ETH Distributed

Eidgenossische Technische Hochschule Ziirich Computing Gro

Swiss Federal Institute of Technology Zurich

Semester Thesis

Link Layer Measurements in Wireless
Sensor Networks

Roger Kehrer
rkehrer@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisor: Pascal von Rickenbach

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich
Summer 2005

Contents

1 Introduction

1.1 Motivation e
1.2 Assignmento
1.3 Overview o e e e e e e e e

2 Basics and Design

2.1 Mica2 Motes
2.2 Transmission Range Measurements
2.3 Interference Measurements

3 Implementation

3.1 Communication in TinyOS
3.2 Transmission Range Measurements
3.2.1 The Controller
3.22 TheSender
3.2.3 The Satellites
3.3 Interference Measurements
3.31 TheSender
3.3.2 The Interceptor oL
3.3.3 The Receiver

4 Results
4.1 Transmission Measurements
4.1.1 Testbed Settings L.
4.1.2 Measurement Results
4.2 Interference Measurements
4.2.1 Testbed Settings oL
4.2.2 Measurement Results

5 Outlook
5.1 Open Problems
5.2 Future Work

6 Conclusion
6.1 TheResults
6.2 Personal Experience Lo oL

S Ot ot Ot

0~ =

11

13
13
14
14
14
16
16
16
16
16

17
17
17
18
19
19
20

23
23
24

4 CONTENTS
A TImplementation Details 27
A1 Message Types oo e 27
A.2 Messagelistener 28
A.3 Methods of the Sender 28
A.4 How to disable the Collision detection 29
A.5 How to corrupt the medium permanently 29

Chapter 1

Introduction

1.1 Motivation

Recent advances in wireless networking and microelectronics have led to the
vision of sensor networks consisting of hundreds or even thousands of cheap
wireless nodes - each equipped with some memory, a processor, a power unit,
and a short range radio - covering a wide range of application domains. The
most popular network model (a.k.a. Unit Disk Graphs[2]) assumes that two
nodes are only able to communicate directly with each other if they are within
a certain distance - the transmission radius of the wireless device. Although this
network model has led to many theoretical results it seems to be too idealistic
in practice.

We therefore seek for more realistic network models that are more adequate
to represent real network conditions. We are particularly interested in metrics
such as packet reception rate with respect to distance or radius coverage in
regard to radio transmission power setting.

1.2 Assignment

The goal of this thesis is to set up a sensor node test bed using mica2 sen-
sor nodes and to develop a code framework to facilitate subsequent link layer
measurements in the test bed. Another important aspect of this thesis is the
analysis of the gathered measurements in order to obtain new insights for a
more realistic network model.

We partitioned the work in three main parts.

e The first part was to become acquainted with the environment and the
sensor nodes.

e The second part was to set up a sensor node test bed to measure the main
factors that affects the sending range of the nodes.

e In addition, the third task was an additional task to find out how much a
sending Node disturbs the communication of two near nodes.

6 CHAPTER 1. INTRODUCTION

1.3 Overview

The rest of this Document is structured as follows. In Chapter 2 we characterize
the design and the basic ideas. We then present the concrete implementation
of the transmission range measurements and the realization of the interference
measurements in Chapter 3. The subsequent chapter is about the results of our
real world measurements. In Chapter 5 we present an outlook to possible future
work and an overview over the known open problems. Finally in Chapter 6
the work is concluded by summarizing the derived results and giving a personal
comment.

Chapter 2

Basics and Design

In this chapter we present the design of the framework for transmission range
measurements. Furthermore the design of the jamming measurements is shown
and a quick summary of the basic hard- and software is given.

2.1 Mica2 Motes

In this thesis we use mica2 sensor nodes. Mica2 motes are wireless sensor nodes
produced by Crossbow Technology[3]. They consist of a processor and some
memory, a radio unit and an interface to connect it to a so called programming
board. The programming board is the interface between the motes and the
ethernet. To analyze a packet on a computer connected to a node through the
ethernet, you have to run an application called SerialForwarder on the computer.
This application forwards the incoming messages to the application and converts
them to java objects. Figure 2.1 depicts a mica2 node and a programming board.
The first part of getting into the environment means to get into the operating
system and the programming language of the mica2 motes.

