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Abstract

In this thesis, we collect information about known attacks on P2P networks. We
try to classify them as well as study the different possible defense mechanisms.
As a case study, we take Freenet, a third generation P2P system, which we
deeply analyze, including simulating possible behaviors and reactions. Finally,
we draw several conclusions about what should be avoided when designing P2P
applications and give a new possible approach to making a P2P application as
resilient as possible to malicious users.
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Chapter 1

Introduction

1.1 Peer-to-Peer Network Definition

Throughout this thesis we will study peer-to-peer networks, henceforth we will
use the acronym P2P. A P2P network is a network that relies on computing
power of it’s clients rather than in the network itself [1]. This means the clients
(peers) will do the necessary operations to keep the network going rather than
a central server. Of course, there are different levels of peer-to-peer networking:

• Hybrid P2P: There is a central server which keeps information about
the network. The peers are responsible for storing the information. If they
want to contact another peer, they query the server for the address.

• Pure P2P: There is absolutely no central server or router. Each peer
acts as client and server at the same time. This is also sometimes referred
to as “serverless” P2P.

• Mixed P2P: Between “hybrid” and “pure” P2P networks. An example
of such a network is Gnutella which has no central server but clusters its
nodes around so-called “supernodes”.

1.2 Historical

Although P2P networking has existed for quite some time, it has only been
popularized recently and will probably be subject to even bigger revolutions in
the near future.
Napster was the first P2P application which really took off. The way it worked
was quite simple: a server indexed all the files each user had. When a client
queried Napster for a file, the central server would answer with a list of all in-
dexed clients who already possessed the file.
Napster-like networks are known now as first generation networks. Such net-
works didn’t have a complicated implementation and often relied on a central
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server (hybrid P2P). The central server model makes sense for many reasons:
it is an efficient way to handle searches and allows to retain control over the
network. However, it also means there is a single point of failure. When lawyers
decided Napster should be shut down, all they had to do was to disconnect the
server.
Gnutella was the second major P2P network. After Napster’s demise, the cre-
ators of Gnutella wanted to create a decentralized network, one that could not
be shut down by simply turning off a server. At first the model did not scale
because of bottlenecks created whilst searching for files. FastTrack solved this
problem by rendering some nodes more capable than others. Such networks
are now known as second generation networks and are the most widely used
nowadays [1].
Third generation networks are the new emerging P2P networks. They are
a response to the legal attention P2P networks have been receiving for a few
years and have built-in anonymity features. They have not yet reached the mass
usage main second generation networks currently endure but this could change
shortly. Freenet is a good example of a third generation P2P network, that is
the reason why we will study it more deeply during this thesis.

1.3 Future and Vulnerability

Some futurists believe P2P networks will trigger a revolution in the near future.
The ease of use, the huge choice and finally the low price (often free) have been
the main reason for the explosion of file-sharing applications over the past years.
Add to this the fact that internet connection speeds are steadily increasing, the
arrival of newer faster algorithms (Caltech’s FAST algorithm was clocked 6,000
times faster than the internet’s current protocol) as well as the incapacity to
control or monitor such networks. This P2P revolution simply means huge
quantities of data will be available almost instantly to anybody for free.
This, of course, is disturbing news for many industries (music, movie, game...)
as P2P networks provide an alternative way of acquiring many copyrighted
products. These industries have very actively been waging war against “digital
piracy” for a decade soon. The results of this war are controversial but as P2P
networks have never stopped growing during this period of time, it is acceptable
to think that they will steadily grow on and gain even more importance in the
future. I encourage interested readers to consult Scott Jensen’s white paper [3]
on the subject.

1.4 Thesis Organisation

This thesis will now be organised in 4 main sections:

1 First, we will look at several vulnerabilities or attacks found in general
networks.
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2 We will then look at more specific attacks specially designed for P2P
networks.

After these two analysis, we will try to draw some first conclusions. We will
then proceed to our case study: Freenet.

3 We will thoroughly describe the Freenet structure.

4 Finally, we will try to find potential weaknesses in Freenet and ways to
improve them.

After this we will draw our final conclusions and explore possible new directions.
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Chapter 2

General Attacks and

Defences

2.1 DOS Attacks

A Denial-Of-Service attack is an attack on a computer or a network that causes
the loss of a service [1]. There exist many forms or methods to perpetrate a
DOS attack. In the case of P2P networks, the most common form of a DOS
attack is an attempt to flood the network with bogus packets, thereby preventing
legitimate network traffic. Another method is to drown the victim in fastidious
computation so that it is to busy to do answer any other queries.
DOS attacks are far more efficient if multiple hosts are involved in the attack,
we then speak of a DDOS attack (distributed denial-of-service) [14]. In a DDOS
attack, the attacking computers are often personal computers with broadband
connections that have been comprimised by a virus or trojan. The perpetrator
can then remotely control these machines (qualified as zombies or slaves) and
direct an attack at any host or network.
Finally, a DDOS attack can be even further amplified by using uncompromised
hosts as amplifiers. The zombies send requests to the uncompromised hosts and
spoof the zombies’ IP addresses to the victim’s IP. When the uncompromised
hosts respond, they will send the answering packets to the victim. This is known
as a reflection attack.

2.1.1 Defenses

The first problem is detecting a DOS attack as it can be mistaken with a heavy
utilization of the machine. DDOS attacks using reflection are extremely hard to
block due to the enormous number and diversity of machines a malicious user
can involve in the attack (virtually any machine can be turned into a zombie).
In addition, as the attacker is often only indirectly involved (he attacks through
the zombies and the reflective network), it is often impossible to identify the
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Figure 2.1: A DDOS attack: The attacker sends the order to the computers he
personally controls (masters) which then forward it to the zombies, which DOS
as many machines as possible and spoof their IP to be the victim’s, who will
receive all the replies.

source of the attack. Because of these factors, there exists no general way of
blocking DOS attacks.
A widely used technique to hinder DOS attacks is “pricing”. The host will
submit puzzles to his clients before continuing the requested computation, thus
ensuring that the clients go through an equally expensive computation. DOS
attacks are most efficient when the attacker consumes most of his victim’s re-
sources whilst investing very few resources himself. If each attempt to flood his
victim results in him having to solve a puzzle beforehand, it becomes more diffi-
cult to launch a successful DOS attack. “Pricing” can be modified so that when
the host perceives to be under an attack, it gives out more expensive puzzles,
and therefore reduces the effect of the attack. Although this method is effective
against a small number of simultaneous attackers, it more or less fails against
very distributed attacks. Other drawbacks are that some legitimate clients, such
as mobile devices, might perceive puzzles too hard and/or would waste limited
battery power to them.

