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Abstract

Among the different representations of XML Schema’s data model which are available
today, none provides access to the Schema components in a unified, extensible, and
navigable way from current XML-based technologies like XSLT 2.0. This is a major
disadvantage, because XML Schemas contain information which can be highly valuable
for applications. We present an XML representation of XML Schema’s data model and
a path language for XML Schema, together with an abstract definition of the require-
ments of an accessible data model. An accessible data model leads to significantly more
powerful, resilient, and adaptable applications; and it opens new fields of Schema-aware
applications.
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Chapter 1

Introduction

This thesis discusses the issues of representing XML Schema components, which are the
abstract building blocks of an XML Schema. XML Schema information is represented
and exposed in different formats and ways. The abstract data model in the recommen-
dation, the commonly used transfer syntax, the PSVI augmentation of the Infoset, and
various XML Schema APIs all represent XML Schema information, or parts thereof.
However, we argue that all these approaches cannot solve many current problems, and
that they all miss numerous promising opportunities. We specify the requirements for
an accessible data model, we outline possible ways to achieve data model accessibility
in practice, and we present an XML syntax for XML Schema components and a path
language which works on XML Schema components. After evaluating different use cases,
we conclude that both approaches are highly useful to XML applications, in particular
in the context of Web-based services, XML pipelines, and composite schemas.

Chapter Overview

Chapter 2 studies XML Schema, its data model, its distinctive features, and related tech-
nologies. The chapter emphasizes in which ways XML Schema is different from other
schema languages for XML (e.g., by analyzing the type-annotation aspect of Schema-
validation), and it lists uses and applications of XML Schema. A survey of a few selected
technologies that are related to XML Schema, and a critical comment on the recommen-
dation of XML Schema conclude the chapter.

Chapter 3 presents application areas where a lack of data model accessibility causes
problems, and it presents application areas which will benefit from an accessible data
model, and where new opportunities will be created through a better representation
of XML Schema information. In particular, Section 3.1 discusses problems of version-
ing and extensibility of XML vocabularies, and it summarizes different strategies and
approaches to deal with these problems.
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Chapter 4 includes an introductory overview of formal languages in general, with a
special focus on XML grammars. Section 4.4 highlights a few interesting properties,
which inspire the implementations described in Chapter 8.

Chapter 5 distinguishes two classes of Schema-processing applications: stand-alone ap-
plication, which work primarily on the Schema itself, and instance-driven applications,
which utilize Schema information in order to process instance documents.

In Chapter 6, we present the Schema Components XML Syntax (SCX), an XML for-
mat which aims at representing the Schema components as faithfully as possible. We
explain the design rationale which has been employed while defining the format, and we
demonstrate how SCX can be the base of canonicalization for XML Schema.

Chapter 7 introduces the XML Schema Path Language (SPath), an extension of XPath,
which permits accessing and navigating XML Schema information. The design consid-
erations are explained, and the syntax is outlined.

Chapter 8 describes the prototype implementation of SCX and an XSLT 2.0-based func-
tion library which substantially simplifies working with SCX. In addition, X2Doc, an
extensible and configurable framework for generating XML Schema documentation us-
ing XSLT, is presented.

Chapter 9 evaluates the two technologies proposed in Chapter 6 and 7, alongside with
the general concept of an accessible data model from Chapter 5, in the context of the
use cases from Chapter 3.

The conclusions in Chapter 10 summarize the results of the evaluation, and possible
next steps in the further development of representation of XML Schema information are
indicated.
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Remarks

Notation of Qualified Names

We use “qualified name” always in the sense of expanded qualified names, or, according to
Clark,1 “universal name”. That is, a qualified name is a tupel consisting of a namespace
URI and a local name.

Where no explicit XML namespace bindings are provided, the XML namespace bindings
from Table 1.1 are implied.

Prefix XML Namespace URI
xml http://www.w3.org/XML/1998/namespace

xs http://www.w3.org/2001/XMLSchema
xsi http://www.w3.org/2001/XMLSchema-instance
xsl http://www.w3.org/1999/XSL/Transform
rng http://relaxng.org/ns/structure/1.0

xhtml http://www.w3.org/1999/xhtml
wsdl http://schemas.xmlsoap.org/wsdl/

ex http://people.ee.ethz.ch/%7Efemichel/namespaces/example
scx http://people.ee.ethz.ch/%7Efemichel/namespaces/schema-components
scf http://people.ee.ethz.ch/%7Efemichel/namespaces/schema-component-functions
occ http://people.ee.ethz.ch/%7Efemichel/namespaces/occurrence
val http://people.ee.ethz.ch/%7Efemichel/namespaces/validation

Table 1.1: Implied XML namespace bindings

Code Samples

Sample code is always displayed in framed boxes. The excerpts have been chosen to be
as compact as possible, while still being meaningful. Lines that start with saxon@work>
indicate sample output. The code examples all have been actually executed, and they
have been executed only using the technologies indicated. We used the Saxon-SA 8.8
XSLT processor from Saxonica2 for all examples.

1See Clark’s article on XML namespaces: http://www.jclark.com/xml/xmlns.htm
2http://saxonica.com/

http://www.jclark.com/xml/xmlns.htm
http://saxonica.com/


Chapter 2

XML Schema

XML Schema [10, 91] is the XML schema language recommended by the World Wide
Web Consortium (W3C).1 In essence, XML schema languages define constraints which
are used for describing a class of XML documents. An important class of schema lan-
guages are document grammars, and XML Schema is an example thereof. XML Schema
has been developed as a successor to DTDs, a subset of SGML document grammars and
part of the initial recommendation of XML [18], and evolved from different competing
proposals (most notably SOX [35], DCD [15], and XDR [43]).

The main characteristics which distinguish XML Schema from DTDs are:

1. Support of XML Namespaces [17]
2. Presence of an XML syntax
3. Introduction of type derivation, akin to inheritance in object-oriented programming
4. Support for definition of faceted simple types, and definition of a set of built-in

types
5. Generalization of the concept of Identity Constraints
6. Re-introduction of the all group, a very restricted subset of SGML’s interleave

operator, which had been omitted in DTDs

The above features make XML Schema more powerful and expressive, but at the same
time harder to deal with than DTDs. It is debatable to which extent schema languages
should comprise features for data modeling such as type inheritance. In fact, today’s
competitors of XML Schema like DSD [70] and RELAX NG [31] (which we briefly exam-
ine in Section 2.4.2) chose to limit themselves to being pure document grammars.

Although not part of the XML recommendation, XML Schema has become a core part
in many of the W3C’s XML-related recommendations. The most recent generation of

1The choice of “XML Schema” as a name for a XML schema language may lead to confusion. In this
report, we shall strictly use “schema” with lower-case “s” where we intend to denote the general class
of schema languages, and “Schema” with upper-case “S” when referring to the W3C’s specific schema
language.
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XML technologies, i.e., XPath 2.0 [5], XSLT 2.0 [54], and XQuery 1.0 [11], all build
upon XML Schema. At present, Version 1.1 of XML Schema is in preparation [82, 93].
As of February 2007, it has the status of a Working Draft, and despite being announced
as a minor version, it will introduce new language constructs and relax some of the
current restrictions of XML Schema. Many of these changes are addressing problems
that arise from the need for schema extensibility and schema versioning, which we discuss
in Section 3.1.

2.1 Definition and Format

In Section 2 of the first part of the recommendation [91], the conceptual framework of
XML Schema is described. It defines XML Schema “in terms of an abstract data model”
which is composed of Schema components, the latter being defined as “the building
blocks that comprise the abstract data model of the schema”. The recommendation
then states:

The abstract model for schemas is conceptual only, and does not mandate
any particular implementation or representation of this information. To fa-
cilitate interoperation and sharing of schema information, a normative XML
interchange format for schemas is provided.

Documents written in this normative XML format are what is commonly known as XML
Schemas. In this report however, we shall carefully distinguish the abstract data model
from the XML syntax, for the following reasons:

1. Components of one Schema are likely to be scattered over different documents in
the XML syntax, while the abstract data model always includes all components.

2. The elements of the XML syntax are considerably different from the Schema com-
ponents. They introduce new properties (e.g., the id attribute), while delegating
others to document-wide settings (e.g., to the targetNamespace attribute).

3. The abstract data model contains more information than what is contained in the
set of relevant documents in the XML syntax (e.g., the built-in types, and default
values from the recommendation).

Altogether, the differences between the abstract data model and the XML syntax are
significant. Section 6 demonstrates how difficult it can be in practice to retrieve the
Schema components from their XML representation.

In the following, “XML Schema” always refers to the abstract Schema as a whole, while
representations thereof, defined in the normative XML syntax, are referred to as “XML
Schema documents”. Finally, the normative XML syntax is simply called the “transfer
syntax”, in accordance to common practice in the W3C.
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As a typographical convention, properties of Schema components are always surrounded
by curly braces, while properties of the PSVI (see below) are typeset in fixed-width font
and surrounded by brackets.

2.2 Unique Features

We assume the reader to be familiar with XML Schema and its XML syntax. Therefore,
we only very briefly list the distinctive features of XML Schema and refer to the XML
Schema Primer [40] for further explanations.

XML Namespaces: XML Schema supports XML namespaces. Schemas usually de-
fine a target namespace, and the components defined by a Schema then have to be
used by their qualified names. Given a target namespace which is mapped to the
prefix ex, global components thus have to be referenced as follows:

<xs:element name="paragraph" type="xs:string"/>
<xs:element ref="ex:paragraph" minOccurs="0"/>

Imports and Includes: XML Schema permits including of XML Schema documents
with the same target namespace, and importing of components from XML Schemas
with different target namespaces. The xs:import element may or may not specify
a schemaLocation.

<xs:include schemaLocation="address.xsd"/>
<xs:import namespace="http://www.w3.org/1999/xhtml"/>

Complex and Simple Types: Complex types describe the content model of elements,
i.e., which child elements and attributes are permitted. Simple types restrict the
literal content of elements.

<xs:complexType name="NameType">
<xs:sequence>
<xs:element name="First" type="xs:string"/>
<xs:element name="Last" type="xs:string"/>

</xs:sequence>
</xs:complexType>

Type Derivation: Both complex and simple types can be used for type derivation.
Complex types can be derived by restriction or extension; simple types can only
be restricted. Restriction narrows the set of permissible values, extension appends
additional elements to the end of the model group.

In addition, simple types can be constructed by list or union. Union types and list
types can then be further restricted by derivation.
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<xs:complexType name="PersonType">
<xs:complexContent>
<xs:extension base="ex:NameType">
<xs:sequence>
<xs:element name="Age" type="ex:AgeType"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs;simpleType name="AgeType">
<xs:union memberTypes="xs:positiveInteger">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="unknown"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

Wildcards: XML Schema provides wildcards, for both elements and attributes. A
wildcard matches any element or attribute in an instance, but the set of matching
elements and attributes can be restricted to a set of namespaces. Through the
attribute processContents, the validation processor can be advised to perform
strict or lax validation, or to skip validation completely for the matching items.

<xs:complexType name="anyType" mixed="true">
<xs:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded"

processContents="lax"/>
</xs:sequence>
<xs:anyAttribute processContents="lax"/>
</xs:complexType>

Type Substitution: Types can be substituted by derived types in instances. Substi-
tutions always must be indicated by the xsi:type attribute. Type substitution
can be controlled in the Schema through the attribute block.

Substitution Groups: An element declaration can be member of a substitution group.
To form a substitution group, element declarations reference a certain element as
their substitution group head. The types of elements within a substitution group
must be derived from the type of the group head.

In an instance, occurrences of the head element are allowed to be replaced by
elements from the substitution group.

Identity Constraints: XML Schema generalizes the concept of ID/IDREF known
from DTDs. If offers three kinds of constraints: a unique constraint, a key con-
straint, and a key reference constraint. All constraints are defined within element
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declarations, and they are defined to act on declarations, i.e., on elements or at-
tributes. A selector defines the set of nodes among which the constraint should be
asserted, and one or more fields determine the constrained values of those nodes.

<xs:unique>
<xs:selector xpath=".//ex:person"/>
<xs:field xpath="ex:First"/>
<xs:field xpath="ex:Last"/>

</xs:unique>

All Groups: XML Schema re-introduces the interleave operator, which is part of SGML
content models, but has been omitted in DTDs. However, its use is very restricted:
All groups must be the only model group (i.e., they must not be part of hierarchi-
cally nested model groups), and particles in all groups may occur at most once.

Element Declaration Consistent Rule: The element declaration consistent rule (EDC)
prohibits elements with the same name to have different types, within a given model
group.

Unique Particle Attribution: The unique particle attribution (UPA) is a leftover
from the DTD specification, which requires content models to be deterministic.2

This means that it must be possible to determine the matching particle of an in-
stance node without looking ahead in the instance. The following Schema violates
UPA, because given an instance <a /><a />, it is not decidable for the first node
whether it matches the first or second element declaration in the Schema.

<xs:sequence>
<xs:element name="a" minOccurs="0"/>
<xs:element name="a"/>

</xs:sequence>

Often, but not always, content models which violate UPA can be rewritten in a
compliant way. The example above, for instance, is easily rewritable:

<xs:sequence>
<xs:element name="a" maxOccurs="2"/>

</xs:sequence>

2.3 Use and Applications

The name of XML Schema’s predecessor reflects the primary use of a schema language
very clearly: DTD [18] stands for Document Type Definition. A precise definition of
which documents are legal members of a certain class of documents is helpful both for
producers and for consumers of documents. It helps the former to produce conforming

2Unfortunately, a more detailed definition of deterministic content models can only be found in a
non-normative part of the XML recommendation. Furthermore, one of the main reasons to require
deterministic content models is compatibility with SGML; however, SGML calls them unambiguous.
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documents, and it lets the latter validate documents; i.e., it lets one decide whether a
given document conforms to the schema. This is especially important in the distributed
or loosely coupled scenarios where XML is typically used, since it is utilized as a transfer
format very often.

Furthermore, an a priori specification of a class of documents allows to make assump-
tions about the documents being processed, and hence, it simplifies and improves the
development of software applications processing these documents. The type concept
introduced in XML Schema intends to emphasize these aspects by increasing the possi-
bilities of code reuse and by providing for typed processing.

This section discusses the areas of use that are deemed to be the most important in the
context of this report. It shows that XML Schema has its applications beyond simply
being a document grammar. Knowing the predominant areas of use, the problems de-
scribed in Section 3 become evident, and so does the potential of our contribution.

2.3.1 Document Validation

DTDs perform document validation on a mere pass/fail basis. If a document instance
fails to pass document validation against a given DTD, an application cannot retrieve
any more information about the incriminated document in a standardized way, and in
the general case, it has to discard it. XML Schema enhances the concept of document
validation in multiple ways. First, the term “validation” is misleading in the case of
XML Schema, because Schema-validation actually comprises two functionally different
parts: Document validation, and type annotation.

Schema-validation yields more informative and fine-grained results. It adds these results
as an augmentation to the XML Information Set (Infoset) [34], known as the Post
Schema-Validation Information (PSVI).3 Unfortunately enough, the Infoset does not
specify a unified way of how such augmentations should be appended and exposed,
and the PSVI’s contents are only laid out in the XML Schema recommendation [91].
Together, this makes the format and contents of the PSVI processor-dependant, a fact
we address in more detail in Section 3.

Schema-validation consists of different steps: Assembling of the Schema from different
Schema documents, local validation of element and attribute information items of an in-
put Infoset, computation of the overall Schema-validity, and augmentation of this Infoset.
The recommendation uses the term Schema assessment for the overall process.

In contrast to the pass/fail paradigm of DTD-validation, Schema-validation outcomes
are more nuanced. In fact, the validation outcome has two dimensions: [Validation

attempted], which assumes values in (full, partial, none), and [Validity], which is one
3XML Schema works on the Infoset of XML documents — both on the input and on the output

side. This implies well-formedness, correct handling of namespaces (i.e., namespace validity), and the
canonicalizations described in [34].
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of (valid, invalid, notKnown).4 Additionally, [Validation context] points to the nearest
globally declared Schema component, and [Schema specified] indicates whether the
value of the information item validated has been set through a default value in the
Schema.

The fact that there are different levels of [Validation attempted] is due to the possi-
bility to control the processing mode of Schema-validation. This can be done by setting
the initial processing mode of a Schema processor, or it can be set by means of the
processContents attribute on wildcard components. The possible values are:

1. strict: The Schema must contain declarations for all information items.
2. lax: If a declaration can be found, validity assessment is applied.
3. skip: No validation is carried out, even if declarations are present.

Recalling the twofold service of Schema-validation, partial validation is especially use-
ful: The second goal of Schema-validation is type annotation, and the type annotations
appended to the Infoset may be of importance to an application even if [Validation

attempted] did not evaluate to “full” for every information item.

Type annotation is a very substantial addition to the universe of XML, because it turns
XML instance nodes into typed nodes, and because it changes the role of the schema
language. XML Schema moves from being a simple gauge, which measures, but does not
affect, instance documents under validation, to a format containing external information
which is partially added to the instances during validation, possibly changing the content
of the instance and its interpretation.5 The most recent additions to the family of XML
technologies, i.e., XPath 2.0, XSLT 2.0, and XQuery 1.0, are the first generation of
technologies which work on the Infoset plus the PSVI. Many of their principal new
abilities and improvements rely on type annotations. Section 2.4.1 exemplifies this in
the context of XSLT 2.0.

Besides serving as an input filter for exchange documents in the aforementioned sce-
narios, document validation has also proven to be highly useful in internal applications,
and for application development. This field of application can be considered to become
more and more important. The recommendations of both XSLT 2.0 and XQuery 1.0
describe the possibility of Schema-aware processors. They include capabilities such as
static type-checking and they essentially facilitate better development and debugging
of applications. The benefits of document validation between internal processing steps
increase together with the complexity of the XML vocabularies involved. Developers
thus highly recommend the use of Schema-aware processing [53].

Recently, the W3C released a first Working Draft for XProc [94], which aims at defining
a standard language for XML pipelines. XML pipelines are expected to be an important

4An overview of the legal combinations can be found in tabular form on http://www.w3.org/XML/

2001/06/validity-outcomes.html
5Actually, DTDs also augment the Infoset of the documents under validation (e.g., with default

values). RELAX NG, in contrast, strictly leaves the instance untouched.

http://www.w3.org/XML/2001/06/validity-outcomes.html
http://www.w3.org/XML/2001/06/validity-outcomes.html
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paradigm in the near future. Here, document validation will clearly contribute both to
development and to operation.

2.3.2 Type System

An essential — and the distinctively unique — feature of XML Schema is its type system.
In XML Schema, the notion of types is employed in at least three slightly different senses,
which may cause some confusion. Let us recall the general definition of types in computer
science: They define a set of permissible values (in terms of their lexical space and their
value space), and they define which operations are possible on a value of that type. The
categories of types we might encounter in the context of XML Schema are:

1. Document types
2. Complex types
3. Simple types

The third category, simple types, clearly fits very well in the above classical definition:
Simple types define a lexical space, a value space, and a set of legal operations. XPath
2.0 works on values of such types in the usual way typed programming languages work;
it can type-check values, and it can signal type errors (e.g., if a numeric operation is
attempted to be applied to a string value).

At first sight, the first two categories fall into a more general notion of types — i.e., gen-
eralization, or abstraction, of a set, or extension, of instances — because the aspect of
permitted operations seems less relevant. As described in Section 4.2.2, complex types
can be merely seen as a representation of production rules in context-free grammars
without further importance during the processing of instances. Schema-aware versions
of XSLT 2.0 processors, however, allow for working with complex types in the classi-
cal manner. Document types also contain all three aspects of types in the narrower
sense. In a more coarse-grained perspective, rejection of invalid document instances by
document-processing applications is equivalent to the signaling of type errors in tradi-
tional programming languages. The lexical space of complex and document types is their
XML serialization, whereas the Infoset represents the respective value space.

Thus, all three categories above are to be considered types in the classical sense of com-
puter science, while still being disjunct subcategories that are not to be confused.

The type system of XML Schema has its applications and use outside XML Schema
as well because it is used by third-party technologies. We already mentioned that the
type system of XSLT 2.0 and XQuery 1.0 is based on the type system of XML Schema.
RELAX NG, incidentally the most prominent competitor of XML Schema as a schema
language for XML, does not specify a type system of its own. Instead, it provides the
possibility of importing an external type system. Usually, the simple types of XML
Schema are imported.
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A special example of external use of XML Schema’s type system is XJ [81], the XML
Enhancements for Java. It is a framework which extends Java to integrate XML Schema
types as first-class constructs. It enables the developer to “import XML schemas just
as one does Java classes.” It then lets one use XML elements, Schema types, and
language constructs (i.e., XPath expressions) within Java. It requires a special compiler
and execution environment and it is a promising approach to the rapid development of
robust and maintainable XML applications.

2.3.3 Structural Metadata

From the above it becomes evident that XML Schema is more than a language for
pure document grammars. It also comprises features for data modeling. The foremost
examples of such features are type derivation and identity constraints. The information
expressed through these constructs usually cannot be retrieved from the XML instance
alone. In order to interpret the instance, the XML Schema has to be considered as well.6

The following two brief examples demonstrate how XML Schema can be employed for
modeling structures which could not be expressed using XML alone.

Type Derivation: If used properly, type derivation reflects a semantic relationship
between the types involved. Imagine a base type that models a person and the properties
needed (like name, address, et cetera). Now a great number of types might be derived
thereof, e.g., types for describing specialized kinds of persons: author, employee, profes-
sional kite surfer, and so on. Although these derived types may greatly vary in their
structure, the knowledge of their relationship can be valuable both to the interpretation
of instance data and for application development.

Modeling General Graphs: XML is inherently limited to represent trees. However,
the data to be represented often has the structure of a more general graph. A directed
graph G = (V,A) is defined as a pair of a set of vertices V and a set of arcs A. Figure 2.1
presents the — perhaps naive, but most general — definition of an XML representation
of graphs.

The sample instance in Figure 2.2 uses the simplest non-tree graph (a circular graph
containing two mutually dependent vertices) in order to illustrate that XML Schemas
can contain information that is essential for the interpretation of XML instances. A
conceptually simple structure becomes hard to read and cumbersome to be retrieved
when represented as XML. The expressiveness of XML Schema is an advantage in that
it permits capturing such structures. This in turn limits the extent to which XML can
be considered an external data format.7

6And even then it might be less than trivial to retrieve the model properties. This is mostly due to
the transfer syntax of XML Schema. See Sections 3.3 and 9.2 for a discussion.

7Siméon and Wadler [88] claim that XML does not fulfill the conditions of an external data format
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<xs:element name="vertex">
<xs:complexType>
<xs:sequence><xs:element name="name" type="xs:string"/></xs:sequence>
<xs:attribute name="vID" type="xs:ID"/>
</xs:complexType>
</xs:element>

<xs:element name="arc">
<xs:complexType>
<xs:sequence><xs:element name="role" type="xs:token"/></xs:sequence>
<xs:attribute name="tail" type="xs:IDREF"/>
<xs:attribute name="head" type="xs:IDREF"/>
</xs:complexType>
</xs:element>

Figure 2.1: An XML Schema describing a directed graph

<vertex vID="A"><name>Alice</name></vertex>
<vertex vID="B"><name>Bob</name></vertex>

<arc tail="A" head="B"><role>marriedTo</role></arc>
<arc tail="B" head="A"><role>marriedTo</role></arc>

Figure 2.2: An XML representation of a directed graph

So far we have only investigated the ways in which XML Schema may contain structural
metadata itself. We have seen that XML Schema indeed offers a set of modeling facili-
ties. However, there are other languages and technologies which are explicitly targeting
structural or semantic modeling, and which are thus better suited for describing struc-
tural metadata. The most prominent examples emerged from the context of ontological
frameworks and the semantic Web, for example the Resource Description Framework
(RDF) [55] and the Web Ontology Language (OWL) [4]. The discussion of those lan-
guages, however, is beyond the scope of this report. Nevertheless, it is important to
note that there are means to connect XML Schemas to external metadata, and that
this is done in practice, e.g., in order to handle interoperability in the context of very
large vocabularies [49]. One of the mechanisms that can be used in order to connect an
XML Schema to external metadata is the Gleaning Resource Descriptions from Dialects
of Languages GRDDL [32], which is currently developed by the W3C.

