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Abstract

Access control in storage systems ensures that only properly authenticated and
authorized subjects can read or modify objects. In traditional systems, access
control is based on a trusted infrastructure such as the local operating system or a
central server. Those authorities have the competence to decide on the legality of
an access attempt. In a peer-to-peer (P2P) system, access control can no longer
be based on trust: Peers are unreliable and can behave arbitrarily malicious. In
the context of a distributed object store on basis of a P2P system, it is inevitable
to protect the stored objects. Further, the volatile characteristics of a P2P system
require concepts that are able to tolerate node failures or voluntary quitting.

This thesis describes mechanisms to avoid the trusted authority by distributing the
competence for access control decisions among several entities called gatekeepers.
These gatekeepers form a distributed reference monitor that can tolerate malicious
nodes and failures. They control read and write operations and guarantee freshness2

of objects. The reference monitor must be efficient such that it can be used in
practical systems. In particular, changes on the authorized entities must be feasible
even for large groups of peers. The efficiency of different schemes is theoretically
described and analyzed. An important contribution is the description of a tree
data structure that manages keys for read access efficiently. On the average, the
asymptotic runtime of the tree structure is linear or logarithmic. Measurements of
the implementation of the tree underline the theoretical estimations.

Moreover, a mechanism for self-organizing gatekeepers is explained, which allows
them to choose the members of their group autonomously. Since the members of
the gatekeepers can change over time, readers and writers must be able to determine
the latest set of gatekeepers. This thesis describes a novel and secure way to locate
the latest gatekeepers without interaction with any other authority. In principle,
readers and writers can efficiently compute the new set of gatekeepers on their own.

2Freshness of an object means that a reader can be sure to always read the latest version. This
is important because an attacker could inject old versions and therefore manipulate the semantics
of a read operation.
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Zusammenfassung
Durch Access Control in Speichersystemen wird sichergestellt, dass nur authen-
tisierte und autorisierte Subjekte bestimmte Objekte lesen oder schreiben können.
Access Control basiert in traditionellen Systemen auf einer vertrauenswürdigen
Infrastruktur wie einem Betriebssystem oder einem zentralen Server. Diese Au-
toritäten haben die Kompetenz um über Zugriffe zu entscheiden. Access Control
kann in einem Peer-to-Peer (P2P) System nicht mehr auf Vertrauen beruhen: Die
einzelnen Peers sind unzuverlässig und können sich beliebig bösartig verhalten.
In Zusammenhang mit einem verteilten Object Store ist es umso wichtiger, die
gespeicherten Objekte zu schützen. Zudem bedingt das unberechenbare Verhalten
eines P2P Systems Konzepte, welche Ausfälle von Peers oder absichtliches Verlassen
des Systems tolerieren können.

Diese Arbeit beschreibt Mechanismen zur Umgehung der vertrauenswürdigen
Instanz, indem die Kompetenz für Zugriffsentscheidungen über mehrere Entitäten
- sogenannte Gatekeeper - verteilt wird. Diese Gatekeeper bilden einen verteil-
ten Reference Monitor, welcher in der Lage ist, bösartige Peers oder Ausfälle
zu verkraften. Sie kontrollieren Zugriffe bei Schreib- und Leseoperationen und
garantieren Freshness3 der Objekte. Das Ziel ist es, den Reference Monitor effizient
zu gestalten damit ein praktischer Einsatz möglich ist. Insbesondere soll es möglich
sein, Gruppenzugehörigkeiten effizient abzuwickeln, auch für grosse Gruppen von
Peers. Verschiedene Ansätze für die Verwaltung der Leser-Gruppe werden im
weiteren beschrieben und analysiert. Ein wichtiger Beitrag ist die Beschreibung
einer Baumstruktur zur effizienten Verwaltung von Schlüsseln, die für Lesezugriffe
benötigt werden. Durchschnittlich verhält sich die asymptotische Laufzeit der
Baumstruktur linear oder logarithmisch. Die Messwerte, welche durch die Imple-
mentation dieses Verfahrens erhalten wurden, unterstreichen diese Behauptung.

Zusätzlich wird ein Mechanismus erklärt, welcher den Gatekeeper erlaubt, die Mit-
glieder ihrer Gruppe selbständig zu bestimmen. Da sich die Zusammensetzung der
Gatekeeper über die Zeit verändern kann, müssen Leser und Schreiber in der Lage
sein, die aktuellste Menge von Gatekeeper zu bestimmen. Diese Arbeit beschreibt
ein neuartiges und sicheres Verfahren zur Lokalisierung der aktuellen Gatekeeper
ohne Interaktion mit einer anderen Authorität. Es ist lesenden und schreibenden
Gruppenmitgliedern möglich, das neuste Set von Gatekeeper selbständig und ef-
fizient zu berechnen.

3Freshness bedeutet, dass ein Leser immer die neuste Version eines Objektes ermitteln kann.
Dies ist wichtig da ein Angreifer, der alte Versionen einem Leser zuspielt, die Semantik von Lese-
operationen verändert.
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1
Introduction

Storage is an important resource. But more important than storage itself is the
information that resides on the storage devices. Information differs greatly from
physical resources. It can be copied, moved and deleted without cost and it can be
modified very rapidly. In many cases, the physical whereabouts of information are
unknown, or there might be several places at the same time where it can reside. As
for all precious resources, not all subjects are allowed to access all kinds and parts
of all information. The volatile nature of information requires powerful and efficient
mechanisms for its protection. Information security seeks for means to protect
information over its lifetime using access control . Access control is defined as a Definition access

controlmechanism used to specify and restrict the rights of authorized users, application
programs, systems, or processes to information system resources [1].

An illustrative example for access control are passengers boarding an airplane:
They must exhibit a valid board ticket, prove their identity using a passport and
have their luggage examined by different instances such as a metal detector, x-ray
scanner, security staff and police dogs. Only passengers that pass all tests are
allowed to board the airplane.

Access control in a computer system is comparable to the airplane example in
terms of complexity. Security is established by both cryptographic means and
infrastructure. Cryptography can be used for two purposes: Authenticity and Authenticity,

secrecysecrecy. Authenticity allows to verify whether some content has been modified.
Secrecy aims at protecting the content of information such that unauthorized
subjects cannot infer the content. Authenticity and secrecy are distinct concepts.

1



2

Information can be protected in terms of secrecy but must not be authentic and
vice versa. An infrastructure is required to explicitly control which type of access
is allowed4.

Another important aspect of security is trust . Trust is not a mathematical concept.Trust is

mandatory Each human individual has a different association with trust. Access control relies
on trusted authorities, platforms or components. In the airplane example, there is
the implicit assumption that the security staff and their equipment is reliable and
trustworthy. Without trust, the control mechanisms are obsolete since possibly
unauthorized subjects may pass the control unharmed. However, the airplane
example nicely shows that trust can also be distributed among several instances. If
one instance (say the x-ray scanner) fails, the other instances still can guarantee
security of the plane, a fact that the schemes of this thesis highly rely on.

Figure 1.1: Schematic and abstract illustration of access control.

Schematically, access control can be described as illustrated in Figure 1.1. A
subject issues a request to a reference monitor or guard which verifies the clearanceReference

monitor of the subject and grants access to an object or a resource if the subject is autho-
rized. Even at this high level of abstraction, the complexity of access control is
perceivable since the process can be decomposed into authentication, authorizationAuthentication,

authorization,

enforcement

and enforcement. Authentication allows the reference monitor to determine who
is requesting access. With authorization, the reference monitor determines the
resources that the authenticated subject may access and its permissions. Finally,
there is a need for enforcement mechanisms since the reference monitor must be
able to prohibit improper access attempts. Moreover, those steps can be carried
out in cooperation with other authorities and dedicated servers.

The scheme in Figure 1.1 is general in the sense that it applies to local, centralized
and decentralized distributed systems. As an example, a local reference monitor is
the operating system which guards access to files in the file system according to the
permissions of the files. In a centralized distributed system like it is common for
banking infrastructures, a dedicated authority is contacted on an access attempt to

4The different types of access include amongst others read, write, append, and delete operations.
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verify the credentials5. In a decentralized distributed system, the lack of designated
authorities requires to distribute the tasks of the reference monitor among equal
hosts.

1.1 Scope
The goal of this thesis is to develop a scalable concept for access control in a P2P
storage system. One main focus is on an adequate group key management scheme Group key

management

scheme

to efficiently handle large and changing populations of users with varying data
access rights. Moreover, the lack of designated authorities requires new paradigms
to realize efficient access control mechanisms even in a highly dynamic environment
where peers can join and leave the network arbitrarily.

Since cryptography on its own is insufficient for controlling write access, a novel
scheme is presented that handles write requests efficiently and correctly. Traditional Minimize trust,

no central

authorities

systems maintain a central trusted authority which is responsible for granting
access based on password or certificate authentication schemes. Besides that such
an entity does not exist in P2P systems, it is fundamental to reduce trust in a
single peer to an absolute minimum since there is no control or prediction of the
behavior of peers.

Although the thesis is based on storage systems, it does not intend to explain
related technologies or methods. It is assumed that a storage system with certain
properties exists.

This thesis intends to be readable by a broad audience. It shortly highlights the
most important concepts of cryptography before explaining how access control is
carried out. The numerous references allow to deepen the topics where desired. For
researchers in the field, it provides a valuable insight into the area of P2P security
with all its rough edges.

1.2 Organization and Overview
The thesis is organized in chapters. A chapter may depend on the definitions or
considerations of previous chapters. The core of the thesis is Chapter 5 which
explains access control for a P2P storage system in-depth.

Chapter 2 highlights the most important concepts and definitions of cryptography.
The chapter focuses on access control and its various techniques, but also covers
secret sharing schemes as they are fundamental for one of the presented access

5This does not mean that there is only one dedicated authority. The authorities can be replicated

and can communicate with other servers. However, they have been configured appropriately and

cannot be replaced by another arbitrary host.



4 1.3. CONTRIBUTIONS

control schemes. Since a P2P system must cope with large numbers of peers,
a separate section on reflections about groups is appended.

Chapter 3 explains the latest research proposals that have been carried out in the
area of P2P storage system security.

Chapter 4 builds the basis for P2P access control. It describes the underlying
object store with its requirements and functions. The system entities and their
roles are introduced and the assumptions about the adversary’s capabilities are
specified.

Chapter 5 is the core chapter of this thesis. It contains detailed descriptions about
the access control mechanism and distinguishes between the three possible
schemes for read access control. The chapter is concluded with a complexity
analysis.

Chapter 6 gives an overview of an implementation in Java on the basis of an
existing P2P storage system.

Chapter 7 highlights and comments the efficiency of the implementation and com-
pares it to the original performance of the system.

Chapter 8 concludes this thesis and gives an outlook of the future work to be done
in this area.

1.3 Contributions
The contribution of this thesis is the description of a concrete and practical
mechanism for access control in a P2P storage system. There are no dedicated
authorities and trust has been reduced to an absolute minimum. The basis of the
system is a distributed reference monitor that guards access to objects.

A novel type of identifier called secure version identifier (SVID) allows to determine
the entities of the distributed reference monitor efficiently by using only local
computations.

Since different storage systems have distinct policies or performance requirements,
this thesis does not only focus on one mechanism, but explains read access control
with three different approaches: A list-based, a tree-based and a sharing-based
scheme. While the list- and tree-based schemes share some common characteristics,
the sharing-based approach is completely orthogonal.

Finally, a proof-of-concept in form of a prototypical implementation gives informa-
tion about the behavior and performance of the mechanisms.



2
Background

To understand access control in a peer-to-peer system, some background knowledge
about security and cryptography is required. The chapter gives a broad overview
and does not intend to explain all mechanisms in detail, but to sketch the most
important principles in cryptography. The subsequent chapters of this thesis are
based on cryptographic schemes such as encryption and digital signatures. Where
necessary, a more detailed definition or references to adequate literature will be given.
For a more comprehensive description of cryptography, we recommend ‘Cryptology’
by R. L. Rivest [6].

2.1 Information Security
Protection of information, one of the most important global resources, is a
major issue in the information economy. Information differs radically from other
resources. For instance, it can be copied with almost no cost, it can be deleted Information is an

important

resource

without leaving traces and it can be altered at a high frequency. Hence, the way
how information is treated requires sophisticated and well-understood mechanisms.
Some of the reasons why information security is such a hot topic include the large
number of vulnerabilities and security incidents, the lack of products and standards
as well as the lack of understanding of security and cryptography in general.
Further, lots of companies and individuals tend to ignore security and risk to
expose confidential or private information. Due to frequent headlines in the media
about security breaches and Internet attacks, security has become a permanent issue.

5
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But there are two fundamental problems in information security. First of all, it isFundamental

problems in

information

security

generally impossible to define good and bad precisely, especially in the context of
software. Second, it is in general undecidable to distinguish between good and bad
software6. Those criteria emphasize why information security is a necessary and
difficult area of computer science.

2.2 Security Objectives
In information security literature, there are three fundamental security goals knownDefinition CIA

as CIA:

• Confidentiality or secrecy: access to information should only be granted to
authorized individuals.

• Integrity: information should only be modifiable by individuals with proper
authorization.

• Availability: information should be available when needed.