Figure 2.1: A mica2 mote and a programming board. Note that the two figures
are not in the same scale and the programming board is about four times bigger
than a node.

The operating system running on the mica2 motes is TinyOS[7], an open
source operating system designed for wireless embedded sensor nodes that have
very limited resources. It has been developed by the computer science division
at the University of California in Berkeley[4].

8 CHAPTER 2. BASICS AND DESIGN

The programming language of the mica2 motes is nesC[6]. NesC is an ex-
tension to the C programming language designed to embody the structuring
concepts and execution model of TinyOS!. One of the major extensions com-
pared to the C programming language is the concept of bidirectional interfaces.
These are interfaces which specify a set of functions to be implemented by the
interface provider (called commands) and a set of interfaces to be implemented
by the interface user (called events). Figure 2.2 shows the concept of the bidi-
rectional interfaces.

[User]

y Command
I Bidirectional Interface I
y Event

[Provider]

Figure 2.2: The Concept of the bidirectional interface. It connects a user and a
provider and there are two method types. The command is implemented by the
provider and is called by the user, whereas the event is called by the provider
and must be implemented by the user. You can only use the interface as a user
if you implement the specified events.

2.2 Transmission Range Measurements

As described in Section 1.2, the task was to find out the transmission range of
a node. To get this, we wanted to measure the percentage of packets a node
receives in various distances from the sender with various transmission power
settings. For this purpose, we decided to use the following experimental setup.

As we wanted to measure the sending range not only in one dimension but in
two, we decided to distribute 49 nodes on a regular grid with the sending node
in one corner. The experimental setup is shown on Figure 2.3. For the sake
of simplicity the nodes were consecutively numbered. This setup provides only
one quadrant of the area around the sender, but because of the limited number
of available nodes, we could not provide a setup where all four quadrants were
covered. Nevertheless, with this setup it is easy to make measurements for all
four quadrants, without even moving the nodes. This can be done by rotating
all nodes by 90 degrees three times. In doing so, we can do the measurements
for all quadrants one after the other and merge them together to a complete
result.

As we wanted to measure the percentage of packets received by the nodes
distributed on the grid, we had to design a protocol to send messages over the
grid and, once the measurements are finished, collect the results again.

First, we did some measurements to find out if the nodes on the grid affect
each other. After some tests we found out, that this is not the case and thus

1To get into TinyOS and nesC we recommend you to go through the TinyOS tutorial at
http://www.tinyos.net/tinyos-1.x/doc/tutorial/.

2.2. TRANSMISSION RANGE MEASUREMENTS 9

42 43 44 45 46 47 48
35 /36 .37 38 |39 /40 |41

@

28 .29 .30 31 32 /33 |34

21 |22 .23 24 |25 |26 |27

14 (15 |16 (17 (18 (19 .20
7 48 /9 (10 /11 {12 /13

1 12 13 la 5 6

Figure 2.3: The experimental setup of the transmission measurement, where
the red node is the sender and the others are receivers. The numbers are the
id’s of the nodes.

we could broadcast the packets from the sender and it wasn’t required to send
them sequentially to one node after the other.
So we resolved upon the following protocol:

Send a packet from the connected computer to the sender to awake it with
the right parameters.

e Send a number of packets from the sender to the nodes on the grid.

Send a packet to each node to get the number of received packets.

Send the results of each node back to the computer and display the results.

The first two steps consist of sending a packet through the ethernet and in-
voking the node connected to the programming board, the sender. To minimize
the work to be done on the sender we decided to swap out the work to the
computer. For this purpose we just send one InitMsg from the computer to the
Sender and broadcast the IncMsg just once. This means, that the number of
packets to send can be controlled by the computer. This makes things easier to
control and to debug. To guarantee, that just one message is sent at one time,
the computer waits with the next message until the last was acknowledged.

The third and the fourth steps are again started by the controller after
having invoked all the broadcasts. This is done by sending a ResultsMsg to
the sender. The sender starts collecting the results from the nodes and returns
them back to the controller. The controller gets the results from the sender one
after the other and stores them to a file. It terminates, if it has collected the
results from all the nodes. Figure 2.4 shows the protocol of the transmission
range measurements.

