
Chapter 1

Introduction

In this chaper, we give an overview of the relevant concepts about the Cir-
cuit Emulation Adaptor (CEA), focusing on its functionality as well as timing
specifications. Thereafter, we introduce the general framework of the corre-
sponding hardware implemenation of the adaptor.

1.1 Voice Traffic Over Data Networks

The proliferation of switched Gigabit Ethernets on top of wavelength division
multiplexing equipment in metropolitan areas directs networks equipment
manufacturers toward building circuit emulation adapters. These adapters
shall protect their customer’s investments in existing private branch ex-
changes (PBXs) and GSM base stations. Given this situation, the joint CTI
Circuits over Packets (CoP) technology transfer project between TIK/ETH
and network equipment manufacturer Siemens-Schweiz heads toward laying
the foundations for implementing such adapters.

1.1.1 Circuit Emulation Adaptor

In the traditional voice telecommunication setup, dedicated circuit-switched
based infrastructures are deployed to ensure the availability and quality of
the communication. In contrast, Internet and other data communcation net-
works sit on top of the packet routing regime, providing mainly best effort
services. With the recent significant capacity expansion of data commu-
nication networks, voice over packet-based data network becomes possible.
Circuit Emulation Adaptor is therefore proposed to bridge the legacy accesss
telephony equipment to the relative new core data tranportation networks
(see figure 1.1). This approach minimizes the conversion cost and, thus, is

1

of particular interest to the commercial service providers.

telephone

telephone

telephone

Telephone

Telephone

Telephone

PBX
 PBX

Workstation
 Workstation

Ethernet

Circuit Emulation Adapter
 Circuit Emulation Adapter

Ethernet

Workstation

Server

 ITU-T G.703

Interface

MAN: Switched

Gigabit-Ethernet

 ITU-T G.703

Interface

Figure 1.1: Proposed Voice over Packet Network Conversion Setup

1.1.2 Importance of Time

The interface from the traditional telephony access networks (PDH) is de-
fined by ITU-T G.703 while the interface to the data transportation networks
is based on the Gigabit Ethernets i.e. IEEE 802 family. The difficulty of the
conversion from circuit based voice traffic to packet based data traffic lies
in the process of packetizing the incoming voice traffic. More specifically,
the CEA should accurately synchronize the receiver buffer play-out rate of
the receiving adapter to the packetizing rate of the sending adapter to pre-
vent receiver buffer over- or underflows within several days of operation (see
figure 1.2). Moreover, for multiple PDH interfaces, prevention of over- or
underflow also applies to the synchronization of peer interfaces across the
emulation. This requirement is necessary since PDH signals are plesynchro-
nous, i.e. the signal frequency has a ±50ppm tolerance, which has to be
preserved. This preservation is necessary to avoid a violation of the MTIE
(maximum time interval error) requirement for PDH signals. It should also
be noted that the synchronization requirements and the Quality of Serice
(QoS) requirements for circuit emulation are much more stringent than the
corresponding requirements for VoIP.

1.2 Hardware Realization

The synchronization algorithms and realization guidlines of CEA, developed
under the joint technology transfer project between Computer Engineering
and Networks Laboratory and Siemens Switzerland, have been evaluated

2

packetizing

at constant frequency

Ethernet frames

Estimation of

frequency

switched metropolitan

Gigabit Ethernet

receiver buffer

circuit emulation adapter

(sender)

circuit emulation adapter

(receiver)

TDM circuit signal
 TDM circuit signal

depacketizing

frames

Figure 1.2: Frequency Synchronization

through computer simulation with satisfactory result. To prove the effective-
ness of the proposed synchronization algorithms, a simplified version of CEA,
or CEA Demonstrator, is to be implemented in hardware logic. The imple-
mentation includes the synchronization algorithm as well as a protocal stack
and basic timing functionality so that the performance of the synchronization
algorithm can be measured.
More specifically, the CEA board is divided into two parts. One is to be fully
implemented by hardware logic, which includes the complete network com-
munication protocol stacks such as IEEE 802.3, UDP/IP, RTP and etc. The
other is a mini-CPU itself or micro-Blazer. It provides an operating system
in which the synchronization algorithm is implemented in C. The communi-
cation between these two parts is enabled through the synchronization clock,
which signals the start of an MAC frame. This technical report focuses on
the hardware implementation of the logic part of the CEA board.

1.2.1 Design Requirements

The essential funcationalities of the CEA pertaining to the time synchro-
nization algorithm include the process of the voice data from PDH interface,
data communication through packet based Ethernet and finally the ability
to cooperate with various clock signals. Accordingly, the following detailed
design requirements are identified.

• Implementing the UDP, IP, RTP, and SaTOP layer of the protocol
stack including static configuration for IP-Address, port number etc.
that previously have been mapped into registers.

• Implementing a dual buffer at the sending side to continuously retrieve
bytes from the PDH input signal while generating and including time
stamps and sequence numbers.

3

• Implementing a multiplexer at the sending side that periodically flushes
the dual buffers of (in the future hopefully more than one) interface
that run in plesynchronous mode. This multiplexer is controlled with
a frame rate of 255.3/8 Bytes to make payload either 255 or 256 bytes
long.

• Implementing receiver time stamping functionality.

• Integration of existing synchronization algorithms in collaboration with
the advisors.

• Functional testing of the board.

From the implementation point of view, the CEA boards can be broadly
classified into two logical paths - the forward path through which the CEA
board spits out the voice bytes and the backward path through which the
CEA board receives the incoming bytes. The whole implementation, accord-
ingly, is comprised of two phases. During each phase, we complete the entire
design cycle for one path, including functionality analysis, interface design,
state diagram specification, VHDL coding, hardware realization and testing.
The advantage of this divide-and-conquer approach not only facilitates the
debugging process but also serves to verify the feasibility of the design ideas.

1.2.2 FPGA

Digital circuits serve as essentially as functional mappings defined by the
true table of inputs and outputs. The conventional way of implementing
such a truth table is based on connecting combinational circuits composted
logic gates such as AND, OR as well as NOT. This approach is rather time
consuming and resource inefficient.
Since all logic mappings can be realized by either Sum Of Products (SOP)
or Product Of Sums (POS), we can build up arrays of ”AND-OR-INVERT”
structures and connect them with programmable interconnections. Once
the truth table is specified by VHDL codes, the corresponding logic can be
realized by ”fusing” the interconnections among the structures.
This is the central principle of the commercial Field Programmable Gate
Arrary or FPGA. Typical FPGA is a collection of logic modules and block
that are interconnected through programmable connections. The Logical
Blocks are used to implement combinational and sequential logic and they
are connected by fusible wires. Finally, they are surrounded by the IO Blocks
for external connections.