2.2 Man-in-the-middle Attack

In a man-in-the-middle attack, the attacker inserts himself undetected between
two nodes. He can then choose to stay undetected and spy on the communi-
cation or more actively manipulate the communication. He can achieve this
by inserting, dropping or retransmitting previous messages in the data stream.
Man-in-the-middle attacks can thus achieve a variety of goals, depending on the
protocol. In many cases it is identity spoofing or dispatching false information.
Man-in-the-middle attacks are a nightmare in most protocols (especially when
there is a form of authentication). Fortunately, they are less interesting in P2P
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networks. All the nodes have the same “clearance” and the traffic’s content is
shared anyway which makes identity spoofing useless. If the P2P application
supports different clearances between nodes, then the implications of man-in-
the-middle attacks would depend on the protocol itself. Possible attacks could
be spreading polluted files on behalf of trusted entities or broadcasting on behalf
of a supernode.

2.2.1 Defenses

Without a central trusted authority, which generally do not exist in P2P net-
works, it is not possible to detect a man-in-the-middle attack. Nodes have
no information about their neighbors and have no way of being able to identify
them later with certainty. Fortunately, as man-in-the-middle attacks are mostly
useless in P2P networks, this is not very alarming news.

2.3 Worm Propagation

Worms already pose one of the biggest threats to the internet. Currently, worms
such as Code Red or Nimda are capable of infecting hundreds of thousands of
hosts within hours and no doubt that better engineered worms would be able
to infect to reach the same result in a matter of seconds. Worms propagating
through P2P applications would be disastrous: it is probably the most serious
threat.
There are several factors which make P2P networks attractive for worms [13]:

• P2P networks are composed by computers all running the same software.
An attacker can thus compromise the entire network by finding only one
exploitable security hole.

• P2P nodes tend to interconnect with many different nodes. Indeed a
worm running on the P2P application would no longer loose precious time
scanning for other victims. It would simply have to fetch the list of the
victim’s neighboring nodes and spread on.

• P2P applications are used to transfer large files. Some worms have to
limit their size in order to hold in one TCP packet. This problem would
not be encountered in P2P worms and they could thus implement more
complicated behaviors.

• The protocols are generally not viewed as mainstream and hence receive
less attention from intrusion detection systems.

• P2P programs often run on personal computers rather than servers. It is
thus more likely for an attacker to have access to sensitive files such as
credit card numbers, passwords or address books.

• P2P users often transfer illegal content (copyrighted music, pornography
...) and may be less inclined to report an unusual behavior of the system.
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• The final and probably most juicy quality P2P networks possess is their
potentially immense size.

Once worms finish propagating, their goal is usually to launch massive DDOS
attacks (W32/Generic.worm!P2P, W32.SillyP2P, ...) against political or com-
mercial targets (whitehouse.gov, microsoft.com, ...).

2.3.1 Defenses

Before considering any technical defense, there must be a sensitization of P2P
users. Leaving a personal computer unattended without a complete firewall and
anti-virus on a broadband internet connection is begging for trouble. Blaster,
for example, exploited a vulnerability 5 days after it was made public by Mi-
crosoft with a “Security Update” that fixed it.
A solution would be for P2P software developers not to write any bugged soft-
ware! Perhaps that is a far fetched goal, but it would be better to favor strongly
typed languages such as Java or C# instead of C or C++, where buffer over-
flows are much easier to compute.
Another interesting observation is that hybrid P2P systems have a vulnerabil-
ity pure P2P systems do not. By making some nodes more special then others
(for example better connectivity for Gnutella’s supernodes) the attacker has the
possibility to target these strategic nodes first in order to spread the worm more
efficiently later on. Pure P2P does not offer such targets as all nodes have the
same “importance”.
Finally, it is interesting to note the operating system developers are also offer-
ing some solutions. OpenBSD’s 3.8 release now returns pseudo-random memory
addresses. This makes buffer overflows close to impossible as an attacker cannot
know what data segment he should overwrite [15].

2.4 The Human Factor

The human factor should always be a consideration when security is at issue.
We previously saw that the upswing P2P applications have experienced is also
due to ease of installation and use, the low cost (most of the time free) and its
great rewards. Even novice users have little difficulty using such applications
to download files that other users shared intentionally or accidentally shared on
the P2P network.
This is yet another security problem P2P applications are posing. Empowering
a user, especially a novice, to make choices regarding the accessibility of their
files is a significant risk. Because of it’s convenient and familiar look, applica-
tions such as Kazaa can cause a user to unwittingly share the contents of his
documents or even worst, his whole hard disk.
Unfortunately, novice users do not understand the implications of their inaction
with regard to security. Simply closing the application for instance isn’t enough
as most of them continue running in the background. Remarkably, millions
of P2P peers are left running unattended and vulnerable for large periods of
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time. Malicious users with intermediate hacking skills can take advantage of
such situations.
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Chapter 3

Specific P2P Attacks and

Defenses

We will consider two different planes of attack in this section: the data plane
and the control plane. Attacking the data plane means attacking the data used
by the P2P application itself, for example by poisoning it or rendering it in any
way unavailable. On the other hand, attacking the control plane means directly
attacking the functionality of the P2P application, trying to render it slower
or as inefficient as possible. This is generally done by using weaknesses in the
routing protocol. Depending on the attacker’s goal, he will choose to attack in
one plane or the other, or both.
These two planes are not completely independent. For instance by attacking
on the data plane and corrupting many files, users will tend to download more
instances of a file thus slowing down the traffic which is typically the aim of a
control plane attack. Vice versa, eclipse attacks which are in the control plane
can render data unaccessible, which is the primary objective of a data plane
attack.
The possibilities of attacks are enormous in P2P networks. Now follows an
analysis of the most common attacks as well as some appropriate defense mech-
anisms.