This classification is quite simplistic and has been extended with a set of different se-
curity goals including non-repudiation, auditability, accountability or privacy. There
is often confusion about the difference between integrity and authenticity. In the
context of communication, integrity means that the content of a message has not
been altered. Additionally to the property of integrity, authenticity includes that
metadata such as sender or receiver and all other parameters of the message have
not been altered.

2.3 Cryptography
Cryptography is the way of securing information on the basis of mathematical oper-
ations and number theory. Many of the results in cryptography are highly surpris-What is

cryptography? ing, such as public-key cryptography. All schemes are somehow based on random
numbers or mathematically hard problems. In this section, the most important
cryptographic principles are explained along with precise definitions where useful.

2.3.1 Perfectly-Secure Cryptography

The theory of perfectly-secure or information-theoretically secure cryptographyUnbreakable

cryptography provides means to make it impossible for an adversary to compute an encrypted
secret even if the adversary is provided with unbounded computing power. This
is a consequence of the fact that the encrypted secret is statistically independent
from the plaintext, which makes it impossible to gain any inference about the
secret. The one-time pad , initially invented in 1917 by Gilbert Vernam [3], hasOne-time pad

6The undecidable halting problem is a special case of the problem of deciding whether a program

meets a given specification.
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been proven to be perfectly secure if - as the name suggests - only used once.
The information-theoretic basis for the proof has been given by Claude Shannon’s
information theory [4] which was later refined by Hellman [5]. A one-time pad is a
random bitstring and has the same length as the data to be encrypted. En- and
decryption are performed by adding the one-time pad modulo two (XOR) to the
data bitstring.

Although one-time pads provide provable security, they are rarely used in practice
since they are awkward for obvious reasons: First, the length of the key must be
equally long as the data that needs to be encrypted. Secondly, a key can only be
used once to de- and encrypt information. And finally, the pad needs to be randomly
generated using a cryptographically secure pseudo random generator [15, 16, 17].
Although beyond the scope of this thesis, it is noteworthy that from a philosophical
point of view, it is even questionable whether randomness really exists or not.

2.3.2 Computationally-Secure Cryptography

For the reasons mentioned, one weakens the security constraints and moves from
perfectly-secure cryptography to a less rigorous model which is only computationally
secure. This means that the cryptographic operations are believed to be hard to
break or in other words: It is infeasible to break security within reasonable time. Two What does

computationally

secure mean?

famous operations which are believed to be computationally hard are the discrete
logarithm problem [13] and the prime factorization of large numbers [14]. However,
the fact that no algorithm is currently known does not imply that there does not
exist such an algorithm at all. Note that under the assumption that quantum
computers exist, these computations have been proven to be efficiently computable
in polynomial time [9]. For the remainder of this thesis it is assumed that presently
used cryptographic schemes which are based on computationally hard problems are
secure as long as neither the secret nor private key is leaked to the adversary.

2.3.3 Symmetric Cryptography

A symmetric cryptosystem, also called a cipher, uses the same secret key for de- and Definition

symmetric

cryptography

encryption. The formal definition is given as follows:

Definition 2.3.1 A cipher or symmetric cryptosystem consists of

• A message space M over some alphabet A1.

• A ciphertext space C over some alphabet A2.

• A key space K over some alphabet A3.

• An encryption function E: M×K → C.

• A decryption function D: C × K →M, such that D(E(m, k), k) = m for all k
∈ K and m ∈M.
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An extension to this definition can be given by allowing the encryption to be nonde-
terministic using a randomness space R such that E: M×K×R → C while decryp-
tion remains unchanged to the definition given above. In general, every practical
cryptosystem can be modeled as a finite automaton processing messages in units of
certain size. This leads to three special instantiations which are used in practice:

• A block cipher is a stateless encryption where plaintext and ciphertext are
n-bit strings. A message is divided into n-bit blocks and each is separately
encrypted.

• An additive stream cipher is similar to a one-time pad where the random key is
replaced by the output of a pseudo-random generator, which is added modulo
2 (XOR) to the plaintext. Unlike the block cipher, an additive stream cipher
is stateful as it maintains the state of the pseudo-random generator.

• In a self-synchronizing stream cipher, encryption is performed bit-by-bit. The
state consists of the m most recent ciphertext bits. Decryption is self-synchro-
nizing meaning that it can start at an arbitrary point in time without the need
for context information.

Figure 2.1: Cipher block chaining mode (CBC). Encryption (left) and decryption
(right) are blockwise, where Mi denotes the ith plaintext block and Ci the corre-
sponding ciphertext block.

Figure 2.2: Output feedback mode (OFB). The block cipher is used as a pseudo-
random generator producing blocks of pseudo-random bits.

Block ciphers can be used to construct new encryption functions, called modes of
operation. Some well known modes are the electronic codebook mode (ECB), cipher
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block chaining mode (CBC, see Figure 2.1), output feedback mode (OFB, see Figure
2.2) and the cipher feedback mode (CFB) [26].

2.3.4 Message Authentication Codes

While symmetric encryption protects the confidentiality of information, message
authentication codes7 (MAC) protect the integrity of information and make modifi-
cations detectable.

Definition 2.3.2 A message authentication code (MAC) for message space M, key Definition MAC

space K and tag space T is a function f : M× K → T such that the following
security condition holds: Let k be chosen uniformly from K. There exists no efficient
algorithm, with access to an oracle M→ T computing the tag f(m, k) for an input
message m, which outputs with non-negligible probability a message m′ different from
all messages asked to the oracle as well as the corresponding tag t = f(m′, k) [7].

2.3.5 Asymmetric or Public-Key Cryptography

In contrast to symmetric cryptography, public-key or asymmetric cryptography
does not require to share a secret key between two entities. Instead, a private
key is generated and stored only on one entity while the public-key is publicly Why

asymmetric?known. The secret allows an entity to perform certain operations exclusively, hence
the term asymmetric. Concretely, the public key is used to encrypt data and to
verify digital signatures while the private key can be used for decryption and for
generating digital signatures. Note that the term private key is used in the context
of public-key cryptography while secret key applies to symmetric cryptography.

Asymmetric cryptography is much more challenging than symmetric cryptography
because of the paradoxical asymmetric property which requires certain mathematical
structures, for example an algebraic group with special properties. As there is no
general design criterion, only a small number of public-key cryptosystems have been
proposed, one of them being RSA [27]. Public-key cryptographic mechanisms are
used for a wide range of cryptographic protocols including identification protocols,
bit commitment schemes, interactive proofs, payment systems, and secure multi-
party computation.

2.3.6 Certificates

A certificate represents a binding of a public key to an entity which is digitally
signed by a so-called certification authority. More concretely, a certificate consists Content of

certificatesof a data part followed by a signature on the data part. The data part includes
at least a public key, the name or identifier of the entity for which the certificate
is issued, the name of the entity that issued the certificate and possibly further

7Sometimes also called message integrity code (MIC) or tag.
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parameters like expiration date and so forth.

A certificate CertC,A signed by an authority C allows an entity B to obtain an
authenticated copy of A’s public key. There are two conditions that must hold:

1. B must hold an authentic copy of C’s public key in order to be able to verify
the signature on the certificate.

2. B must trust C not to sign certificates for unauthenticated entities.

At first sight, it seems not to be a real advantage to use certificates as the problem of
obtaining an authentic copy of some public key has been transformed to the problem
where an authentic copy of an authority’s public key as well as trust in the authority
itself is required. However, the idea is that it might be much easier to verify the
authenticity of the authority’s public key.

2.3.7 One-way Functions and Hash Functions

Informally, a one-way function is a function which is easy to compute but hard to
invert. More formally:

Definition 2.3.3 A one-way function is an efficiently computable function f fromDefinition

one-way function a domain A to a co-domain B, f : A → B, such that for every efficient (possibly
probabilistic) algorithm G, taking an input from B and producing an output in A,
and for x ∈ A selected uniformly at random

P (f (G (f (x))) = f (x))

is negligible [7].

It is still unproven that one-way functions exist for reasonable definitions of compu-
tational hardness and of negligible probability. Hash functions are another kind of
functions that are used to map a large bitstring to a small bitstring of fixed size.

Definition 2.3.4 A hash function is an efficiently computable function h : D → RDefinition hash

function where |D| � |R|, typically D = {0, 1}∗ and R = {0, 1}k for some suitable k. A hash
function can have a parameter c from some set C = {0, 1}s for some s, selecting a
function hc from a class {hc : c ∈ C} of functions [7].

Cryptographic hash functions aim at preventing collisions from happening even
if an adversary tries to enforce them. Therefore, a hash function is often also a
one-way function, which nevertheless is mostly insufficient for many applications,
yielding to the notion of collision-resistant hash functions. Informally, they can be
defined as follows: It is computationally infeasible to find two distinct bitstrings x
and x’ such that hc(x) = hc(x′). Or more formally:
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Definition 2.3.5 A hash function class {hc : c ∈ C} with domain D is collision- Definition

collision-

resistance
resistant if for every efficient algorithm G taking an input c ∈ C and producing a
pair (x, x’) of values in D,

P (hc (x) = hc (x′))

is negligible for c ∈ C selected uniformly at random [7].

Cryptographic hash functions can be used for various operations such as hashing
of messages before signing them, generation of pseudo-random bits and message
authentication codes. The secure hash algorithm SHA [50] is widely used as cryp-
tographic hash function.

2.4 Secret Sharing Schemes
A secret sharing scheme provides means to distribute a secret value s (for example
a cryptographic key) among several entities P1, ..., Pn such that only those entities
can reconstruct s and all other entities have no information about the secret. The What is a secret

sharing scheme?piece of information that a single entity Pi holds is known as share si. Most sharing
schemes are known to be information-theoretically secure. This means that each
share si is statistically independent of the secret s.

Typically, a secret sharing scheme maintains a threshold where arbitrary k out of
n entities knowing a share si can reconstruct s, but k − 1 entities are not sufficient
to retrieve any information. Such a scheme is called (k, n)-threshold scheme. The
entity responsible for distributing the shares is called dealer.

Definition 2.4.1 A secret sharing scheme consists of a pair of efficient protocols: Definition secret

sharing scheme
• A protocol for sharing a secret value s. The protocol is probabilistic and uses

secret 8 channels to distribute the shares to all participating entities.

• A protocol for reconstructing the secret s from a set of shares9 [8].

In the following, the Shamir’s scheme is presented which will also be used in a later
chapter.

2.4.1 Shamir’s Scheme

Shamir’s secret sharing scheme [18] is a threshold scheme based on polynomial
interpolation. It uses modular arithmetic over a finite field GF (q). The dealer Sharing through

polynomialschooses the coefficients a1, ..., ak−1 in GF (q) randomly from a uniform distribution
over integers in [0, q). He then makes use of the polynomial

8A secret channel is both confidential and authentic.
9In the simplest case, each entity broadcasts its share to all other entities and each entity then

reconstructs the secret locally.
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a(x) = s + a1x + ... + ak−1x
k−1

with s being the secret to be shared and distributes the shares si = a (αi) to each
participating entity Pi. Note that the points αi at which the polynomial is evaluated
are publicly known. However, as the αi have to be each distinct, it must hold that
q > n. The secret is reconstructed by polynomial interpolation and evaluation of
a(x) at x = 0.

Theorem 2.4.1 Arbitrary k − 1 shares do not reveal any information about the
secret s.

Proof Assume that k − 1 shares are revealed to some adversary. For each possible
secret value s′ in [0, p), there is exactly one polynomial a′(x) of degree k − 1 such
that a′(0) = s′. As all p values in [0, p) are equally likely, the adversary cannot
obtain any information about s [18].

2.5 Access Control
Access control is the protection of the system against unauthorized access. It is aDefinition access

control process by which the use of system resources is regulated according to a security
policy and is permitted only to authorized entities (users, programs, processes or
other systems) according to that policy.

Typical access control models actually focus on authorization, for example to specify
the permissions of a subject. The specification can be done using matrices, lattices or
other mathematical structures, which specify which rights subjects have on objects.
Additionally, access control focuses on enforcement mechanisms, identification and
authentication, and accountability. Identification and authentication determine who
can log on to a system, authorization determines what an authenticated user can
do, and accountability identifies what a user did.

2.5.1 Authentication

Authentication is the process of verifying the validity of something claimed by anDefinition

authentication entity. The default assumption for the claim is the identity. Authentication can be
proven by:

• Knowledge of a shared secret such as a password or a personal identification
number (PIN).

• Ownership of a smart card or token.

• An attribute such as fingerprint, voice, retina or iris characteristics.
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2.5.2 Identification

Identification is the process of associating an identity with a subject. The iden- Definition

identificationtification component of an access control system is normally a relatively simple
mechanism based on either user name, user ID or certificate. Proper identification
requires unambiguous and unique identification of a subject.

2.5.3 Authorization

An authorization is a right or a permission that is granted to an entity to access
a resource. It can be implemented using role based access control [29] [30], access Definition

authorizationcontrol lists [28] or a policy language (such as XACML [31]). After an entity is
authenticated, authorization determines what that entity can do on the system.
Additionally to the three basic permissions read, write and execute, there can be
privileges such as append, modify attributes, move, copy, and so forth. Most modern
operating systems define sets of permissions that are variations or extensions of three
basic types of access: read, write and execute.

