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Chapter 1

Introduction

1.1 Motivation

A distributed computing environment can often be described with a graph,
where the vertices represent the computing devices and the edges represent the
connections between them. One first approach to solve a problem on such a
graph is to gather all necessary information at a single device, compute the
solution, and send it back to the nodes. However, for many problems, we can
achieve much better performance if each vertex computes the solution based on
its local view.

An algorithm that computes the solution (or an approximation) based on
partial information of the problem is called local. Developing and analyzing
such local algorithms is a non-trivial task, mostly intuit. Such algorithms are
often ’executed’ with paper and pencil on small graphs to verify the correctness
or understand certain properties. This paperwork is very vulnerable to errors
and very slow. Additionally it is not possible to execute huge simulations with
1000s of nodes by hand. In order to facilitate this work, we built this simulation
tool.

1.2 Assignment

The task of this thesis is to develop a simulation framework for local algorithms
that runs on graphs. We are looking for a generic tool that allows us to quickly
implement algorithms and run it on several distinct graphs, rendering unneces-
sary the tedious and error-prone paper and pencil work. As we want to simulate
the algorithms not only on small graphs of about 10 to 100 nodes but also on
graphs of the size of 10’000s or even 100’000s of nodes, performance is also an
important issue.

To test the algorithms in a more realistic model we want the algorithms not
only to run on static graphs but also in a dynamic environment. Another im-
portant point is to have an easy way of specifying the graphs and their behavior.
This behavior could be the mobility of the nodes, the connectivity of the graph
and so on. We want the framework to allow the user to specify the environ-
ment in a plug-in-style where one can run the same algorithm with different
configurations by combining different behavior models.
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6 CHAPTER 1. INTRODUCTION

1.3 Overview

The rest of this document is structured as follows. In Chapter 2 we present
the related work. We also discuss advantages and drawbacks of these solutions.
Chapter 3 then shows the decisions that we had to take at the beginning of
the work. In the subsequent chapter, the design and important pieces of the
implementation are described. Chapter 5 shows the results of the work and in
chapter 6, unsolved problems are presented and an outlook on future work is
given. In Chapter 7 the work is concluded by summarizing the derived results
and giving a personal comment. Finally, there is a short user manual in the
Appendix.



Chapter 2

Related Work

In this chapter we present the related work. Needless to say that we are not
the first ones to have a need for a simulation of ad-hoc networks. There are
lots of simulation tools available. In this chapter we give an overview over the
most popular tools already existing. We shortly present their key benefits and
drawbacks and why or why not this simulation tool would be suitable for our
problems.

2.1 NS2

One of the most popular network simulators available is ns2[6]. It was developed
at the Information Science Institute of the University of South California[5]. It
provides a wide variety of possibilities to simulate networks including support
for the popular iso-osi layer implementations like tcp/ip, http, ftp and lots more.
This makes this tool a powerful simulation framework for simulating internet
based applications and protocols.

But due to this great variety of possibilities it is not optimized for testing
simple algorithms that do not use the common network stack but just have to be
able to receive and send messages and react on some local information. What we
wanted to do is to test algorithms, like for example routing in an ad-hoc network,
on their correctness and their performance. Performance measurements could
be for example the message complexity or the time complexity. For this we
do not need all the networking layers provided by ns2. The high variety of
possibilities provided by ns2 also increases the time it takes to get into the
simulation process.

Due to this high variety of possibilities, the scalability suffers noticeable.
With ns2 only simulations with 100’s or some 1000 nodes are possible. As we
want the framework to handle 10000’s or even 100000’s of nodes, ns2 is not
suitable for our purposes.

2.2 GloMoSim

Another well-known simulation tool available is the GloMo Simulation[4] which
was developed at the Parallel Computing Laboratory of the University of Los
Angeles UCLA[7]. Like the ns2 simulation, this framework supports an iso-osi
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8 CHAPTER 2. RELATED WORK

layered network stack. This is not needed for our purposes. The simulation
is written in c and an extension of it called parsec[8]. This makes the imple-
mentation platform dependent and one has to work into the parsec programing
language before algorithms can be developed. Additionally GloMoSim is not an
open source projects. It is only available for free for educational purposes. Like
ns2, GloMoSim also suffers from serious limitations about the number of nodes
that the simulation can be run with. All these factors make this simulation tool
not fitting our requirements.

2.3 SanS

One solution previously implemented at the Distributed Computing Group of
ETH[3] was the Simple Ad hoc Network Simulator shortly called SanS[2]. It
was mainly developed for a course at ETH and was written in Java. It allows
implementing the behavior of nodes connected by edges. Like the solution pre-
viously presented it uses an iso-osi layered approach. Thus it is also not fitting
our requirements especially because the simulation is bounded to a very low
number of nodes.

2.4 ManS

All the solutions presented above are not fitting our requirements. In the fol-
lowing we shortly present the key benefits of our solution.

In our solution it is possible to simulate a high number of nodes. Simulations
with up to 500’000 nodes are possible. It is platform independent as it is written
in Java. It also provides a simple and easy understandable structure. This grants
that it is easy to learn implementing new algorithms and environmental models.
Nevertheless the simulation is very fast and even huge networks of 100’000s of
nodes can be simulated. Additional to this it provides a modular structure with
easy configurable projects.



Chapter 3

Basic Decisions

The core aspect of the framework is to specify easy to use interfaces that allow
the user to quickly write simulations but does not affect the performance of the
framework. In this section we present some basic decisions we had to take in
order to achieve our goal.

3.1 Synchronous vs. Asynchronous Simulation

At the beginning of the project it was intended to provide a simulation that can
simulate in synchronous and asynchronous mode.

Synchronous in this context means that the simulation is round-based. This
means that in each simulation round every node in the graph gets waken up
and performs a step. This makes the simulation process simple but suffers from
the problem that when a node is doing nothing over a long period, performance
is wasted as it is waken up anyway. Note that in this report we are talking
about rounds and steps. When talking about the synchronous mode, there is a
difference between these two expressions. A step is what a node does when it is
invoked whereas a round denotes the procedure of iterating over all nodes and
perform a step on each node.

In asynchronous simulation, every node is just invoked when it has to do
something. This means that every action generates an event in the future which
is a reaction on the action. Concretely this means that when a node is sending
a message, it calculates the time it takes the message to reach its destination
and schedules an event for the destination node at this time. Simulating such a
system now just means to process one event after the other.

The benefit of the asynchronous mode is that every node is just invoked
when it has something to do and thus there is no waste of performance. But
the asynchronous mode also has its drawbacks.

The problem is that the system has to pre-calculate events. If one node
sends a message to another one, a messageHasArrived-event has to be inserted
in the event queue scheduled at the time the message reached its destination.
These events can be calculated relatively easy but others can not. For example,
it is not easy to determine whether the connection between the sender and the
destination existed during the whole sending process. Given that we consider a
dynamic network, this problem can only be solved by introducing breakup and
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10 CHAPTER 3. BASIC DECISIONS

join events for the connections. These events then have to be pre-calculated for
the transmission time of the message. But particularly when there is mobility
in the system, the calculation of these events can be extremely expensive and
very difficult.

We could solve the above problem by forcing the simulation not to support
mobility in asynchronous mode. But also without mobility the performance
gain can be very small. The performance gain is only significant if there are
always lots of inactive nodes in the system or if the message transmission time
is high. With a high message transmission time, there are lots of inactive nodes
in the system and thus the profit of simulating in asynchronous mode is high.

Due to these problems and because of the limited time of this thesis, the
implementation of the asynchronous mode had to be omitted. We decided to
just implement the synchronous mode but tried to specify the interfaces in a way
that it should be possible to extend it by the implementation of an asynchronous
mode. See Section 6.2.1 for a description of the important points to consider
when trying to implement the asynchronous mode.

3.2 Simulation Process

As one of the core aspects of the framework was to provide a simulation for
10’000s or even 100’000s of nodes, performance is a critical aspect. One approach
(e.g. taken in SanS) was to start a new Thread for every node. It was clear from
the beginning, that this approach was not suitable for our problem, as it would
be impossible to start a new thread for every node when there are so many
of them. This is because it is only possible to run a few threads concurrently.
Additionally, we wanted the results of the simulation to be reproducible and
not to depend on the scheduler of the Virtual Machine.

Our approach for the synchronous mode is to store all nodes in a central
data structure and traverse them in every round. The nodes then perform
their step one after the other and not concurrently. This sequential execution
generates problems with the consistency between the nodes. For example if a
node performs its step, some of the neighbor nodes may have already performed
their step while others have not. If a node tries to get information about its
neighbor nodes it does not know if this information is still up-to-date or if it is
outdated.

In the asynchronous mode it would be necessary to have a central event
queue and have the simulation take one event after the other and execute them.
In this case there would be no problem with concurrency, because all the events
have a precise execution time and thus the events are scheduled one after the
other and not quasi-parallel as in the synchronous mode.