3.1 Rational Attacks

For P2P services to be effective, participating nodes must cooperate, but in most
scenarios a node represents a self-interested party and cooperation can neither
be expected nor enforced. A reasonable assumption is that a large fraction
of P2P nodes are rational and will attempt to maximize their consumption of
system resources while minimizing the use of their own.
For example nodes might realize that by not sharing, they save precious upload
bandwidth. In the case of copyrighted material, file sharing can have worst
outcomes. As it is illegal and quite easy for authorities to find out who is sharing
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specific files, it can lead to a very big fine. These are good enough reasons to
motivate nodes in becoming “self-interested”. If a large number of nodes are
self-interested and refuse to contribute, the system may destabilize. Successful
P2P systems must be designed to be robust against this class of failure.

3.2 File Poisoning

File poisoning attacks operate on the data plane and have become extremely
commonplace in P2P networks. The goal of this attack is to replace a file in the
network by a false one. This polluted file is of course of no use.
It has been reported [7][8][9], that the music industry have massively released
false content on P2P networks. Moreover, companies such as Overpeer1 or Ret-
snap2 publicly offer their pollution-based services to the entertainment industry
as a way for protecting copyrighted materials.
In order to attack by file poisoning, malicious nodes will falsely claim owning a
file, and upon a request will answer with a corrupt file. For a certain amount
of money, Overpeer or Retsnap will release huge amounts of fake copies of a file
on their servers. Moreover, all messages passing through malicious node can be
poisoned (similar to a man-in-the-middle attack). These factors may give the
poisoned file a high availability, making it more attractive to download the true
file.

3.2.1 Defenses

Although file poisoning attacks sound pretty dangerous, we will argue they
do not pose a threat to P2P networks [6]. The main problem is that P2P
applications are often set in the background. When a polluted file is downloaded
by a user, it stays available for a while before being inspected and cleansed. After
a period of time, all polluted files are eventually removed and the authentic
files become more available then the corrupted ones. The reason file-poisoning
attacks are still successful today are due to 3 factors:

• clients are unwilling to share (rational attack).

• corrupted files are not removed from users machines fast enough.

• users give up downloading if the download seemingly stalls.

These 3 factors each give advantage in different ways to the most available file,
which probably is the polluted file at the beginning. Simulations show these
factors tend to greatly slow down the removal of polluted files on the network.
[16]

1www.overpeer.com
2www.retsnap.info
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3.3 Sybil Attack

Sybil attacks are part of the control plane category. The idea behind this attack
is that a single malicious identity can present multiple identities, and thus gain
control over part of the network.[10]
Once this has been accomplished, the attacker can abuse the protocol in any
way possible. For instance he might gain responsibility for certain files and
choose to pollute them. If the attacker can position his identities in a strategic
way, the damage can be considerable. He might choose to continue in an eclipse
attack, or slow down the network by rerouting all queries in a wrong direction.

3.3.1 Defenses

Unfortunately, without a central trusted authority, it is not possible to con-
vincingly stop Sybil attacks [10]. Maybe carefully configured reputation-based
systems might be able to slow the attack down, but it will not do much more.
Indeed, once the attacker has legally validated a certain amount of identities,
he can validate the rest.
A good defense is to render a Sybil attack unattractive by making it impossible
to place malicious identities in strategic positions. We have already seen that
structured P2P networks are more resilient to worm propagation. For the same
reasons it is a good defense mechanism here, as an attacker will not be able to
place his identities where he wishes. Randomly dispersed malicious identities
are far less dangerous than strategically placed ones, especially if the P2P net-
work is of considerable size.
Another proposition could be to include the node’s IP in it’s identifier. A mali-
cious node would thus not be able to spoof fake identities as he would be bound
to a limited number of IPs and could be noticed and denounced if he created
more identities. Yet this solution is far from simple as other attacks are rendered
possible, such as generating fake identities for other nodes and then accusing
them of being malicious. This is why we will not consider this defense as it adds
a layer of complexity to the existing protocol whilst generating other potential
weaknesses.
Several papers propose a central trusted authority as a solution, as well as a
complicated public-private key based protocol [11]. Each node should sign his
messages, and respond to a challenge by the authority every now and then. It
is clear that an attacker simulating many identities would need enormous re-
sources in order to be able to answer all the challenges periodically submitted
to each of his identities. While this certainly tries to solve the problem, it is un-
satisfactory: this solution breaks the P2P model by reintroducing a centralized
point of failure, which can easily be attacked.
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Figure 3.1: An Eclipse Attack: the malicious nodes have separated the network
in 2 subnetworks.

3.4 Eclipse Attack

Before an attacker can launch an eclipse attack, he must gain control over a
certain amount of nodes along strategic routing paths.Once he has achieved
this, he can then separate the network in different subnetworks. Thus, if a node
wants to communicate with a node from the other subnetwork, his message must
at a certain point be routed through one of the attacker’s nodes. The attacker
thus “eclipses” each subnetwork from the other. In a way, eclipse attacks are
high-scale man-in-the-middle attacks.
An Eclipse attack can be the continuation of a Sybil attack. In this case,
the attacker will try to place his nodes on the strategic routing paths. We
argued before, that man-in-the-middle attacks don’t pose a great threat to P2P
networks. However, such a high scale attack involving strategic targeting is
very serious. The attacker can completely control a subnetwork from the other
subnetwork’s point of view.
If an attacker manages an Eclipse attack (it is not an easy attack), can attack
the network in a much more efficient manner.

• He can attack the control plane by inefficiently rerouting each message.

• He can decide to drop all messages he receives, thus completely separating
both subnetworks.