2.5.4 Access Matrix

The first to describe access matrices was B. Lampson in “Protection” [28]. The
need for protection mechanisms arises from the fact that one should try to keep one
user’s malicious or erroneous behavior from harming other users. This led to the

Figure 2.3: Access matrix with three objects and three subjects having distinct per-
missions.

development of the so-called access control matrix model which determines the access Access matrix

lists subjects and

objects in a

matrix

of subjects to objects, as shown in Figure 2.3. The rows of the matrix are labeled
with subject names and its columns with object names. Element Ai,j specifies the
access which subject i has to object j. Each element consists of a set of strings called
access attributes which are identical to permissions like read, write, execute and so
forth. Requests from subjects to access objects are guarded by a reference monitor
which examines each request and decides whether to grant it. The decision is based
on the subject issuing the request, the operation in the request, and an access rule
that controls which subjects may perform that operation on the object. As the
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matrix is usually sparse, it is either implemented as access control list or capability
list.

2.5.5 Access Control List

Access control lists (ACLs) are columns of the access matrix described above. TheyACLs list

authorized

subjects for each

object

provide means of determining the appropriate access rights to a given object de-
pending on certain aspects of the subject that is making the request, principally the
subject’s user identity. The list is a data structure containing entries that specify
individual subject or group rights to specific objects. Each accessible object con-
tains an identifier or reference to its ACL. Figure 2.4 shows an example of an access
control list. The privileges or permissions determine specific access rights, such as

Figure 2.4: Access control list for the objects of Figure 2.3.

whether a user can read from, write to or execute an object. Some implementations
also have permissions for modifying the ACL itself. ACLs are normally used for
discretionary access control (DAC) described in Section 2.6.1.

2.5.6 Capability List

A capability list is a row of the access matrix. It is essentially a pair consisting of
an object and an operation as Figure 2.5 illustrates. Capabilities must be protected
from unauthorized modifications. In a centralized system, the operation system
manages capabilities to protect the address space. A capability is typically imple-Capabilities

specify all

accessible objects

for each subject

mented as a privileged data structure stored by the operating system in a list, with
some mechanism in place to prevent the program from directly modifying the con-
tents of the capability. Capabilities improve system security when used in place of
plain references. In a pure capability-based system, the mere fact that a user pro-
gram possesses that capability entitles it to use the referenced object in accordance
with the rights that are specified by that capability. In theory, a pure capability-
based system removes the need for any access control list or similar mechanism by
giving all entities all and only the capabilities they will actually need. In a dis-
tributed system, the capability list has to be protected by using cryptography (e.g.
signatures) or a reference monitor checking tickets on access.
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Figure 2.5: Capability lists for the subjects of Figure 2.3.

2.5.7 Comparing Access Control Lists to Capability Lists

Access control lists have some significant advantages over capability lists. On
one hand, they are compact and easy to review, allowing deletion of an object in
a simple way. Deletion of a subject is much more difficult since it requires the ACL: deletion of

subjects is

difficult

traversal of all ACLs. Delegation of permissions is possible by the owner having the
(usually sole) authority to grant or revoke rights to the objects he owns or to other
subject.

Capability lists are as compact as ACLs, yet they are not so compatible with an Capabilities:

revocation of

permissions is

difficult

object-oriented view of the world. While delegation is easy, revocation of permissions
can be difficult, especially in a distributed setting. In general, it is difficult to
determine who has permissions on what objects since it requires the traversal of all
capability lists.

2.6 Access Control Techniques
Access control techniques can generally be categorized as either discretionary or
mandatory. In a discretionary system, the owner can change permissions and privi-
leges on his own. A mandatory system enforces an access policy based on sensitivity
levels. Role-based access control allows more efficient maintenance of permissions
while lattice-based access control makes use of mathematical structures and security
levels.

2.6.1 Discretionary Access Control

Discretionary access control (DAC) is an access policy determined by the owner of
a resource. Every object in a system must have an owner. The owner decides who DAC: owner

controls accessis allowed to access the resource and what privileges they have. The owner may
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change the object’s permissions at his10 discretion and transfer ownership to other
users. Access rights and permissions can be assigned by an owner to individual users
or groups for specific resources. Discretionary access control can be applied through
access control lists which name the specific rights and permissions that are assigned
to a subject for a given object. Another possibility is role-based access control
(RBAC, see Section 2.6.3) that assigns group membership based on organizational
or functional roles. RBAC greatly simplifies the management of access rights and
permissions.

2.6.2 Mandatory Access Control

Mandatory access control (MAC)11 is an access policy determined by the system, not
the owner. MAC is used in multilevel systems that process highly sensitive data,MAC: system

controls access such as classified government and military information. A multilevel system is a
single computer system that handles multiple classification levels between subjects
and objects. In a MAC-based system, all subjects and objects must have labels
assigned to them. A subject’s sensitivity label specifies a security clearance. An
object’s sensitivity label indicates the susceptibility or sensitivity of objects. In
order to access a given object, the subject must have a sensitivity level equal to or
higher than the requested object.

2.6.3 Role-Based Access Control

Role-Based Access Control (RBAC) is a newer and alternative approach to Manda-
tory Access Control (MAC) and Discretionary Access Control (DAC). Entities can
play different roles having different privileges. Since entities are not assigned per-Indirection

through roles

allows better

maintenance

missions directly, but only acquire them through their role (or roles), management
of individual entity rights becomes a matter of simply assigning the appropriate
roles to the entity. This simplifies common operations such as adding an entity, or
changing an entity’s department. As Section 2.8.1 will explain, roles and groups are
conceptually equivalent.

2.6.4 Lattice-Based Access Control

A lattice [38] (L,≤) consists of a set of security levels L and a partial ordering ≤,
so that for every two elements a, b ∈ L there exists a least upper bound u ∈ L and
a greatest lower bound l ∈ L. A lattice thus can uniquely answer questions likeLattices allow

computations of

upper and lower

bounds

• Given two objects at different security levels, what is the minimal level a
subject must have to be allowed to read both objects?

• Given two subjects at different security levels, what is the maximal level an
object can have so it can still be read by both subjects?

10Instead of writing ‘his/her’ throughout the text the term ‘owner’ is assumed to be gender

neutral.
11Not to be confused with message authentication codes from Section 2.3.4.
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Well known lattice-based models include Bell-LaPadula [32], Biba [33] or the Chinese
Wall model [37].

2.7 Limitations of Access Control
Despite all described mechanisms, the potential of access control is quite limited.
Access control, also in traditional centralized systems, is always based on trust and
assumptions. There is no way, neither cryptographic nor organizational, to prevent Trust is

inevitableimproper operations without reasonable requirements to certain components.

For example, an operating system performs access control of objects in the file
system. Whenever there is an operation on an object, the corresponding system
call executes code of the operating system kernel which acts as reference monitor or
guard. The operating system ensures that the entity requesting access to an object
is authorized. However, this implies trust in the operating system. One assumes
that the operating system works properly and does not allow improper access to
resources. Still, the correctness of access control by the operating system is not
guaranteed, as

a) There could be implementation errors or a faulty design.

b) The operating system code could have been modified by the operator of the
physical device (which is even simpler if the operating system is open source,
but also possible for others).

c) The operating system code could have been modified by malicious software such
as a virus or a worm.

d) The system could not be configured properly.

This example illustrates that even traditional systems are based on trust and
assumptions. In a distributed system without centralized authorities, the situation
is even more complicated as there is no physical control over the nodes that store
objects. Further, knowledge about the physical whereabouts of objects is often
not possible or even not desired. Cryptographic techniques only allow to detect Cryptography:

only detection of

modifications

improper modifications of objects, but they cannot prevent them. Nevertheless, the
probability of data loss can drastically be reduced if objects are highly replicated
and access decisions are based on a mutual consensus protocol. There is always a
tradeoff between the level of availability and security versus efficiency.

Another problem that cannot be prevented is information dissemination. A reader
having retrieved an object can distribute that object arbitrarily. Similarly, an entity
knowing a private or secret key can leak that key to another entity. Under some
circumstances, information dissemination will not even be detected. Recent research
tries to find techniques such as trusted hardware and digital rights management
(DRM) to prohibit information dissemination.
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2.8 Groups
We define a group as a number of entities with same rights and permissions withDefinition group

respect to accession, modification, and execution of objects. It allows modifying
access rights of many entities by applying changes to the group. Groups have an
owner who can change the permissions of a group and add or remove entities. Every
object has a group assigned and every group can have zero or more objects. The
owner also decides what objects are associated with which groups.

2.8.1 Duality of Groups and Roles

A group is an abstract unit consisting of a set of entities with certain privileges on
objects. In principle, groups and roles are a dual concept: being member of a groupGroups ≡ roles

implies playing the role of that group. Duality is also maintained in the sense that
it is possible to be member of several groups as it is possible to play several roles.
Moreover, joining a group is equivalent to obtaining a new role whereas leaving a
group is equivalent to abandoning a role. Therefore, group management and security
are related to discretionary access control (see Section 2.6.1).

2.8.2 Changing Group Membership

Requirements to groups are that when a group is joined, the new member receives
all permissions of the group immediately. Conversely, if a member leaves a group,
it must also lose all the privileges of the group. Furthermore, it must be feasible to
determine whether an entity is member of a group or not.

2.8.3 Changing Group Permissions

Whenever permissions change, it must apply to all group members. However, it is
questionable whether permissions need to be checked on each access to an object.
As an example, one could think of the following scenario: An entity has opened a
file with write permissions. Assuming that the group to which that entity belongs
to loses the permissions to write to the particular file. It would then be improper to
allow to the entity any further write operations. Therefore, it would be necessary
to check the privileges on objects on every single access which results in an over-
head. Hence, one often assumes that permissions do not change very often which is
reasonable and sufficient for most systems.

2.8.4 Groups in Distributed Systems

In principle, all requirements and properties of groups remain unchanged from what
has been outlined in the previous sections. The difference is that the information
about the members of the group and the permissions are stored in a distributed
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manner. Due to the distribution, some information might not always be available12.
Hence, one could weaken the requirements on groups which insist on the same
privileges for all group members at all times.

For changing group membership, a weaker condition is that it must only be feasible Weaker model for

groups in

distributed

systems

to determine whether an entity is not member of a group. This prevents non-group
members from accessing resources, but potentially also proper group members.
Hence the propagation for new group members can be delayed while the dele-
tion of group members must be propagated immediately to prevent improper access.

The same holds for changing group permissions. For permissions being added to a
group, it is not absolutely necessary to immediately propagate the new permissions
in the system. This can result in a situation where some members of a group cannot
yet make use of the new permissions although others already can, due to delayed
propagation.

On the other hand, removal of a permission from a group must result in an
immediate removal of that permission for all group members. Otherwise, it
would be possible that some members still have access permissions to an object
although the group is no longer authorized to access that particular object. Note
that there is an asymmetry for the requirements of adding and removing permissions.

Distributed systems also raise questions like: Where is the group information stored?
Who can modify membership and permissions? How can improper modifications be
prohibited? How long does it take to make changes effective?

2.8.5 Groups in Peer-to-Peer Systems

To make the information about members of a group permanently available, group
members need to be stored within an object or file in the P2P system because there
is no central authority. This object can only be written by the owner, but must be
world readable such that verification of membership can be performed. In order to
identify authorized users properly, the group object contains the users public keys
that are used for authentication.

Only the owner of a group can add and remove members. He can either invite
other entities or receive requests for joining a group. This implies that entities
willing to become member of a group must wait until the owner adds them to the
group. There are two principles how group membership can be achieved. Either,
the owner decides on his own who is added to the group and then informs the
corresponding entities by some means. Alternatively, entities can send a request
to the owner which is then processed. In the latter case, those requests must also
be stored in the system. For that purpose, one needs an additional file to which

12For example, an access control list could be stored on various hosts. If those hosts are not

online, the system performing access control must handle this problem in some appropriate way.
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requests can be appended to. The crucial point is how this file can be found in the
system. One solution could be that groups and their request-files are made public
by some means, for example by putting them on a web page or by publishing them
into a well-known directory.

It is essential that the owner is the only one that can delete a group or change
the permissions of a group. If several entities want to form a group to share their
files, they first have to group themselves (choosing a group leader as the owner of
a group). This group can then be used as the owner of the group that should be
created such that all members of the group have owner permissions on the newly
created one. If the group leader decides to leave the group, he needs to transfer his
ownership to one of the other members or, if he is the last member, delete the group.

This chapter gave a short overview of the most important cryptographic schemes
including access control. The last section on groups was not a cryptographic topic,
but is nevertheless important for the understanding of the subsequent chapters. The
next chapter gives an insight into the efforts made in the area of P2P storage and
P2P security.



3
Related Work

In this chapter, we briefly discuss related work that has been carried out in the area
of distributed object stores and explain how security and especially access control is
handled. All practical peer-to-peer file systems must cope with security and access
control. We will focus on security-related aspects and disregard the mechanisms
used to store and retrieve objects.

3.1 OceanStore
OceanStore [42, 43] is a distributed, global-scale, secure, fault-tolerant system that
provides persistent storage with two design goals: The ability to be constructed
from an untrusted infrastructure and the support of nomadic data. All information
that enters the infrastructure must be encrypted to achieve secrecy. Rather than
assuming that servers are passive repositories of information, it is desired that
servers participate in protocols for distributed consistency management. Therefore,
most of the servers are working correctly most of the time and there is a class of
servers that can be trusted to carry out protocols on their behalf. This responsible
party is stated to be financially accountable for the integrity of the data.