XML Schema itself provides the possibility to embed the required information and to
incorporate pointers to external metadata by means of the annotation Schema compo-
nent. The corresponding constructs in the transfer syntax are the xs:appinfo element
and the attribute wildcard present for every element of the transfer syntax. Both can be
regarded as hooks. The former is especially powerful because it can contain structured
content. The latter is readily amenable to RDF, which heavily uses URIs that perfectly
fit into XML attributes.

anyway.
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2.4 Related Technologies

A few related technologies, which we will encounter in the following sections, are briefly
introduced in the following. They are related in different ways; two of them utilize or
integrate XML Schema, while RELAX NG is XML Schema’s most serious competitor.
It is not the goal of this section to discuss these technologies in detail. The reader may
refer to the respective authoritative descriptions cited.

2.4.1 XSLT 2.0

As mentioned above, XSLT 2.0 [54] is a typed language, and its type system is based on
the type system of XML Schema. More precisely, it is “typed” in two ways: First, it
can be employed as a strongly typed programming language, and second, it can operate
on type-annotated input trees.

The former aspect means that XSLT 2.0 works on typed values. It performs type check-
ing and may throw errors, if operations are attempted to be carried out on values which
have a type that does not allow this operation to be applied. An important subclass
of type-specific operators are comparison operators. XSLT 2.0 offers typed compari-
son. Furthermore, it enables the developer to declare the type of variables and input
parameters, and it comprises language construct for testing and casting types such as
instance of, castable as, and cast as. This dimension of typed behavior clearly
distinguishes XSLT 2.0 from its predecessor, XSLT 1.0, which was only a weakly typed
language. (XSLT 1.0 only knows very basic types — nodes, numbers, text, and boolean
— and tries to silently typecast values, which makes the language very hard to debug.)
Typed programming is available to all XSLT 2.0 processors, although basic processors
only support a subset of the built-in simple types from XML Schema. A brief excerpt of
sample code illustrates how an arithmetical operation fails when attempted to be applied
to a string value:

<xsl:variable name="x" select="'3'" as="xs:string"/>
<xsl:value-of select="$x - 1"/>
saxon@work> Unsuitable operands for arithmetic operation (string, integer)

One solution is to typecast the value explicitly:

<xsl:value-of select="$x cast as xs:integer - 1"/>
saxon@work> 2

The latter aspect of the two, i.e., operation on typed input, is reserved to Schema-
aware processors. This class of processors also support the whole set of built-in XML
Schema types. In order to work with type-annotated input trees, the processor has
to be advised to validate the input, which results in the aforementioned augmentation
of the Infoset, i.e., the PSVI. This is not to be confused with the second type-related
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capability of Schema-aware processors, which is utilization of user-defined Schema-types
within the style sheet. After importing the required XML Schema documents, a Schema-
aware processor allows one to use the simple types from an XML Schema for typed
programming in the way described above. Imagine a user-defined type for TLAs:8

<xs:simpleType name="TLA">
<xs:restriction base="xs:token"><xs:length value="3"/></xs:restriction>
</xs:simpleType>

After importing the defining Schema document, this simple type can be used in the
following way:

<xsl:value-of select="if ('XML' castable as ex:TLA) then 'yes' else 'no'"/>
saxon@work> yes

Finally, XSLT 2.0 distinguishes different node kinds. These were called node “types” in
XSLT 1.0, but in order to avoid confusion with the types of XML Schema, they have been
renamed node “kinds”. In fact, the category of node kinds is orthogonal to the notion
of types, and combining the two is possible. Moreover, both are often used in a similar
way, e.g., for indicating the type of a variable, or for asserting the type of a parameter.
Node kinds are best explained by example: Possible node kinds are item(), text(),
node(), element(), attribute(), and so on. The latter two kinds can take arguments;
either an element/attribute name (which can be a wildcard), or a name and a type name.
While the first case is available in all processors, the second one is only supported by
Schema-aware processors. Schema-aware processors additionally provide the node kinds
schema-element() and schema-attribute(). Both take a name as argument and they
can be used to match typed elements and all members of their substitution group, if
any. A final example demonstrates the use of node kinds. Assume an XML Schema that
defines the following type hierarchy:

<xs:complexType name="baseType">
<xs:sequence>
<xs:element ref="ex:nested" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="resType">
<xs:complexContent>
<xs:restriction base="ex:baseType"/>
</xs:complexContent>
</xs:complexType>

The XSLT 2.0 template rule below then matches all elements which are either of type
ex:baseType or of type ex:resType (because the latter is derived from the former,
which causes instances of the latter to be instances of the former as well).

8According to Peterson [83], TLA is an acronym for “Three Letter Acronyms”.
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<xsl:template match="element(*, ex:baseType)"/>

Although the transition to strongly typed programming and the introduction of user-
definable types have considerably increased the power and robustness of XSLT 2.0, the
limitation of XSLT 2.0’s type concept have to be pointed out: The type information
is only exposed as the qualified names of the types, and the type annotation of nodes
can neither be queried nor navigated. Finally, the type operators (e.g., instance of)
available do not discern whether an argument uses a given type, or a type derived
therefrom.

These shortcomings are addressed by Chapter 7, where a path language for XML Schema
is presented which provides much more sophisticated and powerful means for dealing with
XML Schema types.

2.4.2 RELAX NG

RELAX NG [31] presumably is the most serious competitor of XML Schema. In con-
trast to XML Schema, it has been standardized9 by Organization for the Advancement
of Structured Information Standards (OASIS), a non-profit consortium of different com-
panies engaged in e-business. RELAX NG was standardized in the same year as XML
Schema, but contrary to XML Schema, it essentially is the work of two single persons
and their proposals for a schema language, rather than being based on consensus of a
large and heterogeneous working group.

The scope and objectives are clearly defined: RELAX NG aims to be “a simple schema
language for XML.” The below definition of a RELAX NG schema, which is taken from
the abstract of the specification, reminds of the discussion of document grammars at the
beginning of Section 2.

A RELAX NG schema specifies a pattern for the structure and content of
an XML document. A RELAX NG schema is itself an XML document.

This implicitly defines what RELAX NG purposely is not: It is not a data modeling
language, and it is not a format for keeping external or additional data, eventually aug-
menting the instances which it constrains. This clearly distinguishes RELAX NG from
its competitor, XML Schema. This initial strict confinement also assists the accomplish-
ment of a second goal, which is the sound formal description of the schema language
and its semantics. Further differences from XML Schema are the absence of an own
type system or library, the availability of a compact non-XML syntax, and the pursuit
of maximal flexibility. In fact, the categorization based on formal language theory in
Section 4.2.4 will prove that in terms of expressiveness, the class of schema languages,

9RELAX NG is also standardized as ISO/IEC 19757-2:2003, as a part of the Document Schema
Definition Languages (DSDL).

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37605
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which RELAX NG is a representative of, is indeed more powerful than the class XML
Schemas falls into.

In order to make the XML syntax amenable to a rigid formal description, RELAX NG
defines a full syntax, a simple syntax, and precise conversion rules that govern conversion
of schemas from the full into the simple syntax. While the full syntax has a richer set of
language elements (making it more convenient to use), the simple syntax is very restricted
in its language constructs, but rather cumbersome and lengthy. For instance, the full
syntax provides means for including external content, whereas simplification requires all
references to be resolved, and all external resources to be inserted in-place. Another
example of a simplification step is the replacement of elements with mixed content by an
explicit interleaving of the permitted child nodes and <rng:text /> nodes. This reminds
of the way in which DTDs express mixed content, and it is easily recognizable as being in
direct correspondence to formal models like hedge grammars, which in fact is the formal
foundation RELAX NG builds upon, and which we will discuss in Section 4.2.3.

Besides having a solid formal foundation, the specification of RELAX NG also formally
defines the semantics of a correct RELAX NG schema. The semantics describe the simple
syntax. Due to the simplification rules given, they also hold for every correct RELAX NG
schema in the full syntax. The semantics are defined using axioms, inference rules, and
well-defined variables, where necessary. The notation and interpretation are diligently
described in the specification.

RELAX NG is a clearly defined alternative to XML Schema with distinctive charac-
teristics, and it explicitly addresses a narrower range of applications, i.e., document
validation in the sense of “checking whether the structure and contents of a given doc-
ument instance conform to a certain document grammar”. Because of its accurate and
concise definition and because of its formal foundation, it is often considered to be supe-
rior to XML Schema, at least from an academic point of view. Other advantages are the
presence of a compact syntax and the higher expressiveness. However, one has to bear
in mind that typed processing as described in Section 2.4.1 above would not be possible
with this restricted class of schema languages.

2.4.3 WSDL

In the context of Web-based services, which we discuss in Section 3.2, the Web Services
Description Language (WSDL) [30] plays a key role. Basically intended to describe mes-
sages and operations of a network service, it is often (mis)understood, or even employed,
as a way to describe the services itself, although it provides only a syntactical description
of the elements of a service, rather than giving information about the semantics.

WSDL matters in the context of this report because it allows XML Schema to be used
for describing the structures involved.10 XML Schema definitions are embedded within

10In fact, the specification refers to XML Schema as WSDL’s “canonical type system”, and in practice,
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WSDL documents at well-defined points (e.g., within <wsdl:types />). Recalling Sec-
tion 2.3.3, this is yet another form of composite schemas, where Schemas are parts of
third formats, rather than containing additional information within the Schema.

WSDL is a good example of how XML Schema is used as a basis for other W3C tech-
nologies. Under the (admittedly debatable) assumption that WSDL actually provides a
description of a service (or of a service interface, at least), it also exemplifies a use case
where XML Schema is employed as a modeling language.

2.5 Data Models

The XML Schema recommendation defines an abstract data model. Despite this, a
variety of data models for XML Schema are currently available. They all differ with
respect to each other as well as from the abstract data model, depending on their field
of application. It appears that the presence of an abstract data model does not rule out
the need for different data model perspectives. The differences in the data model may
be caused by particularities of the implementation environment (e.g., the programming
language chosen), or they may be directed by the anticipated way of utilization. XML
Schema programming APIs which follow the paradigm of the Document Object Model
(DOM) [57] might serve as an example of the former case. An object tree is a very natural
way of representing structured data in object-oriented languages like Java, although it
requires adjustments and simplifications to be made with respect to the abstract data
model, which is a general graph rather than a tree. The perspective that the PSVI
provides might serve as an example of the latter case. The PSVI only reveals parts and
aspects of XML Schema’s data model that are deemed to be important in the context
of XML document processing.

Several DOM-like programming APIs for XML Schema are available today. Microsoft’s
XML Schema Object Model (SOM)11, Eclipse’s XML Schema Infoset Model (XSD)12,
the XML Schema Object Model (XSOM)13 from java.net, and the Castor XML Schema
Support14 are the most prominent examples. The Schema Component API proposed
by Litani [58, 59] augments the DOM API for XML instances with methods for ac-
cessing Schema information (i.e., the PSVI). Even though it aims at representing all
Schema component properties of each component, it is unclear whether all components
are exposed to the API (e.g., named groups or identity constraints), and whether full
navigability is preserved. The DOM Level 3 originally included an “Abstract Schemas
Specification” [25] that ambitiously attempted to provide

usually no other schema is used.
11http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/

cpconXSDSchemaObjectModelSOM.asp
12http://www.eclipse.org/xsd/
13https://xsom.dev.java.net/
14http://www.castor.org/xmlschema.html

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconXSDSchemaObjectModelSOM.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconXSDSchemaObjectModelSOM.asp
http://www.eclipse.org/xsd/
https://xsom.dev.java.net/
http://www.castor.org/xmlschema.html
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[. . . ] a representation for XML abstract schemas, e.g., DTDs and XML
Schemas, together with operations on the abstract schemas, and how such
information within the abstract schemas could be applied to XML documents
used in both the document editing and abstract schema editing worlds.

This goal was very hard to achieve, and the project was abandoned later. Because of the
substantial structural differences, covering multiple schema languages is only possible at
the price of a very high level of abstraction. Reconciling the needs of areas of application
as diverse as instance editing and schema editing is a very difficult task as well, as
Section 5.1 shows.

Although striving to formally describe the abstract data model, the Formal Description
of XML Schema [19] also introduces a different data model, for example by omitting
identity constraints.

Section 2.4 of the XQuery 1.0 and XPath 2.0 Formal Semantics [36] describes the type
system of XML Schema, appendix D of the same document describes how import of
XML Schema shall be done. Both sections hence model essential parts of XML Schema.
In both cases, only the parts which are relevant in the context of XQuery and XPath
2.0 are described. This of course again leads to a data model different from the abstract
data model.

In conclusion, it can be said that in most of the cases a suitable data model, data model
interface, or API is available. And if it is not, new ones tend to be developed, or existing
ones are adapted. In [66], the author argues that a unified data model for XML Schema,
designed for accessibility and equipped with a well-defined set of accessor functions, is
desirable nevertheless. The following Section 3 demonstrates this fact by giving a list of
areas where no suitable data model is at hand yet, and by listing opportunities a unified
data model would generate.

2.6 Deficiencies

In practice, XML Schema is not as popular as one might think, despite its important role
in many of the W3C’s standards. It has not replaced DTDs completely, and it still faces
competition from languages like RELAX NG. In particular, empirical studies by Lämmel
et al. [56] and Bex et al. [9] show that the more advanced, modeling-oriented features
are rarely used, and that a significant fraction of XML Schemas deployed at present is
not even standard-compliant. The main reason is that XML Schema is perceived as a
complex — or even overly complex — language. Both the XML syntax of XML Schema
and the recommendation are complex indeed. The wording in the recommendation is
unfortunate in some parts, and not always beyond doubt. Section 2.6.2 provides critical
remarks on the recommendation. Section 2.6.3 discusses an obvious insufficiency of the
recommendation of XML Schema.
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2.6.1 Schema Editing and Visualization

The XML syntax makes writing and understanding of Schemas often difficult for hu-
mans. Surprisingly, a survey of current XML Schema editors, which has been done by
the author [67], concludes that none of the editors provided comprehensive graphical
support for the creation and modification of more advanced Schemas. Presumably, this
is also due to the complexity of the recommendation, which makes the implementation
of Schema technologies difficult. It may also be due to the lack of a clearly defined
interface to the data model. The remainder of this report discusses this question in de-
tail, and it will propose approaches and possible solutions to the problem of data model
accessibility.

2.6.2 Critical Comments on the Recommendation

An essential cause of many problems when dealing with XML Schema is the size of XML
Schema’s recommendation, and the fact that the recommendation is only available in
prose. Initially, a formal description was planned [19], but this endeavor was abandoned
later. This is a severe disadvantage. A formal description would be extremely helpful for
the understanding of the recommendation. A formal description rules out ambiguities
and inconsistencies. Implementations thus would become more consistent and more
uniform in behavior. Inconsistent behavior of Schema-validators and Schema-checkers
is a major problem and is likely to discourage the use of XML Schema.

A point criticized often is that the recommendation is too ad-hoc in many parts. Fre-
quently, the recommendation specifies an abundance of rules and multi-leveld sub-rules,
where it would have been more concise to define the goal that a certain mechanism
should achieve. Some constraints (e.g., UPA) are semantical in nature, where a syntac-
tical definition would be less difficult to be understood by users;15 and some constraints
(e.g., type derivation) are defined intensionally, where an extensional definition would
leave less space for ambiguities. If a rigid formal description was present, the utilization
of ad-hoc solutions, corrections, and additions to the recommendation were probably
less frequent.

The recommendation contains several sections which are marked as non-normative. Un-
fortunately, many of these non-normative sections are often used and referenced. For
instance, the Schema components diagram from Appendix E of the recommendation is
a very useful visualization, which can be encountered quite regularly. However, the dia-
gram contains obvious errors and omissions, which is annoying. This is also true for the
non-normative specification of the simple type definition component in Part 1, which is
inconsistent with the normative specification in Part 2. Non-normative sections should
not be written and edited with less diligence than normative sections.

15A fact criticized by Bex et al. [9].
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The recommendation includes the specifications of the abstract data model, of the XML
syntax, of the PSVI, and of the ways validation should be performed — all in one
document. This compromises the conciseness and intelligibility of all four specification
parts. A separation — similar to the separations done for the various XPath 2.0-related
technologies — would be desirable.

This merging of specifications also affects the definition of the abstract data model,
because the definition of abstract Schema components is not always sufficiently inde-
pendent from the definition of the transfer syntax. Often, the exact semantics of a
component property are only completely defined if the definition of the respective XML
representation is taken into consideration as well. This must not be the case for an
abstract data model.

The way in which the transfer syntax defines type derivation is overly complex and ar-
guably inconsistent.16 It is debatable whether or not rarely used features (of doubtable
usefulness) like nillability and notation declarations should be part of XML Schema. Fi-
nally, there is consensus that some default mechanisms are poorly chosen. The attribute
elementFormDefault should have the default value true rather than false, and the
default attributes final and block are semantically ambiguous because they govern two
semantically different properties of element declarations and type definitions.

2.6.3 Insufficiencies

In our opinion, the most grave insufficiency of XML Schema’s abstract data model is
that it has no clear concept of component identity.

The recommendation does not explicitly say how components can be identified, and
it does not say when two components are identical, and when they are distinct. Two
observations let us conclude that XML Schema’s abstract data model has no consistent
concept of component identity, and that this lack is a problem in practice.

1. It is not always clear whether two components are identical or not.

For example, it is unclear whether inherited element declarations are identical to
the element declarations in the base type.

2. There is no way to identify Schema components in a concise and unambiguous way.

Identifiers which rely solely on component properties fail at distinguishing anony-
mous simple type definitions within constructions of union types.

In March 2005, the W3C has published a working draft for XML Schema component
designators [50]. These designators have a path-like syntax in order to designate com-
ponents — including anonymous ones. In our opinion, this syntax is too clumsy, and

16Different rules apply to the inheritance of content models, attributes, and attribute wildcards.
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too much structure-oriented. Moreover, it does not address the fundamental problems
of component identity.

The presence of the component properties {context} and {parent} in the type definition
and element declaration Schema component, respectively, are presumably intended to
distinguish local Schema components, although the recommendation does not state that
explicitly. Assuming that these component properties are used for distinction (we actu-
ally cannot think of another use), type definitions, element declarations, and attribute
declarations then would have recursive identifiers of the following form:

• A 3-tupel <{name}, {target namespace}, {context}> for type definitions

• A 3-tupel <{name}, {target namespace}, {parent}> for element and attribute
declarations

Unfortunately, the component properties {context} and {parent} are defined in a rather
cumbersome way, because the definitions are context-dependent. (For element decla-
rations, e.g., {parent} is a complex type definition or a named group; for simple type
definitions, five different cases have to be distinguished.) And finally, the concept fails
completely for anonymous simple type definitions within union constructions. Such type
definitions cannot be distinguished only by means of the 3-tupel above.

It is essential to be able to distinguish and identify Schema components, and component
identity should be well-defined. Hopefully, forthcoming draft versions of XML Schema
1.1 will address this problem.



Chapter 3

The Case for Data Model
Accessibility

In an earlier paper [66], we stated the necessity and usefulness of an accessible data model
for XML Schema. In this section, we demonstrate this in more detail by describing fields
of application that demand data model accessibility or will benefit therefrom.

We advocate a general concept of accessibility for XML Schema, as opposed to the
specialized APIs listed in Section 2.5. We require such a concept to be comprised of
three parts:

1. A unified data model. In contrast to the abstract data model, expected fields and
ways of use should be taken into consideration for the design of such a data model,
as well as constraints of representation in implementations. The data model should
include well-defined rules for canonicalization.

2. Unique component identifiers. A coherent and concise concept of component iden-
tity is indispensable. Based on this, unique identifiers have to be defined for
identifying and comparing components.

3. Well-defined accessor functions. Access of and operations on the data model should
be backed by a set of well-defined accessor functions. These may comprise functions
for navigating the component structure and their relationships, or functions for
extracting component properties.

It becomes apparent that such a concept exists for XML instances. The XML Infoset
fulfills the requirements of the first part. The concept of instance nodes (i.e., Infoset
information items) together with the basic core functionality of XPath location paths
meets the second. And the set of XPath functions is in accordance with our third
postulation.

With the arrival of XPath 2.0, XQuery 1.0, and XSLT 2.0, the data model of XML in-
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stances is defined very precisely as the XQuery 1.0 and XPath 2.0 Data Model (XDM) [42].
This recommendation meets the above reqirements even more closely. It precisely de-
clares the context of application (i.e., XPath 2.0 and the technologies that build upon
XPath 2.0: XSLT 2.0 and XQuery 1.0), it explicitly defines node identity (in Section
2.3 of [42]), and it defines a set of abstract accessor functions. Finally, XQuery 1.0 and
XPath 2.0 Functions and Operators [61] describes functions and operators available in
XPath 2.0 and in XQuery 1.0.

What we request is a comparable conceptual framework for XML Schema. However,
in the case of XML Schema, this is not easily done, and the necessity to do so is less
obvious. Therefore, the below sections demonstrate the need for an accessible, unified
data model for XML Schema.

In the remainder of this section, we look at problems which are present today, or which
will arise in the foreseeable future in important areas of application of XML (e.g., Web-
based services). Subsequently, we demonstrate further opportunities that an accessible
data model will generate. Obviously, solutions to current problems and future opportu-
nities overlap in large parts.

3.1 Versioning and Extensibility

XML is an open and highly flexible data format, and it is thus readily amenable to
versioning and extensibility. XML Schema was designed with these properties in mind
from the very beginning. It intends to support versioning and extensibility by various
features. XML namespaces, type derivation, wildcards, and substitution groups are the
most notable among these. Despite the presence of this support for versioning, only
little experience with Schema-versioning seems to be available today, and most probably
only a small fraction of Schemas has truly been designed for versioning and extensibility.
In addition, XML Schema 1.0 makes design for extensibility difficult in some cases. For
instance, the Unique Particle Attribution constraint often conflicts with the demand for
flexible element wildcards. The current draft of XML Schema 1.1 alleviates some of
the issues. The next draft will presumably introduce even more advanced features for
supporting extensibility. In fact, most of the relevant changes in XML Schema 1.1 are
addressing schema versioning and extensibility.

Although the subject is of high importance for XML, XML Schema, and many of XML’s
primary areas of application, versioning and extensibility of XML vocabularies and its
mechanisms have not yet been discussed to a great extent in scientific publications.
There is a variety of theories, strategies, and principles which address the topic in various
fields of software engineering. But the issues and requirements for XML vocabularies are
specific ones, and the particularities of both the context of application scenarios and the
XML Schema language have to be taken into account. In this specific area, influential
work has been done by Orchard. Yet most of his work is only available as online articles
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or blog posts. The same holds for many other contributions on that subject. For a
commented list of online resources, we refer to a small version bibliography assembled
by the author.1

3.1.1 Nomenclature

In this section, we briefly introduce the essential terms and principles related to ver-
sioning. For a detailed discussion of terminology, principles, and best practices in the
specific context of XML, see Orchard and Walsh [80].