As we are not working in a perfect world and we are expecting high packet
loss rates, it is possible, that the transmission protocol of the EchoMsg between
the sender and the satellites fails. This is fatal, as it will imply that no packet
has reached the satellite. This is the reason why a retransmit protocol was

10 CHAPTER 2. BASICS AND DESIGN

Controller Sender Satelite 1 Satelite 2
! InitMsg ! E i
R |
1 i IncMsg i |
| L N N|
i i i i i
1 InitMsg 1 1 |
| ResultsMsg : : :
i ! :
1 1 EchoMsg 1 1
1 1 !]
] I%]
1 1 1]
| \ EchoMsg \)
1 K—t 1
: ResultsMsg : : :

1]

1 i EchoMsg 1
H h i)
1 1 1]
1 1 EchoMsg !
1 K L 1
1 I 1]
! ResultsMsg : : :
IS 1 1 1
1 1]

Figure 2.4: The protocol of the transmission range measurement

implemented. If the sender doesn’t get an answer on the EchoMsg from a satel-
lite, it retransmits the message several times. Due to the time it consumes to
retransmit the packet, it is important to find a good retransmission ratio. The
formula for the possibility of a successful transmission is calculated by the fol-
lowing formula: f(x) = 1— ((1—p?)*) where p is the probability of one message
being transmitted and x is the number of retransmissions. Figure 2.5 shows the
success probability of the transmission versus the number of retransmits done at
different message success rates. In order to get a sufficiently high transmission

Figure 2.5: The x-axis denotes the number of retransmissions and the y-axis the
possibility of a successful transmission of the retransmit protocol respectively.
The miscellaneous colors show different success rates of one message.

rate, we decided to choose 20 retransmissions as a reasonable rate. Thus we got
even for small transmission rates, like 25%, a success rate of over 60%. In other
words, this means, that if we send the ResultsMsg with the same transmission
power as the IncMsg, the possibility that the protocol returns for a node a value

2.3. INTERFERENCE MEASUREMENTS 11

smaller than i.e. 10% is very small. Instead of getting the right value, the re-
transmission protocol fails and the returned value is zero. Although this is not
correct, we decided that this is not crucial. If 20 attempts to transmit the result
fail, the link is very unreliable and thus it is not wrong to assign it a zero value.

2.3 Interference Measurements

The third task was to find out how much a sending node disturbs the communi-
cation between two other nodes. What we wanted to measure was the transmis-
sion rate between sender and receiver when the distance between the receiver
and the interceptor grows.This was done with several transmission power levels.
So we had to implement a sender, a receiver and an interceptor node sending
all the time.

Since the radio stack of the nodes implements a collision detection on the
MAC-layer to prevent channel utilization if it is already occupied, we had to
disable this functionality for the sender and the interceptor. In TinyOS the
collision detection is done in the CC1000RadiolntM.nc file by updating a squelch
value from time to time and compare it to the actual overhead signal. In the
current implementation a simple check decides if the received byte is filled with
information or if it is just background noise. When a packet should be sent
it checks if the noise ratio is significantly under a defined level. If this is the
case, the medium is considered free and the packet is transmitted. Otherwise,
after trying several times with a random waiting time in between, the packet
is dropped and a fail is returned. As we didn’t want the communication to fail
because of the sender considering the medium to be occupied but because of the
consciously superposition of the two signals at the receiver, the sender as well
must not check the channel to be free. Under this circumstances, the receiver
gets the two superposed signals and we are able to determine at which distance
of the interceptor to the receiver the communication between the latter and the
sender is possible.

Chapter 3

Implementation

In this chapter we first give an introduction to the communication stack in
TinyOS. Furthermore we present the implementations for the transmission range
measurements and the interceptor. The layout of all mentioned messages is
described in Appendix A.1.

3.1 Communication in TinyOS

In TinyOS the transmission of a message is done by wiring the component called
GenericComm.SendMsg[MessageType] into the code. To send a message, you
then call GenericComm.SendMsg(Msg). This method is asynchronous and re-
turns true or false depending on the success of starting the sending process.
Once the message has been physically sent, an event called sendDone is trig-
gered. Figure 3.1 shows the model of sending messages in TinyOS. In our
protocols there is never more than one message sent at one time and thus we
can use these methods to implement it.

=)

SendMsg ¥ » sendDone

[GenericComm]

Figure 3.1: The model of sending of messages in TinyOS. The user calls the
SendMsg command and after the message has been sent an event called send-
Done is triggered.

