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Abstract

For many multi-objective optimization scenarios, the goal is usually to iden-
tify the set of Pareto-optimal solutions. In practice however, some problems
might arise in this context. In many cases, design variables can be prone
to variation, which may cause the focus to shift to finding so-called robust
solutions - solutions which are the least sensitive to slight changes in vari-
ables. In addition, real-world optimization problems are often subject to a
wide range of uncertainties, which can be caused by stochastic models, for
example.

In this study, these aspects are discussed and an approach is presented
which allows for both robustness and uncertainty to be taken into account.
A concept is developed, building upon existing studies and is implemented
in the form of an evolutionary algorithm situated in the PISA framework,
which is adapted to allow the handling of robustness and uncertainty.

In order to assess the developed algorithm, a testproblem was imple-
mented which allows the effects of robustness to be visualized. The simula-
tion showed that the optimizer successfully finds the robust solutions if the
according parameters are chosen wisely.
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1

Introduction

This chapter provides an introduction to this thesis. Section 1.1 introduces
and motivates the topics and concepts which are central to this study and,
in Section 1.2, related approaches are presented. Section 1.3 sets the focus
for this thesis and states the official task description of the project. Finally,
in Section 1.4, the structure of this report is explained.

1.1 Motivation

Regarding many optimization problems, one will find that in most cases it is
not one, but multiple objectives which want to be optimized. Usually these
criteria compete against each other, which makes you need a multi-objective
optimization procedure in order to find the optima.
If the goal is to design an embedded system, for example, one will want
to keep the costs and size low while pushing efficiency and reliability to its
limits. Evolutionary Algorithms have proven to be a good choice to find the
set of optimal solutions.

There are, however, a few problems one can encounter. One aspect
which has to be regarded is robustness. In many fields, certain variables
can be prone to variation. E.g. in production the properties of a product’s
components might vary in size or weight as a consequence of a tolerance in
precision. Here one would primarily be interested in finding those composi-
tions, whose quality is the least sensitive to this variation, which would be
the most robust solutions.
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Chapter 1 Introduction

An other aspect that can come to one’s attention is uncertainty. Op-
timization problems are often subject to uncertainties, due to stochastic
objective functions, for example.
These aspects of robustness and uncertainty, and how they can be handled
in multi-objective optimization, are central to this thesis.

This chapter will give you an overview of these topics, providing the
motivation for this project.

1.1.1 Optimization

Nowadays, real-world problems most often involve the need to simultane-
ously optimize several, often conflicting, objectives. In this text, we assume
that ’to optimize’ means to minimize the values of these objective functions.

The goal in such scenarios, is usually to identify the set of Pareto-optimal
solutions: the Pareto front. A solution x∗ is said to be Pareto-optimal, if
all other vectors x ∈ X have a higher value for at least one of the objective
functions fi(x), or else have the same value for all objectives.

In this context, the decision space, containing the elements among which
the best is sought, is denoted by X. These elements are called solutions or
decision vectors. The objective space, denoted by Z, contains the objective
vectors.

There are several different techniques which can be applied to an opti-
mization problem. Almost all of them combine the multiple objectives into
one scalar objective, whose solution is a Pareto-optimal point for the origi-
nal multi-objective optimization problem. In the following text, this single
objective is denoted as the fitness function F (x).

What makes some optimization problems hard to solve, is that they
can be too complex to be solved using deterministic techniques, or that
the objective functions are highly complex or poorly understood. Another
possibility is that the objective functions are not given in closed form, but
have to be determined by simulation or experiment.

1.1.2 Evolutionary Algorithms

In the late 50s, an idea started to evolve that was totally new in the field
of optimization. Researchers began to realize that, as the process of nat-
ural evolution can be seen as a procedure to optimize species in order to
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1.1 Motivation Chapter 1

increase their expectation of survival, one can apply this concept to any
other optimization problem.

In the mid 60s, Ingo Rechenberg and Hans-Paul Schwefel were working
on the development of a two phase flashing nozzle at the Technical University
of Berlin [6]. When they couldn’t satisfactorily optimize its aerodynamic
properties in a mathematical way, they chose an alternative approach based
on selection and random variation (achieved by throwing dice to generate
potential new solutions), thereby borrowing the approach of evolutionary
optimization from nature. The outcome exceeded their expectations and
the concept has been subject to extensive further research ever since.

The Basic Idea

The workflow of an example Evolutionary Algorithm is shown in Table 1.1.

One starts by randomly choosing a set of solutions and adding them to
an initial population. Then, the fitness values are calculated and assigned
to every solution in the population.

