
Institut für
Technische Informatik und
Kommunikationsnetze

Diploma Thesis

at the Department of Information Technology

and Electrical Engineering

MPEG-2 Decoder for SHAPES DOL

Simon Mall

Advisors: Wolfgang Haid, Kai Huang

Professor: Prof. Dr. Lothar Thiele

April the 16th, 2007

Abstract

The SHAPES project addresses the challenge of finding a scalable HW/SW design style

for future CMOS technologies and proposes an architecture consisting of “small” tiles

connected by “short” wires. The Distributed Operation Layer (SHAPES DOL) helps

the programmer to find an optimal mapping of an application onto this architecture. In

order to exploit the parallel hardware, an application for the SHAPES DOL is specified

according to a process network based model of computation.

In this diploma thesis, an MPEG-2 video decoder application for the SHAPES DOL

is developed. The decoder is implemented as a reconfigurable Kahn Process Network,

meaning that the number of processes can be adjusted without changing the implementation

of the processes.

Several mapping–relevant parameters available at the application level are identified

and a simulation–based method for obtaining these application parameters is presented.

A prototype of the mapping stage is implemented, which makes use of an evolutionary

algorithm to solve the multi–objective mapping optimization problem. The mapping stage

is used to map the MPEG-2 video decoder application onto a multi processor architecture.

Contents

1 Introduction 1

1.1 The SHAPES Project . 1

1.2 Distributed Operation Layer (SHAPES DOL) 3

1.3 Motivation and Goals . 5

2 MPEG-2 Video Decoder 7

2.1 The MPEG-2 Video Standard . 7

2.2 Selection of a Reference Implementation . 21

2.3 Parallelization of the Algorithm . 28

2.4 Implementation . 38

3 Profiling DOL Applications 47

3.1 Mapping–Relevant Parameters . 47

3.2 Tracing a DOL Application . 49

3.3 Extraction of the Parameters . 54

3.4 The DOLProfiler Package . 55

4 The Mapping Stage 59

4.1 Overview . 59

4.2 System Specification . 62

4.3 Gene Representation . 73

4.4 Performance Data and Objective Values . 81

5 Evaluation and Results 85

5.1 MPEG-2 Decoder Application . 85

5.2 Profiling Results . 86

5.3 Mapping Optimization . 89

5.4 Conclusion and Future Work . 91

iii

iv Contents

A Task Description 97

A.1 Introduction . 97

A.2 Tasks . 98

A.3 Project Organization . 101

B Presentation Slides 103

C CD–ROM Contents 115

C.1 Directory Contents . 115

C.2 Step–by–Step Instructions . 117

1
Introduction

This thesis is part of an international project called SHAPES (scalable software hardware

architecture platform for embedded systems). The first section covers the motivation

for initiating the SHAPES project and a description of some of its goals and concepts.

The second section describes the Distributed Operation Layer, which is ETH Zurich’s

contribution to the project. The last section of this chapter then presents the motivation

of this thesis in the context of the SHAPES project and summarizes its goals.

1.1 The SHAPES Project

1.1.1 Motivation

Embedded systems are getting more and more complex. The number of gates per system

is increasing and future systems on chip will integrate designs containing billions of gates.

This development also leads to problems, as, for instance, the increasing design complexity

which has to be managed. A second main problem is the wire delay problem. As CMOS

technologies become smaller and smaller, the gate delays decrease. However, as the base

fabrication technology scales to smaller dimensions, the delay through a wire of fixed length

increases, which limits the overall clock frequency [1]. This alarming development is partly

1

2 Introduction

eased by the fact that the wire lengths are not fixed, but rather shrink in length with

smaller technologies. There is nevertheless a wire problem because the number of modules

per chip grows exponentially and even if a single module does not have increasing wire

problems, their accumulation certainly does. In addition, there are global communication

wires which do not shrink in length and therefore indeed have increased delays [1]. In

summary, the wire delay problem is not unsolvable, but it does require profound changes

in hardware/software design style for future technologies.

1.1.2 The SHAPES HW/SW Architecture

The approach taken to address these problems is the use of tiled architectures. A tiled

architecture consists of predefined processing tiles which are connected to each other.

The SHAPES project proposes heterogeneous tiles, which consist for instance of a RISC

processor, a very long instruction word (VLIW) DSP, a distributed network processor and

on–tile memories and peripherals [2]. A very important issue is scalability, which means

that an application should be portable to a different SHAPES hardware architecture

without much effort. Specifically, it should be possible to map an application onto

architectures with largely different amounts of tiles. Table 1.1 shows the SHAPES target

for the range of scalability [3].

The tiled architecture approach has many advantages, it is however difficult for an

application to fully exploit its potential. There may be long delays between distant tiles,

overloaded communication resources or the application may not expose enough parallelism.

In all these cases, the architecture’s full computing power cannot be exploited. The system

software therefore has to make sure that the applications are executed efficiently on the

SHAPES hardware, while minimizing the effort required for the application programmer.

This is the main software challenge. Two key points are considered: first, as the system

itself is highly parallel, so should be the application. The application programmer must

be able to fully expose the algorithm’s parallelism to the SHAPES platform, which makes

4–8 tiles low–end single modules for mass market applications

2000 tiles classic digital signal processing systems

(e.g. radar, medical equipment)

32000 tiles high–end systems requiring massive numerical computation

Table 1.1: SHAPES target for the range of scalability.

1.2 Distributed Operation Layer (SHAPES DOL) 3

it necessary to break with the conventional way of writing an application. But even if the

application is written in a way that exposes the parallelism well, this information about

the algorithmic structure must be preserved by the SHAPES system software. Second, the

system software must be fully aware of important architectural parameters like bandwidth,

computing capabilities and latencies [3].

1.2 Distributed Operation Layer (SHAPES DOL)

The Distributed Operation Layer is a part of the SHAPES system software environment.

Its purpose is to help a programmer of a SHAPES platform to find an efficient mapping

of the application onto the hardware. This includes the mapping of application tasks onto

computation resources, as well as the mapping of communication links onto communication

resources. For making the best use of the parallel hardware resources, it is necessary

that the application programmer follows a set of rules and uses a set of interfaces, the

programming model. According to the DOL programming model, which is described in

Section 1.2.1, an application consists of several processes which are connected to each

other with FIFO channels to build a process network. There is no shared memory,

all communication must therefore take place via channels. Consider, for instance, a

specific algorithm that has to be implemented on a SHAPES platform. The application

programmer first extracts the algorithm’s task–level parallelism and implements the

processes P1 . . .Pn, as well as the network N which describes the way the n processes

are connected to each other. The programmer is therefore exposing the algorithm’s

parallelism to the DOL, which in turn tries to exploit it as much as possible during the

mapping process. The extraction of parallelism from an application program is left to the

programmer, since profound knowledge of the application domain is required.

1.2.1 The Programming Model

The SHAPES programming model is similar to the YAPI programming interface [4], which

is an extension of the Kahn process network model [5].

The Kahn process network model is a model for parallel computation, where a program

consists of a number of processes, which are connected to each other by FIFO channels.

Each process is a usual sequential program extended by a communication interface

consisting of two functions: the wait(U) function, which performs a blocking read access

to the specific channel U , and the send I on W statement, which writes the variable I to

the channel W. While the wait function blocks the process until enough data is available

4 Introduction

on the channel, nothing can prevent a process from sending data over a channel. The

processes therefore communicate via infinitely large FIFO queues. Kahn process networks

have two important properties. First, the processes of a KPN are monotonic, which means

that only partial information about the input is needed to compute a partial output, or,

in other words, future input concerns only future output. This is indeed an important

property, because it allows parallelism — a process can start computing before all of its

input values arrived [5]. As a second important property, Kahn process networks are

determinate, which means that the same input history always produces exactly the same

output, independent of the scheduling.

The SHAPES DOL API contains the basic communication primitives DOL write() and

DOL read(), but differs from the Kahn process network model in the following way:

i) As infinitely large FIFO queues are not realizable, every channel is instantiated with

a maximum buffer size. This causes the DOL write() function to stall the calling

process if the FIFO queue is full.

ii) The Kahn process network model does not allow in any way to test if the channel

U is empty, before invoking wait(U), which was found to be too restrictive in some

cases and may cause inefficiency [6]. The SHAPES DOL API therefore provides

two additional functions which allow for a read/write test, namely DOL rtest() and

DOL wtest().

iii) For being able to end the simulation process properly, a call to the function

DOL detach() allows a process to remove itself from the pool of active processes.

The simulation ends as soon as all processes are detached.

A list of all communication primitives is shown in Table 1.2. Before invoking a blocking

read function, a call to the read testing function can be used to find out whether the

required amount of data has already been produced by the preceding process. This

allows — if a process has more than one input ports — to select at runtime from which

port to read. It is, however, up to the application programmer to decide whether the

testing functions are actually used. By omitting the two testing functions completely, a

predetermined order of port accesses results which may simplify the process structure,

reduces communication overhead and leads to the Kahn process network properties

mentioned before.

1.3 Motivation and Goals 5

DOL read(port, buffer, length, process)

Reads length bytes from port and stores the obtained data in buffer.

If less than length bytes are available, the calling process is blocked.

DOL write(port, buffer, length, process)

Writes length bytes from buffer to port.

If the FIFO connected to port has less than length bytes of free space,

the calling process is blocked.

DOL rtest(port, length, process)

Checks whether length bytes can be read from port.

DOL wtest(port, length, process)

Checks whether length bytes can be written to port.

DOL detach(process)

Detaches the process and prevents the scheduler from firing the process again.

Table 1.2: The SHAPES DOL communication interface.

1.2.2 Functional Verification

One of the main advantages of platform–based design is the possibility to start developing

applications before the final hardware architecture is specified. The DOL allows for a

functional verification of an application from the beginning of the development process.

The application — specified, according to the programming model, with a process network

and the process definitions — can automatically be transformed into SystemC [7] source

code, which can be compiled and run on a single workstation. The process network can

thereby be run in a simulated real–time environment.

1.3 Motivation and Goals

Since the programming model is defined, it is important to check whether it is suitable for

complex programs. Additionally, it is interesting to gain some experience in developing

applications for the SHAPES platform using the functional simulation. Based on this

motivation, the first goal of this thesis is to implement an MPEG-2 video decoder

application for the SHAPES DOL. This implementation shall expose the parallelism

available in the decoding algorithm, and can then be used for further investigations. The

implementation of the MPEG-2 video decoder is covered in Chapter 2.

Having a complex example application at hand, the next goal is to implement a first

prototype of the mapping stage. For this reason, mapping–relevant parameters need to

6 Introduction

be extracted from the application and used for optimizing the mapping of the application

onto the architecture. The parameters are extracted by profiling the functional simulation

(Chapter 3). The prototype of the mapping stage is presented in Chapter 4.

2
MPEG-2 Video Decoder

2.1 The MPEG-2 Video Standard

This section presents the ISO/IEC 13818 standard, which is the second standard developed

by the Moving Picture Experts Group (MPEG) and is therefore also known as the MPEG-

2 standard. As mentioned in the introduction, the reason for implementing an MPEG-2

decoder is to test the DOL with a program of moderate complexity. Since it is not the

goal to develop a commercial video player, the audio part is omitted.

2.1.1 Development of the MPEG Algorithm

The term Moving Picture Experts Group has two related meanings. On the one hand, it

is the working group of the ISO/IEC (International Organization for Standardization /

International Electrotechnical Commission) which is in charge of the development of

international standards for video and audio compression. On the other hand, the term

MPEG is commonly used to describe their main product, which is a family of standards

of compressed digital audio–visual information. The MPEG format is known to achieve

a high compression rate for a required picture quality, which is desirable for exploiting

both storage and transmission capacity. However, the high compression comes at the

7

8 MPEG-2 Video Decoder

cost of complexity: these standards “probably represent one of the most complicated

communication standards ever written” (stated in 1997 by [8]).

In 1992, four years after the formation of the MPEG working group, the MPEG’s

first international standard MPEG-1 was completed as ISO/IEC 11172. MPEG-1 was

successful in the computer entertainment industry. However, the missing support for

interlaced scan1 prevented its use in digital television [9]. MPEG-1 was later used as the

standard for the Video-CD, and it defines the popular audio compression format MP3

(MPEG-1 Audio Layer 3).

In 1994, the MPEG-2 standard was approved as ISO/IEC 13818, an extension of

MPEG-1 that adds support for interlaced video, more color formats and other advanced

coding features. In order to support a smooth transition from MPEG-1 to MPEG-2, it

retained full backward compatibility. MPEG-2 is used in the digital versatile disk (DVD)

as well as for digital television (as a video compression engine). With the increasing

popularity of high definition TV (HDTV), a new standard was planned especially to

handle the HDTV signals, but it was soon discovered that the MPEG-2 standard was

sufficient for that purpose, and the MPEG-3 standard was canceled.

The next generation MPEG standard MPEG-4 (ISO/IEC 14496) was started in 1993.

The focus of MPEG-4 lies on the convergence of the three major application areas, namely

Television and Film (provides audio–visual data), Computer (provides interactivity) and

Telecommunications (provides the ability of transmission). The traditional boundaries

between these industries disappear more and more — computers make use of video,

sound and communications, interactivity is being added to television and video is being

added to telecommunications. In terms of an audio–visual standard this means support

of interactivity, high compression and universal accessibility [8].

MPEG-7 (ISO/IEC TR 15938) differs in that it does not deal with the actual encoding

and decoding of audio–visual data, but it rather describes the way this data is stored,

and is hence called multimedia content description standard. The ambition is to allow the

applications an effective and efficient access, i.e. searching, filtering and browsing.

The latest MPEG standard, MPEG-21, is now in the development phase. This so

called multimedia framework takes into account a new multimedia usage context, namely

the accessibility of audio–visual data anywhere and at any time. This usage context,

together with the fact that more and more digital media is produced for professional and

personal use, leads to several new concerns like content management, protection of rights,
1Interlaced scan, in contrast to progressive scan, first displays every second line of the frame (the odd

field), returns then to the top and completes the frame (the even field). Interlaced scanning is described

in detail later.

2.1 The MPEG-2 Video Standard 9

13818-1: Systems

13818-2: Video

13818-3: Audio

13818-4: Conformance

13818-5: Software

13818-6: Digital Storage Media — Command and Control (DSM–CC)

13818-7: Non Backward Compatible (NBC) Audio

13818-8: 10-Bit Video (work item, removed)

13818-9: Real Time Interface

13818-10: DSM–CC Conformance

Table 2.1: Parts of the MPEG-2 standard.

protection from unauthorized access or modification and protection of privacy. For this

reason, a fundamental unit of distribution and interaction is defined (“digital item”) and

the goal of MPEG-21 is to support users to exchange, access, consume, trade and otherwise

manipulate these digital items in an efficient and transparent way [10].

2.1.2 MPEG-2 Overview

The MPEG-2 standard consists of 10 parts, which are referred to as 13818-1 through

13818-10 (Table 2.1). The Systems part describes how several audio–, video– and data

streams are multiplexed together to form one single bitstream. The systems part of the

standard is very flexible and suited for a nearly error–free as well as for an error–prone

environment. The Video part is the most important part and describes the video bitstream

syntax and semantics. It is described in detail in the following sections. The Audio part is

omitted here, as we will not consider audio decoding. The Conformance part specifies how

tests can be performed to verify whether a decoder meets the requirements. The Software

part consists of reference implementations of audio and video encoders and decoders. Parts

6 – 10 are several extensions that are not relevant for our purpose. The interested reader

is referred to [8] for a complete description.

The MPEG-2 standard defines the video bitstream syntax, semantics and the general

decoding process. The syntax describes the structure of the bitstream, i.e. the rules to

write and read the headers and picture data. The semantics then explains the meaning

of the header values and how the decoder has to interpret them. The decoding process

explains step–by–step how the encoded picture data is decoded in order to get the plain

10 MPEG-2 Video Decoder

luminance and chrominance values, which can then be passed on to the display process or

written to a file. The exact way the single decoding steps are realized is to a large extend

left open.

The encoding process — which is much more complex and time–consuming than the

decoding process — is not described by the standard. Every application that is able to

convert an uncompressed video sequence into an MPEG-2–conform bitstream is a valid

MPEG-2 encoder. This enables a wide range of encoder implementations with different

qualities in terms of compression rate, encoding speed and image quality. A DVD encoder,

for instance, will be highly optimized in terms of image quality and compression rate, while

the encoding speed is not important (because the encoding is done only once at production

time). A real–time encoder, on the other hand, must sacrifice image quality in order to

reach the required encoding speed and compression rate.

2.1.3 Video Representation

Coding means altering of the characteristics of a signal to make the signal more suitable

for an intended application2. According to this definition, the MPEG-2 standard is indeed

a coding standard in that the multimedia signal is made more suitable for transmission

and storage. However, a multimedia signal must first be made more suitable for being

processed by a digital system, which itself can be called a coding process. To prevent

confusion, we will call the latter video representation. Video representation consists of

spatial and temporal sampling, color representation, and quantization [9].

Spatial Sampling (Scanning)

We start with a two–dimensional image consisting of picture elements called pels3. The

process of converting this intensity matrix to a one–dimensional array or a waveform is

called scanning.

The simplest scanning method is progressive raster scanning. The image is scanned one

line after the other from left to right and from top to bottom. This rather abstract

description is sufficient for transforming an intensity matrix (digital image) into an

intensity stream (byte stream). If, on the other hand, an analog device like a cathode

ray tube is considered, numerous additional challenges have to be taken into account.

2According to the United States Federal Standard 1037C, “Telecommunications: Glossary of

Telecommunication Terms”
3The term pixel in computer terminology has exactly the same meaning. However, as in video processing

the term pel is commonly used, we will stick to this term here.

2.1 The MPEG-2 Video Standard 11

The electron beam has then actually to be moved along the lines of the screen, and the

movement back to the beginning of the next line introduces a delay (the so–called retracing

period), as well as the movement from the bottom line of one image to the top line of the

next image.

One way to improve the image quality without the need of extra bandwidth is interlaced

raster scanning. The idea behind interlaced raster scanning is to take advantage of the

characteristics of the human visual system, which is not able to perceive spatial details

for fast motion. An image now consists of two fields. The first field contains the odd

lines, whereas the second field contains the even lines. The beam therefore first scans lines

1, 3, 5, . . . , returns back to the beginning of the same image and scans lines 2, 4, 6, . . . ,

and continues with the first line of the next image. At the cost of spatial resolution, fast

moving objects are now much better resolved in time. As mentioned before, this matches

the characteristics of the human eye. Full support of interlaced raster scanning is one of

the main improvements from MPEG-1 to MPEG-2.

Temporal Sampling

The visual system is quite insensitive to temporal changes, an illusion of motion is created

by showing at least 16 frames per second. In motion picture technology, the temporal

sampling is performed at a rate of 24 frames per second. In television 25 and 30 frames

per second are commonly used [9].

Color Representation

One remaining question is the representation of a pel’s color. The trichromatic theory

of color vision implies that nearly every color can be represented as a combination of the

three primary colors red, green and blue. However, instead of transmitting the RGB values,

most of the color formats transform them into luminance and chrominance values. The

luminance is compatible with monochrome devices, which is the main advantage of this

color representation. The chrominance values consist of hue (frequency) and saturation

(amount of black).

The format used in MPEG-2 is the ITU-R BT.601 digital video standard4. The color

space used is YCrCb, i.e. the format contains one luminance component Y and two

chrominance components Cr and Cb. A camera imaging a scene generates for each

pel the primary color RGB values, for transmission and storage they are converted into

luminance/chrominance values YCrCb, and right before displaying, they are transformed

4The ITU-R was formerly called CCIR and the standard was therefore called CCIR-601.

12 MPEG-2 Video Decoder

back into the RGB color space (if a color display is used). The MPEG-2 standard supports

3 different chrominance formats, which are called 4:2:0, 4:2:2 and 4:4:4 format. The

chrominance format specifies the proportion of luminance values to chrominance values:

4:2:0 The Cb and Cr matrices are one half the size of the Y-matrix in both horizontal

and vertical dimensions. In oder words, there is one Cb and one Cr value for every

four Y values.

4:2:2 The Cb and Cr matrices are one half the size of the Y-matrix in the horizontal

dimension and the same size as the Y-matrix in the vertical dimension. This means

one Cb and one Cr value for every two Y values.

4:4:4 The Cb and Cr matrices are the same size as the Y-matrix in both horizontal and

vertical dimensions. There is one Cb and one Cr value for each Y value.

With all three chrominance formats, the location of the Y, Cb and Cr values is exactly

defined in the standard, for progressive as well as for interlaced scanning.

2.1.4 Video Compression

An uncompressed short video sequence of 4 minutes duration encoded in the NTSC ITU-R

BT.601 4:2:2 format requires more than 5 GB of storage capacity, as can be verified quickly

by calculating

(720 · 486 + 2 · 360 · 486)
B

frame
· 30

frames
s
· 240 s = 5.04 · 109 B ,

where 720·486 is the number of luminance pels, and 360·486 is the number of chrominance

pels per picture in the NTSC ITU-R BT.601 4:2:2 format. This is exactly what a single–

sided DVD can hold. Luckily, coded video data contains a lot of redundancy.