• He can attack the data plane by injecting polluted files or requesting
polluted files on behalf of a innocent nodes and hoping, these files are
cached or copied along the way.
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3.4.1 Defenses

As against man-in-the-middle attacks, very carefully chosen cryptographic pro-
tocols may be a good attempt to stop such an attack. Pricing could also help
against the Sybil attack version. The problem with such solutions is that they
constitute a serious slow-down and harm the scalability of the network.
The main defense against Eclipse attacks is simply to use a pure P2P network
model. An even better solution would be to additionally use a randomiza-
tion algorithm to determine the nodes’ location (as for example in Freenet). If
the nodes in a pure P2P network are randomly distributed, than there are no
strategic positions and an attacker can’t control his nodes’ positions. It would
be nearly impossible to separate two subnetworks from one another in such
conditions.
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Chapter 4

First conclusions

4.1 Only Pure P2P!

We have now been introduced to P2P networks and have observed most possible
attacks. So what are the first conclusions we can make at this point?
First of all, when designing a P2P network, it is of utmost importance not to
use a mixed P2P model. As soon as we enter any kind of notion of hierarchy,
we automatically present a target. If a node is more important, more trusted
or better connected than other nodes, then an attacker can use this to his ad-
vantage. This permits malicious users to attack the the network strategically,
which is far more dangerous. If there is absolutely no hierarchical structure,
then the network presents no strategic targets because of it’s uniformity.
Paper [4] studies for example the effects of super-nodes have on worm propaga-
tion in Gnutella. In Gnutella, normal nodes connect to supernodes which are
in turn connected to each other, acting as a kind of “highway”. It is shown [19]
they play a significant role in the worm propagation in the network, even with-
out being specifically targeted at the beginning. What better target to launch
a Sybil attack then such supernodes? Of course, pure P2P is much harder to
implement and also slower than the hierarchical approach: the implementation
of node querying is easy if all nodes sign in on a central server.

4.2 Reputation-based Systems

This condemnation of all hierarchical structures also makes us reject reputation-
based systems. Nodes in such systems have a “reputation” determined by all
other nodes [17]. Typically, each node will publish a list of the nodes it trusts,
making it impossible for a node to change its own reputation by itself. Before
initiating a download, a node will first check the reputation of the node it wants
to download from and then decide whether to pursue or not. In a sense, the
higher the reputation, the more importance a node has.
While this might seem like a good direction, we will argue that, as it introduces
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Figure 4.1: Gnutella supernodes.

a notion of hierarchy, this approach constitutes a weakness. The problem is
that nodes with a bigger reputation have more powers than other nodes. Other
nodes will tend to trust them more and they are able to influence other nodes’
reputation more effectively. An attacker simply needs a little patience and wait
for one of his nodes to gain sufficient trust in order to launch his attack. If
the attacker deploys many malicious nodes as it is often the case, they can give
each other a high reputation making them all trustworthy. Finally, other famous
nodes constitute strategic targets as they will be able to spread the attack for
efficiently.

4.3 Randomization

A last interesting observation is randomization (for example in the routing pro-
tocol or in the nodes’ location). Indeed, studies show that randomization has a
big impact on attacks as an attacker cannot deterministically attack the network
any longer. Unfortunately, it also considerably slows the network down. P2P
networks often have scalability problems and anything which slows performance
down is generally avoided. This is probably the main reason why randomization
is avoided in P2P networks.
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Chapter 5

Case study: Freenet

5.1 Design

Freenet is an enhanced open source implementation of the system described by
Ian Clarke’s July 1999 paper “A distributed decentralized information storage
and retrieval system” [2] and is classified as a third generation P2P application.
A first version was released in March 2000.
Freenet was designed to answer privacy and availability problems second genera-
tion applications currently experience. It was built in order to achieve following
5 requirements:

• Anonymity for both producers and consumers of information.

• Deniability for storers of information.

• Resistance to attempts of third parties to deny access to information.

• Efficient dynamic storage and routing of information.

• Decentralization of all network functions.

We will now study it in more detail to see how it manages to meet such require-
ments.

5.2 Protocol Overview

Intuitively, Freenet can be seen as a “chained” network. Like a link in a chain,
each node can only communicate with its direct neighbors. When a node wants
to query a file, it sends the message to the most promising neighbor, which
will in turn also forward it to its most promising neighbor. Once a message is
sent, a node has no way of finding out what will happen to it. It cannot tell to
which node the neighbor will in turn forward the message to, or even whether
the message is directly answered by the neighbor itself. What’s more, a node
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receiving a message cannot tell if this message originates from this neighbor or
if it is merely forwarding a message received by a previous neighbor. This is the
cornerstone idea of the Freenet architecture which guarantees anonymity.

5.3 Protocol Details

A Freenet transaction begins with a Request.Handshake message from one
node to another, specifying the desired return address of the sending node.
If the remote node is active and responding to requests, it will reply with a
Reply.Handshake specifying the protocol version number that it understands.
Handshakes are remembered for a few hours, and subsequent transactions be-
tween the same nodes during this time may omit this step.
All messages contain a randomly-generated 64-bit transaction ID, a hops-to-live
limit, and a depth counter. Although the ID cannot be guaranteed to be unique,
the likelihood of a collision occurring during the transaction lifetime among the
limited set of nodes that it sees is extremely low. Hops-to-live is set by the
originator of a message and is decremented at each hop to prevent messages
being forwarded indefinitely. To reduce the information that an attacker can
obtain from the hops-to-live value, messages do not automatically terminate af-
ter the hops-to-live expires but are forwarded on with finite probability. Depth
is incremented at each hop and is used by a replying node to set hops-to-live
high enough to reach a requester. Requesters should initialize it to a small ran-
dom value to obscure their location. As with hops-to-live, a depth of 1 is not
automatically incremented but is passed unchanged with finite probability. [2]