Versioning denotes the evolving of a software application or a data format or a protocol
over time. It is usually governed by one instance, typically the company selling the
application or the consortium defining the format or protocol. If we neglect versioning
branches, versioning happens in a sequential and linear manner. A newer version su-
persedes (and thus replaces) an older one, which then is likely to disappear over time.
Versioning often distinguishes major from minor changes. Minor version changes com-
monly imply compatibility with peers of the same major version. Typical examples of
minor version changes are bug fixes or security updates in applications, and corrections
and clarifications in specifications.

Extensibility is similar to versioning with respect to the resulting differences. But unlike
versioning, extensions take place synchronously. While versioning occurs over time,
extensions occur distributed in space. Extensions are typically not controlled by a single
instance, but are applied by the user.2 Extensibility, i.e., the planning and preparations
for possible extensions, is in the responsibility of the creator of an application, format,
or protocol. It is important to note that extensions co-exist, and thus potentially have
to interact with each other. Finally, “extension” implies that there is a common core
shared by all variants that have been created through extension.

Backward compatibility means that a more recent version can still cooperate with an
older one. Usually this means that the newer version accepts and correctly processes
output from older versions. Usually, backward compatibility is ensured between minor
versions, whereas major versions often break backward compatibility.

Forward compatibility denotes the ability to interact with future versions. Design for
forward compatibility strives to anticipate future changes and introduces a due amount
of flexibility and tolerance. Forward compatibility resembles extensibility in many of its
requirements and issues, and it leads to similar development strategies. It is obvious
that forward compatibility is only possible up to a certain degree.

1Retrievable from http://people.ee.ethz.ch/∼femichel/XML/version-bib.html or http://www.

webcitation.org/5Mw2PCqID (archived).
2In UBL, extensions are called customizations, reflecting this aspect.

http://people.ee.ethz.ch/~femichel/XML/version-bib.html
http://www.webcitation.org/5Mw2PCqID
http://www.webcitation.org/5Mw2PCqID
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3.1.2 Versioning Support in XML Schema

As mentioned already, the predominant versioning features in XML Schema are XML
namespaces, type derivation, wildcards, and substitution groups. Naturally, namespaces
are not a suitable means for extensibility, but the remaining features can be employed
for both versioning and extensibility.

Namespaces: Orchard [76, 77] advocates the following rules-of-thumb for deciding
whether or not an XML namespace should be reused:

Re-use namespace names Rule: If a backwards compatible change can be
made to a specification, then the old namespace name SHOULD be used in
conjunction with XML’s extensibility model.

New namespaces to break Rule: A new namespace name is used when back-
wards compatibility is not permitted, i.e. software MUST break if it does
not understand the new language components.

However reasonable these rules seem, there are prominent examples which do not follow
these principles. XSLT 2.0 uses the same namespace, although it is a major version
change. Compared to XSLT 1.0, version 2.0 significantly extends the vocabulary and,
in some cases, breaks backwards compatibility. The contrary example is the migration
of UBL version 0.7 to version 1.0. Although the Schema did not undergo substan-
tial changes, the namespace was changed in order to indicate its status as an official
release.

In both cases the problem is that XML technologies (e.g., XSLT) only understand the
Schema components in terms of their qualified names. Looking only at the qualified
names, components are not discernible as long as they bear the same qualified name,
regardless of any changes in the syntax or semantics. Vice versa, structurally and func-
tionally identical components are regarded as distinct and independent as long as their
qualified names differ.

The decision when to reuse a namespace is a design decision which is arbitrary to a
certain extent. Collections of Best Practices for XML Schema like [33] provide some
guidance. It will be interesting to see whether the XML Schema working group decides
to reuse the namespace of XML Schema 1.0 for version 1.1.

The question whether or not XML namespaces should be utilized for designating version
changes is related to the question of what the semantics of XML namespaces are in
general. Although XML namespaces are a concept separate from XML Schema, XML
Schemas are often said to be structuring a certain namespace. The XML Schema rec-
ommendation uses the expression of XML namespaces identifying an XML vocabulary.
However, the original recommendation of XML namespaces — which was published be-
fore the advent of XML Schema — merely described namespaces as a way of avoiding
collision of names [16]. It states that the possible collisions
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[. . . ] require that document constructs should have universal names, whose
scope extends beyond their containing document. This specification describes
a mechanism, XML namespaces, which accomplishes this.

Consequently, XML namespaces are defined as “a collection of names, identified by a
URI reference”. The lack of a defined inner structure3 or specified semantics compli-
cates the discussion about the use of namespaces in the context of Schema versioning.
The namespace URIs themselves are not suited for representing namespace structures.
They are simply unique identifiers of entities, and abuse of fragment identifiers is no
viable choice. Wilde [97, 98, 102] and Halpin [47] propose mechanisms for structuring
namespaces, the latter explicitly addressing versioning of XML namespaces.

The Version Attribute: The transfer syntax of XML Schema offers a version at-
tribute on the root element of Schema documents. Unfortunately, this attribute is simply
of type xs:token, and it thus shares a deficiency of namespace URIs, i.e., the deficiency
of not being able to express structured information. Furthermore, it has no equivalent in
the abstract data model (i.e., in terms of Schema component properties),4 and the map-
ping to Schema components is problematic because the attribute is defined on Schema
documents. Thus, multiple different version attributes can potentially be attached to one
assembled Schema through XML Schema’s include mechanisms. All in all, the version
attribute of the transfer syntax is not very useful for versioning purposes, and it is rarely
used in practice.

Type Derivation: Besides supporting code reuse and modeling of meaningful rela-
tionships, type derivation in XML Schema is an essential feature for versioning and
extensibility. The effects of type derivation are not only confined to the design and
the maintenance of Schemas. Through type substitution and substitution groups, type
derivation also affects instance documents directly. For this reason, great diligence was
devoted to ensuring compatibility among derived types.

The first of possible mechanisms of derivation, i.e., derivation by restriction, is designed
in such a way that every instance of a restricted type is a valid instance of the base
type. This is the utmost level of compatibility. Essentially, the base type would not
have to know about the additional restrictions, and validation could still take place as
usual. The brief example in Figure 3.1 illustrates the concept of restriction. Only parts
which are optional in the base type are allowed to be restricted away in the derived type.
Thus, the content model allowed by the derived type (in the example, the empty content
model) is always a valid content model with respect to the base type.

3While the first edition [16] contained a non-normative appendix entitled “The Internal Structure of
XML Namespaces”, the second edition [17] omits this section.

4Even worse, the XML Schema recommendation explicitly states: “The other attributes (id and
version) are for user convenience, and this specification defines no semantics for them.” Given the
attribute’s name, it is certainly misleading to claim the attribute not to have any semantics.
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<xs:complexType name="base">
<xs:sequence>
<xs:element name="nested" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="restricted">
<xs:restriction base="ex:base">
<xs:sequence/>
</xs:restriction>
</xs:complexType>

Figure 3.1: Complex type restriction

Derivation by extension ensures that the inherited content model remains unchanged.
Extensions are always added to the end of the model group. The addition is defined to
be done as a sequence. Consequently, the additional parts always appear after all other
parts. The set of instances of an extended types is a superset of the instances of the
base type rather than a subset. However, the fixed position of the extension elements
provides for resilient processing. An application that does not understand the extension
can always omit the additional parts and only validate the inherited part of the content
model. However, we will see in a moment that this is not always trivial.

The above set-theoretic considerations are a powerful aid for describing type deriva-
tion. Yet version 1.0 of the recommendation specifies type inheritance in an intensional
way, which apparently leads to some (presumably unintended, and therefore) undesired
corner-cases. Version 1.1 of the recommendation is expected to employ the extensional
definition of type derivation. This will make the recommendation more clear, and hence,
implementations will become more consistent.

Substitution groups build upon type derivation, and wildcards essentially contribute to
the power of type derivation. Both are described below.

It is important to recall that type derivation is the only way to express semantic rela-
tionships between components from different versions, and this only holds true if the
related components are accessible. I.e., the components have to be in the same (assem-
bled) Schema. This is possible either by using one namespace for all components, or by
importing the namespaces of all previous versions. The Universal Business Language
(UBL), the most comprehensive open XML vocabulary for global e-business, and prob-
ably one of the largest and most maturely designed XML Schema libraries, intensively
utilizes the more advanced features of XML Schema. In addition to the constraints that
XML Schema imposes regarding the derivation of types, UBL constrains versioning of
vocabularies in a very concise manner. Minor versions are only allowed to be created
by applying type derivation, every minor version is packaged within an own namespace,
and each minor version must import the namespace of the previous minor version. Using
these three principles, UBL achieves a cascade of XML Schemas, resulting in one assem-



3.1 Versioning and Extensibility 29

bled Schema which comprises all minor version components. As a result, the version
history of each component is entirely described by XML Schema, and applications can
employ sophisticated fallback strategies.

Gregory and Gutentag [45, 46] demonstrate how this strategy, together with type-aware
processing, for example in XSLT 2.0, enables polymorphic processing (i.e., applications
can discern different versions and act appropriately — this includes fallback to previous
versions), and they conclude:

This subject, although a bit complex, is worth exploring - it provides perhaps
the strongest argument for using namespaces as the package for versioning,
although in a non-obvious fashion. The basic proposition is this: by allow-
ing, between minor versions, only changes permitted by XSD extension and
restriction, we can ensure that all minor versions of an element are backward-
compatible.

The above quotation clarifies how XML Schema is the key to versioning of XML vocab-
ularies. XML Schema is capable of expressing relationships between components, both
synchronic and diachronic ones, if we may employ a term from linguistics. This insight,
together with the awareness that polymorphic processing and fallback strategies are the
keys to versioning-resilient processing, makes the need for an accessible data model for
XML Schema obvious. Only an accessible data model allows the Schema information to
be exploited.

We emphasize this by giving an example: Orchard [78] proposes the introduction of a
new attribute xsi:basetype. The idea is to indicate the base type of a type in the
instance to processors that do not understand a derived type, and therefore may want
to validate the instance node against the base type of its actual type. Knowing that the
complex type definition Schema component contains a property {base type definition},
it becomes obvious that the presence of accessible and navigable schema information
eliminates the need for such an attribute.5

Type Redefinition: The transfer syntax of XML Schema allows types to be rede-
fined, either in a new or in the same namespace. Even though this functionality is
sometimes recommended for versioning (in fact, the recommendation lists “evolution
and versioning” as reasons for its introduction), redefining types in our opinion is not a
good versioning strategy. This is mostly due to the fact that the modifications caused by
xs:redefine are pervasive. In consequence, the original definitions of redefined types
are no longer present in the data model, and neither introspection of the version history
nor Schema-aware fallback strategies are possible. Redefinition is only a construct of the
transfer syntax and has no representation in the abstract data model.

5One could argue that Orchard addresses the case where the most recent Schema is not available at
all. However, the required Schema typically is retrievable, but applications written against the original
Schema cannot access, and therefore utilize the schema information.
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Substitution Groups: Substitution groups are based on type derivation. The mem-
bers of a substitution groups are always required to use types that are derived from
the type of the substitution group head. Substitution groups have been designed with
extensibility in mind. Whereas type extension can be regarded as a way of extending
sequence model groups, substitution groups can be thought of as a kind of extensible
choice model group or “late-binding choice”.6

<xs:element name="realname"
type="xs:string"/>

<xs:element name="avatar"
type="xs:token"/>

<xs:element name="person">
<xs:complexType>
<xs:choice>
<xs:element ref="ex:realname"/>
<xs:element ref="ex:avatar"/>

</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name="realname"
type="xs:string"/>

<xs:element name="avatar"
type="xs:token"
substitutionGroup="ex:realname"/>

<xs:element name="person">
<xs:complexType>
<xs:sequence>
<xs:element ref="ex:realname"/>

</xs:sequence>
</xs:complexType>
</xs:element>

Figure 3.2: Choice model group compared to a substitution group

From a structural point of view, the results of a choice model group and an element which
may be replaced by members of its substitution group can be regarded as equivalent,
because the set of valid documents is identical. Figure 3.2 displays two alternative
definitions of the model group of the element ex:person. It becomes apparent that
the two document structures shown in Figure 3.3 represent the complete set of allowed
instance structures for both variants.

<ex:person><ex:name>Erik Wilde</ex:name><ex:person>

<ex:person><ex:avatar>dret</ex:avatar><ex:person>

Figure 3.3: Valid document structures

But contrary to the choice model group in Figure 3.2, the substitution group is extensible,
both in customizations and in future versions, and even from other namespaces, as
exemplified by Figure 3.4.

<!-- import xmlns:ex -->
<xs:element name="email" type="xs:token" substitutionGroup="ex:realname"/>

Figure 3.4: An external element that extends the substitution group
6Obasanjo [75] compares substitution groups to the concept of subtype polymorphism in object-

oriented programming.
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While this is a very powerful feature for extensibility, it causes the same kind of problem
as does type extension. Siméon and Wadler [88] point out that type derivation by
extension is a kind of type derivation fundamentally different from type derivation in
most object-oriented programming languages.

In languages such as Java, one can typecheck code for a class without know-
ing all subclasses of that class (this supports separate compilation). But in
XML Schema, one cannot validate against a type without knowing all types
that derive by extension from that type (and hence separate compilation is
problematic).

This also holds for content models that can be extended by adding elements to a substi-
tution group. It is more difficult to come up with consistent fallback strategies for these
cases than for type restriction, where the base type always is a valid description of every
instance of all derived types, although probably too tolerant.

The approach of validation by projection can serve as a workaround. We will describe
this approach in Section 3.4. The possibility to access, navigate, and explore the Schema
certainly is beneficial in either case because it allows an application to determine (at run-
time) which legal extensions the Schema describes — be it through type extension or
through substitution groups.

3.1.3 Changes in XML Schema 1.1

Wildcards: Wildcards are available in XML Schema 1.0 as well, but they have been
redesigned substantially. For this reason, we discuss wildcards as an example of the
changes applied by version 1.1 of XML Schema.

Element wildcards permit the appearance of arbitrary top-level elements (i.e., elements
which are declared globally) in the instance. The set of allowed elements can be limited
by the attribute namespace. The possible values in XML Schema 1.0 are roughly either
a list of allowed namespaces, the current target namespace of the schema, or ##other,
a special token which indicates that elements from all namespaces, except the current
target namespace, are permitted. XML Schema 1.1 increases the flexibility by providing
an attribute notNamespace, which allows to exclude namespaces explicitly.

Content models in XML Schema must comply with a restrictive kind of unambiguity
called Unique Particle Attribution (UPA). It requires that while parsing an instance
each node can be related to at the most one particle in the content model, without
looking ahead in the instance. For example, (a?, a) violates UPA because an element a
in an instance cannot unambiguously be mapped to a particle. This constraint limits
the use of wildcards very often. Wildcards that allow elements from the current target
namespace are not allowed to appear directly after optional elements, or directly in front
of elements, if the wildcard itself is declared optional. The following content model is
illegal:
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<xs:sequence>
<xs:element ref="ex:a" minOccurs="0"/>
<xs:any namespace="##any"/>
</xs:sequence>

The reason is that the element ex:a is contained in the set of possible matches of the
adjacent wildcard. Therefore, the above example violation (a?, a) is contained as well.
The current draft of XML Schema 1.1 addresses this problem in two ways. First, it
provides a new attribute notQName, which can contain a list of qualified names denot-
ing elements that should be excluded from the set of elements allowed by the wildcard.
This already solves the above problem. By excluding ex:a from the wildcard, the con-
tent model satisfies UPA. The second modification in XML Schema 1.1 is that UPA is
relaxed insofar as wildcards are allowed to be competing with particles. (Competing
wildcards and competing particles are still forbidden, nevertheless.) Content models as
the following are legal in XML Schema 1.1:

<xs:choice>
<xs:element ref="ex:a"/>
<xs:any namespace="##any"/>
</xs:choice>

Forthcoming draft versions maybe may introduce even more radical changes. One idea is
to allow to declare content models as open. This is related to the idea of default wildcards,
another possible new feature in future draft versions. No matter which features will be
included in future draft versions, a trend towards extensibility in the XML Schema
working group can be clearly observed.

3.1.4 Conclusions

Versioning and extensibility of XML vocabularies is an important field. It will increas-
ingly move into the focus as more vocabularies are deployed and as the first major version
changes become urgent. XML Schema is designed for — and suited for — versioning
and extensibility. The awareness of the XML Schema working group with respect to this
fact is reflected by the changes in version 1.1 and by the efforts of publishing a Guide
to Versioning XML Languages using XML Schema 1.1 [79]. Many of the present prob-
lems with versioning are due to the fact that useful information captured by Schemas
is not accessible to applications, or at least not in a way that is flexible, adaptable, and
fine-grained enough.

3.2 Web-Based Services

One of the driving forces of what is perceived by many as the second wave of the Internet
revolution can be summarized under the term “Web-based services”. The abundance of
standards for Web Services published by the OASIS consortium as well as the strongly
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advertised paradigm of Service Oriented Architectures (SOA) are the best-visible mani-
festations of this trend (or hype). While it is beyond the scope of this report to discuss
Web-based services in detail, we want to briefly investigate the consequences for XML
vocabularies.

Many of the problems that arise in the context of Web-based services are closely related to
versioning and extensibility. In the specific context of message exchange, the definitions
of forward and backward compatibility can be reformulated as:

• Backward compatibility means that new versions of receivers, or consumers, still
accept and understand messages from old producers, or senders.

• Forward compatibility means that new producers are introduced in such way that
old consumers can still process the new messages without failing.

The basic paradigm of loose coupling, which is an essential trait of Web-based services
of all kind, causes aggravated forms of the aforementioned problems of versioning and
extensibility. In a distributed and decentralized — i.e., loosely coupled — setting, one
has to face “asynchronous versioning” and unpredictable extensions. Strict versioning
strategies are likely to be replaced by more generic versioning policies, and lack of control
and foreseeability needs to be compensated by more resilient processing.

As described in Section 2.4.3, WSDL usually utilizes XML Schema for describing message
structures. Therefore we conclude that XML Schema will be a key for coping with the
problems of XML vocabularies in Web-based services.

We expect run-time schemas to become a common scenario. By run-time schemas
we mean that the schemas which are effectively describing the received instances are
different from the schema against which the applications in charge of processing these
instances have been written. Run-time schemas are likely to require applications to be
able to perform type introspection (or even type reflection), and to have resilient fallback
strategies.

The design of network protocols has dealt with issues of this kind for several decades.
Adaptation of principles from that realm thus suggests itself. The design of the Internet
Protocol (IP) is guided by a robustness principle defined in RFC 1122 [13];

1.2.2 Robustness Principle

At every layer of the protocols, there is a general rule whose application can
lead to enormous benefits in robustness and interoperability [IP:1]:

“Be liberal in what you accept, and conservative in what you send”

Software should be written to deal with every conceivable error, no matter
how unlikely; sooner or later a packet will come in with that particular com-
bination of errors and attributes, and unless the software is prepared, chaos
can ensue. In general, it is best to assume that the network is filled with
malevolent entities that will send in packets designed to have the worst pos-
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sible effect. This assumption will lead to suitable protective design, although
the most serious problems in the Internet have been caused by unenvisaged
mechanisms triggered by low-probability events; mere human malice would
never have taken so devious a course!

This still very well describes the problems encountered in Web-based services. However,
liberal consumers are not trivial to design. The specification of HTTP 1.0 [6] defines the
following policy for the extension of HTTP headers.

The extension-header mechanism allows additional Entity-Header fields to be
defined without changing the protocol, but these fields cannot be assumed
to be recognizable by the recipient. Unrecognized header fields should be
ignored by the recipient and forwarded by proxies.

The two general rules defined by this policy can be applied to Web-based services as well.
The first rule, i.e.,“do not assume extensions to be recognized”, is a very general rule, and
may not always be applicable (if extensions must be recognized). The second rule is the
well-known must-ignore paradigm. It is also used in the Simple Object Access Protocol
(SOAP) [12]. Furthermore, it is one of the basic principles of HTML. The must-ignore
rule can be interpreted in different ways. For example, it has to be defined whether
only the element which is unrecognizable should be neglected (“ignore container”), or
whether the complete sub-tree which depends on that element should be ignored as well
(“ignore all”). HTML chooses the first alternative, but security-sensitive applications
are likely to favor the second one.

There is also the opposite rule, which is must-understand, and popular processing models
(e.g., SOAP) often combine the two rules. Obasanjo [75] and Orchard [77] advocate
the use of must-understand flags for mandatory extensions. The latter even votes for
inclusion of a general xml:mustUnderstand attribute into the XML standard.

These questions are related to general questions of compatibility between XML vocabu-
laries. Dui and Emmerich [37] discuss this question7. They use extents of schemas (i.e.,
the set of valid documents) in order to compare schemas extensionally. They point out
that “testing compatibility between XML languages typically involves an unknown and
potentially infinite set of instances of that language” and that compatibility is undecid-
able for schema languages in general, but decidable in restricted cases, e.g., if schemas
are connected by a version history. They recommend the extent of new versions to be
proper supersets of the extent of previous versions.

Bau [3] counters this recommendation by recalling that it does not prevent compatibility
from being broken because in practice, a missing part may cause a message to be rejected,
e.g., if the part is required for security reasons. He advocates the use of contracts for
ensuring compatibility.

7The study includes rule-based schema languages, and syntactic compatibility is differentiated from
static semantic compatibility (the latter additionally considering co-constraints).
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Wilde proposes “Semantically Extensible Schemas for Web Service Evolution” [96] and
distinguishes initial semantics from application semantics, declarative semantics from
non-declarative ones, and intensional (declared within the Schema) form extensional
(included into the instances) ones.

3.3 Information Retrieval

As XML Schemas increasingly become a format for capturing metadata of XML doc-
uments, accessibility of Schemas promises interesting applications. A trivial example
is Schema-aware data mining of instance documents. Assume the hierarchy of types
representing persons in different specificity that we briefly sketched in Section 2.3.3. If
an application is aware of this type hierarchy, it can semantically correlate elements in
an instance document that — when looking at the instance alone — are seemingly un-
related. However, this functionality requires but a basic amount of Schema-awareness.
The language elements of XSLT 2.0 which are available in Schema-aware processors are
sufficient to perform this kind of data retrieval. If ex:personType is the base type of
the example type hierarchy, then the XPath expression

//element(*,ex:baseType)

returns all elements which have types identical to or derived from ex:personType. If
we want to further differentiate our selection, say, if we only want to select elements
with types derived by restriction, then the basic functionality of XPath 2.0 is not suf-
ficient. An accessible and navigable representation of the Schema would provide this
functionality.

The need for more sophisticated exploring of Schemas becomes apparent in the second
example from Section 2.3.3. The structure in the instance in Figure 2.2 cannot be tra-
versed without knowledge of the Schema,8 although the XML format describes directed
graphs — which is a navigable structure par excellence. If the information from the
Schema in Figure 2.1 were accessible, the structure of the instances becomes intelligible
to the application which processes the instance. Imagine an accessor function that, for a
given element, returns the set of all elements that are related to this element by means of
identity constraints. With such an accessor function, complex non-tree structures become
readily navigable, provided that the Schema adequately describes the structures.