The actual generation cycle starts when a set of parents is chosen from
the current population, creating a mating pool. When mutation and re-
combination are performed on this set of parents, a new pool is created
consisting of the offspring. The next step is to evaluate the newly generated
solutions and to exchange the best individuals in the offspring with the worst
solutions in the population. The described cycle is repeatedly performed,
until a stopping criterion is reached.

Evolutionary Algorithms exist in many different variations but the un-
derlying scheme is always the same. These algorithms have proven to be
very effective when applied to optimization problems, especially to those
that are too complex to be solved using deterministic techniques. With the
presented workflow (Table 1.1) though, it is not possible to consider the
mentioned aspects of robustness and uncertainty, which will be covered in
the next paragraph.

1.1.3 Robustness

In practice, the properties of a solution may be subject to a certain amount
of variation because its implementation cannot be realized with arbitrary

3



Chapter 1 Introduction

Table 1.1: An Evolutionary Algorithm

Evolutionary Algorithm

Step 1: Initialization: Randomly choose initial solutions x1, x2, ..., xN from X

Set iteration counter t to 0

Step 2: Fitness assignment: Calculate the fitness values for all solutions x in

the population P

Step 3: loop

Increment iteration counter t

Mating selection: perform tournament on M and select parents

Step 4: Variation: Apply recombination and mutation operators to the mating

pool, assign fitness to the resulting offspring and add these to P

Step 5: Termination:

if t ≥ tmax

output best solution in p and STOP

end if

end loop

precision. This can occur due to various reasons, such as precision tolerances
in production or natural variation (e.g. a banana’s weight and size will differ
from one banana to an other).

Now, let’s consider instances of a certain solution which have slightly
differing decision variable values. If these instances are evaluated, the corre-
sponding objective vectors might differ widely, even though the variation in
the decision space is not huge. In this case, we would say that the solution
is sensitive to the variation in decision variables.

Figure 1.1 shows two solutions in the decision and objective space, where
solution A is less sensitive to variable perturbations than solution B (source: [4]).

In such scenarios, it may be desirable to pick only those solutions, which
are the least sensitive to these perturbations - robust solutions, so to say.
This concept is best illustrated applied to an example, as in Table 1.2.

1.1.4 Uncertainty

Many real-world optimization problems are subject to a wide range of un-
certainties. Possible reasons for these uncertainties could be noisy objective
functions or approximation errors.
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1.1 Motivation Chapter 1

Figure 1.1: Robust and non-robust solutions

Table 1.2: Robustness in a car tyre
Problem: You want to produce a car tyre which consists of two types

of rubber. The tyre should be durable and have a good

adhesive strength. To achieve this goal, you need to know in

which ratio the two rubber types should be mixed.

Decision variables: Rubber types A and B.

Objectives: Durability and Adhesion.

Solution: In this case, a robust solution (or tyre) would be one, whose

quality, consisting of durability and adhesion, does not differ

greatly if the ratio of rubber types A and B varies slightly.

In such cases, these uncertainties have to be considered and additional
measures taken, in order to make sure that the set of optimal solutions
is found. This is essential, to be able to make a prediction on the effective
quality of solutions, and to make sure evolutionary optimizers work correctly.
For example, if a solution is evaluated only once and the assigned fitness
value is bad, this solution will probably be discarded in an optimization
run, in which uncertainty is not considered. This means that the solution
is lost, even though the same solution might have had excellent values in
ninety-nine evaluations out of a hundred - which, in most cases, would make
it a good solution.

Uncertainty can in this context be described as a variation in objective
space. Figure 1.2 shows a solution in the decision and objective space. The
variance in objective function values emerges due to uncertainty.
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Chapter 1 Introduction

Figure 1.2: Uncertainty: variation in the objective space

1.2 Related Work

While some studies have addressed the mentioned topics, a great deal of this
research was situated in the context of single-objective optimization.

Jin and Branke [5] published a study on uncertainty, providing an overview
of the related work and discussing existing approaches. They also investi-
gated the relationship between different categories of uncertainties.

Most of the published approaches concerning robustness propose the
averaging of objective values. An example for this approach is the first
of two robust multi-objective optimization techniques proposed by Deb and
Gupta [4]. In order to consider robustness, they generate a set of neighboring
solutions for every initial individual, distributed according to a predefined
grid. Then, the mean effective objective vector is calculated and used for
the fitness assignment.