5.3.1 Keys

There are two main varieties of keys in use on Freenet, the Content Hash Key
(CHK) and the Signed Subspace Key (SSK).
A CHK is an SHA-1 hash of a document and a node can thus check that the
document returned is correct by hashing it and checking the digest against the
key. This key contains the meat of the data on Freenet. It carries all the binary
data building blocks for the content to be delivered to the client for reassem-
bly and decryption. The CHK is unique by nature and provides tamperproof
content. A hostile node altering the data under a CHK will immediately be
detected by the next node or the client. CHKs also reduce the redundancy of
data since the same data will have the same CHK.
SSKs are based on public-key cryptography. Documents inserted under SSKs
are signed by the inserter, and this signature can be verified by every node to
ensure that the data is not tampered with. SSKs can be used to establish a
verifiable pseudonymous identity on Freenet, and allow for documents to be up-
dated securely by the person who inserted them. A subtype of the SSK is the
Keyword Signed Key, or KSK, in which the key pair is generated in a standard
way from a simple human-readable string. Inserting a document using a KSK
allows the document to be retrieved and decrypted if and only if the requester
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Figure 5.1: A typical request operation: note that request 6 fails because a node
will refuse a data request which has already been seen.

knows the human-readable string; this allows for more convenient (but less se-
cure) URIs for users to refer to.
All files are then encrypted using the descriptive string, which the user must
publish in order for other clients to be able to decrypt the file. This is done for
legal or political reasons alone. It may be preferable for a node not to know
what it is storing as all it has is encrypted data and a hash key. This acts as a
legal or political immunity.

5.3.2 Retrieving Data

In order to retrieve data, the user must first calculate it’s hash. The user then
sends a request to his own node specifying the hash and also a TTL for the
request.
When a node receives a request, it first checks it’s own datastore to see if it
already has the data. If not, it looks up the closest key in it’s routing table
and sends the request to the corresponding node. If that request is ultimately
successful and returns with the data, the node will pass the data back to the
requester, cache the file in its own datastore and create a new entry in its rout-
ing table associating the actual data source with the requested key.
If a node cannot forward the request to its preferred node, it then forwards the
request to the second nearest and so on. If a node runs out of candidates to try,
it reports failure back.
The request thus operates as a steepest-ascent hill-climbing search with back-
tracking. If the hops-to-live is exceeded, a failure is propagated back. These
mechanisms have a number of effects and should improve routing over time for
two reasons. First, it will lead nodes to specialize in locating sets of similar
keys. If a node is listed in a routing table under a particular key, it will tend to
receive mostly requests for key similar to that key. It should therefore gain “ex-
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perience” in answering those queries and become better informed in its routing
tables about which other nodes carry those keys. Second, nodes should become
similarly specialized in storing clusters of files having similar keys. Because
forwarding a request will ultimately lead in the node gaining a copy of the re-
quested file, and most requests will be for similar keys. Taken together, these
two effects lead to a specialization of each node for the key field he will be most
asked about.
Another effect is that successful nodes will be more inserted in routing tables,
and will thus be contacted more often than other less active nodes.
Since the keys are derived from hashes, lexicographic closeness of the files doesn’t
imply any closeness of the hashes. So yet another effect is that the data should
be well distributed among the nodes, lessening the possibility of a node storing
all the data on a given subject or philosophy.
Finally, it should be noted that Freenet communicates in a chain-like sort of
way. A node receives request only from it’s neighbors and forwards such re-
quests again to it’s neighbors. It has no clue of the source or destination of the
request. Not even the node immediately after the sender can tell whether its
predecessor was the messages’s originator or was merely forwarding the message
of an other node. Similarly, the node immediately before the receiver can’t tell
whether its successor is the true recipient or will continue to forward it. This
arrangement is intended to protect information consumers and producers. By
protecting the latter it makes it difficult for an adversary to locate holders of a
specific file in order to attack them.

5.3.3 Storing Data

Inserts follow the same strategy as requests. The user first calculates the hash of
the file and contact its node with the hash as well as a TTL. The nodes will pass
on the “insert request” just as before. If the hops-to-live limit is reached without
a key collision being detected, an “all clear” result will be propagated back to the
origin inserter. The user then sends the data, which is then propagated along
the path established by the initial query. Each node along the path creates a
new entry in its routing table with the inserter as data source (although some
nodes might choose to select themselves or another node as source).
This mechanism has three effects. First, newly inserted files are placed on nodes
already possessing similar keys. This reinforces the clustering of keys established
in the request-mechanism. Second, inserts can be a mean to signify the existence
of new nodes. Finally, attackers trying to supplant existing files by inserting
junk files under existing keys are likely to simply spread the real files further,
since the originals are propagated on collision.

5.3.4 Managing Data

Data is managed as an LRU (Least Recently Used), this means that eventually
data can no longer be available on the network if all nodes decide to drop it.
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In this Freenet differs from other systems (Eternity, Free Haven) which seek to
provide lifetime guarantees for files.

5.3.5 Adding Nodes

If would be a security problem if a new node could choose his routing key by
himself. This rules out the most straightforward approach.
Once a node connects to the network, it sends a request with a certain TTL and
sends it to a neighboring node. Each node receiving such a request computes
a random hash key and sends the request to a random node until the TTL is
reached. All nodes then commit their hash key. All hashes are then XORed
and the result is the new node’s hash. This yields a random key which cannot
be influenced by a malicious participant. Each node then adds an entry for the
new node in its routing table under that key.

5.4 Facts

A P2P network is said to be scalable if the performance of the network does not
deteriorate even for very large network sizes. The scalability of Freenet is being
evaluated, but similar architectures have been shown to scale logarithmically.
An analysis of Freenet files conducted in the year 2000 claims that the top 3
types of files contained in Freenet were text (37%), audio (21%), and images
(14%). 59% of all the text files were drug-related, 71% of all audio files were rock
music, and 89% of all images were pornographic. It is important to note the
fundamental design of Freenet makes accurate analysis of its content difficult.
This analysis was done several years ago from within the United States, and the
network has been vastly changed and expanded since it was published.

5.5 Attacks

As we have just seen, Freenet seems resilient to many attacks. The files are dis-
tributed across the network with little or no control from the users, all data is
encrypted and there exists a signing mechanism. Users cannot effectively mon-
itor their neighbors which creates a very strong anonymous structure. Finally
the file-request or file-insert queries are done in a very sensible manner, which
prevents effective query-flooding DOS attacks against the network (such as in
Gnutella).
Nevertheless, we will now analyze a few possible attacks.