Finally, the aforementioned points of extensibility in XML Schema (e.g., the xs:appinfo
element) potentially create even more powerful facilities for exploring and exploiting
metadata. For instance, if the Schema is linked to an ontology, more sophisticated
reasoning may become possible while processing instance documents.

8This is not completely true, as the use of the xml:id attribute allows to express at least one part
of the most basic kind of non-tree relationships, i.e., that something is a key. However, in general, our
statement holds, and moreover, xml:id was a later addition to XML.
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3.4 Validation

The novel areas of application and the problems arising in this context require us to
rethink validation as well. The two main reasons are:

1. In order to realize applications that adhere to the principles of compatibility and
the paradigm of liberal receivers as described in Section 3.2, validation needs to be
more tolerant and adaptable.

2. Many type-aware or Schema-aware applications emphasize the second of the two
aspects of Schema-validation described in Section 2.3.1, that is, type-annotation
becomes more important than mere validation.

In both cases, applications require validation to become more versatile and customizable.
An accessible data model allows applications to retrieve Schema information and to
utilize parts thereof in order to implement customized functionality for specialized partial
validation.

An intuitive approach to coping with the problems of compatibility is what Bau [3] and
Orchard [78] call validation by projection. The basic idea is to apply the must-ignore rule
to XML documents in a way that subsequent validation against a Schema is possible,
even if the instance complies to a newer version of the Schema. This is basically done by
omitting all elements that are not understood by the consuming application. In order
to identify the non-recognizable parts, inspection of the Schema is essential. For this
reason, the principle is sometimes known as Schema-aware XML projection.

The consequences of validation by projection with respect to the set of accepted instances
is similar to the effect of inserting wildcards between each two element declarations,
and it is similar to the idea of open content models proposed by Orchard (and maybe
embraced by upcoming draft versions of XML Schema 1.1). The difference between the
approaches is that in the latter cases the extensibility is managed on the producer’s side,
whereas in the first case the consumer handles possible extensions. It is arguable which
approach is preferable. As long as the transfer syntax does not provide a convenient
notation for open content models or default wildcards, projection by validation may be
a valuable strategy for dealing with extensibility.

Gregory and Gutentag [46] recall that projection must be carried out carefully if the
documents processed are legal documents. In the case of transaction documents which
must be kept due to legal regulations, the raw data should be archived before applying
projection.

An interesting perspective on the second aspect of Schema-validation (i.e., type anno-
tation) is found in a blog post by Ewald entitled “Making everything optional”9 and in
the replies to the initial entry. The title already summarizes the basic concept. Ewald
proposes to think about a “schema not as the definition of what this system needs right

9http://pluralsight.com/blogs/tewald/archive/2006/04/20/22187.aspx

http://pluralsight.com/blogs/tewald/archive/2006/04/20/22187.aspx
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now but as the definition of what the data should look like if it’s present instead.” This
is a radical re-interpretation of a schema, and it is an interpretation that is only possible
in the case of XML Schema and its type annotation facilities.

In its most radical form, such a Schema simply consists of a set of global definitions
and a declaration of a root element which has a content model consisting solely of a
wildcard with arbitrary cardinality. If one thinks of this as “sloppy validation”, it might
seem pointless, but looking at it as a kind of “best effort annotation”, the potential for
type-aware technologies becomes evident. An XSLT 2.0 stylesheet may — at least for
some parts of a document — not be too restrictive in terms of grammar-compliance, but
it may strongly depend on the presence of type annotations — e.g., in order to apply
type introspection, run-time decisions, and Schema-aware processing.

The recent introduction of type-aware technologies have changed the way schema-validation
can be employed. All novel ways of utilization will benefit from access to a unified rep-
resentation of XML Schema information.



Chapter 4

XML Schema from a Formal
Perspective

A key difference between XML Schema and RELAX NG is the former’s lack of a formal
description. Despite several attempts to provide a formal description or formal semantics
for XML Schema — most notably by Brown et al., on behalf of the XML Schema working
group [19] — neither is available for XML Schema today. A formal description is a
highly desirable feature nevertheless, especially as the related technologies become more
powerful and mature.

Section 4.1 emphasizes the need for a formal foundation of XML Schema, and Section 4.2
gives a brief overview of the parts of the theory of formal languages which are applicable
to schema languages. Section 4.3 summarizes different schema-specific approaches, while
Section 4.4 focuses on a few interesting properties of formal language theory which
promises to have useful applications.

Within the limits of this chapter, the subject can only be discussed superficially. For
more detailed and more authoritative information, the respective references should be
consulted, or the excellent book by Hopcroft, Motwani, and Ullman [51].

4.1 Use of Formal Foundations

The ensemble of type-aware XML technologies based on XPath 2.0 (i.e., XPath 2.0,
XSLT 2.0, and XQuery 1.0) is the first group of technologies among the ones controlled
by the W3C to have a solid formal foundation. The XQuery 1.0 and XPath 2.0 Formal
Semantics [36] states:

A rigorous formal semantics clarifies the intended meaning of the English
specification, ensures that no corner cases are left out, and provides a refer-
ence for implementation.
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Conciseness of specification is one reason, others include the applicability of calculus,
for instance comparability, analysis and prognosis (e.g., of computational expressive-
ness and complexity), and verifiability. From a software engineering perspective, code
optimization or even code generation is of great interest.

The first time formal languages became important in engineering was in the last century,
when formal language theory enabled the effective implementation of lexical analyzers,
parsers, and compilers. In fact, the theory of formal languages played the key role for the
success of compilers and the introduction of higher-level programming languages.

In analogy, the investigation of formal descriptions of XML and the technologies that
work with XML is motivated by the hope of increasing the potential for optimization,
robustness, verifiability, code generation, and compilation from higher-level, more de-
scriptive languages (e.g., for XML pipelines). XQuery already employs a fair amount of
formal theory — XML Schema could benefit from formal foundations similarly.

4.2 Formal Languages

The theory of formal languages has its roots in different scientific fields as diverse as
set algebra, linguistics, theoretical informatics, coding theory, and circuit design. In its
most general definition, a formal language L is a set of strings chosen from a set Σ∗, the
set of all strings1 over a finite alphabet Σ.2 Such an L ⊆ Σ∗ is said to be a language
over Σ.

The empty language is commonly denoted by ∅, and the empty string or nullstring by
ε. Note the difference between ∅ and ε: the former is a set (i.e., a language), the latter
a string. The difference becomes obvious when looking at the cardinalities: |∅| = 0,
whereas |{ε}| = 1. In consequence, no string is part of the empty language L∅ := ∅,
while Lε := {ε} contains exactly one string, i.e., the empty string. Both languages can
be defined over an arbitrary alphabet.

A commonly used classification of formal languages is known as the Chomsky or Chomsky-
Schützenberger hierarchy, which is shown in Table 4.1.3 Although additional hierarchical
tiers can be identified and distinguished, the concept of of such a hierarchy remains un-
changed. The idea is to separate classes of languages by comparing the expressiveness
of the corresponding grammars that produce or recognize the respective language. Each
grammar, and hence its extent, (i.e., the language produced or recognized by the gram-

1More precisely, Σ∗ is the union of the empty string and the transitive closure of the powers of an
alphabet Σ, i.e., Σ∗ = {ε} ∪ Σ+. Put differently, Σ∗ =

S∞
i=0 Σi, where Σ0 = {ε} and Σk = Σk−1 × Σ.

2In the following, alphabets and sets of nonterminals, terminals, variables, and symbols are always
implicitly defined to be finite.

3In the original article [29], Chomsky uses a different terminology; he identifies no explicit compu-
tational models for grammar types 0 and 1, and the proper-subset relationships between the grammar
types were proved by others.
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mar), in the hierarchy is a proper superset of the next lower tier. Consequently, the
hierarchy can be used for an objective classification of languages.

Type Grammar Model of Computation Chomsky’s Terminology
0 Unrestricted Turing machine Natural language (implied)
1 Context-sensitive Non-deterministic linear-

bounded Turing machine
Transformational grammar

2 Context-free Non-deterministic push-
down automaton

Phrase-structure grammar

3 Regular Finite state automaton Finite-state grammar

Table 4.1: Chomsky hierarchy

This classification is related to the theory of complexity and computability, which goes
back to Post, Church, and Turing. Each class of languages corresponds to a model of
computation. The model of computation of each hierarchy tier is strictly more powerful
in terms of its computability than the next lower tier.

This leads to important results for applications. On the one hand, languages from higher
tiers are effectively more powerful in terms of their expressiveness. On the other hand,
they require more complex models of computation. For instance, context-free grammars
can describe correctly parenthesized expressions, whereas no regular language is capable
of describing this class of languages. However, the model of computation of context-free
grammars requires a pushdown-stack, while regular languages are equivalent to plain
finite state automata.

4.2.1 Regular Expressions

Definition: Regular expressions define exactly the set of regular languages. The reg-
ular language described by a regular expression E is denoted L(E).

The three operations defined for regular expressions are concatenation, union, and clo-
sure. The respective operator symbols are · or comma (often omitted), + (or a vertical
bar), and Kleene star ∗. Often, the additional Kleene operators ? and + are added, but
they can be expressed by the three basic operators: E? = (E + ε), and E+ = (E ·E∗).4

Although the operator precedence is well-defined, parentheses are usually inserted for
legibility.

The class of regular expressions is usually defined recursively as the set of expressions
that can be generated by applying only these two rules (modified after McNaughton and
Yamada [64]):

1. All symbols are regular expressions, and so are ε and ∅.
4Note that the reverse holds as well: E∗ can be rewritten as (E+ + ε). We will use this in Section 8.2.
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2. If F and G are regular expressions, then (F · G), (F + G), and (F ∗) are regular
expressions as well

Regular languages are closed under the above three regular operations, and under inter-
section and complement. Thus, regular languages form a boolean algebra over a given
alphabet.

Example: A regular expression E = ((a · b?) + c∗) produces the language L(E) =
{ε, a, ab, c, cc, ccc, . . .}.

Model of Computation: There exist three different models of computation which all
have their applications: deterministic finite automata, non-deterministic finite automata,
and epsilon-free non-deterministic automata. However, it can be shown that all three
models, and regular expressions per se, have equivalent computational power.5 The
proof is done by cyclic reduction, that is, it is shown pairwise that the set of languages
describable by one model is completely contained in the set of describable languages
of another. Due to the transitivity of the inclusion relation, all models of computation
must be equivalent to each other, and to regular expressions. Finite state automata are
thus said to be the natural representation of regular expressions.

Limitations: A famous property of regular languages is the so-called pumping lemma
for regular languages. It can be used in order to prove that certain languages are not
regular. The lemma states:

For each regular language L, there exists a constant n such that for every
string xyz which fulfills the following conditions

1. xyz ∈ L
2. |xyz| ≥ n
3. |yz| ≤ n
4. y 6= ε

the string xykz also is in L for every k ≥ 0.

This can be understood quite intuitively if we consider the corresponding finite state
automaton. Let n be (#states+1). Then, due to the pigeon hole principle, the automaton
must, upon producing a string with length ≥ n, visit at least one state more than once.
This is, the automaton contains at least one cyclic transition. Let y be the symbol
connected to this transition. As the automaton has no possibility to limit the number of
visits of this transition, it also produces the set of strings xykz, as defined above. (This
last step is sometimes summarized as “finite automata can’t count”.)

5This does not necessarily mean that their computing power is equivalent as well. In fact, non-
determinism, which can be thought of as arbitrary parallelism, exponentially increases computing power
(the downside being the problem of realizing non-deterministic automata).
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An interesting example of a non-regular language is the language of parenthesized ex-
pressions (sc. correctly parenthesized expressions) of arbitrary length. This can easily
be proven by applying the pumping lemma. Assume a string w in Lparenth with |w| ≥ n
and let β, β′ be the parenthesis symbols. Then, due to the pumping lemma, an n can
be found such that a decomposition xβyβ′z exists for w, such that xβkyβ′z ∈ L, which
is a contradiction.

This example makes obvious that regular expressions are not capable of describing well-
formed XML documents, since XML is precisely one of these kinds of parenthesized
languages of the above form. On the other hand, the example provides the motivation
to investigate another class of languages, the context-free languages presented in the
next section.

Applications: Typical examples of applications of regular languages include lexical
analyzers. Lexical analyzers use finite state automata for recognizing tokens (e.g., key-
words) in compilers. Vice versa, regular expressions are typically used for prescribing the
structure of tokens (e.g., legal variable names). XML Schema uses regular expressions
as well, as the following excerpt from the XML Schema for Schema exemplifies:

<xs:simpleType name="NCName" id="NCName">
<xs:restriction base="xs:Name">
<xs:pattern value="[\i-[:]][\c-[:]]*" id="NCName.pattern"/>
</xs:restriction>
</xs:simpleType>

Another example from the universe of XML is the content models of DTDs, which are
regular expressions. However, general content models in SGML are not strict regular
expressions, because they allow the use of the interleave operator &. Regular expres-
sions extended by this operator sometimes are called extended regular expressions. The
interleave operator causes several problems. Firstly, extended regular expressions are no
longer local. This increases the complexity of such expressions, as we will see in Sec-
tion 8.2. Secondly, different interpretations of the semantics of the interleave operator
are possible. It is a priori unclear whether an expression ((ab) & (xy)) only allows the
strings {abxy, xyab}, or also {axby, xaby}.

Although XML Schema knows a comparable construct, the restrictions of XML Schema’s
xs:all group avoid the semantic problems because such a group must not contain other
model groups, and because it allows at most single occurrences of each element.

4.2.2 Context-Free Grammars

Context-free grammars, established by Chomsky in the aforementioned article [29], were
initially intended to provide a description of natural language. Despite missing this goal,
context-free grammars proved very powerful in the field of computer science.
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Informally, context-free grammars can be viewed as an extension of regular expressions
into the recursive domain.

Definition: Formally, a context-free grammar, or CFG G, is defined as G = (V, T, P, S),
where

1. V a set of non-terminals, or variables (in linguistics, these are called syntactic
categories)

2. T a set of terminals
3. P a set of productions of the form v → x with v ∈ V, x ∈ {V × T}
4. S a start symbol with P ∈ V

The context-free language generated by G is L(G) = {w ∈ T ∗ | S
∗−→ w} with ∗−→ being

the transitive and reflexive closure of the above rewriting operator →. That is, L(G) is
comprised of all those strings w that can be legally derived from the start symbol S by
recursively applying the rewriting rules of the productions P .

Context-free languages are closed under the regular operations (i.e., concatenation,
union, and Kleene star), but contrary to regular languages, CFGs are not closed un-
der intersection and complement.

There is a tree representation of the derivation steps called parse trees which is used
very often and proves highly useful. In a parse tree, the inner nodes (i.e., nodes with
out-degree ≥ 1) are labeled with nonterminals ∈ V , the root node (i.e., the one with
in-degree = 0) is labeled by the start symbol S, and the leaf nodes (i.e., the ones with
out-degree = 0) are labeled with terminals ∈ T . The concatenation of the terminals,
read from left to right, is called the yield of the parse tree, and it is exactly the string
w produced by the derivation.

If more than one parse tree can be determined for a string, the grammar is called ambigu-
ous. Often, ambiguity of a grammar is due to a poor design of the production rules, and
can be avoided by transforming the grammar. But there is a class of inherently ambigu-
ous context-free languages for which no non-ambiguous grammar exists. Furthermore,
it is undecidable whether a given context-free grammar is ambiguous or not.

A commonly used notation for context-free grammars is the Backus-Naur Form (BNF),
or Extended BNF (EBNF). We will see below that the <!ELEMENT ...> element in
DTDs also is a notation for CFGs; and complex types in XML Schema can be seen as
the right-hand sides of production rules in a CFG.
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Example A context-free grammar G = (V, T, P, S) with
1. V = {P}
2. T = {(, )}
3. P = {P → (P ), P → P · P, P → ε}
4. S = P

produces the context-free language of parenthesized strings
L(G) = {ε, (), (()), ()(), (()()), . . .} The figure on the right
hand displays the parse tree for the string (()()).

Model of Computation: The model of computation of context-free grammars and
languages is the push-down automaton (PDA) or stack automaton. It adds a stack to
the finite state automaton. It can be shown that PDAs are strictly more powerful than
finite automata.

Like for finite state automata, there are deterministic and non-deterministic push-down
automata as well. But in contrast to finite automata, these two classes are not equivalent
for push-down automata. In consequence, the corresponding classes of grammars (i.e.,
deterministic and non-deterministic context-free grammars) are not equivalent either.
For this reason, the Chomsky hierarchy in Table 4.1 is sometimes refined by inserting an
additional tier between type-3 and type-2 grammars: the class of deterministic context-
free grammars. It can be shown that the expressiveness of this class is strictly between
regular languages and non-deterministic context-free languages, and the set of languages
which can be described by deterministic CFGs is a proper subset of the set of languages
of the former.

A simple example shall illustrate the difference. Consider the language of palindromes
(of even length, for the sake of simplicity: Lpal = {wwr | w ∈ T}), and the language of
palindromes with center-marker (Lcmp = {w#wr | w ∈ {T r #}}). It is intuitively clear
how PDAs recognize strings of these languages. For every input symbol they consume,
a corresponding stack symbol is pushed onto the stack. As soon as half of the string is
consumed, stack symbols are popped from the stack and compared to the input symbols
consumed. If they are all equal, the input string is recognized.

The important question is of course, how does the PDA know when it is supposed
to switch from pushing to popping mode? And here, the difference in computational
power becomes evident. Deterministic PDAs are perfectly able to recognize Lcmp, the
palindromes with center-marker, because the center-marker triggers the PDA to enter
the popping mode. But as they do not have prophetic capabilities, they fail to recognize
Lpal, for nothing indicates that the center of the string has been reached.

Non-deterministic PDAs recognize both languages. Recognizing Lcmp is trivial, and the
recognition of Lpal is intuitively understandable when recalling the interpretation of non-
determinism as parallelism. Imagine an additional instance of the PDA in popping mode
to be forked for every input symbol consumed. If one of those forked instances succeeds
in recognizing the input string, then the string is in Lpal.
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The non-equivalence of deterministic and non-deterministic context-free grammars is
important in the context of XML, as both non-deterministic and deterministic grammars
are available.

Limitations: There is a pumping lemma for context-free languages as well. Its basic
idea is similar, and it is used for the same purpose as the pumping lemma for regular
languages, i.e., in order to prove that certain languages are not context-free languages.
While the proof of the pumping lemma for regular languages is carried out by induction
over the length of strings, the proof for the pumping lemma for CFLs is by induction
over the depth of parse trees. The idea is to show that if the depth of the parse tree
is > |V |, at least on nonterminal has productions that (possibly indirectly) contain this
nonterminal, which has effects similar to the effect of cycles in finite state automata.
Detailed proof can be found in the literature.

The pumping lemma for context-free languages states:

For each context-free language L, there exists a constant n such that for every
string vwxyz which fulfills the following conditions

1. vwxyz ∈ L
2. |vwxyz| ≥ n
3. |wxy| ≤ n
4. w, y 6= ε

the string vwkxykz also is in L for every k ≥ 0.

As a consequence, languages can be proven not to be context-free, for example L3 =
{akbkck | k ≥ 0} or Lww = {ww | w ∈ T}. The latter one is of interest in our context
because it contains a kind of co-constraint that we might imagine to be applied to a
document type as well. Bearing in mind the model of computation (i.e., the stack
automaton), it is intuitively clear that this language cannot be recognized, and thus
cannot be described by a context-free grammar. Assume the PDA to have consumed
the first half of a word in Lww and to have put corresponding symbols onto the stack.
If the PDA now tries to compare the following input symbols to the symbols on the
stack, it cannot do so. The first symbol of the second half of the input string would
have to be compared to the symbol lying at the bottom of the stack, which cannot be
accessed.

If we allow access of the stack at random positions, the model of computation becomes
equivalent to a linear-bounded Turing machine. From Table 4.1, we see that Lww there-
fore is part of the class of context-sensitive languages.

Applications: The main application of context-free grammars is parsers. This is
the field where context-free grammars have been extremely influential for the last four
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decades, and in turn, the popularity of context-free grammars is due to the impact they
have had on the construction of parsers and compilers.

Different classes of parsers can be distinguished, which are of different computational
power, i.e., they can only be employed in order to parse a certain subclass of context-
free languages. These subclasses are usually named after the parser type. The most
prominent examples are:

• LL(k) parsers read the input from Left to right, build a Left-most derivation, and
use k symbols of look-ahead. “Building the left-most derivation” means that the
parser works in a top-down manner. Because the worst-case complexity of parse
tables for LL(k) parsers is exponential in k, usually only LL(1) parsers are of inter-
est. This in turn limits the set of parseable languages to non-ambiguous languages
without left-recursion (i.e., production rules must not contain a nonterminal both
in its left-hand and right-hand side or derivatives therefrom).

• LR(k) parsers read the input from Left to right, build a Right-most derivation,
and use k symbols of look-ahead. “Building the right-most derivation” means that
the parser works in a bottom-up manner. LR(k) parsers are more powerful than
LL(k) parser; each LL(k) grammar is a LR(k) grammar as well.

• SLR parsers, or Simple LR parsers, are a subclass of LR(k) parsers. They are
LR(0) parsers with one symbol of look-ahead added, and they have restricted rules
for how they manage their stack in order to avoid some problems encountered with
LR(0) parsers.

• LALR(1) parsers are Look-Ahead LR parsers. Although less powerful than LR(1)
parsers, most of today’s parser generators (e.g., yacc) produce this kind of parsers.

XML parsers are top-down parsers, and due to the requirement that content models must
be deterministic, XML parsers work with one-symbol lookahead. This lets us conclude
that XML parser are in the category of LL(1) parsers. Although XML grammars may
contain left-recursion, other restrictions like determinism in DTDs and XML Schemas
compensate for this. Brüggemann-Klein state that all SGML parsers (which are a more
general class than XML parsers) are LL(1) parsers [23].

Extended Context-Free Grammars: A special case of context-free grammars is
called extended CFGs. It implies that the right-hand side of the productions can be a
regular expression. This is merely a change in notation and does not affect the effective
computational power, because every extended CFG can be rewritten as an ordinary CFG.
For instance, the production P → (E + F ) can be rewritten as P → E, P → F .

DTDs are extended context-free grammars. The description of the content models of
elements allows the usage of more than the three basic regular operators, but we have
shown in Section 4.2.1 how these operators can be reduced to the three regular operators.
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Let us briefly demonstrate how DTDs can be mapped to the above definition of context-
free grammars as L = (V, T, P, S):

• The set of nonterminals V is the set of element declarations with non-empty content
model; i.e., element declarations of the form <!ELEMENT name (...)>.

• The set of terminals is the union of all empty element declarations and the special
symbol #PCDATA. The latter is of special interest, as it is actually the nonterminal
of a production rule implied by the specification [18]. Its right-hand side is the set
of legal characters in XML.

• The production rules P are the element declarations. The second production rule
from our introductory above would read in a DTD as <!ELEMENT P (P,P)>.

• Finally, the start symbol S is defined in the document type declaration. Using the
above example again, this is <!DOCTYPE P [ the element declarations ]>.

Looking at the interpretation of DTDs as extended context-free grammars, one realizes
that many of the essential features of DTD, like attributes, IDREFS, and parameter
entities, are not present. In fact, the practical expressiveness — more pragmatically
understood as usefulness — is not covered by the interpretation as context-free grammar.
However, this does not mean that DTDs are more expressive than CFGs in the formal
sense. They just include a set of features which do not change the expressiveness in
the formal sense of “which classes of languages are they able to describe”, but which
essentially add to the practical usefulness of DTDs as an actual schema language for
XML. This discrepancy is even more pronounced in the case of XML Schema.