Recently, Basseur and Zitzler [1] presented a technique to handle uncer-
tainty in multi-objective optimization, which does not make any assump-
tions on the type of distribution representing the uncertainty. In order to
find a Pareto set approximation, their approach includes the comparison of
sets of solutions, instead of comparing single solutions. This approach was
based on the work of Zitzler and Künzli [2], in which a quality indicator
was introduced, allowing preference information of the decision maker to be
integrated in the search. These two studies mentioned last, provide the basis
for the approach which was chosen in this thesis, and they will be described
in more detail in Section 2.2.

The approaches mentioned above leave some questions open, however.
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1.3 Focus of this Thesis Chapter 1

a) The technique of averaging objective vectors, which is used in many
approaches considering robustness, causes the quality of the solutions
to depend on the distribution of the neighborhood in the decision
space. If one wants to search for robust solutions which are subject
to a variation in decision space that is distributed in a way so that
the average of objective vectors is not a meaningful measure, the op-
timization procedure will not be successful.

b) While the approach which Basseur and Zitzler [1] used to account for
uncertainty was very successful and flexible, the developed algorithm
was never implemented in PISA (see Section 2.3). Since this technique
represents the basis for the part of the approach chosen in this thesis
involving uncertainty, its implementation was one of the tasks that
had to be tackled in this study.

c) To this date, no studies have come to the authors attention which
discuss a way to handle both the aspects of robustness and uncertainty
in multi-objective optimization.

1.3 Focus of this Thesis

In the previous sections the concept of robustness and uncertainty was de-
scribed. Especially for real-world optimization problems and applications
which often deal with a certain variation induced by measurement toler-
ances or inaccuracies in production for example, the benefit of an optimiza-
tion procedure which is able to deal with these aspects seems huge.

Now the question which is addressed in this study is exactly how to
handle robustness and uncertainty in multi-objective optimization. In the
context of this thesis the following tasks had to be tackled in order to find
the answers to this question.

1. Concept
On the basis of [1] and [2] a concept had to be developed which allows
for the integration of robustness and uncertainty in evolutionary multi-
objective search. Different approaches should be considered and a
procedure picked which unites both aspects.
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2. Adaptation of PISA
PISA [3] defines a standardized interface allowing a separation of the
problem-specific part (variator) of an optimizer from the problem-
independent part (selector). So far, this interface had not yet sup-
ported the handling of robustness or uncertainty, which is why it
should be adapted accordingly, thereby preserving downward compat-
ibility.

3. Implementation
An algorithm which incorporates the developed concept should be im-
plemented in the PISA framework, which included creating a selector
and a variator on the basis of existing modules.

4. Testfunction
In order to allow for the visualization of the effect robustness and
uncertainty have on the outcome of an optimization run, a testfunction
had to be developed, which was to be integrated in the developed
variator.

5. Evaluation
The designed concept, the efficiency of the algorithm and the correct
working of the PISA interface had to be tested and the value of the
chosen approach verified. Further, a simulation for different parame-
ter values should be conducted, including an evaluation of the gained
results. Possible issues should be identified and described in order to
formulate possible further goals in research.

The mentioned PISA framework, as well as the previous work the devel-
oped concept is based upon, are addressed in more detail in Chapter 2.

1.4 Overview

The remaining chapters of this report are designed as follows.

Chapter 2 provides the background for this thesis. Previous work, the
developed concepts are based upon, is presented and here you will also find
a description of the notation used throughout this report.

8



1.4 Overview Chapter 1

In Chapter 3 the actual approach that was taken to achieve the formu-
lated goal is described, as well as the implementation in PISA. The adapta-
tion of the PISA framework, which was needed in order to allow support of
processes which provide the handling of robustness and uncertainty, is also
discussed here.

Chapter 4 presents the developed testfunction which is used to simulate
the behaviour of the implemented algorithm, when searching for robust so-
lutions. Here, you will also find detailed plots produced during simulation
and a discussion of the results.

Finally, a conclusion of this study is presented in Chapter 5, including
the outcome of the study, as well as the drawbacks of the applied approach,
followed by a section in which several interesting possibilities of further
research based on the presented work are described.
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2

Background

This chapter provides the essential background information for this thesis.
In Section 2.1 you will find a description of the notation which is used
throughout this report. Sections 2.2 and 2.3 will then present the former
approaches which the concept and algorithm developed in this study are
based upon, in addition to the framework in which the actual algorithm was
implemented.

2.1 Notation

In the following text, the decision space and objective space are denoted by
X and Z, respectively. An element x ∈ X is called a solution or individual
and Z = Rn contains the objective vectors f(x), which are to be minimized.

The population size is denoted by α, the number of selected parents and
the size of the offspring by µ and λ, respectively. S is the set of Pareto-
optimal solutions, which is to be identified.