5.5.1 DOS Attack I

The most straightforward attack is to fill the storage space with junk data.
There are two ways to achieve this, either to request the junk data from another
malicious node or directly inserting it in the network. During the attack, the
network is heavily used to upload and transfer the data. There are good chances,
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that other users will attempt to download parts of this useless data and by doing
so, waste time and bandwidth. Finally, if this attack managed to fill all of the
network’s storage space, no-one would be able to share any new files. Most users
are easily discouraged and would quickly leave the P2P application after such
problems.
This junk data would generally not be able to replace the real data as the real
data is spread on collision. Nevertheless, by inserting the junk data with low
TTLs (i.e. minimizing the collision possibilities) or giving it to offline nodes,
the attacker could manage to create more bogus copies than original copies. In
which case the junk data could replace the original data if KSKs are used (this
is not the case with CHKs or SSKs).
The first partial solution is to separate the recent data from older data. New
data should not be able to fill up space reserved for older data. This partially
solves the problem as junk data would rarely survive enough to be treated as
old data. Yet the junk data still has the potential to eliminate all other new
data as well as heavily slow the network down.
Keeping the same model in mind, we can choose to accept insertions only by
nodes we trust. The problem here is we only have the IPs to authenticate other
nodes. IPs can be spoofed and the attacker would thus insert data on behalf
of another node. A more advanced cryptographic solution would require nodes
to own public keys and sign any insertions with their key. There is no way to
publicize a public key in Freenet yet.
A last possible solution is simply to not (or only sometimes) cache data when
it is inserted. This would prevent the DOS attack by pure insertion even if it
would also probably hurt performance. The attacker also still has the possibility
to request the junk data from strategic places in order for it to be cached across
the network, although this is more tedious then pure insertion.

5.5.2 Malice and Eavesdropping

If a node unluckily contacts a malicious user to enter the network, then the
attacker can assign him the public key he wishes (using this same system, an
attacker can choose any public keys he wishes as long as he is helped by other
malicious nodes). An attacker can force a neighboring node to hold illegal ma-
terial by requesting it through him. As long as the attacker doesn’t let any
other nodes through to the unlucky node (only malicious ones), then anything
this node attempts can be monitored.
The attacker can use dictionary attacks in order to decrypt all messages en-
crypted with KSKs which pass through him (possible because in KSKs, the key
is just a hash of a seach string). By keeping track of the published keys (by
using web crawlers for example), an attacker could even hope to decrypt more
messages.
Finally, by monitoring the traffic, an attacker can gather information on the
network by logging which keys are inserted by which nodes, which keys are be-
ing requested and what data is sent by whom. As failed requests or timeouts
are sent in plain text, the attacker can also monitor these.
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5.5.3 Anonymity

By looking at the TTL of the packets which pass through him, a node can gain
knowledge on how far it is in the chain of a certain key. Although Freenet some-
times randomly increments the TTLs, this does not make them unusable. For
example if an attacker sends a request with a TTL of 1 and receives a response,
then he can be pretty certain that his neighbor is detaining the targeted file.
He can also check how much time passes before the answer returns and use this
information to make further deductions. Finally, as described previously, an
attacker can monitor all information contained in the packets passing through
him.
All this monitoring can give an attacker a good knowledge of the network sur-
rounding him, yet this is not sufficient to completely break Freenet’s anonymity.
Any node can be connected to any other node, therefore as soon as a message
is passed on to a neighbor, the attacker looses nearly all possible monitoring
options. There is only one case where an attacker can be sure that a node is
detaining a targeted file; if he has managed to surround the node with malicious
entities and doesn’t observe any outgoing messages for an ingoing request. Yet
this scenario is highly unlikely: an attacker can never be sure he has completely
surrounded a certain node unless the node connected to him in order to join the
Freenet. In that case however, the attacker already knows most of the files the
node is detaining which makes it uninteresting.
In the case that the attacker is more than just a malicious user, perhaps even a
government, then he can use additional powers to monitor the traffic across the
internet and thus might be able to follow a message to it’s destination.
We thus conclude that although an attacker can gather quite a lot of informa-
tion of the network directly surrounding him and in some cases actually man-
age to break the anonymity, in general Freenet manages to preserve it’s nodes
anonymity. Node anonymity is only broken in the case that a node initially
connects to malicious node and doesn’t use any alternative ways to connect to
a non-malicious node.

5.5.4 More-then-just-routing Attacks

If the data is not encrypted using a CHK, then a malicious user can replace
the data with junk data in every message which passes through him. Instead
of forwarding file requests to the node with the most similar public key, he can
do the contrary and redirect the requests to unadapted nodes. This would also
prevent the data from clustering properly at nodes which have a similar public
key. Another way to prevent the data from clustering properly is replace the
data sources in the return messages with the least appropriate node. This will
make other nodes contact this node later on with unadapted nodes. There is
also nothing there to prevent the attacker from sending “timeouts” or “request
failures” to any data requests he receives.
We have seen before, that successful nodes are contacted more often. In or-
der for a malicious user to attack the routing protocol efficiently, he must
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stay as well connected as possible. To achieve this, he can set himself as
data source in every message that passes through him. Yet another possi-
bility is to use web crawlers which gather any Freenet clients addresses and
initiate handshakes with these. Finally, Freenet uses a PHP script located at:
http://www.octayne.com/inform.php to publicize available Freenet nodes. As
default, when anyone starts a Freenet client, it registers itself automatically to
this PHP script. An easy way for an attacker to publicize his nodes is to write
a small script which fills “inform.php” with a list of malicious nodes. What’s
more, such a list filled with all the IPs of Freenet users constitutes a serious
threat to the anonymity of the network.
Finally, if the attacker is interested in a specific file, he can use a dictionary
attack to find keywords which generate a similar hash. By inserting these in
the network (thus setting himself as data source for these files) he can steer
future requests for the specific file he is interested in and do whatever he wishes
(answering with junk data, monitoring ...)