4

To be more specific with Xilinx FPGA, which is used in the actual implemen-
tation, we give an overview of the Xilinx FPGA by mentioning its building
blocks. Xilinx FPGA consists of three major segments, namely, Configurable
IO Blocks or IOBs for short, Configurable Logic Blocks (CLBs) and Inter-
connects. The IOBs provide a programmable interface between internal logic
array and IO pins. The CLBs perform user-specific logic functions. And the
interconnects are programmable to form networks on the FPGA chips.
To sum up, the FPGA provides a collection of programmable logic compo-
nents. And once the complete logic of a device is fully specified by the VHDL
codes, we can simply implement the logic by ”fusing” the FPGA chips.

5

Chapter 2

Design Methodology, Principle
and Hardware Constraints

The essence of digital design lies in the ability to read in sequences of ’1’s and
’0’s and output the corresponding sequences at the right time. The design
methodology,therefore, helps to produce the circuit logic that connects the
input to the output in a certain logical binding manner.
We start with the traditional design technique based on Medium Scale Inte-
grated (MSI) Circuit Models and translate it into the clocked synchronous
state machine design afterwards.

2.1 From Concept to Practice

Perhaps the most intuitive way to represent a logic design problem is to
form a conceptual mapping from the specific design functionalities to the
corresponding MSI devices e.g. data buffers, multiplexers and etc. The
modern digital design tools, however, enable us to deal with design from
a different perspective, namely, through specifying the clocked synchronous
behaviour of the target design entity. In the following two sections, we will
first illustrate the design from a functional perspective before switching to
the behavioral state machine model, on which the actual implementation is
based.

2.1.1 Functional Perspective

Although the eventual implementation is not strictly based on the funca-
tional specification of the design, the analysis does generate insights that
are otherwise not visible from the other perspective. We show the complete

6

design in fig 2.1.
The complete CEALite is divided into two parts i.e. forward path and back-
ward path. The forward path interfaces with the external T3 station clock
and generates the dummy telephony traffic. It then stamps the data with
the proper clock information from the IP T0 module before it adjusts the
appropriate counter values. Finally, it encapsulates the data packets with
SATOP/RTP, UDP as well as IP headers and forwards the complete frame
to MAC transmitter.
The backward path performs the reverse operations of the forward path.
Namely, it stamps the recipient time of the incoming frame, strips off the
headers from the incoming frames, stores the relevant counter values to the
block RAM and, finally, output the payload data for storage.
Both forward path and backward path interface with the IP T0 clock mod-
ule, which is, in turn, controlled by the Microblaze. Microblaze is a mini
operating system that runs on Xilinx FPGA device. The synchronization al-
gorithm written in C is implemented in the Microblaze. In other words, the
Mircroblaze performs the synchronization adjustments through the IP T0
clock module and its intelligence comes from the synchronization algorithm
in C. The Mircoblaze integration as well as the software programming are
out of the scope of this project. We restrain our interface only up to the
IP T0 clock module.

Dual Buffer Overflow and Transmission Delay

As mentioned earlier, the targeting rate of synchronization clock signal is at a
frame rate of 255.3/8 Bytes. This is equivalent to an time interval about 0.96
millisecond. Since the clock from PDH interface has a maximum deviation
of 4.6 ppm (parts per million), this translates to 0.0046 bits during the 0.96
millisecond interval. In other words, to accumulate an error of 1 bit, we need
to incur the maximal possible deviation for over 200 continuous bits. This
is highly unlikely and, hence, provided that the synchronization algorithm
functions properly, we will encounter no buffer overflow issues and incur no
tranmission delay caused by the overflow.

2.1.2 State Machine without Hardware Constraints

After looking at the design from the intuitive picture, we now switch to the
behavioral model. Instead of focusing on how we can implement the specific
functions, we shall look at what the system needs to do at the right time.
This allows us to define a highly logical and systemic timing behavior of the
system, leaving the detailed gate level implementation to the software tools.

7

F
P

G
A

 (
e

.g
.

V
ir

te
x
-I

I
P

ro
 /

 P
2

0
)

u
B

la
z
e

P
a

c
k
e
t

in
te

rf
a

c
e
 (

M
E

N
)

E
/F

E
-M

A
C

IE
E

E
8
0

2
.3

u

1
0

0
 B

a
s
e

E
/F

E
-P

H
Y

IE
E

E
8

0
2

.3

Magnetics

Ethernet

10/100Base-TX

U
A

R
T

P
H

Y

U
s
e

r
I/

F

P
S

U

D
C

/D
C

-c
o

n
v
e

rt
e

r

M
a
in

s
 a

d
a

p
te

r

e
x
te

rn
a
l

A
C

/D
C

-c
o

n
v
e
rt

e
r

M
a

in
s

2
3
0

V
 /
 5

0
H

zCopper TP Cat.5e,

connectors RJ45

S
A

T
O

P

R
T

P

S
o

u
rc

e
 c

lo
c

k
 r

e
c

o
v
e

ry

TDM side

MEN side

16/36 Vdc

SATOP

RTP

UDP

MUX

B
lo

c
k

R
a
m

(Q
u
e

u
e

)