This has two consequences: Firstly, when we want to compare schemas in terms of their
expressiveness in the strict sense, or when we want to make statements about computa-
tional complexity, we might want to refer to a grammar core of a schema language. For
simple, grammar-oriented schema languages like RELAX NG, this grammar core may
embrace almost the whole language. For more complex modeling-oriented languages like
XML Schema, this may be a small subset.

Secondly, several attempts have been made to describe schema languages entirely in
a formal way. Section 4.3 offers an overview in the case of XML Schema, and Sec-
tion 4.5 discusses whether this is a reasonable way of addressing the above discrepancy,
or whether other possibilities are conceivable.

4.2.3 Hedge Grammars

Hedge grammars have been introduced by Murata [71] as “a simple but powerful model
for XML schemata”. Hedge grammars build upon regular tree languages, which was first
studied systematically by Brainerd [14] as a generalization of regular languages over
strings. Murata is one of the two authors of the XML schema language RELAX NG
(see Section 2.4.2), which is defined as a hedge grammar.



4.2 Formal Languages 48

Hedge grammars are not more powerful than context-free languages (in fact, they can
be shown to be context-free), but hedge grammars are especially suited for describing
XML grammars because they reflect the structures of XML in a semantically intuitive
way.6

Definition: According to [71], a regular hedge grammar (RHG) is defined as G =
(Σ, X,N, P, rf ) whith

1. Σ a set of symbols
2. X a set of variables
3. N a set of nonterminals
4. P a set of production rules of either the form n → x (where n ∈ N,x ∈ X) or

n → a〈r〉 (where n ∈ N, a ∈ Σ and r a regular expression comprising nonterminals).

When interpreted as sequences of trees, symbols identify interior tree nodes, where vari-
ables label leaf-nodes.

Example: A hedge grammar G = (V, T, P, S) with
1. Σ = {a}
2. X = {x}
3. N = {n1, n2}
4. P = {n1 → a〈(n1 + n2)+〉, n2 → x}
5. nr = (n1 + ε)

produces the context-free language of parenthesized strings
L(G) = {ε, a〈x〉, a〈xa〈x〉〉, a〈xa〈x〉x〉, a〈xxa〈xa〈x〉xx〉x〉, . . .}
The figure on the right hand displays the tree interpretation
of the expression a〈xa〈a〈xxx〉〉a〈xx〉〉.
Note that the interior nodes are labeled by symbols, rather than nonterminals as in
the parse trees of CFLs, for the structure we see here is the yield, or outcome of the
derivation.

Tree Interpretations: An interpretation of a tree (or hedge) is a mapping that maps
every node in a tree to a nonterminal. Interpretations can be used in order to define
when a tree is generated by a given tree grammar: a tree is generated by a tree grammar
if an interpretation against this grammar exists, i.e., if every node of the tree can be
mapped to a nonterminal of this grammar.

We mentioned before that tree grammars are context-free grammars. The interpretation
of a tree thus is the parse tree of the context-free grammar which generates this tree.7

6In particular, ordered sequences of nodes and text nodes (called variables).
7In fact, the set of parse trees of context-free languages form a regular tree language.
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Note however that more than one interpretation of a tree may exist (see the discussion
of ambiguity of context-free grammars in Section 4.2.2).

It is evident that interpretations can be thought of as type annotations. XML schema
languages therefore in general have restricted grammars in order to prevent ambiguous
interpretations. The most restricted class of XML grammars, local tree grammars, of
which DTD is an example, require one-to-one correspondence between nonterminals and
element names (i.e., between the n and the a in hedge productions n → a〈r〉). This
restriction obviously makes the interpretation trivial. The limited expressiveness, on the
other hand, is a disadvantage. Section 4.2.4 presents a taxonomy of XML grammars and
discusses their respective limitations.

Model of Computation: Together with the notion of hedge grammars, Murata intro-
duces deterministic and non-deterministic hedge automata. Yet the operation of hedge
automata is no longer as easily imaginable as the operation of push-down automata.
We refer to [71] for a detailed description. Furthermore, due to the correspondence to
Dyck strings, one can conclude that push-down automata are equivalent in computa-
tional power to hedge automata, and that push-down automata can be used as a model
of computation as well.

Dyck Strings: Berstel and Boasson [8] use Dyck strings for describing XML languages.
Dyck strings are a special subclass of balanced context-free languages. Without going
into detail of Dyck strings and their properties, we note the principal idea that T , the
alphabet of terminals of Dyck strings, is composed by two complementary alphabets
(i.e., T = A ∪A), and that the language is generated by a grammar X → aX∗a.8

Obviously, the strings produced by such a grammar can be used for describing well-
formed XML documents, and the grammar thus is an abstract XML grammar. While
hedges seem to reflect the hierarchical structure of XML documents very well, Dyck
strings describe their serialization. If we think of it in analogy to the common processing
models of XML, we might say that hedges are similar to the DOM model, whereas Dyck
strings resemble the SAX model.

We know that the two well-known processing models are equivalent in power — although
of varying appropriateness in use. And in fact, Brüggemann-Klein and Wood [22] prove
that Dyck languages (and balanced context-free languages in general) and hedge lan-
guages are equivalent. However, hedge grammars can be considered to be representing
XML grammars on a higher level of abstraction, preserving the semantics of the hierar-
chical relationships. Brüggemann-Klein and Wood call the hedge the generic-derivation
hedge, and its corresponding Dyck string the hedge’s sequential form.

8More precisely, this is the language of Dyck primes. Dyck strings additionally allow concatenation
of Dyck strings, but the formula gives the basic idea.
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From this equivalence we conclude that the limitations of regular hedge grammars are
the same as for context-free grammars. In particular, the language Lww is still not
describable. A consequence for XML grammars is that it is not possible to express
constraints like “subsequent paragraphs must have the same inner structure, no matter
how this (arbitrary) structure is”.

To make this clear, assume the following DTD:

<!ELEMENT doc (para+)>
<!ELEMENT para ((h1 | h2 | h3), #PCDATA)>
<!ELEMENT h1 (#PCDATA)> ...

Then we cannot use the grammar in order to express the constraint “if one para starts
with h2, then every para must start with h2.” This is exactly a constraint of the form
encountered in Lww. As we discussed in the example of Section 4.2.2, there are languages
capable of expressing such constraints, the context-sensitive languages.

Applications: Today, the most important application of hedge grammars is in the
schema language RELAX NG, both as a formal foundation of the specification and for
the implementation of RELAX NG parsers.

4.2.4 Formal Categorization of Document Grammars

One important application of formal descriptions is the categorization, or the classifica-
tion, of grammars and languages. Once a formal description is at hand, we can compare
languages and grammars using objective criteria.

Murata, Lee, and Mani provide such a “Taxonomy of XML Languages Using Formal
Language Theory” [72]. They identify subclasses of regular tree languages, discuss the
allowed operations, and compare these classes in terms of expressiveness. Furthermore,
they study different algorithms for the validation of document structures for each class,
and they analyze existing XML schema languages using their taxonomy.

Regular tree grammars (RTG) are more general and abstract than regular hedge gram-
mars, and their relation to context-free grammars is the same. Formally, regular tree
grammars are G = (V, T, P, S) with the variables defined as above. The productions of
regular tree grammars are of the form X → ar with X ∈ V , a ∈ T , and r a regular
expressions over nonterminals ∈ V . The right-hand side of productions is called the
content model.

Murata’s taxonomy is summarized in Table 4.2, which needs further explanation. Firstly,
note that the hierarchy exhibits the same property as the Chomsky hierarchy, i.e., each
class in the table is strictly more powerful than the class in the next lower row. In
consequence, the languages generated by the respective grammars are proper supersets
of each other. Secondly, the column labeled “Closed” indicates under which operations
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the respective languages are closed. The symbols are used in their usual sense. Finally,
the third column requires the definition of competing nonterminals.

Definition: Two nonterminals are competing if two nonterminals share the
same terminal a in their respective productions.

Put differently, if two nonterminals are not competing, a direct correspondence ex-
ists between terminal a and the nonterminal X. Assuming the productions to be in a
reduced form, where each nonterminal only appears once in the left-hand side of pro-
ductions,9 a direct correspondence between terminals a and content models r can be
established.

Class Closed Restriction of Competing Example
Regular Tree ∪ ∩r Unrestricted

Restrained-Competition ∩ No content model produces com-
peting nonterminals with a com-
mon prefix of nonterminals

RELAX Core

Single-Type Tree ∩ No content model contains compet-
ing nonterminals

XML Schema

Local Tree ∩ There are no competing nontermi-
nals

DTD

Table 4.2: Taxonomy of XML grammars according to Murata [72]

However, the expressiveness of the grammar part of a schema language does not nec-
essarily describe a language’s actual usefulness, which usually depends on engineering
requirements as much as on formal properties.

In the particular case of XML Schema, Bex et al. [9] argue that the element declaration
consistent (EDC) and unique particle attribution (UPA) constraints are too restrictive,
and that they do not meet their intended goal. They propose to replace EDC and
UPA by a more precise yet less restrictive constraint, which they call one-pass preorder
typability (1-PPT). The idea is to prohibit only those cases where type annotation for
a certain instance node cannot be done during a post-order (or depth-first) parsing of
the instance. This is very similar to the notion of restrained-competition grammars,
although the definition is slightly different. Both approaches follow the principle of
excluding unfavorable cases by formal rules, rather than applying various constraints in
an ad-hoc manner, which eventually results in a too restrictive class of grammars.

9This is always possible because productions contain regular expressions. Multiple productions can
be rewritten as union of the respective content models.
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4.3 XML-Specific Formalisms

As mentioned above, a “Formal Description” for XML Schema [19] was attempted, but
abandoned later. RELAX NG [31] defines formal semantics, as described in Section 2.4.2.
DTDs are a subset of SGML document grammars, which has been subject of various
formal studies. The reader may want to refer to Brüggemann-Klein [20].

Thompson [90] proposes to define a dedicated logic, i.e., a logical framework, for describ-
ing XML Schema. In a working paper,10 Sperberg-McQueen outlines how definitieve-
clause grammars might be used for a description of XML Schema. Both approaches
are explicitly Schema-related, and it is arguable whether a formal description should
describe XML Schema with all its features at once. A limitation to the grammar-related
parts of XML Schema, or a layered approach similar to the approach chosen in RELAX
NG, is perhaps more realistic and reasonable.

Another motivation for formally describing XML documents and XML grammars is the
goal of developing a conceptual modeling formalism for XML. A general discussion of
conceptual modeling can be found in Hoppenbrouwers [52]. An overview of concep-
tual modeling formalisms for XML can be found in Nečaský [74] and in Mohan and
Sengupta [69, 86]. Sengupta and Wilde [87] provide an overview along with a set of
requirements.

Most of the formalisms proposed for XML are extensions or adaptations of well-known
modeling formalisms, either the Unified Modeling Language (UML) or the Entity Rela-
tionship Model introduced by Chen [26].

In spite of an abundance of proposals, there is no formalism for conceptual modeling
established at present. There are various reasons for this. Since XML is capable of
representing a wide range of different data structures, the required models are consid-
erably more complex than in the case of the more limited relational data structures.
Furthermore, the trade-off between minute correspondence to underlying schema lan-
guages versus simplicity and power of the modeling formalism, i.e., the choice of the
level of granularity, is crucial. Some formalisms fail because of an overly simplistic view,
which omits too many of a schema language’s essential features, other formalisms are
hardly useable in practice because of their complexity.

Proposals include Heterogeneous Nested Structures (HNS) [86] and the eXtensible En-
tity Relationship model (XER) [85] by Sengupta, XGrammar [63] and EReX [62], which
builds upon XGrammar, by Mani, ERX [84] by Psaila, and Conceptual XML (C-
XML) [38] by Embley et al.

XGrammar provides a formal grammar that attempts to adequately capture XML Schemas.
XGrammar assumes the existence of a set of nonterminal names N̂ , terminal names
T̂ , and atomic simple types τ̂ . An XGrammar G is then defined as the 7-tuple G =

10Available at http://www.w3.org/People/cmsmcq/2004/podcg.html.

http://www.w3.org/People/cmsmcq/2004/podcg.html
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(NT , NH , T, S,E, H,A) with

1. NT ⊆ N̂ the set of nonterminals of tree type
2. NH ⊆ N̂ the set of nonterminals of hedge type
3. T ⊆ T̂ the set of terminals
4. S ⊆ NT ∪NH the set of start symbols
5. E the set of element productions X → aRE | a ∈ T,X ∈ NT

6. H the set of hedge productions X → RE | X ∈ NH

7. A the set of attribute productions X → aRE | a ∈ T,X ∈ NT ∪NH

RE then is further defined, and the attribute production rule is refined in order to
comply with the ID/IDREF concept. One immediately sees that such a grammar can
describe XML Schema quite precisely, but at the cost of a lengthier and less concise
grammar notation. A formal grammar notation of XML Schema can prove very useful
nevertheless. The presence of a formal grammar facilitates specification, implementation,
and reasoning about XML grammars.

Finally, the separation made between an formal XML grammar (XGrammar) and con-
ceptual modeling formalism built upon the formal grammar (EReX) is more likely to be
successful in dealing with the problems of granularity and complexity than monolithic
approaches.

4.4 Interesting Properties

Since formal languages have been studied extensively over the last decades, a wide range
of properties has been investigated. We discuss a small fraction of those properties that
appear to be useful in our context. Some of them are directly applicable, others may
serve as an inspiration for new algorithms or new perspectives and presentations of XML
schema languages.

4.4.1 Marked Expressions

McNaughton and Yamada [64] first made symbols of a regular expression distinct by
adding indices to the symbols. In a marked expression, all symbols are unique. The
marking is usually expressed by adding subscripts to the symbols. For instance, the reg-
ular expression E = (c(a+b)∗a) becomes E′ = (c1(a1+b1)∗a2) when being marked.

For marked regular expressions, a deterministic automaton can always be derived. How-
ever, unmarking the symbols makes the automaton nondeterministic in the general
case. Brüggemann-Klein [20, 21] utilizes this in order to concisely define unambigu-
ous SGML content models. According to Brüggemann-Klein, the one-symbol-lookahead
version of unambiguity in the SGML specification should be called more precisely 1-
unambiguity.
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Let us first introduce the complementary operation of marking, i.e., the unmarking of
marked expressions. The operation simply discards the subscripts, and it is sometimes
written as a function χ(x), sometimes as an operator x\. We use the latter notation.
The definition of 1-unambiguous content models then is:

A regular expression E is 1-unambiguous if its marked expression E′ denotes
no two strings uxv and uyw where x 6= y and x\ = y\.

If we resume the example from above, we can now prove that the regular expression
E = (c(a + b)∗a) is not 1-unambiguous. We consider the marked expression E′ =
(c1(a1 + b1)∗a2) and two input strings c1a1a2 and c1a2 (the marked symbols which
correspond to the variables x and y, respectively, are printed in boldface). We recognize
that the marked symbols are distinct, but after unmarking the strings, the symbols are
equal: the first string becomes caa, the second becomes ca. Therefore, we have a1 6= a2

yet a\
1 = a\

2 = a, and we conclude that E is not 1-unambiguous.

One of the applications of marked expressions thus is checking of ambiguity, and pro-
viding the formal foundation for the definition of 1-unambiguity, which is important
and helpful. In Section 8.2, we will show how marked expressions can be used for an
efficient construction of automata, and how this can be utilized for XML Schema appli-
cations.

In the same section, we also extend marked expressions to symbols with numeric expo-
nents, i.e., symbols for which the range of permissible occurrences is given by integers in
0,∞. However, the definition of 1-unambiguity then must be adapted, too, for instance
by using marked symbols from Σ× N2, rather than from Σ× N, and by adapting the \
operator as well.

4.4.2 Derivatives

Brzozowski [24] introduced derivatives of regular expressions in order to develop an
elegant algorithm for constructing finite automata from regular expressions. A derivative
of a regular expression with respect to a certain marked symbol is the regular expression
which describes the set of strings that can follow this symbol. Given a marked regular
expression E = ((a1 + b1)c1a

∗
2), the derivation with respect to a1 is Da1(E) = (c1a

∗
2).

Consecutive derivations Dc1(Da1(E)) can be rewritten Da1c1(E).

For the formal definition of derivatives, Brzozowski introduces a function δ(E), which
sometimes is said to test whether a regular expression is nullable or transparent.

δ(E) =
{

ε if ε ∈ E
∅ if ε /∈ E

Although a regular expression may have infinitely many derivations, the number of char-
acteristic derivations (i.e., the set of derivatives modulo associativity, commutativity,
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and idempotence of the + operator) is always finite. Therefore, every regular expression
can be decomposed into a sum of disjoint terms and δ:

E = δ(E) +
∑
ai∈Σ

aiDai(E)

From this decomposition it is clear that an automaton can directly be constructed, where
the symbols ai denote the arcs (i.e., the input symbols which cause the transition) and
the derivatives Dai the vertices (i.e., the states of the automaton).

It is not hard to see that this decomposition of regular expressions using derivatives
can be applied in order to test whether or not a given sequence of nodes subsumes a
content model in an XML grammar. Sperberg-McQueen discusses the “applications of
Brzozowkski derivatives to XML Schema processing” [89].

4.4.3 Follow Sets

Berry and Sethi [7] introduced the notion of follow sets of positions (i.e., marked sym-
bols). Follow sets contain all positions that can legally follow after a given position in a
string. A special set is the first set, which contains all positions with which a string can
be legally started. The definitions are as follows:

first(E) = {a | av ∈ L(E)}, follow(E, a) = {b | uabv ∈ L(E)}

Additionally, either a last set last(E) = {b | ab ∈ L(E)} or a special endmarker symbol
(usually denoted by !) is required. For this report, we choose the latter alternative, and
thus always implicitly add ! to Σ where follow sets are used.

Obviously, follow sets are closely related to derivatives of regular expressions. Follow sets
can be employed for similar purposes (most notably, for the construction of determin-
istic finite automata from regular expressions), while yielding more efficient algorithms.
Section 8.2.2 demonstrates how follow sets can be utilized for checking content models
in XML grammars.

A second application of follow sets is that they permit concisely defining when two
positions are competing. The notion of competing positions is used for defining ambiguity,
and in decision algorithms for ambiguity. Brüggemann-Klein [20] defines competition of
two positions in regular expression using follow sets:

Two positions x and y in a marked expression E′ compete if and only if

1. x, y ∈ first(E) or

2. x, y ∈ follow(E, z) for some z ∈ E
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Brüggemann-Klein [20, 21] also gives a definition of competing positions for extended
expressions, i.e., expressions which contain the interleave operator & as well. The defi-
nition uses an adapted version follow sets, follow−, which has been proposed by Clark.
However, this workaround defines those adapted follow sets recursively for expressions
E = F & G. Neumann [73] argues that this is not justifiable because the & operator is
not associative. He then gives a different ambiguity test for SGML content models.

4.5 Canonicalization and Normalization

Canonicalization and normalization are important for different reasons. Both can be
used in order to make languages, grammars, or single instances comparable. In the
context of document grammars, canonicalization is usually a prerequisite for making
document grammars amenable to a formal description, and normalization can be used
in order to guarantee certain quality criteria.

We distinguish canonicalization from normalization. Normalization is a stronger concept,
which also includes structural transformations, and which is connected to a measure
(or to some quality criteria) that is used for defining a kind of minimal or best form.
Canonicalization primarily defines how certain degrees of freedom shall be limited, it
defines rules for the unification of encodings, and it defines which properties should be
discarded in a canonical form.

A common example of canonicalization in grammars is the omitting of unused symbols,
nonterminals, or production rules. For instance, Berstel and Boasson [8] call a grammar
reduced if “every non-terminal is accessible from the axiom, and every non-terminal
produces at least one terminal word.” The well-known example of canonicalization of
XML documents is the Infoset, and in Section 6.3, we discuss a possible approach to
obtain canonicalization for XML Schemas as well.

A normalization of extended context-free languages has been proposed by Albert et
al. [1]. There are also proposals for normal forms for XML, for instance by Embley
and Mok [39] and by Arenas and Libkin [2]. Unfortunately, both chose the name XML
Normal Form (XNF) for their proposals, although they are not related.

Normalization and canonicalization in XML Schemas have not been discussed extensively
yet. We list a few reductions that normalization of XML Schemas — in contrast to
canonicalization — could include:

Unification of Attributes and Elements: In its simplest interpretation, attribute
declarations are mapped to element declarations, such that the documents de-
scribed by the grammar all are in the so-called Element Normal Form (ENF). For
instance, Sengupta’s XER [85] assumes documents to be in ENF.

Resolution of Substitution Groups: From a semantical point of view, the effect of
substitution groups and choice model groups is equivalent. One might therefore
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consider to transform substitution groups into choice model groups.

Restructuring Model Groups: For regular expressions, normal forms can be defined
via the corresponding minimal automata. As model groups are extended regular
expressions, normalization can be applied to them.

While it is debatable to which extent normalization is desirable for XML Schemas,
canonicalization is an important prerequisite for formal descriptions of XML Schemas.
Both mechanisms can be used in order to separate different layers, eventually singling out
a purely syntactical subset, or grammar core, of XML Schema. One example of such a
layering can be found in RELAX NG, where a well-defined simplification of a convenient
(but complex) syntax to a simple (but formally describable) one takes place.

However, XML Schema is significantly more complex than RELAX NG, because it con-
tains modeling-oriented features as well. It will be advantageous to gradually strip off
these more abstract properties, eventually applying normalization transformations like
the ones listed above. A layered approach that achieves a separation of concerns could
substantially alleviate a later formal description of XML Schema. We believe that a
combination of separation of concerns and a simple yet robust grammar formalism is a
more promising approach than the approaches listed in Section 4.3 which attempt to
formally describe XML Schema with all its features as a whole.
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Data Model Access

In Section 3, we stated the need for an accessible data model for XML Schema. We
pointed out that accessibility should include three parts:

1. a unified data model,
2. a coherent concept of identity with the possibility to uniquely identify the compo-

nents of the data model, and
3. a set of well-defined accessor functions.

However, we want to clarify that XML Schema information is accessible already at
present, and in various ways. The Schema-aware additions in XSLT 2.0, which we
described in Section 2.4.1, are one example; other examples include the APIs of validating
parsers, most notably the Xerces Native Interface (XNI) of the Xerces parser family. Yet
these kinds of accessibility are not sufficient to satisfy our above requirements. XSLT
2.0 does not expose the structure of an XML Schema (e.g., in a navigable way), and XNI
uses a proprietary representation of the data model, and the interface is only accessible
on a low level of programming which requires an amount of expertise which we think is
inappropriate.

The problems are mostly due to the way in which XML and XML Schema evolved.
XML progressed from an untyped, but reasonably self-contained, data format to a typed
format which potentially requires the Schema to be present in order to interpret the
data contained. This development required adaptations and additions to be made. For
instance, the Infoset became augmented by the PSVI,1 and the Infoset became refined
(or reduced) to the XPath data model when XSLT entered the scene.

As XML technologies become more mature, and as the use of XML is increasingly shifted
from being a simple interchange data format towards becoming a central data format for

1Unfortunately, the Infoset was not very well prepared to integrate such additions. Despite vivid dis-
cussions which demanded the incorporation of extension facilities into the Infoset, the final specification
contained none of these.
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global-scale information systems, we expect Schema-awareness to become an essential
feature. In order to fully utilize Schema data, its data model must be designed to be
accessible.