OceanStore concerns with read and write access control. To perform access control,
the owner of an object chooses an access control list for each object. An ACL entry
extending privileges must describe the privilege granted and the private key of the
privileged users. The information is made publicly readable such that servers can
check whether a write is allowed.

21
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Restricting read access is entirely a matter of restricting access to a decryption
key. Only those users with read permission are in possession of the decryption
key. To revoke read permission, the owner must request that replicas be deleted
or re-signed with the new key. A recently revoked reader will be able to read
old data from cached copies or from misbehaving servers which fail to delete or re-key.

Write access is restricted by digital signatures such that honest servers and clients
can verify them against an access control list. Since decisions to commit data are
performed by a quorum of servers called “inner ring”, one can trust that only
valid writing operations are accepted. Nodes must be able to perform commitment
without access to cleartext or encryption keys. To guarantee authenticity, the
GUIDs of the objects are self-verifying as they are a secure hash over the data.

The mechanisms for access control in OceanStore are not described in detail. Revo-
cation of read permission is realized by re-encrypting or deleting all replicas. That
approach is not only expensive, it is also insecure (see Section 5.9). The precise steps
of a write operation and the assumptions of the servers which are responsible for
executing the operation on behalf of the owner are not described. Although an ACL
is chosen for each object, it is not explained how injection of out-of-date objects can
be detected. Inner ring nodes that are required to be mostly available and reliable
- an assumption that in general cannot be made in a P2P environment.

3.2 Farsite
Farsite [44] is a secure, scalable file system that logically functions as a centralized
file server but is physically distributed among a set of untrusted computers. It
ensures the secrecy of file contents with cryptographic techniques and maintains
integrity of file and directory data with a Byzantine-fault-tolerant protocol. The
majority of machines is assumed to be up and accessible for the majority of the
time. Since a file system is a hierarchical directory namespace, it must have a
root. An administrator creates a namespace root by choosing a unique root name
and designating a set of machines to manage the root. These machines will form
a Byzantine-fault-tolerant group. There are certificates for namespaces, users and
machines. Certificates have to be validated with the public keys of certification
authorities. A machine’s private key is stored on the machine itself. A user private
key is encrypted with a symmetric key derived from the user’s password and then
stored in a globally-readable directory. Revocation of certificates are accomplished
by issuing signed revocation lists. Certificates might also expire. To protect user
privacy and provide read-access control, clients encrypt written file data with the
public keys of all authorized readers. The directory group enforces write-access
control by cryptographically validating the requests from users before accepting
updates.
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Because directory groups only modify their shared state via a Byzantine-fault-
tolerant protocol, one trusts the directory group not to make an incorrect update
to directory metadata. That metadata includes an access control list of public keys
of all users who are authorized writers to that directory and to files therein. When
a client creates a new file, a symmetric file key is randomly generated. Then the
client computes a one-way hash of each block of the file. This hash is used as a
key to encrypt the block. The file key is used to encrypt the hashes rather than
to encrypt the file blocks directly. This technique is called convergent encryption,
because identical file plaintext converges to identical ciphertext, irrespective of the
user keys. Integrity of a file is ensured by computing a Merkle hash tree [45] over
the file data blocks, storing a copy of the tree with the file, and keeping a copy of
the root hash in the directory group that manages the file’s metadata. To perform
committed updates, a client generates a random authenticator key and splits it into
secret shares, which it distributes among members of the directory group. With
this key, the clients signs each committed update using a message authentication
code (MAC) [47]. The directory group jointly reconstructs the authenticator key
and does not accept any further updates signed with that key.

Farsite’s scalability is limited by two points of centralization: Certification author-
ities and root directory groups. The assumption that the majority of machines is
up and available is quite demanding for a P2P network. Since the file key needs to
be encrypted with the public key of each authorized reader, the approach does not
scale for large groups of readers. The question is how one can prevent read access
to a file to a former reader, if the keys are stored together with the file. The precise
steps of the directory group for write access are not outlined, except for the fact
that a Byzantine agreement protocol needs to be executed.

3.3 Ivy
Ivy [48] is a multi-user read/write peer-to-peer file system. Ivy has no centralized or
dedicated components, and it provides useful integrity properties without requiring
users to fully trust either the underlying peer-to-peer storage system or the other
users of the file system. All data is stored in a DHash [49]. DHash ensures the
integrity of each block with one of two methods. A content-hash block requires
the block’s key to be the SHA-1 [50] cryptographic hash of the block’s value. A
public-key block requires the block’s key to be a public key, and the value to be
signed using the corresponding private key.

Besides the integrity of a block, Ivy does not make any statements about access
control. The authors envision that a participant’s bad behavior is discovered after
the fact. However, the mechanisms that need to be in place to make such detections
possible are not described. Similarly, it is left open how a group of readers can be
managed efficiently.
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3.4 SiRiUS
SiRiUS [51] is a secure file system designed to be layered over insecure network
systems. It aims at improving security without making any changes to the file
system or network server. All access control information is stored, encrypted
and signed together with the file data. SiRiUS supports two file access modes:
read-only and read-write. The system is optimized to support sharing only for small
groups. Ideally, SiRiUS can use an existing key distribution infrastructure, such
as PGP. When a read or write access to a file is revoked, the revoked user should
immediately lose access to that file without need for communication. To prevent
access control rollback and to ensure that users always have the latest version of
their files, SiRiUS must guarantee freshness.

All SiRiUS users maintain one key for asymmetric encryption (MEK)13 and
another for signatures (MSK)14. The data of a file is encrypted with a symmetric
encryption key (FEK)15 and signed with a signature key (FSK)16. Both keys
are unique for each file. Possession of the FEK gives read-only access to the
file while possession of both, the FEK and FSK, allows read and write access.
Freshness is guaranteed through a hash tree [46]. The hash of the root directory
additionally contains a timestamp and is updated periodically by the owner. If
the content of a file or directory changes, the tree needs to be updated up to the root.

SiRiUS has several serious drawbacks. Although freshness seems to be guaranteed,
it is easy to see that the single point of failure is the root. As not stated explicitly
by the paper, it is unclear whether the root information is only stored by the owner
or whether it is persistently and publicly stored in the file system. In the first case,
authenticity of meta data can only be verified if the owner is available, an assumption
which in general does not hold for P2P systems. In the second case, it is impossible to
guarantee freshness of the root itself. One could argue that freshness can be verified
by the timestamp, but then the question arises how other entities know about the
most recent timestamp. Of course, if the timestamp is updated periodically, one can
compute the correct value of a time stamp at a certain point in time. However, if the
owner itself is allowed to be offline, a trusted entity needs to execute timestamping.
Further, freshness is only guaranteed with respect to metadata, but not with respect
to the data blocks itself. Another problem is the design criterion which only foresees
a small group of entities per file. Moreover, whenever a reader leaves the group, all
files of the group need to be re-encrypted, which is inefficient for large files or a large
number of files per within a group.

13Master encryption key.
14Master signing key.
15File encryption key.
16File signature key.
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3.5 PAST
PAST [62, 63] is a large-scale, Internet-based, global storage utility which is entirely
self-organizing. Nodes are not trusted, they may join the system and may silently
leave the system without warning. PAST assumes that most of the nodes in the
overlay network are well behaved. Each PAST node and each user of the system
hold a smart card. A private/public key pair is associated with each card. For each
inserted file, a file certificate is created which basically contains a hash of the file’s
content and is signed by the smartcard. Privacy is ensured by use of a cryptosystem
of the own choice while integrity is guaranteed by file certificates.

The use of smartcards makes key management fairly simple. There is no need to store
private keys on the local machine. As the paper mentions, one must nevertheless be
careful when dealing with smartcards. First of all, smartcards can be compromised
by resource-rich attackers. Further, they need to be replaced from time to time
since the certificates on the smartcard expire. And finally, many users do not have
smartcard readers for their desktop computers. Of course, it is legitimate to assume
future systems with support the use of smartcards widely. PAST does not make any
statements about how files can be shared and permissions on files can be granted
or revoked. Hence, there are no statements about access control and access control
mechanisms. Further, freshness of objects has not been considered.

3.6 Kangoo
Kangoo [64] is a distributed file system that operates on untrusted storage. The
core concept for security and access control is based on a data structure called
Cryptree [65]. The basic idea is to leverage the file system’s folder tree structure
for key management. The meta data consists of a set of keys, each used in different
situations. Cryptree follows the principle of lazy revocation, which means that a
former reader can still access files by keeping copies of the encryption keys until
the file has been written with a new key. A so-called clearance key allows to access
some part of the Cryptree, namely the file - or if the key refers to a folder all
subsequent sub-directories and files by only revealing one key. Cryptographic links
graphically represent the encryption keys. In principle, authorized readers are in
possession of a decryption key while proper writers hold a signing key. Those keys
change if readers or writers lose their permissions on a file or folder.

The fact that Kangoo uses lazy revocation at the cost of security is acceptable if one
considers the costs for re-encryption of all involved objects. In case that a reader
or writer loses its privileges, some of the keys need to be refreshed and updated.
On such an event, the new keys have to be distributed to all remaining entities.
Kangoo maintains an encrypted list for each user of the system which contains the
access keys to the Cryptree. Those lists need to be updated on a reader or writer
removal. In other words, if 1 out of n authorized entities is removed, n−1 lists need
to be updated with the new key and symmetrically encrypted. For large groups of
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readers or writers such a mechanism does not scale. The concept of groups is not
yet fully developed [66]. Moreover, although file storage and retrieval is based on
P2P mechanisms, Kangoo is not a fully decentralized application: There is a central
authority which performs access control on write requests. In Kangoo, the keys of
Cryptree belong to the meta data part of the file or folder. Readers must request
the latest identifier of a file or directory from the central server. Conversely, a writer
encrypts the payload of a file with a fresh secret key and contacts the central server
with the signed identifier of the file. The designated server only accepts the identifier
if it is properly signed. Replays of old write operations are not possible since they
contain a version stamp. The injection of old file versions on a read attempt can also
be prohibited by the designated authority since it always knows the latest version.
The Cryptree as a data structure could also be used in a decentralized system.
Although the concept of the Cryptree is artful, the designated server simplifies hard
problems of a real distributed reference monitor significantly. This thesis seeks for
means to eliminate the need for a central server.

3.7 Celeste
Celeste [61] is a self-managing, secure, massively distributed, random-access,
read/write data store with high availability properties. It maintains a list of
versions of an object where any version can be read, and the latest version can be
written. Reliability in Celeste is achieved through component redundancy, data
replication, and introspection processes. Broadly, security consists of methods
to protect both, the Celeste infrastructure and the data stored in the Celeste.
It intends to include security aspects like data encryption, authentication, key
management, authentication, serialization as well as authenticated, encrypted
communication between all components. Trust must be limited to the absolute
minimum in an efficient distributed system. Data encryption and authentication
through digital signatures provides a basis where only those components that
hold the relevant keys need to be trusted. Since confidentiality is achieved by us-
ing encryption, an adequate group key management scheme is about to be developed.

The white paper is not specific about the concrete measures regarding access control.
In particular, the group key management scheme is not described. Further, it is
not clear how write access control is performed. Since this thesis is carried out
in cooperation with Sun Microsystems Laboratories, the theoretic access control
schemes described in Chapter 5 will be partially implemented as a proof-of-concept in
Celeste. The implementation and performance analysis are then outlined in Chapter
6 and 7.
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Distributed Object Store

To properly describe access control, the functionalities of the underlying object
store and the representation of objects need to be addressed. First of all, the
requirements for an object store need to be listed, followed by the operations that
must be supported. Then, an abstract description of an object is given which
disregards the details of a particular implementation. Further, it will be necessary
to explain the different entities of the object store and their relationship. To
preserve generality, the system and objects are described abstractly, masking the
details that must be considered by an implementation.

The notion of an object store is different from the notion of a file system. File Object store vs.

file systemsystems are hierarchical: There are directories which can contain subdirectories and
files. The file system hierarchy is equal to a tree where the root of the tree is
the root of the file system. There are directory services which allow to navigate
over the directories and to query and retrieve sub-directories or files. In contrast,
an object store is flat. There is no notion of directories. It only consists of objects
distinguishable by their identifier. An object store is more general than a file system.

4.1 Requirements and Functions of an Object Store
An object store must handle two tasks:

1. Persistent storage of data and tolerance for a certain amount of node failures. Persistent storage

2. Efficient location and retrieval of data. Efficient retrieval

27
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Practical systems must fulfill both requirements in order to be reliable and efficient.

To identify objects unambiguously, each stored object must be assigned a globally
unique identifier (GUID). The generation thereof is left open to a concrete imple-GUID

mentation. Depending on the generation scheme, there are different implications
regarding security:

Self-verifying: The GUID is a hash of the object that can be used to verify the
authenticity of an object. An explicit authenticator is thus not required.

Verifiable: The GUID is not derived from the object, but there is a strong binding
between the identifier and the object, for example through a digital signature.

Derived: The GUID is derived by applying a function to some input values. To
restrict the range, some parameters can be fix, for example the user’s public
key. It prohibits the user from choosing identifiers arbitrarily.

Freely selectable: The GUID is chosen arbitrarily.

