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Network Creation in P2P Systems

Yvonne Anne Oswald

September 12, 2005

Abstract

We present a game modelling the decentralized creation
of networks by selfish node agents, e.g. P2P systems. In [4],
Fabrikant et al. introduced such a game where each node
pays for the links it builds and the length of the paths to the
remaining nodes. Our game provides a different model and
takes the positions of the nodes into account. Moreover this
game offers a model for the profitable formation of links in a
peer-to-peer system. We examine the set of stable solutions
- the Nash equilibria - of this game regarding undirected
and directed links and compare them to a centrally enforced
optimum.



1 Introduction

Network design is an important problem in computer science and operations
research. This line of research typically assumes a central authority that
constructs the network and has various optimization criteria to fulfill. In
practice, however, many networks are actually formed by selfish players
who are motivated by their own interests and their own objective function.
For instance a peer-to-peer (P2P) system is formed by many players and
not by a single authority. Every player pursues the aim of being able to
route to all other players efficiently and yet to devote a small amount of
memory to storing information about them. This motivates the research of
network creation by multiple selfish players. In network settings without
coordination, each agent seeks to maximize its individual objective function
ignoring the effects of their actions to the overall performance of the network.
For this reason, the resulting networks, can be much worse than networks
designed by a central entity. To describe the consequences of this lack of
coordination, Koutsoupias and Papadimitriou introduced in [5] the term
price of anarchy, to refer to the ratio of the social cost of the worst Nash
equilibrium to the social optimum. A different approach is taken by Elliot
Anshelevich et al. in [1], where they study the quality of the best Nash
equilibrium and denote the ratio of its cost to the social optimum the price
of stability.

In this thesis we will study both the price of anarchy and the price of stability
with respect to our game and give proofs for their upper and lower bounds.
In the game-theoretic model of network creation we propose, the players
are nodes, and their strategy choices create a graph. Each node chooses a
(possibly empty) subset of the other nodes, and establishes edges to them.
The union of these sets of edges is the resulting network graph. The cost to
a node of such a strategy selection consists of two parts: the sum of the cost
of the edges laid down by this node (the number of edges times a constant
a > 0, the only parameter in this model), plus the sum of the stretches, i.e.
the shortest distance in G divided by the Euclidean distance from the node
to all others.

A scenario where no node has the incentive to deviate from its strategy is
called a Nash equilibrium and forms a stable solution of the game.

This game models scenarios in which peers wish to communicate and transfer
data. Every player wants to establish as few direct links to other players as
possible and yet have a short delay.

This thesis is organized as follows: We begin with a survey of related work in
Section 2. Section 3 introduces the model that will be used throughout this
document. Section 4 contains our results concerning the undirected case of
our game, whereas the directed case is analysed in Section 5 along with a
proof for the upper bound on the price of anarchy. We conclude our work in
Section 6, where we also give some directions for future research projects.



2 Related Work

Network design games have been studied in a wide range of models. Fab-
rikant et al. suggest in [4] a game in the context of communication networks
where nodes pay for the links they establish and benefit from short paths.
Their main focus was on analyzing the price of anarchy of the game, pre-
senting proofs for its upper and lower bound as well as the tree conjecture
stating that there exists a constant A, such that for any o > A, all non
transient Nash Equilibria are trees.

In [6], Albers et al. disprove the tree conjecture and they improve the lower
and upper bound of the price of anarchy. Additionally they study variations
of the game, which form an extension of Fabrikant et al.’s game and enable
modelling of different traffic load between players and allow players to buy
only a fraction of an edge.

In contrast to Fabrikant, where links are generated unilaterally and link cost
are carried by only one of its endpoints, Corbo and Parkes analysed in [2]
the bilateral version of the game: No edge is built unless both nodes agree on
its construction and share the connection cost. This model is better suited
for communication network design given that connection costs are typically
two sided. They observe that on average more links are created and prove
that the worst case price of anarchy of the bilateral setting is worse than for
the one-sided model and provide an upper and lower bound.

Anshelevich et al. consider in [1] a network formation game with fair cost
allocation, i.e. the cost of each edge is divided equally between the players
whose connections make use of it. In their model, nodes pay not only for
edges they form an endpoint of, but also edges they use to reach other nodes.
Anshelevich et al.’s main interest lies in the quality and the structure of the
best Nash equilibrium.