3.3 Models

We wanted the user to be able to configure the simulation environment in a
plug-in style. Therefore, we decided to have the environment characterized by
multiple models[1], each describing a part of the environment. The concrete
implementations of the models are exchangeable. This means that the user can
simulate the same algorithm with several configurations by just exchanging the
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models.
The models are grouped in the following 6 categories:

• ConnectivityModels

• InterferenceModels

• MobilityModels

• ReliabilityModels

• DistributionModels

• MessageTransmissionModels

In the following, we shortly describe the functions of these categories.

The ConnectivityModels are responsible for updating the connections. This
means they decide whether two nodes in the graph are connected in the cur-
rent simulation round or not. Two nodes being connected by a connection can
communicate. Note that in our framework connections are always directed. It
is possible that a node has a connection to another one but not vice versa. One
sample implementation of the ConnectivityModels is the UnitDiskGraph-Model.

The InterferenceModels are responsible for the interference in the system.
These models define how much a sending node is disturbing the sending process
of other nodes. As the calculation of the interference may consume a lot of
performance, interference can be switched off to get faster results. One sample
model of this group is the SignalToNoise-Model.

The MobilityModels are responsible for the mobility of the nodes. They
define how the nodes move. As the calculation of the mobility can be very ex-
pensive, mobility can be switched off completely. One example for a mobility
model is the RandomWayPoint-Model.

The ReliabilityModels are responsible for the reliability of the connections.
These models specify whether a message sent over a connection reaches its
destination or not. They are somehow additional to the connectivity and the
interference models. With the reliability models it is possible that a message
is dropped even if a connection exists. As an example, the probability that a
message reaches its destination could be inversely proportional to the distance
between the sender and the target. Or a simplified signal-to-interference model
or an additional link-level failure can be implemented.

The DistributionModels are responsible for the distribution of the nodes
on the field and are used when generating a graph. For example the nodes can
be distributed randomly over the field. Do not mistake the distribution models
for the mobility models. The distribution models specify the initial distribution
whereas the mobility models specify the movements of the nodes.

The MessageTransmissionModels are responsible for the time it takes a
message to be transmitted from its origin to its destination. Normally this
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will be a constant amount of time. But it is also possible to implement a
model, where the transmission time is non-constant. One example of such a
non-constant model would be that the transmission time is dependent of the
distance between the sender and the destination.

All these models together are characterizing the simulation environment and
they can be exchanged to simulate an algorithm under several conditions. This
means that you can specify an algorithm and simulate it for example once with
the UnitDiskGraph and once with the QuasiUnitDiskGraph.

The ConnectivityModels, the InterferenceModels, the MobilityModels and
the ReliabilityModels are the four main models. A separate instance of each
of them is stored on each node. On the other hand, the DistributionModels
and the MessageTransmissionModels are the minor models. There is only one
global MessageTransmissionModel for all nodes in the simulation and the Dis-
tributionModel is only used to generate the initial node deployment.

See 4.3 for the specification of the interfaces of the models.

3.4 NodeCollection

All nodes are stored in a central data structure and are traversed in every round
to execute each nodes step. This central data structure is called NodeCollection.
In the following we are describing the properties it has to guarantee.

When calculating the connections between the node-pairs, it is important
not to check all the pairs in the graph. Checking all the pairs would lead to a
complexity of O(n2) tests. To increase the performance, we wanted to just check
the possible connections. For example surveying the UnitDiskGraph-Model, it
is not necessary to check all nodes pairs for a connection but only the ones
having a distance smaller than the radius of the unit disk. The NodeCollection
allows to retrieve a set of possible neighbors. When updating the connections,
the connectivity model can get for each node a list of potential neighbors, i.e. a
subset of nodes which are close to the node. This mechanism reduces the cost
of updating the connections significantly.

Additionally, it also has to be possible to traverse all nodes in an efficient
way. Therefore, the datastructure has to grant a fast traversal of the nodes and
an efficient neighbor search. See Section 4.4 for a description of the concrete
implementation of the NodeCollection.

3.5 Projects

Using the framework, users will write code to implement new models and node
behaviors. There are some sample implementations of nodes and models in-
cluded in the framework. If every user would include his newly created classes
in the root folder structure of the framework, the amount of code would grow
higher and higher. As we didn’t want the size of the framework to grow with
every new user we introduced the concept of projects.

A project is in fact just a folder structure with some configuration informa-
tion. This means that each user can create a new project by creating the folder
structure and adding his own code. The user then starts the framework with
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this project and only sees the code in this project and the sample implementa-
tions provided by the framework itself. This limits the size of the framework as
users do not add code to the framework implementation.

Additionally, the use of projects makes it easy to exchange simulation results
between several users. Two users can simply exchange project folders. The
receiver can add it to his local installation of the framework. Like this there are
no conflicts between the users, because there is nothing changed in the code of
the framework itself.

As the configuration is projects specific and thus provided with each project,
each user using a project gets the same results. The results do not depend on
the local configuration of the framework but only on the configuration of the
project.





Chapter 4

Design and Implementation

In this chapter we present the core design issues of the framework and the
concrete implementations of some selected pieces of it.

4.1 Runtime System

As mentioned earlier in this report one of the main aspects of the framework is
the performance. We wanted the framework to be as general as possible but,
particularly we wanted it to be fast. On the other hand it is sometimes very
important to look at the execution of an algorithm to find out if it runs correctly.
Therefore, we decided to have a general user interface to control the execution.

To combine the aspects of high performance on one hand and a GUI on
the other hand, we decided that the user can switch the GUI on and off. This
is not done during runtime but at startup time. The user can either start the
simulation with the parameter ’-gui’ to start it with a GUI or with the parameter
’-batch’ to have the GUI turned off. See Section A.2.1 for a description of the
parameters.

It was very important that the GUI does not influence the performance
of the simulation. Thus we decided to completely separate the GUI from the
simulation. When the GUI is turned on, the simulation invokes the GUI to
refresh itself. The GUI then collects the data from the simulation and displays
it. On the other hand when the GUI is not turned on it is not invoked and
the simulation can run without any loss of performance. Figure 4.1 shows the
separation of the GUI from the simulation.

4.2 Synchronous Simulation

As described in Section 3.1, we decided to just implement a synchronous mode
and no asynchronous one. In the synchronous mode, the simulation performs
one round after the other. One round means that every node in the system
performs one step consisting of the following parts. The system has to update
the position of each node, calculate the interference of all messages being sent,
update the connections, process the messages, handle the timers and perform
the algorithm itself. All this is done for every node in each round. Figure 4.2
shows the lifecycle of one complete round.

15
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Figure 4.1: The structure of the runtime system. The general user interface is
completely separated from the simulation. This ensures that it can be omitted
without any loss of performance in the batch mode. The GUI only collects the
data when it is refreshed by the runtime system.

Figure 4.2: On the left side the lifecycle of one complete round is shown. Note
that ”Update Positions” means that the position of each node is updated and
”Perform Steps” means that the framework iterates over all nodes and invokes
their step. ”Check Interference” means that all the messages currently in the air
are checked on disturbance due to interference. On the right side the process of
one step on one node is shown. First, the connections to the neighboring nodes
are updated according to the connectivity models of the node. Then, the node
performs its interval action which means that user specified code to perform
in each round is executed. Then, the timers scheduled in this round are fired.
Next, the incoming messages are handled according to the code specified by the
user. At the end, the postStep actions are performed. This means that user
defined code specified to be executed at the end of each step is executed.
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Because the execution is not done concurrently but one node is handled after
the other, there occur several problems. One, already described in Section 3.2,
is that nodes do not know which of their neighbors already performed their step.
Another problem occurs due to mobility.

We decided to handle mobility in a separate traverse. This means that we
update the position of all the nodes before performing the steps. We handle
mobility like this because otherwise we would get problems with consistency.

We don’t update the nodes position in the step because this would lead to
inconsistent states while executing a round and iterating over all nodes. For
instance, if some node already have performed their step of the current round,
they are already located at the new position, whereas the remaining nodes still
are at the old position. If the connectivity is based on the positions, updating
the connections would become a problem, as not all nodes have the updated
position information. Figure 4.3 shows an example of such an inconsistent
view. Therefore, we ensure that all nodes have accurate position information
by calculating it before the steps are performed.

Figure 4.3: An example where an inconsistent view would lead to problems
when updating the connections. When node 1 tries to calculate its connections,
it has to keep track of whether the neighboring nodes already performed its
mobility step in this round or not. In this example the nodes 2 and 3 have
not yet performed their mobility step whereas the nodes 4 and 5 already have.
Therefore the nodes 2 and 3 still are at the old position and 5 and 6 are already
at the new one.

The drawback of our solution is that it decreases the performance because
the nodes have to be traversed twice. Once to update the position and once
to perform the steps. However, if there is no mobility, the complete traversal
can be omitted. Note that there is a configuration entry to completely turn off
mobility. So if you switch off mobility, the mobility traversal is omitted and
thus is a performance gain.