For the last three schemes, the content of an object needs to be protected by an
explicit authenticator. To guarantee a one-to-one relationship between a GUID and
an object, the object needs to contain the identifier. Otherwise, it is be impossible
to verify that a GUID matches the retrieved object. Without loss of generality
and to keep the complexity of the presented schemes as low as possible, this thesis
assumes that the object store uses self-verifying GUIDs17. As it is assumed that
identifiers can be uniquely generated, the abbreviation ID is used.

The object store must support the following interface:Object store

interface
• Retrieval of an object Obj given its identifier IDObj

• Storage of an object Obj with a certain identifier IDObj

If one tries to retrieve a nonexistent object, the system will return a NULL value.
Notice that deletion of an object is a desirable, but not a mandatory functionality.
One can argue that objects never have to be deleted as there is always sufficient
storage space. The precise techniques and mechanisms that lie behind an object
store system are subject of ongoing and past studies, some of them are mentioned in
Chapter 3. From an abstract point of view, it is not necessary to know how objects
are retrieved concretely. It is sufficient to assume the existence of such mechanisms
without considering the underlying details.

4.2 Network Architecture and Communication Channels
The object store is built upon an unreliable network. The topology of the network
is not known and can change at any time. Appropriate routing algorithms and

17Except for two special types of objects, as it will show in Section 4.5
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mechanisms are assumed to be in place to handle dynamic networks. The commu-
nication channels are asynchronous. There are no guarantees regarding how long it
takes for a message to arrive at some node. Messages can be lost or changed due
to channel noise. An adversary can eavesdrop a channel or manipulate messages on
the channel. Thus authenticity has to be guaranteed by digital signatures or MACs,
confidentiality by encryption.

4.3 Object Representation and Storage
The representation of objects within a distributed object store can be manifold. To
allow reasoning about access control, one needs at least a rough idea of how objects
are organized and structured.

An object Obj can be stored as a single block within the object store. This approach
is easy and straightforward to implement. Nevertheless, it can be more efficient to
perform operations on smaller parts and by decomposing an object into v blocks18:

Obj ≡ {obj1, ..., objv}. Object blocks

To maintain confidentiality, each block is encrypted using a symmetric key SKi
19:

Objenc ≡
{
{obj1}SK1

, ..., {objv}SKv

}
.

For brevity, an encrypted block {obji}SKi
will be written as objenc

i to indicate that
it is a cipher:

Objenc ≡ {objenc
1 , ..., objenc

v }.
One way of managing the keys is that each involved entity stores them locally or on
an external storage device. Since local devices can be compromised or destroyed,
it would require that keys are protected carefully. Most users do not want to care
about their keys and tend to handle them incautiously. For a large number of
objects, key management can be cumbersome. Whenever a block is encrypted with
a new key, the key needs to be transmitted to all involved entities even if some of
them are offline. For these reasons, it is best to store the keys SKi themselves in
the object store by suitable means. The presented approaches for access control
will use different mechanisms to protect the secret keys such that only authorized
readers can retrieve them.

Figure 4.1 illustrates the object layout schematically. For each encrypted block
objenc

i , the self-verifying identifier is computed as IDobji
= h (objenc

i ), where h is a
cryptographic hash function. The contents and the number of blocks can change
over time due to write operations20. It is hence practical to enclose all block
identifiers in a separate header object HObj that may contain further meta data. Header object

18In many cases, read or write operations only affect a small part of an object. Example scenarios

include object streaming or write operations that append blocks.
19Note that the secret keys SKi do not necessarily need to be distinct.
20For example, a write operation can override an existing block and thus require to generate a

new identifier for that particular block.
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For each encrypted block objenc
i , HObj contains one entry consisting of the block

identifier IDobji
and information about the key that was used to encrypt the block.

Additionally, the header contains a version counter vcObj which is incremented on
each write operation to the object. The identifier IDHObj

of a header object is
self-verifying. For efficiency reasons, there is an anchor object AnchorObj , whichAnchor object

consists of IDHObj
. It will be shown that AnchorObj needs to be treated differently.

The identifier IDObj that is associated with the anchor does not change over time
and can be interpreted as the “name” of an object. Read and write requests will
both use IDObj to access an object. The object layout can be compared to the
UNIX file system: HObj equals the concept of an inode, the blocks obji equal blocks
in the file system referenced by the inode, and AnchorObj is a reference to the inode
similar to an entry in a directory.

Figure 4.1: General representation of objects in the object store.

4.4 System Entities
The basic unit constituting the object store is called node. A node is one instanceNode

of the object store program. A physical device running n object store applications
thus represents n nodes. As mentioned in Section 4.2, there are neither guarantees
about how nodes are connected in the network nor how the network topology
changes over time.

The notion of an entity is frequently used as a general term for the distinct roles inEntity

the object store system such as owner, reader, writer or gatekeeper. In literature,
an entity can also stand for a process or a host.

Access control is always performed on behalf of an entity which is in possession
of a set of objects. That entity will be called the owner of an object. TheOwner

owner can select entities R = {r1, ..., rm} having the privilege to read an object.
Similarly, he can grant entities W = {w1, ..., wk} permission to write to an object.
An authorized reader will be abbreviated with ri while wj stands for a regular writer .Reader / Writer

The owner transfers his privileges to perform access control to a set of represen-



CHAPTER 4. DISTRIBUTED OBJECT STORE 31

tatives that act on behalf of the owner. This is necessary in case the owner is
offline. These representatives are referred to as gatekeepers G = {g1, ..., gn}. Each Gatekeeper

gatekeeper has a state and performs some operations upon request from another
entity. Only entities that are properly authorized by gatekeepers are allowed to
access objects.

Nodes which store objects or blocks will be referred to as storage nodes. Storage node

A node can play several roles at the same time. For instance, a node running a
gatekeeper can both store blocks of a particular object and act as authorized writer
simultaneously. However, there are different assumptions and requirements that
must hold for distinct types of entities, as will be explained in Section 4.7.

4.5 Retrieval and Storage of Objects
Although it is beyond the scope of this thesis to address algorithms and data
structures for retrieving and storing objects, it is nevertheless inevitable to discuss
certain aspects and assumptions thereof.

There are only two types of objects which have a non-self-verifying identifier. One is
the anchor object which was already introduced in Section 4.3. They are not stored
on storage nodes, but handled by gatekeepers and need to be treated specially. On
the other hand, there is a so-called witness object (cf. Section 5.10.1), which has
an identifier that is non-self-verifying but verifiable. For the remaining objects, the
identifier is a secure hash of the object. The goal is to stick to self-verifying objects
whenever possible since the computation and verification of self-verifying identifiers
is cheap21. First, the general case of self-verifying identifiers is considered before
explaining the treatment of other identifier types.

4.5.1 Self-Verifying Objects

When a store operation is about to be performed, a request of the following form is Storing

self-verifying

objects

issued:

[ID,Obj].

The object store selects storage nodes to hold the object persistently. A storage
node accepts the request if and only if the identifier is self-verifying by ensuring that
IDObj ≡ h (Obj). Similarly, if an object with identifier IDObj is read, the system
verifies that the object matches its identifier. If the secure hash of the object’s
content retrieved from the storage node does not match the proclaimed identifier, it
is likely that the storage node has maliciously altered the object’s content or changed
the identifier. With appropriate mechanisms in place, the corrupt storage node can
be banned from the system.

21The verification can be done by applying a secure hash function. In contrast, an identifier for

a witness object additionally requires the verification of a digital signature.
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4.5.2 Non-Self-Verifying Objects

Despite the fact that non-self-verifying identifiers are more expensive to compute,Storing

non-self-verifying

objects

they have some advantages over normal identifiers. On the one hand, the identifier
can be persistent, which means that it does not change over time. On the other hand,
the identifier can be independent of the content of the associated object. IDObj of
the anchor is such an example. It can be chosen arbitrarily or it can be the result of
a function, for example a hash of a human-readable filename and the owner’s public
key. The witness object in Section 5.2.4 is another example for a special type of
non-self-verifying identifiers called secure version identifier (SVID).

4.6 Secure Version Identifier
Self-verifying identifiers have the nice property that the ID allows to verify the
authenticity of the object’s content. In general, non-self-verifying identifiers do not
have this property. This section presents a novel and secure way how a non-self-
verifying identifier

1. Can guarantee the authenticity of an object and

2. Allows to determine the next version of the object by local computations.

This type of identifier is called secure version identifier (SVID). An object that isSecure version

identifier associated with a SVID must contain certain information explicitly:

• A public key PK of an entity.

• A version counter vc.

• An identifier or name IDName.

Unlike self-verifying objects, an object with an SVID needs to be signed with the
corresponding private key PK−1:

Objsig = {h (Obj)}PK−1

The identifier of the object can be computed as a function of PK, vc and IDName:

IDObj = h (PK, vc, IDName)

A storage request then consists of the triple:[
IDObj , Obj,Objsig

]
If the type of the object to be stored is declared as an object using SVID, a storage
node must perform some verifications before accepting the object:

• Retrieval of the first three fields in the object which are PK, vc and IDName.
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• Verifying that IDObj = h (PK, vc, IDName).

• Verification of the signature on the authenticator Objsig by applying PK.

If one of the verification steps fails, the store request is rejected. Verification on a
read request is analogous. The generation of IDObj allows to verify that the object
has been signed with the same key that was used to generate the identifier. The
version counter allows to distinguish between objects with different versions while
IDName separates distinct objects. An attacker is not able to forge an object since
he does not know the correct private key PK−1. Using a different private key for
either generating the object’s identifier or for signing the object will be recognized
by storage nodes. If a malicious storage node accepts a malformed store request, Unambiguous

link without

knowing object

content

the fraud will be detected when the object is retrieved later. SVID achieves the
desirable property of linking an object unambiguously to an identifier without
knowing the content of the object in advance.

Besides authenticity, SVID also allows to determine other versions of an object using
local computations. The version counter vc that is contained in the object and used
for the generation of the identifier can be incremented to determine the next object
version:

1. Compute ID′
Obj = h (PK, vc + 1, IDName).

2. Retrieve the object with ID′
Obj .

3. If no object with ID′
Obj was found, then the object with identifier IDObj is the

latest version. Otherwise, perform all verifications mentioned. Set vc := vc+1
and IDObj := ID′

Obj . Goto step 1.

Depending on the number of changes on the object, one can replace the linear Linear vs.

exponential

search

identifier traversal by an alternative search method, such as exponential search
where the version counter is set to vc := vc× vc.

Having a good understanding of the most important functionalities of an object
store, it is now necessary to discuss the abilities of an adversary. Since there are
different types of entities, it seems natural to think about the number of entities of
each category that can be compromised by the adversary without having an impact
on the security of the system.

4.7 Adversary Capabilities
An adversary can access objects on local nodes, read the contents (unless they
are encrypted) and modify them arbitrarily. He can also inject or manipulate any
messages in a protocol exchange. He can further change the code of the object
store that is running on the nodes he controls, for example by disabling the sections
dealing with access control. Therefore, nodes controlled by an adversary can behave
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arbitrarily malicious.

However, the capabilities of an adversary need to be limited. First, it is assumed thatComputationally-

secure

cryptography

cannot be broken

the adversary cannot break computationally-secure cryptographic schemes such as
RSA or 3DES. He can neither decrypt nor sign an object without knowledge of the
secret or private key. Otherwise, authenticity and secrecy can be broken. Second,
the overall number of malicious nodes needs to be restricted for each type of entity.

Assumption 4.7.1 From the set of storage nodes holding a replica of an object, at
least one storage node must be honest and available. This is, at least one storage
node does perform object storage properly and does not override or manipulate the
stored object maliciously.

Although authenticity of objects on storage nodes is guaranteed by the characteris-
tics of the identifiers, an adversary controlling all storage nodes can simply override
all objects with arbitrary data or even delete the objects. A reader would be able
to observe this manipulation, however the system is unable to recover the correct
version which would degrade the availability of the system.

Assumption 4.7.2 From a set of n gatekeeper nodes, at most t are allowed to be
malicious at the time, where t is the threshold of a (t + 1, n)-threshold secret sharing
scheme [18]. Conversely, at least t + 1 gatekeepers must be honest and available.

This assumption trivially emerges from the fact that a (t + 1, n)-threshold secret
sharing scheme is only secure against t malicious participants. The requirement
implies that t < n/2.

Assumption 4.7.3 The number of malicious gatekeepers t is bounded by t < n/4,
where n is the total number of gatekeepers that is assumed to be available all the
time.

A byzantine consensus protocol [41, 53] requires that t < n/3. As a consensus
protocol is chosen that allows an arbitrary input domain (cf. appendix A), the
requirement needs to be tightened to n < n/4. Since assumption 4.7.3 is stronger
than assumption 4.7.2, one can state that t < n/4 must always hold.

Assumption 4.7.4 As the owner is interested in securing his objects properly, the
owner is assumed to be honest and not compromised with respect to operations in-
volving his objects.

However, an owner is allowed to behave malicious regarding operations on objects
that do not belong to himself. If any of those assumptions is violated, access control
can be broken and data can be manipulated or deleted. Before discussing distributed
access control schemes, one has to bear in mind the general limitations of access
control as described in Section 2.7.