Spatial Redundancy

Spatial redundancy, also known as intra frame redundancy, can be reduced by processing

every single frame of a video separately. As video is nothing more than a sequence of

images, the same techniques as for image compression can be used. A very popular

approach for image compression, used in JPEG and adopted by many video coding

standards, including MPEG-2, is called Discrete Cosine Block Transform5. First, assume

an image with large fields of the same color (e.g. a black drawing on a white paper). Images

5See e.g. [11] for an introduction to the discrete cosine transform.

2.1 The MPEG-2 Video Standard 13

of this type can be compressed very easily with run length encoding (RLE): instead of

saving all consecutive bytes of the same value (e.g. ‘0000000000’), the amount of bytes

is saved (‘10’ ‘0’, meaning 10 consecutive zeros). However, this approach does not work

in case of high resolution images where such sequences almost never occur. Instead, high

resolution images contain smooth transitions which cannot be compressed by the means

of RLE. Even worse, the human eye is very sensitive to these low frequency parts and

quantization steps are clearly visible. On the other hand, the eye is quite insensitive

to high spatial frequencies. The discrete cosine block transform exploits this fact. The

procedure is as follows:

i) The image is divided into blocks.

ii) Each block is transformed into the frequency domain by the means of the discrete

cosine transform (DCT). Most of the useful information now lies in a few low–

frequency coefficients, whereas the high–frequency coefficients are all close to zero.

iii) The coefficients are quantized which sets the high frequency coefficients to exactly

zero.

iv) As the low–frequency coefficients are lying in the upper–left and the high–frequency

coefficients in the bottom–right corner, zig–zag scan is applied in order to bring

similar frequencies close together.

v) The resulting stream of coefficients is very well suited for RLE, as it contains a long

sequence of zeros (the high–frequency coefficients).

The fact that the human visual system is more sensitive to low spatial frequencies is

exploited by using different quantization steps for different frequencies. This intra frame

quantization matrix can be chosen freely but the MPEG-2 standard provides a default

matrix that is used if no other matrix is specified. With this default quantization matrix,

transform coefficients are quantized more coarsely with increasing horizontal and vertical

spatial frequencies.

The described procedure is not a simple low–pass filter, as the high frequency coefficients

are quantized and not cut off. The small but important difference is the following: If an

image contains significant high frequency coefficients, they are not removed, but it rather

degrades the compression rate. This is important because the MPEG-2 standard tries to

reach a good compression rate while maintaining a high quality image rather than to force

a specified compression rate at the cost of image quality.

14 MPEG-2 Video Decoder

Original

Pictures
―

Compensated

Pictures

Frame

Encoder

Frame

Decoder
Predictor

(temporally correlated) (temporally decorrelated)

Compensated

Pictures +

Predictor

Decompensated

Pictures

Frame

Decoder

(temporally decorrelated) (temporally correlated)

Figure 2.1: General predictive coding and decoding scheme.

Temporal Redundancy

Temporal redundancy or inter frame6 redundancy stems from the fact that consecutive

images are often highly correlated. The simplest way to decorrelate consecutive images is

frame differencing. Instead of coding the image itself, the difference between the actual

and the previous image is coded. If there is little motion the difference image is mostly

uniform and can be coded very efficiently (as a uniform block has all coefficients = 0

except the DC-coefficient). Frame differencing is a predictive coding technique where

the predictor is simply a frame buffer (the prediction is therefore the previously decoded

frame). Figure 2.1 shows the general predictive coding and decoding scheme. It can be

verified easily that the decoded image is equal to the uncoded (original) image, as long as

the predictor is the same in both cases.

Of course, the first frame of a sequence cannot be coded predictively, as there is no

previous frame. Such a frame is called intra coded frame, or I frame for short, and considers

only spatial redundancy. For being able to access frames in the middle of a video sequence,

I frames are periodically inserted.

Motion Compensation The more motion a video contains, the less we gain from frame

differencing. This calls for motion compensation. The idea is to improve the prediction

by estimating the motion of objects between frames.

The main motion compensation unit is the macroblock, which consists of 6 to 12 blocks

(depending on the chrominance format). Each macroblock is accompanied by one or more

6In a progressive video, a frame is the same as a picture, whereas in an interlaced video, a picture

may refer to a frame or a single field, depending on the context. The terms picture and image are

interchangeable.

2.1 The MPEG-2 Video Standard 15

Without Motion Compensation

With Motion Compensation

Current Frame Reference Frame

Figure 2.2: Illustration of the use of motion vectors.

motion vectors. The motion vector indicates, which macroblock of the reference frame

must be used to reconstruct the macroblock of the current frame. This is illustrated in

Figure 2.2. First, assume predictive coding without motion compensation, i.e. frame-

differencing. Taking the difference between the current frame and the reference frame,

all macroblocks are uniform except two: the one with the smiley in the current frame

and the one with the smiley in the reference frame (resulting in a “negative smiley”). By

introducing the motion vectors, we can define for each macroblock of the current frame

exactly which macroblock of the reference frame should be taken to build the difference. In

this way it is possible to refer to the macroblock containing the same object at a different

position, and as a consequence, all resulting macroblocks are uniform.

Note that the left motion vector in Figure 2.2 was chosen arbitrarily. The important

thing is that the macroblock at the origin of the vector in the reference frame is the same

as or at least very similar to the macroblock at the head of the vector in the current

frame. It is in fact not necessary at all that the motion vectors represent motion of real

existing objects, it is rather the encoders job to find the macroblock of the reference frame

that leads to the most uniform differential values. It is mostly this task, which makes an

encoder implementation so challenging and it is now obvious that finding the best motion

vectors requires trading–of encoding speed for compression rate and image quality.

If the reference frame occurs before the current frame the prediction type is called

forward prediction. Frames that are coded using only forward prediction are called

P frames (predicted frames). The reference of a P frame can either be an I frame or another

P frame. An extension of the concept leads to bidirectionally predicted frames (B frames).

B frames use a past and a future reference frame and interpolate the result. This leads

to an improved prediction, as can be seen from the following situation: assume a car

16 MPEG-2 Video Decoder

suddenly appears from behind a building. The block containing the car clearly cannot be

predicted using forward prediction. By taking the future frame as a reference, much better

prediction is possible. Bidirectionally predictive coded frames are never used as references

for prediction, otherwise a deadlock–like situation could occur where the current frame

must be fully decoded in order to get its own reference frame. For maintaining causality,

i.e. making sure that both reference frames of a B frame are decoded before the B frame

itself, the frames are reordered during the encoding process (coded order). This makes the

decoding process much simpler: the decoder can then process one frame after the other

and simply restores the original order (display order) before sending them to the display

process.

If a macroblock belongs to an intra–coded picture, no prediction is formed. The output

of the predictor is then zero and the luminance/chrominance values of the macroblock

directly represent the decoded data. As the predictor is not used at all, the compression

of such macroblocks is significantly lower than their P and B picture counterparts, but

they have the important advantage that they can be decoded without the use of a

reference picture. On the other hand, there are blocks that are not coded at all, and

even macroblocks that are skipped completely. In that ideal case, the prediction alone

represents the decoded data, i.e. the prediction is perfect. In all the other cases, there is

a prediction, but it is not perfect. The luminance/chrominance values of the macroblock

must then be added to the luminance/chrominance values of the prediction in order to get

the decoded data. In summary, the motion compensation procedure is the following:

i) The reference pictures are selected. P pictures have one and B pictures have

two reference pictures. The procedure is somewhat complicated by the interlaced

scanning compatibility of the MPEG-2 standard: if interlaced scanning is used, the

standard allows for both field and frame prediction, and the fields and frames from

which predictions are made may themselves have been decoded as either field pictures

or frame pictures7. The selection rules are clearly defined in the MPEG-2 standard.

ii) The motion vectors are decoded. The motion vectors themselves are coded

differentially with respect to previously decoded motion vectors. This reduces the

number of bits to represent them.

iii) The prediction is formed by reading luminance/chrominance values from the

reference picture, offset by the motion vector.
7The distinction between field pictures and frame pictures must be made in most decoding steps. Although

this fact complicates a decoder implementation, the underlying concepts are the same in both cases.

For this reason the explicit distinction is mostly omitted throughout this MPEG-2 introduction.

2.1 The MPEG-2 Video Standard 17

Macroblock

...
...

...

P
ic

tu
re

 H
ea

de
r

P
ic

tu
re

 D
at

a

......

G
O

P
 H

ea
de

r

...

S
eq

ue
nc

e
H

ea
de

r
Sequence Data

Block BlockBlockBlock

Macroblock

Slice

Picture Data
P

ic
tu

re
 H

ea
de

r

G
O

P
 H

ea
de

r

Figure 2.3: Nested syntactic structures of the MPEG-2 bitstream.

iv) The final decoded values are obtained by adding the luminance/chrominance values

from the current block to the prediction data.

2.1.5 Bitstream Syntax and Semantics

The video bitstream is organized in a hierarchy in which syntactic structures contain one

or more subordinate structures [12]. This is illustrated in Figure 2.3.

Video Sequence

The video sequence is the highest syntactic structure of the coded video bitstream. It

consists of the video sequence header, extension and user data, several group of pictures

structures (optional) and picture structures. The beginning of a video sequence header

is marked with the hexadecimal value 0x000001B3. The header itself contains the image

size, aspect ratio, frame rate, bit rate, quantizer matrix (if the default matrix is not used),

etc. The extension field contains profile and level indication, the chrominance format,

progressive/interlaced flag, and all the other MPEG-2 specific information.

Group of Pictures

The group of pictures structure consists of a header only. The GOP start code 0x000001B8

is a marker that separates independent groups of pictures. The picture immediately

following the GOP header has to be an I picture, which means that it can be decoded

without knowledge of the previous pictures. GOP headers can therefore be used for fast

18 MPEG-2 Video Decoder

P P P PPP I ...

Group of Pictures

1 2 3 4 5 6 7 8

PI... BB

Figure 2.4: Illustration of a GOP in encoded picture order.

forward and random access: If a random access in the middle of the video sequence is

required, all pictures are skipped until the next GOP header. The GOP header is however

optional, the encoder can insert I pictures without being obligated to precede them with

GOP headers. This still allows for fast forward and random access, but the decoder then

has to read out every picture header in order to find the next I picture.

It is important to understand that the GOP header indicates the begin of an independent

group of pictures in display order. Although an I picture must follow the GOP header, it

does not imply that all the following pictures in coded order can be properly decoded. This

is illustrated in Figure 2.4: it shows a complete GOP arranged in coded order. Pictures

2 and 3 are B pictures, which use the last P picture of the previous GOP as well as the

first I picture of the current GOP as reference pictures. This means that in display order,

pictures 2 and 3 come before picture 1, they were reordered during the encoding process

for maintaining causality. This also means that they cannot be decoded properly in the

case of a random access, where the last P picture of the previous GOP is not available. In

terms of the display order, they do not belong to the current GOP and can be skipped in

the case of a random access. If both of these B pictures use only backward prediction or

no prediction at all (which is, according to the standard, allowed also for B pictures), they

can be decoded properly, and the GOP is then called a closed GOP. The GOP header

contains a bit indicating if the GOP is open or closed, which allows the decoder to act

accordingly without examining the picture headers.

Picture

The picture start code is 0x00000100 and marks the beginning of a new picture header.

The picture header contains, among other things, the picture coding type (I, P or B). It

is followed by picture coding extension information and the actual picture data, which in

turn consists of several slice structures.

2.1 The MPEG-2 Video Standard 19

F

E

J

K

A

D

IG H

CB

Figure 2.5: Division of a picture into slices.

Slice

A slice is a series of consecutive macroblocks of a single row. Figure 2.5 shows a possible

division of a picture into several slices. Note that the slices cover the whole picture. This

is called restricted slice structure and all profiles defined so far require this structure. The

MPEG-2 standard itself allows also a more general slice structure, where only parts of the

picture are covered by slices.

The slices occur in the bitstream in raster–scan order from left to right and from top to

bottom. The slice start codes are 0x00000101 — 0x000001AF, where the last byte (0x01

— 0xAF) stands for the vertical position of the slice in the picture. The start code is

followed by several flags and the macroblock structures.

Slices are the smallest entities which have their own start codes. As the entities become

smaller their quantity increases. At a certain point the ease of byte–aligned start codes

does not justify the “waste” of 32 bits per header. On the contrary, the goal of a high

compression rate makes it necessary to introduce entropy coding at the cost of a more

complicated decoding process, as described in the next section.

Macroblock

The macroblock header contains all the information that is needed for motion

compensation. After the header, a well–defined number of block structures follow. The

number of blocks and their order in the bitstream depends on the chrominance format

and is illustrated in Figure 2.6.

In contrast to the previous structures, the macroblock header is not preceded by a start

20 MPEG-2 Video Decoder

4:2:0

4:2:2

4:4:4

Cb Cr

Cr

CrY Cb

Y

Y

Cb

5

7

11

95

7

4

5

4

632

0 1

32

0 1
4

1

3

0

2 6 10

8

Figure 2.6: Number of blocks contained in a macroblock for a given chrominance format.

code any more, as mentioned before. In addition, variable length codes as a form of entropy

coding are introduced, which means that the values of the header entries and the motion

vectors are coded with different lengths, depending on their probability of occurrence.

The decoding process is thereby somewhat complicated, in that the whole macroblock

(including all contained blocks) must be variable length decoded in order to find the begin

of the next macroblock. Significant computation is necessary to decode the variable length

codes.

Block

The lowest syntactic structure is called block. In the encoded bitstream a block consists

of the variable length coded DCT coefficients for a 8× 8 chrominance/luminance matrix.

2.1.6 The Decoding Process

Assuming that all the header information is extracted and saved in global variables, the

decoding process now describes how to transform the block of DCT coefficients into an

8 × 8 matrix of chrominance/luminance values. A simplified data flow diagram is shown

in Figure 2.7.

Coded

Data

Variable

Length

Decoding

Inverse

Scan

Inverse

Quantiz-

ation

Inverse

DCT

Motion

Compen-

sation

Decoded

Samples

Figure 2.7: Simplified data flow diagram of the decoding process.

2.2 Selection of a Reference Implementation 21

The variable length decoding (VLD) process converts the variable length bit strings

into the motion vectors and the DCT coefficients according to lookup tables specified in

the MPEG-2 standard. The resulting coefficients are one–dimensional. The inverse scan

(IS) process then converts the one–dimensional stream into a two–dimensional array of

coefficients, using either zig-zag or alternate scanning order. The inverse quantization

(IQ) is essentially a multiplication by the quantizer step size, followed by a saturation to

keep the coefficient values inside a specific range. These steps yield the complete spatial

frequency domain description of the block, and the actual luminance/chrominance values

can be obtained by applying the inverse DCT (IDCT). The final and most complicated

step is motion compensation (MC), which is described in detail in Section 2.1.4.

2.2 Selection of a Reference Implementation

The aim of the first part of this thesis is to test the DOL with a complex algorithm.

The DOL requires the application programmer to abandon the usual way of writing a

program as a single sequence of instructions. Instead, the application programmer must

expose the algorithm’s inherent parallelism by writing (sequential) processes and a process

network. The process network describes the way the processes are connected to each other.

One of the key questions is whether the DOL provides enough functionality to allow the

application programmer to do so in an efficient way. We do not intend to write an MPEG-2

implementation from scratch, so an existing reference implementation of the MPEG-2

standard is chosen. In this section, the criteria for choosing a reference implementation

and five candidates are analyzed. The implementation that fits our purpose best is then

presented in more detail.

2.2.1 Selection Criteria

A. Portability and Suitability for Parallelization. Platform–specific optimizations (MMX

support and the like) are rather disturbing than helpful. Already included parallelism

is advantageous but not necessary. The main building blocks are predetermined

by the standard itself (like variable length decoding, inverse quantization, inverse

DCT and motion compensation). We expect therefore that the implementations do

not differ very much in their suitability for parallelization, especially since we are

interested in coarse–grained parallelization.

22 MPEG-2 Video Decoder

B. Clearness and Documentation. An extensive documentation facilitates the paral-

lelization considerably. The implementation should be well structured and clear.

C. Comparability. There are several similar platforms presented in literature, and the

MPEG-2 algorithm is a common benchmark application. The reference implemen-

tation should be well comparable to related works.

D. Efficiency. An efficient implementation would be preferable, however, we expect a

trade–off between efficiency and clearness. For our purpose clearness is more

important than efficiency, because the efficiency of a sequential implementation is not

necessarily portable to the parallel case. We can therefore not assume a priori that

an efficient sequential implementation leads also to a better parallel implementation,

whereas a clear and well documented implementation does that without much doubt.

E. Completeness. Not every decoder implements all possible kinds of MPEG-2 profiles.

We expect an MPEG-2 library used in a commercial media player program and tested

by thousands of users to be much more complete than a sample decoder programmed

for academic reasons. Completeness is however again not our main concern.

F. License. Last but not least, it is important to have the right to use, change and publish

the source code.

2.2.2 The Candidates

libmpeg2

The libmpeg2 library [13] is a SourceForge project for decoding MPEG-1 and MPEG-2

video streams. It contains highly optimized assembly routines for specialized hardware

(e.g. MMX and AltiVec), but for the sake of portability, generic C routines are also

available. Great effort was put into speed and the authors are very confident in that

they wrote one of the fastest MPEG-2 decoder library. One of the main development

goals was conformance, the MPEG streams are however restricted to the main profile.

A drawback of the libmpeg2 is the absence of documentation. The library comes with a

testbed (mpeg2dec) which includes a demultiplexer for MPEG-2 program streams. The

library is widely used by media players, but, as far as we know, never referenced by

scientific papers. The libmpeg2 library is released under the terms of the GNU General

Public License (GPL).

2.2 Selection of a Reference Implementation 23

libavcodec

The libavcodec library is a collection of video and audio codecs. Besides MPEG-1 and

MPEG-2, it contains also MPEG-4 codecs and many different audio codecs. It is a part

of the FFmpeg project [14] and is used by popular media players like MPlayer, xine and

VLC Media Player and therefore offers compatibility with all possible MPEG bitstreams

at the cost of high complexity. It is not very well documented. This library is released

under the terms of the GNU Lesser General Public License8 (LGPL).

MSSG mpeg2dec

The MPEG Software Simulation Group (MSSG) developed an MPEG-2 coder and decoder

with emphasis placed on a correct implementation of the standard and a simple structure

[15]. Its main purpose is to demonstrate a sample implementation and serve as an

educational tool — it is not optimized for speed but based on relatively fast algorithms.

It is often used in literature as a reference implementation for parallel decoding, e.g. in

[16] and [17]. The package contains several bitstreams and a small verification program

and it is freely available on an “as is” basis.

Jahshaka and Helix

The Jahshaka [18] and Helix [19] projects both are open source media players which contain

MPEG-2 libraries. Both provide only end–user documentation, but a lot of information

is available through developer forums. As they are embedded in very large projects they

are not suited very well for our purpose, because of rather complicated compilation and

configuration steps.

2.2.3 Presentation of the MSSG’s mpeg2dec

According to the criteria, the MSSG’s mpeg2dec is suited very well for our purpose.

The mpeg2dec application is written in ANSI C and compiled and tested on several

platforms (gcc on SunOS and Linux, djgpp on MS-DOS, Visual C++ on MS Windows). It

contains 16 source files, 4 header files and a makefile. Table 2.2 shows the most important

files together with a short description. The source code is well–structured and several

functions can be used almost unchanged for our purpose, like VLD–, header decoding–,

bit level– and DCT–routines. The remaining files follow the syntactic description of the

8The LGPL, in contrast to the GPL, allows to link a program to a non-LGPL program which can be free

or proprietary software. In the case of the GPL, such a linked program must adopt the GPL.

24 MPEG-2 Video Decoder

MPEG-2 standard. This is where the major adaptations are necessary, because global

data structures are heavily used.

Listing 2.1 shows the outline of mpeg2dec in pseudo–code. The most interesting part

is the macroblock loop. The blocks are looped twice — once for decoding the DCT

coefficients and a second time for performing the inverse DCT and for adding the prediction

and coefficient data. This has to be reorganized for our purpose, as will be seen later.

The implementation makes heavy use of global variables. During the decoding process,

a lot of tables defined in the standard document are needed. Most of them belong to

the VLD, and are therefore defined in getvlc.h. The more general tables like scanning–

and quantizer matrices are defined in global.h. All the information extracted from the

headers is stored in global variables, which are declared also in global.h. Listing 2.2

shows the most important global variables. Note that this list is by far not complete;

a total of more than 100 variables are declared. Most of the variable names are self–

explanatory and the complete semantics can be looked up in the appropriate section of

the ISO/IEC 13818-2 document [12].