A very similar problem arises when interference is used. We can not decide
in the middle of a round whether a message is disturbed by interference or not.
Interference arises when other nodes are sending and thus are generating noise.
But the simulation does not know in the middle of the round which nodes are
sending in this round. It only knows it from the nodes that already performed
their step but not from the others. Thus we decided to keep track of all sending
nodes and are handling the interference separately. At the end of each round
the system traverses all packets currently being sent and decides for all of them



18 CHAPTER 4. DESIGN AND IMPLEMENTATION

whether they experience interference or not.

4.3 Interfaces of the Models

In Section 3.3 we presented the purpose of all the models. In this section we
present the concrete specifications. It is very important to know them when
implementing new models and for understanding the whole simulation. Note
that the ConnectivityModels, the InterferenceModels, the MobilityModels and
the ReliabilityModels are node specific. This means that there is a separate
instance of all these four models saved on every node. The MessageTranmis-
sionModel on the other hand is specified globally and thus there is only one
instance of this model for the whole simulation1. These are the specifications
of the Interfaces of the models.

• ConnectivityModel: The following method is the only method provided
by the interface of the connectivity model.

public boolean updateConnect ions (Node n ) ;

The connectivity model is used to update the connections of a node. It
has to set the edges to which the node is connected. If there is a connec-
tion, it is added to the outgoing connections of the node2. This method
returns a boolean that indicates whether the connectivity of this node has
changed in this round. This means that it returns true when there are
new connections or connections disappeared.

In most implementations the updateConnections method traverses all the
possible neighbors and adds or removes connections to the local datastru-
cuture of outgoing connections. As this traversal is always the same, we
decided to add another method to the model to make it easier to imple-
ment a new model. When implementing a connectivity model the user
doesn’t have to implement the updateConnections method but he can
overwrite the simpler method

isConnected (Node oneNode , Node otherNode ) ;

This method just detects whether two nodes are connected or not. It is
called by the system for the actual node and all possible neighbors.

• InterferenceModels: The interference model interface consists of the fol-
lowing method.

public boolean i sD i s tu rbed ( Packet p ) ;

1The MessageTransmissionModel is saved in the CustomGlobal class which is part of the
project specific configuration. See Section 4.5 for details about the CustomGlobal class.

2Note that all the connections in the system are directed. This means that the update-
Connections method only updates the outgoing connections and not the incomings. Note
also that the connections are always calculated according to the connectivity model of the
source node of the edge. This means that the outgoing connections are based on the nodes
ConnectivityModel whereas the incomings are based on the other nodes ConnectivityModel,
which may be different.
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This method returns whether the Packet is disturbed by interference or
not. It gets called after each round on every message currently being sent.
To detect the noise generated by the other nodes, there is a central data
structure where all messages currently being sent are stored.

• MobilityModels: The mobility model interface contains the following
method.

public Pos i t i on getNextPos (Node n ) ;

This method returns the next position of a node. It is called in the mobility
traversal on each node in each round. The model can either pre-calculate
the route of the node and then return the actual position or calculate the
actual position just in time3.

• ReliabilityModels: The interface of the reliability model contains the fol-
lowing method.

public boolean r ea che sDes t ina t i on (Node startNode ,
Node endNode , Packet p ) ;

This method returns whether a packet sent from node startNode reaches
the destination endNode4. For example, these models can be used for
implementing a drop-rate for the connections or other environmental in-
fluences.

• MessageTransmissionModel: The interface of the message transmission
model consists of the following method.

public double timeToReach (Node startNode ,
Node endNode ) ;

This method calculates how long it takes a message to travel from the
startNode to the endNode. Normally this will be a constant time but it
can also be dependent of the origin and the destination of the packet.

• DistributionModels: The distribution model interface contains the follow-
ing method.

public Pos i t i on getOnePosit ion ( ) ;

This method returns the position of one node. The positions all can be
pre-calculated. This means that this model can be interpreted as a form
of iterator over a pre-calculated distribution of nodes. On the other hand
the positions can all be calculated just in time.

3Note that the getNextPosition meets the special requirements for the synchronous simu-
lation. In Section 3.1 we suggest to turn off mobility when simulating in asynchronous mode.
Nevertheless this method would also meet the requirements for the asynchronous mode as the
mobility model can be a function of time and return the positions dependent of the current
time.

4Although the source node and the destination node are contained in the header of the
packet we decided to have the startNode and the endNode as parameters in the interface. It
helps understanding the function of this method.
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Note that all the interfaces but that of the message transmission model
extend the interface Model. This model specifies only one method.

public void setParamStr ing ( St r ing params ) ;

This method sets the parameter string for the model. When creating a model
a parameter string can be passed to it5. This parameter string is set on the
model after a concrete instance has been instantiated. The model can then
behave according to this parameter.

4.4 SmartNodeCollection

In Section 3.4 the concept and the purpose of the central data structure were
presented. The two important properties for this data structure are an efficient
traversing of the nodes and the possibility to get a subset of all nodes which are
possible neighbors of a given node.

The main purpose of this simulation is to simulate algorithms on ad-hoc
networks like sensor networks or wireless networks whose connectivity models
are distance dependent. This means that close nodes are connected whereas
nodes at big distance are not. In other words, there is always a radius around
a node that divides all nodes in possible neighbors and nodes with certainly no
connection to the node in focus. The maximum possible distance two connected
nodes may have is hence called rMax. In our implementation of the NodeCol-
lection called SmartNodeCollection we use this fact. We store the nodes in a
regular grid. The grid of cell-size rMax is laid over the deployment field and
the nodes are stored in the grid according to their position. This enables us to
detect depending of their positions in the grid, whether two nodes may have a
connection or not. Figure 4.4 shows the organization of the nodes in the grid.

The search for possible neighbors can be done in a very efficient way if the
size of the squares of the grid is rMax. This means that possible neighbors
of a node may only be in its own square or in one adjacent to it. If we are
looking for the possible neighbors we only have to look in these nine squares for
possible neighbors. This technique grants the needed properties but also has
some drawbacks.

One problem occurs in conjunction with mobility. When a node changes its
position, it is possible that it also has to move to another square. This means
that after every movement of a node we have to check if it is still in the proper
square. This slows down the simulation.

Another and even more constrictive drawback is that the storage is depen-
dent of rMax. This has two consequences. One occurs if someone wanted to
change rMax while a simulation is running. In that case the whole data struc-
ture would require reconstruction. Especially when there are a lot of nodes
in the simulation this would require a lot of time. We decided not to allow a
dynamic rMax. This means that rMax is specified on startup and cannot be
changed while the simulation is running. If a user wants to change rMax he has
to restart the simulation. The other disadvantage is the use of this rMax itself.
The user has to specify the maximum range of the nodes on startup. This is a

5The parameters are passed either on the command line or by the GUI. See Section A.2.1
for a description of how to pass parameters to models on the command line.



4.4. SMARTNODECOLLECTION 21

Figure 4.4: We organized the nodes in a regular grid to find out the possible
neighbors of a node in an efficient way. The nodes are placed in the grid accord-
ing to their position on the field. The red node (a) is the node we want to find
the possible neighbors for. The side length of the squares is rMax. As rMax is
the maximum distance two nodes can have that a connection between them is
possible, only nodes in the nine red shaded squares are possible neighbors for
the red node. These nodes are the green ones. Note that not all of them have
a connection to the red node but for these nodes a connection to the red one
is possible. The white nodes certainly have a distance bigger than rMax to the
red node and thus aren’t possible neighbors of it.
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restriction on the connectivity model and a misconfiguration could even lead to
undesired simulation results.

On the other hand, the use of rMax helps to restrict the number of possible
neighbors the simulation has to check. This increases the performance signifi-
cantly. We decided that the drawbacks from this solution are less severe than its
advantages. Furthermore, if the user does not like the use of this rMax he can
set it to a very high value even bigger than the field itself. Then there are no
more restrictions to the simulation but the speed performance will drastically
suffer from this change.

For the purpose of simulating position based networks this data structure
provides the desired properties. Of course, there may also be the need to sim-
ulate other networks with different connectivity models not depending of the
distance but of other node properties6. If this connectivity model makes the
SmartNodeCollection unusable, the user can implement his own data structure
by implementing the NodesCollection interface and replace the SmartNodeCol-
lection with it. This data structure can depend on any desired property.

4.5 Configuration

One important point of the framework was the usability of the configuration.
The simulation results do not only depend of the implementation of the algo-
rithm but they also highly depend of the configuration. For the ease of use it thus
was necessary to have the whole configuration collected in one file to have cen-
tralized control of the configuration. This file is called ConfigurationXML.xml
and is located in the base folder of each project. It is an XML file with two
sections. One section is the required section and the other is the custom sec-
tion. The required section contains the required fields and the custom fields the
custom ones. The entries of this xml-file are always formatted in the following
way.