Yet another approach is taken by Eidenbenz et al. in [3], where they study
a topology game in wireless communication networks. The agents aim is to
adjust their power level to minimize their energy consumption while reaching
a transmission range large enough to stay connect with the other agents they
wish to communicate. In the paper they give upper and lower bounds on the
price of anarchy and present their results on the computational complexity
of finding Nash equilibria.

3 Model

Formally, a game in its normal form is defined as the tuple (I, S;, U;), where
1 is the set of players, S; is the set of strategies for player i € I and U; :
IL; Si = R is the utility function for player i € I.

In our model, we have a finite set of players I = 0,1,...,n — 1 denoted by
[n], of which each player is associated with a node v. The agents decide



to which nodes to build an edge, i.e. they choose a subset of V\v. Hence
S; = 2[M~% The game is fully specified once we define the utility functions.
In this report we examine the following game:

THE LOCALITY GAME:

Given a combination of strategies s = (sg,...,Sp-1) € So X -+ X Sp_1, we
consider the underlying Graph G(s) = ([n],UZ (¢ x s;)). In the locality
game the cost incurred by each player ¢ under s is defined by

¢ = als;| + Z stretchgs (4, 7),
J#

where stretchg(s)(4, ) is the shortest distance in G between i and j divided
by the Euclidean distance. Every agent attempts to minimize its cost by
building as few edges as possible and yet having short paths to all remaining
nodes.

The social cost is the sum of each player’s cost, which for any situation
where no connection is paid for twice is

C(G) = Zci =alE| + Zstretch(;(s)(i,j).
i i
Since we need at least n — 1 edges to have a connected graph and the stretch
between two nodes is at least 1, we obtain the following lower bound for the

social cost:
C(G)>aln—1)+n(n—1).

If the stretch between two nodes is greater than a + 1, one of the nodes
will construct an edge between them, thus reducing its cost by at least a.
Assuming that a node i chooses to pay for k edges, its costs are:

¢ < ak+(a+1)(n—k)+k

= a(n+1)+ke€O(a(n) +n).
Therefore the social cost is strictly less than a(}) + an(n —1).

c(G) < a(g) +an(n — 1)

3
< Ean(n —1) € O(an?).
Unlike the game suggested by Fabrikant et al. where the social optimum
for a > 2 is always a star regardless of the position of the nodes, our game
favours settings with a different connection topology. This has the advantage



that situations where one node carries the burden of forwarding everybody
else’s messages are much less likely in our model. Moreover it models more
closely networks found in reality.

Finding Nash equilibria and computing the price of anarchy is a hard prob-
lem. Not even simulating a network formation process is easy, as calculating
the best response for a node is NP-complete like in the game presented by
Fabrikant et al. Even restricting the game to a one dimensional setting
yields non trivial results. In the rest of this thesis, we will therefore focus
on the one dimensional case.

4 Undirected Locality Game

In the undirected version of this game, once an edge is built, every player
can use it in both directions. Hence only situations where one endpoint is
paying for an edge can form a Nash equilibrium.

Allowing undirected links, the lower bound for the social cost is attainable: If
we place n nodes along a line and all nodes build an edge to their neighbour
on the right, every pair of nodes is connected by a path of exactly the
distance between them, hence the stretch is always 1. In this situation
no player has an incentive to change its strategy, hence it is also a Nash
Equilibrium. Moreover this implies a price of stability of 1, regardless of the
choice of a.

0 1 i n-2 n-1
Py e~ "o~ - e o

Figure 1: Undirected: Linked list - Social Optimum and Nash equilibrium

Theorem 4.1. The social optimum in the undirected locality game is a Nash
equilibrium, namely the linked list with cost

C(G)=aln—-1)+n(n—1).

Under the condition that « is sufficiently large, a star like structure can
be a Nash Equilibrium: Consider n Nodes with distance 1 between two
neighbouring nodes. If node 7 builds an edge to all other nodes and no other
node decides to add an edge, ¢ cannot change its strategy without being
punished to infinite cost. If & > 2n — 3 no other node will build edges,
as the largest stretch between two nodes is always smaller than « and by
building an edge no stretch to other nodes is proved. If the node paying
for all n — 1 edges is the leftmost/rightmost node, the inflicted costs are
particularly high.



Figure 2: Star

Theorem 4.2. The price of anarchy of the undirected locality game is in
Qlogn) for a > 2(n —1).

