
Institut für
Technische Informatik und
Kommunikationsnetze

Rashid Waraich

Automated Attack Signature
Generation: A Survey

Semester Thesis SA-2005-38
July 2005 to September 2005

Tutors: Daniela Brackhoff, Bernhard Tellenbach
Co-Tutor: Thomas Dübendorfer
Supervisor: Prof. Bernhard Plattner

2

Abstract

Hardening IT infrastructures of today’s web-centric society against any form of attacks is a
critical factor for the success of internet services. The arising expenses in case of violations of
confidentiality, integrity or availability (CIA) of provided data and services are hard to estimate,
but usually substantial. In recent years lots of research about how to increase the security of
IT infrastructures has been done. The emerging NoAH project focuses thereby on the field
of automated attack signature generation. This survey is part of the NoAH project and helps
in getting an overview about existing approaches in the field of automated attack signature
generation. Criteria for analyzing and comparing existing methods are introduced. The goal of
this survey is to lay a base for future work in the area of automated attack signature generation
and related research fields.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 The Task . 5
1.3 Signature Definition . 5
1.4 Overview . 6
1.5 Related Work . 6

2 Background 7
2.1 Worms . 7
2.2 Intrusion Prevention Systems . 8
2.3 Intrusion Detection Methods . 9

3 Manual Signature Generation 11
3.1 Bro . 11
3.2 Snort . 12
3.3 Comparison of the Bro and Snort Signatures . 13

4 Automatic Signature Generation 15
4.1 Nemean . 15
4.2 Dynamic Taint Analysis . 17
4.3 Honeycomb . 18
4.4 IBM-94 . 19
4.5 Autograph . 21
4.6 Paid . 22
4.7 PADS . 24
4.8 PAYL . 25
4.9 Polygraph . 26
4.10 StonyBrook . 28
4.11 Dalhousie . 29
4.12 PISA . 30

5 Classification of Automated Signature Generation Mechani sms 33
5.1 System Location . 33
5.2 Input . 33
5.3 Signature Output Format . 34
5.4 Worm Detection Mechanism . 35
5.5 Number of Attack Instances Required as Input 35
5.6 Usage of Honeypot Technology . 36
5.7 Usefulness Against Polymorphism . 36
5.8 Quality of Generated Signature . 36

6 Conclusion and Outlook 41
6.1 Conclusion . 41
6.2 Outlook . 41

3

4 CONTENTS

Chapter 1

Introduction

1.1 Motivation

In recent years, the internet was frequently targeted by worms. Alarming is not only the fact, that
worms like Nimda [26] were able to infect millions of hosts [9], but also the spreading speed.
For example the Sapphire worm [28] infected all vulnerable hosts attached to the internet
within 10 minutes, after the worm was released. Indeed, worms are becoming a serious threat
to a web-centric society. Not only the industry suffers from loss of productivity due to worm
epidemics, which cost billions of dollars [30], but also consumers are becoming aware of such
attacks, when flights are late or cancelled, emergency phone services do not work as they
should and web pages are downloaded at rates, which were thought to be history since the
replacement of dialup modems [27].

Manual signature generation, which has been the traditional way of containing worms, is
rendered useless against modern worms [33]. In recent years, lots of research projects
have been launched, which aim to generate attack signatures in an automatic fashion. One
project for countering worms, without human-mediated reaction, is the NoAH project. The
European Network of Affined Honeypots (NoAH) [61] project aims to design an infrastructure to
counter cyber attacks. The project is based on honeypot technology [4] so that attacks can be
detected at an early stage. Honeypots will be used in order to gather and correlate data from
geographically distributed sites. After having identified an attack, a signature for the attack will
be automatically generated and distributed to interested sites.

Until now, to the best of my knowledge, there has not been any survey about automated attack
signature generation. For projects like NoAH, which aim to automatically generate signatures
for attacks and to distribute them with little delay, a survey like this is a good starting point.

1.2 The Task

The task of this work consists of two major subtasks:

1. "Create a survey of attack signature generation mechanisms including the thereby used
input and output data and information about tools/algorithms that use these signatures to
identify an attack."

2. "Propose an appropriate classification for the attack signature generation mechanisms."

1.3 Signature Definition

The word signature will be used throughout this report in the following sense: Any collection
of characteristics, which allows classification of given input as benign or malicious, is called a
signature. A definition is required, as in intrusion detection literature, the word signature is often
used as a synonym for the word pattern [34]. But the definition given above is more general

5

6 CHAPTER 1. INTRODUCTION

and fully consistent with the definition of this term in [33].

1.4 Overview

The remainder of this report is structured as follows. Chapter 2 gives some background knowl-
edge. In chapter 3 two network intrusion detection systems (NIDS) are presented, in order to
understand how signatures are generated manually. Chapter 4 presents and discusses twelve
approaches for automatic attack signature generation. In chapter 5 classification criteria are de-
fined and the signature generation mechanisms presented in chapter 4 are classified according
to them. Finally, in chapter 6, a conclusion summarizes the report and an outlook is given.

1.5 Related Work

To the best of my knowledge, no survey about automatic generation of attack signatures has
been done prior to this work. Some of the papers about automatic attack signature generation
(see Chapter 4) mention in their related work section other existing approaches. But they only
give a rough overview about this topic. Too often, they do not compare the approaches or do not
specify any classification criterion. One reason for the lack of any detailed work about automatic
attack signature generation is, that most papers in this field were written in recent years.

Chapter 2

Background

2.1 Worms

Worms exploit software vulnerabilities, in order to get control over machines. The causes of
such vulnerabilities are often software bugs, which for example allow buffer overwriting without
boundary checks. Such buffers can be exploited by worms, to overwrite a return address, in
order to redirect the program flow to a sequence of executable code contained in the network
request: The worm’s code. If a worm succeeds in infecting an attacked host, it tries to replicate
itself by infecting other hosts. Some worms scan IP addresses to identify other vulnerable hosts
prior to sending the exploit, while others select the IP address to attack randomly. As this pro-
cess of replication and infection goes on, one can see that this kind of spreading leads to an
exponential growth in the number of infected hosts, as the time passes. Knowing this fact, the
spreading speed of worms should not be surprising anymore. A number of factors are relevant
for not only boosting-up the spreading speed, but also for the total number of hosts, which are
finally infected. One of these factors is the lack of diversity in used operating systems and other
software. But the use of such mono cultural software has also some advantages. For instance,
when a patch for a specific vulnerability is released, a large amount of hosts can be protected
against future attacks exploiting the same vulnerability. But patches are often released several
days after the attack has struck. So as not to be delivered defenceless to attacks, people often
install so-called intrusion detection systems (IDS) [16], on their hosts or network gateways.

Detecting Scanning Worms

To detect new worms, common characteristics of many worms can be utilized: When a worm
tries to further spread, it has to pick a new victim. The selection of such a victim is often done
by randomly picking one address from the whole space of IP addresses. As not all addresses
are used by hosts, probing a non-existent host will lead eventually to an ICMP unreachable
message [29] or no message at all (dark holes). In order to monitor such randomly scanning
worms, an approach called network telescope [10] can be used. A network telescope monitors
some portion of the routed IP address space, which is unused. If some traffic arrives at the
network telescope, one can infer that some malicious activity is going on in the Internet, such
as the spreading of a worm. The effectiveness of this method for detecting worms depends on
the size of monitored IP address space.

Another approach to detect new worms is the usage of honeypots [4]. Honeypots are monitored
hosts, which are placed at IP addresses, where no services are supposed to be provided.
Although honeypots have services installed on them, there is no reason for a benign user to
contact them. As a consequence, any traffic to a honeypot can be classified as suspicious. But
it has been pointed out [62] [20], that honeypots often receive packets from benign users for
example due to badly configured applications. For this reason, some designers of honeypot
systems have proposed [20], that as an evidence for a worm or intruder, unsolicited outbound
traffic generated by the honeypot must be present.

7

8 CHAPTER 2. BACKGROUND

Hit-list Scanning Worms

The problem with random scanning worms, from the attacker’s point of view, is that they start
spreading very slowly. So the most time a random scanning worm needs for spreading is
during its starting phase. To accelerate the start, attackers have found a new method, called
hit-list scanning [63]. In this method, the attacker collects a list of a certain number of potential
vulnerable hosts in advance. This list is called hit-list. The worm is released with a copy of the
hit-list attached to it. When the worm has infected an initial host, it chooses another host from
the hit-list. Then the worm replicates itself, but divides the hit-list into two parts, sending one to
the new target host attached to the replicated worm and keeping the other part. This procedure
continues recursively. When the hit-list is finished, the worm continues spreading by searching
for new targets through scanning.

The difficulty in stopping hit-list scanning worms is that they can only be detected when the
hit-list is used up and the scanning begins. But as the starting phase of worm spreading is over
by that time, the worm will often be detected too late by the methods presented in the previous
subsection.

2.2 Intrusion Prevention Systems

Intrusion prevention systems (IPS) are strongly related to IDS. The main difference be-
tween them is that IDSs only try to detect intrusion, whereas IPSs also try to prevent intrusion.
Only the structure of an IPS is given below, as one can look at an IPS as an extension of an IDS.

IPSs are used to monitor network traffic and events on computer systems. Typically, an IPS
can be divided into three components, as shown in figure 2.1 [5]: An information source,
an analysis engine and a decision maker. The information source component monitors data
from different sources, like system calls, network traffic and applications. Then it converts
the collected data into a format, which is suitable for the second component, the analysis
engine. The main purpose of the analysis engine is to detect intrusive behaviour. Therefore,
this component is considered as the most important part of an IPS, and is often used as a
main classification criteria in surveys about IPS and IDS [16]. But without going into details,
there exist two major approaches [34] to detect intrusive behaviour: Misuse detection and
anomaly detection. Systems using misuse detection look for well-defined patterns in data
coming from the information source. Misuse detection is therefore only effective if the pattern
of an attack is known. On the other hand, misuse detection is almost always useless against
new or unknown attacks. As opposed to misuse detection systems [24], systems based on
anomaly detection have the potential to detect new attacks. Anomaly detection systems [25]
rely on a profile of normal behaviour and report deviations from this behaviour as suspicious.
An anomaly detection system often analyzes system activity during a learning phase taking
place in a clean environment and classifies patterns of such activity as normal. When during
normal operation an anomaly detection system finds a pattern, which is not covered by the
normal behaviour pattern, it reports a possible intrusion. A major concern regarding today’s
anomaly detection systems is, how to tune them so that they produce both low false positive
rates and low false negative rates [34]. False positive is called a misclassification of legitimate
activities as malicious ones, also called false alarm. False negative is a misclassification of
malicious activities as legitimate ones. The reason for such misclassification lies in the fact
that there might exist legitimate activities, which lie outside the normal behaviour pattern, and
are therefore classified intrusive (false positive). On the other hand, there might exist intrusive
activities, which match the normal behaviour pattern of the anomaly system, and thus do not
raise any alarm (false negative). The result of the analysis engine, whether it is based on
misuse detection or anomaly detection, is handed over to the third component of the IPS, the
decision maker. The decision maker applies some rules on the output of the analysis engine
and decides what should be done. For example, if malicious traffic is discovered, a possible rule
of the decision maker could state, that this traffic should be blocked. Therefore, the decision
maker is a tool to increase the usability of an IPS, such that decisions are taken automatically
using predefined rules, instead of burdening a pc owner or system administrator with taking

2.3 Intrusion Detection Methods 9

such decisions manually.