The mica2 motes are equipped with a Chipcon[1] radio module. The sending
power of the motes is set by wiring the radio control module into the code and
then calling SetRFPower(value) on it. It is used to set the power of the radio
module to a given value that can range from 0 to 255. A value of 0 does not
mean, that the power level is set to zero, but that it is lowered by 20 dBm. On
the other hand 255 means that the sending power is raised by 5 dBm. For a
detailed explanation look at the Chipcon SmartRF CC1000 data sheet[5].

13

14 CHAPTER 3. IMPLEMENTATION

3.2 Transmission Range Measurements

As described in Section 2.2 the implementation consists of three main parts:
The controller, the sender and the satellites. In the following sections we will
address important implementation issues of all three applications separately.

3.2.1 The Controller

The source code for the controller is written in java and is run on a computer
connected to the sender via ethernet and the programming board!. The con-
troller is basically a MessageListener? that is listening to the messages sent by
the sender. When receiving an InitMsg it checks, if it has sent the desired num-
ber of InitMsg messages. If this is the case, it sends a ResultsMsg or otherwise
it sends an other InitMsg. After having received the ResultsMsg messages from
all the nodes, it stores the results and terminates. Figure 3.2 depicts the flow
diagram of the controller.

Start State

- Send InitMsg

Wait for

" 1
Messages Yes

T

Get Message

No

InitMsg or
ResultsMsg

All ResulisMsg

received InitMsg

Yes

|

Termiation

Figure 3.2: The Flow diagram of the controller.

3.2.2 The Sender

The implementation of the sender is the most complex part of the three. As
described in Section 3.1, a sendDone event is triggered after every successful
transmission of a message. We used the sendDone method to implement the
protocol. This is suitable for our problem, because you can place the sending
of the next message in the sendDone event handler and thus come up with the
sequential nature of the protocol. A list of all methods of the sender and what
they do in detail is displayed in Appendix A.3.

The first thing to do is to broadcast the IncMsg. When receiving an InitMsg
from the controller, we broadcast the message to the satellites. Here we use the

1See Section 2.1 how the connection between a node and a computer is done
2MessageListener is a Java interface specified by TinyOS to Listen for incoming messages.
See Appendix A.2 for details.

3.2. TRANSMISSION RANGE MEASUREMENTS 15

sendDone triggered by the broadcast to send the InitMsg back to the controller.

After having sent all the InitMsg messages the results are collected. This
process is started by a ResultsMsg from the controller. An EchoMsg is then sent
to the first satellite. This triggers the start of the timer for the retransmission.

When getting an EchoMsg back from a satellite the results are sent back to
the controller. We finally send an EchoMsg to the next node and iterate over
all nodes by increasing node id’s.

If the transmission of the EchoMsg failed, the timer fires without having
received the result from the current node. In this case the EchoMsg is resent up
to 20 times. If another timeout appears, it returns 0 as a result for the current
node under consideration and the timer is stopped. The flow chart of the sender
is shown in Figure 3.3.

Start State

X

Wait for
Messages

Get Message
|

Broadcast
InitMsg—+#| IncMsg and
return InitMsg

Jsend Echomsg
ta Next node

InitMsg or

b+ ResultsMsg ResutisMsg

EchoMsg for
current node
received

Retransmit
EchoMsg

No No-—+]

EchoMsg of all
nodes received

Termination

Figure 3.3: Flow diagram of the sender.

The radio power level is given to the sender as a parameter in the InitMsg.
Thus, the sender sets the radio power to the desired value before sending the
IncMsg to the satellites and resets it to the maximum power level to collect the
results from each node to get the highest possible success rate for the retrans-
mission protocol.

16 CHAPTER 3. IMPLEMENTATION

3.2.3 The Satellites

The satellites are programmed to wait for two types of messages: The IncMsg
and the EchoMsg. Upon receiving an IncMsg it increases the local counter
for the received messages of this pass. If it receives an EchoMsg it sends the
counter back to the sender. The sending power of the satellites is always set to
the maximum power level ,that is, 255.

3.3 Interference Measurements

In Section 2.3 the problem with the collision detection mechanism of TinyOS
in this experiment was described. To get around this, we first tried to find
an interface, where we could manipulate the stack at the MAC-layer and thus
circumvent the collision avoidance checks. But we did not manage to find an
interface and a fitting configuration which provides this functionality. Therefore
the idea came up to modify the MAC-layer implementation directly.