5.5.5 Simulation

In order to have a precise idea of which attacks are most efficient against the
Freenet structure, we decided to write a simulation of the Freenet network. The
nodes’ behavior was programmed in order to be as close to a normal Freenet
node as possible. They have limited storage space (40 files maximum), can only
connect to a limited number of neighbors and can disconnect from the network
during the simulation run. Each node receives at the beginning several files
(15 in this case) selected randomly from a global library containing 10000 dif-
ferent files who’s keys were uniformly distributed. What’s more, there is no
pre-network structure. Each node inserts himself in the network at a random
node and then proceeds to query random files. The network is thus dynamically
built during the first 5000 random queries of each run of the simulation, an ini-
tialization phase we do not consider for the results. The simulation is then tested
for an additional 1000 rounds during which all results are monitored. Messages
were given a TTL of 20 hops and could be corrupted by malicious nodes. The
simulation was run several times with 2000 good nodes and 20 malicious nodes,
the malicious nodes pretending to be good during the initialization phase.
Before discussing the results, we would like to underline the fact that simulations
can never perfectly model reality how ever precisely they were implemented. We
will therefore not use the results directly but more to get an idea of which attacks
would be most effective. Even though, the simulation proved remarkably robust
against variable changes (changing the TTLs, the storage space ...) which only
mildly affected the final result.

Results

The first runs of the simulation were done with only good nodes. The simu-
lation returned an average of 90% successes which is quite plausible. Indeed,
it is possible that a node chooses to query data which is not available on the
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Figure 5.2: The results of the simulation run on the three different malicious
strategies.

network. The other failures are due to the TTL which expired before the file
was reached.
We then tried out the first attack: all bad nodes should forward each message
to the worst possible node instead of the most qualified. This barely had an
impact, the simulation showed an average of about 80% successes. This is un-
derstandable as forwarding the message to the least qualified node is equivalent
to starting a query with a diminished TTL.
The second attack simulated was to make malicious nodes overwrite every data-
source with the worst possible data-source. The results were comparable to the
first malicious strategy, although a little more effective. The simulator indicated
an average success rate of 73%. This success rate barely changed when we dou-
bled, then trippled the number of malicious nodes.
Finally, we tried the last attack: all bad nodes should corrupt each message
which passes through them. This time, the simulation showed only 63% suc-
cess. We then decided to double the number of malicious nodes making them
40. With only 40 malicious nodes and 2000 good nodes, the simulation then
showed an average success of only 56%. It came down to a 51% success average
when we doubled the number of malicious nodes again.
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Conclusion

The simulation clearly shows Freenet is capable to adapt to the first two attacks.
Its model is flexible enough to defeat both attacks which aimed to destroy the
nodes’ specialization. Yet it is very vulnerable to the third kind of attack as
2% malicious nodes can already reduce the success rate to nearly 50%. It is
understandable that this attack is most effective. Indeed, the malicious nodes
operate as a team, passing each other as data-sources to ensure other nodes will
keep connecting to them. This way they can stay connected to the network
whilst corrupting any message passing through them. It is always impressive
to observe how much an organised few can achieve against a large group of
disorganised individuals. This is also the case in our society.
The only way to prevent this attack from being this effective is to develop a
mechanism permitting to identify and avoid malicious nodes. Yet it is unclear at
the moment how such a mechanism could be achieved in the Freenet paradigm.

5.5.6 DOS Attack II

Using the same idea as before, an attacker can DOS the owner of a specific
file. Of course, if the file is already very distributed, then the attack won’t have
much impact. We consider the case where a few nodes contain a certain file we
wish to remove from the network.
The attacker cannot drown these nodes under data request queries, as this
would only distribute the file over the network. What he can do is slightly
modify the hash and request the data corresponding to this new hash. As
the new hash is very similar to the hash of the targeted file, the requests will
also be routed to the nodes containing the specific file. The targeted node will
probably send a “request failure” back as the data probably doesn’t exist. If
this is not sufficient, the attacker can use a dictionary attack in order to find
the search string of files which hash very near to the targeted file. This has the
advantage that the targeted file will not be distributed across the network on
the return. An attacker thus has the means to target all nodes containing the
specific file, despite Freenet’s anonymity. An attacker can thus launch a DDOS
attack against these nodes in order to bring them down. [18]

5.6 Future

It seems Freenet is betting on a “Darknet” model in the near future. A Dark-
net is a private virtual network where users only connect to people they trust.
Typically such networks are small, often with fewer than 10 users each. The pro-
gram is currently undergoing a massive re-write, which changes the fundamental
way the routing takes place, deviating massively from Ian’s original paper. The
project is attempting to model a series of linked Darknets, where users only con-
nect directly to other users they know and trust. This approach emulates the
larger small world effect. This is an attempt to eliminate the scaling problems
which have plagued the project, and to improve anonymity. We don’t have the
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data or the protocol details to be able to analyze it. The release is expected for
early 2005.
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Chapter 6

Final Conclusions

6.1 Concluding Weaknesses

During this work, one general rule has manifested itself all the time. Each time
a P2P application has taken an easier path, facilitating the implementation, it
has always been used as a weapon during an attack.
Implementing first generation P2P networks (Napster) using a centralized server
is the easiest approach possible, as all the routing information is centralized. But
this also presents the easiest attack as there is a single point of failure, which
should not be the case in a distributed network.
Second generation P2P networks (such as Gnutella) went a little further in the
distributed philosophy. They removed the centralized server, but created su-
pernodes which create a kind of highway in order to facilitate the transfer of
routing information. But these hierarchy can easily be used by a malicious user
in order to spread a virus through the same network much faster.
Finally Freenet, a third generation P2P network, removed all kinds of hierarchy
as well as introducing cryptography and other more or less efficient fancy gad-
gets we saw last chapter. Yet also they lacked the courage to fully implement a
distributed network. This PHP script which keeps track of actual Freenet nodes
is an obvious vulnerability.
P2P protocols are publicly known, which also means any malicious users can
analyze them and model their attack accordingly. Anything other than pure
P2P, any model relaxation can be used against the network to make the attack
more effective.
One could argue that one could protect the impure functionalities with other se-
curity paradigms. Yet it is often the case that these newly introduced paradigms
greatly complicate the protocol without really making the protocol secure. Ei-
ther they only block part of the attack or, even worst, they permit a new kind of
attack. We saw such an example in the case of Sybil attacks, where mapping the
IP to each node enabled a new kind of attack: creating fake identities for valid
nodes and then denouncing them as malicious. In any case, these enhancements
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are far from trivial.
In order to make the network as robust as possible, it must be pure P2P. The use
of randomization would permit an even more efficient defense against malicious
users.