It is not our claim to have the solution to the question how such an accessible data model
should look in the end. We rather present two approaches which we are experimenting
with. We think that the presence of prototype implementations is essential for identifying
the most important scenarios of use, for exploring problems and opportunities, and in
order to finally design a framework which meets the three goals stated above.

5.1 Applications

There are a great many of applications which potentially will utilize, and benefit from,
accessible XML Schema information. The kinds of these applications can be very dif-
ferent, which results in manifold demands and needs. This complicates the design of an
accessible data model. There is no single optimal solution. The design of an accessible
data model must be guided by the class of applications it is intended to be utilized by.
Many of the needs of different use cases are not easily reconciled, and a great amount of
flexibility (or arbitrariness) is inherent to many of the design decisions to be taken. It
is therefore even more important to have prototype implementations available, in order
to experimentally explore these flexibilities or trade-offs.

The space of different classes of applications which will presumably utilize Schema data
can be roughly divided into two dimensions:

1. Applications which require read-write access to the Schema, and applications for
which read-only access is sufficient.

2. Applications which work with Schemas on a stand-alone basis, and applications
which use Schemas for processing instance documents.

In the first of these two dimensions, we constrain our studies to read-only scenarios. This
is in accordance with the corresponding models and technologies for XML documents,
which also focus on read-only access (i.e., the Infoset and XPath). The second dimension
is further illustrated by examples in the following sections. The following chapters then
present our two approaches, SCX (Chapter 6) and SPath (Chapter 7).

5.1.1 Stand-Alone Applications

By stand-alone applications we mean applications that work on the XML Schema as
primary input. Examples of applications from this class include:

UI Generation: Because XML Schema describes the syntactical structure of a class of
documents (and potentially a subset of the semantics, too), the generation of user
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interfaces from Schemas is desirable. Garvey and French propose generation of user
interfaces from composite schemas [44]. Many of the challenges they encountered
are related to data model accessibility and presentation.

Schema Mapping: Schema mapping, i.e., the identification of structural (and possibly
semantic) similarities, and the generation of a mapping between the Schemas (i.e.,
by generating an XSLT stylesheet), is an important process transferring XML doc-
uments in loosely coupled systems. Schema-mapping frameworks like Cupid [60]
could be substantially improved by the availability of more complex Schema infor-
mation.

The recent popularity of mash-ups adds to the importance of mapping applications,
because re-purposing of information often requires structural transformations.

Documentation: XML Schemas are not suitable as a documentation format. In Sec-
tion 8.3, we demonstrate how documentation can be generated from XML Schemas
in a versatile and extensible fashion. Documentation of XML Schema will be crucial
in the near future, as XML Schema is increasingly used as a format for describing
service interfaces, for example in WSDL (see Section 2.4.3).

5.1.2 Instance-Driven Applications

By instance-driven applications we mean applications that work on XML instances as
primary input, utilizing XML Schema information while processing. Generally, exam-
ples of this class of applications primarily include Schema-aware transformations, for
example:

Resilient processing: Utilizing Schema information, applications can be designed to
be more resilient and tolerant (e.g., in the face of unknown versions or extensions).
This may include type reflection (i.e., the run-time generation of stylesheets from
a template meta-stylesheet).2

Compatibility Preprocessing: Through the ability of type introspection, input data
may be preprocessed in order to be compliant with a processing application. A
particular case of compatibility preprocessing is Schema-aware validation by pro-
jection, as described in Section 3.4.

Data Mining: Recalling our reflection of XML Schema as a metadata format in Sec-
tion 3.3, Schema information may be utilized for interpreting instance data.

2At present, we expect this class of application to become the most important scenario of use for data
model accessibility.
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SCX: Schema Component XML
Syntax

In contrast to DTDs, the transfer syntax for XML Schema is not very convenient for
human readers to deal with. This is mostly because of the verbosity which is introduced
by the XML syntax. From this one might be tempted to conclude that the transfer syntax
is better suited for machine-processing, but on closer inspection it becomes apparent that
this is not the case either. While the XML syntax enables machines to easily parse XML
documents, it does not facilitate the assembling of the Schema’s abstract data model
from the (possibly multiple) Schema documents.

One of the reasons is that XML Schema documents are not fully self-contained. The
right-hand side of Figure 6.1 on Page 65 illustrates how an XML Schema document
depends on various external data sources. Firstly, it may include further Schema docu-
ments (not shown in the figure), and it may import Schema documents with a different
namespace (the Schema document personLib.xsd in the figure). Secondly, every XML
Schema document implicitly imports all built-in types from the recommendation. And
thirdly, every Schema obeys additional rules and constraints which are defined by the
recommendation. While includes and imports are usually present as XML documents,
the other contributions are typically built into the processor or Schema-validator. An
application which desires to retrieve the actual (i.e., assembled) Schema must have this
information available as well. This is not easy, because the XML Schema for Schemas
covers only a fraction of this information, whereas the rest is only available in prose —
inaccessible to machines.

Another reason why the retrieval of the Schema information from Schema documents is
hard is the misalignments between the elements of the transfer syntax and the units of
the abstract data model, which are the Schema components. Consider for instance the
complex type definition Schema component. From the recommendation, we see that this
component has the following properties:
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1. {name} (optional)
2. {target namespace} (possibly absent)
3. {base type definition}
4. {derivation method}
5. {final}
6. {abstract}
7. {attribute uses}
8. {attribute wildcard} (optional)
9. {content type}

10. {prohibited substitutions}
11. {annotations}

Property 1 is easy to determine. Property 2 has to be looked up from the document’s top-
level xs:schema element. 5 and 10 have to be computed from document-wide defaults
and local definitions, whereas 3, 4, and 6 have to be computed from local definitions and
default values obtained by interpreting the recommendation. 11 requires the collection of
all xs:appinfo and xs:documentation elements and of all attributes with non-Schema
namespaces from the type definition element and all of its dependents. 7 and 9 are
only determinable by resolving all references to named groups and by investigating the
complete set of ancestor types — always correctly computing the resulting effective
model group, which depends on the type of derivation. The construction of the Schema
property 9 is particularly intricate because the recommendation requires it to be “one
of empty, a simple type definition or a pair consisting of a content model [. . . ] and
one of mixed, element-only.” The {simple type definition} of course is yet another
property to be calculated. And finally, the computation of 8 involves the resolution
of all attribute groups, consideration of all ancestor types, and thorough study of the
recommendation.

Obviously, the transfer syntax is not a good representation of Schema information for
machine-readable access either. It turns out that the transfer syntax is a hybrid of
a machine-readable format (i.e., XML) and a human-editable syntax (i.e., notational
shorthands like document-wide default values).

In Section 2.1, we quoted an excerpt from the recommendation [91] of XML Schema
that stated:

The abstract model for schemas is conceptual only, and does not mandate
any particular implementation or representation of this information.

This inspired us to design an alternative XML syntax for XML Schemas with explicit
objectives and clear design rationales. We call our XML syntax the Schema Component
XML Syntax (SCX) [101].
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6.1 Design Rationale

The design of SCX is guided by clear objectives and the following general strategy.

1. The syntax represents the Schema components, from which the abstract data model
is built, as faithfully as possible.

2. The format is self-contained as far as it is possible in an XML format.

3. The syntax is explicitly intended to be read by machines.

Note that the third principle implies that SCX is explicitly not intended for human use.
XQuery also makes a clear split between human-readable and machine-readable formats.
The standard syntax is a non-XML syntax, but an XML syntax called XQueryX [65]
is available as well. The former syntax suits humans, the latter is a powerful format
for machine access, e.g., when generating or transforming XQuery documents [53]. In
analogy to XQuery, one might want to complete this spectrum by defining a non-XML
syntax for XML Schema as well, which is primarily intended for human use. A compact
syntax has been proposed [103], but has not received wide recognition so far.

6.1.1 Recommendation Version

Version 1.0 is still the authoritative recommendation for XML Schema, and SCX mostly
implements this recommendation. However, there are parts in version 1.0 of the rec-
ommendation which are either unclear or which require decisions to be made when
implementing a representation of the data model. The draft recommendation of version
1.1 of XML Schema (which is currently being developed) is often clearer in such cases.
We thus decided to follow XML Schema 1.1 wherever it clarifies version 1.0. SCX is
not a complete implementation of XML Schema 1.1, although it can easily be extended
to cover the entire recommendation of XML Schema 1.1 (this, of course, depends on
whether additional major changes will be included in future draft versions).

SCX is able to represent every XML Schema document which is correct with respect to
the XML Schema 1.0 recommendation.

6.1.2 Mapping to XML

The design rationale while developing the XML syntax of SCX was to map Schema
components and their properties directly to XML elements wherever possible, and to
add additional properties if necessary. This was necessary in four cases, partly because
of insufficiencies or vagueness of the recommendation, partly in order to keep the imple-
mentation efficient, and in order to support the needs of users.

1. SCX introduces unique identifiers (UID). On the one hand, this avoids the prob-
lems of component identifiability discussed in Section 2.6.3, on the other hand, it
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provides for an efficient implementation. UIDs are only used internally and can be
hidden from the user completely.

2. The problem of non-discernable anonymous simple types in unions (see Section 2.6.3)
is addressed through the introduction of an additional component property {position},
which is only present for the problematic simple types.

3. SCX can be configured to additionally preserve information concerning the prove-
nance of the Schema components, i.e., the document URI of the XML document
where the component was defined, and an XPath expression which points to the
corresponding definition element within this document.

4. While the transfer syntax allows annotations to appear in different locations,1

Schema components gather annotations in one {annotations} property. Since the
exact association is often a semantically relevant part of the annotation informa-
tion,2 SCX stores a relative XPath which points to the original location of the
annotation.

In order to circumvent choices in the data model itself, the abstract data model often
employs a component property {variety}, which then decides how other component
properties are to be interpreted. In the simple type definition component for instance, the
property {variety} decides which of {primitive type definition}, {item type definition},
and {member type definitions} must be present or absent. It is debatable whether
or not this is a good approach. Yet we decided to stay consistent with the abstract
data model in most of these cases, with one exception. XML Schema 1.1 specifies
wildcards to have a property {variety} which is “One of {any, enumeration, not}”,
and which then determines the semantics of the {namespaces} property. If {variety}
is “enumeration”, {namespaces} contains a list of allowed namespaces. If {variety}
is “not”, {namespaces} contains a list of excluded namespaces. In our opinion, the
design of the abstract data model should not contain component properties with variable
semantics. SCX’s representation of wildcards therefore employs component properties
{any}, {allowed-namespaces}, and {excluded-namespaces} instead.

Finally, SCX always uses XML container elements in lists, even if the list items have
an atomic type. Although lists of atomic values could be represented by whitespace-
separated lists, we decided to express list structures through XML markup.3

Note that these two deviations from a strict mapping of Schema components (i.e., avoid-
ing {variety} in wildcards and introducing container elements for list items) are pure
syntax design decisions and not structural characteristics of SCX.

1For example, xs:annotation in xs:complexType elements may appear within xs:simpleContent or
xs:extension et cetera as well.

2This is particularly true for non-Schema namespace attributes, which are handled as {annotations}
as well.

3As XML is a format for structured data, we see no need for mixing it with different, less robust
formats for structured data like whitespace-separated lists.
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6.1.3 Self-Contained Data Format

One of the key advantages for machine access is that SCX documents contain as much
Schema information as XML Schema is capable of representing. SCX therefore includes
all information that normally would be external or implicit into one document. Of course,
the downside of this approach is a significant increase in document size. However, the
advantage of not being forced to collect, compute, and interpret information from various
(possibly inaccessible) places vastly outweighs this disadvantage.

Figure 6.1 shows the process of assembling an SCX document from all the different
sources that usually make up an XML Schema.

Assembling a Schema from different documents Self-contained representation in SCX

Figure 6.1: Self-contained representation of an assembled Schema through SCX

The chosen example illustrates different characteristics of the transformation to SCX.
The document personLib.xsd is an example of an XML Schema document which is im-
ported into address.xsd. These two Schema documents have different namespaces. The
sample SCX document on the left-hand side illustrates how SCX incorporates compo-
nents from different namespaces by means of its scx:target-namespace element.

The element declaration city in address.xsd references xs:token, an XML Schema
built-in type. SCX uses the XML Schema for Schemas document XMLSchema.xsd in
order to retrieve the type definition of xs:token. The sample SCX document shows
how the built-in types are then represented exactly like any other (user-defined) type
definition. Additionally, the use of SCX’s internal unique identifiers can be observed.
The property scx:type-definition of the topmost element declaration references the
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built-in type xs:token through the @uid of the latter.

Finally, the properties scx:nillable and scx:disallowed-substitutions demonstrate
how definitions given in prose in the recommendation (as shown in the left-hand side
figure) are interpreted and applied in SCX.

6.2 Format

As SCX is the XML syntax for Schema components, the format is normatively described
by an XML Schema document — which of course is also available as an SCX document.
This XML Schema for SCX is not only helpful for checking the structure of SCX docu-
ments, but it can also be used for checking some of the constraints of (assembled) XML
Schemas. The XML Schema for Schemas neither contains any identity constraints for
ensuring uniqueness of qualified names for elements and types et cetera, nor does it check
the consistency of references. The simple reason for that is that XML Schema cannot
express identity constraints which span multiple documents. Because SCX comprises all
necessary component in one document, the XML Schema for SCX is able to check many
of the constraints which the XML Schema for Schemas cannot check.

Thus, SCX can also be used for basic Schema-checking. However, several constraints
still cannot be expressed by a grammar-oriented schema like XML Schema. Legal deriva-
tion of types, consistent declaration of element types, the unique particle attribution,
and similar constraints still require procedural Schema-checking. SCX at least offers a
convenient starting point for doing this. Using SCX, it is possible to implement Schema-
checking in XSLT.

In addition to the aforementioned global strategy, the design of the XML format follows
these principles:

Make the XPaths Nice: The design decisions are governed by the goal to allow easy
access paths to be written. This sometimes results in more verbose syntax con-
structs. But remembering that SCX is designed for machine access, this is less
important than the possibility to write powerful XPaths. For example, model
groups — even inherited or referenced ones — are always expanded, as we will see
in Section 6.3. This has the advantage that an XPath expression

$type//scx:content-model//scx:particle

readily returns a flattened set of all possible particles within the content model of
a given type.4

Anticipation of the form of XPath expressions that will work on SCX also influences
the next principle:

4This facilitates the implementation of SPath’s contain:: axis described in Section 7.
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Use Elements for Components: SCX always maps Schema components to elements,
although many components have only atomic values. In turn, all the additional
information described in Section 6.1.2 is encoded as attributes. One reason for
doing so is consistency in the representation of Schema components, the other
reason is hiding (or encapsulation) of internal information.

Given such a separation, a typical XPath expression which uses only the child
axis selects all component information, but none of the additional information,
which is meant for internal use anyway. If an application has to access the internal
information as well (e.g., the function library introduced in Section 8.1), it can
easily do so by using the attribute axis.

Had we decided to use attributes for components with atomic content, the nec-
essary XPath expressions (e.g., for selecting all properties of all type definition
Schema components) would look as clumsy as this:

//scx:type-definitions/scx:* |
//scx:type-definition/@*[local-name() ne 'uid']
[local-name() ne 'document'][local-name() ne 'path'][...]

compared to the elegant and robust way it can be done now:

//scx:type-definition/scx:*

Consistent Naming: Because SCX aims at representing Schema components as faith-
fully as possible, it employs the names of the respective Schema components, except
that spaces are replaced by hyphens. This consistent naming also eases the under-
standing of SCX documents for the human reader, especially the one familiar with
the recommendation.

6.3 Canonicalization

Transformation of Schema documents in the transfer syntax into an SCX document leads
to a certain amount of canonicalization of the Schema. The term “canonicalization” is
used in the same sense as in Section 4.5. That is, the goal is not to transform the Schema
into a (however defined) minimal form, but into a standard representation which ensures
certain properties. The canonical form of XML instances is defined by the Infoset. The
Infoset specifies which properties of an XML document (i.e., the serialization of an XML
tree) are relevant, which ones are only present in the serialization, and which degrees
of freedom are only fixed in the serialization (e.g., the order of attributes). The reader
might want to refer to Appendix D of the Infoset recommendation [34].

And just like canonical XML is defined as the serialization of the Infoset, back-transformation
of an SCX into Schema documents in the conventional transfer syntax may accomplish
the process of canonicalization for Schemas. In fact, the function library which sup-
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ports dealing with SCX provides functionality for back-transformation, or serialization,
of SCX documents. The function library is described in Section 8.1.

The extent to which canonicalization should be performed has no fixed boundary and is
subject to design decisions. The decisions made for SCX are no unchangeable prereq-
uisite for the format. The trade-offs chosen can be discussed and adjusted. This is a
common characteristic of the definition of canonical forms; the Infoset also is the result
of lengthy and intense debates.

In the following, we summarize the canonicalizational aspects of SCX.

1. SCX always explicitly inserts the default values from the recommendation for
properties which are absent in the transfer syntax (e.g., use="optional" for all
xs:attribute elements).

2. SCX re-delegates all document-wide declarations of defaults back to the respective
components. In consequence, an XML Schema document obtained by serializing
an SCX document never contains attributes like finalDefault in its top-level
xs:schema element; instead, every declaration or definition element carries a final
attribute.

3. All qualified names are present in their expanded form. No namespace prefixes
are used in SCX, and the mappings from namespace URIs to prefixes are not
preserved.5

4. Prohibited attributes are removed. While one could argue that this is already a
kind of normalization, it appears that this removal is no arbitrary decision of SCX,
but part of the recommendation, which states:6

[The Schema component corresponding to an <attribute> element infor-
mation item] corresponds to an attribute use with properties as follows
(unless use=’prohibited’, in which case the item corresponds to nothing
at all): [. . . ]

Serialization of an SCX documents correctly inserts the missing declarations, if
type restriction calls for this, yet annotations attached to such declarations are
lost during round-trips.

5. Analogously, particles with trivial occurrence (i.e., with minOccurrs = maxOccurrs
= 0 or minOccurrs > maxOccurrs) are removed. Like the neglecting of prohibited
attributes, this is justified by the recommendation:

[For an <element> element information item,] the corresponding schema
component is as follows (unless minOccurs=maxOccurs=0, in which case
the item corresponds to no component at all): [. . . ]

5For convenience of use, the serializer reads a mapping file where namespace bindings can be defined.
6Parts in oblique font are condensed by the author from parts scattered in the recommendation.
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As in the case above, the missing declarations are inserted during the serialization
of an SCX documents, where necessary.

6. All inherited parts, both parts of the content model and inherited attributes (or
attribute wildcards), are expanded in SCX. After back-transformation, only the
necessary declarations are part of the resulting Schema documents. For instance,
if in a Schema document a type derived by restriction repeats the declaration of
an attribute (which is inherited anyway) without restricting, this declaration is no
longer present after round-tripping.

7. The same holds true for constraining facets in simple type definitions. Definitions
of pointless facets are not preserved.

8. Named groups and named attribute groups are also expanded in SCX’s syntax.7

The order of attribute declarations within named attribute groups is not preserved.

9. When serializing the namespace constraints in wildcards and attribute wildcards,
the effective constraint is output. It is no longer discernible whether a namespace
constraint has simply been inherited or has been explicitly repeated in the original
Schema document.

Canonicalization is an important achievement. When conformance with design rules
or best practice guidelines is to be checked, it is either a prerequisite that the Schema
documents are present in a canonical form, or the design rules must take the possible
degrees of freedom into account. The presence of a canonical representation of XML
Schema thus facilitates this process.

7However, SCX keeps the information which is necessary in order to recover all named groups and
attribute groups in serializations.
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6.4 Sample SCX Source

Two brief excerpts illustrate the Schema component XML syntax. Figure 6.3 is an
excerpt from the SCX representation of the International Purchase Order Schema (IPO),
which is the sample Schema used in the W3C’s Primer for XML Schema [40]. Figure 6.4
is an excerpt from the XML Schema for SCX.

<simpleType name="Postcode">

<restriction base="string">

<length value="7" fixed="true"/>

</restriction>

</simpleType>

<simpleType name="UKPostcode">

<restriction base="ipo:Postcode">

<pattern value="[A-Z]{2}\d\s\d[A-Z]{2}"/>
</restriction>

</simpleType>

Figure 6.2: Excerpt from the SCX representation of IPO.xsd

Figure 6.2 displays two simple types in the transfer syntax, and Figure 6.3 presents
their SCX representation.8 It is obvious from this piece of sample code that SCX is not
suitable for human readers.

8SCX represents both simple and complex types by the same component, which has a property
{category} for disambiguation of the two. This simplification seems justifiable due to the strong struc-
tural resemblance and the fact that both share the same namespace partition.
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Note how the SCX representation of the derived type (i.e., UKPostcode) contains all effec-
tive constraining facets. The attribute inherited indicates the base type from which the
respective constraining facet has been inherited. The property scx:primitive-type-
definition points to the primitive built-in type, which in this case is the type definition
with the unique identifier d14e769, which appears to be xs:string.

<scx:type-definition uid="d11e70">

...

<scx:name>Postcode</scx:name>

<scx:target-namespace>http://www.example.com/IPO</scx:target-namespace>

...

</scx:type-definition>

<scx:type-definition uid="d11e78" document="file:/.../primer-example/address.xsd"

path="schema[1]/simpleType[3]" position="28">

<scx:annotations/>

<scx:name>UKPostcode</scx:name>

<scx:target-namespace>http://www.example.com/IPO</scx:target-namespace>

<scx:base-type-definition>d11e70</scx:base-type-definition>

<scx:category>simple</scx:category>

<scx:final/>

<scx:facets applicable="length minLength maxLength pattern enumeration whiteSpace">

<scx:whiteSpace inherited="d11e70">

<scx:annotations>

<scx:annotation ownerName="whiteSpace">

<scx:attributes id="string.preserve"/>

</scx:annotation>

</scx:annotations>

<scx:value>preserve</scx:value>

<scx:fixed>false</scx:fixed>

</scx:whiteSpace>

<scx:length inherited="d11e70">

<scx:annotations/>

<scx:value>7</scx:value>

<scx:fixed>true</scx:fixed>

</scx:length>

<scx:pattern>

<scx:annotations/>

<scx:value>[A-Z]{2}\d\s\d[A-Z]{2}</scx:value>
</scx:pattern>

</scx:facets>

<scx:fundamental-facets>

...

</scx:fundamental-facets>

<scx:variety>atomic</scx:variety>

<scx:primitive-type-definition>d14e769</scx:primitive-type-definition>

</scx:type-definition>

Figure 6.3: Excerpt from the SCX representation of IPO.xsd
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Figure 6.4 shows excerpts from the XML Schema for SCX. Using the example of type
definitions, it demonstrates how the XML Schema for SCX is capable of asserting more
advanced constraints than the XML Schema for Schema.

<xs:element name="type-definitions">

<xs:complexType>

<xs:sequence>

<xs:element name="type-definition" minOccurs="0" maxOccurs="unbounded"

type="scx:typeDefinitionType"/>

</xs:sequence>

</xs:complexType>

<xs:unique name="typeNameUnique">

<xs:annotation><xs:documentation>

The OR-ing of scx:name and scx:content is safe, because utilization of

them is mutually exclusive.

</xs:documentation></xs:annotation>

<xs:selector xpath="scx:type-definition"/>

<xs:field xpath="scx:name | scx:context"/>

<xs:field xpath="scx:target-namespace"/>

<xs:field xpath="scx:context/@position"/>

</xs:unique>

</xs:element>

...