3.3.1 The Sender

For the sender we had to disable the test for the free medium. In the MAC-
layer protocol an event is fired when a test probe from the medium is ready. The
parameter of this event is the current RSSI value which is high if the channel is
free and low otherwise. This value is then compared to the last probes to decide
if the medium can be accessed safely without collision. We simply removed
this check to attain our goal. The precise implementation how to disable the
collision detection in the MAC-layer is shown in Appendix A.4.

As a sample application we used a simple dummy application that sends the
output of an integer counter over the radio and displays the three lowest bit of
the current value with the leds.

3.3.2 The Interceptor

The interceptor application node also has to ignore the check for the free
medium. Thus, the same changes to the MAC-layer are made as at the sender.
Additionally, we made another change: If we sent one message after the other,
there would always be a gap between two messages, where the medium is not
occupied. To occupy the medium permanently, we tried to have no interruptions
in the sending process. We managed this by hacking the state machine of the
MAC-layer implementation. Instead of sending a message, it simply sends the
same byte over and over again to fill the channel. In Appendix A.5 the concrete
changes are described.

3.3.3 The Receiver

As receiver we used the TosBase application that comes with the standard
TinyOS installation. It simply relays the incoming messages from the radio to
the connected computer. On the computer the received packets are analyzed
and the packet reception rate is calculated.

Chapter 4

Results

Initially, we wanted to find a network model for the reception rate dependant
on the distance and the relative position to the sender. During our research we
found out, that the transmission ratio is not only dependent on the distance
from the sender but on several other characteristics.

One factor that influences the transmission range dramatically is, if there is
a line of sight between the communicating nodes. This was crucial especially
for the first part of our experiments, where we tested the framework inside of
buildings. At this point we also found out that it is important for the trans-
mission ratio that the position of the antennas are parallel and that they are
standing upright. It is also important that the nodes are standing free. For
example, a node standing very close to a wall had lot more problems receiving
packets than one in the middle of a room.

But the most significant factor for the transmission range was the height
over ground. We found out, that the transmission range of a node lying on the
floor was approximately 30 meters. By raising them to 2 meters over ground
the sending range increased to over 100 meters. This fact forced us to take a
decision about our measurements. We thought it would be the most realistic
case to make the measurements when placing the nodes on the ground. Another
point is, that it would be easier to find a place to make the measurements with
a sending range up to 30 meters.

4.1 Transmission Measurements

4.1.1 Testbed Settings

We did the measurements on a football field. But as the grass disturbed the
sending range, we decided to raise the nodes at least a bit over ground by placing
them on turned flowerpots as shown in Figure 4.1.

Our results are displayed in Figure 4.2 and 4.3. We sent 5000 packets to
each node and recorded the number of packets received. In all the pictures a
square represents a node. We repeated all the measurements at least three times
and analyzed the results. As the results were very similar in each measurement,
we decided that we can merge them together by simply take the average of the
individual measurements.

17

18 CHAPTER 4. RESULTS

Figure 4.1: One node placed on a turned flowerpot in the grass.

Due to the limited transmission range of the nodes when placed on the floor,
it was sufficient to have a square with a side length of 30 meters. With the 49
nodes! the distance between two neighboring nodes are always 5 meters.

4.1.2 Measurement Results

The three figures in Figure 4.2 show the measurements given three different
radio power levels. With the sending power increasing from left to right the
range of the sender also increases. But it does not increase as much as we
expected. The sending range with sending power set to 0 is approximately 15
meters whereas with 128 sending power it is about 20 meters and for 255 circa
25 meters. We expected the influence of the sending power to be more severe
specially when seeing that the height over ground increases the sending range
by a multiple.

[N S N SRR
[T N S - ST

o
N
@
IS
a
B
N
©
o
-
~
@
IS
a
ES
~
a
o
-
~
w
IS
a
E)
~
©

Figure 4.2: The results of the transmission measurements at different power
levels. The leftmost graphic is the measurement with radio power level 0, the
one in the middle is with level 128 and the rightmost with 255. In all three
graphics, the sender is in the left lower corner at coordinate (1/1).