2.2 IBEA and the introduction of uncertainty

In 2002, Zitzler and Künzli [2] presented an approach which allows the deci-
sion maker’s preference information to be directly integrated into the search,
by defining the optimization goal in terms of a quality indicator. They pro-
posed an indicator-based evolutionary algorithm (IBEA) that does not re-
quire any additional diversity preservation techniques to be employed. The
algorithm outline can be found in Table 2.1.

11



Chapter 2 Background

A binary quality indicator is used to compare Pareto set approximations,
which allows a measure for the ’loss in quality’ if a solution x is removed
from the population to be defined. The fitness assignment used in IBEA is
based on this measure and is given by

F (x∗) =
∑

x∈S\{x∗}

−e−I({x},{x∗})/κ.

The binary additive ε-indicator - an example quality indicator that is
also used in the approach presented in this thesis - is defined as follows.

Iε+(A,B) = minε{∀x2 ∈ B ∃x1 ∈ A : fi(x1)−ε ≤ fi(x2) for i ∈ {1, 2, ..., n}}.

It defines the minimum distance, by which a Pareto set approximation can
or must be translated in each dimension such that another set is weakly
dominated.

Table 2.1: The Basic IBEA algorithm

Basic IBEA Algorithm

Input: N (population size)

G (maximum number of generations)

κ (fitness scaling factor)

Output: S (Pareto set approximation)

Step 1: Initialization: Generate an initial population S of size α; set the gen-

eration counter g to 0.

Step 2: Fitness assignment: Calculate the fitness values of all x in S, i.e.,

Fit(x∗) =
P

x∈S\{x∗}−e−I({x},{x∗})/κ .

Step 3: Environmental selection: While |S| > α, remove the individual

x∗ ∈ S with the worst fitness value (i.e. Fit(x∗) ≤ Fit(x) ∀ x ∈
S) from S and update the fitness values of the remaining individuals

(i.e. Fit(x) = Fit(x) + e−I({x∗},{x})/κ ∀ x ∈ S).

Step 4: Termination: If g ≥ G return S.

Step 5: Mating selection: Perform binary tournament selection with replace-

ment on S in order to fill the temporary mating pool.

Step 6: Variation: Apply recombination and mutation operators to the mat-

ing pool and add the resulting offspring to S. Increment the generation

counter (g = g + 1) and go to Step 2.

12



2.3 PISA Chapter 2

2.2.1 An Indicator-Based Model for Uncertain Environments

Basseur and Zitzler [1] recently extended the above-mentioned approach,
providing the ability to handle uncertainty. A solution is considered to be
associated with an unknown probability distribution in the objective space,
which makes this approach very flexible. An objective function is regarded
as a randomized procedure, which means that every evaluation of a certain
solution x returns a different objective vector.

The fitness of an individual is defined as the expected indicator value
which corresponds to the expected loss in quality, if the individual is removed
from the population. Since the probability distributions are assumed to be
unknown, this value cannot be calculated directly, but has to be estimated
instead. To this end, several techniques were presented, three of which are
also used in this thesis and are therefore described in Section 3.1.2.

In order to estimate the probability of a solution x to be mapped to any
objective vector in Z, a finite sample of objective vectors is considered for
every x.

2.3 PISA

The interface specification PISA (Platform and Programming Language
Independent Interface for Search Algorithms) was introduced in 2004 by
Bleuler, Laumanns, Thiele and Zitzler [3]. The goal they wanted to achieve
was to design a ”standarized, extendible and easy to use framework for the
implementation of multi-objective optimization algorithms” ([3]), which sep-
arates the application specific and the optimizing part of a multi-objective
optimization procedure.

The idea behind this concept is that the optimizing side does not need
any problem specific information (such as the representation of the solutions)
to function correctly and vice versa. The result is a simple and flexible
solution, which allows for optimizers to be tested on different testproblems
and for the application of different strategies on one testproblem. In this
context, the problem specific part is called a variator and the optimizing
part a selector.

The availability of such variator and selector modules, implemented for
PISA, was crucial for the success of this project. To this end, a Website

13
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is maintained at http://www.tik.ee.ethz.ch/pisa/ where implemented
modules are available for download.

The control flow and data flow specification of PISA is shown in Fig-
ure 2.2 (source: [3]). The transitions (rectangular boxes) represent the op-
erations and the circles correspond to the control and data flow, the files
which both modules read and write.

