calculus (RTC) has been developed at the institute TIK at ETH
Zurich. To apply the research results to more realistic systems and to make
the research become more popular, there is an ongoing software develop-
ment in process at TIK. The Real Time Calculus is based on the Network
Calculus. In each method different quantities are described by variability
characterization curves.

In this semester thesis a tool should be implemented, which provides
an ergonomic and intuitive graphical user interface to edit and create these
curves. Additionally, it should be possible to import and export the curves
from and to different file types respectively.

1.2 Approach

Although no detailed knowledge about the Real Time Calculus method was
necessary to fulfill the assigned task, an insight to the theoretical part had
to be gained. This had been accomplished by reading several reports about
the RTC method [9][4][10]. The main analysis part of this method is done
by the RTC kernel which has also been implemented as a software package.

6

1.3. RELATED WORK 7

This package had to be explored.
To accomplish the task, founded java knowledge was necessary [5]. Also

some knowledge about design patterns emerged as a helpful skill [6]. Sec-
ondary the usage of several developing tools had to be learned [1][8]. For the
development a subversion repository was installed on a server at the institute
TIK.

The next step was the definition of specifications. What should the tool
be able to do and what not? How should the user interface look like? A
lot of questions about the characteristics of the software had been evaluated
and discussed with the assistants. During the specification process also the
idea of the software design grew. The reflections about the software design
are summarized in the Chapter 4.

The main part of this thesis was the implementation of the requirements
into a piece of software. The implementation was often accompanied by
design and functionality changes due to a increasingly better understanding
of problems related to the programming language as well as to the curve
attributes.

Since the main part of the thesis was the implementation itself the tool
should be useable and expandable by other developers. Therefore the docu-
mentation contains three sections concerning the software, namely a software
architecture description part, a developer’s and a user’s guide part.

1.3 Related Work

A software framework for analysis methods of embedded systems called
SymTA/S has been developed at the institute IDA of TU Braunschweig [7].
The name SymTA/S stands for Symbolic Timing Analysis for Systems. It can
be used to analyze embedded systems consisting of processors and commu-
nication devices. A recent semester thesis was about integrating the analysis
methods based on Real Time Calculus developed at TIK into the SymTA/S
environment [2]. Some code fragments from this work could be adopted into
the curve editor code.

The RTC kernel, responsible for combining and calculating the different
variability characterization curves, had been implemented in Java by Ernesto
Wandeler. The package provides the basic curve data structure and a lot of
different methods for handling the curves. This package is mandatory for the
curve editor.

Chapter 2

Theoretical Background

2.1 Overview

Performance analysis plays an increasingly important role in the design of
embedded real-time systems because of many today’s market-bound proper-
ties. The earlier a performance analysis can support the developing process
the more efficient the design process will be. Due to this fact an analytical
analysis approach for performance analysis of embedded systems, based on
real-time calculus, has been developed at ETH Zurich.

An embedded system is a special-purpose information processing sys-
tem closely integrated into its environment. The embedding leads towards
heterogeneous and distributed systems in which the single sub-components
communicate with each other via some interconnection networks. Perfor-
mance and workload information of the whole system not only depends on
the single computations of each sub-component but rather on the interaction
of those sub-systems.

Typically, embedded systems are reactive systems. They react to stimuli
coming from the environment they are connected to and with which they
interact. The execution of a certain task due to a stimulus must meet some
timing constraints. Not meeting the constraints can lead either to a catas-
trophic failure of the system (hard real-time) or just to mal-functioning exe-
cution (soft real-time).

The initial causes for an embedded system to start a process are modelled
as so-called arrival events. In equivalence the finishing of an application can
be modelled as finishing event. The timing behavior now can be described
depending on the time interval between those two events. The characteri-
zation of a timing behavior is possible under several terms, e.g. worst and
best case execution time (WCET and BCET) [3], upper and lower bounds or

8

2.2. THE PERFORMANCE NETWORK APPROACH 9

statistical measures. The upper and lower bounds are quantities that bound
the worst and best case behaviors. Although the term performance is not
well defined, it is usually a mixture of the achievable deadline, the delay of
events or packets, and of the number of events that can be processed per
time unit (throughput).

In order to determine or approximate the above quantities, several meth-
ods exist, such as formal analysis, simulation, emulation and implementation.
Except the analytic methodology those possibilities should be used with care
as only a finite set of possible executions can be observed.

A methodology for performance analysis of embedded systems should at
least satisfy some of the following properties: correctness, accuracy, embed-
ding into the design process and short analysis time. Another key require-
ment for any performance analysis method is the modularity. We can distin-
guish between several composition properties, such as process, scheduling or
resource composition and building components.

2.2 The Performance Network Approach

The approach to performance analysis of embedded systems related to this
thesis is influenced by the worst-case analysis of communication networks.
The methodology from Network Calculus has been extended to Real Time
Calculus in order to deal with distributed embedded systems.

Performance analysis is interested in making statements about the timing
behavior for several input characteristics and therefore the concrete event
streams that flow between the components must be represented in an abstract
way.

The way we have created abstract event streams, we model the resources
of the components as abstract resource streams. The performance network
of an embedded system works as shown in Figure 2.1: On the left hand side
an abstract input modelling the event streams which trigger the tasks of the
applications, enters the network. On top we can see the resource modules
that model the service of the shared resources. The abstract resource streams
interact with the event streams on the performance modules and performance
components. The performance components represent (a) the way how the
timing properties of input event streams are transformed to timing properties
of output event streams and (b) the transformation of the resources. The
transfer function of such a component is determined e.g. by the resource
sharing strategy.

The event streams propagating through the distributed architecture get
increasingly complex and the standard patterns used for modelling event

10 CHAPTER 2. THEORETICAL BACKGROUND

Input CPU Bus DSP

P1Sensor

RT data

I/O

P2 P3

P4 P5

Timer P5

C1
C2

resource
module

abstract
input

abstract
event stream

abstract
resource stream

performance
component

resource
interface

Figure 2.1: A simple performance network illustrating the abstract streams

streams like sporadic or periodic etc. cannot model the timing properties
anymore. To achieve a general representation for the timing characterization
of event and resource streams, the Variability Characterization Curve (VCC)
has been introduced.