IP IP

UDP

IP
 –

 T
0

IP

fl
o

w
ID

f l
o
w

ID

fl
o
w

ID

Optional controller unit

s
ig

n
a

l
s
ta

m
p

in
g

c
o

n
fi
g

ta
b

le

S
y
n

c
h

ro
n

iz
a

ti
o

n

in
te

rf
a
c

e

T
3

 s
ta

ti
o

n
 c

lo
c
k

2
.0

4
8
 M

H
z
 ±

4
.6

 p
p
m

S
e

rv
ic

e
 c

lo
c
k

T
3

 s
ta

ti
o

n
 c

lo
c
k

2
.0

4
8
 M

H
z
 ±

4
.6

 p
p
m

D
D

R
A

M

1
6

M
B

Dual

1

6

2 3

5
fl
o
w

 i
d

s
e

q
u

e
n

c
e

 n
u

m
b

e
r

s
e

n
d

e
r

s
ta

m
p

re
c
e
iv

e
r

s
ta

m
p

p
a
y
lo

a
d

 l
e
n

g
th

R
e

c
e

iv
e

r
ti

m
e

s
ta

m
p

in
g

Dummy Byte

Generator

Buffer

c
o

n
fi
g

ta
b
le

4

 M
in

i
P

ro
je

c
t

L
o

g
ic

 M
in

i
P

ro
je

c
t

M
ic

ro
b

la
z
e

S
y
n

c
h
ro

n
iz

a
ti
o
n

Figure 2.1: MSI Circuit Model of CEA Demonstrator

8

In this manner, we translate the design requirements as a State Machine,
which is treated as a ’black box’ as far as the detailed implementation is
concerned. The whole state machine is completely specified by the number
of states, the corresponding output signals as well as the possible transitions
from one state to another.
Pursuant to our design, our state machine model must deal with controlling
the MAC layer communications module, accessing external memory blocks
and working with the synchronization clock signals. For example, the state
machine should activate the MAC transmission as soon as the synchroniza-
tion clock requests the current MAC frame to be transmitted.
To comprehensively capture the parameters of the State Machine, we adopt
the notation of Algorthmic State Machine (ASM) chart. ASM chart bears
a superficial resemblance to flow charts. The major difference is that ASM
charts have the concept of a sequence of time intervals built in. Flow charts
decribe only the sequence of events, not their duration. In ASM charts, the
machine changes from present state to the next state at the active clock
transition, and remains there for the duration of the clock cycle. Hence,
everything inside the rectangle takes zero time to execute while the signal
will be only effective at the next clock transition.
Typically, the name of the state is enclosed in a circle. The state rectangular
box includes the unconditional outputs in that state. If an output signal also
depends on the value of an input signal, it is called conditional output. This
is indicated by writing the signal in an oval box. When the state transition
is dependend upon certain input signal, the signal is enclosed by a decision
diamond, which is a part of the state. Kindly note that the test of the signal
does not require a separate clock period - it is done in the same state.
We are now in a position to discuss the proposed ASM charts for the forward
path i.e. the transmission path of the CEA. We show the complete chart in
fig 2.2.
There are altogether three different states in the design. In State 0, the
state machine mainly reads the traffic data from PDH and prepares for later
MAC layer transmission. State 1 is the state when the actual MAC layer
transmssion starts while, at the same time, the state machine continuously
monitors the traffic from PDH interface. In the last state, State 3, the state
machine stops the MAC layer transmission and returns to the intial state.
We discuss each state in details in the following sections.

State 0: PDH READ, MAC START

As mentioned earlier, in State 0, there are two major tasks for the state
machine. One is to read, store and post-process the voice traffic from the

9

(MAC) 1. No MAC Transmission

(PDH) 2. Re-arrange PDH Data into

Bytes

(PDH) 3. Refresh the Header Values

(Next Flow)

IP_T0_SIG

(MAC) 1. Transmit MAC Data in Bytes

(PDH) 2. Refresh the New Data Byte onto the MAC Bus

(PDH) 3. Re-arrange the PDH Data into Bytes (new packet)

(MAC) 1. Transmit the Last Byte

(MAC) 2. End the Frame

(PDH) 3. Re-arrange the PDH Data into

Bytes (new packet)

(MAC) 1. Enable Data Bus and Start the MAC Frame

(PDH) 2. Update the Internal Counters: Flow ID, Packet Number and

Byte Number

(PDH) 3. Update the Dynamic Header Fielders: Packet Number and

Byte Number, Packet Length,

(PDH) 4. Carry Over the Bits in the Last Incomplete Byte

PDH READ

MAC START

0

E1_RX_ENA

(PDH) 1. Record Down the Packet Time (1
st
 Bit Only)

(PDH) 2. Store the Bit Value into the Internal Memory

PDH READ

MAC WRITE

1

Yes

No

No

E1_RX_ENA

Yes

Byte Length == 325?

Sending Process State

Diagram

Ver. 1.1 12/07/2005

T.J. Shi

E1_RX_ENA

(PDH) 1. Record Down the Packet Time (1
st
 Bit Only)

(PDH) 2. Store the Bit Value into the Internal Memory

Yes

(PDH) 1. Record Down the Packet Time (1
st
 Bit Only)

(PDH) 2. Store the Bit Value into the Internal Memory

No

PDH READ

MAC STOP

2

Yes

No

No

No

RX_HDLC_SD

U_REQ

Yes

(SM) Report Error No

Figure 2.2: ASM Charts of the Forward Path of CEA Design

10

PDH interface. In particular, we need to re-assemble the data in bit form into
byte from since the latter is the internal data format for the state machine.
Besides storing the payload data, the state machine also needs to refresh the
header information of the entire frame from MAC layer onwards. These 70
Byte header information comes from the MAC layer, the LLC/SNAP layer,
the IPv4 layer, the UDP layer, RTP layer as well as the SAToP layer. Most
of the fields are static in nature; thus, they are stored in a Block RAM. Some
are time sensitive so they must be updated very frequently. The detailed
memory allocation schemes are treated in the next chapter.
The second major task of the intial state is to send relevant signals to start
the MAC transmission in the next clock cycle as soon as the synchronization
clock dictates so. This includes flashing in real time the relevant counter
information to the header fields, sending the appropriate control signals to
the MAC transmitter and initializing the backup buffer to allow parallel
transmission and receiving.

State 1: PDH READ, MAC WRITE

State 1 does the same job as State 0 as far as the PDH side is concerned.
The major difference is that the actual MAC transmission of PDH data is
handled in this state in parallel with processing the data traffic from PDH
interface.
More specifically, a transmission loop is maintained inside this state to spit
out bytes in each clock cycle. Since we have internally constructed the entire
MAC frame before the actual transmission, the process is relatively simple.
It simply fetches the byte one after another each clock cycle and stop when
the counter reaches the fixed frame size. We, however, need a seperate state
to stop the MAC transmission.

State 2: PDH READ, MAC STOP

State 2 exists only for one clock cycle and it does exactly the same as State 1
except for only one signal, which is raised high to stop the MAC transmission.
It still stores new PDH data (if any). The state machine returns to State 0
unconditionally after State 2.

2.2 Implementation of ASM Charts

ASM Charts depict the complete behavior of a state machine. To translate
it into a fully functional hardware module, we make use of the hardware
design languages or HDL, namely VHDL and Verilog. Both languages serve

11

the same purpose but with a different modelling style. We choose VHDL as
the HDL in this project for the ease of integration since the codings from
Siemens are done in VHDL, too.
As HDL programming is by no means the topic of this thesis, we shall instead
briefly mention the capability of VHDL that facilitates this implementation.
In essence, VHDL allows us to describe the behavior of the state machine
exactly the same way as ASM charts. Once we have translated the ASM
charts into VHDL program, VHDL compiler is able to automatically map
the behavioral state machine to logical gates, which can be then burned into
the programmable logical gates. We shall demonstrate this process briefly in
Chapter 7.

12

Chapter 3

Memory Access Scheme - Block
RAM Specification

In this chapter, we discuss the major information flow in the context of State
Machine design as well as the relevant memory allocatoin schemes to store
the data. Firstly, we classifly the information flow into three categories.
Based on this classification, we propose the design strategy that minimizes
the design complexity and facilitates the information communication with
the State Machine. It is noted that optimization of resource utilization is of
lower importance in the design. Lastly, we illustrate the detailed memory
allocation scheme.