<Name va lue=ValueOfFie ld/>

The required fields are the configuration properties required by the frame-
work itself. Examples of such fields are the dimensions of the field, the log file
name, the initial window size and lots more. On startup these fields are parsed
and stored in the configuration class in fields named the same as the xml-tags.

The custom fields are stored in a hash map in the configuration class. They
are stored with the name of the entry as the key and the value of it as its value.
A user can add custom parameters for his implementations in the custom section
of the configurationXML-file and access them based on the tag name. Note that
the tags in the configurationXML-file can be nested. An example of a nested
entry is shown in the following.

6The connectivity could be based on any property of the nodes. For example it could be
that there is only a connection between two nodes if they trust each other. For example an
implementation of a web of trust.
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<Custom>
<SmartNodeCollection>

<rMax va lue=”80”/>
</SmartNodeCollection>

</Custom>

This example shows the specification of the rMax parameter for the SmartN-
odeCollection. As it is specified in the custom section the entry gets put in the
hash map. It then can be accessed by calling the following method in the con-
figuration class.

ge t IntegerParameter ( S t r ing key )

The entry is identified by the sequence of all the nested entries from the ’Custom’
entry separated by a ”/”. In this example the value of rMax can be retrieved
by calling getIntegerParameter(”SmartNodeCollection/rMax”’).

This mechanism helps centralizing the configurations in one file. Every cus-
tom implementation has its parameters specified in this central file. Like this, a
user can save the configuration of an interesting simulation by just saving this
file. It can even be exchanged between users so that they can reproduce the
same simulation results.

For the required fields, there are already default values specified in the con-
figuration class. If there is no entry in the configurationXML file with the same
name as the field, these default values are used in the simulation. Obviously
the custom fields do not have default values specified. If the simulation tries to
access custom field not specified in the xml-file, and thus also not in the hash
map, an exception is thrown.

Both the custom fields and the required fields can be overwritten from the
console. So if one wants to run the simulation several times with different
parameters there is no need to have more than one xml-file. A script can
be written to execute the simulation several times with different parameters.
See Section A.2.1 for the exact specification of how to overwrite configuration
settings from the console.

There is also another file that helps configuring the simulation. It is called
CustomGlobal and it is also saved in the base folder of each project. It is
not directly responsible for configuration of the simulation but it holds project
specific global information. This file is a Java class and it holds the termination
criterion and the custom GUI functions. The termination criterion basically is
a method that is called after every round to find out whether the algorithm
has terminated or not. The custom GUI functions are shown in the GUI in the
menu called ’Global’. They can be used to interact with the system like for
example injecting packets to the system and allows an easy way to extend the
GUI.

4.6 Additional Tools

Additionally to the main simulation we provide a handful of useful tools to make
the usage more comfortable. These tools are mainly used to collect and log the
data and to generate random values. All the classes for the tools in this section
are stored in the ’tools’-package.
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4.6.1 Data Series

The DataSeries-class provides the user the possibility to collect the data pro-
duced by the simulation and to get statistical information about it. Samples
can be added to the data series and the mean, the variance or the standard
derivation can be computed easily and effective.

4.6.2 Logging

The logging tool is a mechanism to make it easier for the user log information
about the algorithm. When outputting with System.out, it is often hard to
keep track of all its calls. The key benefit of this tool is that one can specify
outputting levels. All the printing statements are then tagged with one of these
levels. Before starting the simulation the user can choose which levels should
print this time and which don’t. This makes the handling of the output very
comfortable as the user doesn’t need to change all the print statements but can
just adjust the outputting level.

The levels are stored in an enumeration called LogL. Each user can add
custom levels to this file7. There is a threshold level in the class which decides
which levels are printed and which aren’t. To activate or deactivate a logging
level the user then moves the level above or beneath the threshold level.

Depending on a flag called outputToConsole in the configuration the logging
is done to the specified log-File or to the console. It is even possible to have
more than one logfile to have the information distributed over several files. For
example one could log the output of the framework to one file and the output
of the algorithm to another file.

Note that this mechanism is somehow c-style. In c/c++ it would be possible
to statically check for the logging levels at compile-time and remove unnecessary
code. In java there is no such mechanism which means that also the not-printing
logging calls are checked, but won’t print.

4.6.3 Distributions

A lot of algorithms for node behaviors or models depend on random values. It is
sometimes important to be able to reproduce a simulation the user cannot just
use the random generator provided by the JVM. We thus decided to provide
a whole package for generating random numbers. It does not only consist of a
uniform distributed random generator but also of other distributions. There
are also a Poisson distribution, a Gaussian distribution and an exponential
distribution. This enables the user to get all kinds of random numbers.

The key feature of this packet is that the random numbers generated, of
whatever distribution they are, can be made dependent on an initial seed. This
seed can be set by the configuration and thus the sequence of numbers gener-
ated can be forced to be the same in several simulations. This is particularly
useful when debugging a model or a node implementation. When an exceptional
behavior occurs the simulation can be restarted identically to the last run and
stopped just before the problem occurs.

7Obviously, it would be nicer if the LogL class would also be stored in the project and
not in the framework itself. But then the logging levels had to be assigned dynamically on
startup time. This would make the development tedious because the syntax highlighting and
the code-completion are of course based on static information.
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Results

In this chapter we present the results of the thesis. First, we are showing the
results of the GUI mode and afterward of the batch mode. Finally we present
some performance measurements.

5.1 GUI Mode

First of all, we will present some screenshots of the framework in GUI mode.
Figure 5.1 shows the GUI in action. The whole GUI is shown with its two
components: the graph panel and the control panel. The graph panel is the left
part of the screen displaying the graph.

The control panel is on the right side containing the control elements for
the simulation. In the following the control elements are shortly described. On
top in a field called ’Round Counter’, the number of rounds already performed
is displayed. It is not an integer because it is prepared for asynchronous mode
where this field would hold the actual time. Below the round information there
are the control items. This section is used to control the simulation. The user
can enter the number of rounds he wants to perform in the upper field and the
refresh rate in the lower one. When hitting the start button the simulation is
performing this number of rounds. Note that the abort button only gets enabled
when the simulation is running. On the bottom of the control panel the current
cursor coordinates are displayed and below that there is the exit button to exit
the simulation.

On the left side there is the graph panel. It is a zoomable and scrollable field
displaying the graph. The orange rulers on top and on the left side are showing
the dimension of the field which helps keeping the orientation on the field. This
is especially useful when the user is zooming and scrolling.

Additionally to these two panels there are also two menus. The Graph menu
and the Global menu. The Graph menu contains menu entries about the graph.
These entries are for Loading and saving graphs, clearing all nodes, generating
nodes, getting an info panel and a panel with graph preferences. The info panel
is of special interest as it contains information about the current graph. This
means that the number of nodes in the graph is displayed and the number and
the type of the edges are shown. The Global menu contains the global methods
contained in the custom global of the project in use. See Section A.3.3 for
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Figure 5.1: A screenshot of the simulation in GUI mode. It is an example of a
graph with 100 nodes randomly distributed on a 500x500 field. The connectivity
model is UDG with a radius of 80. The red edges are edges on which a message
is sent in this round.
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information about how to implement custom global functions. Additionally,
the global menu also contains the seed used in this simulation.

Figure 5.2 shows another example of the GUI but now with 10’000 nodes on
a 2500x2500 field. Displaying 100’000 nodes or even more doesn’t make sense
as then the screen gets overfilled and the nodes cannot be separated anymore.
Use the batch mode to simulate more than 100’000 nodes.

Figure 5.2: This is an example of a graph with 10’000 nodes moving around
according to the RandomWayPoint mobility model. The size of the field is
2500x2500 and the connectivity model is UDG with a radius of 45. This screen-
shot is taken after 150 rounds. Initially the nodes were distributed randomly
but note how the density in the middle is now much higher than in the outer
regions. Note that we did not draw the arrows in order to increase performance.

5.2 Batch Mode

In batch mode the only output is the logging output. Figure 5.3 shows a screen-
shot from the output produced by a simulation in batch mode. Note that this
is just a sample output. Other simulations can produce different outputs. In
this sample we were interested to have some statistical information about the
algorithm that was simulated. Therefore we logged the fail-ratios of the diverse
messages.
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Figure 5.3: A possible output of a simulation in batch mode. It was produced by
a simulation with 100 nodes randomly distributed over a 500x500 field with dy-
namic links. The simulation terminated regularly after the specified 120 rounds.
The algorithm executed is AODV. The algorithm is specified as follows. When
a node wants to send a message to a target node, it floods to discover the route.
When it is getting back an echo message from the target it sends the payload
message on the discovered route. The output shows the ratio of message trans-
missions that failed because a flooding message, an echo message or the message
itself failed.
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5.3 Performance

Because the performance heavily depends on the number of nodes, the spe-
cific configuration, the models used, the implementation of the nodes and lots
more, it is hard to measure the performance of our framework. To give a rough
estimation of the possibilities of the framework, we executed several basic im-
plementations with several numbers of nodes. All the measurements are done
on a machine with two Intel Pentium 4 Processors with 3.2 GHz and with 1 GB
of RAM. The implementations used to produce the results are shortly presented
in the following. As node implementation the DummyNode was used. It is an
implementation of a node that does not send any messages. The connectivity
models used are UDG and StaticUDG. UDG recalculates all the connections in
every round again whereas StaticUDG just calculates the UDG model in the
first round and keeps the links static afterward.