Proof. To show this, we compute the social cost of the graph in Figure 2.

The cost for the node 0 is ¢y = a(n —1) + n — 1. A node at distance i to
nﬁode 0 pays > et H(;—ﬁ) for its left neighbours and Z?;ll - H(;—“) for its
right neighbours. This leads to a total sum of

n—1 1 .
4
C(star) :(Jz(n—l)+n—1+2:z:—,Z
im1j=1 7
= Ji
n—1
:a(n—1)+n—1+4ZiHi
=1

:a(n—1)+n—1+4(an_l_W)

=(n—-1)(a+2nH,—1 —n+3).

Thus the price of anarchy is at least

C(star) _ (n - 1)(0( + ann—l —n+t 3)
C(linked list) (n—1)(a+n)
_ (a+2nH,_1 —n+3)
(¢ +mn)
(¢ +2nln(n —2) —n+3)
= (+mn)
_(2n—-3+2nIn(n—2)—n+3)
(2n —3+mn)

> —In(n — 2) € Q(logn).

Wl N



5 Directed Locality Game

In contrast to the undirected case, it matters which node pays for an edge in
the directed version of the locality game. An edge can only be used in one
direction: from the node that carries the cost to another node. This game
models important characteristics of P2P systems accurately. Agents wish
to be highly connected since this improves their searches. At the same time
having few neighbours is advantageous to avoid being obliged to forward
many searches. Additionally, in P2P networks, user a¢ may know (i.e. have
an entry in its routing table) user b, who however may in turn be totally
oblivious to the fact that user a even exists. In the directed case of the
locality game we encounter a few additional difficulties and finding the social
optimum is more intricate. The social cost is

C(G) > an+n(n—1).

The equivalent to the undirected social optimum, a doubly linked list is
no longer always the social optimum in the directed version. It is however
always a Nash equilibrium since no node can delete an edge without discon-
necting nor will further edges be added as they will not decrease the stretch
between any nodes.

0 1 i n-2 n-1
® o, - e - Te ®

Figure 3: Directed: Doubly linked list

Theorem 5.1. The price of stability for the directed version of the 1-D
locality game is at most 2.

Proof. The cost for the doubly linked list is C(G) = 2(n — 1)a + n(n — 1)
from which follows a price of stability of less than

2(n—1a+n(n—-1)
na+n(n —1) =2

as the cost of the best Nash equilibrium cannot exceed the cost of the doubly
linked list.
O

To demonstrate that the doubly linked list is not always the social optimum,
it suffices to construct a strategy combination with lower costs which con-
stitutes a Nash equilibrium. Let us consider equidistant nodes with edges
from left to right between two neighbouring nodes and an edge from the



0 1 i n-2 n-1

Figure 4: Directed: circular list

rightmost node to the leftmost node. Node 0’s cost amounts to a +n — 1
whereas node i pays

n—1l—-i1+n—-1+7

1—1
Ci :a—i-n—l—i—}—z
J=0
i—1

. i
Zon—1)  j—i
catn—1-ipy 2ol T
= i 1— 7

=a+n—-1-2i+2(n—-1)H,.

The social cost for this scenario is

n—1
C(circular list) =na+n-—1+ Zn —1-2i+2(n—-1)H;
i=1
=na+2n(n—1)H, 1 —2(n —1).

The largest stretch is between node n — 2 and node n — 1, namely 2n — 3,
so for @ > 2(n — 1) the circular linked list is an equilibrium.

While the price of stability is bounded by 2, we prove in the following the-
orem that the price of anarchy is not bounded by a constant, even in the
one dimensional line! We saw in Section 3 that the social cost is in O(an?).
Hence the price of anarchy is in O(«) regardless of the distances between
the points and their number. This bound is also tight: There is an instance
which has a Nash equilibrium of cost () times the cost of the social opti-
mum.

Theorem 5.2. The price of anarchy in the directed locality game is ©(«)
for2 <a<mn.

Proof. We prove this theorem by constructing a Nash equilibrium that meets
this bound.

Let n vertices be placed as illustrated in Figure 5 forming an exponential
chain. The distance between the leftmost node and a node with an even



Node: 1 2 3 4 5 i-1 i i+1 n
Pos. o a 12 (x2 o 8 12a 4 12 a i-2 a -1 v2a

Figure 5: A Nash equilibrium of asymptotically maximal cost

number i is o', for odd numbers %ai_l. Every odd node i establishes
edges to ¢ —1 and ¢+ 2. Even nodes build an edge to their neighbour on the
right,  — 1. Hence we have a linked list from right to left and links from left

to right, omitting every other node.