Intrusion prevention system

Monitoring Analysis engine Decision maker

Data monitoring

Preparation of

collected data for

analysis engine

Detection of intrusive

behaviour using 2

approaches:

- misuse detection

- anomaly detection

Appropriate actions

based on predefined

rules

Alerts sent to external

components

alert/actionnetwork traffic,

system callls, etc.

Figure 2.1: Components of an intrusion prevention system

2.3 Intrusion Detection Methods

As mentioned previously, the IPSs are often categorized into two main categories according to
the detection method they use, namely misuse and anomaly detection. Four intrusion detection
methodologies, which were presented in [33], are described below.

Pattern Matching

Pattern matching compares patterns defined in the signature with some input. For example, if
in a network packet, the IP version, the transport protocol and a string in the payload matches
a certain pattern, a possible intrusion has been identified.

This method can be deployed on several network protocol layers, because of its generality. But
this method is very specific, as it tries to connect an exploit with a pattern. The problem is that
if the pattern, which is engineered into a signature, is not unique to a certain attack as was
thought by the author of the signature, this approach will lead to lots of false positives. On the
other hand, any modification to an attack payload, which is not covered by the signature, will
lead to false negatives. This approach only looks at one packet at a time. Therefore, this method
is not suitable for stream-based traffic, as used by HTTP.

Stateful Pattern Matching

This approach adds a new concept to the standard pattern matching approach: Keeping state
of several packets, which form a stream. By using this method, patterns can be matched, which
are distributed over several packets.

This method has the advantage over standard pattern matching, that it is suitable for stream-
based traffic, where an attack payload could be distributed over several packets. But this method
must keep state, which consumes more resources than standard pattern matching.

Protocol Decode-based Analysis

This approach is a further development of the stateful pattern matching method. This method
is implemented by decoding a conversation in the same way, as a client or server would do.
After the decoding process, the protocol fields are identified and checked against the protocol’s
definition in the RFC. If a field is invalid or too long according to the protocol’s definition, an
alarm is raised.

This method minimizes the chances of false positives, if the protocol is well defined and it is
pushed towards a correct use of the protocol. But the problem is that in reality, the RFCs are
often ambiguous and give developers the freedom of interpretation, when implementing the

10 CHAPTER 2. BACKGROUND

RFCs. Furthermore, the implementation of this approach by building a well-engineered parser
is more time consuming than the prior two approaches.

Anomaly-based Analysis

Anomaly-based analysis looks for network traffic, which deviates from normal traffic behaviour.
But before this method can be used, it must be defined, what normal behaviour means. If nor-
mal behaviour is hard-coded in the system, then the analysis method is called heuristic-based.
But a system can also learn about the normal behaviour during a training phase. Afterwards,
deviations from the normal behaviour are classified as possible intrusions.

This method has the potential to find unknown attacks. The main difficulty with this approach
is how to fine tune the parameters, which decide when the system should raise alarm. It is
often reported [34], that anomaly-based systems have higher false positive rates than the other
analysis methods described above. Furthermore, systems using this method depend on the
environment, where they have learned what normal behaviour is.

Chapter 3

Manual Signature Generation

Almost all signatures and rules deployed in today’s antivirus software, firewalls and IDSs
are developed manually by skilled security experts. A detailed analysis and reverse code
engineering of a virus is shown in [59]. Manual generation of a worm signature typically
consists of the following steps. First, one or more instances of the worm have to be captured.
Then the binary code of the worm is converted to assembler code. It is then analyzed by a
human expert, who looks for suspicious code sequences and in particular for invariant code
between all of the captured worm instances. If such code sequences are found in the assembler
code, the corresponding bytes in the binary code of the worm are identified, and used as
signature. If network traffic traces containing the worm are available, further characteristics
can be incorporated into the signature, such as which port the worm uses for spreading or
which flags in the packet header are set, and which transport layer protocol is used. All these
characteristics are collected and put into a signature or rule for the worm, which can then be
used for example in IPSs to protect hosts against that worm.

In this chapter, two popular network intrusion detection systems (NIDS) are presented together
with the language they use to describe rules. Looking at the languages, in which such rules are
written, gives an insight into the power of manually generated signatures. It is not the claim,
that this chapter provides an introduction to IDS. A survey about IDS with classification of the
signature types they use, can be found in [16].

3.1 Bro

Overview

• Open source (release information can be found under [64]).

• Implementations available for Digital Unix, FreeBSD, Linux and Solaris OS.

• Currently no GUI based administration tool available.

System Structure

Bro [7] is an NIDS, which monitors traffic that enters or leaves a network. As large volumes of
high-speed data might be exchanged between the network and the outside world, the system
has to be built in a way that no packets are dropped due to slow processing. For this reason,
the system is structured into layers. The lowest layer has to deal with the greatest amount of
data, but it does the least processing on it. When going up the layers, the amount of data to be
processed decreases. This in turn allows more sophisticated processing algorithms to be used.

The lowest layer resides just on top of the network and consists of libcap [8], a packet-capturing
library. Packet filtering is performed on packets arriving at the system, in order to filter out
packets, which are not of interest to the system: Only packets with certain source or destination
ports (e.g. FTP, Telnet), some TCP control packets and IP fragments are passed to the higher

11

12 CHAPTER 3. MANUAL SIGNATURE GENERATION

layer, the event engine. The event engine performs some validity checks on packet headers,
such as verifying the IP header checksum. On this level, also IP fragments are reassembled,
in order to analyse the whole IP datagram. If certain checks fail, an event corresponding to
the problem is generated and the packet is dropped. On the other hand, if all checks were ok
and if the datagram does not belong to an already registered connection, a connection state is
created, which contains the source and destination IP addresses and ports. The system keeps
track of changes of the connection’s state and generates different events for different state
transitions (e.g. connection established, connection rejected). These events are handled by the
next upper layer, which consists of a policy script interpreter. The policy script interpreter runs
an event handler script corresponding to the triggered event. Such scripts are written in the Bro
language. These scripts can generate notifications of a detected intrusion, store the content of
a packet to the hard disk or even generate new events.

At the moment, Bro allows application-specific processing for six applications (e.g. Telnet, FTP,
Rlogin). But Bro is also extensible and allows adding new protocol analyzers to the event engine.
For every event, which can happen during the protocol analyzing phase, an event handler script
has to be written in the Bro language. In the next subsection, a short description of the Bro
language is given.

Bro Language

Security policies in Bro are written in a special language, the Bro language. This language is
strongly typed, allowing discovery of type inconsistencies already at compile-time. As atomic
types, the Bro language introduces some new types besides the one’s known from traditional
programming languages (eg. bool, int, double, string). Examples of new types are port
and addr, which stand for port number and IP address. Using the keyword record, more
complex types can be built, based on these atomic types. For example a connection type could
be introduced as a record of two IP addresses and port pairs.

In order to specify Bro security policies, the type table could be especially helpful. This type is
similar to arrays in C, except that the type of the index does not have to be of type int. Instead,
any type can be chosen for indexing the array. An interesting type, especially for describing
worms using some polymorphism, is a type called pattern. It is based on Unix-style regular
expressions.

Only one new operator is added to the operators, which are known from C, in. This allows for
example to check, if there exists a value in a table corresponding to a given index.

The Bro language consists of only a small number of statements. Example of such statements
are if-then-else statements and an event keyword, which allows to generate new events. But
there are no for-style loops in the language, because it is feared, that this could lead to arbitrary
large processing times, leading to dropping of packets. But generating loops is still possible in
Bro, for example through recursive calls to functions.

3.2 Snort

Overview

• Open source (further information can be found under [65]).

• Implementations available for Linux, Solaris, Free/Net/OpenBSD and MacOS X OS.

• GUI based administrative and analysis tools are available.

System Structure

Snort [7] is an NIDS, which uses libpcap [8], to sniff and filter packets. Snort is based on three
subsystems: a packet decoder, a detection engine, and a logging/alerting subsystem.

3.3 Comparison of the Bro and Snort Signatures 13

Each component of the packet decoder tries to extract useful elements from the raw network
traffic into predefined data structures. The decoding routines are placed at each layer, beginning
at the protocol stack and ending at the transport layer. During this decoding phase, pointers are
set into the packet payloads, in order to accelerate further processing by the detection engine.

The detection engine consists of a collection of rules. These rules are written in a Snort specific
rule language, which is described in the next subsection. The collection of rules is managed
in a way, which allows putting together similar characteristics of rules into a separate data
structure. This helps speeding up rule matching for packets, which are received from the packet
decoder. The first rule that matches a packet, triggers the action defined in that rule, which is
taken by the logging/alerting subsystem.

The logging/alerting subsystem allows the user to choose, if and how it should log a packet that
matches a rule. Snort allows three methods for logging, e.g. logging each decoded packet into
a separate file or logging several packets in binary format into a single file. For alerting the user,
Snort allows the user to choose between five methods, e.g. writing alerts to the systems log or
to text files, or let a window popup at some user-specified console.

Snort Rules Language

Snort rules allow defining, in which packets what pattern should be searched for, and what
should be done, if a packet matches that pattern. It can be specified, which packets Snort
should filter out for further inspection. For example, only TCP packets coming into the network
or packets leaving the network with a certain source port and destination port can be chosen.
Such filtered packets can then be matched against further characteristics defined in the rule,
such as TCP flags, the TTL field in the IP header or the packet content. If a packet matches the
predefined pattern in the rule, Snort can take actions as specified in the rule, such as logging
the packet or alerting the user.

3.3 Comparison of the Bro and Snort Signatures

In this section an attack signature for the Windows Media Player exploit is given in Bro and
Snot languages (see below), which was taken from [37]. By looking at this example signature,
some differences between the Bro and Snort languages are discussed.

For Bro, both the request and response message corresponding to the exploit are present in the
example signature. But as Snort does not have the ability to relate a request with a response
message, only the request is part of the signature.

Bro:

signature nsiislog { signature http_200_ok {
ip-proto == tcp ip-proto == tcp
dst-port == 80 src-port == 80
http /.*/scripts/nsiislog.dll payload /.*HTTP\/1\.. 200/
requires-signature-opposite ! http_200_ok event ’’HTTP 200 OK’’
tcp-state-established tcp-state-established

} }

Snort:

alert tcp any any -> 10.0.0.0/8 (msg: "(msg:WEB-IIS nsiislog.dll access";
flow:to_server,established; uricontent:"/scripts/nsiislog.dll") nocase;
reference:...)