Figure 2.1: PISA: data files

Figure 2.1 shows the data files which are needed for the communication
of the modules (source: [3]). The data flow consists of the initial population
in ini, the archive of the selector in arc, the sample of parent individuals in
sel and the offspring in var. The cfg file contains the common parameters
and sta contains the state variable.

The files containing the information on the individuals (ini and var)
consist of following entries. The first element specifies the number of data
elements following. Then, the properties of each individual are added on a
separate line: the index and objective function values. The last entry is an
END tag, which is needed to detect file corruption.

In the specification of PISA [3], handling of robustness and uncertainty
was not yet supported, so, in order to introduce these aspects and imple-
ment our approach, the specification of the interface had to be adapted as
described in Section 3.2.

14
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Figure 2.2: PISA: control flow and data flow specification
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3

Approach

The following chapter describes the approach that was taken in order to
achieve the goals of this study, as formulated in Chapter 1. In addition, the
implementation of the developed concept is presented - an algorithm which
was implemented in the PISA framework. Section 3.2 will then focus on
describing the mentioned framework, as well as the adaptation which had to
be performed, in order to allow the handling of robustness and uncertainty
in PISA.

3.1 Handling Robustness

After considering different approaches, an elegant combination was chosen
which allows robustness and uncertainty to be handled similarly.

3.1.1 Basic Concept

For the introduction of robustness, an approach is taken which is similar to
the one described in [4].

In order to describe the robustness of an individual x, a sample of pos-
sible values for x can be regarded in the decision space and evaluated in
the objective space. The assigned objective vectors then represent a set of
possible values for the individual, and the variation in the objective space
corresponds to the solution’s degree of robustness.

A set of possible decision vectors can be represented by a cloud com-
posed of an individual and its neighbors in decision space. In the following

17



Chapter 3 Approach

text, this cloud will be denoted by C(x) and c will be the size of the cloud
(including the initial individual). The generation of these clouds can be
described as follows.

1. For every individual in the initial population, a cloud C(x) is generated
by subsequently picking neighbors on a specified interval cp around x,
according to a specified distribution (for the implementation in this
study a uniform distribution was chosen).

2. Each cloud member is then evaluated and assigned an objective vector.
The result is yet another cloud in the objective space, containing a set
of possible objective vectors for every initial individual x.

3.1.2 Combining Robustness and Uncertainty

In order to introduce uncertainty, much the same approach was chosen as
presented in [1], where uncertainty is described by considering a sample of
objective vectors that is drawn for every solution.

After executing the two steps described above, our approach therefore
continues as follows.

3. For every individual and its neighbors, a sample S(x) of objective
vectors is drawn. The number of evaluations per solution is given by
the sample size s. The resulting objective vectors can be seen as a
double cloud in the objective space

Figure 3.1: Cloud of samples in objective space

What remains to be done is to rate a solution’s quality according to its
robustness.

18



3.1 Handling Robustness Chapter 3

4. For every dimension and every cloud: if the diameter of the sample
cloud exceeds the value specified for delta in that dimension, the cloud
is scaled, so that the values that are ’too good’ are assigned the worst
value minus delta for the considered dimension. This provides a sort
of lower bound on the quality of a solution (see Figure 3.2).

Figure 3.2: Scaling sample clouds according to delta

Figure 3.3 shows (from top left to bottom right): (a) one initial individ-
ual in the decision space, (b) the resulting cloud for 3 additionally sampled
neighbors, (c) the corresponding sample cloud in objective space, when each
cloud member is evaluated once, and (d) the resulting sample cloud if un-
certainty is considered and each cloud member is evaluated four times.

Figure 3.3: Clouds in decision and objective space

The implemented algorithm is shown in Table 3.1. The approach chosen
for the handling of uncertainty is the same as Basseur and Zitzler [1] pro-
posed. Instead of comparing single individuals, whole sets of solutions are
compared, and the fitness value assigned to a solution is defined as the esti-
mated expected loss in quality, if x were to be removed from the population
S.

For the actual fitness calculation, several different methods were pro-
posed in [1]. In our algorithm, one can choose between three of them:
avg, which averages the objective vectors, exp, which directly computes the

19



Chapter 3 Approach

fitness values, and bck, which approximates the ranking of the individuals
induced by the ’estimated expected loss in quality’ values. For details, please
refer to [1].

3.2 Adaptation of PISA

Since the algorithm was to be implemented in PISA, and the specification
did not yet include support for the handling of robustness or uncertainty,
these aspects had to be introduced and the interface adapted.

In order to do so, the simplest approach was chosen, so as to best pre-
serve downward compatibility. The states and state transitions were left
exactly as they were. Instead, only the operations that are executed and
the specification of the data that is exchanged, were extended for modules
which support the consideration of robustness and uncertainty.