3.1 Sources of Information

The major information is classified into Dynamic, Configurable and Static
in the descending order of their change frequency. All the counting based
information is maintained as the counters inside the State Machine; thus,
they are internal to the State Machine. Data Bit from PDH interface, Time
Stamp and Transmission Ready Signal from IP T0 Interface, are data and
control signals dependent on the sources of separate clocks so they have to
be made external. IP and Port address are classified as external to facilitate
possible future modifications.
The following list states the signal name, followed by their respective sources.
The brackets enclose their corresponding classifications.

• Data Bit - PDH Interface (Dynamic)

• Time Stamp -IP T0 Interface (Dynamic)

13

• Transmission Ready Signal - IP T0 Interface (Dynamic)

• Source IP Address/Port Address - Block RAM (Configurable)

• Destination IP Address/Port Address - Block RAM (Configurable)

• Packet Counter - Internal (Dynamic)

• Byte Counter - Internal (Dynamic)

• Packet Length - Internal (Dynamic)

• Flow ID - Internal Counter (Dynamic)

Flow ID is stored in the sequential counter inside the State Machine.
The counter is incremented once every time the State Machine
receives a Transmission Ready Signal, which flow switch in the next
clock cycle.

• Other Fields - Block RAM (Static)

3.2 Design Strategy

Strategy is nothing but deciding on trade-offs. We therefore list the design
trade offs and the corresponding choice made with the goal to minimize the
design complexity and facilitate information flow with the State Machine.
Note that the choice will be quite different if our focus is instead on
resource optimization - in this case, we will then need to apply complicated
design techniques in order to save memory space and etc.

3.2.1 External v.s. Internal

In our design, we store the relevant information as much as possible as
internal data units inside the State Machine so as to minimize the data
communication from the State Machine to the external interfaces. This
includes the Packet Counter, Byte Counter and Flow ID. Except Flow ID,
they are maintained inside the State Machine as internal counters as a per
flow basis.
This approach is, certainly, in contrast to the traditional modular design
method, which enhances the system robustness and faciliates error
localization.

14

3.2.2 Interface Complexity v.s. Access Complexity

Since the external data are of different sizes, e.g. Port Number is 16 bits
while IPV4 Address is 32 bits, we face the trade off between Interface
Complexity v.s. Access Complexity. If we allow different types of external
interface data bus, access to the data is much simpler. On the other hand,
if we only allow uniform memory access interface for the ease of State
Machine design, we face more complicated data access challenges. We
choose the later as we stick to the design strategy mentioned earlier.

3.2.3 Block RAM Efficiency v.s. Access Complexity

Another factor that complicates the data access is the Block RAM
efficiency. If we store different types of data (dynamic, static and etc) on
difference pieces of Block RAM, we save perhaps hugely on memory usage.
However, the State Machine is then required to be equipped with multiple
access interfaces and pooling the small pieces of data at exact instant of
time. This requirement obviously burdens the State Machine design;
therefore, we will trade off Block RAM Efficiency for the simplicity of State
Machine design.

3.3 Allocation Scheme

Allocation is a mapping from the different sources of data onto the
proposed storage blocks. We show the mapping below. In the following
design, we cater to 4 independent PDH interfaces. The external chips with
interface connection to the State Machine are T3 PDH connection, IP T0
synchronization clock and one Block RAM with 32 bit data bus and 2 KB
storage capacity. In this case, we will need to have 4 PDH data buffers, 4
IP T0 time stamp buffers, 4 packet length counters, 4 byte number
counters and finally 4 header information buffers.
We illustrate the detailed mapping in Fig 3.1.

15

T3 TMD * 4

IP T0

Data Bit (1b) * 4

Time Stamp (32 b)

Transmission Ready Signal (1b)

Header(32b)

Block RAM 32 b * 2046 B

T3 TMD Data * 4

Flow ID

Byte Counter * 4

Pkt Length * 4

Pkt Counter * 4

Complete Header Info
Flow * 4

Complete Header Info
Flow 1

Complete Header Info
Flow 2

Complete Header Info
Flow 3

Complete Header Info
Flow 4

Paddings (Empty)

Header/44B

Padding/22B

Time Stamp
Data * 4

Figure 3.1: Memory Allocation Scheme

16

Chapter 4

Design with Industrial
Constraints

In the previous chapters, a comprehensive introduction of the design of the
CEA is discussed – primarily from the functional and logical persepectives.
While everything presented is theoretically sensible, we still need to further
polish the entire design so as to meet the industrial expectations,
particularly in terms of hardware constraints and modular design
requirements.
In this chapter, we should state the practical constraints that we face and
propose modified new design scheme accordingly. It is our hope that with
the background knowledge from previous chapters, the further complication
of the design introduced here can be appreciated more easily.

4.1 The Constraints

For the real implementation, the design is often subject to severe hardware
constraints. And in order to accomodate the hardware limitations, we will
have to complicate the logic of the design and, consequently, even flow of
the State Machines. Specific to our design, our initial assumption that the
memory space of the FPGA is sufficient enough to store the entire MAC
frame is, unfortunately, not valid. This is due to the cost considerations as
the FPGA with the expected number of internal registers is simply too
expensive. Consequently, we will need to store the frame data externally to
the state machines and poll for the appripriate bytes at the right time
during the MAC transmssion.
The second contraint that we need to live with is the modular design
requirements. Contrary to our previous one-state-machine design principle,

17

modular design approach is ideal for future reuse of the existing
implementations. In other words, we need to split the previously proposed
state machine to several smaller components, each with more specific tasks.
The overhead that we need to deal with is the extra logic to coordinate
among these components. The advantages are neverthelss obvious - it is
easier to reuse smaller components and the debugging is also simplified.