Table 5.1 shows the results of some of these measurements with the GUI
turned on and in table 5.2 the same measurements for the batch mode are
shown.

# Nodes Connectivity Node Type # Edges Time/Round
1000 UDG DummyNode 10’000 78 msec

10’000 UDG DummyNode 100’000 690 msec
100’000 UDG DummyNode 1’100’000 7900 msec
1000 StaticUDG DummyNode 10’000 50 msec

10’000 StaticUDG DummyNode 100’000 220 msec
100’000 StaticUDG DummyNode 1’100’000 2200 msec
500’000 StaticUDG DummyNode 4’300’000 8300 msec

Table 5.1: The performance of several simulations with the GUI enabled. The
table shows the number of nodes, the connectivity model, the node type, the
number of edges and the average time it took to simulate one round. Note that
during these measurements the GUI is redrawn every round and that mobility
is turned off.

# Nodes Connectivity Node Type # Edges Time/Round
1000 UDG DummyNode 10’000 45 msec

10’000 UDG DummyNode 100’000 490 msec
100’000 UDG DummyNode 1’100’000 5300 msec
1000 StaticUDG DummyNode 10’000 4 msec

10’000 StaticUDG DummyNode 100’000 17 msec
100’000 StaticUDG DummyNode 1’100’000 78 msec
500’000 StaticUDG DummyNode 4’300’000 490 msec

Table 5.2: The performance of several simulations in the batch mode. The table
shows the number of nodes, the connectivity model, the node type, the number
of edges and the average time it took to simulate one round. Note that even
with 500’000 nodes and more than 4 million edges the performance is below
halve a second per round. Remember that during these measurements mobility
was turned off.
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For our measurements, we chose graphs of about the same density. Note
that the number of edges shows the number of unidirectional edges. This means
that in these graphs all the nodes have a mean number of outgoing edges of
about 10 and the same number of incoming edges.

Note that in both these measurements the mobility was turned off. Inter-
ference was turned on but no interference model was specified. We performed
the measurements without mobility to not influence the measurements with the
implementation of the mobility model.

The performance of the GUI can be calculated from the two tables above.
By comparing the two adequate measurements in GUI and in batch mode the
time to redraw the GUI can be calculated. Note how the differences between the
corresponding measurements increase with an increasing number of nodes and
edges. The GUI needs about 30 milliseconds to draw 1000 nodes with 10’000
edges. For drawing 10’000 edges with 100’000 edges it needs 200 milliseconds
and for 100’000 nodes with more than one million edges it needs about 2 seconds.
For 500’000 nodes it even needs almost 8 seconds.

Table 5.3 shows the performance measurements for the same graphs as above
also with the DummyNode as node implementation but now with mobility. The
specified mobility model is the RandomWayPoint model.

# Nodes Connectivity Mobility # Edges Time/Round
1000 UDG RandomWayPoint 10’000 55 msec

10’000 UDG RandomWayPoint 100’000 560 msec
100’000 UDG RandomWayPoint 1’100’000 6400 msec
1000 StaticUDG RandomWayPoint 10’000 5 msec

10’000 StaticUDG RandomWayPoint 100’000 20 msec
100’000 StaticUDG RandomWayPoint 1’100’000 190 msec
500’000 StaticUDG RandomWayPoint 4’300’000 1000 msec

Table 5.3: The performance of several simulations in batch mode with mobility.
The table shows the number of nodes, the connectivity model, the mobility
model, the number of edges and the average time it took to simulate one round.

It is obvious that the overhead for the mobility is dependent of the number
of nodes as the framework executes the mobility in each round on each node.
Note that it is possible to simulate the 500’000 nodes with over 4 million edges
in 1 second per round.
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Outlook

In this chapter we will present the open problems that could not be solved until
the end of the thesis. After that we will describe how the framework could be
extended. We will also include some important points you need to keep in mind
when doing one of these extensions.

6.1 Open Problems

There is basically just one open problem known. It is about the memory man-
agement.

6.1.1 Garbage Collection

When a node sends a message, a packet object is allocated. This packet object
contains the message itself and a header object. In the header object information
about the packet like the sender, the destination, the transmission time and lots
more are saved. With high scaled networks of 100’000s of nodes it can easily
happen that in every round there are 10’000s of packets exchanged. This means
that in every round 10’000 instances of the packet class are instantiated. After
having reached the target, the packet objects are not used anymore and the
memory used by the packets can be freed. In Java the memory gets freed by
the garbage collector. The purpose of the garbage collector is to find out which
objects are not used anymore and can be deleted. This means that within a few
seconds a high number of packets objects are allocated and deleted.

In tests where we run the simulation over night with a high scaled network
with a high network load, the memory was not freed correctly by the garbage
collector. We recognized that the memory usage increased over the time. As
the memory usage goes back again when lowering the network load the problem
cannot be a memory leak.

We noticed that the garbage collector doesn’t collect all the garbage packets
when the virtual machine still has memory left to use. Obviously this makes
sense for normal usages where the user doesn’t want the execution be slowed
by the garbage collector when there is still memory left. But in our case this
generates serious problems. All works fine until the VM reaches the limit of
the assigned memory. The simulation then gets slowed down so seriously that
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it is not useful anymore. The whole performance is spent on garbage collection
and not for the simulation anymore. Sometimes the simulation even runs out
of memory because the garbage collector cannot keep up with the pace of the
memory allocation.

We tried to solve the problem by manually invoke the garbage collector after
every round. This did not solve the problem. Though the memory consump-
tion did not increase as fast as without, it also increases and after letting the
simulation run for a long time, the same problems occur.

Apparently, the garbage collector has problems when such a huge amount of
short living objects is allocated and deleted repeatedly.

Our proposal to solve this problem is to implement a pool of packets. If the
system sends a message, it doesn’t allocate a packet but takes an unused one
out of the packet pool. When the packet reached its destination it is not needed
anymore and can be put back in the pool. Like this the memory usage is not
decreased but new packets are only allocated when the pool is empty. As the
packets are not deleted but are just put back in the pool the garbage collector
doesn’t need to collect them.

Concretely this system could be implemented by making the constructor of
the packet class private and add a method

public static Packet getPacket ( Message msg ) ;

This method then just checks in the pool for any free packets and returns one
of. Instead of clearing the packet buffer after the messages have reached their
target, they are put back in the pool of free unused packets.

It is a non-trivial task to implement this mechanism efficient enough that it
can handle such a high load.

Keep track of one important problem when implementing such a mechanism.
The nodes are not allowed to keep references on the packets after they received
them. With this mechanism, the packets are later reused and thus the fields of
the packets are changed. This means that, the reference does not contain the
same packet anymore.

You could solve this problem by just remember the user not to keep references
on packets or you could change the whole message receiving mechanism in such
a way that the user doesn’t get any packets. This means that the user then just
gets the messages and some additional information like for example the sender
and the intensity as parameters.

6.2 Future Work

Due to the limited time of this thesis we had to omit some parts of the work.
In the following we will present them.

6.2.1 Asynchronous Mode

The most important part of the framework we had to omit is the asynchronous
simulation mode. At the beginning of this thesis we wanted to implement a
framework being able to work in synchronous and in asynchronous mode. But
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we then recognized that it would be a greater effort to also implement the asyn-
chronous mode as we initially supposed. These two simulation modes turned
out to differ more than we thought.

The whole simulation process has to be changed, as in the asynchronous
mode the nodes are not traversed one after the other but an event queue is
handled. The system always takes the next event and executes it. This difference
will have effect on other parts of the system. In the following we will present
some important points of the asynchronous mode.

We tried to specify the interfaces of the models in such a way that they
could also be used in the asynchronous mode. But nevertheless we had to opti-
mize them for the synchronous mode. So it is possible that when implementing
the asynchronous mode one has to do some changes on the interfaces. As the
specification for the interfaces highly depend on the implementation of the sys-
tem, it was very hard to anticipate a proper specification of the interfaces. For
example specifying the connectivity models for the asynchronous mode is a non-
trivial task. Our implementation highly depends of the synchronous mode and
specifies whether two nodes are connected in a given round. To generate the
connectivity breakup events in the asynchronous mode, the model also has to
determine how long a connection will exist. This will most probably cause a
change in the interface.

Although we did not implement the asynchronous mode, we had some ideas
about the implementation. When implementing interference it would be a great
idea to check for interference whenever a node is sending a message. The system
then has to evaluate for all messages currently being sent whether some of them
are disturbed by the new message. When a message is disturbed the receive
event of this message has to be removed from the queue. When mobility is
turned off there should be no change in the interference between two sending
events.