The control flow and data flow specification of PISA, including the added
operations highlighted in red, is shown in Figure 3.4. In addition to creat-
ing the initial population, the variator will now also generate a cloud of
neighbors for every solution in the population in state 0, if robustness is
considered. If uncertainty is considered, all solutions in the population (in-
cluding the cloud members) are evaluated multiple times, according to the
specified value for the sample size s. The module then writes the generated
population and its clouds to the ini file and set’s state 1.

The selector reads the values from the ini file and scales the objective
function values according to delta, as described in Section 3.1.2, before per-
forming the fitness assignment. It then selects the parents and sets the state
variable to 2.

The main loop is executed until a predefined stopping criteria is reached.
Along with applying the mutation and recombination operators to the mat-
ing pool and generating the offspring, the operations in state 2 now in-
clude adding decision space clouds for each newly created individual. Sub-
sequently, every offspring and each of its neighbors is evaluated s times. The
offspring and the corresponding cloud members are then written to the var

file and state 3 is set.

After reading the var file in state 3, the selector scales the objective
vectors of the received offspring, assigns the fitness values and performs the
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Figure 3.4: Adapted PISA: extended control flow and data flow specification

mating selection, before writing the arc and sel files and setting the state
variable.

Figure 3.5 shows the data files that are exchanged. The additional data,
that is needed by procedures which consider robustness and/or uncertainty,
is highlighted in red.
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Figure 3.5: Adapted PISA: data files including additional data

The new parameters which are only needed by either the selector or the
variator, are added to their respective parameter files. In our implementa-
tion, the testfunction needs to know how to distribute the neighbors when
creating clouds and in which interval these values have to lie (specified after
cloud distribution), for example.

The cfg file now also includes the values for the cloud size c and sample
size s, which are needed by both modules.

The files containing the information on the individuals (ini and var) are
extended as follows. The first section remains exactly the same, as it will
still be used by all modules that do not support the handling of robustness or
uncertainty. After the END tag, a new section is added, which starts with the
title ”robustness&uncertainty”. A module that is looking for this data can
scan the file for this title tag and ignore the preceeding data. The next entry
specifies the number of data elements following, so the reading module knows
how much it has to read. Then, the properties of each individual are added
in the following order (each on a separate line): the index of the individual,
the index of the cloud member (0 stands for the individual itself), the index
of the sample and objective function values of the considered sample. The
last entry is again an END tag, which is needed to detect file corruption. You
will find a close-up of an example var file (for a cloud size of c = 2 and a
sample size of s = 2) in Figure 3.6.
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Figure 3.6: Adapted PISA: example var file with additional data
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Table 3.1: The implemented algorithm

Algorithm for handling of robustness & uncertainty

Input: α (population size)

µ (number of selected parents)

λ (size of offspring)

G (maximum number of generations)

c (cloud size; number of solutions in a decision space cloud)

s (sample size; number of objective vector samples drawn per

solution)

δ (limit on the diameter of a cloud in the objective space)

Output: S (Pareto set approximation)

Step 1: Initialization: Generate an initial population S of size α.

Generate clouds C(x) by adding c− 1 neighboring solutions around each

initial individual x ∈ S according to a specified probability distribution.

Draw a sample of objective function vectors of size s for each individual

x ∈ S and for every neighboring solution in the surrounding cloud, and

add these to the sample cloud S(x). Set the generation counter g to 0.

Step 2: Fitness assignment: For every x ∈ S and every dimension in the ob-

jective space, calculate the diameter of S(x) (i.e. the difference between

the worst and best objective function value). For clouds with a diameter

> δ, scale the related objective function values for the corresponding ob-

jective function, so that a lower bound on the quality of the solutions in

a cloud can be guaranteed.

Calculate the fitness values of all x ∈ S according to the specified method

(i.e. avg, exp or bck).

Avg: calculates the average of the vectors in a sample cloud S(x)

and uses these to determine the fitness of each individual x ∈ S:

Fit(x∗) =
P

x∈S\{x∗}−e−I({av(x)},{av(x∗)})/κ .

Exp: directly uses all sample objective vectors to calculate fitness:

Fit(x∗) =
P

z∗∈S(x∗)

P
x∈S\{x∗}

P
z∈S(x) −e−I({z},{z∗})/κ .

Bck: uses bucket sort and estimates expected loss in quality:

Fit(x) =
P

z∈S(x) Ê(I(F (S \ {x}), {z}))/|S(x)| for all x ∈ S.