We start by showing that in this scenario no nodes can deviate from its
strategy.

Lemma 5.3. This exponential chain forms a Nash equilibrium for o > 2.

Proof. We observe that no node can remove an edge nor changing one of its
edges to point to a node more to the left without disconnecting. Moreover
it cannot deviate from its strategy by choosing to link to a node further to
the right without increasing stretch. To demonstrate that this graph forms
a Nash equilibrium we therefore need to show that no node is able to gain
from building an additional edge or replace one of its existing edges.

CASE ODD NODES: We begin by arguing that no odd node can reduce its
cost by adding a link: Establishing an edge to an odd edge is futile as the
stretch between two odd nodes is 1 and cannot be improved. A link to an
even node 7, j > i would only decrease the stretch to the very node and yield
a gain of less than

Tadtl — loiml 4 2adtl —of oIl —of — LotT!

- - = - - < a,
o — %oﬂ_l od — %oﬂ_l

so it would not be built. Replacing the edge to 7 + 2 by an edge to the even
node ¢ + 3 does not help to improve the situation of 4 either: The reduction
of the stretch the directly linked node is is less than o whereas the new
stretch to 7 + 1 amounts to

ai+? Llai=14qit2 Llgi+l 4ait2 — it 4 git
%aﬂ-l,%ai—l - altl — -1
4at2 — it 4 it
aitl
1
=40 —-1—-—
0%

and cancels the savings. Moreover this edge implies an increased stretch for
all the remaining nodes, odd and even. Exchanging the edge to 7 + 2 by an

10



edge even further to the right or inserting multiple edges only deteriorates
the situation.

CASE EVEN NODES: Even nodes have also no incentive to add any further
links: By laying down an edge to its right neighbour, node 7 shortens the
distance to all nodes on the right. The benefit B; ; on the stretch to an odd
node j, 7 > 1 is

B;; = stretchyq(i,j) — stretchpew (i, 7)
_ ail = Lgi=2 4 lad=1 — Lgi=2 L

1oi—1 i—1
= — '
50 «

%aj—l + il — gi—2 %a]—l _ il

%aj—l — of-1 %aj—l — of-1
201 _ o2
= T 1 1
17 _ At
5 «
For an even node 7, the savings amount to
7
B;j = stretchoq(i,j) — stretchpes (i, j)
az—l _ az—2 + ol — a]—l ol — az—l _ a]—l
- ad—1 — gi-1 Y Y
2ai—1 _ Oéi_2

ai—1 —gt—1°

As the profit for odd nodes is greater, the savings sum up to strictly less
than

B; = > B(,j)
7>t
Qaifl_ai72

< - -
= %Q]_l — at-1

4o/~ — 2042
< B
DR

: ; 1
— i—1 _ i—2
= 22« a )Z =

Jj>i
an7i+1 _ ajfl

= 2227 —a'?) <a Va > 2.

Oz""'l —am

This shows that constructing this edge would be of no avail. Linking to an
odd edge j,j7 > i + 1 does not help either as the gain is even smaller.

11



A link to an even node j would entail a stretch of 1 to the very node instead
of

stretch(i,j) = S < .

The stretch to all other nodes on the right increases when using the new
edge, as the distance from node 7 to node ¢ + lusing the new edge is greater
than without.

d = distanceney(i i+ 1) — distoq(i, i+ 1)
. . . 1 . . 1 . 1. 1.
— (az—i-l _ az—l + az—l—l _ Eaz> _ <az—1 . 5CYZ—Q + 5041 . Eaz—2>
204! — (ai + 22t — ai72) > 0.

i-1 i i+1 i+2

1/2 a'_z a -1 1/2a ! a +1

Figure 6: Distances from node i using different paths

which can be seen in Figure 6. Hence there is no gain to other nodes and
this edge would not be built. Establishing multiple edges cannot improve
the situation either.

Therefore no node can benefit from changing its strategy.

Our next step is to examine the total cost of this graph
Lemma 5.4.
The social cost of this exponential chain is in Q(an + an?), i.e.

C(Q) € Q(an + an?).