The event streams are described using arrival curves, which provide upper
and lower bounds on the number of events in any time interval of length ∆.
In particular, there are at most ᾱu(∆) ∈ R≥0 and at least ᾱl(∆) ∈ R≥0 events
within the time interval [t, t + ∆) for all t ≥ 0, ∆ ∈ R≥0. Figure 2.2 shows
the patterns for typical event streams and the corresponding variability char-
acterization curves. In a similar way, the resource streams are characterized
using service functions βu(∆), βl(∆) ∈ R≥0, ∆ ∈ R≥0, which provide upper
and lower bounds on the available service in any time interval. The unit of
service depends on the kind of the shared resource, for example instructions
(computation) or bytes (communication). Note that as defined above, the
arrival curves αu/l are expressed in terms of events, while the service curves
βu/l are expressed in terms of workload and service respectively. There ex-
ist a method to transform event-based curves to workload-based curves and
vice-versa. Therefore the workload is often represented as γ curves. The up-
per and lower workload curve γ denote the maximal and minimal workload

2.2. THE PERFORMANCE NETWORK APPROACH 11

periodic
t

Tti ti+1

ti+1 – ti = T

periodic

w/ jitter t
Tti

ti = i ⋅T + ϕi + ϕ0

admissible occurrence of event

J
0 > ϕi > J

J > T

periodic

w/ burst t
Tti

ti = i ⋅T + ϕi + ϕ0

J
0 > ϕi > JJ > T

ti+1 – ti > d

(a) Patterns for typical event streams

∆

1

2

3

4

∆

α
u, αl

1

2

3

4

∆

1

2

3

4

periodic periodic w/ jitter periodic w/ bursts

T 2T T 2T

T-J T+J 2T+J

T 2T

2T-Jd

α
u, αl

α
u, αl

(b) Curves corresponding to the event streams

Figure 2.2: Event Streams and the related curves

on a specific resource for any sequence of e consecutive events.

The mentioned curves can be computed from several sources. For e.g.
bursty, periodic or sporadic event streams patterns are known and can be
constructed analytically. In case of unknown arrival or service patterns, we
can use a set of traces and compute the envelope. Another possibility is
to derive the curves from the characteristic according to data sheets.In The
combination of the resulting arrival and service curves in an appropriate way
leads to the necessary information for computing all the relevant information
such as the average resource loads, the end-to-end delays an the necessary
buffer spaces on the event and packet queues.

12 CHAPTER 2. THEORETICAL BACKGROUND

2.3 VCC’s in conjunction with this Thesis

For editing performance curves an editor has been developed as a plug-in
for the SymTA/TS software framework [2]. Although there is the need for a
more flexible tool that allows the user to edit a single VCC, no matter if it
is from upper or lower type or if it is an arrival or a service curve.

A software package for real-time calculus, called RTC kernel, has been
developed. The RTC kernel implements the functionality of the real-time
calculus. In the RTC kernel the basic data structure and various functionality
are already available.

Because this analysis methodology is still in research, one can not al-
ways deal with accomplished facts. Therefore flexibility is one of the main
characteristics which this new curve editor should satisfy.

Chapter 3

Curve Editor Context

Because this software project is part of a whole research program, the con-
text of this tool had to be discovered. As Figure 3.1 illustrates, a complete

Figure 3.1: The different packages of a complete RTC software tool

software package for real time calculus is planned at TIK. The development
process is divided into four work packages. Work package one (WP1) imple-
ments an efficient curve description, efficient algebraic methods and workload
transformations. WP2 defines a XML based Modular Performance Analy-
sis (MPA) System Definition Language with which systems can be modelled
and analyzed. WP3 and WP4 are not defined at the time this curve editor
has been written but WP4 will implement the GUI. The work package 1
which contains the RTC kernel has already been implemented. Because the
data structure and several methods already existed, there have been some
guidelines to follow for handling the curves.

13

14 CHAPTER 3. CURVE EDITOR CONTEXT

We can see in Figure 3.1 that a graphical user interface (GUI) component
stands on the top of the API. A complete GUI for all functionality is desired.
Because the curve editor would probably be embedded into the GUI, the
curve editor should be easily useable as a part of it. This means that the
GUI of the curve editor has to be flexible in look and size and the API of
this tool should be clear accessible from other programs.

Chapter 4

Design Reflections

4.1 Finding the key concept

From the beginning on it was clear that a curve should be editable in different
ways. The idea was to have a textual and a graphical representation of a
variability characterization curve for creating and modifying.

The question rose if every curve representation should have its own data
structure or if these representations should just be a kind of view on the same
curve. I have decided to the latter because

• the actual data structure for a curve has already been defined in the
RTC kernel package,

• if only a single centralized data structure exists, the tool becomes more
flexible and easier to expand,

• modified data is always visible for every class which knows the data
structure,

• the curve managing part has the overview of all attribute changes. This
way the possibility for a powerful interface is provided.

The way this key concept has been realized, is described in the Chapter 5.

4.2 Finding the right data structures

As already a curve data structure was provided by the RTC kernel package,
at first glance it seemed not necessary to define another curve class. But
reflections about how curves should be saved and loaded to and from the
file system respectively have shown that some slight extensions would be

15

16 CHAPTER 4. DESIGN REFLECTIONS

necessary. The decision not to derive the new extended curve data structure
from the existing one but to add a member which references the existing class
turned out to be very lucky. This way for example an undo / redo module can
just change the reference to another original curve but the extended curve
itself remains the same.