4.2 Modified Design Concept

As discussed previously, we are to strike a fine balance between the logic
simplicity and design simplicity. The design sophistication comes from the
dissolvance of the original one state machine and the external storage of the
MAC frame data.
The modified design now consists of three seperate state machines - the bit
to byte converter, the data packaging state machine and the MAC
transmitter. The bit to byte converter serves to pre-process the data bit
originated from the PDH interface to the byte format. And, afterwards, all
the data communications among the different system components are
defined on a per byte basis. This is to facilitate the rather complex data
flow as we shall see shortly.
The second state machine - data packaging state machine - focuses on
processing the PDH data or the MAC payload data. In essence, it stores
the payload data onto the external memory space i.e. Data Block RAM
and also calculates the appropriate MAC header fields. This is the main
logic controller of the whole design.
The third component, namely the MAC transmitter, interfaces with the
MAC wrapper and, as implied by its name, transmits the complete MAC
frame. Interestingly, the logic of the transmitter is the most complex among
all three components. This is due to the fact that we no longer have a
complete MAC frame ready before transmission; and, hence, the
transmitter needs to poll the right frame byte at the right time from either
Data Block RAM or Header Block RAM.
To further compicate the design, we will need to store certain dynamic
header fields mentioned earlier into the Data Block RAM instead of the
Header Block RAM because of the accessibility limitations. Note that the
Block RAM is generally accessible from two ports for both writing and
reading. The Header Block RAM, however, has to be interfaced with the
micro-Blaze, which configures the header information and with the MAC
Transmitter, which retrieves the header information for transmissions. As a
result, the dynamic header fields that are calculated during the run time in

18

the Data Block RAM can only be stored in the Data Block RAM as this is
the only block RAM that it has the access interface.
We conclude this section by summing up the functions of two block RAMs
that we use. The Data Block RAM is used primarily to store the PDH data
and certain dynamic header fields. It is divided equally into two parts - one
for data transmssions and the other for simultaneous PDH data storage.
The Header Block RAM is dedicated to store header information and is
configurable from the micro-Blazer.

4.3 Data Storage and Data Flow

The MAC frame bytes are unfortunately scattered over many storage
locations in the new design. It is therefore important to fully specify how
the bytes are stored and communicated so that they can reach the right
components at the right time.
We illustrate the complete Data Storage scheme in Fig 4.1. In the figure,
we view the entire design purely from the data storage perspective. The
PDH voice data bit gets converted in the bit byte converter and is,
subseqently, called MAC Payload Data. It then goes through the data
processing state machine so that the relevant counters can be incremented
accordingly. It is then stored in the Data BLK RAM. Majority of the MAC
header data are stored in the Heard BLK RAM, simply waiting to be polled
from the MAC transmitter during the transmission.
If we look at the two BLK RAMs more closely, the Data BLK RAM
actually stores two sets of MAC payload data per flow - one for current
transmission and the other for simultaneous buffering of the PDH data.
However, we only need to store one set of dynamic MAC header data since
it only makes sense to fix their values the moment the transmission starts.
We, thus, only store the set of fields that go with the MAC frame that is
currently being transmitted. The Header BLK RAM is much simpler as it
simply maintains one complete set of header fields for every flow.
Four dynamic header fields - Time Stamp, Packet Counter, Byte Counter
and Packet Length - however are under the control of data processing state
machine and are, therefore, stored in the Data BLK RAM. We should point
out that the MAC transmitter does NOT construct a complete MAC frame
before sending it out. Instead, it merely polls the appropriate byte one
clock before transmitting it and store it locally. A more abstract data flow
is shown in Fig 4.2.

19

PDH
Interface

Bit Byte
Converter

-- PDH Voice Data
 MAC Payload

Data (Bit)

Data Processing

-- Flow ID Counter
-- Dynamic MAC Header
Field Counter -- MAC
Payload Data (Byte)
-- Time Stamp

MAC Transmitter

-- Static MAC Header Data
(Header BLK RAM)
-- Dynamic MAC Header
Data (Data BLK RAM)
-- MAC Payload Data (Data
BLK RAM)

Data BLK RAM

-- MAC Payload Data (2)
-- Dynamic MAC Header
Data

Header BLK RAM

-- Complete MAC
Header Data
-- Configurable from

Blazer

Blazer

MAC
Wrapper

MAC Frame
/ Byte

IP_T0_SIG

-- Time Stamp

MAC Header
Data / Byte

MAC Payload
Data / Byte

-- MAC Payload
Data / Byte

-- MAC Dynamic
Header Data /

Byte

Time Stamp /
Byte

MAC Payload
Data / Byte

PDH Data
/ Bit

State Machine

Data Flow

External Memory
Storage

Figure 4.1: Modified Data Storage Scheme

PDH Data
/ Bit

Bit Byte
Converter

Data
Packaging

Data BLK
RAM

MAC
Transmitter

Time Stamp /
Byte

Data
Packaging

Data BLK
RAM

Other Dynamic
Header Fields

Header Data /
Byte

Header
BLK RAM

MAC
Transmitter

MAC Frame
/ Byte

Figure 4.2: Data Flow Abstraction

20

Figure 4.3: Bit to Byte Converter Interface

4.4 Modular System Design Description

After looking at the entire system design from a high level perspective, we
now zoom into the detailed descritption of individual component of the
system. For each of the component, we start with its interface description,
followed by the corresponding state diagram and we end with the
description of the design rational. The VHDL codes, however, are attached
in the Appendix instead.

4.4.1 Bit to Byte Converter

The interface of the Bit to Bite Converter is shown in Fig 4.3. On the input
side, E1 RX DAT and E1 RX ENA interfaces with the PDH and retrieve
the data bit by bit. On the output side, PDH DAT and PDH ENA provide
the Data Packaging state machine with the PDH data in bytes.
In Fig 4.4, we show the corresponding ASM chart of the converter. The bit
to byte converting process is triggered by the E1 RX ENA signal. The
converter then accumulates 8 bits and raise the PDH ENA signal high to
notify the data packaging state machine that the byte is ready. The whole
process is relatively easy and we only need one state for the converter.

21

E1_RX_ENA

j:=8

TEMP_BYTE(j):=E1_RX_DAT

j++

Yes

Yes

No

PDH_ENA<=1

PDH_DAT<7:0><=TEMP_BYTE<7:0>

j:=0

PDH_ENA<=0 No

Figure 4.4: Bit to Byte Converter ASM Chart

22

4.4.2 Data Packaging State Machine

As mentioned earlier, the Data Packaging State Machine (Fig 4.5)is the
central logic of the whole system. It mainly interfaces with the Data Block
RAM through D ADDRA, D DIA, D DIPA, D ENA, D RSTA and
D WEA. In additional, it also maintains all the dynamic header fields and
Flow ID for the full implementation. Accordingly, it also interfaces with the
synchronization clock signals namely IP T0 DAT and IP T0 SIG. Lastly,
the state machine also temporally stores the PDH data through PDH DAT
and PDH ENA.
The logic of the state machine is also the most complicated among the
three, even though it has only ONE state (Fig 4.6). The complication
comes from the requirements of simultaneously buffering the incoming PDH
data as well as transmitting the internally maintained MAC field values
during the start of the MAC transmission. Remember that we do not
construct a complete MAC frame before transmission so we will have to
make sure that the data byte is ready for transmission at the right time.
This mainly explains the three consecutive yes or no logic judgement
structure of the design.