Proof.
There are n — 1 edges to the left and L%J edges to the right, aggregating a
total cost of a((n — 1) + |2]).

12



The stretch between two odd nodes is always 1. The stretch between an odd
node ¢ and an even node j on the right side of ¢ is

of —ai=l — Lgi-1

stretch(io, je) = . .
’ ad—1 — %azfl
>
ad—1 — L1
2
S 1
—a
2

The sum of stretches for an odd node ¢ add up to

Si odd = Z stretch(i, j) + Z stretch(, j)
j<i >

>(i—1)+%a ["_;_1J +["2_ZJ

The stretch between two even nodes %, j,where 7 > 4, is

o — ad=1 4 i1 — oi—2?

stretch(ic, je) = NPT~
oG 1 -1
5 2% 3@
i1 _ gi-1
1
> §a,

for all a > 2.
The stretch between an even node ¢ and an odd node j on the right side is

%C{j_l 4 ai—l _ ai—2

stretch(ie, jo) = T

- . > 1.
5(1]_1 _ az—l

Using the above, the sum of stretches for an even node ¢ adds up to

Si cven = Z stretch(i, j) + Z stretch(i, j)

j<i §>i

>(i—1)+%a(["_THJ—1>+["_THJ.

Combining the two results, we are now able to compute the sum of the

13



stretches over all nodes:

;81' = Zsi-l—Zsi

i even i odd

> zi:(z'—l)+%a Q"’_THJ —1) + V_THJ
n(n2— 2) |, alln- 3)(:; —9)-n)  (n- 1{4@ ~9)
€ Qan?).

The social cost of this equilibrium is hence

C(exp. chain) = « (n -1+ [%J) + Zsi

2n -3
> % + Q(an? + n?)
€ Qlan® + na).

O

Now we have all the prerequisites to conclude the proof. The price of anarchy
is at least

C(exp. chain) cafon + an?
C(doubly linked list) 2an + n?

which is in () for all 2 < @ < n. No combination of strategies can involve
costs greater than (3) + an(n — 1), which is in O(an?). Hence the above
price of anarchy cannot be exceeded.

O

We have proved that the bound on the price of anarchy for 2 < o < n is
tight, the upper and the lower bound meet asymptotically.

For o > n, the social cost of a graph can be at least Q(logn) times worse
than the social optimum.

Theorem 5.5. The price of anarchy for the directed locality game is in
Q(logn).

Proof. Let a = 2n — 1. Hence the circular list is a Nash equilibrium and its

14



price of anarchy is at least

na+2n(n — 1)Hy_1 —2(n — 1)2
2(n—1Da+n(n—1)

a+2(n—1)H,1—2(n—-1)

p(circular list) =

>

= 2a+ (n —1)

S a+2(n—1)In(n—2) —2(n—1)
- 2a+(n—-1)

> 2(n _5173 l_n(3n —2) € Q(logn).

O

In the one dimensional setting every instance has a Nash equilibrium, re-
gardless of the size of o and the distances between the nodes. In higher
dimensional spaces however, this does not hold.

Theorem 5.6. Not every instance of the Locality game has a pure Nash

equilibrium.

1+¢g 1

length(a) = 2 -4

length(b) = 2 €1=0.14
a d length(c) = 2 g9 =2y
length(d) = 2 + g4 €5 =0.04
length(e) = 2.45 gg>0
e = 9o length(f) = .45

Player 1 Player 2

Figure 7: Directed: Instance I has no Nash equilibrium

Proof. We show that the instance of Figure 7 can constitute a situation such
that player 1 and 2 will never stop deviating to a better strategy.

Let a be 0.6 and the distances between the nodes as described in Figure 7.
First, we observe that in every Nash equilibrium there exists a connection
between the nodes in the upper row and the nodes in the lower row, because
the stretch would be more than 2, i.e. more than « otherwise.

Player 1 and 2 must have some connection to the nodes in the upper row.

We prove, that in all the 26 possibilities to do so, there is at least one player
that could improve its situation by changing its strategy.

15



We begin by studying the properties of Nash equilibria of instance I.

Lemma 5.7. In instance I, Nash equilibria have the following characteris-

tics:

1. Neither player 1 nor 2 has three edges to the upper row

2. Both players have at least one edge and

(a) Player 1 always establishes edge a
(b) Player 2 does not only build edge f.

Proof.