As early tests showed, it is hard to find a place where a node receives just
a part of the sent packets, we expected the transmission ratio to be with high
probability either 0% or 100%. The measurements showed that the transmission
ratio behave in the expected manner. There are just few values lying between
0% and 100%. This somehow correlates to the unit disk graphs, as in this model
the nodes are either fully reachable or out of range.

Figure 4.3 shows the transmission rate of a node in all four quadrants. As
mentioned in Section 2.2 the measurements are not really done in all four quad-

1See Section 2.2 for the details of the model.

4.2. INTERFERENCE MEASUREMENTS 19

14; —— 5000
13y 14500
121
11} 14000
10y 13500
9,
8l 3000
2L 2500
6 2000
5,
al 1500
3t 1000
2,
Al 500
0

0 1 2 3 45 6 7 8 9 1011 12 13 14

Figure 4.3: The measurements with power level set to 255 of all four quadrants
pasted together to one picture. In this configuration the sender is placed in the
middle of the area at coordinate (7/7). The colors show the number of packets
received by each node according to the colorbar on the right side.

rants concurrently, but the quadrants have been simulated by rotating the nodes
and thus changing the orientation. Although all the measurements have been
made on the same underground the rates differ significantly for the four quad-
rants. We do not have an explanation for this phenomenon. We expected the
measurements to be more or less equal for all four quadrants and instead they
differed noticeable. This phenomenon was even reproducible as the miscella-
neous measurements for the quadrants resembled each other.

As mentioned above, the retransmission protocol can fail. This will result
in a zero value at one node. In our graphics these are shown as a green quare
as the node at coordinate (6/4) in picture 4.3.

4.2 Interference Measurements

4.2.1 Testbed Settings

As described above, the sending range heavyly depends on the hight over ground.
To keep the dimension of the measurements at a small scale, we decided to place
the nodes on the ground. In doing so, we could make the measurements within
just a few meters.

20 CHAPTER 4. RESULTS

We decided to place the receiver, the sender and the interceptor in a row.
The distance between receiver and sender was thereby fixed to five meters. The
interceptor was shifted on this line to several positions and we measured the
percentage of packets transmitted from the sender to the receiver. The testbed
setting is shown in Figure 4.4.

® ® @

Figure 4.4: The testbed settings of the interceptor measurements. The blue
node is the receiver, the green one is the sender and the red one the interceptor.
The distance between the sender and the receiver is five meters and the position
of the interceptor is variable.

4.2.2 Measurement Results

As described above, the three nodes are arranged in a line with the interceptor
node having a variable position. Figure 4.5 shows the percentage of packets
received by the sender versus the distance between the interceptor and the
receiver. The sending power of the sender was set to 128 whereas the sending
power of the interceptor was modified.

100~ T i T T i T T T T
B0 -

60 o [—255
—128

64
40+ A |=—0

20

Figure 4.5: The results of the interceptor measurements. On the x-axis the
distance from the receiver to the sender is displayed and the y-axis shows the
percentage of packets transmitted from the sender to the receiver. The colors
show the various power levels of the interceptor.

At all four sending power levels, the step from 0% to 100% is within a few
centimeters. This means, that at a certain position, if we moved the interceptor
node a few centimeters further away from the receiver, the transmission rate
of the sender increased significantly. As one can see, this step is at diverse
positions when intercepting with various sending power levels. If intercepting
with 128 the step is at 5.05 meters from the receiver. This means, that the
interceptor just disturbs the communication when placed closer to the receiver
than the sender.

4.2. INTERFERENCE MEASUREMENTS 21

With sending power 64, the step is at 2.45 meters and with 0 sending power
it is at 0.25 meters. This means that a node, placed in a distance of more than
0.25 meters from the receiver and sending with power level 0, is not heard by the
receiver, if you place a node with sending power 128 in 5 meters distance. The
signal sent by the interceptor is then interpreted as noise and hence ignored. It
is interesting that the step for power level 255 is not far beyond the position of
the sender. This means, that you cannot intercept the communication between
two nodes from a distance greater than the distance between the sender and the
receiver even with a far higher power level than the sender.

Chapter 5

Outlook

Even though our framework worked good and delivered us some insight on the
sending behavior of the mica2 nodes, some problems have arisen during the use
of the framework which are not yet solved.