4.4.3 MAC Transmitter

Lastly, we present the MAC Transmitter. Logically, it is the most complex
among the three as it has to interface with four different entities i.e. the
Header Block RAM (H ADDRA, H DIA, H DIPA, H ENA, H RSTA and
H WEA), the Data Block RAM (D ADDRA, D DIA, D DIPA, D ENA,
D RSTA and D WEA), the Synchronization Clock (IP T0 DAT and
IP T0 SIG) and the MAC Transmission Wrapper (MAC REQ, MAC DAT,
MAC ENA, MAC END, MAC ERR, MAC RST and MAC START). We
show the complete interface in Fig 4.7.
Although there are 13 states designed for MAC Transmitter, the logic
behind is rather simple. As we can tell from the ASM Chart (Fig 4.8 and
Fig 4.9), the majority of the states are of rather similar structure. They
make sure the MAC poll the right data byta at the right time and right
place so that the next byte to be transmitted is stored in the internal buffer
one clock cycle before the actual transmission. The zig-zag arrangment of
these states reflects the complexity we discussed earlier - the transmitter
needs to poll the header fields from both the Header Block RAM and the
Data Block RAM in an alternative manner. It is also noted that the MAC
Transmitter often stays in the

23

Figure 4.5: Data Packaging State Machine Interface

24

PDH_ENA

1. Record Down the Packet Time (1
st
 Byte Only)

2. Store the Byte Value into the Internal Memory

3. Set the Data Transmission Counter

4. Increase the Relevant Counter

IP_T0_SIG

Data

Transmission?

1. Update the Relevant Counter

2. Internally Buffer them so that they can be put into the

Internal Memory Byte by Byte

3. Set the H_Transmission High at Next Clock

4. Toggle the Data Buffer

Header

Transmission?

1. Transmit the Header Buffer Byte by Byte

2. Decrease the Header Counter

1. Transmit the Data Buffer Byte by Byte

2. Decrease the Data Counter

Yes

Yes

Yes

No

Yes

No

No

No

Figure 4.6: Data Packaging State Machine ASM Chart

25

Figure 4.7: MAC Transmitter Interface26

No MAC Transmission

IP_T0_SIG

MAC_REQ

1. Reset the Master Counter (MC)

2. Poll the 1st Byte from the Header BLK RAM

1. Enable Data Bus and Start MAC Frame

2. Poll the 2
nd

 Byte from the Header BLK RAM

3. Increase the Master Counter

MC==Packet

Counter

Offset?

1. Transmit next MAC Byte

2. Increase the Master Counter

 Poll the 1st Byte of the Packet Counter from

the Data BLK RAM

Poll the next Byte from the Header BLK RAM

1. Transmit next MAC Byte

2. Poll the 2
nd

 Byte of the Packet Counter from

the Data BLK RAM

3. Increase the Master Counter

MC==Time

Stamp Offset?

1. Transmit next MAC Byte

2. Increase the Master Counter

 Poll the 1
st
 Byte of the Time Stamp from the

Data BLK RAM

Poll the next Byte from the Header BLK RAM

Yes

Yes

Yes

Yes

No

No

No

5

0

Raise MAC Transmission Error No

1

2

3

4

Figure 4.8: MAC Transmitter ASM Chart

27

1. Transmit next MAC Byte

2. Poll the 2
nd

 Byte of the Time Stamp from the

Data BLK RAM

3. Increase the Master Counter

1. Transmit next MAC Byte

2. Poll the 3
rd

 Byte of the Time Stamp from the

Data BLK RAM

3. Increase the Master Counter

1. Transmit next MAC Byte

2. Poll the 4
th
 Byte of the Time Stamp from

the Data BLK RAM

3. Increase the Master Counter

MC==Packet

Length Offset?

1. Transmit next MAC Byte

2. Increase the Master Counter

 Poll the Byte of the Packet Length from the

Data BLK RAM

Poll the next Byte from the Header BLK RAM

1. Transmit next MAC Byte

2. Poll the 1
st
 Byte of the Byte Counter from

the Data BLK RAM

3. Increase the Master Counter

1. Transmit the next MAC Byte

2. Poll the 1st Byte of the Byte Counter from

the Data BLK RAM

3. Increase the Master Counter

1. Transmit the next MAC Byte

2. Poll the next Byte from the Data BLK RAM

3. Increase the Master Counter

MC==325 ??

Yes

No

No

5

0

6

7

8

9

10

11

1. Transmit the next MAC Byte

2. Stop the MAC Transmssion

0

12

Figure 4.9: MAC Transmitter ASM Chart (Continued)

28

Chapter 5

Backward Path

After the extensive discussion of the VHDL design techniques and
principles from the previous chapters, we present the complete design of the
Backward Path of the CEALite implementation in this chapter.
The Backward Path is the counterpart of the Forward Path and it serves to
process the frames sent from the Forward Path at the receiver end. Its
basic function includes examining the header values, verify CRC check
results, updating the microBlaze with proper header values and output the
payload voice data.

5.1 Overview

The entire backward path consists of two state machines - Header Analyzer
and Info Extractor, two Block RAMs - Config BLK RAM and
Data BLK RAM, the IP SIG clock as well as the micro-Blazer internal
registers.
The Header Analyzer block interfaces with the MAC Wrappers, decides
whether the incoming MAC frame is intended for the CEA, strips away the
protocol headers and pass down the relevant data to the Info Extractor
block. It also refreshes the value of the IPMAC address of the CEA as well
as the UDP port-to-Flow ID lookup table from the Config BLK RAM on a
per frame basis.
The Info Extractor block takes all the necessary data from the Header
Analyzer block including the Flow ID and stores it with other header
values into the Data BLK RAM. As soon as the data comes in, Info
Extractor is responsible for taking the time stamp from the IP SIG clock of
the incoming frame too. It also has the direct access to an internal register
of the micro-Blazer, where the current index pointer of the

29

MAC
Interface

Header Analyzer

 Flow_ID

MAC Addresss

IP Address

UPD Port Number

Config BLK RAM

MAC Address

IP Address

UPD Port Flow_ID

Blazer

PDH Data
Distribution

MAC Frame

State Machine

Data Flow

External Memory
Storage

Info Extractor

 Frame/Packet No.
 Source Time Stamp
 Reserved
 Payload Length
 Byte Counter

Header BLK RAM
 Frame/Packet No.
 Sender Time Stamp
 Reserved
 Payload Length
 Byte Counter

Receiver Time

Header /
Payload

Payload

IP_T0_SIG

-- Time Stamp

Time Stamp

Figure 5.1: Schematic Overview of the Backward Path

Data BLK RAM is updated. Lastly, it has a pseudo-data output interface
that outputs the payload data i.e. the telephony traffic. We output
sufficient information so that the data output interface can be be connected
directly with the block RAM.
We show the complete schematic of the backward path in Fig 5.1. The
input and output interface of the backward path is shown in Fig 5.2