5
Distributed Access Control

This chapter analyzes access control mechanisms in a distributed environment on
the basis of an object store. The first section gives a short high level overview of the
system. Then, gatekeepers and read/write access control is discussed. Intermediary
sections highlight other important aspects of the system.

5.1 Introduction
The fundamental problem of a distributed object store is that there is no central
authority that can be consulted to decide on an access attempt. The object store
is in general untrusted and unreliable. The unpredictable behavior of peers requires
mechanisms which are flexible, but retain security at reasonable costs. This chapter
aims at examining, analyzing and evaluating different schemes for access control and
compare them to each other. For all schemes, the authority which decides on an
access request is distributed. A request must be approved by all honest participants
of the authority. Such a scheme allows a certain number of participants to be
arbitrarily corrupted without having any impact on the correctness of the protocols.
‘Corrupt’ means that the participants may inject faulty messages or values during
protocol exchanges or simply refuse to collaborate. This implies that the schemes
can tolerate a certain number of node failures which is relevant in a P2P setting.

35
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5.1.1 A Trivial Approach

So far, a schematic description of the representation of objects is given without
considering security. In general, objects need to be protected such that they
can be neither read nor written without proper authorization. A straightforward
way to protect objects is to use encryption and to append an authenticator. For
self-verifying objects there is no need for an explicit authenticator since authenticity
is achieved by the identifier. Read protection is ensured by the encryption while
modifications can be detected by the identifier. In case the object has been altered,
other replicas are retrieved until the authenticator is valid.

For each authorized reader of the group, the data is encrypted once with each
reader’s public key. When a reader wants to read an object, the appropriate data
part is decrypted. The approach does not scale for large groups of readers becauseScalability for

large groups the number of encryptions is linear in the number of readers. One can also think
of encrypting data with the same key for all readers. However, the problem is
then to transfer the key securely to the readers even if they are offline. On the
other side, it is necessary to detect improper write operations and to prevent them
from being realized. Cryptography provides little support for such functionalities.
It will be shown that it is a challenge to prevent an entity, which previously had
write permissions, from replaying old (and at that time authorized) write operations.

The schemes aim at minimizing the number of cryptographic operations on groupMinimize number

of cryptographic

operations

changes. The trivial approach implies that one can get by with a linear number of
operations, where linearity refers to the number of entities of a group. For large
groups, a linear number of cryptographic steps, even when using symmetric cryp-
tography, is normally infeasible.

5.1.2 Conceptual Overview

Before discussing various schemes for access control in peer-to-peer storage systems,
the conceptual design on which all described approaches are based on is outlined.
Chapter 4 explained the general layout of objects and which entities are involved.
Section 4.4 mentioned the roles that entities can play in the system. Gatekeepers
are introduced as representatives of the owner. Yet it is unclear how they behave
within the object store system. Section 5.2.1 states why gatekeepers are a necessary
prerequisite.

Many systems provide access control at the level of objects. This means that an
object has an access control list to which subjects can be added as Section 2.5.5 out-
lines. In traditional systems, the number of subjects within an ACL is usually quite
small. However, in a distributed system, objects can be shared among many entities
such that maintaining an ACL for each object is expensive regarding storage com-
plexity. It is more efficient to perform access control at the level of groups of objects.

Foremost, there is an owner entity who creates objects and stores them to the
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object store system. If those objects are intended to be shared among other entities,
they need to be assigned to a group. Being member of a group allows to read Gatekeepers

guard access to

groups of objects

or write to an object of the group, depending on the permissions granted by the
owner22. For each group, the owner selects a set of gatekeepers to control access.
Therefore, gatekeepers need to maintain a state to decide which access attempts
are authorized and which are not.

The owner is the only entity that has the competence to add or remove readers or
writers to a group. Hence all approaches implement a discretionary access control
(DAC) scheme. Gatekeepers serve as a distributed reference monitor guarding and
authorizing all access attempts.

To identify writing entities, the owner maintains an access control list (ACL) con-
taining all authorized writers of a group. Gatekeepers consult the ACL whenever a
writer accesses an object. This implies that a write operation is always executed via
the gatekeepers. A writer needs to issue write requests to identify himself towards
the gatekeepers. Gatekeepers need to execute an agreement protocol to ensure that
the write request is consistent for all honest gatekeepers. Figure 5.1 gives a rough
idea how the entities interact with each other.

Figure 5.1: A high level view of the interaction between system entities: owner,
reader, writer, gatekeepers and storage nodes.

The general idea of read permission is to allow readers to retrieve the decryption
key of an object if and only if the reader is authorized. Three different schemes are
presented which intend to minimize the number of cryptographic operations when
performing a read operation or changing the membership of the readers of a group.
It is essential that all keys are stored persistently in the object store to make them

22Based on those two basic permissions, other types of permissions can be derived such as append,

delete, change of meta data and so forth.
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available at all times. The three different schemes to manage the decryption keys
are: List-based, tree-based or sharing-based. In the first two approaches, read
access control is implicit by the fact that the decryption key is encrypted such thatImplicit vs.

explicit read

access control

only authorized readers can access the key. In contrast, the last approach requires
the gatekeepers to perform access control explicitly.

All schemes will make use of gatekeepers to guarantee recentness of retrievedRecentness of

objects objects. Readers should have the guarantee that the retrieved object is indeed the
latest one (cf. Section 5.2.2). Since gatekeepers are involved in write operations,
they also have the competence to identify the latest version of an object.

The structure of this chapter is as follows: First, it is described how gatekeepers are
initialized and how they perform access control. Then, important group operations
are discussed followed by write access control and the description of three different
read access control schemes. Finally, it is explained how to cope with issues related
to former readers23 and self-organizing gatekeepers before a performance analysis is
presented.

23A former reader is an entity that once had read permission on a group, but was then removed

by the owner.



CHAPTER 5. DISTRIBUTED ACCESS CONTROL 39

5.2 Gatekeepers
In the presented schemes, gatekeepers are the main component for access control
in a peer-to-peer system. The owner transfers his privilege of performing access
control on his objects to a set of gatekeepers. Access control can then be performed
even if the owner is offline. Gatekeepers serve as a distributed reference monitor Gatekeepers are a

distributed

reference monitor

and decide whether access to an object is authorized or not. Multiple gatekeepers
are chosen to tolerate faulty nodes, to minimize trust in a single peer and to be
resilient against t Byzantine gatekeepers. To decide on the validity of a write access
attempt, an agreement protocol needs to be executed. Depending on the outcome
of the agreement protocol, the access is granted or rejected.

5.2.1 The Necessity of Gatekeepers

In Section 4.4, gatekeepers have been introduced as a system entity. Assumptions
4.7.2 and 4.7.3 state the requirements regarding the number of Byzantine gatekeep-
ers. This sections explains why gatekeepers are a necessary requisite for performing
distributed access control.

A straightforward scheme requires all operations to be authorized by the owner.
The data to be written is sent to the owner who decides whether the writer is
authorized and then performs a store operation to update the object. Depending
on the scheme that is used, the owner can sign the new object to guarantee that he
approved the operation. Reading entities can then verify the signature and decide
whether the object was written legally or not. Furthermore, the owner has the sole
competence to know which object version is the current one. In such a scheme, the
owner serves as a centralized authority regarding his objects. Note that operations
would be deferred in case that the owner is offline. This is very impractical since
in general, one cannot assume the owner to be online all the time. The owner can
select a single peer to perform access control on his objects. The problem is then
that the selected peer must be fully trusted and that it has to be available all the
time. In a P2P system, such an assumption is not realistic. Therefore, the owner
transfers his privileges to perform access control to a set of representatives that act
on behalf of the owner. Those representatives are called gatekeepers, as they guard
the validity of write operations and possibly also of read operations24.

A natural approach to realize access control would be to send the signing key to
each gatekeeper. Although such a solution is simple and efficient, it is useless since
a single malicious gatekeeper can sign arbitrary operations, even unauthorized ones.
The owner would have to trust all gatekeepers to behave properly. While such an
assumption makes sense in a centralized environment where some authority can be
liable for its actions, it is not practical in a distributed setting. The nodes selected

24Read access control can be implemented implicitly through encryption by disclosing the keys

only to authorized entities, which means that gatekeepers do not explicitly perform read access

control.
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as gatekeepers and their real identity are not known a priori. Therefore, it is more
secure to require a certain amount of gatekeepers to jointly agree on the validity of
an operation and to mutually sign it. The owner creates a (t + 1, n)-secret sharingSharing of

signing key of the signing key and distributes key shares to all gatekeepers. The maximal
number t of Byzantine or faulty gatekeepers needs to be chosen properly. The
higher t is chosen, the more resilient access control can be performed. In contrast,
efficiency decreases since more gatekeepers need to be contacted on an operation.
To authorize an operation, at least t + 1 gatekeeper must mutually sign it. This
explains assumption 4.7.2.

Before a signature or store operation can be carried out, the gatekeepers must
ensure that all other gatekeepers agree on the same operation. If a malicious entity
could convince different subsets of gatekeepers to perform a write operation on
distinct data for the same object, the gatekeepers would be in an inconsistent
state. Hence, they execute a consensus protocol and authorize the operation that
all honest gatekeepers have agreed on. The necessity for a consensus protocol run
ultimately leads to assumption 4.7.3.

In the presented schemes, gatekeepers do not even need to make use of digital
signatures to authorize write operations. The validity of a self-verifying object is
guaranteed by the property that the object’s hash is equal to the identifier of the
object. If a reader receives at least t + 1 equal anchor objects from the gatekeepers,
it is guaranteed that it is a valid anchor and hence the authenticity of an object
can be definitely verified. Distributed signature generation is only necessary when
a non-self-verifying object needs to be written. Section 5.10 outlines that this is the
case for self-organizing gatekeepers which have to update the witness object jointly.

Note that the protocols state that there must be n gatekeepers available. This does
not imply that n is the total number of gatekeepers that were initially chosen by the
owner on group creation. The total number might be far larger than n (for example
n + m, 0 ≤ m), such that a certain amount of gatekeeper failures can be tolerated.
It is important that during a run of a consensus protocol, exactly n gatekeepers
participate. On one side, the efficiency of the consensus protocol is enhanced as the
number of participants is restricted to n. On the other side, the assumptions on a
consensus protocol no longer apply if the number of participating entities is larger
than n. Therefore, if more than n gatekeepers are available, it is inevitable that
the gatekeepers first agree which n gatekeepers participate in the protocol run. For
simplicity, it is assumed that m = 0 and that n gatekeepers are always available
(except for t malicious or failed gatekeepers).

5.2.2 Freshness of Objects

Freshness of objects is a crucial issue in an object store. Even latest researchFreshness =

improper write

operation

proposals do not address this problem although it is severe. Freshness of an object
guarantees that the retrieved object is indeed the latest version. Approaches that
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do not handle freshness properly implicitly allow improper write operations which
implies that access control fails to some extent.

Assume that an attacker can inject an old object version to a reading entity. If
there is no authority that the reader can contact to verify that the retrieved object
is the latest, the reader has no means to determine the replay attack. The reader
thus believes to hold the latest version. However, this implies that the attacker
could overwrite the current object by replaying an old one. Access control must
be able to prevent the replay attack to retain the semantics of a read operation.
Gatekeepers can be contacted by readers to get the latest ID of an object which
therefore renders replay attacks impossible.

Before explaining the details of the functionality of gatekeepers, a basic message
format is described. Whenever necessary, the presented approaches will extend or
modify the general format.

5.2.3 Message Format

The general message format is useful to keep the descriptions as simple as possible.
Messages are exchanged between gatekeepers and the owner, readers and writers.
First of all, each message contains a type field. That type allows to distinguish
messages that are used for different purposes. For example, a message for adding an
object to a group must be distinct from a message that aims at removing an object.
Since gatekeepers guard access to a group of objects, each message must contain an
identifier IDGroup. As distinct owners might choose the same identifier for one of
their groups, a group additionally needs to be distinguished by the owner’s public key
PKO. The public key also allows the gatekeepers to identify the owner and accept
changes to the group. To identify the sender of a message, the sender’s public key
PKS is included. Since messages can be replayed, a challenge c is provided. Then, Challenge against

replay of

messages

the actual data part of the message is added followed by a digital signature. Note
that if the owner equals the sender, PKO equals PKS . Figure 5.2 illustrates the
layout of a message.

Figure 5.2: The general message format consisting of a group identifier, the owner’s
public key, the sender’s public key, a challenge, the data part and a digital signature
of the sender.

The digital signature is a hash of the message that is signed with the sender’s private
key:

signature(m, PK−1
S ) = {h (m)}PK−1

S
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The challenge c is incremented in each message exchange. The receiving entity ver-
ifies the signature on the message and that the challenge was properly incremented.
In the following descriptions, only the data part of the message is listed which is rel-
evant for the request or response. The rest of the message is assumed to be created
and sent with the data part. Whenever some part of the message differs from the
default message format, it will be stated explicitly.

5.2.4 Gatekeeper Setup

The preliminary goal of an owner is to define a group to which objects are assigned.
Entities can play two roles within a group, namely reader or writer. Access control is
therefore at the level of groups, which means that groups have to be identifiable by
their own identifier IDGroup. For each new group, the owner chooses and initializes
a set of gatekeeper nodes G with the following steps:

1. The owner O creates a group identifier IDGroup such that there is no collision
with one of his existent group IDs.

2. O generates a public/private-key pair
[
PKR, PK−1

R

]
for the group of readers25.