5.1 Open Problems

As mentioned above, the problem with timeouts in the retransmission protocol
exists. Although this is not crucial, one could invest some time to solve it.
One possibility would be to implement the data collection protocol as a multi-
hop protocol. This can be done by implementing a flooding protocol and thus
broadcasting the request by the sender and then letting every node who got
the request for the first time rebroadcast it. This is not efficient but should be
sufficient for our needs. Alternatively one could divide all the nodes into groups
and declare a special node to be the manager. The request could then be sent
to the representant and it would forward it to the other nodes of its group.
However this does not solve the problem of one node being completely out of
range of the other nodes. Additionally, the problem only arises when sending
the IncMsg with power level 255. Otherwise the nodes receiving just a small
percentage are easily reached by the sender with the EchoMsg because these are
always sent with full power.

Another problem arises when doing multiple measurements without reboot-
ing the satellites. This means that the nodes have to go back into the initial
state after having transmitted the results. But after a failure of the sending of
the EchoMsg it can not reset its state because this could lead to a malfunction
of the retransmit protocol. If the sending of the ResultsMsg back to the sender
failed, it would reset and thus transmit a zero back to the sender in a later
step of the retransmission protocol. This means, that the problem is to find the
right moment to reset. We now solved this problem by resting the nodes when
the first IncMsg is received after having sent the EchoMsg back to the sender.
This works most of the time. But there are cases, where this method fails. For
example if the measurement is done with low power it can happen that a node,
after having returned the EchoMsg for one round, does not get an IncMsg from
the next round and then receives once again an EchoMsg. It then returns the
value from the last measurement without resetting in between. We resolved this

23

24 CHAPTER 5. OUTLOOK

problem by making measurements with low power level first and then increasing
the power. Alternatively one can reboot the nodes after each round which is not
very convenient. Another way would be to introduce a counter for the rounds in
every IncMsg and ResultsMsg and a node would only reboot when receiving an
IncMsg with a higher counter than the previous ResultsMsg. The best solution
would be to use a reset message transmitted via multiple hops. This would
reduce the chance of this failure but can not eliminate it completely.

5.2 Future Work

There are several things one could do in the future. On the one hand one
could buy gps sensors for the nodes. This would help getting around the rigid
arrangement of the nodes because the nodes could send their positions back to
the sender. Using this, the nodes do not need to be in a predefined place but
can be placed arbitrary.

On the other hand one needs a flat area that is big enough to do the measure-
ments. The problem is that the only way to get the power for the programming
board was via an electric cable and a power outlet. This makes it hard to find a
convenient place to make the measurements. It would be a great benefit to have
a portable power supply for the programming board to make the measurements
independent from a power outlet.

Chapter 6

Conclusion

6.1 The Results

I think that the initial tasks of this thesis are met in a good manner, as we
have learned a lot about the behavior of the mica2 nodes. We have seen that
the sending ratio not only depends on the distance as previously expected, but
there are also other criterions. I did not know that, i.e., the height over ground
is so important for the sending range. On the other hand, the sending power
did not influence the sending range as much as we expected.

As the sending range of the mica2 motes is nearly a circle and because of
the transmission rates being either 0% or 100%, we can say, that the unit disk
graph model is applicable if we do not have obstacles.

6.2 Personal Experience

The work on this thesis was very interesting. It was a new experience to work
with an embedded system and his very limited debugging possibilities. The
three leds on the nodes don’t give a lot of information on the system state and
it took a long time to find out how one can debug more or less comfortable. We
found out, that the best way to debug the system is to use a second programming
board with a TosBase application running on it. One can then collect all packets
sent on the channel and display them at the connected computer. This crucially
simplifies the work.

25

Appendix A

Implementation Detalils

A.1 Message Types

The following messages are used by our applications.

e The InitMsg

typedef struct InitMsg {
uint16_t Number;
uint8_t signalStrength;
}InitMsg;

e The IncMsg:

typedef struct IncMsg {
uint16_t Number;
}IncMsg;

e The EchoMsg:

typedef struct EchoMsg {
uint16_t Number;
uintl16_t Sender;
}Echolsg;

e The ResultsMsg

typedef struct ResultsMsg {
uint16_t Number;
uint16_t Received;
uintl6_t Timeout;
}ResultsMsg;

27

28 APPENDIX A. IMPLEMENTATION DETAILS

A.2 MessageListener

The MessageListener interface provided by the net.tinyos.message package.

package net.tinyos.message;
// MessageListener interface (listen to TinyOS messages) .<p>

// An interface for listening to messages built from
// net.tinyos.message.Message

// Q@author David Gay
public interface MessageListener {
// This method is called to signal message reception. to is
// the destination of message m.
// @param to the destination of the message (Note: to is only valid
// when using TosBase base stations)
// @param m the received message
public void messageReceived(int to, Message m);

A.3 Methods of the Sender

These are the messages implemented by the sender of the
transmission range measurement framework together with a short
description of each of them.