I have decided to use a centralized data structure. For a centralized data
structure a managing class would be reasonable. The manifest design pattern
for a centralized class structure is the singleton pattern. Thus the main class
CurveEditor is designed as a singleton. The CurveEditor class should not
just be the center of the curve editor itself but also every other application
should be able to access this class. Further reflections about the file system
etc. have borne a set of functions for a general API. Figure D.1 shows a
simplified class layout.

4.3 Curves and the file system

Nowadays a software tool is intuitive and ergonomic if it at least orientates
itself at the defacto standard software which is - boon or bane - the windows
standard. Applied to the file handling certain points had to be considered:

• If some data has not been saved, e.g. some changes on the data oc-
curred, it is highlighted with an asterisk or a similar symbol.

• No matter what kind of data is opened, for convenience more than one
item can be kept opened at the same time. Additionally the items
should be treated separately.

• The supported file types should be extensible for later add-on’s.

The first point can be realized with two additional attributes for the curve
data structure: a field for a base file for this curve and a field which knows
if changes have occurred on the curve data.

The second point makes clear that not only a single curve can be available
at a time but an unknown number of curves. Thus a set of curve data
structures has to be implemented. Within this curve set only one curve can
be active for modifying at a time.

The last point bears the idea of modular file filter implementations which
will be dynamically loaded. The modular design has proven as a very pow-
erful way to implement several features and is presented in the next chapter.
The so far presented discussions have led to the layout of the CurveEditor

class shown in Figure D.1.

4.4. FUNCTIONALITY EVALUATION 17

4.4 Functionality Evaluation

When the main concepts have itself tightened, the design and implementation
of the framework could begin. In parallel to this process the functionality of
the GUI could be evaluated. Especially for the graphical view some features
had been demanded:

• As the aperiodic and the periodic part of a variability characterization
curve can widely differ from each other in range in the time or even
amplitude domain, they should be treated separately.

• Different zoom and coordinate shifting functions to navigate inside the
coordinate system should be available.

• Different intuitive drawing modes have to be found and implemented.

• An intuitive tool supports several functions like undo / redo, (multiple)
selecting, modifying selection etc.

For the text based view the curve data first was thought to be just formatted
the way Matlab does. But the idea came up to implement a curve property
window which shows the different attributes of a curve in a table like the way
many integrated development tools (IDE’s) do. So the text format changed
according to the XML data structure.

4.5 Ideas for additional features

The idea for a lot of features now integrated in the curve editor arose si-
multaneously to the implementation. E.g. features like modular wizards for
creating new curves or modular option dialogs came up while extensively
using the eclipse developing platform.

Chapter 5

Software Architecture

5.1 Design Concept

The graphical and text based view on a curve probably remain not the only
views. Therefore the views have to be loosely coupled to the framework. This
way an additional view can easily be appended. Figure 5.1 demonstrates
the concept of different views on the same curve residing in the framework.
Further the figure shows that all opened curves are stored in a list and the

View 1

View 2

View N

Framework

Curve Set

Curve 1 Curve 2 Curve N

Active Curve

Figure 5.1: The modular views on the active curve

active curve can point on every curve in this list. Now the problem arises
that if a view makes some changes on the curve, the other views have to
be informed that changes occurred because they probably have to update
their representation of the curve. To come by this problem, the views have
to register themselves with the framework. If a view makes some changes
it has to inform the framework that the curve data has changed. Then the
framework will tell every view that changes occurred. A similar procedure
will be used if e.g. the active curve changes its reference to another curve in
the curve set.

18

5.2. PACKAGE HIERARCHY 19

Because the number of views is not known and the views will be loaded
during the starting up of the curve editor, each view has to fulfill some
requirements. To guarantee that the requirements are fulfilled every view has
to derive the main classes from so-called models which are abstract classes.
But the framework still has to know where to find a certain view and how
the classes are named for loading it properly. Configuration files will list all
the different views, called modules, and their location.

Not only modules are derived from a model and are loaded dynamically
but also curve wizards and the file filters for exporting and importing curve
data.

5.2 Package Hierarchy

Figure 5.2 shows the package hierarchy. Below a short description of each
package is given.

ch.ethz.rtc.curveeditor

.gui

.fileio

.wizards

.tools

.modules

.abstractmodule

.graphicsmodule

.textmodule

Figure 5.2: The package hierarchy

.gui The GUI package contains the actual framework. For instance the
main gui classes can be found in this package as well as the core class
CurveEditor and the extended curve class ExtendedCurve of the curve
editor.

.tools Although most of the classes in this package are used by the frame-
work of the curve editor, the classes could be also used by other pack-
ages for example by a module. Therefore some classes have been sepa-
rated from the GUI package.

.fileio The fileio package contains all the classes related to the file han-
dling. There is an abstract class model for a file importer and exporter,

20 CHAPTER 5. SOFTWARE ARCHITECTURE

an importer and exporter loading and managing class, and two realized
importer and exporter for Matlab and XML files respectively.

.wizards All classes necessary for the user to create a new curve are placed
in this package. It contains an abstract wizard model, a wizard model
loading class, a wizard dialog which displays the wizard models and
two realized wizards.

.abstractmodule The templates for creating a new module are placed here.

.modules Every implemented module package should be placed inside this
package but it is not necessary though. Two modules have been realized
to use within the curve editor namely a graphical and a text based
module.

5.3 Modular Framework Implementation

This section describes how the core design of the curve editor is constructed
and how it works. First the core class CurveEditor and all the abstract mod-
els are presented and the Section 5.3.3 describes how an implementation of a
model is registered. Further the Java mechanism to load classes dynamically
is described and in the last section the module communication is explained.

5.3.1 The singleton class CurveEditor

It can exist only one instance of a singleton class. Often most of the functions
are static. The CurveEditor class is constructed this way. The core class
manages the dynamic loaded models, the opened curves and provides an API
for modifying the curve list. It does not matter if a file dialog of the curve
editor itself opens a new curve or if an extern software component tells the
curve editor to open a curve because both would use a method from the
API named openCurve(Curve newCurve). Figure D.1 shows a simplified
class layout. The communication with the models is described in the next
chapters.