<xs:complexType name="nameableComponentType" abstract="true">

<xs:complexContent>

<xs:extension base="scx:identifiableComponentType">

<xs:sequence>

<xs:choice>

<xs:element name="name" type="xs:NCName"/>

<xs:element name="context">

<xs:complexType><xs:simpleContent><xs:extension base="scx:uidType">

<xs:attribute name="position" type="xs:positiveInteger"/>

</xs:extension></xs:simpleContent></xs:complexType>

</xs:element>

</xs:choice>

<xs:element name="target-namespace" type="scx:xmlnsType" minOccurs="0"/>

</xs:sequence>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

...

<xs:complexType name="typeDefinitionType">

<xs:annotation>

<xs:documentation source="http://www.w3.org/TR/xmlschema-2/#dc-defn"/>

<xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dc-defn"/> ...

</xs:annotation>

<xs:complexContent>

<xs:extension base="scx:nameableComponentType"> ...

Figure 6.4: Excerpt from the XML Schema for SCX
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SPath: A Path Language for
XML Schema

In Section 3, we stressed the analogy between data model issues on the level of XML
and the level of XML Schema. For XML, the Infoset is the established data model
which defines the canonical form of XML. We then discussed how canonicalization of
XML Schema can be achieved, using the example of SCX. However, the most important
tool for working with XML is not the Infoset, but the path language which operates on
top of it:1 the XML Path Language, or XPath for short. XPath has proved extremely
convenient for navigating XML data, and it is used by many other technologies, e.g.,
XSLT, XQuery, DOM, and XML Schema.

In contrast to its predecessor, XPath 2.0 no longer works only on the Infoset. XPath
2.0 operates on a type-annotated tree instead (Section 2.3.1 described the process of
type-annotating XML documents). But XPath 2.0 exposes the type information only in
a very limited and shallow way. Types are merely represented by qualified names, and
neither is it possible to inspect the different properties of a given type, nor is it possible
to navigate the type hierarchy or other components of the Schema.

In collaboration with Wilde, we created SPath [99, 100], the path language for XML
Schema. Although a stand-alone path language for XML Schema is conceivable, SPath
builds on (and thus complements) XPath. SPath extends both the data model and the
syntax constructs of XPath, and it adds new functions to XPath. This has obvious
advantages: On the one hand, SPath does not have to re-invent the wheel, but uses
XPath’s well-known and widely approved language design instead. On the other hand,
the two path languages can be seamlessly integrated. This is especially useful for the
scenarios described in Section 5.1.2.

In the following, we outline the design principles and the main characteristics of SPath.
1More precisely, XPath 1.0 and 2.0 operate on the XPath data model and the XDM, respectively,

both of them being based on the Infoset.
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A detailed and comprehensive description of SPath can be found in the aforementioned
publication [99].

7.1 Design Considerations

Designing a path language includes a substantial number of design decisions that require
compromises and trade-offs between conflicting needs to be made. As usual with design
decisions, there is more than one valid solution, and many of these decisions could have
been made in a different way, without changing the overall concept of SPath. While
making our design decisions, we applied consistent criteria that were guided by the
anticipated application scenarios. We deemed the instance-driven scenarios more likely
to become the important areas of application.

7.1.1 XPath-Conforming Syntax

The most fundamental design principle of SPath is to be consistent with the syntax
of XPath. Although SPath adds new axes, functions, and kindtests to the syntax, it
does not change the principles of the syntax of XPath. This is important if a future
integration into XPath processors is desired. Compliance with XPath’s syntax allows to
adapt XPath parsers easily. The EBNF description of SPath in Appendix A shows that
only one single definition of XPath must be adapted in order to incorporate SPath. The
nonterminal PathExpr of the XPath grammar has to be adapted in order to allow SPath
expressions alongside XPath expressions.

7.1.2 SPath Axes

The most powerful feature of XPath are axes. Axes not only allow to traverse XML data
trough the use of location paths, axes also support the convenient collection of data. In a
general sense, XPath axes can be defined as functions that return a set of nodes, starting
from a given node (the context node), and applying one or more structural criteria. These
criteria can either concern the kind of the nodes to select (e.g., whether it is an element,
attribute, or namespace information item) or the structural relationship to the context
node (e.g., whether it is a parent, child, or preceding sibling of the context node, or
whether it appears before or after the context node in the document tree).

SPath builds on this general definition of “axes”. This proves especially helpful for
XML Schema, because the relationships between Schema components are more complex
than the relationships among information items in XML instances. While the latter
constitute trees, the former form a densely interconnected graph. The basic and intuitive
navigational concepts of XPath like parent-of and child-of are only applicable to a
fraction of XML Schema’s data model, more precisely, the type hierarchy. But the
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general concept of an axis is applicable to the entire data model of XML Schema very
well.

Elements that would be hard to select if only basic navigational expressions were available
become easily selectable when dedicated axes are at hand. The development of powerful
axes thus was an essential part of SPath’s design. It is a question of design which tasks
should be supported by axes. We follow the principles of XPath and provide axes for
those tasks which either are very frequent or particularly hard to accomplish.

7.1.3 Data Model Simplification

The design of the data model is a delicate task. Looking at the variety of components
in the abstract data model of XML Schema, it suggests itself to simplify the data model
for use in SPath. Although it is principally possible to introduce new node types for
each Schema component, this would limit the conciseness and usefulness of SPath. We
decided to only represent a subset of XML Schema’s components, and to use a slightly
adapted representation of model groups in order to preserve all the essential information
nevertheless.

The next section explains the data model of SPath. The simplification of the data model
is probably the most substantial and far-reaching modification, and thus presumably the
most arguable as well.

7.2 Data Model

SPath adds five new node kinds to the data model of XPath: type, declaration,
constraint, occurrence, and schema. schema nodes represent the Schema as a whole,
andconstraint nodes represent identity constraint definitions. type and declaration
are simplifications of two closely related components respectively. type nodes represent
both simple and complex type definitions; declaration nodes represent both attribute
and element declarations. This simplification seems justifiable by the structural and
semantical similarities. If an application needs to further distinguish these components,
it can do so by using new kind tests.

The remaining simplification (i.e., the introduction of occurrence components) requires
further explanation. Based on the idea of derivatives (Section 4.4.2), marked expressions
(Section 4.4.1), and follow sets (Section 4.4.3), SPath represents content models in a
different way than XML Schema usually does. The approach is guided by two goals:
Simplification (of both complexity and number of node kinds) and ease of use in instance-
driven scenarios.

The basic idea is to flatten the (possibly hierarchically nested) model groups of XML
Schema, and to unify content models with attributes. This rules out the need for intro-
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ducing new node kinds for model groups, particles, attribute uses, named groups, and
wildcards. In order to preserve the complete content model information, we calculate the
follow set for each occurrence, which can be accessed through the followed-by:: axis.
This closely resembles the construction of Glushkov automata from regular expressions
as proposed by Brzozowski [24] and Berry and Sethi [7]. Section 8.2 describes the XSLT
functions that back this representation in our prototype implementation.

As a part of the flattening, we also expand all numeric exponents, and in consequence,
occurrences only need two properties optional and unbounded in order to express their
cardinality. This simplification also allows us to design functions to test these properties
that are semantically consistent.

However, while the occurrence-based data model is a convenient perspective when ac-
cessing the Schema from instances, it imposes problems when a minute representation
of the original structures of the Schema is needed (e.g., in the scenarios described in
Section 5.1.1). We emphasize that the choice of the data model, and possible simplifi-
cations, are a design decision which can be made in a different way, if necessary. We
assume the instance-driven scenarios of use to become the more important ones, and
this anticipation governed the design of SPath. Different objectives and target scenarios
might lead to a different design of SPath and its data model.

7.3 Path Syntax

A full description of the syntax of SPath can be found in [99]. Here, we only give a brief
overview of SPath’s language elements.

7.3.1 Node Tests

Node tests in XPath can either be name tests or kind tests. SPath follows the same
principle. As in XPath, name tests in SPath have the following form:

((prefix | wildcard) ':' (local-name | wildcard) | *)

Since the data model of XML Schema (and thus the data model of SPath) contains
unnamed nodes, the semantics of the wildcard have been extended to select unnamed
nodes as well.

XPath defines kind tests which cover all node kinds encountered in XPath. Likewise,
SPath provides a set of kind tests for each of the five SPath node kinds. In accordance
with XPath, the kind tests in SPath accept a variable number of arguments, which are
used in order to narrow down the set of selected nodes. For instance, the kind test type()
accepts a first argument that can either be a QName or a wildcard (*). (If the wildcard is
specified, anonymous nodes are returned as well.) Furthermore, a second argument can
be specified which is one of the following string constants: {’simple’, ’simple-atomic’,
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’simple-union’, ’simple-list’, ’complex’}. Obviously, this is required in order to
distinguish simple types from complex types, one of the simplification of SPath’s data
model.

The syntax and semantics of predicates are exactly the same as in XPath. For each item
in the sequence produced by the expression preceding the predicate list, each predicate
is evaluated with this item as the context, and only if all predicates evaluate to true, the
item remains in the final result sequence of the step. Hence, the full set of both XPath
and SPath expressions can be used in predicates.

7.3.2 Functions

SPath follows the principle of defining functions only for information that is either a
literal property (rather than a structural one) or where the function requires more or
different arguments other than the context node. An example for the latter case is the
function constrains(), which would be well suited for being expressed as an axis, but
which cannot be expressed as an axis because it needs two input arguments. Examples
for the former case are functions returning node properties like name, namespace URI,
or nillable.

Since many functions like name() or namespace-uri() are semantically equivalent to
the corresponding XPath functions, the respective XPath functions are extended to
polymorphic functions accepting nodes from both universes.2

7.3.3 Axes

Table 7.1 summarizes the possible transitions in the combined universe: for each node
kind, the table shows which node kinds are reachable using SPath’s axes. The function
constrains() has been included as well because its functionality is navigational, and
only the fact that it needs two input arguments makes it impossible to design it as an
axis. In the upper left corner, the traditional XPath axes are indicated by a gray-shaded
background.

2By universes we refer to data model of instances and Schemas, respectively.
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Chapter 8

Implementation

For both SCX and SPath, we emphasized that design decisions are always influenced
by the expected scenarios of use. Often, the majority of design decisions are trade-offs,
for which no single best solution exists. Instead, compromises must be found which
reconcile the various reqirements, probably preferring the needs of those applications
which are expected to become the most important ones. In order to identify the needs
of applications, and also the opportunities of the technology, prototyping plays a crucial
role.

The prototype implementations of the SCX and SPath are both implemented solely
using standard XML technologies, namely XSLT 2.0. While this limits the possibilities
and the performance in some parts, it ensures utmost flexibility in deployment, and thus
testing of the prototypes. Other possibilities would have been to utilize an existing low-
level API (e.g., the Xerces Native Interface), or to extend some XSLT processor. Both
approaches would have resulted in a proprietary and less flexible prototype. With the
approach chosen for SCX and SPath, the prototype is readily useable and requires no
modifications to be made to processors.

For prototyping at this early stage, flexibility of deployment and rapid development
outweigh performance and seamless integration. The desirable final integration (i.e., of
SPath as a language extension of XPath) cannot be done by the developers anyway, this
requires the work of a standardization committee.

8.1 SCF: Schema Component Function Library

The Schema Component Function Library (SCF) provides the functionality that is nec-
essary in order to navigate the components of SCX, and it backs the language constructs
(i.e., axes, kind tests, and functions) of the prototype implementation of SPath.
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8.1.1 Component Navigation

Since the Schema components of XML Schema’s abstract data model form a graph, many
of the arcs have to be cut when representing the components using XML. Therefore, SCX
elements often contain references by means of unique identifiers. For example, the {type
definition} Schema property, which points to the type definition used in an element or
attribute declaration, is represented in SCX as follows:

<scx:element-declaration uid="d11e45">
<scx:annotations/>
<scx:name>postcode</scx:name>
<scx:target-namespace>http://www.example.com/IPO</scx:target-namespace>
<scx:type-definition>d11e78</scx:type-definition>
...

The type definition which is referenced here is defined elsewhere as an element scx:type-
definition, and can be seen in Figure 6.3 on Page 71. If we want to access the {type
definition} property of the element declaration postcode, the following XPath expression
merely returns the UID:

<xsl:variable name="elm" as="element(scx:element-declaration)"
select="//scx:element-declaration[scx:name eq 'postcode']"/>

<xsl:sequence select="$elm/scx:type-definition"/>
saxon@work> d11e78

This is most likely not what the user expects, and the next XPath does not return
what might be expected either. It returns the empty set, because scx:type-definition
simply contains a UID, and not the actual type definition element, for the aforementioned
reasons.

<xsl:sequence select="$elm/scx:type-definition/scx:name"/>
saxon@work>

This is where the function library becomes useful. SCF provides methods which resolve
these references-by-UID. The functions bear the same names as the respective component
property, in order to facilitate their use in XPath expressions.1 Employing the correct
function call, the XPath finally returns what the user expects:

<xsl:value-of select="$elm/scf:type-definition(.)/scx:name"/>
saxon@work> UKPostcode

In addition to these basic functions which resolve the references-by-UID in SCX, more ad-
vanced navigational functions are available. For instance, the function scf:get-super-
types returns all ancestor type definitions of a given type definition. It is not hard to
see that these functions back the corresponding axes in SPath. Using this function, the
complete chain of parent types can easily be determined:2

1Currently, the functions reside in the SCF namespace, though. If this appears to be an issue in
practice, the namespace can easily be changed.

2In this example, the type names are ordered by their appearance in the SCX docu-
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<xsl:value-of select="$elm/scf:type-definition(.)/
scf:get-super-types-or-self(.)/scx:name"/>

saxon@work> Postcode UKPostcode string anyType anySimpleType

Furthermore, comparison operators for Schema components in their SCX representa-
tion are available, e.g., scf:type-equal, which compares two types by comparing their
{name}, {target namespace}, and {context}, if the type is anonymous. Note that in
general, node comparison can be used for comparing components, because SCX reflects
component identities by node identities.

<xsl:if test="$elm/scf:type-definition(.) is
//scx:type-definition[scx:name eq 'UKPostcode']">

<xsl:text>Yes, they're equal!</xsl:text>
</xsl:if>
saxon@work> Yes, they're equal!

8.1.2 Initialization

Special diligence has been taken in the design of the initialization functions for SCX.
In order to accommodate the variety of conceivable ways in which the transformation
of a Schema into an SCX document may occur, the initialization functionality has been
design to be flexible. We assume that SPath requires XML Schemas to be imported
in the same way as XSLT 2.0 does, i.e., by means of the xs:import-schema construct.
From the recommendation of XSLT 2.0 we can see that xs:import-schema supports
five different ways of how to specify the Schemas to be imported. The definition if the
recommendation looks as follows:

<xsl:import-schema
namespace? = uri-reference
schema-location? = uri-reference>
<!-- Content: xs:schema? -->

</xsl:import-schema>

Note that both attributes, namespace and schema-location, are optional, and that the
element may contain an XML Schema inlined. The initialization functions support all
these ways, because they are intended to back the xs:import-schema element in SPath.
Moreover, they are designed for two additional cases. They accept an XML Schema
as the input file of the XSLT stylesheet, and they accept XML tree fragments which
contain XML Schemas. The latter case is important if, for instance, XML Schemas are
embedded within WSDL documents; the former case is important if the application is a
standalone application (as described in Section 5.1.1). For example, the transformation
stylesheet which turns a set of XML Schema documents in the transfer syntax into an
SCX document looks as simple as this (namespace declarations are omitted):

ment. This is due to XPath’s evaluation of path steps. Rewriting the XPath to for $i in

scf:get-super-types-or-self($elm/scf:type-definition(.)) return $i/scx:name yields the type
names in the order of the type hierarchy, i.e., UKPostcode Postcode string anySimpleType anyType.
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<xsl:stylesheet version="2.0">
<xsl:import href="SClib.xsl"/>
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
<xsl:sequence select="scf:schema(scf:import-schema-explicitly(/))"/>

</xsl:template>
</xsl:stylesheet>

An alternative initialization function scf:import-schema-implicitly takes an instance
document and a namespace URI as parameters and tries to fetch a Schema document by
looking for xsi:schemaLocation attributes in the instance. If neither namespace nor
Schema location are specified, the function scf:import-schema-heedlessly attempts
to collect every Schema it knows about in a best-effort fashion.

8.1.3 Instance-Based Schema Access

The function library also provides functionality for accessing Schema information from
instances. This backs the universe-crossing axes in SPath. For instance, the scf:get-type
backs the type:: axis, i.e., it returns the type definition component for the actual type
of an element in the instance. Utilization of this class of SCF functions requires a
global variable scf:schema with type document-node(element(scx:schema)) to be
present.

Given the following instance document:

<ex:root
xmlns:ex="urn:ex"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ex example-1.xsd">
<ex:base xsi:type="ex:extType" ex:globatt-a="3">
...

The function scf:get-type is able to determine the type definition component for the
ex:base element:

<xsl:variable name="scf:schema" as="document-node(element(scx:schema))">
<xsl:document>
<xsl:sequence select="scf:schema(scf:import-schema-heedlessly(/))"/>

</xsl:document>
</xsl:variable>

<xsl:template match="/">
<xsl:variable name="ty" as="element(scx:type-definition)"

select="ex:root/ex:base[1]/scf:get-type(.)"/>
<xsl:value-of select="$ty/scx:name"/>

</xsl:template>
saxon@work> extType
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A disadvantage of this approach (i.e., of the XSLT-based prototype implementation) is
the impossibility to access the type-annotations of the PSVI. Instead, the respective type
definition components have to be computed each time the accessor function is called.
Due to recursion, the complexity of determining the type of an instance node is roughly
O(S ∗N !), with S = #types + #declarations in the Schema, and N = #ancestorNodes of the
instance node. This factorial complexity could be avoided if the PSVI was used. Using
the PSVI, the accessor functions would not introduce any additional complexity, because
type annotation would occur during the Schema-validation of the instance, and hence
only once for each instance node.3 Appendix B.1 lists the algorithms employed.

8.2 The Occurrence-Based Data Model

Based on SCX, an alternative representation of the content models of complex types has
been implemented. In this representation, hierarchical model groups are transformed
into flat sets of occurrences. Each occurrence has the following properties:

1. A boolean property optional.
2. A boolean property unbounded.
3. A term, which is a reference to either an element declaration component or to a

wildcard component.
4. A follow set is associated with each occurrence. The follow set contains all occur-

rences that legally can follow the current occurrence in a Schema-valid instance.

Obviously, this is the same data model perspective as employed in SPath’s data model,
and indeed, this XSLT-based implementation of the occurrence-based data model backs
SPath’s data model. It is based on the idea of derivatives, marked expressions, and
follow sets, which are described in Section 4.4.

The occurrence-based data model emphasizes another useful achievement of SCX. Once
an XML representation and a set of functions is present, alternative data model represen-
tations can be implemented efficiently and in an easy way. Only the parts which have to
be remodeled must be implemented, and the components can then be referenced through
their unique identifiers. Hence, the occurrence components can be implemented in the
light-weight manner described above. Alternative representations can be thought of as
an representation overlay, which only rearranges the access structure without affecting
the content of the Schema components.

8.2.1 Problems

McNaughton and Yamada [64] introduced marked regular expressions. While particle
components in the conventional data model of XML Schema correspond to symbols in

3For local grammars (e.g., DTDs), which are the most restrictive class of tree grammars, the com-
plexity becomes linear in the number of nodes of the instance document.
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regular expressions, occurrences in our alternative data model correspond to positions
(i.e., marked symbols). XML Schema content models have a richer set of operators
than regular expressions. In particular, numeric exponents ({min occurs} and {max
occurs} rather than the Kleene operators ?, +, and ∗) and all groups (i.e., the interleave
operator &) complicate the process. Occurrence components only have the boolean
properties available which are listed above. Therefore, numeric exponents have to be
expanded. A content model (a{2, 3} + b{1, unbounded}) thus becomes the regular ex-
pression ((a1, a2, a3?) + (b1, b

∗
2)). The algorithm used is shown in Appendix B.1.

In order to make all groups amenable to follow sets, they are expanded as well. The
problematic property of all groups is that extended expressions (i.e., regular expressions
extended by the interleave operator &) are no longer local. In an extended expression
(a1 & b1) c1, the computation of the follow set of position a1 cannot be carried out
without knowing whether b1 has already been satisfied or not. Therefore, each all group
is expanded into all possible sequences. In Figure 8.1, the expansion of the all group
(a & b & c) is displayed as a directed graph. Vertices represent positions, and the possible
paths through the graph correspond to legal sequences. The final vertex is the special
endmarker position.

Figure 8.1: Expansion of an all group (a & b & c)

Unfortunately, this expansion is very resource intensive. The recursive algorithm that
we employ has a space complexity which can be given recursively as F(1) = 1; F(n) =
n ∗ F(n− 1) + n. This is ≈ O(n!), the complexity thus is factorial. As illustration, the
first seven values of the sequence are listed: (1, 4, 15, 64, 325, 1956, 13699, ...). Obviously,
the complexity can cause actual resource problems, as all groups with more than five
elements are not too uncommon.4

As a proof of concept for a prototype implementation, expansion of all groups seems
affordable. Future implementations, which perhaps use a programming language with-
out the practical limitations of functional programming, may find more efficient algo-
rithms.

4In particular, this likely becomes problematic when using this approach for attributes as well.
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8.2.2 Applications

Berry and Sethi [7] demonstrate how positions in marked expression (i.e., symbols made
distinct by subscripts) can be viewed as states of an automaton. Based on this observa-
tion, we view the set of occurrences that belongs to a complex type as the automaton
that accepts all legal sequences of children nodes. While the occurrences correspond to
the states, the follow sets describe the outgoing transitions of the respective occurrence.
Brüggemann-Klein and Wood [23] also construct the Glushkov automaton of a regular
expression using occurrences as the states of the automaton.

We can now emulate the finite state automaton by following the transitions of the au-
tomaton for each input symbol. Doing so, we are able to determine the respective
occurrence for each input node, as long as there is a coherent path leading to this oc-
currence. This “coherent path” exists exactly if the sequence of preceding sibling nodes
are valid with respect to the content model. We therefore can utilize the special case
of determining the occurrence of the last input symbol for validation of the content
model.

Both methods have been implemented in the XSLT 2.0 function library for the occurrence-
based data model. As a consequence, an XSLT application may now perform local
validation using the function occ:validate, which takes an instance node and returns
an XML fragment tree val:result. One of the advantages of this follow set-based
validation algorithm is that very precise information is available if validation fails.

<xsl:variable name="validation-result" as="element(val:result)"
select="occ:validate(ox:root/ox:seq)"/>
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8.3 X2Doc: Extensible XML Schema Documentation

Based on SCX, X2Doc has been implemented, a framework for generating schema-
documentation solely using XSLT [68]. Using a modular set of XSLT stylesheets, X2Doc
is highly configurable and carefully crafted to provide extensibility. This proves espe-
cially useful for composite schemas.

The framework uses SCX as intermediate format and produces XML-based output for-
mats. However, it is important to note that the use of this intermediate format does
not necessarily require two-step processing. The transformation of conventional Schema
documents into SCX documents is performed by pure XSLT 2.0, and thus the SCX
representation can be constructed as a fragment tree at run-time.

8.3.1 Applications

The main advantages of a documentation-generating application based on open tech-
nologies like XSLT are high portability, versatile configuration, and simple, yet powerful
extensibility.