The MPEG-2 scalability feature allows for several independently coded layers. If a

videosequence contains more than one layer, all the layer specific variables need to be

saved separately. In addition to the global variables, the layer_data structure is therefore

declared, which contains all these layer specific variables (see Listing 2.3).

mpeg2dec.c main() function, initialization, command-line option processing

getpic.c picture decoding routines

motion.c motion vector decoding routines

recon.c motion compensation routines

gethdr.c header decoding routines

getblk.c DCT coefficient decoding routines

getbits.c bit level routines

getvlc.c variable length decoding routines

idct.c fast inverse discrete cosine transform

idctref.c double precision inverse discrete cosine transform

global.h declaration of global variables

Table 2.2: The most important files of the mpeg2dec application.

2.2 Selection of a Reference Implementation 25

main () {
<open input f i l e >
i n i t i a l i z e d e c o d e r () ;
decode b i t s t ream () {

for (a l l v ideosequences) {
for (a l l p i c t u r e s) {

p i c tu r e da ta () {
for (a l l s l i c e s) {

for (a l l macroblocks) {
<get macroblock mode>
<decode motion vector s>
<get macroblock pattern>
for (a l l b locks) {

<decode DCT c o e f f i c i e n t s >
}
motion compensation () {

<form pr ed i c t i on s >
for (a l l b locks) {

<perform inv e r s e DCT >
<add p r ed i c t i on and c o e f f i c i e n t data>

}
} /∗ end o f motion compensation () ∗/

}
}

} /∗ end o f p i c t u r e d a t a () ∗/
f r ame reo rde r () ;

}
}

} /∗ end o f decode b i t s t r eam () ∗/
<c l o s e input f i l e >

}

Listing 2.1: Outline of mpeg2dec.

26 MPEG-2 Video Decoder

/∗ po in t e r s to gener i c p i c t u r e b u f f e r s ∗/
unsigned char ∗ backward re f e rence f rame [3] ;
unsigned char ∗ f o rwa rd r e f e r en c e f r ame [3] ;
unsigned char ∗auxframe [3] ;
unsigned char ∗ cur rent f rame [3] ;
unsigned char ∗ s ub s t i t u t e f r ame [3] ;

/∗ non−normative v a r i a b l e s de r i v ed from normative e lements ∗/
int Coded Picture Width ;
int Coded Picture Height ;
int block count ;
int Second Fie ld ;
int p r o f i l e ;
int l e v e l ;

/∗ normative de r i v ed v a r i a b l e s (as per ISO/IEC 13818−2) ∗/
int h o r i z o n t a l s i z e ;
int v e r t i c a l s i z e ;
int mb width ;
int mb height ;
double b i t r a t e ;
double f r ame rate ;

/∗ ISO/IEC 13818−2 sec . 6 . 2 . 2 . 1 : sequence header () ∗/
int a s p e c t r a t i o i n f o rma t i o n ;
int f r ame ra t e code ;
int b i t r a t e v a l u e ;

/∗ ISO/IEC 13818−2 sec . 6 . 2 . 2 . 3 : s e quence ex t ens i on () ∗/
int p r o f i l e a n d l e v e l i n d i c a t i o n ;
int p rog r e s s i v e s equenc e ;
int chroma format ;

/∗ ISO/IEC 13818−2 sec . 6 . 2 . 2 . 4 : s e q u en c e d i s p l a y e x t e n s i on () ∗/
int v ideo format ;
int c o l o r d e s c r i p t i o n ;
int c o l o r p r ima r i e s ;
int ma t r i x c o e f f i c i e n t s ;
int d i s p l a y h o r i z o n t a l s i z e ;
int d i s p l a y v e r t i c a l s i z e ;

/∗ ISO/IEC 13818−2 sec . 6 . 2 . 3 : p i c t u r e h eade r () ∗/
int p i c tu r e c od i ng type ;

/∗ ISO/IEC 13818−2 sec . 6 . 2 . 2 . 6 : g r oup o f p i c t u r e s h e a d e r () ∗/
int frame ;
int c l o s ed gop ;
int broken l i nk ;

Listing 2.2: Most important global variables.

2.2 Selection of a Reference Implementation 27

/∗ l a y e r s p e c i f i c v a r i a b l e s ∗/
struct l a y e r da ta {

/∗ b i t input ∗/
int I n f i l e ;
unsigned char Rdbfr [2 0 4 8] ;
unsigned char ∗Rdptr ;
unsigned char I nb f r [1 6] ;

/∗ from mpeg2play ∗/
unsigned int Bfr ;
unsigned char ∗Rdmax ;
int Incnt ;
int Bitcnt ;

/∗ sequence header and quan t ma t r i x e x t en s i on () ∗/
int i n t r a quan t i z e r ma t r i x [6 4] ;
int non in t r a quan t i z e r mat r i x [6 4] ;
int chroma in t ra quant i z e r mat r ix [6 4] ;
int chroma non int ra quant i z e r matr ix [6 4] ;

int l o ad i n t r a quan t i z e r ma t r i x ;
int l o ad non in t r a quan t i z e r ma t r i x ;
int l o ad ch roma in t ra quant i z e r mat r i x ;
int l oad chroma non in t ra quant i z e r mat r i x ;

int MPEG2 Flag ;
/∗ sequence s c a l a b l e e x t ens i on ∗/
int sca lab le mode ;

/∗ p i c t u r e coding ex t ens ion ∗/
int q s c a l e t yp e ;
int a l t e r n a t e s c an ;

/∗ p i c t u r e s p a t i a l s c a l a b l e e x t ens ion ∗/
int p i c t s c a l ;

/∗ s l i c e /macroblock ∗/
int p r i o r i t y b r e a kpo i n t ;
int quan t i z e r s c a l e ;
int i n t r a s l i c e ;
short block [1 2] [6 4] ;

} ;

Listing 2.3: Layer specific variables.

28 MPEG-2 Video Decoder

2.3 Parallelization of the Algorithm

As described in Section 1.2, the application programmer has to expose the available

parallelism to the DOL, which in turn tries to exploit it as much as possible. Depending

on the structure and the complexity of the algorithm, parallelization may become a

challenging task. This chapter deals with the parallelization of the MPEG-2 algorithm.

The first section presents the methodology, which is then used in the following sections to

split up the algorithm into a number of concurrent processes.

2.3.1 Methodology

One possible approach for parallel algorithm design consists of four stages: Partitioning,

Communication Analysis, Agglomeration (also referred to as Granularity Control) and

Mapping. The computation and the data operated on by this computation is first

decomposed into smaller tasks. This can be done in one of two ways. Either the data

is first decomposed and then computation is assigned to it (domain decomposition), or

the computation is first decomposed and then the data is assigned to it (functional

decomposition). The former way leads to data parallelism, and the latter to pipeline

parallelism. After partitioning, the communication between the tasks has to be analyzed

and appropriate data structures have to be defined. During the agglomeration phase the

design has to be evaluated and tasks are combined wherever this improves performance or

reduces cost. Finally, each task is mapped to a processor with the ambition of maximizing

processor utilization and minimizing communication costs [20].

This general methodology is a good starting point, but several modifications must be

made in order to use it for our purpose. The mapping stage can be omitted completely,

as it is the main purpose of the DOL to help a programmer to find an efficient mapping.

This is therefore done in a later stage. The second important difference stems from the

complexity and the nested structure of the MPEG-2 algorithm. In order to fully explore

the parallelism, a refined approach is needed.

In Section 2.3.2, the MPEG-2 decoding algorithm is therefore divided into abstraction

levels. Each level consists of a data unit, a computation that is performed on it, and a

decoded data unit as a result of the computation. For every abstraction level, both the

possibilities of domain decomposition and functional decomposition are investigated. All

decompositions are evaluated by the means of a communication analysis, i.e. the less

inter–process communication is necessary, the better. It is important to note that in the

analysis, all decompositions are treated completely independent from each other. Due to

2.3 Parallelization of the Algorithm 29

dependencies between the abstraction levels, however, not all of these decompositions can

actually be implemented. This issue is addressed in the last stage of parallelization, the

partitioning stage (Section 2.3.3), where several feasible decompositions are selected and

combined.

The evaluation of a decomposition is an important step and may exhibit a trade–off

between degrees of freedom for the optimization procedure and communication overhead.

The finer the granularity, the more processes we have and therefore the more degrees of

freedom are available to the mapping optimization procedure. However, a fine granularity

normally leads to more communication overhead, which in turn may reduce performance

(especially in data-intensive video processing applications). But as we will see later, there

are also cases where a refinement of the granularity leads to less communication overhead.

2.3.2 The Abstraction Levels

As described in Section 2.1, the MPEG-2 video bitstream is organized in a syntactic

hierarchy, which means that it consists of nested syntactic structures (see Figure 2.3 in

Section 2.1.5). This organization naturally leads to six different data abstraction levels

(Table 2.3) for which the following observations can be made.

i) Levels 1 – 4 provide no actual picture data but rather contain local and global header

information and multiple instances of the subordinate structures. The picture level,

for example, consists of header information (like I, P or B picture) and multiple

instances of the slice structure. Therefore the computation associated with levels

1 – 4 are mainly header information extraction and it cannot be expected that

they provide much potential for a functional decomposition. Wherever there is no

computation associated with the data unit, the functional decomposition is therefore

omitted.

ii) The potential for domain decomposition of levels 1– 5 will differ from level to level

and must be examined carefully. Generally speaking, the more the data units

are independent from each other, the less communication will be necessary. The

general scheme of data parallelism obtained by a domain decomposition is shown in

Figure 2.8. What remains is to define the output data type of the dispatch process

(dispatched data type) and the input data type of the collect process (collected data

type), as well as to implement the processes themselves.

30 MPEG-2 Video Decoder

1 System Level

Data unit: MPEG-2 bitstream

Demultiplex and decode video, audio and data stream

Decoded data unit: stream of decoded pictures, audio samples and data

2 Videosequence Level

Data unit: Coded video sequence bitstream

Extract header information, decode GOPs (if available) and pictures

Decoded data unit: Decoded videosequence (a number of decoded pictures)

3 Picture Level

Data unit: Coded picture bitstream

Extract header information and decode slices

Decoded data unit: Decoded picture (raw 8-bit RGB or YUV data)

4 Slice Level

Data unit: Coded slice bitstream

Extract header information and decode macroblocks

Decoded data unit: Decoded slice (one 16 pels wide row of a picture)

5 Macroblock Level

Data unit: Coded macroblock bitstream

Variable length decoding, block decoding and motion compensation

Decoded data unit: Decoded MB (a 16× 16 pels large section of a picture)

6 Block Level

Data unit: Coded block bitstream (decoded DCT coefficients)

Inverse Scan, Inverse Quantization, Inverse DCT

Decoded data unit: Decoded block (8× 8 chrominance or luminance values)

Table 2.3: Data abstraction levels.

iii) The computation at level 6 is quite complex, and a thorough investigation of

possible functional decompositions is necessary. It is the only level where significant

improvements due to pipeline parallelism are expected. There are two techniques

of exploiting pipeline parallelism: first, a single process can simply be split up into

several smaller processes, connected in series. Second, parts of the computation can

be transferred to the upper adjacent level, where it is performed for all blocks of the

current macroblock.

2.3 Parallelization of the Algorithm 31

Data Unit
Dispatch

Process

Decoded

Data Unit

Process 1

Collect

Process
Process 2

Process N

…

Dis
pat
che

d

Dat
a T
ype

Collected Data Type

Figure 2.8: General domain decomposition scheme.

System Level

The top level data unit is an MPEG-2 bitstream. The stream is demultiplexed and the

video, audio and data streams are decoded.

Domain Decomposition Decomposing the MPEG-2 bitstream into a video, audio and

data stream is simple, and the corresponding decoding computation can easily be

performed in parallel, as there is almost no interdependence. This decomposition

does not follow the scheme of Figure 2.8 in that there is not an arbitrary number of N

parallel processes, but instead one for video, one for audio and one for data. It would

also be possible to decode several video streams in parallel, but both decompositions

are not of our interest, as we are dealing with video only and assume just a single

video stream at a time.

Videosequence Level

The data unit is a coded video bitstream, and the decoded data unit is a sequence

of decoded pictures together with global information like picture size, aspect ratio

information and frame rate. The videosequence header information is extracted (contains

the aforementioned global information) and the GOPs (if available) and the pictures are

decoded.

Domain Decomposition 1 Several GOPs can be processed in parallel and there is

almost no interdependence. The main reason for introducing GOP headers is the

independence — every GOP starts with an I picture and can therefore be decoded

without knowledge of previous pictures. One difficulty is the fact that open GOPs

are not completely independent from each other. Although this is no problem in

the case of a random access (cf. Section 2.1.5), where the dependent B pictures

can simply be skipped, this is not possible any more in the case of a decomposition,

32 MPEG-2 Video Decoder

Sequence
Dispatch

Pictures

Decoded

Sequence

I Pictures

Collect

Pictures
P Pictures

B Pictures

Figure 2.9: Picture level domain decomposition.

because the skipped pictures would never be decoded. This problem is addressed

in Section 2.3.3. The main problem with this decomposition arises when there are

no GOP headers in the bitstream. Assume that there are N processes decoding N

GOPs in parallel. If a bitstream without GOP headers is applied to the decoder, only

one out of N processes is busy, which is not tolerable. Either the decoder is clearly

declared to require GOP headers (which theoretically makes it non–compliant with

the MPEG-2 standard), or a mechanism is introduced which reads out every single

picture header and autonomously forms groups of independent pictures.

Domain Decomposition 2 Decode N pictures in parallel, regardless of whether they are I,

P or B pictures. However, it is obvious that predictive coding is inherently sequential

on the picture level. The whole concept of compression by the means of predictive

coding is based on the availability of the previously decoded picture. A huge amount

of communication would be necessary in order to provide the processes with all the

needed information, and every process must be connected to all other processes with

two channels (one for each direction), which is clearly impractical.

Domain Decomposition 3 The third way of decomposing is a fixed amount of three

parallel processes, one for each coding type. This concept is shown in Figure 2.9.

The number of channels is significantly reduced, as it is clearly defined which process

provides which neighbor with reference pictures. But the amount of communication

is still huge, and the load will be poorly balanced, as the amount of I–, P– and

B–type pictures and the resulting decoding effort is far from being even.

In summary, the only feasible decomposition is to process GOPs in parallel and, with some

effort, the single GOPs can be made completely independent.

2.3 Parallelization of the Algorithm 33

Picture Level

This level’s data unit is a coded picture bitstream. The picture header information is

extracted (I, P or B picture type, etc.) and the slices are decoded and put together to a

decoded picture.

Domain Decomposition The slices of a picture can be processed in parallel. Slices are

separated by a slice start code and are completely independent of each other. The

only problem that must be solved at this level is the dependency on previously

decoded pictures in the context of predictive coding. Since we avoid processing

pictures in parallel, the preceding pictures can clearly be expected to be already

decoded. The problem is theoretically reduced to a frame storage process that

delivers parts of the stored pictures upon request. As will be shown later, the actual

implementation can be done much more efficiently.

Slice Level

At the slice level the header information of the coded slice bitstream is extracted and the

macroblocks are decoded.

Domain Decomposition The macroblocks can also be processed in parallel. The dispatch

process can decode the incoming slices, form macroblock packets and send them to

the macroblock processing units. All macroblocks of a picture are independent.

As mentioned before, variable length codes are introduced at this level and the

macroblocks are not preceded by a start code any more. As a consequence, for

building a macroblock packet, the whole macroblock (including all its blocks, down

to every single DCT coefficient) must be variable length decoded. The macroblocks

need access to the previously decoded pictures during the motion compensation step.

This problem is the same as for the decomposition into slices, and is addressed in

Section 2.3.3.

Macroblock Level

The macroblock is the main motion compensation unit. This means that the macroblock

header contains all the information needed for motion compensation, including the motion

vectors. The actual prediction forming and combination of prediction and coefficient

data is carried out on the block level. The computation on the macroblock level consists

therefore only of extracting header information, decoding the variable length coded motion

vectors and decoding the blocks.

34 MPEG-2 Video Decoder

Domain Decomposition In contrast to the slice level, where the number of macroblocks

was unknown, it is now well–known how many blocks are contained in the

macroblock. The number of blocks depends on the chrominance format, which is

extracted from the sequence header9: There are 6 blocks for the 4:2:0 format, 8

blocks for the 4:2:2 format and 12 blocks for the 4:4:4 format.

Functional Decomposition The computation consists of three stages: variable length

decoding, block decoding, and motion compensation (Figure 2.10). Although only

the motion vectors are needed at this level, it is inevitable to perform the variable

length decoding not only on the motion vectors, but also on all the block data. Since

macroblocks are not preceded by a start code, this is the only way to find out where

the current macroblock ends and the new one begins.

Coded MB

Bitstream

Decoded

Macroblocks
VLD Decode Blocks MC

Figure 2.10: Macroblock level pipeline.

Block Level

The data unit of this level is a coded block bitstream which consists of DCT coefficients.

These coefficients are decoded and transformed into an 8 × 8 block of luminance/

chrominance values. A further domain decomposition into single DCT coefficients makes

no sense, as the inverse discrete cosine transform is a block operation that can only be

applied to all of its coefficients. The computation however is now quite complex, and a

functional decomposition is possible.

Functional Decomposition As described in Section 2.1.6, the video decoding process is

naturally divided into the five functional units variable length decoding, inverse scan,

inverse quantization, inverse DCT and motion compensation. As we are interested

in coarse–grained parallelism only, we restrict ourselves to these five building blocks

and do not consider splitting them up further. Motion compensation and variable

length decoding is done on the macroblock level, therefore only inverse scanning,

9To be more precise, the chrominance format is contained in the sequence extension. For the sake of

clarity, header stands here for all the information that is coded before the actual picture data and

includes header, extension and user data.

2.3 Parallelization of the Algorithm 35

Coded DCT

Coefficients

Decoded

8 x 8 – Blocks
IS, IQ IDCT

Figure 2.11: Block level pipeline.

inverse quantization and inverse discrete cosine transform remain. Figure 2.11 shows

the resulting block level pipeline. According to execution time profiling results of

[16], the three parts VLD, inverse DCT and motion compensation need roughly the

same execution times10. Inverse scanning and inverse quantization consume much

less time, and can therefore be integrated into a single process. It is even possible

to perform the inverse scanning and inverse quantization together with the variable

length decoding on the macroblock level. This reduces communication overhead, as

will be seen later.

Summary

The algorithm is divided into six data abstraction levels, and four applicable data

domain decompositions are identified. All of them follow the abstract general domain

decomposition scheme of Figure 2.8 and can therefore be combined. Additionally, two

possible functional decompositions are identified, one on the macroblock level and the

other one on the block level. In the next section, some of the decompositions are selected

and combined to build the process network.

2.3.3 Partitioning

Having a repertory of possible decompositions, partitioning the algorithm consists now

merely of selecting one or several of them, and elaborating with the goal of balancing the

pipeline and avoiding stalled processes as much as possible.

Three of the available domain decompositions are chosen to be implemented. For making

it possible to compare different decompositions without having several completely different

implementations, all three decompositions are combined, with each of them having a

parameter N standing for the number of parallel processed entities. The selected domain

decompositions are shown in Table 2.4.

10The basis of the measurement is the same sequential MPEG-2 decoding algorithm that is used here

(MSSG mpeg2dec), running on a workstation.

36 MPEG-2 Video Decoder

1 GOP N1 groups of pictures are processed in parallel

2 Macroblock N2 macroblocks are processed in parallel

3 Block N3 blocks are processed in parallel

Table 2.4: Selected domain decompositions.

t
VLD, IS, IQ MCIDCT

VLD, IS, IQ MCIDCT

VLD, IS, IQ MCIDCT

Figure 2.12: Selected Pipeline.

The reason for omitting the decomposition of pictures into slices is the following:

according to the general domain decomposition scheme (see Figure 2.8), each decomposition

is accompanied by a dispatch process. A process that dispatches slices could do nothing

more than search the GOP buffer for the next slice start code and send the slice to the

following processes. The slice dispatch process would therefore be idle most of the time,

and the pipeline would be badly balanced. If, however, macroblocks are dispatched instead

of slices, the variable length decoding from the motion vectors down to every single DCT

coefficient has to be carried out, before sending it to the following processes. In terms of

the pipeline, this is an advantage: while the current macroblock is processed, the variable

length decoding of the next macroblock already takes place.

In addition to the three domain decompositions, both identified functional decompositions

are chosen to be implemented, which leads to the pipeline shown in Figure 2.12. Recall

that inverse scanning and inverse quantization are computationally inexpensive and do

not require separate stages.

The resulting process network structure for the case N1 = N2 = N3 = 1 (i.e. only

pipeline parallelism, no data parallelism) is shown in Figure 2.13. The grayed out arrows

indicate the possible data parallelism that can be obtained by increasing Ni. Note that

there are four processes which do not perform actual decoding: On the one hand the

processes dispatch gops and collect gops, which, additionally to dispatching and collecting

groups of pictures, handle file input and output. dispatch blocks and collect blocks, on the

other hand, are only here to allow to have several instances of the transform block process.

Since the transform block process is computationally expensive, this decomposition is

2.3 Parallelization of the Algorithm 37

Figure 2.13: MPEG-2 process network structure.

P4

... ...

GOP Header

I

I

I ...