14 CHAPTER 3. MANUAL SIGNATURE GENERATION

The Bro language is much richer in its expressiveness than the Snort language. For example,
Bro allows incorporating regular expressions into signatures, whereas Snort only allows for
exact string matching. Regular expressions can be very helpful in finding polymorphic worms,
which can change certain parts of their payload. Bro keeps state of TCP connections, which
allows tracing requests and response messages. Snort on the other hand does not keep
any state. Both of these advantages of Bro over Snort are visible in the example above. The
star in the Bro signature (both in request and response), can match any arbitrary number of
characters. Furthermore, the Bro signature relates the request message with the response
message (requires-signature-opposite ! http_200_ok), which would not be possible in Snort.
But these advantages of Bro are not for free: Matching exact strings is much more efficient than
matching regular expressions. And keeping state consumes resources, and makes a NIDS
susceptible to attacks [7] where the monitor can run out of resources. Launching such attacks
on stateless NIDS is much more difficult.

Although the Bro language allows for many constructs, which are missing in Snort(e.g. if-then-
else), Snort enjoys a greater popularity than Bro. One reason for Snort’s popularity lies in its
simplicity. If one wants to write Bro signatures, one must be able to do programming. But writing
Snort rules is even possible without having programming skills, as Snort rules always have the
same fix structure.

Chapter 4

Automatic Signature Generation

As highlighted in the introduction, manual signature generation is too slow to contain modern
worm outbreaks. In the following sections, twelve automatic attack signature generation mech-
anisms are presented and discussed. Particular attention has been paid to the input and output
of each signature generation mechanism (SGM).

4.1 Nemean

Overview

Input : Packet traces from a honeynet [39] deployment.
Output : Regular expressions.
System/Algorithm based on [37].

Input

Honeynet [39], consisting of a network of honeypots, is deployed on unused IP address space.
HTTP requests for the unused address space are routed to a host, running a real implementa-
tion of a HTTP server on it. NetBIOS/SMB related packets are sent to a virtual honeypot similar
to honeyd [2]. All packet traces seen at the honeynet are collected and sent to the Nemean [37]
signature generation algorithm.

Signature Generation Mechanism

As input for the SGM, Nemean receives packet traces from honeynet [39], a network of honey-
pots. As a first step, transport-level normalization [37] is performed on the packets. The reason
for performing transport-level normalization is that normally OS do validate characteristics of
received packets, such as packet header fields. If a certain packet header field is invalid, the
packet is dropped. As Nemean receives all traffic trough a packet sniffer, attackers could try
fooling the Nemean system by sending packets to it, which are handled by Nemean in an
other way, than by an OS [41]. The goal of transport-level normalization is to resolve such
ambiguities, by performing the same steps on packets, as an OS would do.

The second step is flow aggregation. During flow aggregation, normalized packets from
the previous step are composed into flows and stored. After a certain period of time, flows
expire and are converted into connections. Connections consist of requests and responses.
Connections between the same pair of hosts are grouped together in order to form a session.

In the next step, service-level normalization [37] is applied on sessions. The reason for
performing service-level normalization is that Nemean should perform the same steps on
invalid fields of application protocols (eg. HTTP), which a server implementation would do. After
performing server-level normalization, the normalized sessions are encoded in an XML-format,

15

16 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

which is suitable for further processing by the clustering modules.

Clustering is performed both on connections and sessions separately. For clustering an
algorithm called star clustering is used, which can cluster documents according to a similarity
metric [38]. The goal of clustering is the following: Different attacks should be separated into
different clusters, such that one cluster does only consist of one single attack or its variations.
Out of every cluster a finite state automaton (FSA) is created, representing all connections
and sessions respectively in the cluster. The transitions in the automaton are labelled with
request/response message strings.

Finally generalization steps are performed on the FSA, using different generalization algorithms
for connection [42] and session [40] FSAs. By the generalization step, invariant and variant
parts of a FSA are identified: Transitions with several possible labels are identified as variant
part of the attack. The generalized FSA forms a signature for a polymorphic worm, which can
be converted into a regular expression.

Output

The SGM outputs an attack signature both on connection and session-level. Such a signature
is described by a finite state automaton (FSA), with a starting state and possibly many different
paths which lead to an accepted final state. If an attack consists only of one single request, it can
be matched with a connection-level FSA. If a request string is given as input to the FSA and a
final state is reached, a possible attack was identified. A session-level FSA consists of requests
and responses. If a sequence of requests and responses given as input to the session-level
FSA leads to a final state, a possible attack was identified. As this FSA is a deterministic finite
automaton, it can be converted to a regular expression.

Evaluation

As it has been pointed out in [37], building a perfect normalizer is a difficult task, as ambiguities
on transport-level are OS dependent and ambiguities on service-level are server-application
dependent. So there exist two main difficulties with the normalization approach. The first issue
is that this approach is not general: Although one can build transport-level normalizers for the
few main stream OSs, building a service-level normalizer is a much complicated endeavour.
Building a new normalizer for every server-application that needs to be protected, and doing
this for every application protocol does not seem to be practical for ubiquitous employment. The
second problem with this approach is that if the built normalizer does not solve all ambiguities,
it exhibits explicitly vulnerabilities to potential attackers. One can not argue that the intruders
will not use the few uncovered situations by the normalizer, because intruders especially look
for such cases.

In [37], service-level normalizers for only two services (HTTP and NetBIOS/SMB) were
implemented and discussed. But the implemented normalizer for the HTTP protocol does not
handle all ambiguities. So it is worth thinking about this service-level normalizer approach, only
if it is practicable in a large scale. Fact is that even building a perfect normalizer for a single
service seems to be a difficult task.

The signature generated is able to detect attack strings, even if data reordering and data mod-
ification is performed on the variant part of the payload. The SGM uses a generalization step,
in order to conclude from captured variants of the worm to unseen variants. It is obvious that a
representative number of variants of the worm must be at hand to the SGM, in order to generate
signatures, which can cope with polymorphism.

4.2 Dynamic Taint Analysis 17

4.2 Dynamic Taint Analysis

Overview

Input : Network traffic.
Output : 3 bytes.
System/Algorithm based on [11].

Input

By default, the SGM considers all input from network sockets in the signature generation pro-
cess. But the SGM can be configured, in oder to take also other sources into consideration,
such as the standard input or data from certain files.

Signature Generation Mechanism

This system aims to detect overflow attacks. All data coming from untrusted sources is marked
as tainted data. There exists a configurable policy for defining, which data source is not trusted.
By default, all data coming from network sockets is considered untrusted and therefore tainted.
Whenever a source register of a CPU operation is loaded with tainted data, the result of the
operation is also marked as tainted, when the result is written back to memory. For CPU
operations, where the result of an instruction is independent of the source registers, the result
is never marked as tainted. Furthermore, whenever tainted data is copied or moved around in
memory, the target memory location is marked as tainted.

The system allows to configure the policy for defining, what kind of data in memory should not
be overwritten by tainted data. By default, it is not allowed to overwrite destination addresses of
control flow operations with tainted data and the use of tainted data as format strings in printf
like functions is prohibited.

If the system detects an attempt to overwrite locations in memory with tainted data, for which
according to the defined policy it is prohibited to overwrite them with tainted data, a post-analysis
of the attempted attack begins. The three higher bytes of the value, which was used during the
overwrite attack, represent a signature for the attack. The idea behind this choice is that the
value, which is used for the overwrite attack can only point to one or a few fix memory locations,
in order to be successful [11].

Output

The signature produced by the SGM consists of the three most significant bytes of the value,
which were used during the overwrite attack.

Evaluation

This system has a great advantage above other similar systems [12], as it does not need
source code of the application it should monitor. This is essential, as source code of commercial
software is hardly ever available.

Signatures generated by this system are only three bytes long. Such short signature may gen-
erate lots of false-positives. But the authors of the system [11] have made some suggestion for
future development, to generate more accurate signatures. For example, it could be identified,
which minimal length a certain part in a request must have, such that an attack can succeed.

A major drawback of this system is that it has a very poor performance: In some experiments,
it slowed down the normal execution of programs up to 37 times [11]. A major reason for this
bad performance is that programs monitored by this system run in an emulation environment,
called Valgrind [13]. Furthermore, the system changes the code of monitored programs by

18 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

adding checks after every operation on data and registers. But this additional code, also called
instrumentation code, is not optimized yet. The authors plan to address both of these issues.
They argue that the use of Valgrind is one main reason for the poor performance of their
system. They want to replace it by DynamoRio, which is reported [14] to perform better on the
same programs than Valgrind.

As the monitoring with this system is not cheap regarding the CPU time required, its deploy-
ment seems suitable on low-load servers and honypots, as suggested by the authors of the
system [11]. But also on high-load servers, a deployment is possible only if a portion of some
randomly chosen requests are checked with this system.

This system detects worms by evidence, not by suspicion. This renders payload encryption
and obfuscation techniques [15], which are often used by polymorphic worms to evade NIDS,
useless against this system. This approach not only detects most kinds of overwrite attacks,
but it also produces signatures, which are robust against polymorphism. If the attack payload is
encrypted, then the signature is only useful for an IDS that monitors network data propagation
in the memory, which is true for the presented system.

As mentioned above, a system that can use the generated signature also in case of encrypted
attack payload, must emulate a monitored program in a similar way, as the presented system
does. So it is worth thinking about, why one would like to use a new system, which is similar to
the one used in the SGM, only to be able to use the generated signature. Instead it might be
more appropriate to install the detection part used in the presented SGM directly into an IDS.

4.3 Honeycomb

Overview

Input : Network traffic from a honeypot.
Output : Signatures suitable for use in Snort and Bro.
System/Algorithm based on [1].

Input

The input to the Honeycomb SGM consists of network traffic seen at a honeypot.

Signature Generation Mechanism

This signature generation system is based on honeyd [2], an open-source honeypot imple-
mentation. Honeyd allows the configuration for the OS type and services it should simulate.
When traffic is seen at the honeypot, a protocol analysis is performed on the packet headers
at network and transport layer: Anomalies in the headers, such as invalid fields or unusual field
combinations, are recorded as part of the worm signature.
In the next step, a comparison on packet contents is performed on different connection flows
using the longest-common-substring (LCS) algorithm [3]. This is done in two ways: horizontal
detection and vertical detection. In the case of horizontal detection, if the number of the current
message in a connection is n, then this packet is compared with the n-th message of all con-
nections with same destination port. With vertical detection, two connections are compared with
each other by concatenating packets in each flow to a configurable maximum length. Then the
two connection flows are compared. All detected patterns are added to a signature pool. Sig-
natures from the signature pool are converted periodically by an output module into a format,
which is suitable for use in the Bro [7] and Snort [6] NIDSs.

4.4 IBM-94 19

Output

The generated signatures include information about the attack, such as which transport layer
protocol and destination port was used and some part of the attack payload string. These sig-
natures can be converted into a format suitable for use in Bro and Snort NIDSs.