5.2 Header Analyzer

The Header Analyzer plays the role of admission control of the input MAC
frames. It verifies both the IP address and the MAC address of the
incoming frame against their preset counterparts of the CEA board. If both
of the values are correct, it then retrieves the corresponding Flow ID that
the current frame belongs to through looking up the values in the mapping
table. The frame will be simply discarded if any of the above three fields,
namely IP address, MAC address as well as UDP port number, are invalid.
Once the frame is admitted, the Flow ID together with the header fields
starting from the byte number 56 (i.e. frame/packet counter) all way till
the end of the MAC frame (excluding the trailer) are forwarded to the Info
Extractor for further processing. As soon as one frame is forwarded, it
refreshes the IP address, MAC address as well as the mapping table from

30

IP_O<31:0>

IP_T0_DAT<31:0>

MAC_DAT<7:0>

MAC_O<47:0>

UDP_REG1_O<15:0>

UDP_REG2_O<15:0>

UDP_REG3_O<15:0>

UDP_REG4_O<15:0>

CLKM

MAC_ENA

MAC_END

MAC_ERR

MAC_START

RESET

BYTE_CNT<16:0>

COUNTER<31:0>

DATA<7:0>

FLOW_ID<7:0>

H_ADDRA<10:0>

H_DOA<31:0>

ENA

H_DIPA

H_ENA

H_RSTA

H_WEA

Figure 5.2: Interface of the Backward Path

31

the Config BLK RAM, which is configurable from the micro-blazer. The
values are only refreshed once per frame since we don’t expect the IP Add,
MAC Add and the Port to Flow ID binding change often.
The interface of the Header Analyzer and its flow chart are shown in the
Fig 5.3 and Fig 5.4 respectively. In the actual implementation, it is also
possible to replace the block RAM with the dedicated registers so that we
can refresh the values in one clock cycle. Note that the ENA signal marks
the start and end of the DATA frame and remains high for an effective
frame.

5.3 Info Extractor

The Info Extractor takes the input data from the Header Analyzer. As
soon as the Header Analyzer signals the incoming frame data is ready by
raising the ”ENA” signal, the Info Extractor stamps the receiving time
from the IP SIG clock. It then extracts the header values and stores them
into the Data BLK RAM according to the following table. To facilitate the
IO for both the Info Extractor and the micro-blaze, each field value, no
matter how many number of bit they have, occupies one 32 bit memory
location in the block RAM. Further, for the ease of numbering, each the
field values of each MAC frame will take the chunk of 8*32 memory space,
instead of 7*32. The expected Header block RAM should be of the size
2048*32; thus, the mirco-Blaze has a turn over time of 256 ms.
Since we will buffer multiple set of field values from the previous MAC
frames, an index pointer has to be specified and made available to the
micro-Blaze so that it can read off the newly modified entries from the
block RAM. The index point always points to the latest updated header
entry by the Info Extractor. The micro-Blaze also keeps an internal counter
and it points to the entry of the block RAM that is last read by the
micro-Blaze. Hence, the difference of the index pointer and the internal
counter marks the chunk of memory locations to be read. This index
number is communicated through a dedicated connection to an internal
register of the micro-Blaze. The index number is on a per set basis.
Though not required in the CEAlite implementation, the interface to
output the payload data as well as the relevant counter values are still
implemented. We aim to output sufficient information so that a
corresponding data distributor unit can be built to interface with the E1
connections. The complete interface of the Info Extractor and its flow chart
is shown in the next two figures (Fig 5.5 and Fig 5.6.

32

IP<31:0>

MAC<47:0>

MAC_DAT<7:0>

UDP_REG1<15:0>

UDP_REG2<15:0>

UDP_REG3<15:0>

UDP_REG4<15:0>

CLK

MAC_ENA

MAC_END

MAC_ERR

MAC_START

RST

CRC_V<1:0>

DATA<7:0>

ENA

Figure 5.3: Flow Chart of the Header Analyzer

33

Idle State

MAC_ENA

1. Waiting for the Dest. MAC Address

2. Store them (6 Bytes)

Check Dest

MAC Add

1. Waiting for the Dest. IP Address

2. Store them (4 Bytes)

Check Dest .IP

Add

1. Waiting for the Dest. UPD Port

2. Store them (2 Bytes)

Dest.

Port to Flow_ID

Mapping

1. Read MAC Data

2. Output to Info Extractor

(The Frame Range is Determined

from the Frame Length Counter)

Buffer the Flow_ID

Number

Next Byte in the

Range

ENA<=1

Output the Byte

(Includeing Flow_ID)

YesNo

Yes

No

No

No

Yes

Yes

Refresh the

Configurable Data from

the Config_BLK_RAM

ENA<=0No

Complete?

No

Yes

Header Analyzer

ASM Chart

Ver. 0.1

10/08/2005

T.J. Shi

One possible concern is that the

configuration data are only refreshed

once per successful MAC Frame

analysis, If this is not frequent

enough, one solution is through an

additional async, reset signal.

Figure 5.4: Interface of the Header Analyzer34

CRC_R<1:0>

DATA_I<7:0>

IP_T0_DAT<31:0>

CLK

ENA_I

RST

BYTE_CNT_O<16:0>

COUNTER_INX<31:0>

DATA_O<7:0>

D_ADDRA<10:0>

D_DOA<31:0>

FLOW_ID_O<7:0>

D_DIPA

D_ENA

D_RSTA

D_WEA

ENA_O

Figure 5.5: Flow Chart of the Info Extractor

35

Idle State

ENA_I

Yes

No

1. Buffer the Time Stamp

2. Buffer the incoming Byte

 Read the Incoming Bytes

End of the

Heading Fields

Store the Requires Header

Values into the Data_BLK_RAM

from the Internal Buffer

No

Update the BLK RAM

Index Counter

1. Read the Incoming Bytes

2. Output the Payload Data

from the Internal Buffer

End of the

Payload?

Info. Extractor

ASM Chart

Ver. 0.1

10/08/2005

T.J. Shi

Yes
Yes

No

Figure 5.6: Interface of the Info Extractor36

Chapter 6

From Software to Hardware

As we have discussed in the first chapter, the eventual goal of programming
VHDL is to produce the hardware logic on the Xilinx FPGA chips so that
they can be used as the actual hardware components. We describe briefly
in this chapter the concepts of converting the software VHDL codings to
actual hardware implementation.