Step 3: Environmental selection: While |S| > α, remove the individual x∗ ∈
S with the worst fitness value (i.e. Fit(x∗) ≤ Fit(x) ∀ x ∈ S) from S

and update the fitness values of the remaining individuals.

Step 4: Termination: If g ≥ G return S.

Step 5: Mating selection: Perform tournament selection on S to select µ par-

ents.

Step 6: Variation: Apply recombination and mutation operators to the selected

parents. Insert each offspring x into the population S, generate a cloud

C(x) surrounding the newly created individual and draw its sample cloud

S(x). Increment the generation counter (g = g + 1) and go to Step 2.
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4

Results and Discussion

This chapter provides a description of the testfunction developed and used
to test the implemented algorithm. The focus is laid mainly upon visualizing
the program’s efficiency in finding the more robust fraction of the solutions.
In addition, the simulation is presented and the results and their implications
are discussed in detail.

4.1 Testfunctions

Since the approach taken to consider uncertainty was not greatly modified
compared to its description in [1], the focus was laid on simulating the
influence and handling of robustness.

In order to assess the algorithm which was developed and implemented
in this study, a testproblem had to be found, which allows the introduc-
tion of robustness and uncertainty. To this end, the existing testfunction
ZDT1 was extended. ZDT1 is part of a rich collection of testproblems,
the DTLZ test suite [7], which is available for download on the Website
http://www.tik.ee.ethz.ch/pisa.

The ZDT1 testproblem is given as follows.

Minimize f1(x) = x1,

Minimize f2(x) = g(x) ∗ h(x).
where 0 ≤ xi ≤ 1, for i = 1, 2, ..., n,

g(x) = 1 + 9 ∗ 1
n−1 ∗

∑n
j=2 xj ,

h(x) = 1−
√

x1/g.
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Figure 4.2 shows the objective space of ZDT1 for a grid of solutions,
evenly distributed on [0, 1]× [0, 1] in the decision space. The lowest border
in this plot is the Pareto-optimal front, which to find is the ultimate goal.

Figure 4.1: ZDT1: plot of pareto-optimal front (c: 15, s: 1, delta: 1000,
fitmethod: avg)

Since there are no regions, where a variation in the decision space leads
to more variation in objective values than elsewhere, there are no robust nor
non-robust solutions in this scenario and even if the variable perturbation is
large (e.g. cp = 0.1), the same Pareto-optimal front is found (see Figure 4.1).
In order to introduce this characteristic, the ZDT1 function was adapted,
creating the new testproblem, ZDT1ru.

The ZDT1ru testproblem is given as follows.

Minimize f1(x) = x1,

Minimize f2(x) =


g(x) ∗ h(x) + (x1 − 0.7 + 1)2 − 1

if s(x) < 0.05 and x1 > 0.7
g(x) ∗ h(x) else.

where 0 ≤ xi ≤ 1, for i = 1, 2, ..., n,

g(x) = 1 + 9 ∗ 1
n−1 ∗

∑n
j=2 xj ,

h(x) = 1−
√

x1/g.

The two testproblems, ZDT1 and ZDT1ru, differ only for values of f1 >

0.75, which can be seen in Figure 4.2. The lowest border is, again, the
Pareto-optimal front. For values of f1 > 0.75 the curve is perturbed and its
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steepness ascends quickly, introducing a larger variation in objective function
values for solutions in this region. What results, is a region of non-robust
solutions and it is this feature, which allows us to visualize the influence of
robustness when optimizing on this testfunction.

Figure 4.2: Plot of TODO testfunctions ZDT1 and ZDT1ru

4.2 Simulation

For all simulation runs, following values were chosen: the population size
was set to 20 and 100 generations were evaluated. The tests were executed
for 2 decision variables and 2 objectives, for reasons of visualization.

First the algorithm was tested on ZDT1, for a cloud size of c = 1 and
sample size of s = 1, to assure the correct functioning of the algorithm.
This test was successful and the Pareto-optimal front was easily found (see
Figure 4.3). Next, the same test was executed, this time for our new test-
function ZDT1ru, and again the Pareto-optimal front was found.

In order to test our algorithm’s ability to find robust solutions, the fol-
lowing setup was used. For increasing values of the interval cp, from which
the cloud members are sampled in the decision space, a set of 30 runs was ex-
ecuted using the fitness assignment method avg. After each set, the largest
values of f1 that were found in each run were plotted, in order to visualize
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Figure 4.3: ZDT1: plot of pareto-optimal front (c: 1, s: 1, delta: 1000,
fitmethod: avg)

the increasing influence of the variation in decision space. This was first
done without scaling the objective function values (delta = 1000).