Evaluation

Horizontal detection is suitable for protocols, where the messages must have fix order and can
not be interleaved with any other messages: The n-th messages in different instances of the
same attack must be the same. But protocols where messages can be interleaved, create some
sort of asynchrony, if seen from the point of view of the horizontal detection. Here is where the
vertical detection fits in. It compares longer sequences of connections with each other, such
that the LCS algorithm is able to detect shifted strings.

There are limitations to the length of bytes, which are concatenated in the vertical detec-
tion phase. An attacker who is aware of this limit can evade the system by adding some
harmless messages before the attack messages, so that the first part of the worm is in one
"comparing-set" and the end in another. Therefore, the signature found for the worm in each
"comparing-set", eventually becomes too short to be usable as a signature.

One drawback of this system is that it can not generate signatures for polymorphic worms. The
reason for this handicap is that the generated signatures are not based on the idea of the worm
payload consisting of variant and invariant parts. Due to this fact, also variant parts of the worm
are likely to be incorporated into the signature.

Honeycomb can be fooled by attackers, to generate signatures for legitimate traffic. This can
be achieved by sending harmless requests from a set of hosts to the same set of randomly
chosen IP addresses. Eventually a honeypot will be found with a honeycomb implementation
running on it and will generate whichever signature the attackers desire. To counter this sort
of deception attempts, the exchange of information between honeypots could be used. So if
requests at different honeypots come "too" frequently from the same host or set of hosts, such
hosts should be marked suspicious. Due to the spreading behaviour of scanning worms, across
all honeypots, a more or less random distribution of the probing hosts should be sighted.

4.4 IBM-94

Overview

Input : An identified virus example embedded in a program executable.
Output : One or a few machine code byte sequences.
System/Algorithm based on [60]1.

Input

The input to this SGM is a virus, which is embedded in some program executable. It is not
mentioned in the paper, how this input was obtained.

Signature Generation Mechanism

As input, the signature generation mechanism is given an identified virus example that resides
in a program executable. The SGM consists of two independent steps: First is signature
extraction, which consists of finding some machine code byte sequences, which are likely
to be present in all instances of the virus. Thereafter signature evaluation is performed,

1In [60], the authors did not give any name to the proposed algorithm; it will be called IBM-94 in this report.

20 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

which selects one or a few signatures from the set generated during the first step. The sig-
nature(s) chosen are those with the least probability of producing false-positives when deployed.

Signature extraction is done as follows: The sample virus is run on a separate machine, which
is equipped with decoy programs to attract virus infection. To speed up the infection of the
decoys, they are placed in directories, which are preferred by viruses. From time to time the
system looks for changes in the decoy programs. If they were modified, they are considered
to be infected and are stored at some special location. After having enough modified decoys,
their infected areas are compared with each other, in order to find regions, which are invariant
from one infection instance to another. If the invariant regions are too small, then the virus is
considered as too polymorphic and a human expert has to analyse it. But if the virus is not
excessively polymorphic, then the code portion and data portion of the invariant regions are
separated and only the code portions are taken as candidates for signatures. The data portions
are not taken as part of the signature, because they can be modified frequently, in order to help
viruses evading virus scanners.

For signature evaluation, a well known method from the speech recognition community is used:
Trigram technique or generally n-grams [44]. N-grams, for a given data set, consist of all sub-
strings of length n in the given data. From a large database of identified viruses, all n-grams are
computed with their corresponding frequencies. These frequencies are used to extrapolate to
statistically all viruses, even such which have not been seen yet. If a new candidate signature
is given, this method can assign a probability to it describing how likely it is that the same se-
quence of bytes could turn up in some legitimate program. In this manner, the signatures with
the lowest false-positive rates are selected.

Output

One or a few strings are selected as a signature for the virus.

Evaluation

The generated signature consists of one or a several strings, which seem to be invariant
between instances of the same virus. There is a constraint of the maximum length of the
produced signature strings. It is not mentioned in the paper either if the strings are ordered
in the signature or not, in the case where a signature contains more than one string. As an
ordered set of strings is more specific than an unordered set of strings for matching, it is
assumed here, that the strings are not ordered. Unordered sets of strings have the potential
to deal with polymorphism: Such as byte reordering, modification of the variant part of the
payload and encrypted payloads where an invariant encryption/decryption routine is present in
the payload.

The basic idea behind the signature evaluation method is that when looking at some program
bytes, one can decide how characteristic these bytes are for malicious behaviour. An attacker,
who has access to the database of viruses, which are used by the algorithm, can compute the
sequences of length n that are most prevalent in the database. Then he could integrate a few of
these sequences in his code. When the attacker releases his virus, the virus might be detected
after a while. Then the virus will be analyzed by the presented algorithm. The byte sequences,
that the virus author integrated into his code, will be selected as signature for the virus. But as
the virus author has computed a lot of such prevalent sequences from the virus database, he
can potentially release lots of new version of his virus by integrating other prevalent sequences
into his virus code. What should be noted is that whenever a version of the virus is captured, the
algorithm will not find a signature specific to the virus. Instead, a signature will be generated,
which is not related to the virus at all. At this point, one could argue as the authors of the
algorithm [60] do, that one must hide the database of viruses from the attackers. But an
attacker actually does not need the whole database to find prevalent sequences, because it
should be possible to derive such prevalent sequences also from a much smaller set of viruses
due to their prevalence.

4.5 Autograph 21

Another problem with this signature evaluation is the idea that the most prevalent sequences
of bytes in the virus database will not be contained in benign code, as the byte sequences
are really "evil". The fact is that it is not avoidable, that the most prevalent sequences in the
virus database will also turn up in some benign program. For this reason, this approach could
potentially lead to lots of false-positives.

To relieve the problem of false-positives, one could compute prevalent byte sequences from
a database containing legitimate programs. These "benign" prevalent sequences could be
deleted from the prevalent sequences computed from the virus database. By doing so, the
false-positive rate will obviously decrease.

4.5 Autograph

Overview

Input : Traffic coming into a network.
Output : Signatures suitable for use in Bro [7].
System/Algorithm based on [29].

Input

Input to the Autograph system consists of all traffic, which comes into a network.

Signature Generation Mechanism

The Autograph system resides at the edge of a network and monitors all traffic coming into the
network. If some external host attempts to reach non existing targets in the network more than
s times, it is marked by the autograph system as a scanner and stored in a scanner-list. If a
scanner finally connects to an existing host in the network, all traffic from it will be stored in a
so-called suspicious flow pool. After a certain period of time, scanners are deleted from the
scanner-list and packets in the suspicious pool as well, in order to ensure freshness of packets.
All TCP flows in the suspicious flow pool are reassembled and each flow is grouped by the
destination port. For each destination port, if a certain threshold number of flows are reached,
the signature generation phase starts.

In the signature generation phase, all flow payloads are partitioned into variable-length content
blocks. This is done using a method called content-based payload partitioning (COPP) [31]. To
chop flows into content blocks, COPP slides a window of k-bytes over the flow content, one
byte at a time. For each observed sliding window, a Rabin fingerprint is computed [32]. The
COPP method uses a predefined break marker and a configurable average content block size.
Whenever the Rabin fingerprint of a sliding window is equal to the break marker modulo the
average content block size, a content block ends at that position.

Using COPP, all flows are chopped into content blocks. Such content blocks, which only appear
in flows coming from a single IP address, are discarded. The idea behind this step is that these
content blocks correspond to badly configured sources, which are not malicious. Afterwards,
the frequency of all remaining content blocks is computed. The content block which was found
in most flows is selected as a signature. Then all flows, where the selected content block was
found, are deleted. For the remaining flows, the content block, which occurs in most flows is
selected as a signature. This process continues, until the set of flows shrinks to a configurable
fraction of the original flow count.

The signatures found in the last step are converted into a format, which is suitable for use in
Bro [7]. Also a distributed version of the signature generation mechanism is proposed, where

22 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

an IP address list of scanners is shared among autograph systems [29], which should lead to
faster signature generation.

Output

The output of Autograph consists of strings, which are converted into the Bro signature format.

Evaluation

The authors of the system propose that the classification of the suspicious traffic could also
be done using other methods like honeypots. In this case only minor changes are needed
to the presented algorithm, in order to be deployed in a honeypot environment for signature
generation.

This system has some problems concerning performance: The flow reassembly is an expensive
operation [7], which is excessively used when a worm is spreading. So the system needs
enough spare hardware such that it does not become a voluntary target of a DoS attack at the
time when it is mostly needed.

The COPP method, which is used to chop flows into content blocks, is more suitable for
computation of prevalent content blocks than other methods that divide flow contents into
fixed-size, non-overlapping blocks [29]. The reason is that when frequencies of fixed-size,
non-overlapping blocks are computed, they can easily be evaded by a worm, which inserts
or deletes a single byte in its content. But there also exist some difficulties with the COPP
approach. As this approach uses a break marker to decide when to end a content block,
too short or too long content blocks may be generated. As too short signatures are highly
unspecific, they may lead to lots of false-alarms. On the other hand, very long signatures are
too specific, so that polymorphic worms may evade them easily by modifying a single byte. To
cope with this problem, the authors [29] define a minimum and maximum content block size. But
due to this changing of the COPP algorithm, it becomes a hybrid between the original COPP
algorithm and the algorithm, which divides flows into fixed-size, non-overlapping content blocks.
This hybrid approach also inherits the drawbacks of the algorithm that produces fixed-size,
non-overlapping content blocks, which were mentioned before.

Autograph takes into consideration that a worm consists of variant and invariant parts. The
generated signature strings have a limited size. Therefore, the generated signatures have the
potential to deal with worms that use byte reordering and those who modify variant parts of
the payload. These signatures also unveil worms using encrypted payloads, where an invariant
encryption/decryption routine is present in the payload.

4.6 Paid

Overview

Input : Source code of application, which should be protected.
Output : Deterministic finite-state automaton (DFA) of system calls.
System/Algorithm based on [49].

Input

The input for the Paid SGM is the source code of the application that the Paid system should
protect against control hijacking attacks.

4.6 Paid 23

Signature Generation Mechanism

The goal of this system is effective defence against control hijacking attacks [50]. From the
source code of an application, the system is able to automatically derive a system call behaviour
model, a deterministic finite-state automaton (DFA) for the application in question. A verifier
based on this DFA resides in the kernel, which checks each system call’s legitimacy.

The main challenge in building such a DFA lies in the elimination of non-determinism: The call
graph of an application is often a non-deterministic finite-state automaton (NFA), because of
control constructs like if-then-else. To achieve this goal, an epsilon-transition removal algorithm
is used on the NFA of the application, in order to remove non-system call edges. To remove non-
determinism related to functions, which have many call sites, a method called graph in-lining [49]
is used. On Linux, system calls must be made indirectly through system call stubs [49], which
leads to another source of non-determinism: System calls through the same stub cannot be
differentiated. This problem is solved by uniquely identifying each system call with a label. In
order to remove the remaining non-determinism, which is left over after applying these steps,
Paid has introduced a new system call named "notify". The last steps from a NFA towards a DFA
are the following: The whole NFA is visited, in order to detect non-determinism, and the points
in the NFA leading to non-determinism are marked. Then at every marked point, a notify call is
inserted to remove the non-determinism there. By performing this step, all non-determinism in
the NFA is removed, and it becomes a DFA.