3+e€q

1. Player 2 pays at most 2a + 2 + =5¢ when establishing the edges ¢
and d, which is less than 3a + 3, hence building three edges is not
worthwhile. Analogously, paying for edges a and b results in costs of
at most 2a+ 2 + %, which is strictly less than 3a + 3 as well.

2.

(a)

The cost for player 1 without edge a is

3+ea
2 —¢q
> 2,3 +a+ 1a

costi(—a) = ca3+

c2,3 denoting the cost for connecting to the right and the middle
node, whereas the cost of player 1 if it establishes link a is

costi(a) = cp3+a+1,

hence building a is always worthwhile.

Assume c; 5 is the cost to reach the left and the middle node of

the upper row using edges player 1 pays for. When not building
any edges, player 2 pays ci 2+ 3';45_—;;2, which is more than paying

for edge d, c'1’2 representing the cost for connecting to the left
and the middle node being allowed to use edge d as well.

3.45 —
costa(no edges) = c19+ S Te

’ 2+ ¢4

> cpota+ 1,

costay(d) = cjo+a+l,

3.45 —
costa(f) > CU+1+C2+TQ

> 2a+2+4+ ¢
costa(f,d) = 2a+2+ co.

16



There are 12 remaining possibilities to examine:

Lemma 5.8. Any pure Nash equilibrium that satisfies the properties of
Lemma 2 also complies with the following:

1. Player 2 does not link to f

2. Player 2 does not build both ¢ and d.

Proof.
1.
costa(f,c) = 2a+2+ 3
2 N 2+ €4
3 3+ €
t < 1
costa(c) < a+ —I—2+6d+ W
< 2042+ 3
+ €4
3—62
costa(f,d) > 2a+2+ 5
3—€1—€ 3+¢€q
< 1
coste(d) < a+1+ W 5
3
< 2042+ J;Gd
2.

costo(c,d) > 2a+2+4 ¢

costa(c) < a+1+ + ¢

2+ ¢

Since d does not help to decrease the stretch to the left-most node,
player 2 will only build one edge.

O

There are 6 remaining possibilities to examine, all of which are displayed in
Figure 8.

Lemma 5.9. None of the strategies depicted in Figure 8 forms a pure Nash
equilibrium

17



ARRWAYY

Player 1 Player 2 Player 1 Player 2 Player 1 Player 2
4 5 6
o———©O o——O0 o————©O
Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

Figure 8: Directed: Remaining candidates for a Nash equilibrium

Proof.
In every scenario there is at least one player that benefits from deviating
from its current strategy.

Case 1:
Player 1 adds edge b
costi(—b) > a+1+min(}52, I=4EN) + min(35, 559
> 2a+2+ %
3
costi(b) < 2a+2+ 55
Case 2:
Player 2 replaces d by ¢
costy(d) = cl—l—oz—i-1+3—_2€‘i
costa(c) = c'1+oz+1+%

¢} is the new cost of connecting to the left-most node.
By replacing ¢ by d, this stretch cannot be increased, hence

d <.
Case 3:
Player 2 replaces ¢ by d
costa(c) = c'1+oz+1+%
costa(d) = d+a+l+352

Since €2 = 2¢4 and ¢ = ¢f. it follows that coste(d) < costa(c).

18



Case 4,6:
Player 1 removes b

cost1(b) > 20+ 2+ min(53z, 3_26.%1?61)

costi(—b) < a+1+ 3=fata | 3-etu
3—eateq ’
< 20424 S
Case 5:
Player 1 replaces e by b
costi(e) > 2+ 2+ min(352, 3726_2%)

costi(b) < a+1+ %
O
In particular that means that cycles of strategy changes can occur, e.g.
21— 6—4— 2, see Figure 8. Consequently there exists no combination

of strategies that constitutes a Nash equilibrium for this instance.
O

19



6 Conclusion

We present a network creation game useful in the context of P2P networks.
We study the existence and quality of Nash equilibria of this game and
prove a tight upper bound on the price of anarchy of ©(«). Furthermore we
demonstrate that there are instances where no Nash equilibrium esixts.
Some interesting open questions are the following: What is the average cost
of a Nash equilibrium? Is there an algorithm that guarantees finding a Nash
equilibrium within a constant factor of the social optimum? We are also
interested in extending the game to a setting where the network formation
is dynamic and on-going.

20
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