...
Previous GOP

Current GOPPrevious GOP

Current GOP

P1 B1 B2 P3P2 P4

P1 B1 B2

P2 P3

Figure 2.14: Illustration of how to make the groups of pictures independent by attaching

B pictures to the previous GOP.

justified. Although it is possible to move the inverse scanning and inverse quantization to

the dispatch blocks process, this would significantly increase the communication overhead

due to the necessary quantization matrices11.

The remaining issue is how to treat open GOPs. As described in detail in Section 2.1.5,

open GOPs contain pictures that depend on the previously decoded GOP. If an open GOP

is to be processed in parallel with its preceding GOP, these dependent pictures cannot be

decoded correctly. This problem can however easily be solved by “attaching” the first

consecutive B pictures, which immediately follow the first I picture of the current GOP,

to the previous GOP. This principle is illustrated in Figure 2.14. The two B pictures B1

and B2 are attached to the end of the previous GOP, since they depend on P1. Note that

the I picture is needed as a reference picture by both the previous and the current GOP.

When the decoded pictures are collected, one of the I pictures can simply be discarded.

Note that this partitioning does not need any frame storage process for motion

compensation. Since there is no decomposition into single pictures, the collect mb

processes can simply keep the frame storage in their local memory. This is especially

advantageous, because such a frame storage process can easily be overstrained and become

the system’s bottleneck. Additionally, frame storage processes are not suited very well

11The MPEG-2 standard allows that quantization matrices change, which means that they cannot simply

be transmitted once and stored in the local memory of the process.

38 MPEG-2 Video Decoder

for the Kahn process network model. If the requests to the frame storage process arrive

unevenly from the different processes, a lot of them will be stalled, waiting for the requested

data to be delivered, while the storage process itself is waiting for a request from another

channel.

2.4 Implementation

This section presents the final MPEG-2 decoder application for the SHAPES DOL. First,

an overview is given on how to write an application according to the DOL programming

model, taking the MPEG-2 decoder implementation as an illustrating example. Then, the

configuration of the process network and the processes is described, followed by a brief

user’s guide. The last section then shows how the processes can be profiled in order to

improve the implementation.

2.4.1 Structure of DOL Applications

An application written for the DOL consists of an XML file, which describes the process

network, and a src subdirectory containing the source code of the processes, together with

a predefined header file process.h and a global header file named global.h. The global

header file contains only type definitions and preprocessor directives, as the programming

model does not allow any global variables. Each process consists of at least one source–

and one header file. Additional source files can be introduced, which then have to be

included directly into the source code of a specific process using an #include directive. It

is not possible to include the same source file in more than one process, as the functions

would be defined twice. If a function has to be called from more than one process (a global

error handling function, for instance), it must be defined with the extern keyword in all

but one process. Table 2.5 shows the directory structure and files of the MPEG-2 decoder

implementation. Note that the process network definition is called example9.xml, because

the DOL package comes with 8 examples, and the MPEG-2 decoder can be considered as

the 9th.

2.4.2 Configuration of the Process Network

Recall the general structure of the process network shown in Figure 2.13. By adjusting

the parameters N1, N2 and N3, diverse implementations can be realized without changing

the process definitions. The parameterized process network is specified using iterators12,
12An element of the XML specification which generates repeating structures.

2.4 Implementation 39

example9.xml Process network definition

src/process.h Predefined process header file

src/global.h Global type definitions

src/dispatch gops.[ch] Dispatch GOP process definition

src/dispatch mb.[ch] Dispatch macroblock process definition

src/vlc mb.[ch] VLC functions, included by dispatch mb.c

src/motion mb.c MV decoding, included by dispatch mb.c

src/dispatch blocks.[ch] Dispatch block process definition

src/transform block.[ch] Transform block process definition

src/idct block.c Fast Inverse DCT, included by transform block.c

src/idctref block.c Reference IDCT, included by transform block.c

src/collect blocks.[ch] Collect block process definition

src/collect mb.[ch] Collect macroblock process definition

src/predict mb.c Motion comp. functions, included by collect mb.c

src/collect gops.[ch] Collect GOP process definition

src/store.c File store functions, included by collect gops.c

Table 2.5: MPEG-2 decoder files.

and all processes are written in a way that allows for an arbitrary number of connected

channels. In order to set up an implementation, the process network and the process

definitions must be configured with the desired parameters. This section explains how to

configure the process network by adjusting the example9.xml file, and Section 2.4.3 shows

how to configure the processes by adjusting the global.h file.

Listing 2.4 shows an excerpt from the process network definition file example9.xml. The

three variables called N1, N2 and N3 can be set to the desired value. The listing additionally

shows the first process instantiation to illustrate how these variables are used to set the

range of iterators. Figure 2.15 shows three example networks. Note the abbreviations

used for the process names, where d stands for dispatch, c for collect, t for transform, and

g, m, b for GOP, macroblock, and block, respectively.

2.4.3 Configuration of the Processes

Listing 2.5 shows a small excerpt of the global.h file, where the parameters must be

changed. The three constants should always be set to the same values as the variables

of the process network definition. If the constants are smaller, processes are instantiated

40 MPEG-2 Video Decoder

dg

dm_0

dm_1

dm_2

cg

db_0_0 cm_0

db_1_0 cm_1

db_2_0 cm_2

tb_0_0_0 cb_0_0

tb_1_0_0 cb_1_0

tb_2_0_0 cb_2_0

a) N1 = 3, N2 = 1, N3 = 1

dg dm_0 cgdb_0_0 cm_0

tb_0_0_0

tb_0_0_1

tb_0_0_2

tb_0_0_3

tb_0_0_4

cb_0_0

b) N1 = 1, N2 = 1, N3 = 5

dg

dm_0

dm_1

cg

db_0_0

db_0_1

db_0_2

cm_0

db_1_0

db_1_1

db_1_2

cm_1

tb_0_0_0

tb_0_0_1 cb_0_0

tb_0_1_0

tb_0_1_1 cb_0_1

tb_0_2_0

tb_0_2_1

cb_0_2

tb_1_0_0

tb_1_0_1 cb_1_0

tb_1_1_0

tb_1_1_1

cb_1_1

tb_1_2_0

tb_1_2_1

cb_1_2

c) N1 = 2, N2 = 3, N3 = 2

Figure 2.15: Diverse implementations realized by varying the parameters Ni.

2.4 Implementation 41

< !−− N1 i s the number o f GOPs processed in p a r a l l e l −−>
<va r i ab l e name=”N1” value=”2”/>

< !−− N2 i s the number o f macrob locks processed in p a r a l l e l −−>
<va r i ab l e name=”N2” value=”2”/>

< !−− N3 i s the number o f b l o c k s processed in p a r a l l e l −−>
<va r i ab l e name=”N3” value=”2”/>

< !−− i n s t a n t i a t e p roce s s e s −−>
<proce s s name=” d i spatch gops ”>

< i t e r a t o r v a r i ab l e=” i ” range=”N1”>
<port type=”output” name=”out”>

<append func t i on=” i ”/>
</ port>

</ i t e r a t o r>
<source type=”c” l o c a t i o n=” d i spatch gops . c”/>

</ proce s s>
(. . .)

Listing 2.4: Excerpt from the process network definition file.

(. . .)
/∗ de f i n e the number o f p a r a l l e l processed gops , macroblocks , and b l o c k s

(used f o r l oop ing a l l po r t s) .
IMPORTANT: t h i s number must be l e s s or equa l to the number o f de f i ned
por t s in the proces s network s p e c i f i c a t i o n .
I f t h e r e are more proce s s e s de f ined in than a c t u a l l y used ,
the program cannot q u i t c o r r e c t l y , as p roce s s e s are s t a r t e d t ha t are
never detached . ∗/

#define NUM OF GOP PORTS 2
#define NUM OF MB PORTS 2
#define NUM OF BLOCK PORTS 2

(. . .)

Listing 2.5: Excerpt from the global.h file.

which will never be used, and since these processes will also not be detached, the program

cannot quit correctly. If the constants are larger than the process network definition

variables, the processes try to write data to non–existing ports, which leads to runtime

errors.

2.4.4 User’s Guide

The following steps are required to build and run an implementation with a specific

configuration:

42 MPEG-2 Video Decoder

1. Install and configure the DOL according to the DOL documentation and the

SystemC library.

2. Edit the example9.xml file and set the variables N1, N2 and N3 to the desired values.

3. Edit the src/global.h file and set the constants NUM OF GOP PORTS, NUM OF MB PORTS

and NUM OF BLOCK PORTS to the same values.

4. Use the DOL to flatten the XML file and generate the SystemC source code (see

DOL documentation for details).

5. Compile the generated source code.

6. Run the sc application executable.

7. Specify the mpeg2 filename when prompted.

The MPEG-2 video file is then decoded and each frame is written to an uncompressed

TGA file.

2.4.5 Profiling the Process Performance

Although the execution time of the functional simulation is not directly related to the

execution time on a real SHAPES hardware, it is interesting to profile the simulation for

two reasons:

1. For each process, the time spent in each function can be obtained. This is important

for optimizing each process separately.

2. The times spent in the fire function of each process can be used to balance the

pipeline.

At this point, a clear distinction between a process definition and a process instance must

be made. Assume, as an example, a simple process network, where a producer process

and a consumer process are connected by three identical processes for data processing.

Since these three processes have all the same functionality, there is one process definition

which is instantiated three times. We have therefore a total of 3 process definitions and 5

process instances.

The SystemC simulation can be profiled with the GNU gprof tool. For doing so, the

application must be compiled with the -pg option. Each time the application is run, a

profile data file results. These data files can then be processed by gprof in order to obtain

a list of all functions together with statistical information. It is important to note, that the

resulting list contains one entry for the fire function of each process definition, meaning

2.4 Implementation 43

that the execution time has yet to be divided by the number of process instances of the

corresponding process definition. Figure 2.16 shows an excerpt from the profiling results

of the MPEG-2 decoder. The columns of interest are total ms per call, which is the time

spent in the fire function, including all sub–functions, and the calls, which is the total

number of calls. By multiplying the total ms/call with the number of calls, the total time

spent in the corresponding fire function can be obtained.

cumulative self self total

seconds seconds calls ms/call ms/call name

(...)

2455.78 0.48 1910212 0.00 0.17 transform_block_fire__FP8_process

2457.83 0.28 359487 0.00 0.42 collect_mb_fire__FP8_process

2458.98 0.21 359487 0.00 0.65 collect_blocks_fire__FP8_process

2461.92 0.10 359487 0.00 0.51 dispatch_blocks_fire__FP8_process

2464.10 0.00 30 0.00 41.58 dispatch_gops_fire__FP8_process

2464.10 0.00 30 0.00 2500.27 dispatch_mb_fire__FP8_process

2464.10 0.00 27 0.00 7269.91 collect_gops_fire__FP8_process

(...)

Figure 2.16: Excerpt from the result of profiling a SystemC simulation with gprof.

Figure 2.17 shows the process execution times for three different configurations

(calculated and plotted with the Matlab program of Listing 2.6 using the profiling data

of Figure 2.16). The dark green bars are the execution times obtained by profiling the

configuration N1 = N2 = N3 = 1. The light green and yellow bars are calculated by

dividing the execution times by the number of process instances. It can be seen that the

pipeline is balanced much better in the case of N1 = N2 = N3 = 2. It is important to note

that these execution times do not show the total speedup of a certain configuration, as no

architecture is yet defined. In order to calculate the speedup, it must be known exactly

how many processes are mapped to a single computation resource.

A detailed look at the profiling results additionally reveals why the collect gops process

is so time–consuming. Figure 2.18 shows that over 90 % of the time is spent in the

Write Frame function, which stores a frame on the harddisk. This function needs therefore

to be optimized for improving the collect gops process.

44 MPEG-2 Video Decoder

dg dm db tb cb cm cg
0

50

100

150

200

250

300

350

Process

T
im

e
[s

]

(1,1,1) 1 GOP, 1 MB, 1 B
(2,2,2) 2 GOPs, 4 MBs, 8 Bs
(4,4,4) 4 GOPs, 16 MBs, 64 Bs

Figure 2.17: Process execution times for a short video containing 137 frames with a

resolution of 640×480 pels on a Sun Blade 1500 with a 1 GHz UltraSPARC microprocessor.

index %time self descendents name

(...)

[14] 8.2 0.00 196.29 collect_gops_fire__FP8_process

0.00 180.14 Write_Frame__FP8_processPPUci

4.31 11.83 DOL_read__FPvT0iP8_process

0.00 0.01 malloc

0.00 0.00 _fprintf

0.00 0.00 collect_gops_finish__FP8_process

0.00 0.00 createPort

0.00 0.00 free [307]

(...)

Figure 2.18: Detailed view of the profiling results for the collect gops process.

2.4 Implementation 45

% exec t imes .m

% Note the f o l l ow i n g convent ion o f the i n d i c e s f o r each vec to r
% [1 2 3 4 5 6 7] ’ :
% 1 d i s pa t c h gop s
% 2 dispatch mb
% 3 d i s p a t c h b l o c k s
% 4 t rans f o rm b l o c k
% 5 c o l l e c t b l o c k s
% 6 co l l e c t mb
% 7 c o l l e c t g o p s

num of ins tances111 = [1 1 1 1 1 1 1] ’ ;
num of ins tances222 = [1 2 4 8 4 2 1] ’ ;
num of ins tances444 = [1 4 16 64 16 4 1] ’ ;

% number o f c a l l s . IMPORT PROFILING DATA HERE.
num o f ca l l s = [30 ,30 ,359487 ,1910212 ,359487 ,359487 ,27] ’ ;

% time spent in func t i on per c a l l [ms] . IMPORT PROFILING DATA HERE.
ms pe r c a l l = [4 1 . 5 8 , 2500 .27 , 0 . 51 , 0 . 17 , 0 . 65 , 0 . 42 , 7 2 6 9 . 9 1] ’ ;

% ca l c u l a t e the t o t a l time spent in proces s [s]
t o t a l s = (num o f ca l l s .∗ ms pe r c a l l)/1000 ;

bar ([t o t a l s . / num of ins tances111 . . .
t o t a l s . / num of ins tances222 . . .
t o t a l s . / num of ins tances444] , 1 . 5)

% Set p l o t p r o p e r t i e s here . . .

Listing 2.6: Matlab program to plot the execution times of Figure 2.17.

46 MPEG-2 Video Decoder

3
Profiling DOL Applications

A block diagram of the basic DOL software development flow is depicted in Figure 3.1.

The application and architecture specification is required by the mapping stage, which

tries to find an optimal mapping of the application onto the architecture. For evaluation

of a mapping solution, the performance evaluation module can be used, which consists

of a simulation framework and an analytical framework. However, as the performance

evaluation by the means of a simulation is a complex process, it is desirable to acquire as

much information as possible at the application level and to use the simulation framework

only where it is necessary.

In this chapter, first the mapping–relevant parameters which are available at the

application level are identified. The second section then presents the concept of tracing

the application’s communication, from which the parameters are then extracted. The

last section presents the Java package DOLProfiler which implements these parameter

extraction routines.

3.1 Mapping–Relevant Parameters

In order to find the mapping–relevant parameters which are available at the application

level, the limitations of the application level must be identified. First, the hardware on

47

48 Profiling DOL Applications

Mapping

Application Specification

Architecture Specification

Simulation

Framework

Analytic

Framework

Performance Evaluation

Build SW

Figure 3.1: Simplified DOL software development flow.

which the application is to be executed, is not available. This means that the acquisition of

parameters must fully rely on the SystemC simulation which simulates the multiprocessor

platform on a single workstation and which is used for the functional verification. As a

consequence, the measure of time cannot be used, because the execution times on the

workstation do not reflect in any way the execution times of the processes on the real

multiprocessor platform. Second, the acquisition of the parameters must not affect the

application programmer in any way, i.e. the programming model has to remain untouched,

which means that for obtaining the parameters, only the API function calls can be used.

Recall that the four most important API functions are read, write, init and fire.

The init and fire functions must be implemented by the process source, and are both

called by the SystemC scheduler. These calls can be caught, but the only information

obtained thereby is how many times the corresponding process is fired. The time spent

in the fire function is insignificant due to the reasons mentioned before. The read and

write functions are called by the application with the port name and the amount of bytes

as an argument. If these calls are caught and stored during the simulation, significant

information concerning communication can be obtained. However, it is important to note

that the communication is nevertheless not necessarily accurately described by the read

and write calls, and all parameters obtained based on it are still approximations, because

of two reasons:

1. Since some processes may be executed much faster on the real multiprocessor

platform, while others may not, the order of read and write accesses may change.

As an example, assume a generator process connected via a channel to a consumer

3.2 Tracing a DOL Application 49

process. Assume that in the simulation both processes are equally fast and therefore

a read immediately follows each write call. If these processes are now executed

on a multiprocessor platform and the generator is running much faster than the

consumer, there may be several writes for each read. As a consequence, the FIFO

fill level will constantly grow until the buffer size limit is reached and the generator

is forced to slow down.

2. The SystemC scheduler is non–preemptive, i.e. a process is executed until it either

performs a blocking read/write or finishes its fire function. The more the scheduling

on the multiprocessor platform differs from this principle, the less significant the

parameters will be.

Based on these observations, for each channel, the parameters of Table 3.1 can be

derived. It is however very important, that all these parameters can only be obtained for

a given set of input data (in the MPEG-2 decoder case: for a given video stream). For

having realistic parameters, realistic input data is necessary, and the significance of the

parameters is low if the workload caused by the input data heavily varies1. The TATD and

the MFL are identified as the most important ones, as the TATD can be used to prevent

bottlenecks by balancing the communication load amongst all buses, and the MFL can be

used to prevent overflows by balancing the buffer size needs amongst the memory cells.

3.2 Tracing a DOL Application

For calculating the parameters presented before, all calls to the API functions read and

write must be traced during a simulation. This is done by extending the SystemC source

code such that a single line is written into a text file at each API function call. Obviously,

this file may become very large. In the case of the MPEG-2 decoder, experience showed

that a small video sequence of about 20 low resolution images already results in a profiling

file of 50MB and more. However, it will often be sufficient to profile such a short simulation,

especially if the communication is expected to happen in repeated patterns (as for example,

in the case of the MPEG-2 decoder, where the communication pattern will not change very

much from one group of pictures to the other).

1It is of course possible to write an application in a way that prevents these variations, but this is not

required by the programming model and can therefore not be expected.

50 Profiling DOL Applications

TATD Total amount of transferred data

MFL Maximum buffer fill level

Nw,tot Total number of write accesses

Nr,tot Total number of read accesses

Nblk Number of blocking read accesses

Novf Number of write accesses that lead to an overflow

Pblk Percentage of reads that are blocking

Povf Percentage of writes that lead to an overflow

Sw,avg Average write chunk size

Sr,avg Average read chunk size

Sw,max Maximum write chunk size

Sr,max Maximum read chunk size

Table 3.1: Parameters that can be derived for each channel, based on the API function

calls.

3.2.1 Extension of the Source Code for Tracing the API Calls

As described in Section 1.2.2, the DOL automatically generates SystemC source code from

the application specification, which can be run on a single workstation. The structure of

this SystemC application, which is used for a functional verification and is now to be

extended for generating the trace file, is presented in this section.

The DOL generates several files: a makefile, a file containing the main SystemC

module, and a wrapper class for each process, which is instantiated in the main SystemC

module. Let us first have a look at the main SystemC module. The file is called

sc application.cpp and consists of a single class sc application, which is derived

from the class sc module (see SystemC documentation for a description of the sc module

class, available e.g. from [7]). For each process, the class contains an instance of the

corresponding wrapper class. Additionally, the class contains all necessary FIFOs and the

connections of processes to channels. The important part for profiling, are the thread

functions, one for each process. Listing 3.1 shows, as an example, the thread function

of the dispatch gops process of the MPEG-2 decoder example. It can be seen that,

if INCLUDE PROFILER is defined, a line is written to the trace file before and after each

time the scheduler calls the processes fire function. Listing 3.2 shows an excerpt of

the wrapper class of the dispatch gops process. It shows that each time, the process

3.2 Tracing a DOL Application 51

/∗
This f unc t i on i s c a l l e d by the SystemC schedu l e r
and r ep ea t e d l y c a l l s the f i r e f unc t i on u n t i l
the proces s has detached i t s e l f

∗/
void th r ead d i spa t ch gops ()
{

while (! d i s p a t ch gop s i n s . i sDetached ())
{

#ifde f INCLUDE PROFILER
i f (p r o f i l e r o u t p u t f i l e != NULL)

f p r i n t f (p r o f i l e r o u t p u t f i l e ,
”%u d i spatch gops s t a r t ed .\n” ,
p r o f i l e r e v e n t c o u n t e r ++);

#endif

d i s pa t ch gop s i n s . f i r e () ;

#ifde f INCLUDE PROFILER
i f (p r o f i l e r o u t p u t f i l e != NULL)

f p r i n t f (p r o f i l e r o u t p u t f i l e ,
”%u d i spatch gops stopped .\n” ,
p r o f i l e r e v e n t c o u n t e r ++);

#endif

even tL i s t . push back(&d i spa t ch gops even t) ;
s ched event . n o t i f y () ;
wait (d i spa t ch gops event) ;

}
}

Listing 3.1: Sample thread function with profiling extension.

calls the API function write, a line is written to the trace file, containing the name of

the process, the event (write, in this case), the port, and the length (number of written

bytes). The port is needed to determine the channel onto which the data is written. Since

profiling slows down the simulation time, it needs to be turned on explicitly by defining

INCLUDE PROFILER2.