Output

The output of the SGM is a DFA representing the system calls during normal execution of the
program according to its source code.
An example of such a DFA is shown in figure 4.1. The DFA of the main program is composed of
the DFAs of the functions foo and bar. The transitions are assigned unique labels, as described
above.

foo()
{

rite();
}
w

bar()
{

xec();
write();
e

{

main()
{
if(cond)
foo();

else
bar();

{

write
pc1

foo

write
pc2

bar

exec
pc3

write
pc2

main

exec
pc3

write
pc1

Figure 4.1: Example of DFA in Paid.

Evaluation

As this system generates a behaviour model for legitimate actions, no instance of the attack
worm or virus is needed for signature generation. Therefore, Paid is potentially able to detect
new worms.

A drawback of Paid is that the source code of the monitored application is needed, which is
hardly available for commercial software.

As the Paid system monitors the system call behaviour of a program, it is useless to apply any
kind of polymorphic technique on the attack payload, in order to fool Paid.

24 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

Although features like "stack integrity check" [49] and "Random Insertion of Null System
Calls" [49] have been used to improve the detection strength of Paid, it is still possible to launch
mimicry attacks [51] against this system.

4.7 PADS

Overview

Input : Network traffic captured at double-honeypot [20] system
Output :

• Anomalous signature: byte frequency distribution (BFD) [20] at each position in the signa-
ture.

• Normal signature: BFD of legitimate traffic.

System/Algorithm based on [20].

Input

A double-honeypot [20] system captures the unsolicited outbound traffic of a honeypot by redi-
recting this traffic to a second honeypot. Any unsolicited outbound traffic at a honeypot delivers
evidence that the honeypot is under control of an intruder by definition of a honeypot.

Signature Generation Mechanism

The input to the signature generation mechanism comes from a double-honeypot [20] system.
According to the design proposal, a double-honeypot system is able to separate attack traffic
from normal background traffic, which is often received by traditional honeypots [62]. Having
received a number of variants of a worm from the double-honeypot system, the signature
generation algorithm begins to generate a Position-Aware Distribution Signature (PADS), which
should have the potential to match unseen worm variants. A PADS of length w consists of
two parts, an anomalous signature and a normal signature. The anomalous signature assigns
each of the w positions in the PADS a byte frequency distribution (BFD). The normal signature
consists of a BFD of legitimate traffic.

In order to understand, how this signature is generated, the worm identification process needs
to be discussed. If a sequence is to be examined with regard to existence of a worm, a window
of length w slides over the sequence and computes a matching score for every window. This
matching score is computed with the help of the PADS signature and a given formula. If the
matching score for a window position is higher than a threshold, the sequence is assumed
carrying a worm. The position of the window with the highest matching score is called significant
region. The anomalous signature is the BFD of the significant region of all worm variants at hand
during the signature generation process. It would be easy to compute the PADS signature, if the
significant regions of the worm variants were given. This is a "missing data problem" [20]. Two
algorithms were proposed to solve this problem. The first algorithm is Expectation-Maximization
(EM) [21], which starts with assigning significant regions randomly to the given worm variants.
As a next step, the PADS signature is computed based on these significant regions. From the
obtained PADS signature, a new significant region is computed for each worm variant. This
procedure is repeated until the average matching score does not improve significantly in an
iteration step. A problem with the EM algorithm is that it may get stuck in local maxima. To
improve the EM algorithm in this regard, the Gibbs sampling algorithm [22] is used, which is
an example of simulated annealing [23]. With the selection of some random parameters, this
approach provides the opportunity to jump out of local maxima, and finally reach the global
maximum. When hopefully such a global maximum is found, the generation of the PADS ends.

4.8 PAYL 25

Output

The SGM’s output consists of a PADS. As described above, a PADS of length w consists of two
parts, an anomalous signature and a normal signature. The anomalous signature assigns to
each of the w positions in the PADS a byte frequency distribution (BFD). The normal signature
consists of a BFD of legitimate traffic.

Evaluation

The double-honeypot [20] system design seems to be superior to traditional honeypots, as it
classifies only unsolicited outbound traffic at the honeypot system as a worm. While traditional
honeypots may receive lots of benign inbound traffic [62], unsolicited outbound traffic is an
evidence that the honeypot is controlled by an intruder. But currently, the double-honeypot
system is only an architecture design, for which an implementation and evaluation needs to be
done.

In the PADS paper, the double-honeypot and the SGM is described in detail. But the paper
does not explain, how the variants of the same worm are separated from other worms.

As described in the SGM subsection, a PADS is matched against a possible worm candidate
by calculating a matching score: If this matching score is higher than a certain threshold, then
the candidate is classified as a worm. PADS is based on byte frequency distribution of the
positions in the signature. Therefore, this signature can deal with polymorphism such as minor
modification of bytes and byte reordering in both the invariant and variant part of the attack
payload.

4.8 PAYL

Overview

Input : Host inbound and outbound traffic.
Output : One or multiple strings.
System/Algorithm based on [43].

Input

The SGM in PAYL monitors a host’s inbound traffic. If some suspicious traffic is found in the
inbound traffic for port i, then PAYL takes also outbound traffic from the host with destination
port i into consideration during the signature generation process.

Signature Generation Mechanism

The PAYL anomaly detection sensor [45] computes during a training phase the "normal profile"
of a site using n-grams [44]. For a packet payload, an n-gram consists of any sequence of n con-
sequent bytes in the payload. When a new packet arrives, all possible n-grams are computed for
it and also the frequencies of these n-grams are registered. Then a formula is used to compute
the distance between arriving packets and the n-gram distribution, which was seen during the
training phase. If this distance is larger than a threshold and the incoming traffic was intended
for port i, then such packets are put into a buffer list of "suspects" for port i. Any outbound traffic
to port i, which is also detected as anomalous using the anomaly detection sensor, is compared
with this buffer. For the compared strings, a similarity score is computed based on a formula,
which requires the generation of the longest common substring (LCS) and the longest common
subsequence (LCSeq) of the two strings. If the similarity score is greater than a threshold, the
outgoing traffic is blocked. As a by-product of the correlation between inbound and outbound
traffic, a signature for the worm is generated in the form of a LCS and a LCSeq.

26 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

Output

It was suggested, that the LCS and LCSeq strings, which were generated during the SGM,
could be used as signatures.

Evaluation

Through the use of LCSeq as signatures, some polymorphic worms can also be caught. LCSeq
is robust against worm evasion efforts like insertion, deletion or reordering of bytes, which are
not related to the worm code. But if bytes, which were part of the LCSeq signature, are reordered
in a worm payload, then the LCSeq becomes useless. Both LCS and LCSeq have the potential
to detect worms, which use payload encryption, but have an invariant encryption/decryption
routine present in their payload.

4.9 Polygraph

Input : network traffic
Output :

• Conjunction signatures: set of tokens.

• Token-subsequence signatures: set of ordered tokens.

• Bayes signatures: set of tokens with assigned scores.

System/Algorithm based on [17].

Input

Polygraph monitors can be situated at the entrance link of a network, which connects the net-
work to the rest of the Internet, or at an end host. In both cases, the observed network traffic
forms the input to the SGM.

Signature Generation Mechanism

The combined use of three different signature classes is suggested in the Polygraph system,
as none of these signature classes alone is suitable for all polymorphic worms. The basic idea
behind Polygraph signatures is that some invariant bytes must be present in every instance of a
polymorphic worm so that an attack can succeed. The input for the signature generation mech-
anism comes in form of network traffic at a network edge or host. A flow classifier reassembles
the flows intended for the same port number and puts them in a suspicious flow pool respec-
tively innocuous flow pool. Polygraph does not propose any concrete flow classifier; instead any
classifier like a honeypot could be used for this purpose. Contiguous byte sequences longer
than a specified minimum length are called tokens. Tokens, which occur at least in a certain
number of flows in the suspicious pool, are collected. Afterwards, only the tokens in the flows
are left, and the rest of the payload is removed so that finally each flow is represented as a
sequence of tokens. The generation of conjunction signatures, token-subsequence signatures
and bayes signatures is presented below.

Generation of Conjunction Signatures and Token-subsequen ce Signatures

A conjunction signature is a set of tokens. A payload matches such a signature, if it contains
all tokens present in the signature in any order. Given a set of tokenized flows, a conjunction
signature can be generated by simply extracting the tokens present in all flows.

A token-subsequence signature consists of a set of ordered tokens. A flow matches such
a signature, if it contains the same set of tokens in the same order. Generating a token-
subsequence signature for a given set of flows is analogue to the problem of finding the longest

4.9 Polygraph 27

common subsequence of a set of strings. In Polygraph, an adaptation of the Smith-Waterman
algorithm [19]was used, where contiguous token-subsequences are given a higher weight than
separated token-subsequences.

In the suspicious flow pool there might be several different worm types and innocuous flows.
Producing one signature for the whole suspicious flow pool would lead to a very unspecific sig-
nature, which would finally result in lots of false positives. So the next step is to generate a set
of signatures, which together match the whole suspicious pool, but one signature matches only
one worm and possibly its variants. To achieve this goal, hierarchical clustering [18] is used, in
order to group similar flows into the same cluster. Then for each cluster, which contains a "suf-
ficient" number of flows, a conjunction signature or token-subsequence signature is generated
as described above.

Generation of Bayes Signature

A Bayes signature consists of a set of tokens with a score assigned to each of them. A flow
is matched against this signature by adding up the scores of tokens, which are present in the
flow. If the computed sum is greater than a threshold, the flow is classified as a worm.

To generate bayes signatures, the suspicious flow pool is tokenized as described before. Then
for each of these tokens, the probability is computed, that the token is present in a worm.
This probability is calculated as the fraction of flows in the suspicious pool, where the token is
present. After that, the probability for each token is computed, that it appears in some innocuous
traffic. This probability is estimated by the fraction of flows, where the token appears in the
innocuous flow pool, and a technique described in [17]. These two probabilities for each token
are inserted into a formula, which is derived form the Bayes law [17], in order to assign a score
to each token.

Output

Three signature types are generated by the Polygraph system: conjunction signatures, token-
subsequence signatures and bayes signatures. They all consist of byte sequences, called to-
kens. Conjunction signature is a set of such tokens. Token-subsequence signature consists of
a set of ordered tokens. Bayes signatures consist of a set of tokens with a score assigned to
each of them.