5.3.2 Models

Models are a set of abstract classes. By declaring an abstract class it is
assured that each derived module will implement certain functionality and
it has a predefined interface. As mentioned earlier the curve editor provides
three different models in general. The module model which provides the

5.3. MODULAR FRAMEWORK IMPLEMENTATION 21

Figure 5.3: Class layout of CurveEditor

abstract classes for a curve view, the file filter model, subdivided in an import
and export model, and a wizard model. These models are described in detail
below.

Module Model

The module model consists of three classes. A valid module implements
at least the two abstract classes CurveView and CurveModel. CurveModel

could be seen as the access point for the framework because it references the
other classes like the visible class CurveView. The class CurveOptions can
be implemented but if it is not a template class for the options dialog will
be used. Also the class CurvePrinter is facultative to implement. Because

22 CHAPTER 5. SOFTWARE ARCHITECTURE

this class is not implemented yet it is not shown in the figure.

The classes CurveView and CurveOptions are derived from the JPanel

class in javax.swing. CurveView represents the actual module view and
CurveOptions the view of the options panel for this module. Figure 5.4
shows the UML diagram for the module model.

Figure 5.4: Class diagram of the module model

File Filter Model

This model is very simple. For each import and export functionality exists
an abstract class respectively. If we want to write a file filter for a certain
file type we just derive our filter from one of the two abstract classes. Figure
5.5 shows the class layouts.

Figure 5.5: The classes of the file model

5.3. MODULAR FRAMEWORK IMPLEMENTATION 23

Wizzard Model

The wizzard model is an abstract class derived from JPanel in javax.swing.
This abstract class will be displayed embedded in a dialog with other JPanel
instances. Figure 5.6 shows the class layout.

Figure 5.6: The classes of the wizzard model

5.3.3 Config Files

Text based config files are placed in a config folder in the root application
folder of the curve editor. In several files the derived models can be regis-
tered and will be loaded according to the entries in the config files. If an
entry leads to a loading failure a loading exception will occur. The class
LoadingException is placed in the package tools. The different configura-
tion files are modules, wizards, importers and exporters. In the devel-
oper’s guide the layout of the configuration files is described in details.

5.3.4 Dynamic Class Loading

Java allows dynamic class loading. With dynamic class loading all model im-
plementations can be loaded at run time. For each group of models (modules,
wizards and file filters) exists a loader class which loads the classes registered
there in the corresponding configuration files into a list. The curve editor
manages the model lists, e.g. decides which of the models is active etc. The
listed code fragment below shows the typical class loading procedure in the
model loader classes:

ArrayList moduleModels = new ArrayList();
try
{

Class modelClass = Class.forName(moduleName);

24 CHAPTER 5. SOFTWARE ARCHITECTURE

Object modelObject = modelClass.newInstance();
moduleModels.add(modelObject);

}
catch(ClassNotFoundException e)
{

System.err.println(e);
}

Java also provides methods to load methods dynamically. This feature is used
in the tools dialog. The methods are explained in the according section.

5.3.5 Module Communication

The previous subsections described the different models and the loading pro-
cedure of the models into the framework. Now we have a look at the module
models and how they are used inside the curve editor. The Figure 5.7 shows
the interface UpdatedCurvesCommitable. This interface is implemented at

Figure 5.7: The interface UpdatedCurvesCommitable

least in the CurveView and CurveModel class of a module model. Implement-
ing this interface makes it possible to register a class at the class CurveEditor
and at the framework respectively. The framework knows which functions
this interface contains and can call them if necessary.

If the interface is implemented, registering a class at the framework only
needs to call the following method:

CurveEditor.registerCommitableObject(this);

Calling this method the curve editor adds the new class to the list of com-
mitable objects. If for instance a module makes some changes on the active
curve, it will call

CurveEditor.activeCurveDataHasChanged()

5.4. GRAPHICAL MODULE IMPLEMENTATION 25

The curve editor commits the fact that the curve data has changed to all
registered objects with the following method:

private static void activeCurveDataChanged()
{

if (activeCurve != null)
activeCurve.updateData();
for (int i = 0; i < commitableObjects.size(); i++)
{

try
{

((UpdatedCurvesCommitable)(commitableObjects
.get(i))).commitActiveCurveUpdatedData();

}
catch(ClassCastException e)
{

commitableObjects.remove(i);
System.err.println(e);

}
}

}
}

Now the modules can react appropriately to the curve changes and update
their states.

5.4 Graphical Module Implementation

The graphical module provides the functionality to create and modify the
curves in a graphical way. As a graphical editor should provide standard
features like selecting objects, moving selections etc. classes are arranged
with respect to functionality. Figure 5.8 shows a simplified class diagram
of the functionality related classes. View classes like the toolbar are not
shown. The class GraphicsCurveView contains a toolbar and a drawing
panel. In the toolbar a draw state is selectable and some actions like zooming
or coordinate shifting are available. The draw state will be set in the class
GraphicsCurveView and also the actions will be called from this class. The
draw panel displays the active curve and reacts to user inputs. So both the
view and the panel need to call graphical methods. The methods are located
in a centralized class CoordinateSystem. This class contains other more
specialized classes like the selection manager or the painter.

A variability characterization curve can contain an aperiodic part and a
periodic part. The latter will be periodically continued. The two parts can

26 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure 5.8: Simplified class diagram of the graphical module

largely differ in the time domain. Therefore two separate coordinate systems
are useful. Common functionality for both systems is implemented in the
abstract class CoordinateSystemMath from which the classes
AperiodicCoordinatePart and PeriodicCoordinatePart are derived.