3.2.2 Structure of the Trace File

The structure of the resulting trace file is shown in Figure 3.2. Note that the lines beginning

with a c describe the connection of channels to the ports of processes. Each port is

represented by a unique identifier, which makes it possible later to relate the read and

write events directly to the channels. After the description of the connections, the actual

trace is listed. Each line begins with an event number, followed by the name of the process,
2In the case of the GNU compiler, this can be done by calling g++ with the -DINCLUDE PROFILER option.

52 Profiling DOL Applications

/∗
DOL write i s c a l l e d by the f i r e f unc t i on o f the process , f o r
wr i t i n g data to a s p e c i f i c por t (which i s connected to a
s p e c i f i c channel) .

∗/
stat ic i n l i n e int DOL write (void ∗port ,

void ∗buf ,
int len ,
DOLProcess ∗ proce s s)

{
s c por t <wr i t e i f > ∗wr i t e po r t

= s t a t i c c a s t <s c por t <wr i t e i f > ∗>(port) ;
char ∗ s t r = s t a t i c c a s t <char∗>(buf) ;

#ifde f INCLUDE PROFILER
(s t a t i c c a s t <di spatch gops wrapper ∗>

(process−>wptr))−>addToProf i l e (”w” , port , l en) ;
#endif

while (len− − > 0) {
(∗ wr i t e po r t)−>wr i t e (∗ s t r ++);

}
}

(. . .)

#ifde f INCLUDE PROFILER
/∗

addToProf i l e w r i t e s the p r o f i l i n g event to the t race f i l e . The address
o f the por t i s used as a unique i d e n t i f i e r , and the r e l a t i o n between
the por t s and the channe l s i s s t o r ed at the beg in o f the t race f i l e .

∗/
void di spatch gops wrapper : : addToProf i l e (const char ∗ event ,

void ∗port ,
int l ength)

{
i f (p r o f i l e r o u t p u t f i l e != NULL) {

f p r i n t f (p r o f i l e r o u t p u t f i l e ,
”%u %s %s %p %d\n” ,
p r o f i l e r e v e n t c o u n t e r++,
uniqueName , event , port , l ength) ;

}
}
#endif

Listing 3.2: The write function of the dispatch gops process with the profiling extension.

3.2 Tracing a DOL Application 53

the event type (r for “read” or w for “write”), the address of the port, and the amount of

bytes read/written. The begin and end of each fire is marked with the keywords started

and stopped.

c gm_channel_0 307200 o dispatch_gops ffbee5dc \

i dispatch_mb_0 ffbee9d4

c mg_channel_0 1269760 o collect_mb_0 ffbeebe4 \

i collect_gops ffbee7c4

c mb_channel_0_0 307200 o dispatch_mb_0 ffbee9ac \

i dispatch_blocks_0_0 ffbeedf4

c bm_channel_0_0 307200 o collect_blocks_0_0 ffbef004 \

i collect_mb_0 ffbeebbc

c bt_channel_0_0_0 307200 o dispatch_blocks_0_0 ffbeedcc \

i transform_block_0_0_0 ffbef214

c tb_channel_0_0_0 307200 o transform_block_0_0_0 ffbef1ec \

i collect_blocks_0_0 ffbeefdc

0 dispatch_gops started.

1 dispatch_gops stopped.

2 collect_gops started.

3 collect_gops r ffbee7c4 1

4 dispatch_mb_0 started.

5 dispatch_mb_0 r ffbee9d4 1

6 collect_mb_0 started.

7 collect_mb_0 r ffbeebbc 1

8 dispatch_blocks_0_0 started.

9 dispatch_blocks_0_0 r ffbeedf4 1

10 collect_blocks_0_0 started.

11 collect_blocks_0_0 r ffbeefdc 1

12 transform_block_0_0_0 started.

13 transform_block_0_0_0 r ffbef214 1

14 dispatch_gops started.

17 dispatch_gops w ffbee5dc 1

18 dispatch_gops w ffbee5dc 64

19 dispatch_gops w ffbee5dc 256

20 dispatch_gops w ffbee5dc 4

21 dispatch_gops w ffbee5dc 3398

22 dispatch_gops w ffbee5dc 4

23 dispatch_gops w ffbee5dc 2446

24 dispatch_gops w ffbee5dc 4

25 dispatch_gops w ffbee5dc 873

26 dispatch_gops w ffbee5dc 4

27 dispatch_gops stopped.

28 dispatch_mb_0 r ffbee9d4 64

29 dispatch_mb_0 r ffbee9d4 256

30 dispatch_mb_0 r ffbee9d4 4

31 dispatch_mb_0 r ffbee9d4 3398

32 dispatch_mb_0 w ffbee9ac 1

33 dispatch_mb_0 w ffbee9ac 64

34 dispatch_mb_0 w ffbee9ac 172

35 dispatch_mb_0 w ffbee9ac 1536

(...)

Figure 3.2: Excerpt from a resulting trace file.

54 Profiling DOL Applications

3.3 Extraction of the Parameters

Having a trace of the API function calls at hand, the parameters can now be extracted

by parsing the trace line–by–line and keeping track of all the FIFOs. Let us denote a

write access of n bytes to a specific FIFO at time step t as access [t] = n, a read access

as access [t] = −n, and assume that each time step t ∈ [0, tend] corresponds to one single

read or write access. Additionally, assume that at the end of the trace, the total amount

of read data equals the total amount of written data, i.e. all FIFO buffers are empty at

the begin and at the end of the simulation. The fill level of the FIFO buffer at a time step

t can be calculated with

fl [t] =
t∑

k=0

access [k] . (3.1)

Note that a blocking read leads to a negative fill level, which is resolved by the following

write accesses. The parameters of Section 3.1 can then be expressed as

TATD =
1
2

tend∑
t=0

|access [t]|

MFL = max
0≤t≤tend

(
t∑

k=0

access [k]

)

Sw,avg =
TATD
Nw,tot

(3.2)

Sr,avg =
TATD
Nr,tot

Sw,max = max
∀ t: access[t]>0

{access [t]}

Sr,max = max
∀ t: access[t]<0

{|access [t]|} .

The total number of read/write accesses (Nr,tot and Nw,tot) can be obtained simply by

counting the read/write events, the number of blocking read accesses Nblk by counting the

number of read accesses which lead to a negative fill level, and the number of overflows

Novf by counting the number of write accesses which lead to a fill level that exceeds a

predefined maximum buffer size. The percentages can then be expressed as

Pblk =
Ntot

Nblk
· 100 %

Povf =
Ntot

Novf
· 100 % .

3.4 The DOLProfiler Package 55

+getNextWord()

ProfilerData

-fileReader

+parseProfile()

+getChannelAnalyzer()

ProfileParser

+readAccess()

+writeAccess()

-channelId

-capacity

-totalReadData

-numOfReads

-numOfBlockingReads

-numOfWrites

-numOfOverflows

-maxSize

ChannelProfile

+main()

Main

+readAccess()

+writeAccess()

+addChannel()

+getMaxSize()

+getTotalReadData()

-channelNames

ChannelAnalyzer

1

1

1

1 1

*

1

1

Figure 3.3: Class diagram of the DOLProfiler package.

3.4 The DOLProfiler Package

The DOLProfiler package parses a trace file line–by–line, keeps track of the FIFOs and

calculates the parameters according to Section 3.3.

3.4.1 Structure

A class diagram of the DOLProfiler package is shown in Figure 3.3. The ChannelProfile

represents a single channel. It keeps track of the current fill level and can be updated by

calling the readAccess() and writeAccess() functions. Additionally, the parameters of

the channel are stored in this class and updated with each read and write access. The

ChannelAnalyzer contains the ChannelProfiles for all channels of a process network. The

read and write accesses are forwarded to the ChannelProfiles. The ProfilerData contains

the file access routines and delivers the next word upon request. The ProfileParser

reads the words one–by–one from the ProfilerData and updates its instance of the

ChannelAnalyzer. Additionally, a list of process, channel, and port names is stored and

the relation between the ports of the processes and the channels is resolved. In the

end, the parameters depend only on the channel names, and not on the process names

anymore. The Main class can be used to parse a trace file and print out a summary of the

ChannelAnalyzer. In the mapping stage, the Main class will not be used anymore, but

56 Profiling DOL Applications

the ProfileParser class will be imported directly.

3.4.2 Usage

Main program

For printing the parameters extracted from a trace file to the standard output, the main

function of the Main class can be called with

java dolprofiler.Main <filename>

where <filename> must be replaced by the name of the trace file. A sample output

containing some of the parameters is shown in Figure 3.4.

----- Channel Analyzer Report -----

<channel name> <MFL> <TATD> <Ntot> <Pblk>

<gm_channel_0> 71981 89753 45 2

<mg_channel_0> 126956 2158270 103 17

<gm_channel_1> 70919 70921 31 3

<mg_channel_1> 1269807 1650442 79 2

<mb_channel_0_0> 308625 5164436 11816 0

<bm_channel_0_0> 20091 9624979 11815 9

<mb_channel_0_1> 308625 5161363 11813 0

<bm_channel_0_1> 16782 9618835 11813 5

<mb_channel_1_0> 308625 3737038 8538 0

<bm_channel_1_0> 309396 6965710 8538 11

<mb_channel_1_1> 307914 3724750 8530 0

<bm_channel_1_1> 309870 6941133 8529 1

<bt_channel_0_0_0> 307383 4337687 34949 0

<tb_channel_0_0_0> 994 4337686 34948 16

<bt_channel_0_0_1> 307383 4337686 34948 0

<tb_channel_0_0_1> 1491 4337686 34948 0

<bt_channel_0_1_0> 307383 4334941 34927 0

<tb_channel_0_1_0> 994 4334941 34927 16

<bt_channel_0_1_1> 307383 4334941 34927 0

<tb_channel_0_1_1> 1491 4334940 34926 0

<bt_channel_1_0_0> 307383 3139297 25291 0

<tb_channel_1_0_0> 95899 3139296 25290 16

<bt_channel_1_0_1> 307383 3139060 25288 0

<tb_channel_1_0_1> 95662 3139060 25288 0

<bt_channel_1_1_0> 307383 3128317 25207 0

<tb_channel_1_1_0> 91426 3128316 25206 16

<bt_channel_1_1_1> 307383 3128080 25204 0

<tb_channel_1_1_1> 91189 3128080 25204 0

Figure 3.4: Sample output of the dolprofiler.Main.main() function.

Imported ProfileParser

If the profiler is to be used in the context of another application (as, for instance, in the
context of the mapping optimization application), it is more convenient to import the

3.4 The DOLProfiler Package 57

ProfileParser class and use the resulting parameters directly. In order to do so, first the
ProfileParser and the ChannelAnalyzer classes must be imported:

import dolprofiler.ProfileParser;

import dolprofiler.ChannelAnalyzer;

Inside the body of a function, the ProfileParser object can then be created, with the
filename as an argument to the constructor:

ProfileParser profileParser = new ProfileParser(filename);

The trace file can then be parsed. This can take some time since the trace file can easily
be as large as 100 MB or more, so this should be done only once, during the initialization
phase:

profileParser.parseProfile();

After the trace file is parsed, the parameters are ready. A ChannelAnalyzer object can be
obtained and the parameters can be read out:

ChannelAnalyzer chAnalyzer = profileParser.getChannelAnalyzer();

int TATD = chAnalyzer.getTotalReadData(chId);

int MFL = chAnalyzer.getMaxSize(chId);

The channel id chId is the number of the channel, specified by the order of appearance at

the beginning of the trace file (if, for instance, there are 4 lines in the trace file starting

with a c, the channels are numbered from 0 to 3).

58 Profiling DOL Applications

4
The Mapping Stage

The profiling results derived in the previous chapter can now be used for computing

a mapping of the application onto an architecture. As described previously, the final

mapping will be found by making use of the simulation framework, but it is desirable to

make the best use of the parameters acquired by application level profiling. This chapter

therefore deals with the challenge of optimizing the mapping without having detailed

simulation results.

The first section gives an overview of the mapping stage and the problem of two–

dimensional optimization, and a brief introduction to evolutionary algorithms, the PISA

interface and EXPO. From the first section, it will become clear that there are three main

issues, which are addressed in sections 2, 3 and 4, namely specification of the problem,

representation of the solutions and analysis of the solution based on performance data and

objective values.

4.1 Overview

The goal of mapping optimization is to find an optimal mapping of processes onto

computation resources and channels onto communication resources with respect to a given

set of objective values. The objective values are described in detail in Section 4.4, but by

59

60 The Mapping Stage

considering two examples it is intuitively understandable that the mapping of processes

and the mapping of channels are two competing objectives.

Example 1 Assume that all processes are mapped to a single processor, even though many

processors may be available on the architecture. In that case, the channel mapping is clearly

optimal, as the communication can all take place inside the processor and no external

communication resource is required. On the other hand, the process mapping is very bad,

as a single computation resource is heavily loaded whereas all the other ones are not used

at all.

Example 2 Consider now the contrary situation. Each process is mapped to its own

computation resource. In this case, the process mapping is very well, but there is a lot of

external communication necessary.

The situation becomes even more difficult if we take into account that

• some processes perform more time–consuming calculations, while others are idle

most of the time,

• some processes may be executed more efficiently on certain computation resources,

• some channels may transfer much more data than others,

• some communication resources have a larger bandwidth than others,

• some channels may need larger FIFO buffers in order to prevent overflows, while the

FIFOs of other channels may be empty most of the time.

Clearly, a systematic method for finding optimal solutions is needed, especially since the

problem must be scalable to very complex applications and large architectures.

4.1.1 Solving Multi–Objective Optimization Problems

All multi–objective optimization problems have in common that there is no single optimal

solution. Instead, the final solution must be chosen from a set of optimal solutions, which

means that the trade–off between the objectives must be considered. To illustrate this,

recall Examples 1 and 2. Both of them are optimal, meaning that there is no other solution

which is better with respect to one objective value and at least equal with respect to the

other. A non–optimal solution can easily be constructed:

Example 3 Assume that all processes are mapped to a single computation resource, but

one of the channels is mapped to an external communication resource. This is obviously

not optimal, as the communication can be improved without worsening the computation.

4.1 Overview 61

1

2 3

Fitness Evaluation

Mating Selection

Recombination

Mutation

Environmental

Selection

Figure 4.1: Simple evolutionary algorithm.

The solution of Example 3 is dominated by the solution of Example 1, meaning that

the solution of Example 1 is equal with respect to one objective value (namely the

computation), and better with respect to the other (the communication). This concept

can be extended to an arbitrary number of objective values, see for example [21]. The main

challenge of multi–objective problems is therefore to find all non–dominated solutions (so

called pareto optimal solutions). Having all pareto optimal solutions at hand, the most

appropriate one can be chosen.

4.1.2 Evolutionary Algorithms

Whenever the search space is too big for evaluating all possible solutions, search heuristics

must be used. Evolutionary Algorithms are search heuristics inspired by biological

evolution. Each solution is represented by a gene. A set of genes, called population,

is iteratively improved by variation and selection. A possible implementation of an

evolutionary algorithm is shown in Figure 4.1. Each gene is evaluated, and the best genes

are selected for mating, which means that two of them (the parent genes) are recombined

and result in a child gene. Some of the genes of the resulting population are then mutated,

meaning that they are slightly changed, which simulates errors in the genetic material and

may lead to better solutions. Since the population now contains more genes than before

the mating step, an environmental selection is performed where only the fittest genes

survive. This reduces the size of the population to the size of the initial population, and

the whole process can be iteratively repeated.

62 The Mapping Stage

4.1.3 The PISA Interface and EXPO

The platform and programming language independent interface for search algorithms

(PISA) is a text–based interface that separates the problem–specific part of an optimizer

from the problem–independent part [22]. The problem–specific parts are evaluation of

solutions and generation of new solutions by variation of some selected solutions. The

selection step itself is problem–independent and is therefore separated from the evaluation

and variation via the text–based interface. This interface allows to have a library of

optimization algorithms (selectors) and a library of optimization problems (variators),

which can be combined arbitrarily. For the mapping optimization implementation, using

PISA has two important advantages:

1. The optimization algorithms of the selector library can directly be used which saves

implementation time and allows to run the optimization with different algorithms

by simply exchanging the selector.

2. An existing optimization problem can be taken from the library and adapted for our

purpose.

For a list of available optimization problems and algorithms, refer to the PISA web-page

[23]. One of the available variators is EXPO, which is used for the optimization of a

network processor architecture [24, 25]. The Java source code of EXPO is available, which

makes it possible to use EXPO for our purpose. EXPO defines three Java interfaces which

are implemented by problem–specific classes, and in order to use EXPO for our specific

mapping problem, only these three classes need to be implemented from scratch. The

use of EXPO has the advantage that the communication with the selector via the PISA

interface is already implemented and extensively tested. Additionally, EXPO provides

a graphical user interface which simplifies controlling the simulation, displaying single

solutions, and plotting the whole population. Table 4.1 shows a list of the classes and

interfaces, together with a short description.

Each of the following three sections addresses one of the three classes. In each section, the

necessary concepts are elaborated, the interfaces are presented and a short description of

the implementation is given.

4.2 System Specification

The first issue to address is the system specification. EXPO allows to read in the

specification from a text file during the initialization, which has the advantage that the

4.2 System Specification 63

1 ShSpecification class implements Specification interface.

Contains a model of the specification, i.e. architecture, application, execution

times, performance data, etc. (Section 4.2)

2 ShGene class implements Gene interface.

Contains the representation of a gene incl. the variation operators. (Section 4.3)

3 ShAnalyzer class implements Analyzer interface.

Contains methods that calculate the objective values of a gene. (Section 4.4)

Table 4.1: The three interfaces which are implemented by the three problem–specific

classes.

specification can be changed without re–compiling EXPO. The following requirements can

be identified:

1. In order to test the mapping stage, an example architecture must be chosen. An

example architecture is proposed in Section 4.2.1.

2. Since the execution times of the processes on the different resource types is a very

important parameter for the mapping optimization but it is impossible to obtain

them via profiling of the SystemC simulation, an estimation of the execution times

is necessary. A way of estimating the execution times is proposed in Section 4.2.2.

3. The architecture allows for two computation resources to be connected via a series

of buses, which implies that a channel is mapped to a communication path rather

than to a single bus. This leads to the problem of finding all possible paths of a

given architecture. An algorithm that lists all possible paths is proposed in Section

4.2.3.

4. A data structure is needed, which contains a model of the complete specification, i.e.

the application, the architecture, execution times and the performance data obtained

through profiling. We call this structure the system model and its implementation

the sysmodel package. The system model is described in Section 4.2.4.

5. Since EXPO requires the whole specification to be in a single text file, a method is

needed that gathers all the information available from XML specifications, profiling,

and textual specifications and writes the EXPO specification file. This application

is called the EXPO specification file generator (expogen) and is presented in Section

4.2.5.

64 The Mapping Stage

Architecture Specification

(XML file)

Application Specification

(XML file)

Execution Times

(text file)

Profiling Results

(text file)

sysmodel

expogen Application
EXPO Specification File

(spec.txt)

Pareto Optimal Solutions

(textual description)

EXPO

ShSpecification.java
(implements Specification)

ShAnalyzer.java
(implements Analyzer)

ShGene.java
(implements Gene)

dolprofiler

Figure 4.2: Dependencies between the system model and EXPO.

Figure 4.2 illustrates how these modules are put together. Besides the data structure of

the model, the sysmodel package contains all routines that are necessary to read the XML

files containing the application and the architecture, to write the EXPO specification file

and to read in the EXPO specification file. This means that the sysmodel package is used

for generating the EXPO specification file (as a part of expogen), as well as for reading

the EXPO specification file (as a part of the ShSpecification class). Additionally, the

sysmodel package makes use of the dolprofiler in order to obtain the performance data

from the SystemC profiling results.

4.2.1 Example Architecture

In order to test the prototype of the mapping stage, an example architecture is needed. It is

kept as simple as possible, but nevertheless reflects the SHAPES hardware approach in that

it consists of several tiles which are connected to each other. The proposed architecture

is shown in Figure 4.3a. The architecture is modeled as an undirected graph, where each

4.2 System Specification 65

Inter−tile Bus

Tile A

Tile B Tile C

RISC1 DSP1

RISC2 DSP2

M
EM

1

M
EM

2 M
EM

3

(a) Architecture

0 7 2

4

10

8 9 31

5 6

mem_1

dsp_1intra_tile_bus_1risc_1

inter_tile_bus

dsp_2intra_tile_bus_3intra_tile_bus_2risc_2

mem_2 mem_3

(b) Graph

Figure 4.3: Example architecture for testing the mapping stage.

node represents a computation, memory, or bus resource. The graph of the example

architecture is shown in Figure 4.3b.