3. The owner creates an ACLW and adds the public key PKwk
of each authorized

writer wk ∈ W (cf. Section 5.4). ACLW contains a version counter vcACLW

which is initially set to one and incremented on each update.

4. ACLW is stored in the object store after having computed the self-verifying
identifier IDACLW

.

5. O then creates a non-self-verifying object, called witness object ObjωG (see
Figure 5.3) with a secure version identifier. The witness object contains the
identifier26 and public keys of all gatekeepers and is stored in the object store.

6. The gatekeepers G are initialized with27

vcω, vcACLW
, IDACLW

, and PKR

where vcω and vcACLW
are version counters included in the witness object and

ACLW .

7. Since the initialization message of the owner could possibly be a replay mes-
sage, each gatekeeper retrieves the witness object and verifies whether it con-
tains his public key and whether the witness object is the latest one. Each
gatekeeper then replies with [IDωG , vcωG + 1] to the owner.

25This step is not necessary for the secret sharing-based approach described in Section 5.7. This

also applies to step 6 where PKR can be omitted.
26The identifier can be used to communicate with an entity. As for objects, the identifier for

entities is unique.
27Section 5.2.3 explained that IDGroup and PKO or PKS respectively are by default sent along

with the message.
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8. The owner verifies the signature of the gatekeepers’ reply messages to be sure
that the update was accepted.

Figure 5.3: The content of a witness object ObjωG. The owner’s public key PKO,
the version counter vcω, the group identifier IDGroup and PKNext are interpreted
as meta data while the subsequent list denotes all gatekeepers.

Observe that the owner does not yet pass any information about the readers during
the initialization phase except for the public/private key pair. Of course, such
information needs to be transmitted to the gatekeepers similar to ACLW . Since
different schemes are examined to manage large groups of readers, that information
will be added when describing those schemes. It will then also be explained where
PK−1

R is stored and how it is protected. The state of a gatekeeper can be summarized
as follows:

PKO and PKR: The owner’s public key PKO and the reader group key PKR.

AnchorObj , vcObj: There is an anchor and version counter for each object of the
group.

IDACLW
: The self-verifying identifier of the ACLW listing all authorized writers.

IDGroup: The group’s identifier.

vcω, vcACLW
: Version counters for the witness object and ACLW .

countergi: A counter for each gatekeeper gi which is used to prevent replay-attacks
during synchronization operations (see Section 5.2.6).

Since there is no need for generating a public/private-key pair and sending it to
the gatekeepers for the secret sharing-based approach described in Section 5.4, the
gatekeepers’ state does not contain PKR. Instead, there is an encrypted list of key
shares and share-shares for each block i belonging to an AnchorObj :

{s(i)
j , s

(i)
1,j , ..., s

(i)
n,j}enc : A list containing the jth share of block i as well as share-

shares of the other gatekeepers’ shares (cf. Section 5.4.4). The list is symmet-
rically encrypted with SKShares together with the other shares of the same
object.
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The secret key SKShares that is used to encrypt the shares is only known to the
gatekeeper. The reason for the encryption of the share list is that a gatekeeper can
be compromised. In such a case, the shares need to be protected instead of being
freely accessible. SKShares in turn is encrypted with the gatekeeper’s public key
and locally stored28. If a gatekeeper runs out of memory, he can choose to store the
encrypted shares in the object store and only maintain a reference to the object. For
simplicity, it is assumed that each object’s shares and share-shares are encrypted
together. Alternatively, one could choose to encrypt each block’s shares individually,
or conversely, all shares of all objects within a group.

5.2.5 Gatekeeper Localization

The problem of finding the set of active gatekeepers is a crucial issue in the system.
Each time the membership of the gatekeeper group changes, a new witness object
Obj′ωG

needs to be created. For entities interacting with the gatekeepers it is
mandatory to find out which gatekeepers have the authority to perform access
control. They can voluntarily or incidentally leave the P2P system or become
unavailable. In this case they need to be replaced.

One solution to find the new gatekeepers would be to ask the old ones. However,Former

gatekeepers can

be unavailable

this approach has several drawbacks. First of all, it is not guaranteed that old gate-
keepers are still alive. Secondly, even if they are available the number of malicious
gatekeepers could have been increased. This does not violate assumption 4.7.3 since
it does not include former gatekeepers. Therefore, one cannot assume a trustworthy
authority to be available to answer the question of the most recent set of gatekeepers.

Another solution out of this dead end is that each entity computes the witness
object’s identifier on its own, based on previous information. The witness objectComputation of

IDωG uses the secure version identifier explained in Section 4.6 which allows to determine
the next version of the witness object with local computations. The name identifier
IDName is set to the identifier of the group IDGroup to distinguish between witness
objects of distinct groups. Figure 5.3 shows that the witness object contains two
public keys: PKO and PKNext. For the computation of the next SVID, PKNext

is used, while PKO serves as the key to verify the digital signature on the current
witness object. Section 5.3.3 justifies why PKNext is necessary.

5.2.6 Gatekeeper Protocols

Gatekeepers always need to be up-to-date to agree on the validity of read or write
requests. Whenever a gatekeeper is temporary unavailable, he needs to synchronize
with the other gatekeepers when re-joining the group. The protocols to achieve
agreement among the honest gatekeepers are described in detail in this section. The
theoretical considerations are based on the theory of consensus protocols. Pease et

28The gatekeeper’s private key is assumed to be protected by a passphrase that is entered on

start-up.
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al. [53] proved that consensus can only be achieved if the number t of Byzantine
nodes is t < n/3, where n is the total number of nodes participating in the consensus
protocol. The precise consensus protocol can be found in appendix A.

Version Synchronization for List- and Tree-Based Schemes

Gatekeepers can be temporarily29 offline due to network, software or hardware fail-
ures. During the time in which a gatekeeper node does not participate in the actions
of the rest of the gatekeepers, information and updates can be lost. Whenever a
gatekeeper rejoins the group, he must ensure that his state is synchronized with the Synchronization

for rejoining

gatekeepers

other gatekeepers. This is done by contacting at most 2t+1 gatekeepers and request-
ing them to send all their information about a group. This includes all AnchorObj ,
IDACLW

, IDGroup, all version counters and countergk
for each gatekeeper gk. The

process of synchronizing the local state is as follows:

1. gj determines the current set of gatekeepers using the SVID. If gj does not
find his public key in ObjωG , he recognizes that he has been removed from the
gatekeeper group, clears all resources and stops the procedure.

2. Otherwise, he sends a message requesting the state of a group to at most 2t+1
gatekeepers30.

3. gk receiving such a request ensures that PKgj is contained in the witness object
and sends countergj to gj .

4. gj waits for at most 2t + 1 valid signed messages31, chooses the messages
containing the same values and then replies with a message consisting of

[countergj + 1, f lag].

The flag field indicates whether the state and its hash or only the hash of
the state should be transmitted. For efficiency reasons, only one gatekeeper
is requested to send both the hash and the state. For the gatekeepers that
do not belong to the 2t + 1 involved ones, the flag field states that countergj

should be incremented by one such that all honest gatekeepers’ counters have
the same value.

29Concrete implementations must define “temporarily” by some heuristics.
302t + 1 is a limit which will be mentioned in most of the following message exchanges. Since

it is known that t is the possible number of malicious gatekeepers, at most 2t + 1 signatures really

have to be verified. Maximally t of them can carry a distinct value, namely those of the corrupt

gatekeepers. Having 2t + 1 valid signatures allows to choose the value of the honest gatekeepers

which is simply the majority value. More than t invalid signatures indicate that there might be an

attacker modifying the transmitted messages. It mostly makes no sense to verify the subsequent

messages since it is likely that they were also manipulated.
31At most 2t + 1 since in the best case, already t + 1 are sufficient.
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5. gk verifies that countergj has been properly incremented. If this is the case, he
assembles his local state for the specified group. According to the flag field,
the gatekeeper either transmits the whole state or only the hash of the state.
Then, the counter is updated to countergj := countergj +1 and locally stored.

6. gj verifies at most 2t + 1 signatures and decides for the majority hash value
of the state. If the transmitted state’s hash equals the majority hash, then
gj has an up-to-date state. Otherwise, gj continues polling one single gate-
keeper at the time until a valid state is received. The polling messages include
countergj + 2.

One can observe that the protocol is complex regarding challenge-response rounds.
The reason is that the local state can be very large which makes a denial of service
attack quite straightforward. Although a message always contains a challenge c, the
gatekeepers send an additional challenge in form of a counter to ensure that the
messages coming from gj are no replays. Moreover, gatekeepers only accept polling
messages during a short time frame.

Version Synchronization for Sharing-Based Schemes

The protocol of the previous section needs to be adjusted for the sharing-based ap-
proach. The reason is that gatekeepers hold shares of the block keys. If the rejoining
gatekeeper missed a write operation, he does not know the writer’s key share. There-
fore, he needs additional information from the other gatekeepers, namely the suitableSynchronize

share-shares share-shares to reconstruct the full key share (details are explained in Section 5.4.4).
The previous protocol needs to be adjusted from step 4 on:

4. gj waits for at most 2t + 1 valid signed messages, chooses the messages con-
taining the same values and then replies with a message consisting of

[countergj + 1, f lag]

For the gatekeepers that sent the same value, flag indicates that the state
should be transmitted including their key shares for gj . For all remaining
gatekeepers, flag states that countergj has to be incremented by one such
that all honest gatekeepers’ counters have the same value.

5. gk verifies that countergj has been properly incremented. If this is the case, he
assembles his local state for the specified group. This also includes the share-
shares for each block i of an object: {s(i)

1,k, ..., s
(i)
n,k}. Additionally, gk picks the

jth share-share s
(i)
k,j of his own share for each block i such that gj can also help to

synchronize other gatekeepers. For the transmission, all shares are encrypted
with PKgj . Then, the counter is updated to countergj := countergj + 1 and
locally stored.
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6. gj verifies at most 2t + 1 signatures and decides for the majority hash32 value
of the transmitted states. Messages of gatekeepers which have an incorrect
hash value are discarded.

7. Having a correct state, gj needs to reconstruct his key shares for each block
of each object. From the correct replies of the gatekeepers, he decrypts the
key shares. To verify that a single share-share is correct, he must retrieve the
key share object (KSO, cf. Section 5.4.4) which is identified by IDKSO in the
header object for each block. Each share-share can be verified against the hash
value in KSO (red part of Figure 5.8). Invalid values are disregarded.

The main difference to the version synchronization for list-/tree-based schemes is
that the key shares need to be reconstructed using key share objects to verify authen-
ticity. This also has an influence on the performance of the version synchronization
(cf. Section 5.11).

Gatekeeper Nomination

The owner can occasionally conclude not to believe in at least n−t gatekeepers to be
honest. He therefore needs means to withdraw their authority and to replace them
by new gatekeepers. The owner removes the corresponding entries from the witness
object ObjωG and replaces them with the public keys of the new gatekeepers. He
increments vcω and files ObjωG to the object store. Next, he needs to inform both
old and new gatekeepers about those changes (except those which were removed
from the group of gatekeeper):

1. The owner requests the state from the gatekeepers following the description of
Section 5.2.6.

2. The gatekeepers which have been selected to join the group are initialized with
the state (cf. Section 5.2.4).

3. The owner sends to all gatekeepers a witness update message containing the
new witness object’s version counter vcω.

4. Since old gatekeepers are in possession of the old version counter vc′ω, they
only accept the update message if vcω > vc′ω. Otherwise, they detect the
replay message and discard the update.

5. As for the gatekeepers’ initialization, he receives [IDωG , vcωG + 1] from the
gatekeepers as confirmation for the update.

The next sections explain access control on a read or write request. List-based and
the tree-based write access control are identical, while the sharing-based scheme
differs slightly. First, the procedure used for the list- and tree-based scheme is
explained followed by the steps for the sharing-based approach.

32The hash of the state does not include the list of key shares.
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5.2.7 List- or Tree-Based Access Control

The list- or tree-based approach relies on the fact that the group of readers is in
possession of a reader group key, consisting of a public part PKR and a private
part PK−1

R only known to authorized readers. Before explaining how gatekeepers
perform access control, it is necessary to discuss the content of the header object.

Header Content for List- and Tree-Based Access Control

With regard to the structure introduced in Section 4.3, the base layout of an object
remains unchanged. However, some additional values need to be added for the
list-based approach to the header such that one entry consists of:

IDobji
, IDKLO, {SKi}PKR

where IDobji
is the identifier for block objenc

i , IDKLO is the identifier of a key
list object (KLO) that contains the key material and {SKi}PKR

is the secret key
encrypted with the readers’ public key matching the private key PK−1

R within
KLO. Note that IDobji

and IDKLO are both self-verifying identifiers.

Compared to the list-based header object, the content for the tree-based approach
only differs in the identifier IDKTO since the keys are now managed within a key
tree object (KTO) instead of a key list.

IDobji
, IDKTO, {SKi}PKR

Figure 5.4 illustrates the layout of the object header whereas IDKeyObj stands for
either IDKLO or IDKTO.

Write Access Control

For simplicity, it is assumed that a writer wk only writes to one particular block
obji. The general case where the writer operates on a set of blocks can easily be
adopted from the base case. A write request proceeds as follows:

1. A gatekeeper gj receives a request from a writer wk for a certain object with
identifier IDObj . This message does not need to be signed, but requires the
existence of a challenge.