Evaluation

The three different classes of signatures presented in Polygraph are targeting different types
of worm behaviour. Token-subsequence signatures are more specific than conjunction signa-
tures, because of the ordering constraint. So conjunction signatures are more robust against
reordering of bytes in the worm payload than token-subsequence signatures. Both conjunction
and token-subsequence signatures are robust against deletion and insertion of bytes, which are
not part of the tokens in these signatures. As bayes signatures do not look for exact matching,
they are resilient to red herring attacks, where a worm initially includes some garbage tokens
in its payload so that these tokens are incorporated into a signature. Then after some time, the
worm stops including such garbage tokens. Such an attack would render the other two types
of signatures useless in most cases. Polygraph’s basic idea is to find invariant tokens in differ-
ent variants of a worm. Basically all three generated signatures are suitable to detect worms
that use payload encryption and have an invariant encryption/decryption routine present in their
payload.
It has been suggested by the authors that all three signatures should be used: Over time an eval-
uation of the signatures could be done to find out, which signature produces the least amount
of false positives and false negatives. The signature producing the least amount of wrong clas-
sifications could then be further deployed.

28 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

4.10 StonyBrook

Overview

Input : Network traffic.
Output : Signature based on input field length and/or distribution of characters.
System/Algorithm based on [46]2.

Input

The StonyBrook system is built for monitoring a server application. As such it sends all inbound
traffic for ports, which are used by the server application, to the SGM.

Signature Generation Mechanism

The suggested approach in this system aims to stop attacks, which are based on modification
of return or function pointers such as in buffer overflow attacks. For each protocol type being
used by a server application, a simplified specification has to be written for its message format.
The specification is then compiled and a parser is generated for this message type with help of
the Flex tool [48]. This parser produces fields according to the format specification of the input
messages.

Address-space randomization (ASR) [47] is used, in order to randomly place different parts of
the server program in the address space, such as executable code and shared libraries. If an
attacker changes a pointer through a buffer overflow attack, the new pointer will point with a high
probability to an invalid memory location. This will cause a memory exception, when the forged
pointed is dereferenced. This memory exception triggers the execution of a signal handler. In this
handler an analyzer is implemented. This analyzer first finds out, where the corrupted pointer
is located in the memory. Then it tries to locate the attack string in the input by looking for
the longest substring around the corrupted point in the address space, which matches some
string in the input. All matching strings in the input are marked. For these candidate strings, the
message type and the field they belong to in the parsed input, is determined. A signature can
then incorporate attack characteristics, such as the minimal field size needed for an attack to
succeed.

Output

The output of the SGM is a signature written in a language, which has been introduced in the
StonyBrook paper [46]. The generated signature is based on fields, which have been defined in
the specification of a message format. Furthermore, two main characteristics of an attack can
be incorporated into a signature: field size and distribution of characters.
A modified example from the StonyBrook paper [46] is presented here. In the message format
specification language, messages and sub messages are enclosed in curly braces. The first field
in every message and sub message has a special name called type. Fields have an identifier
and a value so that a field can be denoted as identifier= value. A SMTP message could have
been parsed according to its specification into fields and values as follows.

{type="DATA", data={{type="From", email_from="joe@x.net"}
{type="To", email_to="john@y.com"}
{type="Body", body="Hello there!"}}

This is a message of type DATA, which consists of a field called data. The data field further
consists of three sub messages. The first of these messages has type "From" and contains a
field with identifier "email_from" and value "joe@x.net". A signature for an attack could look as
follows.

2In [46], the authors did not give any name to the proposed algorithm; it will be called StonyBrook in this report.

4.11 Dalhousie 29

{type = "DATA"; data = {{type = "From"; email_from.size > 200}
{type="To", && non-ASCII(email_to) > 0}}}

This signature says that an input message should be dropped, if its message type is "DATA",
and it contains a field called "data", with two sub messages and the following properties: The
first sub message has type "From" and a field called "email_from" with filed size greater than
200 bytes and a second sub message of type "To" and a field called "email_to", which contains
some non-ASCII characters.

Evaluation

A new message format specification language has been proposed in [46], which allows to write
short message specifications, as non-important details can be left out.

This approach is able to cope with polymorphic worms, as long as the payload is not encrypted.
This means that byte reordering, deletion and insertion of bytes in the worm payload are not
of much use, when the characteristics of the vulnerability, such as how large a field must be to
overrun a certain buffer, is included in the signature. But the generated signature has problems
with payloads on which encoding/decoding is performed by the server application, before the
payload is copied to the vulnerable buffer. The reason for this issue is that the SGM is no
more able to find the original worm payload of a request, if different encodings are used in the
memory and the payload.

4.11 Dalhousie

Overview

Input : A database of legitimate and malicious software code.
Output : Profiles of legitimate and malicious software code represented by n-grams.
System/Algorithm based on [57]3.

Input

The input for the SGM presented in the Dalhousie paper is a database containing malicious and
benign code already classified according to their true behaviour.

Signature Generation Mechanism

Motivated by the success of the common n-gram analysis (CNG) method [58], which is used
to automatically find out the authors of some given text, an approach for generating signatures
for unseen attacks is proposed. The CNG method is based on n-grams. Given a text, n-grams
of this text are all substrings of this text of length n. The CNG method can create a profile for
a given input by creating all possible input n-grams and computing their frequencies. Only the
n-grams with the highest frequency are kept. These n-grams form a profile or signature for the
given input.

The SGM receives a database of legitimate and malicious software code as input. It separately
generates profiles for both sort of code using the CNG method, as described above. To find out,
if some given code is benign or malicious, its profile is created using the CNG method. A formula
is given, which can compute the distance between two profiles. This formula is used to measure
the distance between the profile of the given code and the legitimate/malicious profiles. The
given code is then classified as legitimate or malicious depending on the shortest distance to
the profiles.

3In [57], the authors did not give any name to the proposed algorithm; it will be called Dalhousie in this report.

30 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

Output

The output of the SGM consists of profiles for legitimate and malicious software. Each of these
profiles consists of a set of n-grams, i.e. strings of length n.

Evaluation

Today, it is not possible to generate profiles from all known malicious code, because of the huge
amount of data available. One way to solve this problem is to make a selection out of the whole
data, for instance only to consider the most current malicious code. Another issue is choosing
the set of legitimate data used as input.

As the generated signature only looks for frequency of n-grams, it is able to deal with reordering
of byte blocks. Furthermore, if n-grams are deleted from an attack payload, which is not part
of the malicious profile, the generated signature will still be able to detect the attack. But if an
attacker inserts a certain amount of such n-grams in the worm payload, which are part of the
legitimate profile, then this approach could easily be fooled by an attacker.

4.12 PISA

Overview

Input : Packets seen at some network element.
Output : Pairs of identified fields and values and additional information such as from how many
flows this signature was generated, how much bandwidth these flows consumed etc.
System/Algorithm based on [52].

Input

PISA monitors traffic at some backbone link and periodically takes some samples from the
observed traffic and forwards them to the SGM.

Signature Generation Mechanism

The PISA algorithm inspects packets at some network element, in order to generate signatures
for similar flows, which consume most part of the bandwidth. Instead of looking at all packets at
the network element, only a sample of packets is taken periodically, from which network flows
are generated. There are specified fields of interest (e.g. protocol type, IP-Address, TCP flag,
port, etc.), which are extracted from the packets. Then hierarchical clustering [53] [54] is applied
on a lattice, which consists of all distinct subsets of the given set of flows. As an exhaustive
search in the lattice is expensive [56], a randomized approach [55] is used. The goal is to find
subsets in the lattice, which have a minimum number of similar field and value pairs in common
and do contain more flows than a given threshold. When such subsets of flows, called clusters,
are found, the signature is generated by capturing similar field and value pairs and additional
information, such as in how many samples the same field pattern was seen.

Output

The generated signature consists of fields and values. An example is given below.

{(packet_size, 100), (src_port, 80), (src_addr, 11.0.0.1),
(type, tcp), (tcp_flag, Syn ack), (dest_port, 7050)}

This signature matches flows originating from a host with IP address 11.0.0.1 and source
port 80 to a host with destination port 7050, containing TCP SYN-ACK packets of size 100 bytes.

4.12 PISA 31

Together with a generated signature, also additional information is stored, such as the number
of samples, flows and packets, in which the signature was observed.

Evaluation

The goal of the algorithm is to find such flows, which consume most of the bandwidth. It is
very likely that signatures for legitimate traffic are also generated, when there is lots of similar
legitimate traffic, which is often present in peer-to-peer context. This could cause lots of false
positives.

PISA generates signatures, which are robust against polymorphic worms trying to obfuscate
their payload by reordering/insertion/deletion of bytes or use perfect encryption on the whole
payload. The reason for this robustness against polymorphism lies in the fact that PISA
signatures only depend on packet header fields.

It is clear, that signatures which only depend on packet header fields will be less specific than
those signatures, which also take some part of the worm payload into account. But also if too
few fields are considered by the PISA signature, it might become too indistinctive, rendering lots
of false positives.

32 CHAPTER 4. AUTOMATIC SIGNATURE GENERATION

Chapter 5

Classification of Automated
Signature Generation Mechanisms

In the following sections classification criteria are defined for signature generation mechanisms
(SGM) and the SGMs from Chapter 3 are classified according to these criteria.

5.1 System Location

When choosing a SGM for a system, it is important to know, where the signature generation
system will be located. For example, a system which is located at the entrance of a network is
suitable for system administrators who monitor a local area network. But companies that own
large infrastructures of the internet, such as backbone links, might use a SGM which gener-
ates signatures only by monitoring network traffic at a router or backbone link. The amount
of resources available plays a key role when choosing a SGM. A SGM relying on honeypot
technology, for instance, may only be affordable for bigger institutions, such as governments.

Parameters

attacked-host means that the system generating the signature is placed at a host, which is
connected to the internet. Therefore this host can potentially be attacked.

secure-host means, that the generation of the signature is performed on a host, which is as-
sumed to be located at a secure place. This host does not need any connection to the
internet. The main purpose of this host is to generate signatures.

network-entrance means, that the system for generating the signature is placed at the en-
trance link of a network. The host where this system is placed is neither a server, nor a
client machine.

honeypot means, that one or many honeypots are part of the system, which generates the
signature.

backbone means, that the system for generating the signature is placed at some network link
with a large amount of traffic, such as a backbone link. The host where this system is
placed is neither a server, nor a client machine.

5.2 Input

It is important to know what input a SGM requires in order to generate an attack signature. This
criterion helps deciding, which SGM one to choose. For example, if the source code of software
is required for the SGM, then this approach is not applicable in all contexts, as for commercial
products, one has hardly ever access to the source code. When looking at the input, it is also
possible to infer, how specific a generated signature is. For example, if an approach only takes a

33

34
CHAPTER 5. CLASSIFICATION OF AUTOMATED SIGNATURE GENERATI ON

MECHANISMS

database of benign and malicious programs as input and does not consider any attack instances
at all, the generated signature has to be general and unspecific.