Another idea came up in connection with how to check for the edges to be
present during the whole delivery process of a message. We think that it would
be clever to check on connection breakup events if a message gets lost due to this
breakup. This means that when a connection breaks up all messages currently
being sent over this connection can be removed from the system because their
transmission was interrupted. Perhaps this technique could also be adopted for
the synchronous mode to get rid of the check in every round.

6.2.2 XML-Graph-file

One smaller point came up at the end of the thesis. The graph-files are now
just saved as a plain text file. As graph files are highly structured it would have
been elegant to save it as a XML file. Like this it would be much more readable
and also better importable by other applications.

6.2.3 Sleep

A function in the API of the nodes is called sleep. We wanted to implement that
it is possible to set a node sleeping for a while. This is a realistic behavior as lots
of algorithms for sensor networks are developed trying to minimize the power
consumption of the nodes. This is often done by setting the nodes sleeping for a
while. But this function turned out to be not as relevant as we thought because
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this behavior can also be implemented with a timer. Nevertheless the function
is still there and one could implement it. Doing this, it is important to specify
exactly what sleep mode means. It has to be specified what a node in sleep
mode does and what not. For example, it has to be specified if a sleeping node
moves and if timer events are handled.

6.2.4 3D

We wanted the simulation to be prepared for tree dimensions. Although not
all parts are implemented now, the simulation is prepared for it more or less.
The position of a node for example has a third coordinate now always left
zero. At some points we had to reduce the calculations to two dimensions for
performance reasons. For example when calculating the distance between two
nodes the third coordinate is omitted as it would only reduce the performance.
When implementing the third dimension it is very important to think about the
gui. It is non-trivial to implement a gui for a three dimensional graph.

6.2.5 Logging

The logging mechanism offers the user a powerful tool to easily control the
output produced by the simulation. As described in Section 4.6.2 there is a flag
to redirect the output either on the console or in a specified file. This mechanism
is useful when using just one logger linked to one file. But when more than one
logger is used this flag is not that useful anymore. This flag decides for every
logger whether to output on console or in a file. The user should be able to
take this decision for every logger. What we have in mind is that the user could
for example let the system logging appear on the console whereas the algorithm
specific logging is written to a file. This is not possible now.
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Conclusion

7.1 The Results

I think that the initial requirements are well met. We created a framework in
which algorithms can be executed and tested in a very dynamic environment.
We managed to specify the interfaces in a very simple way. This helps the
user understand the system and allows a fast development. Nevertheless, the
simulation is fast and even simulation on high scaled and very dynamic networks
with high network load perform very fast.

Although the initial requirements were high, we managed to achieve almost
all of them. The only task we could not finish was the asynchronous simulation
mode.

7.2 Personal Experience

The work on this thesis was very interesting but also very challenging.
It was the first time I implemented such a big project. Finding out the

requirements for the framework, specifying the interfaces and discussing about
the use cases was very interesting. It certainly was a very instructive experience
to write such a big project from the beginning. I learned a lot about how
important it is to have a proper design from the beginning and how important
it is to work very precisely.

Additionally, I could improve my knowledge about the Java programing
language. It was very absorbing to get to know the new features of the Java 5.0
version. Also the use of reflection was new to me.
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Appendix A

User Manual

In this chapter we will present a short user manual. We tried to cover all the
essential points. If you don’t find information about a particular part of the
code here, please check the code for comments. In this chapter we will first
present instructions about the installation. After that some information about
the general usage of the framework is presented. In the following , we show how
the development of new models and algorithms works and to what one should
turn his attention. Finally we are presenting some tips about the usage of the
framework.

A.1 Installation

The whole project was written in Java using the Eclipse1 IDE. There are Eclipse-
specific configurations so if you are using Eclipse too, you can just open the
ManS-Project and don’t have to change the configuration. Alternatively you
could compile the source with a script called compile. It automatically creates
the folder structure and compiles with the correct options for the VM2.

If you are using another IDE you should properly configure the output path
for the binaries. All the class files should be compiled to the folder ’binaries’.
Set the output folder for the project classes to ’binaries\projects’ and the output
folder for the sources of the framework to ’binaries\source’.

Obviously an installed Java-VM is needed to run the framework. We de-
veloped the framework with the Virtual Machine from Sun3. There are some
features used in the framework which are only available since Java 5.0. So install
Java 5.0 or later.

1Eclipse is a free available open-source Java-IDE. You can download it from
www.eclipse.org

2Both the jdom.jar for XML parsing and the path to the class files have to be included.
Note, that the class files for the framework are located under ’binaries\source’ and these of
the projects are in the ’binaries\projects’ folder.

3Download it from java.sun.com.
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A.2 First Steps

There are several possibilities to start the framework. First of all you can start
it in your IDE by executing the main method in the class Main. Alternatively
there are two scripts to start with. For Unix/Linux or Cygwin users there is
a script called run. For Windows users there is a batch file called run.bat.
Start the framework by executing one of these scripts. Note that the run script
takes parameters and passes them to the application. In the run.bat script the
parameters have to be specified in the script itself.

A.2.1 Parameters

Independently of the way you start the framework, you have to specify some
parameters. The parameters consist of the following options:
options = [-help|-gui|-batch] {-project|-gen|-graph|-rounds|-refreshRate|-overwrite}

The available options are presented in the following.

• -help: When this option is selected, the information about the parameters
is shown.

• -gui, -batch: One of them is required to be the first parameter. It indicates
whether to start in GUI- or in the batch-mode. GUI mode means, that a
GUI is created and the simulation is shown in it. Batch mode means that
there is no GUI shown.

• -project projectName: Use a specific Project. The framework is meant to
always be used with a project. The system will print out a warning if you
do not specify one. Use projects to keep track of your implementations
and the actual configuration. Projects are described in detail in Section
3.5 and their creation in Section A.3.1.

• -gen numberOfNodes DistributionModel TypeOfNode ConnectivityModel
InterferenceModel MobilityModel ReliabilityModel:

Generate a graph at startup according to the parameters set. All of them
have to be specified. The generated graph then consists of ’numberOfN-
odes’ nodes of type ’TypeOfNode’ distributed over the field according to
the DistributionModel specified. The other four models specified are used
for all the nodes4. Note that you can have more than one -gen sections so
you can use a graph consisting of several types of nodes. You can pass a
parameter to each model by just appending a bracketed string. For exam-
ple one could select a DistributionModel by writing MyDistributionModel
(my parameters). The parameter string is then passed to the model after
having instantiated the instance. Note that all the instances of the models
get the same parameter string set.

• -graph graphFile: Load a graph file at startup. Note that in the graph
file the connections are saved and when you load it, they are also drawn.
But if the connections do not fit with the actual configuration they are
removed in the first step after loading. This means, that you do not save
a fixed graph but more a snapshot of a simulation.

4This doesn’t mean that there is one global instance of the models for all nodes but that
they all use an instance of the same class.



A.2. FIRST STEPS 39

• -rounds numberOfRounds: Perform this number of rounds. In batch mode
the simulation performs this number of round and then exits. Note that
when running in batch mode you should specify the number of rounds to
perform because otherwise the simulation does nothing5. In GUI mode it
performs this number of rounds and then halts. It does not exit. So you
can perform another number of rounds afterward. You can also abort the
simulation between two rounds.

• -refreshRate rate: This parameter specifies the rate the GUI updates itself
with. This means that the GUI is only redrawn all ’rate’ steps. This does
not have any consequences on the simulation itself but it makes it faster
when the rate is set higher. Especially if you are only interested in the
evolution of the simulation and not in every round, this options makes
sense. Note that this parameter has no meaning in batch mode.

• -overwrite parameterName=newValue: With this option you can over-
write the value of a variable in the configuration class. The system
looks for a member-variable with the specified name in the configuration
class and if it finds one, it overwrites the value of it with the specified
one. Note that this mechanism also allows to overwrite values set by the
configurationXML-file.
If there is no field with the specified name the value is just puts it to a
collection of parameters. See Section 4.5 for details about the configura-
tion and Section A.3.2 for its usage. Note that you can have more than
one occurrence of the -overwrite option. You can also specify more than
one name=value pair to overwrite behind one -overwrite option. All the
pairs until the next known option or the end of the parameter string are
processed.

A sample parameter string using the options specified above is shown in the
following.

−gui −pr o j e c t AODV −gen 10000 Random AODV:AODVNode AODV: DynamicLinks
Inter f e r enceMode l Mobil ityModel Re l i ab i l i t yMode l −overwr i te
logFi leName=p r o j e c t s /AODV/ overn ight1 . txt outputToConsole=fa l se
−rounds 1000 −r e f r e shRate =10

Calling the simulation with this parameter string, it will start in gui mode,
use the project called AODV and generate 10000 randomly distributed nodes
with the specified models. It overwrites the logfile name and sets redirects the
output to the logfile. It performs 1000 rounds with a refresh rate of 10.