The result is shown in Figure 4.4. The values of the interval cp are:
0.02, 0.025, 0.03, 0.04, 0.05 and 0.1, from top to bottom. The effect is clear:
with increasing values of cp the largest found values of f1 decrease and for
cp = 0.05 only solutions on the Pareto-optimal front are found whose f1

values are less than 0.75.

The explication for this phenomenon is simple. Due to the averaging of
the objective vectors, robust solutions are implicitly rated better than non-
robust solutions. Therefore, the optimizer only finds the robust solutions,
which have an f1 value of less than 0.75 if the interval cp is chosen large
enough.

The next step was to repeat this setup, this time with the additional
scaling of objective function values, setting delta to 0.01 for the first objec-
tive and 0.1 for the second. The result is shown in Figure 4.5. Again, we see
the same scenario, but this time the amount of variation in decision space
has a greater effect on the performance of the optimizer. Now, a value of
cp = 0.03 suffices to find only solutions on the Pareto-optimal front whose
f1 values are less than 0.75.

Further tests were conducted for varying cloud sizes (c = 1, 5, 10 etc.)
and the results again reflected our expectations: the larger the cloud sizes
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were chosen, the smaller a value for cp was needed in order to find only
solutions to the left of the point where f1 = 0.75. The less neighbors are
considered, the less variation will probably become obvious and the higher
the the probability will be, that solutions are rated better (or in our case:
more robust) than they really are.

Simulation runs using the same setup for different fitness assignment
methods (exp, bck) showed similar results, although the influence of ro-
bustness was even greater here. One simulation run using fitmethod exp

without scaling the objectives (delta = 1000), for example, showed much
the same performance as the same run using fitmethod avg with scaling
(delta: 0.01, 0.1)

Unfortunately, the ZDT1ru testfunction does not help to visualize the
effects of uncertainty, so that the combined effects of robustness and uncer-
tainty could not yet be thoroughly tested.
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Figure 4.4: ZDT1ru: plots of largest values of f1 found for delta: 1000 and
different values of cp over 30 runs using fitmethod avg
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Figure 4.5: ZDT1ru: plots of largest values of f1 found for delta: 0.01, 0.1
and different values of cp over 30 runs using fitmethod avg
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5

Conclusion and Outlook

The following chapter concludes this thesis by giving a short overview of the
work and the achieved results in Section 5.1 and presenting some ideas for
future work and following projects in Section 5.2.

5.1 Conclusion

In this thesis, the main goal was to develop an approach which provides a
way to consider robustness and uncertainty in multi-objective optimization.
To this end, the following tasks were dealt with.

1. On the basis of [1] and [2] a concept was developed which allows the
handling of robustness and uncertainty in evolutionary multi-objective
search.

2. The PISA interface was successfully adapted, in order to provide sup-
port for modules which consider robustness and/or uncertainty, thereby
preserving downward compatibility.

3. An algorithm which incorporates the developed concept was imple-
mented in the PISA framework, which included creating a selector
and a variator on the basis of existing modules.

4. In order to verify the algorithm, a testfunction was generated and
integrated in the implemented variator.
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5. The designed algorithm was tested and the value of the chosen ap-
proach verified, which included the simulation of its performance for
different parameter values and the subsequent evaluation of the gained
results.

The goals formulated in Section 1.3 were successfully achieved and the
ability of the algorithm to handle robustness and uncertainty verified in the
simulation process.

One thing to note is, that the simulation phase was kept rather short, and
only the most important tests conducted, due to a lack of time. Therefore, it
is necessary that future tests are performed, in order to assess the approach
and implemented algorithm in more detail.

One drawback of the presented approach is the static operational se-
quence of the algorithm, which does not yet provide the ability to dynam-
ically adapt the size of clouds and samples during an optimization run. In
order to provide such a feature, the PISA protocol would have to undergo
major changes.

5.2 Outlook

There are several interesting possibilities of projects and further research,
based on the presented work.

First of all, the presented algorithm still needs extensive testing, in order
to be verified and assessed properly. Eventually, these tests would want to
include the application of the selector on real-world problems, where the
significance of the approach would have to be assessed. The performance
of the algorithm must also be tested on different testfunctions, including
benchmark problems, and a comparison with other optimizers conducted.

Furthermore, a future study could include the adaptation of the pre-
sented variator, so as to provide a decision space topology with regions
of differing variation distributions. The described selector could then be
extended with the ability to dynamically focus on regions with a greater
possibility to contain predominantly robust solutions.
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