UARTInitReceive.receive(...) {
//get an InitMsg over the Ethernet,
//save the parameters and broadcast the IncMsg.
} RadioIncSend.sendDone(...) {
//The sending of the IncMsg is done.
//Transmit an InitMsg back to the controller over the Ethernet.
} UARTReceive.receive(...) {
//get the first ResultsMsg over the Ethernet and
//send the first EchoMsg to the satellite with Id 1.
} RadioEchoSend.sendDone(...) {
//The sending of an EchoMsg is done.
//Start the timer for the retransmission protocol.
} RadioReceive.receive(...) {
//Get an EchoMsg over the Radio from a node.
//Send the result back to the controller and stop the timer.
} UARTSend.sendDone(...) {
//The sending of a ResultsMsg is done.
//Send a message to the next available node.
} Timer.fired() {
//The TimeoutTimer of the retransmission protocol. If it fires,
//it checks if the current node has already responded. If not
//it retransmits or considers the node to be unreachable

A.4. HOW TO DISABLE THE COLLISION DETECTION 29

A.4 How to disable the Collision detection

To disable the collision detection in TinyOS on the mica2 motes, one has to
change the following lines in the CC1000RadioIntM.nc file located in \tos\platform\mica2\.
On line 9611f there is the following statement:

if ((data > (usSquelchVal + CC1K_SquelchBuffer)) &&
(initRSSIState == PRETX_STATE)) {...}

To disable the check one has to change this line to the following;:

if (initRSSIState == PRETX_STATE) {...}

A.5 How to corrupt the medium permanently

To hack the state machine of the MAC-layer of TinyOS on mica2 motes one
should change the following lines in the CC1000RadioIntM.nc file located in
\tos\platform\mica2\. On line 641ff there is the following state in the state
machine:

case TXSTATE_DATA:
if ((uint8_t) (TxByteCnt) < txlength) {
NextTxByte = ((uint8_t *)txbufptr) [(TxByteCnt)];
usRunningCRC = crcByte(usRunningCRC,NextTxByte) ;
// Time Sync
signal RadioSendCoordinator.byte(txbufptr, (uint8_t)TxByteCnt);

}

else {
NextTxByte = (uint8_t) (usRunningCRC);
RadioTxState = TXSTATE_CRC;

}

break;

If these lines are changed to the following, the state machine never leaves the
sending state and it always sends the same byte.

case TXSTATE_DATA:
TxByteCnt = -1; //it always sends the same byte
if ((uint8_t) (TxByteCnt) < txlength) {
NextTxByte = ((uint8_t *)txbufptr) [(TxByteCnt)];
usRunningCRC = crcByte(usRunningCRC,NextTxByte) ;
// Time Sync
signal RadioSendCoordinator.byte(txbufptr, (uint8_t)TxByteCnt);

}
else {

NextTxByte = (uint8_t) (usRunningCRC) ;

//RadioTxState = TXSTATE_CRC; //don’t leave the state
}

break;

Bibliography

[1] Chipcon Homepage.
http://www.chipcon.com/

[2] B.N. Clark, C. J. Colbourn, and D. S. Johnson. Unit Disk Graphs. Discrete
Mathematics, 86:165177, 1990.

[3] Crossbow Technology.

wWWw.Xxbow.com

[4] Homepage of the Computer Science Division at University of California
Berkeley.

http://www.cs.berkeley.edu/

[5] Mica2 datasheet.
http://www.xbow.com/Products/Product_pdf _files/Wireless_pdf/MICA2 Datasheet.pdf

[6] NesC Homepage.

http://nescc.sourceforge.net/

[7] TinyOS Homepage.
http://www.tinyos.net/

31