5.5 Tools Dialog Implementation

The RTC kernel package contains various functions for generating new curves
or modifying existing curves. The tools dialog loads methods for modify-
ing and generating curves, registered in a configuration file, dynamically
and displays them in a list. In the configuration file stands the fully classi-
fied class name, the method name and the number of curves as arguments.
The following code segment illustrates the dynamic method loading pro-
cess for a method with two curves as arguments. The class name is stored
in fctnElement[0] as a string and the method name in fctnElement[1].
Note that the code example is not complete.

try
{

Class modelClass = Class.forName(fctnElement[0]);
Class[] classArr = new Class[2];
classArr[0] = new Curve().getClass();
classArr[1] = new Curve().getClass();
Method method = modelClass.getMethod(fctnElement[1], classArr);
Object[] objArr = new Object[2];
objArr[0]=((ExtendedCurve)cbCurveA.getSelectedItem()).baseCurve;

5.5. TOOLS DIALOG IMPLEMENTATION 27

objArr[1]=((ExtendedCurve)cbCurveA.getSelectedItem()).baseCurve;
Curve cNew = (Curve)method.invoke(modelClass, objArr);

} catch (Exception e) {}

Chapter 6

Conclusions and Outlook

The standard Java libraries provide a wide range of different methods which
can be used in an implementation with almost no effort. If a special-purpose
implementation is needed often features of the Java Core libraries are not
directly applicable according to the programmer’s desire and third party li-
braries are too less efficient and oversized. Then the implementation takes
considerably more time than estimated and more functions have to be imple-
mented by the programmer himself. This has been experienced particularly
during the implementation of the graphical module. If in this case all the
common functionality known from professional developed software tools is
desired, the programmer has to spend a lot of time in the implementation
of those functions. Furthermore the programmer of a tool designed for spe-
cial purposes has to consider a lot of user input possibilities by himself for
achieving complete deterministically behavior of his software.

For the development of the curve editor sometimes highly sophisticated
libraries such as the XML handling libraries could be used and sometimes
functions of a lower abstraction level had to be implemented by myself, e.g.
the mouse handling and the zoom functions in the graphical drawing panel.

The curve editor provides the ability to extend modules, supported file
types, curve modifying methods and curve wizards. The two implemented
modules, a graphical and a text based module, are stable and presumably
the functionality of both is sufficient for the time being. Whereas the im-
plemented file importers and exporters for Matlab and XML formatted text
files have moderate functionality. Here some improvements could be done.
A prototype for a curve checker is implemented. An implementation which
tests e.g. the active curve for errors and provides applicable solutions to
fix the found errors could be useful. The practical use of the curve editor
will reveal where some improvements and further functionality are needed.

28

29

Furthermore, if a lot of unexperienced users should use the curve editor, the
embedding of the Java Help System would be a reasonable task.

Appendix A

Developer’s Guide

A.1 The config folder

In the config folder two types of files are located. For registering models
the listed files below are used.

modules A line contains the fully qualified class name of the class derived
from CurveModel.java.

wizards A line contains at most one class name appendant to a wizard
which is located in the wizard package and derived from
AbstractWizzard.

importers A line contains one name of an importer derived from
AbstractImporter located in the fileio package.

exporters A line contains one name of an exporter derived from
AbstractExporter that is located in the fileio package.

tools.config A line is divided in three parts: [full-qualified class name];[method
name];[number of curves as arguments].
Example: ch.ethz.rtc.kernel.CurveMath;RTinvBeta;2

The files gui.options, graphics.options and text.options are not sup-
posed to edit, because they are built by the preferences dialog. Nevertheless
values could be changed.

30

A.2. WRITING A FILE FILTER 31

A.2 Writing a file filter

A.2.1 file importer

1. Your class should be in the package fileio:
package ch.ethz.rtc.curveeditor.fileio;

2. We have to derive our file importer class from AbstractImporter.java:
public class MyImporter extends AbstractImporter

3. Overwrite the standard constructor and call the super constructor:
super("type","MyImporter imports curves from files.type");

The first field represents the exact file type extension and the second
field represents a description of this importer.

4. Implement the method public void importFromFileToArrayList(

ArrayList curveSet, File file) throws IOException,

FileNotFoundException.
This method takes a reference to the file object from which we want to
import the curve data and fills the found curves into the array list. A
simple example:

public void importFromFileToArrayList(ArrayList curveSet, File
file) throws IOException, FileNotFoundException

{
String line;
String[] elements;
BufferedReader rdr = new BufferedReader(

new FileReader(file));

while ((line = rdr.readLine()) != null)
{

if (line.startsWith("\%") || line.trim() == "")
continue;

elements = line.split("=");
curveSet.add(new ExtendedCurve(null, file,

CurveFactory.createFromString(elements[0]
.trim())));}

}
}

5. Insert a line in the file importers in the config file with the class name
of your importer e.g. MyImporter

32 APPENDIX A. DEVELOPER’S GUIDE

A.2.2 file exporter

The file exporter will be created similar to the file importer above. The only
difference is the different set of methods to implement:

• void exportFromArrayListToFile(ArrayList curveSet,

File file) throws IOException, FileNotFoundException

• void exportFromArrayListToFile(ExtendedCurve curve,

File file) throws IOException, FileNotFoundException

A simple version for the first method could look like the following:

void exportFromArrayListToFile(ArrayList curveSet, File file)
throws IOException, FileNotFoundException

{
PrintWriter out = new PrintWriter(new BufferedWriter(

new FileWriter(file)));
String[] setType = new String[0];
for (int i = 0; i < curveSet.size(); i++)
{

out.println(((ExtendedCurve)(curveSet.get(i)))
.curveName+" = "+(((ExtendedCurve)(curveSet.get(i)))
.baseCurve.toExportString()+";"));

}
out.close();

}

A.3 Writing a module

A module has not to be placed in its own package although it is at least
recommended to group the modules. The following recipe is kept very simple
and does not implement an option class.