Parameters

network-traffic means, that the SGM input consists of network traffic.

isolated-instance means, that the SGM receives an isolated attack instance. It was not speci-
fied in the related paper, how the attack was detected and isolated.

benign-db means, that the SGM input consists of a database, which contains benign software.

malicious-db means, that the SGM input consists of a database, which contains malicious
software.

source-code means, that the system requires source code of the application, for which a sig-
nature against attacks is to be generated.

5.3 Signature Output Format

Knowing the output language and the output format of a SGM can help deciding, which IDS or
SGM to use. For example a paper, which proposes a SGM that produces a signature, which
is immediately deployable in an IDS, is more likely to be used by other projects, than one that
does not generate a signature in an output format suitable for any existing IDS. There may be
researchers, who want to use new languages for describing signatures in their system. For these
people it could be interesting to know, which alternatives exist to the main-stream signature
format languages.

Parameters

Word means, that the generated signature is less or equal than 4 bytes long.

String means, that the signature consists of one single string.

Strings means, that the signature may consist of one or several strings.

Communication-DFA means, that a deterministic finite state automaton (DFA) is created,
which captures the communication between an attacker and a server. The transitions in
the DFA consist of request/response strings.

Systemcall-DFA means, that a deterministic finite state automaton for a program is created,
which captures the legitimate system call behaviour of the program in question.

Byte-score means, that the SGM output consists of bytes with assigned scores/weights.

String-score means, that the SGM output consists of strings with assigned scores/weights.

Field-length means, that the generated signature specifies a maximum length for application
protocol layer fields.

Char-distrib means, that the ASCII character distribution of the packet content is considered
in the signature, e.g. ASCII/non-ASCII characters.

Header-fields means, that TCP/IP header fields with their values are part of the signature.

Statistics means that also statistical information about the generated signature is stored along
with the signature, such as in how many flows/packets the signature was seen during the
signature generation process.

Bro means, that the SGM generates a signature suitable for the Bro [7] NIDS.

Snort means, that the SGM generates a signature suitable for the Snort [6] NIDS.

5.4 Worm Detection Mechanism 35

StonyBrook means, that the output is produced in a language, which is defined in the Stony-
Brook paper [46].

A distinction is made between what characteristic is incorporated in the signature (e.g. string,
header-field) and which output format is used for the generated signature (Bro, Snort, Stony-
Brook). These distinct parts are separated by an arrow: characteristic → output format.

5.4 Worm Detection Mechanism

In this section, a classification of the SGMs is done according to the method used for detecting
a worm. Researchers, who are looking for a SGM and are convinced that a method for detecting
a worm’s behaviour is superior to other detection methods, may find the classification presented
in this section helpful. Others for instance, who believe that scanning behaviour will not be useful
in future to detect worms, as hit-list worms are coming up, may want to know, which SGMs do
not use scanning as a criterion for detecting worms. But as some SGM could also use other
worm detection methods, one should not only rely on this criterion, when choosing a SGM.

Parameters

prevalence means, that the SGM takes advantage of the fact, that during worm spreading, the
traffic related to a worm will be prevalent in the network traffic.

scanning means, that the SGM takes advantage of the scanning characteristic of worms, in
order to detect the worm.

spreading means, that the algorithm detects a worm by exploiting its characteristic, where it
continues to infect new hosts after having infected one host.

attack means, that the worm is detected when it is attacking a host, e.g. when a worm tries to
overwrite memory locations.

anomaly means, that the worm is detected due to unusual traffic content, e.g. the byte dis-
tribution of monitored traffic deviates too much from a byte distribution of network traffic
observed during training phase.

not-specified means, that the method for detecting the worm is not explicitly specified in the
related paper.

5.5 Number of Attack Instances Required as Input

The number of instances, which are required for signature generation, is indeed an important
criterion for the usefulness of a signature generation mechanism. The more instances of an
attack are required, the more time is given to the attack for further spreading. So the most ideal
SGM would not need any instance of the attack in question, such that a signature could be
generated before the attack starts. This seems to be wishful thinking, but some SGMs have
been proposed having this characteristic.

One thing to be noted here is, that only instances of new attacks are counted, which are required
to generate signatures for the new attack in question. Therefore, even if a large database with
"other" known attacks from the past is used during signature generation, it will not appear in the
classification.

Parameters

None means, that no instance of the attack is needed by the SGM.

One means, that exactly one instance of the attack is needed for the SGM.

Several means, that more than one instance of the attack is required by the SGM.

36
CHAPTER 5. CLASSIFICATION OF AUTOMATED SIGNATURE GENERATI ON

MECHANISMS

5.6 Usage of Honeypot Technology

This classification criterion is important, particularly when looking at the fact that this work is
part of a project, which is based on honeypot technology (see Chapter 1). But this criterion
could also be useful for projects that are not using honeypot technology but relying on scanning
behaviour of worms for worm detection.

Parameters

not-used means, that no honeypot was used or proposed for the SGM.

proposed means, that the employment of honeypot technology has been proposed for the
SGM, but not used.

used means, that a honeypot was used for the SGM.

5.7 Usefulness Against Polymorphism

The degree of polymorphism that the generated signature can deal with is essential for the
usability of the SGM, as generating variants of the same attack is much easier than finding
new attacks. Most of the SGMs presented can deal with polymorphism. Knowing the degree
of polymorphism that signatures can cope with is important, because it directly reflects the
usefulness of a signature in practice.

Parameters

unqualified assumes that the attack content is not encrypted, and there exists a variant and an
invariant (e.g. encryption/decryption routine) part in the attack content. But even for this
simple case the generated signature is not able to detect any kind of polymorphism, such
as the modification of variant parts of the attack content.

variant-modification assumes that the attack content consists of a variant and invariant part. If
only the variant part of the attack content is modified by insertion, deletion or modification
of bytes, then it will be detected by the generated signature.

invariant-modification assumes that the attack content consists of a variant and an invariant
part. If such parts of the attack, which were recognized as invariant by the SGM and
incorporated into the signature, change over time, the signature is still able to detect the
attack content.

reordering means that some byte blocks of the attack payload may be reordered, but the gen-
erated signature will still be able to detect the reordered attack payload.

perfect-encryption means, that even in case of perfect encryption, where no information can
be gained from the attack content, the generated signature is still able to detect the attack.
Perfect-encryption is considered as the strongest possible polymorphism technique, which
includes all parameters mentioned above.

5.8 Quality of Generated Signature

Assume an oracle, which can classify every possible input as legitimate or malicious, without
any misclassifications. This oracle has the best possible signature deployed in it. The more a
signature’s classification defers from the one of the oracle’s, while comparing the same input,
the poorer it’s quality is.

The purpose of a signature is to have the ability to distinguish legitimate input from malicious
one. And in the end this is the most important goal. But as the generated signatures are
not perfect, different importance is given to different misclassifications. For some systems,

5.8 Quality of Generated Signature 37

false-alarms, also called false-positives, are considered more harmful, as a user would not use
an IDS [16], where a lot of benign traffic is misclassified. Other people require the opposite: No
malicious traffic should be misclassified as legitimate. They want a low false-negative rate. But
there often exists a trade-off between false-positives and false-negatives.

To present a fair evaluation of the quality of generated signatures, all signatures should classify
a representative test-set consisting of malicious and legitimate input. As the evaluation in the
proposed papers is done on different input of different size, it would be inappropriate to present
the results of those evaluations here. The quality of a signature is important and an evaluation
should be done in this area in the future, in order to get ahead towards a complete evaluation of
today’s SGMs.

Classification

In the tables 5.1, 5.2 and 5.3 a classification of all signature generation mechanisms from chap-
ter 4 is given.

38
C

H
A

P
T

E
R

5.
C

LA
S

S
IF

IC
AT

IO
N

O
F

A
U

TO
M

AT
E

D
S

IG
N

AT
U

R
E

G
E

N
E

R
AT

I
O

N
M

E
C

H
A

N
IS

M
S

- Nemean Dynamic Taint Analysis Honeycomb IBM-94
system location (5.1) honeypot and secure-host attacked-host honeypot secure-host
input (5.2) network-traffic network-traffic network-traffic isolated-instance and

benign-db
output format (5.3) communication-DFA →Broa word header-fields, string → Bro,

Snort
strings

detection mechanism (5.4) scanning attack scanning not-specified
No. of attack instances (5.5) several one several one
usage of honeypots (5.6) used proposed used not-used
polymorphism (5.7) variant-modification perfect-encryption unqualified variant-modification, reorder-

ing

Table 5.1: Classification of the automatic signature mechanisms

aNemean produces Regular Expressions which can be used in Bro through Bro policy scripts.

5.8
Q

uality
ofG

enerated
S

ignature
39

- Autograph Paid PADS PAYL
system location (5.1) network-entrance attacked-host honeypot attacked-host
input (5.2) network-traffic source-code network-traffic network-traffic
output format (5.3) strings → Bro systemcall-DFA byte-score strings
detection mechanism (5.4) scanning attack scanning and spreading spreading and anomaly
No. of attack instances (5.5) several none several one
usage of honeypots (5.6) proposed not-used used not-used
polymorphism (5.7) variant-modification,

reordering
perfect-encryption variant-modification,

invariant-modification,
reordering

variant-modification

Table 5.2: Classification of the automatic signature mechanisms

40
C

H
A

P
T

E
R

5.
C

LA
S

S
IF

IC
AT

IO
N

O
F

A
U

TO
M

AT
E

D
S

IG
N

AT
U

R
E

G
E

N
E

R
AT

I
O

N
M

E
C

H
A

N
IS

M
S

- Polygraph StonyBrook Dalhousie PISA
system location (5.1) network-entrance or

attacked-host
attacked-host attacked-host backbone

input (5.2) network-traffic network-traffic benign-db and malicious-db network-traffic
output format (5.3) strings and string-score field-length, char-distrib →

StonyBrook
score-string header-fields, statistics

detection mechanism (5.4) not-specifieda attack anomaly prevalence
no. attack instances (5.5) several oneb none several
usage of honeypots (5.6) proposed not-used not-used not-used
polymorphism (5.7) token-subsequence

signature:
variant-modification
conjunction signature:
variant-modification,
reordering
bayes signature:
variant-modification,
invariant-modification

variant-modification,
invariant-modification

reordering perfect-encryption

Table 5.3: Classification of the automatic signature mechanisms

aPolygraph did not choose any method for detecting a worm. Instead the authors of Polygraph pointed out, that any flow classifier can be used as a input to their signature generation algorithm.
bThere exists a small probability, that this SGM needs more than one attack instance.

Chapter 6

Conclusion and Outlook

6.1 Conclusion

A survey in the area of automatic attack signature generation was conducted, in order to
provide a starting point for future research. This survey had to face similar challenges and
difficulties, as most surveys, which are done for the first time in any research area. It was not
possible to find an exiting survey on this topic, although some information might be present
under different label in the literature. Key concepts were highlighted and irrelevant information
was sorted out from the gathered papers. New criteria for classifying the most relevant papers
were defined and a classification of the papers in question was made according to those criteria.