Extensibility: Extensibility is particularly important in the context of composite
schemas, where additional information is embedded into XML Schemas. An interesting
case is the embedding of other, complementary XML-based schemas like Schematron5,
but other additional information like annotations to control the mapping behavior to
relational data bases, or references to a conceptual model, are important cases as well.
X2Doc can easily be extended to cover such additional parts by simply adding corre-
sponding template rules.

The following example uses the Schema from the Primer for XML Schema 1.0. We
assume a company, which uses this Schema, to have defined certain rules for Schema
management and documentation: Schema documents are annotated with a company-
internal XML vocabulary which resides in a namespace mapped to the prefix doc.

<complexType name="RegionsType">
<annotation><appinfo>
<doc:uri>documentation.html</doc:uri>
<doc:part>RegionsType</doc:part>
<doc:author mail="...">Peter Sample</doc:author>

</appinfo></annotation>
<sequence><element name="zip" maxOccurs="unbounded">
...

The annotations relate Schema components to further documentation managed exter-
nally in HTML format.

5http://www.schematron.com/, standardized as ISO/IEC 19757-2:2003.

http://www.schematron.com/
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40833
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<div id="RegionsType"><p>This is a type for expressing...

While most documentation tools could not adapt to this convention without having
some code rewritten, documentation generated by our framework is readily extensible
to incorporate such embedded parts. It requires only a template rule to be defined
that matches application information components. This is easily done, and the resulting
stylesheet looks as follows:

<xsl:import href="X2Doc-xhtml.xsl"/>
<xsl:template match="scx:application-information">
<h4>Company-Internal Documentation:</h4>
<div class="exampleComDoc">
<xsl:sequence select="id(doc:part, doc(doc:uri))"/>
<p>Last Autor: <a href="mailto:doc:author/@mail">

<xsl:value-of select="doc:author"/></a>
</p>

</div>
</xsl:template>

The first line imports the XHTML module of X2Doc. XSLT’s import precedence makes
sure that the above template rule overrides the rule defined in the imported module.
Figure 8.2 displays the resulting documentation, extended to cover the company-specific
annotations.In this example, X2Doc additionally has been configured to include a custom
CSS for formatting the company-specific section.

Figure 8.2: Output of X2Doc’s XHTML module which has been extended to render
company-specific annotations

Configurability: Configurability of X2Doc is possible in different ways: Substantial
structural changes can be made by adapting the XSLT template rules. For instance,
the appearance and order of basic structural blocks (e.g., the table of contents) can
be influenced in a central switching template rule. A wide variety of configurations
can be made in a configuration XML document. The choice of CSS documents is one
example, definition of XML namespace prefixes, configuration of the TOC, and control
of the output format and of serialization options are others. Finally, the most important
parameters can be overridden through stylesheet parameters.
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8.3.2 Documentation Features

Based on SCX’s access to the Schema components, the properties of these components
can be displayed straightforward. If the transformation had to be carried out on the
XML transfer syntax, many of those component properties would have to be collected
cumbersomely. Furthermore, the XSLT function library, which is part of SCX, allows
for convenient navigation of the relationships between Schema component, e.g., traversal
of the type hierarchy. As a result, the documentation generated from SCX is densely
hyperlinked. This feature proves to be especially useful for representing the complex
structure of XML Schema.

Figure 8.3: A complex type definition as rendered by X2Doc

Figure 8.3 shows the documentation for a complex type definition In the section Sum-
mary, many of the relationships mentioned above are made navigable through hyperlinks.
This comprises the complete path of derivation steps, a list of element declarations ref-
erencing the type definition given, a list of types that are derived from this type, and a
collection of elements that may appear in this type’s model group.

It might seem hard to determine this list of types, but using SCX, only two lines of codes
are needed:

<xsl:apply-templates
select="scx:content-type//scf:element-declaration(.)" mode="listing"/>

<xsl:apply-templates select="scx:content-type//scx:wildcard" mode="listing"/>



8.3 X2Doc: Extensible XML Schema Documentation 89

This might also give an idea of how easily custom template rules for alternative docu-
mentation formats can be written.

One of the drawbacks of the verbosity of the transfer syntax is that many structures
are difficult to understand at first sight. For example, in the syntax of DTDs, model
groups are much more concisely defined for the human reader. X2Doc therefore provides
a DTD-like notation of content models.

Finally, Figure 8.4 is the rendering of a simple type definition. Here, the list of constrain-
ing facets contains hyperlinks to the simple type definitions which originally defined the
respective facet. Inherited facets are hard to track in the transfer syntax, but can be
readily retrieved from SCX documents.

Figure 8.4: A simple type definition rendered by X2Doc

However, X2Doc is currently a work in progress. At present, we work on the completion
of the core stylesheets to cover all Schema components, and the extension of the hyper-
linked connectivity. The next steps might include the addition of further output formats
(using XSL-FO) and the generation of graphics (using SVG).



Chapter 9

Evaluation

Chapter 3 outlined the concept of an accessible data model for XML Schema, and it
provided an overview of use cases — both scenarios where an accessible data model
would solve existing problems, and scenarios where new opportunities evolve. The aim
of this report is not to design the concept in detail and in its ultimate form. This must
be the task of a standardization committee. The objective of this report is rather to
discuss the prerequisites, to identify possible scenarios of use, and to provide prototypes
with which future scenarios can be explored and evaluated. This is ultimately also
of importance for the final design, because the knowledge about areas of application,
about the needs of different applications, and about problems and requirements of the
implementations will help finding appropriate trade-offs, thus essentially shaping this
design.

The evaluation in this chapter studies SPath (Section 7) and SCX (Section 6), together
with the function library and the occurrence-based data model perspective, in the context
of the scenarios from Section 3. Although SPath and SCX might not achieve all goals,
the evaluation is done with the general idea of an accessible data model in mind.

9.1 Documentation

SPath can be helpful for generating documentation, but essentially, SCX is sufficient for
this scenario of use, and even superior to SPath in the case of XSLT-based documentation
generation. This is mainly due to the SPath’s focus on the second class of Schema-
processing applications, i.e., instance-driven applications, which has been described in
Section 5.1.2.

SCX, however, proves extremely helpful in two ways: The canonicalization introduced
through the transformation from the transfer syntax into SCX makes the generation of
documentation straightforward. And the fact that SCX is an XML format allows for
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standard technologies, in particular, XSLT 2.0, to be employed.

The main advantage of XSLT-based generation of documentation from XML Schemas
is the high extensibility, the versatile configuration, and the interoperability with other
XML-based formats and technologies. X2Doc, the framework presented in Section 8.3,
exhibits all these properties. As XML Schema becomes increasingly used in large and
heterogeneous projects, e.g., in the context of XML pipelines, the need for configurable
and extensible documentation grows as well. We expect our modular framework to be a
promising platform in this context.

Furthermore, the XML format allows not only documentation to be generated from
Schemas. It also substantially facilitates the transformation into any other format. In
particular, the generation of XForms [44], stylesheets [53], or XQueries [27] through
meta-stylesheets is promising.

Because back-transformation of an SCX document into conventional Schema documents
is possible, SCX enables annotation, maintenance, and evaluation of XML Schema in a
powerful new way. For instance, model information (e.g., from an RDF description) can
be injected into an SCX document, which is then transformed back into conventional
Schema files. Using SCX, the problems of generating, annotating, and maintaining such
composite Schemas are significantly alleviated.

9.2 Information Retrieval

Annotation of conventional Schemas is one use case of SCX in the context of composite
Schemas. Another use is the retrieval of this additional data from composite Schemas.
The canonicalization aspects of SCX guarantee reliable access paths to the {annotation}
properties of the Schema components. Section 3.3 already pointed out the potential of
model-aware data retrieval. A recent example is Semantic Annotations for WSDL [41],
which defines the policies and facilities for connecting various parts of WSDL 2.0 [28]
documents with an external model. As mentioned in Section 2.4.3, the data model in
WSDL descriptions of services usually is described by an XML Schema. Hence, Semantic
Annotations for WSDL also defines annotation mechanisms for XML Schema elements.
If stable and navigable paths to such embedded information in a Schema are present,
applications can exploit the semantic information, e.g., for type reflection. Section 9.3
discusses this in the broader context of Web-based services.

In contrast to documentation, the class of instance-driven applications is relevant for the
scenario of information retrieval and data mining, and thus SPath plays an important
role as well. Section 3.3 listed conceivable use cases for Schema-aware processing of, and
data mining in, instances. It appears that the capabilities of SPath are far more powerful
than the basic expressions which are possible in XPath 2.0. For instance, more subtle
comparisons of derived types are possible in SPath, as opposed to XPath 2.0. Resuming
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the example from Section 3.3, the following comparison illustrates the capabilities of
SPath:

<!-- XPath 2.0, type-aware -->
//element(*,ex:baseType)
<!-- SPath, schema-aware -->
//*[supertype-by-restriction::ex:baseType]

The utilization of XPath’s concept of axes in its general interpretation also shows that
the power and usefulness of an accessible data model can strongly be augmented by
well-designed language constructs which support common tasks. This holds for SPath’s
axes, but for the functions from the function library of the prototype implementation
just as well.

9.3 Web-Based Services

The issues and potential of Web-based services overlap in large parts with the problems of
and opportunities of data retrieval, validation, and especially versioning and extensibility.
In this section, we therefore only briefly discuss the general properties, and we leave the
detailed description to the Sections 9.2, 9.5, and 9.4, respectively.

Two categories of how data model accessibility can improve Web-based services can be
discerned, although the differences between the two are of gradual nature.

Resilient Operation: Data model accessibility enables type introspection. This makes
Web-based services more adaptable and resilient. More resilient operation can
involve both sophisticated versioning strategies and novel concepts of validation
— or the ability to perform compatibility transformations of incoming data in
general. Schema-aware validation-by-projection is a prominent example.

Both SPath and SCX support type introspection. Type reflection, which is more
advanced than type introspection, and which involves more fundamental run-time
changes of the behavior of an application, is better supported by SCX. Type reflec-
tion for XML-based service applications might be done in XML pipelines, where
meta-stylesheets generate the actual processing stylesheets at run-time, based on
Schema information from an SCX document.

Model-Driven Integration or Development: Starting with type reflection, the log-
ical next step can be model-driven integration or development of parts of service
applications. SCX and the function library are a good starting point, and they
provide already many of the features needed. Of course, XML-based representa-
tions face strong competition from Schema APIs, which provide Schema access,
combined with less restricted and more high-performance programming languages.
However, current APIs do not expose Schema information in a unified manner,
which is a drawback with respect to development, maintenance, and portability.
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With the spread of XQuery 1.0 and XSLT 2.0, which are diligently designed for
optimizations, there is also some evidence that larger parts of XML applications
increasingly will be using these standard XML technologies, rather than general-
purpose programming languages like Java. On the other hand, frameworks like
XJ demonstrate the possibility of integrating XML technologies (e.g., XPath) into
conventional programming languages [48]. SPath, or a more general form of data
model accessibility, are amenable to integration just as well.

9.4 Versioning and Extensibility

Both SCX and SPath can play an essential role for versioning and extensibility. Up to
the present, consistent versioning strategies for XML have been rare. One of the reasons
might be that well-designed, XML Schema-based versioning did not offer a sufficient
number of direct advantages. With the ability to access and navigate Schema informa-
tion, versioning information becomes exploitable as well, if the versioning history has
been encoded in a suitable way, as it is the case for UBL, for instance.

It is very likely that further development of more sophisticated, suitable, and useful ver-
sioning strategies for XML vocabularies sets off once technologies which allow to utilize
versioning information are available. Many of the current obstacles with versioning and
extensibility will become obsolete. This hopefully opens new perspectives onto more
advanced questions.

Two examples should justify this assumption. Orchard advocates the introduction of
an additional Schema-related attribute in instances, xsi:basetype. This should enable
processing applications to determine a fallback type of instances, if the type specified
through xsi:type is unknown. This attribute is obsolete in most of the cases.1 Inspec-
tion of the type hierarchy readily yields the base type. And if no up-to-date Schema
is retrievable, an ancestor type can most likely be determined, due to XML Schema’s
element declaration consistent and unique particle attribution rules.

Obasanjo suggests to use different namespaces for extensions [75]:

If the namespace name of the extensions is an HTTP URI that points to
human- and machine-readable information about the extensions then it al-
lows consumers of the format the chance to learn about the extensions they
encounter.

This is not true for most namespace URIs today. Moreover, namespace URIs are not
intended to provide this functionality, while other constructs are explicitly designed for
this purpose. The annotation facilities in XML Schema are a good example. If navigable
Schema information is available (e.g., through an SCX document), meta-information

1In rare cases, where no up-to-date Schema is available and the incriminated node matches a wildcard
particle, determination of the fallback type may fail.
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about the structure and semantics of an extension can be retrieved in a much more
stable and powerful way. Without (ab-)using namespace URIs for annotation purposes,
Orchards rule can then be applied again, which advocates to re-use namespace URIs for
backward-compatible changes, which extensions always should be.

Based on canonical representation and deep comparison operators — that is: based on
SCX and the function library — equivalence checking of Schemas becomes possible. A
Schema-diff — similar to POSIX’s diff — will be particularly useful for versioning
strategies, but has general applications as well. Comparison of Schemas might be the
foundation of version mapping, as a special case of Schema mapping. Compatibility
transformations similar to validation-by-projection also are important in the context of
versioning and extensibility.

9.5 Validation

SCX, SPath, and accessible data models in general are the starting point for building
more versatile, adaptable, and tolerant validation. This can be done on different levels,
and both for instances and Schemas.

9.5.1 Instance Validation

The concept of Schema-aware validation-by-projection, which has been proposed by Or-
chard and Bau, is an example of a more tolerant variant of Schema-validation of in-
stances. It can also be seen as a sub-case of Schema-mapping. More recent versions
of Schemas are mapped to preceding versions, causing some elements to be discarded.
Both SPath and SCX can be used to implement validation-by-projection. In its most ba-
sic interpretation, validation-by-projection merely means “identifying non-recognizable
elements in type extensions, and removing them.” It is evident that this can be ac-
complished straightforwardly using SCX and the accessor functions from the function
library.

The occurrence-based data model introduces even more radical ways of new forms of
adaptable validation. The subsumption-checking methods can be used in order to per-
form partial validation at run-time, as described in Section 8.2.2. This is useful if an
application is very tolerant in most parts of an instance, but very sensitive in particular
parts. The application then can perform the required validation while processing the
instance. Using partial validation, the processing modes can be differentiated within one
document. At present, the processing mode can only be adjusted for the whole docu-
ment and for wildcard content. But recalling the twofold purpose of Schema-validation
from Section 2.3.1, it may be desirable to specify different processing modes for different
parts of a document (or, more precisely, for different complex types of a Schema).
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Overall, both validation variants — validation-by-projection and partial validation —
indicate a shift of control from schemas to validators, and a shift of responsibilities from
producers to consumers. Extensions (or other structural deviations) which cannot be
avoided on the producing side (e.g., because no central versioning control is possible)
are handled on the consuming side (e.g., through validation-by-projection). Rules which
cannot be expressed by XML Schema (e.g., different importance of grammar constraints
in different contexts of the document) are built into the validator, rather than into the
Schema.

It is worth considering to include the ability of validation into SPath as well. However,
this would have strong and far-reaching consequences for the way Schema-validation is
carried out today. Essentially, it could result in a complete disassociation of validation
and type-annotation, the latter then becoming a best effort type annotation.

Finally, SPath — or SCX together with the accessor functions — can readily be used in
order to implement a type-aware rule-based schema language. This would address one
of the flaws of Schematron, which is that Schematron only addresses elements, whereas
the relevant properties often are associated to types. Currently, this requires to write
and maintain path expressions for every element which references a given type. This is
cumbersome and error-prone. A type-aware or Schema-aware kind of Schematron would
be more powerful and robust.

9.5.2 Schema Checking

SCX is helpful for Schema-checking. Firstly, the validation of SCX documents through
the XML Schema for SCX covers a wider range of constraints than the XML Schema
for Schemas (6.2). Secondly, a rule-based language for Schema-checking can easily be
developed using SCX and the function library. A rule-based Schema-checking language
can be utilized in order to assert the compliance of a Schema with certain Naming and
Design Rules (NDR) or Schema guidelines or best practices. Companies or organizations
usually define such rules, but it is often hard to check conventional Schema documents
against these rules.

A canonical form of Schema avoids the problems of too many degrees of freedom. And
an XML-based representation allows one to use standard technologies like XSLT for the
implementation of a Schema checker. SPath can make the rules in such a Schema-checker
more robust, because language elements like axes let the developer write more generic
path expressions, which are less likely to fail if the Schema changes.
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Conclusion and Outlook

The evaluation in Section 9 clearly demonstrates the appropriateness of our approaches
in various fields, and the benefits they yield. Of course, our prototype implementation
can be refined, and next steps can be taken in order to improve efficiency, robustness,
and seamless integration with current XML technologies.

X2Doc: The documentation-generating framework presented in Section 8.3 could be
augmented with more modules, e.g., for supporting different output formats (e.g.,
using XSL-FO).

SCF: The robustness of the accessor functions still can be improved; for instance, the
current implementation fails at determining the correct element type if the corre-
sponding Schema has elementFormDefault set to false.

SPath: As a first step, a pre-processing meta-stylesheet could be written, which maps
SPath expressions in an SPath-enabled XSLT 2.0 stylesheet to SCF function calls.
For example, an SPath expression $node/super-type::*/name() then would be
mapped to the XPath expression $node/scf:get-super-types(.)/scx:name.

XNI-Based Implementation: As a next step, accessor functions could be written to
utilize the PSVI through the Xerces Native Interface (XNI). This would increase
the efficiency, as discussed in Section 8.1.3.

Standardization SPath: The — admittedly somewhat utopian — long-term goal would
be to integrate SPath into XPath, and to standardize the language and its syntax,
semantics, and behavior.

In conclusion it can be said that SCX, the Schema components XML syntax, proves very
helpful and offers a wide range of applications — even without the support of an XML
Schema path language like SPath.

The class of instance-driven Schema-aware applications will certainly benefit from a
Schema-aware extension of XPath. A prototype implementation of SPath will demon-
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strate the advantages and enable further improvements of the syntax. Use cases will
then show that SPath is fully Schema-aware, whereas XPath is only type-aware, and
how true Schema-awareness permits novel ways of XML processing.

A unified representation of the data model of XML Schema will offer even more fun-
damental advantages. The processing of XML Schema will become substantially less
difficult, and XML Schema will finally become part not only of the specifications of
other technologies, but also of their applications. A unified representation includes as-
pects of canonicalization; and a canonical form is a necessary prerequisite for a concise
and useful formal description, which in turn will be important for a future generation of
more robust and optimizable XML technologies.

The fact that SCX is an XML format might seem to be a concession made for a prototype
implementation. On a closer look, however, it appears to be a powerful feature. Wilde
proposes an XML syntax for his Extensible XML Information Set [95], and Thompson
proposes to represent the PSVI as a kind of “synthetic XML” [92] in order to enable
reflection to be used in XPath. SCX utilizes a similar concept on a much more pow-
erful level. Not only allows SCX for thorough introspection and reflection of Schema
information, due to the hooks (or extension points) in XML Schema, it allows to access
every kind of XML-based meta-information. Assume an XML Schema which contains
annotations that link into an XML-based representation of an underlying model (e.g.,
an RDF model, or ontology): given an accessible data model, applications can use an
XML path language — be it XPath, together with accessor functions, or SPath — in
order to navigate through the Schema, the model, and beyond.
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Appendix A

SPath EBNF Syntax

A.1 Necessary Adaptations on XPath 2.0’s EBNF

PathExpr ::= ( "/" RelativePathExpr? )
| ( "//" RelativePathExpr )
| RelativePathExpr
| SPathExpr

A.2 Extensions through SPath

SPathExpr ::= SStepExpr ( "/" SStepExpr )*

SStepExpr ::= SAxisStep | SFilterExpr

SAxisStep ::= ( TypeAxisStep
| ElDeclAxisStep
| OccurrAxisStep
| ConstrAxisStep
| InstncAxisStep
| SchemaAxisStep ) | PredicateList

TypeAxisStep ::= TypeAxis "::" NodeTest
ElDeclAxisStep ::= ElDeclAxis "::" NodeTest
OccurrAxisStep ::= OccurrAxis "::" NodeTest
ConstrAxisStep ::= ConstrAxis "::" NodeTest
InstncAxisStep ::= InstncAxis "::" NodeTest
SchemaAxisStep ::= SchemaAxis "::" NodeTest

TypeAxis ::= "type"
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| ( ( DerivedTypeAxis | BaseTypeAxis)
("-" TypeAxisModifier)?

)

DerivedTypeAxis ::= ( "derivedtype"
| "subtype"
| "subtype-or-self"
| "substituted-by" )

BaseTypeAxis ::= ( "basetype"
| "supertype"
| "supertype-or-self"
| "substitutes-for" )

ElDeclAxis ::= "declaration"
| ( ( "substitution-group" | "substitution-head" )

("-" TypeAxisModifier)?
)

OccurrAxis ::= ( "occurrence"
| "contains"
| "preceded-by"
| "followed-by" )

ConstrAxis ::= ( "constraint"
| "constrained-by"
| "refer"
| "referred-by" )

InstncAxis ::= "instance"

SchemaAxis ::= "schema"

TypeAxisModifier ::= ( "by-extension" | "by-restriction" )

SFilterExpr ::= SPrimaryExpr PredicateList

SPrimaryExpr ::= FuncCall | ContextItemExpr

A.3 Excerpt from XPath 2.0

PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr
| ContextItemExpr | FunctionCall

PredicateList ::= Predicate *

Predicate ::= "[" Expr "]"



Appendix B

Algorithms

B.1 Instance-Based Accessor Functions

function Type
in: - S: a Schema component

- N: an instance node N
out: a type definition component

1: if (N has a xsi:type attribute)
2: return the global type definition where QName eq N/@xsi:type
3: else
4: return S/type-definition
5: endif

function GetDeclaration
in: - N: an instance node N
out: an element declaration component

1: Q := the QPath of N
2: S := the Schema-as-a-whole component
3: return Declaration(S, N, Q)

function GetType
in: - N: an instance node N
out: a type definition component

1: E := GetDeclaration(N)
2: return Type(E, N)
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function Declaration
in: - S: a Schema component

- N: an instance node N
- Q: a sequence of QNames describing the canonical path
from the instance root to this node N

out: an element declaration component

1: if (S is the Schema-as-a-whole component) then
2: C := all global element declarations
3: else
4: A := the ancestor nodes of N
5: T := Type(S, A[count(Q) - 1])
6: M := the resolved model group of T
7: C := all element declarations in M
8: endif
9: E := the declaration in C where particle/term matches Q[0]

10: if (S contains only 1 item) then
11: return E
12: else
13: pop(Q)
14: Declaration(E, N, Q)
15: endif

B.2 Expansion of Numeric Exponents

function ExpandNumericExponents
in: - P: a particle component
out: a set of occurrence components

# occurrences are a 3-tupel: <term:, optional, unbounded>
1: S := the empty set
2: for (I in 1 to P/min-occurs) do
3: push(S, <P/term, FALSE, FALSE>)
4: endfor
5: if (P/max-occurs is unbounded) then
6: push(S, <P/term, TRUE, TRUE>)
7: else
8: for (I in P/min-occurs + 1 to P/max-occurs) do
9: push(S, <P/term, TRUE, FALSE>)

10: endfor
11: endif
12: return S
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