4.2.2 Estimation of the Execution Times

Section 2.4.5 showed how to measure the execution times of an application simulated on

a single workstation with SystemC. Although these execution times do not represent the

execution times on the real multiprocessor platform (as mentioned in Chapter 3), they

can be used to derive a meaningful estimation of the relative execution times on the

multiprocessor platform. It is important to note that these estimations are only used to

test the mapping stage and will be replaced later by results of a more accurate simulation.

Therefore we are only interested in statements like “process A on resource type 1 is roughly

n times faster than process B on resource type 2”, based on which the mapping can be

evaluated. Even if no estimation is possible or it becomes obvious that the estimated

execution times are not significant, a mapping optimization can be performed. In this

case, all the execution times can be set to 1. As a consequence of the objective values, the

optimization will then try to distribute the processes evenly on all computation resources,

so that in the optimal case, the number of processes mapped to each of the computation

66 The Mapping Stage

% ASSUMPTION: t o t a l s i n s t i s a v e c t o r con ta in ing the time spent
% in each proces s in s tance o f a s p e c i f i c proces s d e f i n i t i o n .
% (c a l c u l a t e d be forehand)

% s p e c i f y the we i gh t ing matrix
speedup = [% RISC DSP

1 , 1 ; % di spa t c h gop s
1 , 0 . 8 ; % dispatch mb
1 , 1 ; % d i s p a t c h b l o c k s
1 , 0 . 5 ; % trans f o rm b l o c k
1 , 1 ; % c o l l e c t b l o c k s
1 , 0 . 8 ; % co l l e c t mb
1 , 1 ; % co l l e c t g o p s

] ;

% ca l c u l a t e the e s t imat ion o f the execu t i on time o f an ins tance
% of each proces s f o r a l l r e source t ype s .
E = [t o t a l s i n s t t o t a l s i n s t] . ∗ speedup ;

% normal ize the e s t ima t ion wi th r e s p e c t to the f a s t e s t proces s
% in order to e l im ina t e the dependence on the s imu la t i on
% works ta t i on
E norm = E. / (min(min(E))) ;

% RESULT: E norm conta ins the es t imated r e l a t i v e execu t i on t imes .

Listing 4.1: Execution times estimation in Matlab for the MPEG-2 decoder case

resources will be the same. This will become clear in Section 4.4, where the objective

values are described in detail.

Having the execution times of all the process instances at hand (obtained according

to Section 2.4.5), they are multiplied by a matrix which describes the speed–up (or

slow–down) factor of each (process, resource type) – pair. The resulting matrix is then

normalized to the fastest execution time in order to eliminate the dependence on the

workstation performance. Listing 4.1 shows a small Matlab program which performs this

calculation. The idea behind this method is to use the SystemC simulation to obtain

the relative execution times of the processes independent of the resource type, and to

introduce this dependency via the speed–up matrix. The estimation on how much faster

a specific process is executed on one resource with respect to another has to be done “by

hand”, since an instruction level simulation would be necessary to obtain this speed–up.

These execution times can then be given to the mapping stage in the form of a text

file. The structure of the text file is kept very simple. It begins with a single “−1” on a

separate line (the delimiter), followed by a list of names of the resource types, followed

by a second delimiter, followed by a list of process names (inside single quotation marks)

and the execution times (separated by a space). A final delimiter marks the end of the

4.2 System Specification 67

list. The execution times must be listed in the same order as the resource type names in

the first part of the file. Each line beginning with a double–slash is ignored. An example

is given in Figure 4.4.

// Execution times specification

-1

RISC

DSP

-1

’dispatch_gops’ 1.0000 1.0000

’collect_gops’ 157.3574 157.3574

’dispatch_mb’ 30.0658 24.0526

’collect_mb’ 60.5197 48.4158

’dispatch_blocks’ 36.7441 36.7441

’collect_blocks’ 46.8307 46.8307

’transform_block’ 32.5413 16.2706

-1

Figure 4.4: Example file that specifies the execution times.

4.2.3 The List of Communication Paths

Besides the mapping of processes onto computation resources, also the mapping of

channels onto communication resources is required. An architecture consists of processors

(“computation resources”), memory cells and buses. But what exactly is a communication

resource? Two observations help to answer this question.

1. It is not guaranteed, that every two computation resources are connected with a

single bus, it may be necessary to pass several buses. As a consequence, the channels

must be mapped to paths, rather than to single buses.

2. Each channel (and therefore also each communication resource) needs a certain

amount of memory for implementing the FIFO buffer. The memory can either

be a separate memory cell or the internal memory of a computation resource.

Therefore three different types of channel implementations can be distinguished, leading

to three different types of paths onto which a channel can be mapped:

I) Internal. The buffer and the control logic are implemented on a single computation

resource and no bus is needed. This is possible (and desirable) whenever two

communicating processes are mapped to the same computation resource. The

corresponding path consists only of the corresponding computation resource.

68 The Mapping Stage

II) Semi–internal. The buffer and the control logic are again implemented on a single

computation resource, but either the read or written data must be transferred over

a bus. The corresponding path consists of two different computation resources (one

at the begin, and the other one at the end of the path), and there are only bus

resources in–between.

III) External. The control logic is implemented on a computation resource, but

an external memory is used for the buffer, so the read and written data is

transferred over one or more buses. The corresponding path consists of two different

computation resources (one at the begin, and the other one at the end of the path),

and there is exactly one memory cell, and an arbitrary number of buses in–between.

In the following, an algorithm is presented which finds all possible paths belonging to one

of the aforementioned types.

List Paths Algorithm

Given is a graph G = (V,E), where E is the set of edges and V is the set of vertices. Each

vertex v ∈ V stands for a resource and is a member of exactly one of three subsets: VR is

the subset of computation resources, VB the subset of bus resources, and VM the subset

of memory resources. v ∈ VM therefore means that the vertex v is a memory resource, for

instance. A sub–path PS is an ordered set of vertices which are pairwise connected with

an edge e ∈ E, with v1 standing for the first and vn for the last vertex, and for which the

following conditions hold:

• v1 ∈ VR, VM (The first vertex of PS is a computation or a memory resource)

• vn ∈ VR, VM (The last vertex of PS is a computation or a memory resource)

• (PS\ {v1, vn}) ∩ VM = {} , |{v1, vn} ∩ VM | ≤ 1 (PS contains no memory resource

except for the first or the last vertex)

• vi 6= vj ∀ vi, vj ∈ VB (PS contains no bus resource twice)

A sub–path is therefore a direct, but not necessarily the shortest, path between two

computation resources or one computation and one memory resource. What remains is to

implement a method to find all subpaths between two computation or memory resources,

but this is simplified in the case of acyclic graphs in that only one path for each resource

pair must be found. This path can easily be found by a recursive search for the end node,

beginning with the start node. As soon as the end node is found, the sub–path is complete.

4.2 System Specification 69

Two sub–paths P1 and P2 can be combined to build a path P , if the last vertex of P1

and the first vertex of P2 are the same memory resource. The combined path is obtained

by concatenating the second path without its first vertex to the last vertex of the first

path. If the first and the last vertex of a sub–path are computation resources, the sub–

path cannot be combined, but instead itself constitutes a path. A path is consequently

an ordered set of vertices which are pairwise connected with an edge e ∈ E for which the

following conditions hold:

• v1 ∈ VR (The first vertex of P is a computation resource)

• |P ∩ VM | ≤ 1 (P contains at most one memory resource)

• vn ∈ VR (The last vertex of P is a computation resource)

Additionally, one bus resource is only allowed to appear twice in a path when a memory

resource lies in–between. A global list G of paths is kept, to which paths can be added

during execution of the algorithm.

Algorithm 1 List the Paths of Graph G

1: for all vertices vi ∈ VR do
2: vstart ← vi, vend ← vi

3: add path {vstart, vend} to the global list G
4: for all vertices vj ∈ VR\ {vi} do
5: vend ← vj

6: add all sub–paths with v1 = vstart and vn = vend to the global list G
7: for all vertices vM ∈ VM do
8: add all sub–paths with v1 = vstart and vn = vM to a temporary list T 1
9: add all sub–paths with v1 = vM and vn = vend to a temporary list T 2

10: add all combinations of the sub–paths in T 1 with the sub–paths in T 2 to the
global list G

11: end for
12: end for
13: end for

In the case of an acyclic graph, the algorithm is simplified by the fact that there is always

only one sub–path between each pair of vertices1. In that case, the number of paths in a

graph can be calculated from the algorithm above as

|G| = nR + nR (nR − 1) + nMnR (nR − 1)

= nR
2 + nMnR (nR − 1) (4.1)

1This is true only because the architecture graph is non–directed. If directed graphs are used for modeling

the architecture, there may be more than one sub–paths even for acyclic graphs.

70 The Mapping Stage

0
20

40
60

80
100

0
20

40
60

80
100

0

2

4

6

8

10

x 10
5

nR
nM

|G|

Figure 4.5: Increase of the number of paths |G| depending on the number of computation

resources nR and the number of memory resources nM .

where nR is the number of computation resources and nM is the number of memory

resources. Figure 4.5 shows the number of paths for an acyclic graph depending on the

number of computation and memory resources.

4.2.4 The System Model

Figure 4.6 shows a class diagram of the sysmodel package. As can be seen, the system

model consists of an architecture model and an application model. The architecture model

itself consists of an architecture graph and a path list, whereas the application model

consists of an application graph and an execution times list.

There are five different types of nodes and each node type has its specific parameters.

The parameters of the resource, memory and bus node are given by the XML architecture

specification and those of the process and channel node by the profiling results, and are

described in detail in Section 4.4. Note that each node has an id and a type id, the former

is unique amongst all nodes of a specific graph, whereas the latter is unique amongst all

nodes of a specific graph which are of a specific type.

Example 4 Consider an application graph with 3 processes and 2 channels. The ids of

the nodes are numbered from 0 . . . 4, while the type ids of the process nodes are numbered

from 0 . . . 2 and the type ids of the channel nodes from 0 . . . 1.

4.2 System Specification 71

+addNeighbor()

+getNeighbor()

MyNode

-id

-typeId

-NeighborList

+addNode()

+getNode()

MyGraph

-bandwidth

BusNode

-mfl

-tatd

ChannelNode

-bufferSize

MemoryNode

ProcessNode

-bufferSize

-resourceType

ResourceNode

+addNode()

+getNode()

+containsNode()

-id

-pId

Path

+getPath()

+generateFromGraph()

PathList

-execTimes

ExecutionTimesList

+addChannel()

+addProcess()

+getChannel()

+getProcess()

AppGraph

+addMemory()

+addResource()

+addBus()

+getMemory()

+getResource()

+getBus()

ArchGraph

+generateFromSpec()

+generateFromXML()

+writeSpec()

+channelNames

+processNames

AppModel

+generateFromSpec()

+generateFromXML()

+writeSpec()

+busNames

+memoryNames

+resourceNames

ArchModel

1

*

1

*

1

*

1

1

1

1

1

1

1

1

Figure 4.6: Class Diagram of the sysmodel package.

72 The Mapping Stage

The application consists of processes and channels, therefore the application model keeps

a list of process names and a list of channel names. These lists build a relation between

the type id of the process nodes and channels nodes and their names. The type id is

used inside the model only — the input as well as the output of the mapping stage only

contain the names. The application model provides methods for building the application

graph from the XML specification and from the textual EXPO specification file, as well

as for writing the EXPO specification file. The usage of these functions is the following:

expogen builds the graph from the XML specification and writes the EXPO specification

file. When EXPO is run, the ShSpecification class then builds the graph from the

EXPO specification file (see Figure 4.2 again for an illustration).

The application graph is the main data structure of the application model. It is

derived from the generic graph, but only process and channel nodes can be added.

The application graph additionally provides some helper functions, like for instance

getChannelInProcess(c), which returns the process which is connected to the input

of channel c. For the sake of clarity, these functions are not shown in the class diagram.

The architecture, on the other hand, consists of computation resources of different

types, buses and memory cells. As in the case of the application model, the architecture

model keeps a list of their names in order to relate them with the type ids of the nodes.

Additionally, again exactly as in the case of the application model, methods are provided

to build the graph from the XML specification and from the textual EXPO specification

file, as well as for writing the EXPO specification file. Note that a simplified XML scheme

is used for the architecture specification, where only few elements are allowed.

The architecture graph is the main data structure of the architecture model. It is also

derived from the generic graph, but only resource, memory, and bus nodes can be added.

The architecture model additionally contains the PathList object, which provides a

method called generateFromGraph(). A call to generateFromGraph() computes the list

of all paths using the List Paths algorithm presented in Section 4.2.3.

4.2.5 Generating the Specification File with expogen

With the small application called expogen, the EXPO specification file can be generated.

expogen takes the application specification, the architecture specification, the execution

times and the DOL profiler output as its arguments, and performs the following steps:

• The execution times specification file is read and an instance of the ExecutionTimesList

object is initialized.

4.3 Gene Representation 73

• The profile result is parsed using the DOLProfiler package.

• The application graph is generated from the XML specification.

• The architecture graph is generated from the XML specification.

• The EXPO specification file is written by using the writeSpec() functions of the

application and the architecture model objects.

The generated EXPO specification file can be used to run EXPO. Minor changes in the

specification, as for instance, adjusting bandwidths or buffer sizes, can be made directly

on the specification file, without running expogen. If the structure of the application or

the architecture is affected, the specification file should be re–generated with expogen in

order to avoid running EXPO with an inconsistent specification file.

4.2.6 Implementation of the ShSpecification Class

The implementation of the ShSpecification class is very simple, since most of the

functionality is implemented in the sysmodel package. The most important function

of the class is the simpleFileInput(), which is defined in the Specification interface.

simpleFileInput() is called by EXPO once during initialization, and reads the whole

specification from the text file. This is done by generating a StreamTokenizer object from

the specification file and calling the generateFromSpec() functions of the application and

architecture models. After generating these graphs, the list of paths and the Si, j–matrix

are built, again simply by calling the corresponding methods of the sysmodel package.

All the remaining functions just ease the use of the system model by providing a direct

access to the most frequently used values.

4.3 Gene Representation

The second issue is the representation of a gene, i.e. of a single mapping solution.

Additionally, genes must be generated randomly, mutated, and recombined. These

operators are described in this section.

4.3.1 Initial Situation

Given is a set of processes P and a set of channels C, which build a process network,

implying that each channel ck ∈ C is connected to exactly one process at its input, and

74 The Mapping Stage

one at its output2. These connections are assumed to be given as two functions called in(k)

and out(k). pin(k) ∈ P is therefore the process connected to the input of channel ck, and

pout(k) ∈ P the process connected to the output of channel ck, accordingly. Furthermore,

a set of computation resources (processors) R and a set of communication paths S are

given. Each communication path sk ∈ S has a computation resource ri ∈ R as its start

point, a computation resource rj ∈ R as its end point, and several bus resources (and

possibly a memory resource) in-between. It is possible that several paths have the same

start and end resources, the start and end resources are however not interchangeable, as

it is always assumed that the FIFO control logic (and possibly also the buffer memory) is

incorporated in the start resource. Let Si, j be the set of communication paths with start

resource ri and end resource rj . The cardinality of S can then be stated as

|S| =
|R−1|∑
i=0

|R−1|∑
j=0

si, j (4.2)

where si, j ≡ |Si, j | is the number of communication paths from start resource ri to end

resource rj and follows

si, j =

 1 if i = j

≥ 1 else
(4.3)

because there is always only one communication path if the start and end resources are

the same, namely the resource itself (leads to an internal FIFO implementation), and each

pair of resources is connected through at least one communication path.

Example 5 The specification shown in Figure 4.7 leads to the following initial situation:

• P = {P0, P1, P2}, |P | = 3.

• C = {C0, C1}, |C| = 2.

• Pin(0) = P0, Pin(1) = P1, Pout(0) = P1, Pout(1) = P2

• R = {R0, R1}, |R| = 2

In order to get the set of communication paths, all possible paths must be listed using

Algorithm 1 of Section 4.2.3, as done in Table 4.2.

Later on, the number of communication paths si, j for all i, j are needed. Besides that,

each communication path must be annotated with a number that uniquely identifies it
2The terms “input” and “output” here always refer to the channel input and channel output. Each

channel input is connected to a process output and vice versa.

4.3 Gene Representation 75

R0 R1P2C1P1C0P0

Architecture SpecificationApplication Specification

Bus

Mem

Figure 4.7: Example specification.

No. Start/End Path Type ID

0 R0, R0 R0 internal 0

1 R0, R1 R0, Bus, R1 semi–internal 0

2 R0, Bus, Mem, Bus, R1 external 1

3 R1, R0 R1, Bus, R0 semi–internal 0

4 R1, Bus, Mem, Bus, R0 external 1

5 R1, R1 R1 internal 0

Table 4.2: List of all possible communication paths. The ID field is calculated during the

preparation (Example 6).

76 The Mapping Stage

among all paths with the same start and end resources. The identifiers must be consecutive

numbers starting with 0. This preparation can be done easily by linearly traversing the list

of paths, incrementing a separate counter for each start and end resource pair {Ri, Rj},
and annotate each path with the current content of the counter variable. The final values

of all counters can be used to build the si, j–matrix, which is then used later on.

Example 6 Preparing the specification of Example 5 leads to the ID annotation of Table

4.2, and the following si, j–matrix:

si, j =

 1 2

2 1

4.3.2 Representation

Each binding is represented by two vectors, VP = (p1 p2 . . . pp), which describes the

binding of processes to computation resources, and VC = (c1 c2 . . . cc), which describes

the binding of channels to communication paths. Each element pk of VP is an integer

number between 0 and (r − 1) describing to which of the r computation resources the

process Pk is bound. pin(k) and pout(k) are therefore the resources, onto which the processes

at the input and the output of channel k is bound, respectively. Each element ck of VC is

an integer number between 0 and
(
spin(k), pout(k)

− 1
)
, with spin(k), pout(k)

being the number

of communication paths between the two resources onto which the two processes attached

to channel Ck are bound.

Example 7 Continuing our previous examples, the binding shown in Figure 4.8 has the

following representation:

VP = (0 0 1) VC = (0 1) (4.4)

4.3.3 Random Generation

Algorithm 2 describes the random generation of an individual. It is important that the

random numbers generated are uniformly distributed over the given interval.

4.3.4 Mutation

The most obvious mutation operation is to change one element of one of the vectors.

Unfortunately, changing VP may result in an infeasible solution, namely if one or more

elements of the VC vector represents a path that does not exist. To resolve this problem,

4.3 Gene Representation 77

Mem

Bus

P0 C0 P2P1 C1

R0 R1

Figure 4.8: Example binding

Algorithm 2 Random Generation of an Individual

1: for all processes Pk do
2: generate random binding pk ∈ [0, (r − 1)]
3: end for
4: for all channels Ck do
5: determine spin(k), pout(k)

from the in and out functions, the vector VP (generated
before) and the si, j–matrix

6: generate random binding ck ∈
[
0,
(
spin(k), pout(k)

− 1
)]

7: end for

78 The Mapping Stage

the VC vector can either be re-generated or repaired after a change of VP . The easiest

repair mechanism is to replace all incorrect elements with a random value which lies inside

the correct interval. This is preferable over a re-generation as the mutation should perform

only a slight variation and not a completely different individual. A change of a single entry

of the VP vector is re-binding of a single process, which means that only the entries of the

VC vector which represent channels that are connected to this process must be repaired.

Algorithm 3 describes the mutation process.

Algorithm 3 Random Mutation of an Individual

1: if computation binding is to be changed then
2: randomly choose a process Pk

3: repeat
4: generate new random binding pk ∈ [0, (r − 1)]
5: until new binding is different to the old one
6: for all channels Ck which are connected to Pk do
7: determine spin(k), pout(k)

from the in and out functions, the vector VP and the si, j–
matrix

8: generate random binding ck ∈
[
0,
(
spin(k), pout(k)

− 1
)]

9: end for
10: else {communication binding only is to be changed}
11: randomly choose a channel Ck

12: determine spin(k), pout(k)
from the in and out functions, the vector VP and the si, j–

matrix
13: repeat
14: generate new random binding ck ∈

[
0,
(
spin(k), pout(k)

− 1
)]

15: until new binding is different to the old one
16: end if

Example 8 If the binding of Figure 4.8 is to be mutated, the process P2 can be bound to

the computation resource R0 instead of R1. The vector VP then becomes

VP = (0 0 0) . (4.5)

as a consequence, the vector VC = (0 1) is not valid any more, since the channel C1 now

connects resource R0 with R0 itself, but there is no path with ID 1 with the start–end pair

{R0, R0} (cf. Table 4.2). The binding of C1 therefore must be repaired, and the resulting

representation is

VP = (0 0 0) VC = (0 0) (4.6)

4.3 Gene Representation 79

4.3.5 Recombination

As the vector VC strongly depends on VP , it makes no sense to combine the communication

binding (VC) of two individuals without considering the process binding (VP). Instead,

if two individuals A and B are to be combined, it is desirable to take half of the process

bindings from A, and the other half from B. After the process binding is fixed, the

communication binding can be derived. Since we want to keep as much information as

possible from the parents, all channels that connect two processes which are mapped to the

same resources as in one of the parents keep the binding of the corresponding parent. All

the other channels must be re-bound randomly. Algorithm 4 describes the recombination

process.