1. Your classes use the package abstractmodule so import this package:
import ch.ethz.rtc.curveeditor.abstractmodule.*;

2. Derive your classes from the classes in the abstractmodule package.
For a valid module you have to implement the classes CurveModel and
CurveView. The options class is optional and the printer class is not
supported yet. Example:
public class MyCurveModel extends CurveModel

public class MyCurveView extends CurveView

A.3. WRITING A MODULE 33

3. In your model class call the super constructor. If you have not imple-
mented one of the optional classes, use a null reference as parameter:
super("MyView", new MyCurveView(), null, null);

4. Because the abstract class CurveView implements the interface
UpdatedCurvesCommitable you have to implement this interface.

5. Now it is up to you to unleash your creativity. Note that your class
MyCurveView is the class which will build the view for the module. It
is derived from javax.swing.JPanel.

6. Insert a line into the file modules in the config folder with the fully
qualified class name of your model class. Example:
ch.ethz.rtc.curveeditor.modules.mymodule.MyCurveModel

If you would like to implement your own option class for your module make
the following steps:

1. Create your class as you did with the model and view class above and
derive it from CurveOptions.

2. Change the super constructor call in the model class. An example:

super("MyView", new MyCurveView(), null,

new MyCurveOptions());

3. Implement the abstract methods

public void saveOptions() throws IOException,

FileNotFoundException}

public void loadOptions() throws IOException,

FileNotFoundException}

The saveOptions() method will be called by the framework at the right
time. The loadOptions() method is just for completeness but it is
recommended to use this class to load the options from a file. You
are responsible for yourself for loading the options. Note that the ab-
stract class CurveOptions extends the javax.swing.JPanel class and
so your options class does.

34 APPENDIX A. DEVELOPER’S GUIDE

A.4 Writing a wizzard

1. Place your class in the package ch.ethz.rtc.curveeditor.wizzards.

2. Derive your class from AbstractWizzard.

3. Implement the abstract methods.
public ExtendedCurve getNewExtendedCurve() should return the Ex-
tendedCurve object created by this wizzard.
public void resetWizzard() should reset the layout of the wizzard
e.g. set all the text fields to zero or similar.

4. Your wizzard is derived from the javax.swing.JPanel class and em-
bedded in a wizzard dialog. This dialog disables the OK button until
you call a certain method: WizzardDialog.setWizzardReady(true);
From this moment on the user can press the OK button and your
method getNewExtendedCurve() should return a valid curve. It is
recommended to disable the OK button if no valid curve would be re-
turned. This is done with WizzardDialog.setWizzardReady(false);.

5. Insert a line in the file wizzards in the config folder with the class
name of your wizzard e.g. MyWizzard.

A.5 Writing and registering additional meth-

ods

The tools dialog in the curve editor is able to load methods registered in
a file and execute them to modify curves or create new curves. We just
have to register our method located in any package in the right configuration
file named tools.config. The method should have one of the following
skeletons:

• {void, Curve} myMethod(Curve)

• {void, Curve} myMethod(Curve, Curve)

This syntax means that a method can either return a new curve object or
the return type is void and that as arguments one or two curves are allowed.
Have a look at the section The config folder for the syntax of a method
registering entry.

Appendix B

User’s Guide

B.1 Getting Curve Editor to work

The curveeditor.jar archive of the curve editor software package has to
be in the same directory as a folder named config. In the folder config

are two different types of files: First there are the files modules, importers,
exporters, wizzards. These files are important for getting the curve editor
to work. The second file types are the .options files. They are just named
this way for better recognition. If the option files aren’t at the right place,
corrupt or incomplete, the curve editor will use default values instead.

For proper working you have to copy the jdom.jar library into the di-
rectory /lib/ext of your current java distribution. Then make sure you
have the config folder with the curveeditor.jar archive in the same di-
rectory and that config contains the necessary files. Now just execute the
curveeditor.jar archive.
Note: On the console it is necessary to type java -jar curveeditor.jar.

B.2 The GUI

Figure B.1 shows the GUI right after starting. There are three marks which
show the partition of the main window.

1. The detailed functionality of the menus is described in the section
menu.

2. Here are the different modules placed. Switch between the modules by
clicking on the different tabs.

35

36 APPENDIX B. USER’S GUIDE

3. The curve window presents a property and text based view of the active
curve and on the left side it lists all opened curves. See section Curve
Window for a more detailed description.

Figure B.1: The GUI without any curve opened

B.3 Opening a curve

For opening one or more curves from a file click either on the Open Curve(s)
or Add Curve(s) From File menu entry in the menu File. The open command
will close all opened curves and only load the new ones. The add command
will add the curves from a file to the curves already opened. Figure B.2
shows the open entry in the file menu. If you have clicked on one of these
menu entries a file open dialog appears. Select the file you want and press
the open button. If the curve editor has found some valid curves in the file,
the dialog of Figure B.3 will appear. Select the curves you want to open e.g.
with the control key and the mouse. You also can just check the select all
field to mark all curves. Then click OK. The curves will now be shown in
the curve list in the curve window.

B.4. CREATING A NEW CURVE 37

Figure B.2: Open a curve

Figure B.3: Dialog to select the curves to open

B.4 Creating a new curve

For creating a new curve you can either choose the New Curve or the Add
New Curve menu entry in the file menu. The new command will close all
curves first and then create a new curve. The add command on the contrary
will just add the new curve to the curves already opened. Under both menu
entries you can see all the different possibilities to create a curve like Figure
B.4 shows.

Figure B.4: The different possibilities to create a curve

Empty Curve (No Wizzard) Creates an empty curve without any con-
tent.

New Curve From PJD Data Creates a curve from the values of period,
jitter and minimum inter-arrival-distance.

38 APPENDIX B. USER’S GUIDE

Empty Curve Creates an empty curve. You can set the attributes of the
periodic part and the curve name. Figure B.5 shows the Empty Curve
Wizzard.