The survey identified fields of problems, such as how the quality of produced signatures could be
measured in a standardized way, which is not possible currently. Researchers of new automatic
attack signature generation methods can use this survey to find out key properties of existing
methods, with which their emerging systems will have to compete. The survey has laid a base
for future work in the area of automated attack signature generation and related research fields.

6.2 Outlook

Surveys need to be updated as time passes. New methods for automatic attack signature
generation have to be included in a future survey, as they arise. New criteria may be identified
for new signature generation methods. Furthermore, classification criteria identified in this
survey might require adaptation, as new discoveries are made. Some identified criteria in this
work might become obsolete, as new types of worms arise. Future surveys in the area of
automatic attack signature generation are provided with an initial survey here.

As mentioned in chapter 5, an evaluation framework could be built in future, to measure the
quality of the signatures produced by the different SGMs. This is important, as the final purpose
of every signature is to classify an input with as less misclassifications as possible.

41

42 CHAPTER 6. CONCLUSION AND OUTLOOK

Bibliography

[1] C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion detection signatures using
honeypots. In Proceedings of the Second Workshop on Hot Topics in Networks (HotNets-
II), November 2003.

[2] N. Provos, Honeyd - A Virtual Honeypot Daemon, in 10th DFN-CERT Workshop, Hamburg,
Germany, February 2003.

[3] E. Ukkonen, On-line construction of suffix trees, Algorithmica, no. 14, pp. 249-260, 1995.

[4] N. Provos. A Virtual Honeypot Framework. In Proceedings of the 13th USENIX Security
Symposium, pages 1.14, August 2004.

[5] R.G. Bace, Intrusion Detection, Macmillan Technical Publishing, Indianapolis, USA, 2000.

[6] M. Roesch, Snort: Lightweight Intrusion Detection for Networks, in Proceedings of the 13th
Conference on Systems Administration, 1999, pp. 229-238.

[7] V. Paxson, Bro: A System for Detecting Network Intruders in Real-Time, Computer Net-
works (Amsterdam, Netherlands: 1999), vol. 31, no. 23-24, pp. 2435-2463, 1998. [Online].
Available: http://citeseer.nj.nec.com/article/paxson98bro.html

[8] S. McCanne, C. Leres and V. Jacobson, libpcap, available via anonymous ftp to
ftp.ee.lbl.gov, 1994.

[9] M. Erbschloe. Computer Economics VP Research Statement to Reuters News Service,
Nov. 2001.

[10] D. Moore, C. Shannon, G. Voelker, and S. Savage. Network Telescopes. Technical Report
CS2004-0795, CSE Department, UCSD, July 2004.

[11] J. Newsome and D. Dong. Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In The 12th Annual Network and
Distributed System Security Symposium, February 2005.

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point- Guard: Protecting pointers from
buffer overflow vulnerabilities. In 12th USENIX Security Symposium, 2003.

[13] N. Nethercote and J. Seward. Valgrind: A program supervision framework. In Proceedings
of the Third Workshop on Runtime Verification (RV’03), Boulder, Colorado, USA, July 2003.

[14] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shepherding.
In Proceedings of the 11th USENIX Security Symposium, August 2002.

[15] P. Szor. Hunting for metamorphic. In Virus Bulletin Conference, 2001.

[16] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical Report 99-15,
Department of Computer Engineering, Chalmers University, March 2000.

[17] 12] J. Newsome, B. Karp, D. Song, Polygraph: automatically generating signatures for poly-
morphic worms, Proceedings of the IEEE sysmposium on security and privacy, 2005.

[18] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
1997.

43

44 BIBLIOGRAPHY

[19] T. Smith and M.Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195-197, 1981.

[20] Yong Tang, Shigang Chen, Defending Against Internet Worms: A Signature-Based Ap-
proach, in Proc. of IEEE INFOCOM’05, Miami, Florida, USA, May 2005.

[21] C. E. Lawrence and A. A. Reilly, An Expectation Maximization (EM) Algorithm for the Identi-
fication and Characterization of Common Sites in Unaligned Biopolymer Sequences, PRO-
TEINS: Structure, Function and Genetics, vol. 7, pp. 41-51, 1990

[22] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton,
Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment,
Science, vol. 262, pp. 208-214, Oct. 1993.

[23] S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distribution, and the Bayesian
Restoration of Images, IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 721-741, 1984.

[24] Giovanni Vigna and Richard A. Kemmerer. NetSTAT: A Network-based Intrusion Detection
System. In 14th Annual Computer Security Applications Conference, December 1998.

[25] Laurent Eschenauer. Imsafe. http://imsafe.sourceforge.net, 2001

Parminder Chhabra, Ajita John, Huzur Saran: PISA: Automatic Extraction of Traffic Signa-
tures. NETWORKING 2005: 730-742

[26] CERT, Nimda Worm. CERT Advisory CA- 2001-26, Sept, 2001.

[27] Paul Boutin, Slammed! An inside view of the worm that crashed the Internet in 15 minutes.
http://www.wired.com/wired/archive/11.07/slammer.html. July 2003.

[28] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N. Weaver,
The Spread of the Sapphire/Slammer Worm. Technical report, Feb 2003,
http://www.cs.berkeley.edu/ nweaver/sapphire/

[29] Hyang-Ah Kim, Brad Karp, Autograph: Toward Automated, Distributed Worm Signature
Detection, USENIX Security Symposium, to appear, 2004.

[30] LEMOS, R. Counting the Cost of Slammer. CNET news.com. http: //news.com.com/2100-
1001-982955.html, Jan. 2003.

[31] MUTHITACHAROEN, A., CHEN, B., AND MAZI ‘E RES, D. A Lowbandwidth Network File
System. In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP 2001) (Oct. 2001).

[32] RABIN, M. O. Fingerprinting by Random Polynomials. Tech. Rep. TR-15-81, Center for
Research in Computing Technology, Harvard University, 1981.

[33] White Paper, The Science of Intrusion Detection System: Attack Identification, Cisco Sys-
tems, Inc.
Available from http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/prodlit/idssa_wp.htm

[34] Sundaram, A. 1996. An introduction to intrusion detection. ACM Crossroads-Special
Issue on Computer Security, 2(4). Available from http://www.acm.org/crossroads/xrds2-
4/intrus.html

[35] Sandeep Kumar. Classification and Detection of Computer Intrusions. Ph.D. Dissertation,
August 1995.

[36] Henry S Teng, Kaihu Chen and Stephen C Lu. Security Audit Trail Analysis Using Induc-
tively Generated Predictive Rules. In Proceedings of the 11th National Conference on Ar-
tificial Intelligence Applications, pages 24-29, IEEE, IEEE Service Center, Piscataway, NJ,
March 1990.

[37] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture for generating
semantic-aware signatures. Technical Report 1507, University of Wiscsonsin, 2004.
http://www.cs.wisc.edu/˜vinod/nemean-tr.pdf

BIBLIOGRAPHY 45

[38] Javed Aslam, Katya Pelekhov, and Daniela Rus. A practical clustering algorithm for static
and dynamic information organization. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), Baltimore, Maryland, January 1999.

[39] The Honeynet project. http://project.honeynet.org, April 2004.

[40] Jon Patrick, Anand Raman, and P. Andreae. A Beam Search Algorithm for PFSA Inference,
pages 121-129. Springer-Verlag London Ltd, 1 edition, 1998.

[41] Thomas Ptacek and Timothy Newsham. Insertion, evasion and denial of service: Eluding
network intrusion detection. Technical report, Secure Networks, January 1998.

[42] Anand V. Raman and Jon D. Patrick. The sk-strings method for inferring PFSA. In 14th
International Conference on Machine Learning (ICML97), Nashville, Tennessee, July 1997.

[43] K. Wang, G. Cretu, S. Stolfo. Anomalous Payload-based Worm Detection and Signature
Generation, submitted to Usenix Security 2005

[44] M. Damashek. Gauging similarity with n-grams: language independent categorization of
text. Science, 267(5199):843–848, 1995

[45] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection, in Proceed-
ings of Recent Advance in Intrusion Detection (RAID), Sept. 2004.

[46] Zhenkai Liang and R. Sekar. Automated, Sub-second Attack Signature Generation: A Basis
for Building Self-Protecting Servers. To appear in 12th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, November 2005

[47] The pax team. http://pax.grsecurity.net.

[48] http://www.gnu.org/software/flex/

[49] Lap-Chung Lam, Tzi-cker Chiueh. Automatic Extraction of Accurate Application-Specific
Sandboxing Policy. RAID 2004: 1-20

[50] CERT Corrdingation Center. Cert summary cs-2003-01. http://www.cert.org/summaries/,
2003.

[51] D.Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security, Novem-
ber 2002.

[52] Parminder Chhabra, Ajita John, Huzur Saran: PISA: Automatic Extraction of Traffic Signa-
tures. NETWORKING 2005: 730-742

[53] R. O. Duda and P. E. Hard. Pattern Classification and Scene Analysis. Wiley-Interscience,
NY, 1973.

[54] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, New Jersey,
1988.

[55] H. V. Jagadish, J. Madar, and R.T. Ng, Semantic Compression and Pattern Extraction with
Fascicles, Proceedings of 25th VLDB, pp. 186-198, 1999

[56] H. Mannila and H. Toivonen. Level Wise search and borders of theories in knowledge
discovery, Data Mining and Knowledge Discovery, 1,3, pp 241-258.

[57] Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. Detection of New Ma-
licious Code Using N-gram Signatures. In Proceedings of the Second Annual Conference
on Privacy, Security, and Trust (PST’04), Fredericton, New Brunswick, Canada, October
2004.

[58] V. Keselj, F. Peng, N. Cercone, and C. Thomas. 2003. N-gram-based Author Profiles for
Authorship Attribution. In Proceedings of the Conference Pacific Association for Computa-
tional Linguistics, PACLING’03, Dalhousie University, Halifax, Nova Scotia, Canada.

46 BIBLIOGRAPHY

[59] Konstantin Rozinov, Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus,
6th Annual IEEE Information Assurance Workshop, United States Military Academy, West
Point, NY, June 2005. http://rozinov.sfs.poly.edu/papers/bagle_analysis_v.1.0.pdf

[60] J.O. Kephart and W.C. Arnold. Automatic extraction of computer virus signatures. In Pro-
ceedings of the Fourth International Virus Bulletin Conference, 179-194. Virus Bulletin Ltd.,
1994.

[61] http://www.fp6-noah.org/

[62] Patrick Diebold, Andreas Hess, Günter Schäfer, A Honeypot Architecture for Detecting and
Analyzing Unknown Network Attacks. KiVS 2005: 245-255

[63] S. Staniford, V. Paxson, and N. Weaver, How to 0wn the Internet in Your Spare Time, in
Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, Aug. 2002.

[64] http://www-nrg.ee.lbl.gov/bro-info.html, June 2005

[65] http://www.clark.net/˜roesch/

Copyright 2005 by Rashid Waraich