6.1 The Outsiders’ Process

In previous chapters, we mainly focus on the design principles of the
CEALite. We now discuss the operational aspects of the VHDL hardware
design. In Fig 6.1 , we show the complete design cycle.
Accordingly, our previous discussions correspond to the ”Synthesize” step
of the design, where we draft the VHDL source code and translate it into
Netlist. Up to this step, we are still in the ”software” phase of the design
since the entire design is based on the computer software simulations.
However, this is actually the core of the design as the behavior of the
hardware is fixed in this stage. The rest of the steps are automated by
Xilinx software and, thus, are merely mechanical.
In the ”Implementation” step, we map the logic gates and their
interconnections according to the appropriate family of FPGA chips. The
operation includes implementing the CLBs through the look-up tables as
well as interweaving the sets of CLBs by fusing their interconnections.
Once the implementation is complete, this information is further translated
into a string of ’0’s and ’1’s (bitstream) where ’0’s and ’1’ indicate the open
or closed switches inside the FPGA. As a final step, the bitstream is
downloaded to the FPGA chip. The fusible interconnections and electric
switches are then ”burned” in response to the binary bits in the stream. If

37

Figure 6.1: Complete VHDL Design Cycle

38

CLK

E1_RX_DAT

E1_RX_ENA

PDH_DAT<7:0>

PDH_ENA

IP_T0_DAT<31:0>

PDH_DAT_R<7:0>

CLK

IP_T0_SIG

PDH_ENA_R

D_ADDRA<10:0>

D_DIA<7:0>

D_DIPA

D_ENA

D_WEA

GND

ADDRA<10:0>

ADDRB<10:0>

DIA<7:0>

DIB<7:0>

DIPA<0:0>

DIPB<0:0>

CLKA

CLKB

ENA

ENB

RSTA

RSTB

WEA

WEB

DOA<7:0>

DOB<7:0>

DOPA<0:0>

DOPB<0:0>

ADDRA<10:0>

ADDRB<8:0>

DIA<7:0>

DIB<31:0>

DIPA<0:0>

DIPB<3:0>

CLKA

CLKB

ENA

ENB

RSTA

RSTB

WEA

WEB

DOA<7:0>

DOB<31:0>

DOPA<0:0>

DOPB<3:0>

D_DOB<7:0>

H_DOB<7:0>

CLK

IP_T0_SIG

MAC_REQ

RST

D_ADDRB<10:0>

H_ADDRB<10:0>

MAC_DAT<7:0>

D_DIPB

D_ENB

D_WEB

ERR

ETH_PDNn

ETH_RSTn

H_DIPB

H_ENB

H_WEB

MAC_ENA

MAC_END

MAC_ERR

MAC_MTX_ENA

MAC_RST

MAC_START

CLKM

E1_DAT

E1_ENA

IP_DAT(31:0)

IP_SIG

MST_RST

M_REQ

M_DAT(7:0)

M_D_ERR

ETH_PHY_PDNn

ETH_PHY_RSTn

M_ENA

M_END

M_ERR

M_MTX_ENA

M_RST

M_START

Figure 6.2: Block Interconnection of the Forward Path

one is lucky enough, the FPGA will now function properly with respect to
the design.
The readers are advised to go through commercial instruction manuals for a
step by step tutorial of complete process.

6.2 The Insiders’ View

To provide more insights to the hardware implementation, we attempt to
merge the gap between the state machine view of CEALite and its
functional perspective as logic components. In the end, from hardware
point of view, everything boils down to the logical gates.
We first show the interconnections of the different components of the
forward path (fig. 6.2) and backward path (fig. 6.3). They are still
represented as logical components of the state machines.
Now we should zoom into the more detailed logic gate perspective.
Unfortunately, most of the state machines involve numerous logic gates and
extremely complicated connections – they are just too much for analysis.
We therefore choose one of the the simplest modules for demonstration.
The following figure (fig. 6.4) shows logical construction of the the bit to
byte module.
In order to see the real logic gates, we now further zoom into one of the
data registers which store the bit values (fig. 6.4) . We observe that there
are five input signals in the module with one NOT gate and one AND gate.

39

IP<31:0>

MAC<47:0>

MAC_DAT<7:0>

UDP_REG1<15:0>

UDP_REG2<15:0>

UDP_REG3<15:0>

UDP_REG4<15:0>

CLK

MAC_ENA

MAC_END

MAC_ERR

MAC_START

RST

CRC_V<1:0>

DATA<7:0>

ENA

CRC_R<1:0>

DATA_I<7:0>

IP_T0_DAT<31:0>

CLK

ENA_I

RST

BYTE_CNT_O<16:0>

COUNTER_INX<31:0>

DATA_O<7:0>

D_ADDRA<10:0>

D_DOA<31:0>

FLOW_ID_O<7:0>

D_DIPA

D_ENA

D_RSTA

D_WEA

ENA_O

IP_O(31:0)

MAC_O(47:0)

MAC_DAT(7:0)

UDP_REG1_O(15:0)

UDP_REG2_O(15:0)

UDP_REG3_O(15:0)

UDP_REG4_O(15:0)

CLKM

MAC_ENA

MAC_END

MAC_ERR

MAC_START

RESET

IP_T0_DAT(31:0)

BYTE_CNT(16:0)

COUNTER(31:0)

DATA(7:0)

H_ADDRA(10:0)

H_DOA(31:0)

FLOW_ID(7:0)

H_DIPA

H_ENA

H_RSTA

H_WEA

ENA

Figure 6.3: Block Interconnection of the Backward Path

It is easily seen that the whole register is enabled only when the enable
signal is high. The output of an AND gate is high only if all of the inputs
are high. This is consistent with the ”ENA” signal designed earlier. The
digital design engineers focus more on the state machine designs and pay
minimal attention to the hardware translations.
However, due to the space constraint and large complexity, we are unable
to demonstrate more translation details. They are normally an
indispensable part of digital design and are no longer done manually.
Indeed, this translation process can be fully defined and automated by
computer software such as Xilinx Integrated Design Environment.

40

Figure 6.4: Logical View of Bit to Byte Module

Figure 6.5: Logic Gate Interconnection of Register Component

41

Chapter 7

Conclusion and Further Work

In this project, we applied state machine based design concept to
implement a test version of Circuit Emulation Adapter (CEA). To facilitate
the design and integration, we further adopted the modular design
approach to divide the state machines to several modules with a small
increased interfacing cost. Throughout the design, we attempted to strike a
fine balance between design complexity and logic clarity, interfacing cost
and modularity, as well as storage efficiency and access convenience. The
forward and backward paths are then translated into VHDL codings and,
finally, are implemented onto the Xilinx FPGA devices. Both forward and
backward paths are verified through time simulation and hardware testings.
For further work, we need to integrate both paths with the Mircoblaze
using VHDL. Then the entire implementation can be exported to Xilinx
FPGA devices for hardware testings. This work will be jointly taken up by
ETH, Zurich and Siemens Research, Switzerland.

42