6.2 Our Solution

6.2.1 Observations

We will now give our version of the best possible approach to model a P2P
network. In order to do this, we will use our previous experience as well as two
further observations.
In the end, malicious nodes are programmed by individuals, so the answer to
attacks cannot be purely technical. The flexibility and unpredictability of hu-
man interactions can only be countered by other human interactions. This idea
is not new and some P2P applications try to include this interaction. But not
all kinds of interactions are good: we argued previously that reputation-based
networks weren’t a good idea because of the introduced hierarchy. Yet the fact
that a human interaction is necessary is our first observation.
The second observation is that duplicate behavior in different programs are con-
sidered a nuisance by users. If you like chatting, you probably prefer to use only
one program rather than having to download ICQ, MSN and Skype in order to
correspond with all your friends. This is even more true when using trust-based
applications. Trust is a notion which transcends the functionality you wish to
use, as long as it has the same critical level. You probably shouldn’t trust the
person who walks your dog with your lifesavings, but it is reasonable to trust
him to feed your cat or water the plants. A user who has managed to obtain
a certain degree of trust in a certain functionality, would probably like to keep
his level of trust in other resembling functionalities. Indeed, it would be very
cumbersome if one had to start over and obtain a separate degree of trust for
each different application.
These two observations lead us to the following conclusion: we need some sort
of human trust interaction and it would be best if the mechanism could be mod-
ularly used elsewhere. There is a paradigm which nearly embodies these two
observations: “web of trust” [1].

6.2.2 PGP, Web of Trust and Darknets

“Web of Trust” is implemented by PGP (Pretty Good Privacy) [1]. PGP is
an alternative way of authenticating a user. The normal way is to download
the certificate of the user and then to check with the certificate authority if the
user’s certificate is valid. Note the very hierarchical construction of this model
which is why it cannot be applied to P2P networks (as there cannot be any
central authority).
Instead, PGP removes the central authority: each user must manually sign
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which certificates he has authenticated. The interesting point is that he can
also assign a certain level of trust to the entity. There are of course, multiple
levels of trust for the model to be as accurate as possible. Once a user has
decided to trust a certain entity, then all the entity’s authenticated relations are
also authenticated to a certain extent, depending on whether this entity is also
authenticated the importance of the trust levels.
The only problem is that the meaning of “trust” is only very loosely used in this
paradigm. PGP worries solely on authenticating: binding individuals to their
public keys. The only trust used in this context is to decide to authenticate
entities already authenticated by a trusted entity. In our case, we do not care
about the physical identity of our relations, but would instead prefer to know
if he can be really be trusted (enough to accept files from). This is completely
orthogonal to the entity’s physical identity. We would like to bind a public key
to a certain level of trust.
This newly defined model is not at all the same as a reputation-based system.
In reputation-based systems, a node checks the reputation of another node by
asking all nodes what they think of this node. It thus takes a decision based
on data given by other nodes it doesn’t know it can trust in the first place. In
our “web of trust”, you would only consider nodes which you have manually
decided to trust. No number of malicious nodes can alter your decision if you
you do not trust them which is not the case in reputation-based systems. This
model permits users to build a network of more or less trusted entities: so-called
Darknets.

6.2.3 P2GP

This newly defined “web of trust” paradigm fits perfectly on P2P networks.
Our approach would thus consist of a pure P2P application mounted by an
application similar to PGP, hence the name “P2GP”. There should not be any
big implementation problems as the PGP-like application would be modularly
built. There would be numerous advantages of having such a structure.

• Before querying a certain node, the program would first use this PGP-
like application to check what degree of trust the node has. According to
the degree of trust, the user could then choose to pursue the download or
stop. The user could also set a separate trust threshold for each download:
downloading a picture of your favorite rock-star is maybe not as critical
as downloading an update for your computer.

• The user could encrypt his query using the trusted node’s public key, and
the node could answer by using the user’s public key. Such communication
would be very secure and could not be broken by using a dictionary attack
as it can be the case in Freenet.

• After connecting to any node (possibly a malicious one) the user could
then look for his trusted nodes on the network in order to use them as a
direct neighbor. To be sure of the authenticity of a trusted node, the user
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could first give it a series of cryptographic challenges only the real owner
of the trusted public key could be able to solve (i.e. returning signed
messages). This would be impossible for malicious nodes to simulate and
could prevent man-in-the-middle and certain eclipse attacks.

• Because nodes cluster in trusted networks, P2P viruses would probably
need much more time to propagate through the network. This would also
certainly prevent corrupted files or fake copies from spreading efficiently.

Yet this PGP-like application is not yet the answer to all problems, there are a
number of unanswered points such as the anonymity issue of a node. Note that
we have at this point not set any constraints to the underlying P2P application
other that it should be pure. Any kinds of technical solutions to enhance secu-
rity or address the unanswered issues could be implemented there which gives
our approach even more flexibility.

Performance

The only problem we foresee is a performance one. In the case of file sharing,
the power of P2P networks resides in the number of nodes involved. Even if the
number of nodes you trust grow exponentially to the number of directly trusted
nodes, it is not possible for a user to scan enough nodes in order to reach the
many thousand which constitute the network. This performance problem is
partially unavoidable as it is price for introducing trust. The fact that each
download could receive a different trust threshold should permit to regain part
of the performance. It is very interesting to note that this solution also seems
to be the direction Freenet is taking.

6.3 Conclusion

We have now finished our analysis of security in P2P networks. As a conclusion
we can re-express the fact that only pure P2P stand a chance against attacks,
any kind of shortcuts taken in the implementation can be turned around in
order to attack the P2P application in a more dangerous manner. We finally
observed that it would be interesting for a PGP-like application to exist. This
application should not solely worry about authenticating users (binding public
keys to physical identities) but also how much trust can be given to a public
key. If such an application existed, it could be used by P2P applications as a
very efficient protection against malicious attacks.
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