5When you want to run the simulation until the termination criteria holds, run the simu-
lation with a very big number of rounds.
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A.3 Usage

After the first steps with the default implementations you can start implement-
ing algorithms yourself. In the following the steps to implement algorithms are
presented.

A.3.1 Creating Projects

The first step when starting to implement algorithms is to create a new project.
It is important not to create your own classes in the framework itself. If every
user would add custom code to the framework the amount of code for the
framework would increase with every new user. Additionally it would be difficult
to keep track of what part of the code is really essential for the framework and
what has been added by a user. It is also much easier to understand the usage
of the framework if only the original classes are present.

You can also create more than one project. In fact it is most useful if you
are creating a new project for every algorithm you want to simulate. Like this
it is easy to keep track of the configuration for the simulations because they
are project specific. Also other properties like the global functions and the
termination criteria are stored project specific.

In the following the structure of the projects is described. Figure A.1 shows
the folder structure of the sample Project. This is a complete project with all
the important folders. Note that you can omit folders in your project if they
are empty.

Figure A.1: This is the folder structure of a complete project.

All the folders are named according to their designated content. You should
always save your classes in the appropriate folder to allow the system to access
them. For example you should store your self-written connectivity models in
the folder named models/connectivityModels and the implementations of the
nodes in the folder nodes/nodeImplementations. When addressing one of your
classes in the system6 you can always address them by ProjectName:Classname.
This means that when ever you are identifying a self-written class you can
address them like this. This is mainly done to prevent name conflicts. When

6For example when generating nodes on the command line at startup.
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accessing a mobility model named UDG, the system searches for the class file
in the appropriate folder of the frameworks folder structure. On the other hand
when accessing a model named AODV:DynamicLinks the system automatically
searches in the appropriate folder of the project named AODV. Note that in the
GUI mode when generating or creating nodes, only correctly stored classes are
shown. To reduce the number of models displayed in the GUI only models of
the currently used project and those of the framework are displayed.

A complete project consists of the folder structure and two files. The Con-
figurationXML.xml file is described in Section A.3.2 and the CustomGlobal file
in Section A.3.3.

The easiest way to create a project is to copy the sample project and rename
the root folder of the project to your project name. Note that you also have to
change the packet name in the CustomGlobal class from sampleProject to the
name of your project.

When you want to exchange simulations with other users it is most easy
to exchange the whole project folder because the whole configuration is then
also included and the other user can completely reproduce your simulation.
Note that you can also address a class from other projects in the same way as
addressing your own classes. The framework then searches for this project and
the specified class in it.

A.3.2 Modifying the Configuration

One of the most important points when using the framework is to set up the
configuration. There are three different places to specify the values of a configu-
ration. First there are the default values specified in the configuration class. You
should not change the values there unless you are sure, that they are completely
wrong. The second possibility is to have it specified in the configuration-file
(named ConfigurationXML) of your project. Change the values here when all
the simulations specified in your project use the same values. For example if
you are simulating a routing algorithm for static networks you can turn off mo-
bility here. The third possibility is to specify the values on the command line
on startup with the -overwrite option7. This possibility is meant to be used if
you are having configuration entries used only in one simulation or if they are
changing in every simulation. Note that the parameter specification is obviously
not passed to other users when exchanging a project.

It is important to know the priority of how these parameter specifications
are treated. The default values are overwritten by the specified values form
the ConfigurationXML file. These values are also overwritten by the values
specified on the command line. So the priority is increasing from default values
to ConfigurationXML file and to command line specification.

Summarizing, it can be said that if you want to specify settings for all
implementations in the current project you specify them in the xml file. For
settings concerning only one run, like the name of the output file, they should
be specified by overwriting them from the console. Settings in the XML files
are project specific and settings from the console are simulation specific.

Additionally to the configuration file there is another file which you can use
to specify the environment. It is called CustomGlobal and is also located in

7This option is described in detail in Section A.2.1.
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the root folder of your project. In this file you can implement the termination
criterion. The function to overwrite is called hasTerminated. It is called after
every complete round to find out whether the simulation has terminated or
not. There is a method to save properties about the termination. It is called
setTerminationProperty and can be called from wherever the information about
the termination is coming from. Normally the hasTerminated method would
access some static fields on the nodes to find out whether the algorithm has
terminated or not.

In the CustomGlobal file you can also specify globally available functions.
These functions all have to begin with a predefined prefix. Per default the
methods have to begin with ’GLOBAL METHOD ’ to be accepted as a global
method. These methods are available in the gui in the Global menu. You could
use these methods for example to start the algorithm.

A.3.3 Implementing Algorithms

Basically implementing an algorithm means implementing the behavior of the
nodes and specifying the behavior of the environment. Implementing the be-
havior of the nodes is done by extending the nodes class and implementing its
methods. The environment is specified by models. These models specify how
the nodes are connected, how the nodes move, how reliable the connections are
and how the interference affects the sending process of messages. You can im-
plement a model by extending the superclass of the model and by implementing
its methods. Check the documentation of the models to get information about
the functionality of the methods.

When implementing custom nodes you have to know the functioning of the
simulation. For the exact node behavior check the calling sequence in the han-
dle() function of the node class and the appropriate runtime thread. The node
behavior is then implemented by overwriting the following methods declared
abstract in the Node class.

void handleMessages ( Enumeration<Packet> a r r i v ingPacke t s ) ;
void per fo rmInte rva l l S t ep ( ) ;
void i n i t ( ) ;
void neighborhoodChange ( ) ;
void postStep ( ) ;
S t r ing toSt r ing ( ) ;

The handleMessages(Enumeration<Packet>arrivingPackets)
method is called in every step and by overwriting this method you specify what
the node has to do when there are messages incoming in this round. Note that
this method is called with an empty enumeration when there are no arriving
messages for a node in this round.

The performIntervallStep() method is also called in every step and spec-
ifies the regular action that the node takes in every round.

The init() method is called at the beginning of the lifecycle of a node. It
may be used to initialize the start state of the node. Note that this function
may not depend on the neighborhood of the node as the init function is called
before the connections are set up.

The neighborhoodChange() method is called when there was a change in
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the connectivity of a node. This means that a connection adjacent to this node
was added or removed.

The postStep() method is called at the end of the step of a node. It is
mostly used for logging or for cleaning up.

The toString() returns a String representing this node. It is used for the
information dialog and the popup menu for the nodes in the GUI.

By overwriting these functions you implement the behavior of the node. It
is important to implement the functions in an efficient way. Especially the
performIntervallStep() function is very performance consuming when lots of
nodes are used. Try to minimize the code executed in this method.

When implementing the behavior of the nodes you can use the following
methods to send messages.

public void sendPacket ( Packet p , int t )
public void sendPacket ( Packet p , int t , double i )
public void sendMessage ( Message m, int t )
public void sendMessage ( Message m, int t , double i )
public void sendPacket ( Packet p , Node t )
public void sendPacket ( Packet p , Node t , double i )
public void sendMessage ( Message m, Node t )
public void sendMessage ( Message m, Node t , double i )
public void broadcastPacket ( Packet p)
public void broadcastPacket ( Packet p , double i )
public void broadcastMessage ( Message m)
public void broadcastMessage ( Message m, double i )

The methods are all more or less the same but with different parameters.
You can send or broadcast messages or packets. The target node can be specified
by its ID or by the node itself. All methods are also available with a intensity
parameter. This intensity describes the power of the sending radio module and
may be used for interference. Note that sending messages is preferred over
sending packets because memory can be saved.

Often when implementing nodes, timers are used. You can implement a
timer by extending the timer class. Timers are started by the startRelative or
the startAbsolute method. These methods start the timer either in a relative or
absolute time. Relative means that the timer is started in the specified amount
of time counted from the actual time of the call and absolute means that the
timer is started on the specified time. When the time to fire has come, the timer
invokes its fire() method. Note that in the synchronous mode timers fire in the
next round after the time has expired when a non integer time is specified. So
if you set the timer to start on time 5.5 it fires in the 6th round. When the time
is set exactly on a round it of fires in that round.

A.3.4 Maps

When using the framework you can also use maps. Maps are images that can
be displayed in the background of the simulation. They are defined by a two
dimensional array of integers. The dimension of the array is specified on the
first line. The mapping of numbers to colors can be made in the map class.
The background image is divided in squares according to the specified map file.
Each entry in the map file specifies the color for a whole square.
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It is not the only purpose of the maps to have a background image, but the
algorithms can also react on the values in the map file. You can access the value
of a position with the getValueAtPos(Position pos) method in the map class.
The method returns the value of the map file that is projected on the specified
position. For example you can implement a mobility model for the nodes to
route around some sort of obstacles like lakes. Figure A.2 shows how a map is
projected on the background of the simulation.

Figure A.2: This is a sample of a map file. The specification of the map file on
the left side results in a background image like the one on the right side. Note
that in this example 0 means white, 1 means blue and 2 means black.