Figure B.5: A wizzard to create empty curves

B.5 Editing a curve

If at least one curve is opened, one of the opened curves is the active curve.
That means that this curve is editable. You can edit the active curve in
two different ways: Either you use a module e.g. the graphical module or
you use the curve window. How to use the different methods in particular is
described in the according sections. When you have changed a curve it will
be marked with an asterisk in the title bar of the curve editor. That means
that it has unsaved changes. Also if you create a new curve which has never
been saved to a file, it will be marked as unsaved. Generally the asterisk
means that a curve with its present data is nowhere saved in this form. If
you would close such a curve, you will be asked if you want to save the curve.

B.6 Menus

Figure B.6 shows the different menus. The help menu is not shown.

• File Menu

B.6. MENUS 39

Figure B.6: The different menus (without the help menu)

New Curve Shows a list of all possibilities to create a new curve. The
curves already opened will be closed.

Open Curve(s) Opens a selection of the curves found in a certain
file. The curves already opened will be closed.

Save Active Curve Opens directly a save dialog for the active curve.
Choose a file or enter a new file name to save the curve and press
save.

Save... Opens the save dialog with the list of all opened curves. Select
curves you want to save and the save mode. Then press save. A
save dialog opens. Continue like above.

Add New Curve Shows a list of all possibilities to create a new
curve. The new curve will be added to the curves already opened.

Add Curve(s) From File Opens a selection of the curves found in a
certain file. The opened curves will be added to the curves already
opened.

Close Active Curve Closes the active curve. If the curve has un-
saved changes you will be asked if you wish to save the curve.

Close Curve(s) Opens a dialog to select the curves you want to close.
Again you will be asked for savings if some curves have unsaved
changes.

Close All Curves Closes all curves.

• Edit Menu

Undo Undoes the last changing on the active curve.

40 APPENDIX B. USER’S GUIDE

Redo Redoes the last undo command if some changing have been un-
done.

Preferences Opens the preferences dialog.

• View Menu

Show Curve Window Makes the curve window visible or not.

Show Modules Makes the module tabs visible or not.

Tools... Opens the tools dialog.

Curve Checker... Opens the curve checker.

B.7 Curve Window

On the left side in the curve window all opened curves are listed. The active
curve is shown in a property table on the right side. Click on a curve in the
list to make it the active curve. Double click on a property field to change
its value. Make sure the syntax is correct when pressing the up, down or
enter key. You can also just navigate with the key board in the property
table and write directly into the active field. Note that some fields are not
editable. The Figure B.7 shows the curve window. The illustrated curve is
a good example for the syntax.

Figure B.7: The curve window

B.8 Preferences Dialog

The preferences dialog shows all the loaded options in a tree. Just navigate
through the tree and select the different option leafs. Look at the corre-
sponding module descriptions on how to use the options in particular.

B.9. GRAPHICAL MODULE 41

B.9 Graphical Module

Figure B.8: The graphical view

B.9.1 Drawing Curve Segments

Line draw mode

Lower Manhattan draw mode

Upper Manhattan draw mode

Click on one of the three above illustrated drawing modes (line, upper
or lower manhattan draw mode). Click inside the coordinate system at your
desired location. On the top left corner you can see at which coordinates your
mouse is. Click once more and you have created a curve segment. Repeat
these steps as long as you need. To abort the current draw session just click
the right mouse button inside the coordinate system. Note that if you are
drawing in the aperiodic part and click on the periodic part, just this next
segment will be painted and the drawing session will be aborted. The segment

42 APPENDIX B. USER’S GUIDE

will be cut off at the end of the aperiodic part. This way it is guaranteed
that the segments are continuous. Similar in the periodic part every segment
painted outside of the period in which the painting had begun will be cut
at the period border. It is recommended to draw periodic segments only in
the first period. Note that mouse clicks are only valid inside the coordinate
system. So if you have zoomed into one part and cannot see the right border
of this part you cannot draw the segment to the outside of the coordinate
system. Instead you can only draw exactly to the right coordinate border by
clicking on it. Then you will have to abort the current drawing session with
clicking the right mouse button inside the coordinate system.

B.9.2 Selecting Curve Segments

Selection mode

To select curve segments you have to choose the selection mode. Now
click on a curve segment. It will get colored with the selection color. You can
delete and add curve segments with holding the control key and clicking on
the curve segments. By clicking not on a curve segment without the control
key the selection will be cleared. Note that the selections are separate for the
aperiodic and the periodic part. The selection behavior follows the behaviors
of the standard programs.

If you have selected some segments you can move them with drag and
drop. The end points of the segments can be moved each for its own. If
you intend to move single end points it is recommended to just select one
segment. When you are dragging segments or end points you can click the
right mouse button to cancel the movement. Note that in this case the left
mouse button should be released after clicking the right mouse button.

Deleting the current selection is simple. Just click the right mouse button
with the mouse over a selected segment and press the delete button. Only
the selections of the current curve part will be deleted. The Figure B.9 shows
the button to delete the current selection.

B.9.3 Zooming and Shifting the Coordinates

The pictures (1) to (8) show the different available zoom functions with a
short description.

You can shift the coordinate system in the shifting mode. Click on the
button shown in picture (9). If you have selected the mode just shift the
view with drag and drop.

B.9. GRAPHICAL MODULE 43

Figure B.9: The popup button to delete the selection

(1) Zooms into the view. The bottom left
coordinate will remain the same.

(2) Zooms out of the view. The bottom left
coordinate will remain the same.

(3) Zooms into the painted rectangle. Select
this mode, click into the coordinate system
and span a rectangle in the upper right
direction. Then click again and the
coordinates will zoom into the rectangle.
Abort with the right mouse button.

(4) Zooms out the coordinate part in which
the you have clicked with the mouse.

(5) Fits the window to the curve with the
same scaling factor for both x and y axis.

(6) Fits the window to the curve. The axis
scales have not to be the same.

(7) Fits the window to the aperiodic part.

(8) Fits the window to the periodic part.