Algorithm 4 Recombination of two parents A and B to obtain offspring C

1: generate VP, C by concatenating the first
⌊p

2

⌋
elements of VP, A and the last

⌈p
2

⌉
elements

of VP, B

2: for all channels Ck do
3: if VP, C (in(k)) = VP, A (in(k)) and VP, C (out(k)) = VP, A (out(k)) then
4: take binding of Ck from parent A, i.e. ck, C = ck, A

5: else if VP, C (in(k)) = VP, B (in(k)) and VP, C (out(k)) = VP, B (out(k)) then
6: take binding of Ck from parent B, i.e. ck, C = ck, B

7: else {binding of Ck cannot be taken from one of the parents}
8: determine spin(k), pout(k)

from the in and out functions, the vector VP, C (generated
before) and the si, j–matrix

9: generate random binding ck, C ∈
[
0,
(
spin(k),pout(k)

− 1
)]

10: end if
11: end for

The algorithm can easily be extended to generate 2 offsprings C and D from each pair of

parents A and B by additionally generating VP, D by concatenating the last
⌈p

2

⌉
elements

of VP, A and the first
⌊p

2

⌋
elements of VP, B and generating the channel binding as explained

before.

Example 9 If the two parents A and B shown in Figure 4.9 are chosen to be recombined

to build the offspring C, the two vectors

VP,A = (0 0 0) VP,B = (1 1 1) (4.7)

are concatenated (according to algorithm 4) and result in the offspring binding vector

VP,C = (0 1 1) . (4.8)

80 The Mapping Stage

P1

Bus

C0P0

Mem

Bus

Mem

Parent B

P2C1

R1R0

P0 C0 P1 C1 P2

R0 R1

Parent A

Figure 4.9: Example binding.

Now, each channel has to be considered separately in order to build the vector VC,C from

the vectors VC,A and VC,B. The first channel (C0) connects P0 and P1. P0 is bound to

R0 and P1 to R1, which is not the case in either parent. This means that the binding

of C0 can not be taken from one of the parents, it must be rebuilt randomly. The second

channel (C1) connects P1 and P2, and the binding of both of these processes is equal to

the binding of parent B, which means that also the binding of the connecting channel (C1)

can be taken from parent B. The resulting offspring is

VP,C = (0 1 1) VC,C = ({0, 1} 0) , (4.9)

where the binding of channel C0 is generated randomly.

4.3.6 Implementation of the ShGene Class

The Gene interface is the second EXPO interface which must be implemented by a

problem–specific class. This class contains the data structures which represent a single

gene, and additionally provide methods for generating a random gene, mutating a gene

and recombine two genes to obtain a child gene.

The ShGene class contains two vectors, Vp[numOfProcesses] represents the binding of

processes onto computation resources, and Vc[numOfChannels] represents the binding

of channels onto communication paths. These vectors constitute the vectors VP and

VC , which were introduced in Section 4.3.2. Additionally, the ShGene class contains

the functions generateRandomGene(), mutateGene() and crossOverGene(parentGene),

which implement Algorithms 2, 3 and 4 of Sections 4.3.3, 4.3.4 and 4.3.5, respectively.

4.4 Performance Data and Objective Values 81

4.4 Performance Data and Objective Values

As mentioned before, the PISA interface separates the problem–specific part of an

optimizer from the problem–independent part. The third and last problem–specific issue is

the determination of the objective values, i.e. determination of a quality measure for each

optimization goal. Selection of genes based on these objective values is then a problem–

independent task, for which many different algorithms are available (see the Selectors

section on the PISA web–page [23]).

4.4.1 Processor Load

The first goal, “minimizing the maximum load of processors” is evaluated by using the

following equation for the maximum load of the computation resources lr, max

lr, max = max
Rj

 ∑
{Pi:pi=j}

ti, j

 (4.10)

where the maximum is taken over all computation resources, the sum is taken over all

processes bound to the corresponding computation resource, and ti, j is the estimated

execution time of process Pi on resource Rj . The reason for minimizing the maximum

sum of execution times, is the following: if we neglect the blocking read accesses, the total

program execution time is given by the maximum execution time over all resources, which

is exactly what is minimized.

4.4.2 Communication Load

The measure for the second optimization goal, “minimizing the maximum load of

communication links” is

l∗c, max = lc, max + pbuf , (4.11)

where l∗c, max is the sum of the maximum load of communication links lc, max and a penalty

value pbuf for an individual with one or more FIFO buffer that is likely to overflow. Let

B = {B1 . . . Bb} be the set of communication resources (buses3). Each bus is characterized

by a bandwidth bw(Bi). The cumulative amount of transferred data of a bus Bi is denoted

with cumul data(Bi), and stands for the sum of the total transferred data of all channels

3A communication resource can also be a dedicated link. For the sake of clarity, the term bus includes

dedicated links here.

82 The Mapping Stage

max(MFL) Size [b]
Buffer

P

P0

sum(MFL)

Figure 4.10: Penalty value for buffer overflow depending on the buffer size.

that are bound to a communication path that passes the bus Bi. The maximum load of

communication links lc,max is then

lc,max = max
Bi

{
cumul data(Bi)

bw(Bi)

}
(4.12)

The penalty value pbuf is defined according to Figure 4.10. Since more than one channel

may be mapped to a single memory resource, buffer overflows are not always predictable.

Assume, for instance, that three channels are mapped to a path containing a specific

memory resource. Each channel has its maximum fill level, but it is not clear which

channel reaches its maximum fill level when. Therefore three cases are distinguished:

• If the buffer size available on the memory resource is larger than the sum of all

maximum fill levels, no overflow will occur. The sum of all maximum fill levels

stands for the worst case scenario, meaning that all channels reach their maximum

fill levels at exactly the same time. In this case, the penalty value is 0.

• If the buffer size available on the memory resource is smaller than the maximum

of all maximum fill levels, there will be at least one overflow for sure. The penalty

value is then P0, a constant value specified in the EXPO properties file.

• If the buffer size lies between the aforementioned values, the overflow is more likely,

the smaller the buffer size. In this case the penalty value is linearly increasing with

an decreasing buffer size.

4.4.3 Implementation of the ShAnalyzer Class

The ShAnalyzer class contains two important functions. analyze() returns an array of

double values containing the calculated objective values for a given gene. analyze()

implements the formulas derived in Sections 4.4.1 and 4.4.2. The class additionally

contains a function named getReport(), which returns a string containing a textual form

of a mapping solution for a given gene. getReport() therefore converts the numerical

4.4 Performance Data and Objective Values 83

representation (i.e. the vectors Vp and Vc) into a textual form, which is readable and

understandable by a human being. This function can be adapted if the mapping is required

to be in an XML format for further processing.

84 The Mapping Stage

5
Evaluation and Results

In this chapter, the capabilities of the mapping stage prototype is demonstrated using

the MPEG-2 video decoder application and the example architecture proposed in Section

4.2.1. In the first section, the MPEG-2 video decoder application is configured. The

next section then uses the trace file generator and the dolprofiler package to obtain the

application model’s parameters. In the last section, these parameters are used to perform

the mapping optimization, using the example architecture and estimated execution times.

5.1 MPEG-2 Decoder Application

We start with the simplest possible configuration, which is N1 = N2 = N3 = 1. Since

the example architecture contains only 4 computation resources (2 RISCs and 2 DSPs),

it is not meaningful to specify an application with hundreds of processes. Figure 5.1

shows this simple process network. If we have a look at the process execution times

(profiled according to Section 2.4.5 and shown in Figure 5.2), it becomes obvious that

the pipeline is badly balanced. The dispatch blocks process needs roughly twice the time

of the dispatch mb process, and the transform block process needs twice the time of the

dispatch blocks process. In order to balance the pipeline, a total of 2 dispatch blocks and 4

transform block process instances are necessary. The improved configuration is therefore

85

86 Evaluation and Results

Figure 5.1: Simplest possible process network (N1 = N2 = N3 = 1).

dg dm db tb cb cm cg
0

5

10

15

20

25

30

35

40

45

50

Process

T
im

e
[s

]

Process Execution Times

Figure 5.2: Process execution times for N1 = N2 = N3 = 1.

N1 = 1, N2 = N3 = 2, which leads to the process network of Figure 5.3 and the process

execution times shown in Figure 5.4.

5.2 Profiling Results

The application can now be simulated with the SystemC application generated by the

DOL. As described in Chapter 3, the simulation generates a trace file, based on which the

parameters MFL (maximum fill level) and TATD (total amount of transferred data) can

be calculated. The resulting parameters for the MPEG-2 video decoder application are

shown in Figure 5.5.

5.2 Profiling Results 87

Figure 5.3: Improved process network (N1 = 1, N2 = N3 = 2).

dg dm db tb cb cm cg
0

5

10

15

20

25

30

35

40

45

50

Process

T
im

e
[s

]

Process Execution Times

Simple Configuration
Improved Configuration

Figure 5.4: Process execution times of the improved process network.

88 Evaluation and Results

----- Channel Analyzer Report ----

<channel> <MFL> <TATD>

<gm_ch> 127’243 144’951

<mb_ch_0> 308’625 8’598’176

<mb_ch_1> 308’625 8’604’319

<bt_ch_0_0> 307’384 7’221’242

<bt_ch_0_1> 307’383 7’221’241

<bt_ch_1_0> 307’383 7’226’731

<bt_ch_1_1> 307’383 7’226’731

<tb_ch_0_0> 994 7’221’241

<tb_ch_0_1> 1’491 7’221’241

<tb_ch_1_0> 994 7’226’731

<tb_ch_1_1> 994 7’226’730

<bm_ch_0> 20’091 16’023’199

<bm_ch_1> 19’854 16’035’487

<mg_ch> 126’957 3’808’712

Figure 5.5: Resulting parameters for the improved configuration.

5.2.1 TATD

The total amount of transferred data of the gm ch channel is more or less equal to the

size of the file containing the video sequence, since the dispatch gop process does not

perform any decoding. The amount of data transferred to the dispatch blocks processes

(via the mb ch channels) is roughly 2 · 60 = 120 times larger, mainly due to the variable

length decoding. At the block level (bt ch and tb ch channels), the amount of data is

increased by a factor of about 1.6 (from 2·8.2 MB to 4·7.2 MB), mainly because the header

information is now transmitted together with each block, instead of just once for all blocks

of a macroblock. The inverse discrete cosine transform does not change the amount of

transferred data, because each 8×8 block of coefficients is transformed into an 8×8 block

of chrominance/luminance values. On the bm ch channels there is no significant increase in

the amount of data (from 4·7.2 MB to 2·16.0 MB). Finally, after the motion compensation

step is performed, most of the remaining header information can be discarded and only

the uncompressed raw image data is transferred over the mg ch channel.

5.2.2 MFL

Concerning the maximum fill level, two points are especially noticeable. First, the

maximum fill level of the gm ch channels is almost as large as the total amount of

transferred data, which reflects the fact that the dispatch gop process is very fast compared

to the dispatch mb process. Second, the maximum fill level of the channels after the

transform block process are much smaller. The reason for this can be found by having a

5.3 Mapping Optimization 89

look at the simple configuration N1 = N2 = N3 = 1. The process execution times show,

that the collect blocks process is faster than the transform block process, which means

that the data does not accumulate on the FIFO channel. In the case of the improved

configuration, the execution time of each instance of the transform block process is reduced,

but since all the processes are simulated on a single workstation, this reduction does not

affect the maximum fill level. This is identified as the main limitation of the parameters

at the application level: the maximum fill level of the FIFO buffers depend on the number

of process instances mapped to a single resource. The influence of the maximum fill

level on the mapping optimization, which can be adjusted by selecting the penalty value

P0, should therefore be chosen small compared to the influence of the total amount of

transferred data.

5.3 Mapping Optimization

In order to run the mapping optimization, the EXPO specification file must be generated.

This is done with expogen according to Section 4.2.5. The execution times are estimated

according to Section 4.2.2, with a DSP speedup factor of 10 for the inverse discrete

cosine transform process (transform block), and a speedup factor of 2 for the motion

compensation process (collect mb). The resulting execution times estimation is shown in

Figure 5.6.

// Execution times specification for (122)

-1

RISC

DSP

-1

’dispatch_gops’ 1.0000 1.0000

’collect_gops’ 86.9733 86.9733

’dispatch_mb’ 38.7908 38.7908

’collect_mb’ 82.3654 41.1827

’dispatch_blocks’ 95.8154 95.8154

’collect_blocks’ 124.3919 124.3919

’transform_block’ 178.5883 17.8588

-1

Figure 5.6: Execution times estimation (normalized to the fastest process).

EXPO can then be run with the specification file generated by expogen. Figure 5.7

shows the initial population, an intermediate population at generation 20, and the final

population, which did not change from generation 80 to 200. Four of the pareto–optimal

solutions are labeled with the numbers 1 to 4 for further reference.

90 Evaluation and Results

(a) Initial population (b) Generation 20

(c) Generation 200

Figure 5.7: Population at three different generations. The x–axis shows the load of the

computation resources, and the y–axis the load of the communication resources.

5.4 Conclusion and Future Work 91

As can be seen in Figure 5.7c, Solution 1 has a very small maximum execution time,

but is bad in terms of the communication. This solution is shown in Figure 5.8. Clearly,

this execution time can only be reached by mapping all the transform block processes to

DSPs and additionally distributing all the other processes evenly on the other resources.

The price to pay is a bad communication performance with many long paths.

Solution 2 trades some of the execution time against a better communication, but if

we allow the execution time to be a little bit larger, the communication can be improved

again significantly. Solution 3 would therefore be preferable over Solution 2.

Solution 4 finally sacrifices a lot in terms of execution times but reaches by far the

best communication performance. This solution is shown in Figure 5.9. Since the

transform block processes must be mapped to DSPs, the communication is optimized, by

not using the RISC processors at all. Additionally, two connected processes are mapped

to the same DSP wherever possible, so that a total of only three external communication

paths must be used.

5.4 Conclusion and Future Work

First, an MPEG-2 video decoder application for the SHAPES DOL was successfully

implemented. The resulting process network contains no cycles and no request and

answer structure, but provides a feed–forward data flow from the first to the last process.

Additionally, the process network is reconfigurable, which means that the number of

parallel processes can be adjusted without changing the implementation of the processes.

This is necessary for maintaining scalability and making the best use of the available

architecture. The process network does not make use of the read/write testing functions,

which means that the application is realized as a Kahn process network (except for the

bounded FIFO buffer sizes). It was shown how the process execution times can be profiled

in order to choose an appropriate configuration and balance the pipeline. The following

conclusions can be drawn:

• The SHAPES DOL model of computation is suited for complex applications, no

extensions were found to be necessary.

• The programming effort is, thanks to the functional simulation using SystemC,

comparable to the programming effort for standard C programs. For programming,

compiling, debugging, testing and profiling the established practices and tools from

sequential programming can be used.

92 Evaluation and Results

// ***********************

// GENE INDEX 7914

// ***********************

Gene Vectors:

Vp = [1 0 1 2 1 2 3 0 3 2 3 3]

Vc = [0 1 0 0 0 0 3 0 2 0 0 0 0 3]

Implementation Details:

Mapping of Processes onto Computation Resources:

dg ---> risc_2

cg ---> risc_1

dm ---> risc_2

cm ---> dsp_1

db_0 ---> risc_2

cb_0 ---> dsp_1

db_1 ---> dsp_2

cb_1 ---> risc_1

tb_0_0 ---> dsp_2

tb_0_1 ---> dsp_1

tb_1_0 ---> dsp_2

tb_1_1 ---> dsp_2

Mapping of Channels onto Communication Paths:

gm_ch ---> risc_2

mg_ch ---> dsp_1 intra_tile_bus_1 mem_1 intra_tile_bus_1 risc_1

mb_ch_0 ---> risc_2

bm_ch_0 ---> dsp_1

mb_ch_1 ---> risc_2 intra_tile_bus_2 inter_tile_bus intra_tile_bus_3 dsp_2

bm_ch_1 ---> risc_1 intra_tile_bus_1 dsp_1

bt_ch_0_0 ---> risc_2 intra_tile_bus_2 inter_tile_bus intra_tile_bus_3 mem_3

intra_tile_bus_3 dsp_2

tb_ch_0_0 ---> dsp_2 intra_tile_bus_3 inter_tile_bus intra_tile_bus_1 dsp_1

bt_ch_0_1 ---> risc_2 intra_tile_bus_2 mem_2 intra_tile_bus_2 inter_tile_bus

intra_tile_bus_1 dsp_1

tb_ch_0_1 ---> dsp_1

bt_ch_1_0 ---> dsp_2

tb_ch_1_0 ---> dsp_2 intra_tile_bus_3 inter_tile_bus intra_tile_bus_1 risc_1

bt_ch_1_1 ---> dsp_2

tb_ch_1_1 ---> dsp_2 intra_tile_bus_3 mem_3 intra_tile_bus_3 inter_tile_bus

intra_tile_bus_1 risc_1

Figure 5.8: Solution 1. The processes are distributed evenly on all available resources.
The price we pay for this optimal execution time is a lot of external communication.

5.4 Conclusion and Future Work 93

// ***********************

// GENE INDEX 7963

// ***********************

Gene Vectors:

Vp = [3 2 3 2 3 2 2 2 3 3 2 2]

Vc = [0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Implementation Details:

Mapping of Processes onto Computation Resources:

dg ---> dsp_2

cg ---> dsp_1

dm ---> dsp_2

cm ---> dsp_1

db_0 ---> dsp_2

cb_0 ---> dsp_1

db_1 ---> dsp_1

cb_1 ---> dsp_1

tb_0_0 ---> dsp_2

tb_0_1 ---> dsp_2

tb_1_0 ---> dsp_1

tb_1_1 ---> dsp_1

Mapping of Channels onto Communication Paths:

gm_ch ---> dsp_2

mg_ch ---> dsp_1

mb_ch_0 ---> dsp_2

bm_ch_0 ---> dsp_1

mb_ch_1 ---> dsp_2 intra_tile_bus_3 inter_tile_bus intra_tile_bus_1 dsp_1

bm_ch_1 ---> dsp_1

bt_ch_0_0 ---> dsp_2

tb_ch_0_0 ---> dsp_2 intra_tile_bus_3 inter_tile_bus intra_tile_bus_1 dsp_1

bt_ch_0_1 ---> dsp_2

tb_ch_0_1 ---> dsp_2 intra_tile_bus_3 inter_tile_bus intra_tile_bus_1 dsp_1

bt_ch_1_0 ---> dsp_1

tb_ch_1_0 ---> dsp_1

bt_ch_1_1 ---> dsp_1

tb_ch_1_1 ---> dsp_1

Figure 5.9: Solution 4. The external communication is now reduced to to the minimum,
at the cost of execution time — two resources are not used at all.

94 Evaluation and Results

• The main challenge is the parallelization of the algorithm, which requires a good

application domain knowledge and allows for lots of different approaches.

Future work may include optimization of the application in terms of both execution time

and memory requirements. This was not the main concern in this thesis.

Second, it was shown that the functional simulation can be used for obtaining mapping–

relevant parameters at the application level. For this reason, the SystemC source code

generator was extended by trace file generating routines. The trace file contains all

read and write API calls and can be used to extract the parameters. A Java package

dolprofiler was implemented, which extracts several parameters for each channel, from

which the total amount of transferred data and the maximum fill level were identified as

the most important ones. It was shown, however, that the maximum fill level depends on

the architecture, which makes it less significant than the total amount of transferred data.

Third, a prototype of the mapping stage was implemented, using the PISA interface

and EXPO. For this reason, an example architecture was chosen, a method of estimating

the process execution times was proposed, and a Java application expogen was written,

which generates a single text–based specification file from the architecture specification,

the application specification, the execution times estimation, and the trace file (using

the dolprofiler package). Additionally, a Java package sysmodel was implemented,

containing the data structures of the whole system. An algorithm for finding all

communication paths of the architecture was proposed and implemented in the system

model. The EXPO application was extended by three problem–specific classes, one

containing the system specification, a second one containing the objective value calculation

routines, and a third one containing a single gene representation, including its random

generation, mutation, and recombination routines. The following conclusions can be

drawn:

• Application level parameters have been used to find pareto–optimal mappings.

• The main limitation is the absence of accurate execution time measurements, which

are necessary in order to optimize the load of the computation resources.

• A second limitation is the fact the number of available resource (and also the

scheduling policies) have an influence on the fill levels of the FIFO buffers, which is

not considered in the functional simulation.

• Evolutionary Algorithms are suited well for solving the mapping optimization

problem. Although for this thesis, the size of the search space hardly justifies the use

5.4 Conclusion and Future Work 95

of evolutionary algorithms, the architecture is expected to be much more complex

in the future, which will make a heuristic optimization approach inevitable.

• The use of PISA and EXPO for solving the multi–objective problem turned out to

be very convenient and allowed for a concentration on the problem–specific tasks

which significantly reduced the implementation time.