A.3.5 Sample Application

In the following we will present the process of developing a sample application.
We start with a empty node and try to illustrate the possibilities of the nodes.
We are implementing a very simple algorithm but try to cover the most impor-
tant points of the node development. We want to implement nodes that start
flooding an IntMessage with their own id with a given probability. The nodes
re-broadcast an incoming message if it is the first message the node receives.
Otherwise it will do nothing. This will somehow implement a algorithm with
which every node gets to know the id of the closest node that initially started
the algorithm.

We begin with a empty node class. This means that we are starting with a
class FloodingNode that is extending the Node class. The seven methods are
the inherited methods declared abstract in the superclass.



A.3. USAGE 45

This is the class we are starting with:

public class FloodingNode extends Node {
public void handleMessages ( Enumeration<Packet>

a r r i v i ngPacke t s ){}
public void pe r f o rmIn t e r va l l S t ep (){}
public void i n i t ( ){}
public void neighborhoodChange (){}
public void postStep (){}
public Str ing toS t r i ng (){ return null ;}
public void checkRequirements ( ) throws

WrongConfigurationException {}
}

We want that the nodes start flooding in the third round. This requires the
implementation of a timer. We extend the Timer class and implement a timer
that, when it fires, broadcasts a IntMessage with the id of the node as value.
The implementation of the timer class is shown in the following.

public class BroadcastTimer extends Timer {
public void f i r e ( ) {
node . broadcastMessage (new IntMessage ( node . ID ) ) ;

}
}

When the timer fires it executes its fire method and this method starts
broadcasting a IntMessage on its node.

In its init() method the node can create a BroadcastTimer and start it in the
third round. Therefore the startAbsolute() method is used. The implementation
of the init() method is shown in the following.

public void i n i t ( ) {
Timer bcastTimer = new BroadcastTimer ( ) ;
try {
bcastTimer . s tar tAbso lut e (3 , this ) ;

}
catch ( Misconf iguredTimeException e ) {
e . pr intStackTrace ( ) ;

}
}

As we want the nodes to start flooding with a variable probability, we added
a parameter to the custom section of the configurationXML.xml file of our
project. This parameter is specified in the following.

<Custom>
<FloodingNode>

<p r obab i l i t y value=”5”/>
</FloodingNode>

</Custom>

The sending method can generate a random number generator with the
getRandom() method of the Distribution class. The random value generated
by this random number generator is compared with the parameter value. The
parameter value can be accessed with the getIntegerParameter() method of the
Configuration class. The parameter is identified by the names of the two nested
tags ¡FloodingNode¿ and ¡probability¿.
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The node compares the generated number with the one stored in the param-
eter and only when the generated number is smaller, the node starts his timer.
The modified init() method is shown in the following.

public void i n i t ( ) {
try {
Random rand = Di s t r i bu t i on . getRandom ( ) ;
int randomValue = rand . next Int ( 1 0 0 ) ;
int parameter = Conf i gurat i on . get IntegerParameter (

”FloodingNode / p r ob ab i l i t y” ) ;
i f ( randomValue < parameter ){
Timer bcastTimer = new BroadcastTimer ( ) ;
bcastTimer . s tar tAbso lute (3 , this ) ;

}
}
catch ( CorruptConf igurat ionEntryExcept ion e1 ) {
e1 . pr intStackTrace ( ) ;

}
catch ( Misconf iguredTimeException e ) {
e . pr intStackTrace ( ) ;

}
}

Now we have nodes that start broadcasting an IntMessage with a proba-
bility specified in the configuration. We now implement the forwarding of the
messages. All node have a flag indicating whether the node already received
a flooding or not. This flag is called received. When received is still false the
node re-broadcasts the message. The implementation of the handleMessages()
method is shown in the following.

public void handleMessages ( Enumeration<Packet> a r r i v i ngPacke t s ) {
while ( a r r i v i ngPacke t s . hasMoreElements ( ) ){
Packet packet = ar r i v i ngPacke t s . nextElement ( ) ;
i f ( ! r e c e i v ed ){
IntMessage intMsg = (( IntMessage ) packet . message ) ;
i d = intMsg . value ;
r e c e i v ed = true ;
this . broadcastPacket ( packet ) ;

Global . l og . l o g l n (LogL .ALGORITHM LOGGING, ”Node ”+this . ID+
” r e c e i v ed the f l ood i ng from ”+packet . header . o r i g i n . ID ) ;

Global . l og . l o g l n (LogL .ALGORITHM LOGGING,
”The next f l o od i ng node i s : ”+id ) ;

}
else {
Global . l og . l o g l n (LogL .ALGORITHM LOGGING, ”Node ”+
this . ID+” r e c e i v ed a f l ood i ng from ”+packet . header . o r i g i n . ID ) ;

Global . l og . l o g l n (LogL .ALGORITHM LOGGING,
”But i t a l r eady has a c l o s e s t f l o od i ng node” ) ;

}
}

}

The method iterates over the incoming messages and checks, whether the
received flag is set. When the flag is set false, the message is casted to an
IntMessage and its value is stored. It sets the received flag and re-broadcasts
the packet. Depending on the received flag the node logs some information
about its state.

To get some information about the node in the GUI, the toString() method is
also implemented. If it already received a flooding, it returns a String containing
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the ID of the closest flooding node. Otherwise it returns en empty string.

public Str ing toS t r i ng ( ) {
i f ( r e c e i v ed ){ return ”My c l o s e s t f l o od i ng node i s ”+this . i d ; }
else { return ”” ; }

}

After having implemented all the methods of our node, we can start the
algorithm by passing the following parameters to the simulation.

−gui −pr o j e c t Test ing −gen 100 Random Test ing : FloodingNode UDG
Inter f e r enceMode l Mobil ityModel Re l i ab i l i t yMode l

A.3.6 Tips

In this section we will present you some tips that could be useful when using
the framework.

One important point when using the framework is the proper configuration
of rMax. To help you with the configuration we will present you some settings
that helped us to keep track of the graph used. Table A.1 shows some rMax
settings to get a medium dense network. Medium dense means that the mean
number of outgoing and incoming edges per node is approximately 10. In all
the settings the UDG connectivity model is used. We found out that it is nice
to have a table like that because especially in batch mode the configuration is
not easy.

# Nodes Field size rMax # Edges
100 500x500 100 1000
1000 2500x2500 150 10’000

10’000 2500x2500 45 100’000
100’000 2500x2500 15 1’000’000
500’000 2500x2500 6 4’500’000

Table A.1: This table shows the rMax to choose to get a medium dense network.
The settings are shown for 100, 1000, 10’000, 100’000 and for 500’000 nodes.
The connectivity model chosen is the UDG model. Note that all the edges are
unidirectional and thus these settings result in nodes with approximately 10
incoming and 10 outgoing edges.

Another tip is to always overwrite the name of the logfile used for a sim-
ulation. When specifying the logfile only in the configurationXML file all the
simulations using the same project access the same logfile. It just overwrites
the logfile and does not check for its existence. When you don’t overwrite the
name of the logfile it will often happen to you, that you forget to change the
value in the xml file and thus you will lose old simulation results. Therefore,
always overwrite the logFileName parameter with the -overwrite option. Alter-
natively you can use another instance of the logger in your implementation that
is writing in a file with a timestamp in the name. You can do this by writing
the following in your code.

Logging . getLogger ( ”output f i l e o f ”+(new Date ( ) ) . getTime ( ) ) ;

Like this you can log to this logger which writes to a file with a timestamp.
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A.3.7 Tuning

If you are using the framework and you need more performance, there are several
possibilities to tune the simulation.

The first one is to give the JVM more memory to use. Use the JVM option8

-Xmx. For example you could use -Xmx700m to give it 700 MB instead of
the usual 64 MB. This will increase the memory that is available and thus the
garbage collection time is decreased. This makes the simulation significantly
faster. Note that you should not assign the VM more memory as available. Do
not use the virtual memory because when the simulation starts swapping out
data of the simulation it gets very slow.

Another tip is about the usage of the packets. As stated before the sendMes-
sages methods are preferred over the sendPackets methods because no additional
package is allocated. For security reasons the system clones the packet passed
and afterward the passed packet is not used anymore. This increases the garbage
collection load. On the other hand most of the calls of these methods are in a
concrete implementation of the handleMessages method of a node. Often the
received packets are forwarded directly. To avoid generating unused packets just
reuse the received packets by passing them to the sendPacket method.

A similar problem occurs with the messages. Whatever method you use
to send a message, the system clones the message for security reason. This
cloning is done to ensure that no references on the messages exist anymore.
This prevents that messages that already have been sent are edited. If you are
sure that no one misuses the package references, the clone() method of your
message can be implemented by just returning this. Like this no additional
messages are allocated when sending and memory is saved. Especially when
your messages have a big payload size this technique saves a lot of memory.

8Check the following url for more information about the parameters for the Java HotSpot
VM. http://java.sun.com/docs/hotspot/VMOptions.html
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