44 APPENDIX B. USER’S GUIDE

(9) Move the Coordinate System

To determine an arbitrary view, click on the show coordinate dialog button
shown in picture (10). In the coordinate dialog you can set the lower left and

(10) Show the Coordinate Dialog

the upper right point of the coordinate system and zoom into this rectangle.
If you select the scale both axis in same ratio box you have to specify the
start point and the x coordinate of the end point. If the box is not selected
you have to specify all four coordinates by yourself.

To make a screen shot of the current layout of the draw panel, click the
screen shot button shown in picture (11).

(11) Export the draw panel view to an image

B.9.4 Options

Figure B.10: The options dialog for the graphics module

In the options dialog you can choose the colors for the different regions of
the graphical module. The coordinate precision field determines how exact

B.10. XML MODULE 45

user inputs in the draw panel will be handled. The segment vertices will have
this coordinate precision.

B.10 XML Module

The XML module shows the active curve formatted in XML. You can edit
the XML document and commit the changes. It will only be looked for
changes in the text if the cursor changed its line position. At the bottom of
the module you can see some parsing information. There are five types of
information which are shown in the Figure B.11.

Fig B.11(a) is shown if the text had not been parsed. For example this is
the case when no curve is loaded.

Fig B.11(b) is shown if the curve data has not changed and corresponds to
the curve data loaded. This is the case when the curve is loaded.

Fig B.11(c) will be shown if the text has been parsed and some valid
changes occurred to the XML text. In this case you can press the
key ’F1’ to take over the curve changes.

Fig B.11(d) is shown if a key or a key value has invalid format.

Fig B.11(e) will be shown if the XML document is not valid. This occurs
e.g. if a key has no corresponding terminating element.

(a) No parsing (b) No changes

(c) Valid changes (d) Wrong content

(e) Parsing error

Figure B.11: The different parsing outputs

46 APPENDIX B. USER’S GUIDE

B.11 Tools Dialog

Select a method and the necessary number of curves for the arguments. Give
the new curve a name. If the method will not return a curve object the new
curve name will have no effects. Press the execute button.

Figure B.12: The tools dialog

Appendix C

Framework API

The curve editor contains a lot of public methods. The methods which form
the application program interface (API) for other software components are
located in the class CurveEditor and are briefly described in this chapter.

static ExtendedCurve getActiveCurve() Returns a reference to the ac-
tive curve. The active curve itself is a reference to a element of the
curve set.

static void setActiveCurve(int index) Sets the reference of the active
curve to a new element of the curve set.

static java.util.ArrayList getCurveSet() Returns an array list of the curve
set.

static CurveEditor getEditor() Returns a reference to this class. Typi-
cal singleton style.

static void registerCommitableObject(UpdatedCurvesCommitable) Re-
gisters a class that implements the interface UpdatedCurvesCommitable.

static void newEmptyCurve() Clears the curve set and inserts an new empty
curve.

public static void addEmptyCurve() Adds an empty curve to the curve
set.

static void addCurve(ExtendedCurve, boolean) Adds a curve to the curve
set. The boolean parameter indicates if the curve has unsaved at-
tributes.

47

48 APPENDIX C. FRAMEWORK API

static void addCurveSet(java.util.ArrayList, boolean) Adds an ar-
ray list of curves to the existing curve set. The boolean parameter
indicates if the added curve set has unsaved attributes.

static void openCurve(ExtendedCurve, boolean) Opens a curve to the
cleared curve set. The boolean parameter indicates if the curve has
unsaved attributes.

static void openCurveSet(java.util.ArrayList, boolean) Clears the
curve set and fills in the new curves. The boolean parameter indicates
if the opened curve set has unsaved attributes.

static void close(int indexToClose) Removes the curve at indexToClose
in the curve set.

static void closeSelection(java.util.ArrayList curveSelection) Re-
moves every element in the curveSelection from the curve set if it exists.

static void closeAll() Clears the curve set and sets the active curve to
null.

static void curveSetHasBeenSaved(int[] indexes) Has to be called if
some curves has been saved.

static void undoActiveCurve() Undoes the last commited changes to ac-
tive curve.

static void redoActiveCurve() Redoes the last undone changes.

static void activeCurveDataHasChanged() Call this if you have modified
data of the active curve.

static boolean hasUnsavedChanges() Returns true if there are unsaved
changes among the curves.

Appendix D

Framework Class Diagram

Figure D.1: Simplified class diagram of the framework

49

Appendix E

Known Bugs

This chapter presents a list of known bugs:

• Changes in the options dialog of the XML module become not visible
until the active curve has changed.

• The undo / redo module registers changes on the curves which would
not be necessary. E.g. to undo the shifting of a curve segment, more
than one undo step is necessary. But changes on the curves will never
get lost.

• Drawing periodic curve segments in the graphical module is recom-
mended only in the first period. Otherwise correct handling is not
guaranteed.

50

Bibliography

[1] Eclipse Platform Technical Overview. Object Technology International
Inc., 2003.

[2] Valerio Bürker and Roman Hiestand. Tool for performance analysis -
design and integration in SymTA/S. Technical report, Institute TIK,
ETHZ, 2004.

[3] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
Boston, 1997.

[4] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In Proc. 6th Design, Automation and Test in Europe (DATE), pages
190–195, Munich, Germany, March 2003.

[5] Bruce Eckel. Thinking in Java 3rd Edition. Prentice Hall, 2005.

[6] Bruce Eckel. Thinking in Patterns. Prentice Hall, 2005.

[7] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter,
and Rolf Ernst. System level performance analysis – the SymTA/S ap-
proach. IEE Proceedings - Computers and Digital Techniques, 152(02),
March 2005.

[8] Mike Mason. Pragmatic Version Control Using Subversion. The Prag-
matic Programmers LLC, 2005.

[9] Lothar Thiele and Ernesto Wandeler. Performance analysis of embedded
systems. In The Embedded Systems Handbook. CRC Press, 2005.

[10] Lothar Thiele, Ernesto Wandeler, and Samarjit Chakraborty. Perfor-
mance analysis of distributed embedded systems. IEEE Signal Process-
ing Magazine, June 2005.

51