The presented mapping stage is a prototype and a lot of future work is necessary, among

other things:

• The consequences of more complex systems are to be investigated, e.g. introduction

of hierarchy levels and applicability of the path search algorithm, etc.

• The results of instruction and cycle accurate system simulation, which will be

available in the future, are to be integrated in the mapping optimization.

• Mapping constraints imposed by the application programmer are to be taken into

account.

96 Evaluation and Results

A
Task Description

A.1 Introduction

The design of future systems on chips requires a scalable hardware-software design

approach. In the SHAPES (scalable software hardware architecture platform for embedded

systems) project [2], a new hardware-software architecture paradigm is investigated.

Within the SHAPES project, TIK is dealing with the challenge of providing an efficient

programming environment. As a first result, a software development framework called

distributed operation layer (DOL) has been implemented. The purpose of the DOL is to

enable the (semi-) automatic mapping of applications onto the multiprocessor SHAPES

platform. In principle, this is achieved by

1. leveraging an appropriate model of computation, and

2. applying appropriate methods for mapping optimization.

The DOL will be used to develop streaming applications from such diverse areas as

medical imaging, audio wave field synthesis, and physical modeling of complex systems.

One important step towards this goal will be the implementation of a streaming application

97

98 Task Description

of moderate complexity using the DOL. Therefore, a primary task of this thesis is the

implementation of an MPEG-2 decoder [12] for the DOL.

Based on this implementation, the thesis will then focus

1. on the evaluation of the DOL, suggestions for improvements, and their implementation,

as well as

2. on the extraction of mapping-relevant parameters at the application level, the

implementation of tools for this extraction, and — based on the extracted parameters

— the mapping itself.

A.2 Tasks

The project will be divided into several subtasks, as described below. It is not unlikely

that changes of these tasks will occur in the course of the project. If changes occur, they

should be discussed with the advisors.

A.2.1 MPEG-2 Implementation for DOL

The first task in context of this thesis will be the implementation of an MPEG-2 decoder

for the DOL in C. Preferably, the implementation will not be done from scratch but derived

from an available implementation.

Subtasks

• Gaining of an understanding of DOL, the underlying model of computation [5], and

the used communication API [4]

• Definition of selection criteria and according selection of a reference MPEG-2

implementation

• Partitioning of the algorithm into processes with the goal of exposing the available

parallelism of MPEG-2 to the DOL

• Implementation of MPEG-2 on the DOL using the DOL API for communication

between processes

• Functional verification of the implementation

A.2 Tasks 99

• Comparison of the DOL implementation with MPEG-2 decoder implementations

using other models of computation (for instance, SDF [26]) and development

frameworks (for instance, Ptolemy [27] or StreamIt [28]).

A.2.2 Profiling for DOL Applications

In mapping optimization, an analytical model is used in which parameters are used to

describe the application as well as the underlying architecture. Mapping optimization

depends on an efficient acquisition of these parameters to achieve a good performance in

terms of both run-time and results. In this thesis, one focus will be the implementation

of a profiler to obtain parameter data at the application level.

Subtasks

• Identification of mapping-relevant parameters available at the application level

• Proposal of an appropriate method to profile these parameters

• Prototypical implementation of a profiler and integration into the existing SystemC

simulation generator

• Demonstration of profiler capabilities using the MPEG-2 decoder

A.2.3 Mapping of DOL Applications

Based on the parameters extracted by the profiler, the last task is to investigate the

mapping of DOL applications onto a heterogeneous multi-processor architecture. The

goal is to automatically compute a mapping of the application onto the architecture. The

envisioned workflow is depicted in Fig. A.1.

The optimization goal is balancing of resource usage:

• Minimization of the maximum load of processors

• Minimization of the maximum load of communication links

Only the binding part of mapping is considered, scheduling is not considered.

Subtasks

• Definition of an example architecture (two types of computation and communication

resources)

100 Task Description

application

specification

architecture

specification

functional

simulation

application

model

architecture

model

trace

generation

mapping

parser parser parser parser

internal

representation

mapping

specification

Figure A.1: Workflow for Automated Mapping.

• Definition of the relevant performance data

• Description of how the performance data are gathered, saved, and passed to the

mapping stage

• Definition of the mapping stage (for the specific problem at hand): How do the

internal representation look like? How is a new mapping generated (in terms of an

algorithm)? How is a mapping evaluated (with respect to the optimization goals)?

• Identification of the problem-specific and problem-independent functions required in

the mapping

• Specification of a suitable software-architecture for the problem-independent

functions

A.3 Project Organization 101

• Implementation of the system (using EXPO [25] for multi-objective optimization)

• Evaluation of the system for MPEG-2

A.3 Project Organization

There will be a weekly meeting to discuss the project’s progress. A revision of the working

document should be provided the day before.

Four copies of the written report are to be turned in. All copies remain the property of

the Computer Engineering and Networks Laboratory.

102 Task Description

B
Presentation Slides

Diploma Thesis

MPEG-2 Video Decoder for SHAPES DOL

Prof. Dr. Lothar ThieleProfessor:

Wolfgang Haid

Kai Huang

Advisors:

Simon Mall

10. 4. 2007

103

104 Presentation Slides

2Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Context – SHAPES Project

“The challenge of finding a scalable HW/SW design style for future CMOS

technologies”

3Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Goal:

Mapping of the application

onto the architecture

Initial Situation:

Model of computation

Functional simulation using

SystemC

Context – Distributed Operation Layer (DOL)

105

4Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Motivation

Testing the programming model

Is it suitable for complex programs?

Are any extension or improvements necessary?

Making the best use of application level performance data

Which mapping-relevant parameters are available?

How can they be extracted?

Mapping optimization

Can these parameters be used for finding an optimal mapping?

What are the limitations of the application level?

5Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Goals

Implementation of an MPEG-2

video decoder application for the

SHAPES DOL

Tests the programming model and

the development framework

Serves as a benchmark

application

Can be used for extracting

application parameters

Can be used to test the mapping

stage

106 Presentation Slides

6Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Goals

Implementation of a mapping

stage

How to model an application?

Limitations of the application level

performance data?

How to optimize the mapping?

Demonstration of capabilities

using the MPEG-2 application

7Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Outline

MPEG-2 decoder

MPEG-2 overview

Parallelization

Results

Conclusion

Mapping stage

Mapping overview

Approach

Results

Conclusion

107

8Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

MPEG-2 Overview

Bitstream syntax:

Decoding process:

VLD IS IQ IDCT MC

Frames
Frames

Coded

Stream

Decoded

Samples

9Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

MPEG-2 Decoder – Parallelization

Methodology for parallelization:

Identify abstraction levels

Investigate the possibilities of both data parallelism and pipelined parallelism

Combine selected decompositions

System Level

Video Sequence Level

Picture Level

Slice Level

Macroblock Level

Block Level

Abstraction Levels

coll

A

A

disp ...

108 Presentation Slides

10Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

MPEG-2 Decoder – Resulting Kahn Process Network

D
a
ta

 P
a
ra

lle
lis

m

VLD, IS, IQ IDCT MC

Pipelined Parallelism

11Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

MPEG-2 Decoder – Resulting Process Execution Times

109

12Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

MPEG-2 Decoder – Conclusion

Contribution

Implemented a working MPEG-2

decoder benchmark application

Gained experience in developing

applications for the SHAPES platform

Conclusion

Implementation of complex applications

with parameterized process networks

possible

No extensions necessary

Main challenge: parallelization

Programming, debugging, testing almost

as usual

13Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Overview

Modeling the application

Profiling the functional simulation

Extracting parameters

Find an optimal mapping with an EA

Example Architecture

Execution Times

System model

Representation

Objective Values

Application

Specification

Architecture

Model
Mapping

Performance

Evaluation

Application

Model

Functional

Simulation

Parameter

Extraction

Example

Architecture

110 Presentation Slides

14Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Profiling the Application

What information can be obtained at the application level?

No architecture available

Acquisition must rely on SystemC simulation

The measure of time can not be used

Profiling must not affect the application programmer

Catch API function calls fire(), read(), and write()

SystemC simulation extended by trace file generation

Application

Specification

Trace File Generation Routines

Functional Simulation

Trace File

SystemC

15Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Extraction of Parameters

(...)

29 disp_mb r e9d4 256

30 disp_mb r e9d4 4

31 disp_mb r e9d4 3398

32 disp_mb w e9ac 1

33 disp_mb w e9ac 64

34 disp_mb w e9ac 172

(...)

<name> <MFL> <TATD>

<ch_0> 71981 89753

<ch_1> 126956 2158270

<ch_2> 70919 70921

<ch_3> 308625 5164436

<ch_4> 20091 9624979

<ch_5> 308625 5161363

(...)

functional

simulation

Java package dolprofiler extracts the parameters from the trace file

where access[t] = n [byte] stands for a write if n > 0, and for a read if n < 0

dolprofiler

Process

Network

Information

111

16Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Example Architecture

0 7 2

4

10

8 9 31

5 6

mem_1

dsp_1intra_tile_

bus_1

risc_1

inter_tile_

bus

dsp_2intra_tile_

bus_3

intra_tile_

bus_2
risc_2

mem_2 mem_3

17Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – System Model

System

Model

Application

Model

Architecture

Model

Application

Graph

Architecture

Graph

Execution

Times List
Path List

„has-a“

Relationship

A channel may be mapped to more than one bus Path List required

Process execution times can be specified manually for testing the mapping

stage under diverse conditions

112 Presentation Slides

18Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Representation

A single mapping (gene) is represented by two vectors:

VP : mapping of processes

VC : mapping of channels

Generation, mutation and recombination is always performed first on VP

VC is then generated, mutated or recombined based on VP

19Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Objective Values

Minimizing the maximum load of communication resources

Minimizing the maximum load of computation resources

113

20Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Mapping Stage – Conclusion

Contribution

Implemented a trace file generator

Extracted two important parameters from

the trace file

Implemented a prototype of the mapping

stage

Conclusion

Application level performance data can

be used for mapping optimization

Many extensions are necessary

- Extension of the architecture

- Introduction of hierarchy levels

- Instruction and cycle accurate

performance evaluation

- Mapping constraints

Application

Specification

Architecture

Model
Mapping

Performance

Evaluation

Application

Model

Functional

Simulation

Parameter

Extraction

21Simon Mall – MPEG-2 Video Decoder for SHAPES DOL

Demonstration and Questions

114 Presentation Slides

C
CD–ROM Contents

The top level directory structure of the CD is shown in Figure C.1. The next section

explains the contents of each of these directories separately. Section C.2 contains step–

by–step instruction for compiling and running the MPEG-2 decoder and the mapping

stage.

C.1 Directory Contents

C.1.1 doc

The doc directory has two sub–directories. diploma thesis contains the thesis in PDF

format and its LATEX–source. The presentation sub–directory contains the presentation

Figure C.1: Top level directory structure.

115

116 CD–ROM Contents

in the Microsoft Power Point format.

C.1.2 dol

The dol directory contains a single file dol ethz.zip, which can be copied to a local

directory and decompressed, in order to install and configure the version of the SHAPES

DOL, on which this thesis is built up (including the trace file generating routines written

in the context of this thesis). The archive itself contains a docs directory with instructions

on how to use the DOL.

C.1.3 mapping

The mapping directory structure is shown in Figure C.2. The mapping directory has to

sub–directories. src contains all Java source files written in the context of this thesis.

expo shapes contains all the files needed for running the mapping optimization with

PISA/EXPO. expo shapes itself contains two files and three sub–directories:

build.xml The ant script used to compile EXPO.

do chmod.sh A small shell script, which automatically sets all necessary files to be

executable. In Linux, this script must be run after each compilation step.

jars/ This directory contains several libraries used by EXPO.

src/ This directory contains all the sources of EXPO, the system model, the dolprofiler

and expogen.

runsrc/ This directory contains the files needed for running EXPO later. No changes

should be made here. Instead, after compiling EXPO, a build/ directory is created,

where the specification and the configuration can be changed. See Section C.2 for

details.

C.1.4 mpeg dol

The mpeg dol directory contains the source code of the MPEG-2 video decoder

implementation for the SHAPES DOL, i.e. the process network definition (example9.xml)

and a src sub–directory containing the process implementations. The DOL can be

used to generate the SystemC source code, which can then be compiled and run on

a single workstation. The doc sub–directory contains the doxygen documentation in

C.2 Step–by–Step Instructions 117

Figure C.2: Mapping directory structure.

HTML format. Note that doxygen was not really intended to be used with this model of

computation, which means that not all of the documentation pages are meaningful.

C.1.5 mpeg ref

The mpeg ref directory contains the MSSG’s mpeg2dec, i.e. the reference implementation.

All the necessary instructions on how to install and run the reference implementation can

be found in the readme.txt file in this directory.

C.2 Step–by–Step Instructions

C.2.1 How to Install the DOL

1. Download and compile the latest version of SystemC from the SystemC–webpage

[7]. Detailed installation instructions are available on the web–page.

2. Download and install Apache Ant version 1.6.5 or later.

3. Copy and unzip the file dol/dol ethz.zip to a local directory of your choice (we

call this directory the dol base directory.

118 CD–ROM Contents

4. Edit the build zip.xml file in the dol base directory. Change the SystemC

paths to the directories where you installed SystemC (note that the name of

the directory containing the library depends on the platform, e.g. lib-linux or

lib-gccsparcOS5). Make sure that java and javac refer to the Java Platform 5.0

executables. Otherwise, specify your Java 5.0 executables in the build zip.xml file.

5. Configure the DOL by calling

ant -f build_zip.xml config

6. Compile the DOL by calling

ant -f build_zip.xml

7. Add the dol base directory path, the <dol base directory>/bin/jdom.jar, and the

<dol base directory>/bin/xercesImpl.jar to the CLASSPATH environment variable.

The DOL is now ready to be used.

C.2.2 How to Compile and Run the MPEG-2 Decoder

This section assumes a working DOL (as described in the previous section).

1. Copy the source files from the mpeg dol directory into a local directory of your choice

(the doc sub–directory is not necessary).

2. Configure the implementation (the desired number of parallel processed entities) as

described in Sections 2.4.2 and 2.4.3.

3. Flatten the process network (resolves the iterator objects):

java dol.helper.flattener.XMLFlattener example9.xml Generator

javac Generator.java

java Generator > flat_ex9.xml

4. Generate the SystemC source code:

java dol.main.Main -P flat_ex9.xml -c -H hds -D dotty.dot

5. Change to the directory hds/src/. If you want to turn of the DOL profiling

(the trace file generation slows down the simulation and needs a large amount of

disk space), edit the Makefile and remove the -DINCLUDE PROFILER preprocessor

argument.

C.2 Step–by–Step Instructions 119

6. Compile the SystemC application with GNU make.

7. Run the application by calling

./sc_application

8. Enter the filename of the MPEG-2 video clip when prompted.

Note that the decoder accepts .mpeg files, but it is better to extract the video sequence

and use the .m2v video files instead. For measuring the execution times, the filename

prompt can be omitted by writing the filename into a text file run.txt and calling the

application with

./sc_application < run.txt

(make sure that the run.txt file ends with an empty line).

If you turned on the DOL profiler, a profile.txt file is generated each time the

simulation is finished. This file is needed in the mapping stage (see next section).

C.2.3 How to Compile and Run the Mapping Stage

This section assumes a working DOL. Especially, it is necessary that the path to the dol

base directory is contained in the CLASSPATH environment variable.

1. Copy the whole mapping/expo shapes directory from the CD to a local directory

of your choice.

2. Compile EXPO by calling

ant linux

sh do_chmod.sh

on a Linux environment, or

ant win

on a Windows environment.

3. Open a second shell. We call the first one shell A and the second one shell B.

4. In shell A, change to the directory build/run/expo.

120 CD–ROM Contents

5. If you just want to try it out, without any configuration, just call ./runEXPO. If you

want to build your own EXPO specification file, the following steps are necessary:

• Copy the profile.txt and a flat ex9.xml files from the MPEG-2 simulation

into the spec directory.

• Edit the spec/exec times.txt file and adjust the execution times.

• Edit the spec/arch.xml file, if you want to change the architecture.

• Generate the specification file by calling (from the build/run/expo directory)

./runEXPOGEN spec/flat_ex9.xml spec/arch.xml spec/profile.txt

spec/exec_times.txt spec.txt

(on a single line). This generates the specification file, which is used by EXPO.

EXPO does not use the files in the spec directory, so any changes must be

followed by invoking runEXPOGEN again. EXPO can then be run by calling

./runEXPO.

6. In shell B, change to the directory build/run/spea2 linux, build/run/spea2 win,

build/run/ibea linux, or build/run/ibea win, depending on your platform and

the desired selector algorithm.

7. Run the selector by calling ./run spea2 or ./run ibea, respectively.

Acknowledgments

I wish to thank the following people:

• Prof. Dr. Lothar Thiele for making it possible to write this diploma thesis at

the Computer Engineering and Networks Laboratory.

• My thesis advisors, Wolfgang Haid and Kai Huang for the huge effort they put

into this project. Their constant support and assistance was a great help, and the

meetings and discussions were always enriching.

• The Services Group of the Computer Engineering and Networks Laboratory for

providing a perfect infrastructure and working environment.

• My family and friends for their supportive and motivating attitude, and for

understanding my temporary lack of time.

Bibliography

[1] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” in Proc. IEEE, vol. 89,

no. 4, 2001, pp. 490–504.

[2] SHAPES Project Website. [Online]. Available: http://www.shapes-p.org

[3] P. S. Paolucci, A. A. Jerraya, R. Leupers, L. Thiele, and P. Vicini, “SHAPES: A

Tiled Scalable Software Hardware Architecture Platform for Embedded Systems,”

in Proc. of the 4th Int. Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS’06), Seoul, Korea, Oct. 2006, pp. 167 –172.

[4] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M.

Kruijtzer, P. Lieverse, and K. A. Vissers, “YAPI: Application Modeling for Signal

Processing Systems,” in Proc. 37th Design Automation Conference (DAC 2000),

Los Angeles, CA, USA, June 2000, pp. 402–405.

[5] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” in Proc.

IFIP Congress 74, North Holland Publishing Co.

[6] “System software requirements for heterogeneous multi-core systems,” SHAPES

internal document.

[7] SystemC Community Website. [Online]. Available: http://www.systemc.org/

[8] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to

MPEG-2. New York: Chapman and Hall, 1997.

[9] D. T. Hoang and J. S. Vitter, Efficient Algorithms for MPEG Video Compression.

Chichester: John Wiley & Sons, 2002.

[10] Official Website of the MPEG Committee. [Online]. Available:

http://www.chiariglione.org/mpeg

123

124 Bibliography

[11] J. Watkinson, The MPEG Handbook. Boston: Focal Press, 2001.

[12] ISO/IEC 13818-2: Information technology — Generic Coding of moving pictures

and associated audio information — Part 2: Video, International Organization for

Standarization, 1995.

[13] libmpeg2 Website. [Online]. Available: http://libmpeg2.sourceforge.net

[14] FFmpeg Multimedia System Website. [Online]. Available:

http://ffmpeg.mplayerhq.hu

[15] MPEG Software Simulation Group (MSSG). [Online]. Available:

http://www.mpeg.org/MSSG

[16] E. Iwata and K. Olukotun, “Exploiting Coarse-Grain Parallelism in the MPEG-2

Algorithm,” in Technical Report CSL-TR-98-771, Stanford University Computer

Systems Laboratory, Sept. 1998.

[17] A. Bilas, J. Fritts, and J. P. Singh, “Real–Time Parallel MPEG-2 Decoding in

Software,” in IEEE Proceedings of the 11th International Parallel Processing

Symposium, 1997.

[18] Jahshaka Website. [Online]. Available: http://www.jahshaka.org

[19] Helix Player Website. [Online]. Available: https://player.helixcommunity.org

[20] I. Foster, Designing and Building Parallel Programs. Addison-Wesley, 1995.

[Online]. Available: http://www.it.uom.gr/teaching/dbpp

[21] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization,” in

Evolutionary Methods for Design, Optimisation, and Control. CIMNE, Barcelona,

Spain, 2002, pp. 19–26.

[22] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA — A Platform and

Programming Language Independent Interface for Search Algorithms,” in

Evolutionary Multi-Criterion Optimization (EMO 2003), ser. Lecture Notes in

Computer Science, C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele,

Eds. Berlin: Springer, 2003, pp. 494 – 508.

[23] PISA Website. [Online]. Available: http://www.tik.ee.ethz.ch/pisa/

[24] EXPO Website. [Online]. Available: http://www.tik.ee.ethz.ch/pisa/variators/

expo/expo.html

Bibliography 125

[25] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “A Framework for Evaluating

Design Tradeoffs in Packet Processing Architectures,” in Proc. 39th Design

Automation Conference (DAC 2002), New Orleans, LA, USA, June 2002, pp.

880–885.

[26] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow

Programs for Digital Signal Processing,” IEEE Trans. Comput., vol. C-36, no. 1, pp.

24–35, Jan. 1987.

[27] E. A. Lee. Ptolemy Web Site. [Online]. Available: http://ptolemy.eecs.berkeley.edu

[28] S. Amarasinghe. StreamIt Web Site. [Online]. Available:

http://cag.csail.mit.edu/streamit