2. Without verifying the writer’s identity, gj picks the object’s version vcObj and
sends to wk:

[PKR, vcObj ]

3. gj receives a write request from writer wk consisting of

[IDObj , SKenc
i , IDobji

, i, r]
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4. The gatekeeper gj ensures that his challenge from step 2 has been properly
incremented: r = vcObj + 1.

5. gj retrieves ACLW and ensures that it is valid by comparing it with identifier
IDACLW

. Then a lookup is performed to retrieve wk’s public key PKwk
. If

there is no entry for that writer, the request is aborted.

6. gj retrieves the current object header HObj and replaces the ith entry by

[IDobji
, SKenc

i , IDKeyObj ] 33

and updates the version counter within HObj to vcObj + 1. The ID′
HObj

of the
new header H ′

Obj is computed. Figure 5.4 illustrates the precise content of the
header object.

7. The consensus protocol A.1.2 is executed on ID′
HObj

.

8. Let IDresult be the return value of the consensus protocol. The anchor’s value
is updated to IDresult. If IDresult is equal to ID′

HObj
, then the new header

H ′
Obj is stored in the object store and vcObj := vcObj + 1.

Figure 5.4: The content of a header object which consists of the encrypted key of the
block and the identifier to the object that allows authorized readers to retrieve the
corresponding private key. IDKeyObj and PKR can be distinct for each entry.

At first sight it is questionable why there is a need for sending an additional
challenge in form of vcObj . The increased challenge r guarantees that the reply Two challenges

for both

directions

from the writer is fresh because write operations must refer to the current object
version. On the other side, the challenge c of the message guarantees the writer that
his communication with the gatekeepers is fresh.

33IDKeyObj is either IDKLO or IDKTO, depending on whether the scheme is based on key lists

or on key tree objects. IDKeyObj is an information that gatekeepers hold in their local state.
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Read Access Control

Gatekeepers do not have to perform read access control explicitly for the list- and
tree-based schemes. Readers invoke gatekeepers only to find out what the latest
IDHObj

of an object is. A request of a reader consists of the object’s identifier
IDObj and does not need to be signed by the reader. Gatekeepers will send back

[AnchorObj , IDKeyObj ].

5.2.8 Sharing-Based Access Control

In the sharing-based scheme, the gatekeepers’ task is to perform access control for
both writers and readers. As for the list- and tree-based approach, the gatekeepers
need to agree on a write operation before updating the anchor. The difference is
that they need also to manage keys explicitly. A writer distributes his key shares
on a write operation while readers need to retrieve those shares to reconstruct the
full key.

Header Content for Sharing-Based Access Control

Compared to the list-based or tree-based header object, the content for the sharing-
based approach does no longer require to maintain an encrypted secret key. Instead,
there is an identifier IDKSO to a key share object that allows to verify the authen-
ticity of received shares (cf. Section 5.4.4).

IDobji
, IDKSO

Figure 5.5 illustrates the layout of the header object while Figure 5.8 shows the key
share object.

Write Access Control

A writer needs to create shares of his secret key SK which are distributed to all
gatekeepers. Since authorized readers retrieve the shares from the gatekeepers, they
must have means to determine the authenticity of the shares. This is accomplished
by a key share object (KSO) for which the writer passes an identifier IDKSO. The
write access control procedure for a gatekeeper gj is as follows:

1. A gatekeeper gj receives a request from a writer wk.

2. Without verifying the writer’s identity, gj generates a new challenge c2 and
sends it to wk.

3. gj receives a write request from writer wk consisting of

[IDObj , IDobji
, {s(i)

j , s
(i)
1,j , ..., s

(i)
n,j}enc, IDKSO, i, c′2]
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Note that the share s
(i)
j and the share-shares are encrypted with the gate-

keeper’s public key PKgj .

4. The gatekeeper gj ensures that his challenge from step 2 has been properly
incremented: c′2 = c2 + 1.

5. gj retrieves ACLW and ensures that it is valid by comparing it with identifier
IDACLW

. Then a lookup is performed to retrieve wk’s public key PKwk
. If

there is no entry for that writer, the request is aborted.

6. gj retrieves the current object header HObj and replaces the ith entry by

[IDobji
, IDKSO]

Figure 5.5 illustrates the content of the header object. Next, the ID′
HObj

of
the new header H ′

Obj is computed.

7. The gatekeeper agreement protocol A.1.2 is executed on ID′
HObj

.

8. Let IDresult be the return value of the agreement protocol. The anchor’s
value is updated to IDresult. If IDresult is equal to ID′

HObj
, then the new

header H ′
Obj is stored in the object store. {s(i)

j , s
(i)
1,j , ..., s

(i)
n,j}enc is decrypted

and securely stored by encrypting it with SKShares of the gatekeeper.

Figure 5.5: The content of a header object which consists of references to blocks and
identifiers to the key share object (KSO) such that readers can verify the authenticity
of the retrieved shares.

One can think about the necessity of verifying that the shares’ authenticators are
valid by comparing them with the hash values in KSO. In fact, there is no need Should key share

authenticators be

verified?

for gatekeepers to perform such a verification. Although a writer could generate
some invalid shares and the gatekeepers would agree on a common object anchor,
the writer’s behavior can later be detected by a reader and the writer can be banned
from the system34. A reader would then assume that all bits in the corresponding

34To prove a writer’s malicious behavior, the writer must sign IDKSO to provide provableness

to 3rd parties. Since the presented schemes do not consider mechanisms for entity exclusion, the

writer’s signature is set aside.
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blocks are zero. Alternatively, if versions of objects are supported, an older version
could be accessed.

Read Access Control

A request of a reader rm to retrieve a particular object Obj consists of the object’s
identifier IDObj . A gatekeeper gj proceeds as follows:

1. gj performs an explicit challenge-response round35, retrieves ACLR and verifies
it against IDACLR

.

2. If PKrm /∈ ACLR then the request is aborted.

3. Otherwise gj sends to rm:

[AnchorObj , list
enc
shares]

where listenc
shares =

{[
s
(1)
j , ..., s

(k)
j

]}
PKR

with s
(i)
j being the jth share of block i

assuming that the object has k blocks.

In contrast to the tree-based approach, gatekeepers need to encrypt some part of the
reply message, namely the list of secret shares. In an efficient system, the gatekeeper
would generate a new symmetric session key to encrypt the shares and then encrypt
the session key with the reader’s public key.

35This means, that the reader creates a nonce and sends it to 2t+1 gatekeepers. The gatekeepers

in turn use the current version counter vcObj of the object as a reply challenge and send it to the

reader with the reader’s challenge increased by one. If the reader is indeed an authorized entity, it

can reply to the challenge with a signed message. Only if the reply was valid, the gatekeepers send

the anchor and all key shares as described in the following step.
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5.3 Operations on Groups
In the last section, the initialization of gatekeepers and their functionality has been
described. This section aims at explaining how changes to a group are carried out
and how gatekeepers need to be invoked.

5.3.1 Adding New Objects to a Group

An owner needs to add objects explicitly to a group. Section 4.3 already explained
how objects are structured and introduced the notion of an anchor object. When
adding an object to a group, the owner sends a message containing [AnchorObj , vcObj ]
to all gatekeepers, where vcObj is the version field contained in the header object.
The gatekeepers maintain a local storage which associates a group of an owner
with a set of anchors and their versions. They will only accept the anchor if the
sender equals the group’s owner and if the anchor for that object does not yet exist.
Removal of an object from a group is analogous to the process of adding an object.

5.3.2 Moving Objects Between Groups

Given two distinct groups A and B with an object Obj that has been assigned to
group A. An owner may decide to move Obj from A to B such that readers in group
B can access it and entities from group A cannot read the content of newly written
blocks from that time on. Unfortunately, entities in group B do and must not know
the keys of group A. Nevertheless, without the proper keys, the Obj is not readable
for members in B. To address this problem, one has to distinguish between the
list-/tree-based scheme and the sharing-based scheme.

Moving Objects in List- and Tree-Based Schemes

Readers of group B are not allowed to infer the keys of group A because otherwise,
they would be able to read all objects. There are two possibilities with different
complexity constraints.

NoIntervention The simplest way is not to perform any operation besides removing
Obj at group A and adding it to group B. As mentioned, readers of group B cannot
read the content of the object unless blocks are overwritten. Although this approach
is cheap, it does not meet the expected semantics of a read operation since some
blocks are likely to be unreadable (cf. Section 5.8).

Block Key Re-Encryption Another solution is to create a new header object. That
header object contains the same block references as the original one. However, the
owner decrypts all block keys of the old header by using his backdoor key and adds
them to the new header object encrypted with the latest PKR of group B. For
versioned objects, access to old versions is still impossible. However, the owner can
set the reference to the previous version to NULL and pretend that this is the first
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version of the object.

Although re-encryption of the block keys is linear in the number of blocks, it seems
more natural to follow this approach to achieve common-sense read semantics.

Moving Objects Using a Sharing-Based Scheme

Since the symmetric block keys are directly shared among the gatekeepers of A,
the owner can request the shares of all keys, reconstruct the symmetric keys and
re-share the keys among the gatekeepers of B. Readers in B can then access Obj
without having the knowledge to read objects in A.

5.3.3 Ownership Transfer

The process of transferring ownership of a group from an owner OOld to another
entity ONew requires two steps: Foremost, the members of the group must be
informed about the transfer of the ownership since the localization of gatekeepers is
based on the owner’s public key according to Section 5.2.5. Then, the gatekeepers
need to be informed about those changes and accept the entity ONew as the new
owner of the group.

In Figure 5.3, two public keys are depicted: PKO and PKNext. If the owner does
not change, PKNext is equal to PKO. Whenever OOld decides to transfer ownership
to ONew, PKNext is set to PKONew

. After having stored the new witness object,
the owner sends to each gatekeeper a message containing the version counter of the
new witness object and the public key of the new owner:

PKONew
, vcω

From that point on, only ONew can perform changes to the group. Entities that are
determining the latest witness object must use PKNext for the computation of the
next SVID.

5.3.4 Multi Ownership

In some situations, it is desirable to have more than one owner for a group. For
example, there might be several administrators that can add or remove subjects or
objects to or from a group. Hence, each of them needs to have the privileges of
an owner. Initially, all entities that want to belong to a group of owners need to
agree on a common public/private-key pair. That key pair is used as the owner’s
key. The gatekeepers do not recognize that the requests are issued from different
entities. From their viewpoint, the owner is one logical unit. Note that each entity
which is an owner has the authorization to transfer the ownership following the
explanations of the previous section. This allows to withdraw the ownership from
all other entities without their approval. Hence, entities willing to form a group of
owners must ensure that they trust each other and be aware of the possibility to
lose control over the group.
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5.3.5 Groups of Groups

In general, one can think of a hierarchical layout of groups such that being
member of some group implies being member of a certain number of subgroups.
A straightforward way is to handle supergroups like ordinary groups. This means
that each supergroup maintains an access control list and a key object if necessary
and is guarded by a set of gatekeepers. All access control mechanisms work as
explained in the previous sections. The gatekeepers of the supergroup can handle
all requests that affect objects which were added to that group. All requests to
objects of subgroups must be delegated to the responsible gatekeeper set. But there
are some difficulties that must be taken care of.

First of all, the owner must add all members of the supergroup to the access control
data structures of the subgroups. Let’s consider the example from Figure 5.6. A

Figure 5.6: A scenario for a hierarchy of subgroups.

writer w being member of group 1 must be added to ACLW of all subgroups. The
same holds for a reader of group 1. Conversely, a leaving entity must be removed
from all data structures of all subgroups. Therefore, changing reader or writer
membership of a supergroup is as expensive as the number of subgroups.

Secondly, consider an object ObjA which belongs to group n. If a member of
group 1 attempts to access ObjA, the request needs somehow to be directed to the
gatekeepers of group n because the gatekeepers of group 1 do not know the anchor
of ObjA. As in many cases, there is an insuperable trade-off between space and
time complexity. If access to an object should be efficient in time, the owner needs
to provide a mapping of object identifiers to witness object identifiers. On a request
to an object of a subgroup, the gatekeepers return the appropriate witness object
identifier. That identifier can be used to locate the gatekeepers of the subgroup36.
Unfortunately, the gatekeepers of the supergroup require to store the mapping
of all subgroups. Moreover, if the owner adds or removes an object to or from a
subgroup, all gatekeepers of the supergroups need to be notified.

To optimize the space complexity of gatekeepers, one can omit the mapping and

36Recall that the witness object of the subgroup might have changed. The returned identifier

might only serve as a starting point to locate the most recent witness object following the procedure

of Section 5.2.5.
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shift the problem of finding the appropriate gatekeepers to the requesting entity.
For that purpose, witness objects need to be extended with references to the witness
objects of their direct subgroups. Figure 5.7 illustrates the new layout. Coming

Figure 5.7: Witness objects in a hierarchical structure.

back to the example of Figure 5.6, a request for ObjA is rejected by group 1 since
ObjA is unknown. The requesting entity then needs to query the subgroups until
the responsible gatekeepers for ObjA are found. This approach is only feasible if
the overall number of subgroups is small.

Since hierarchies of groups are expensive, they should be avoided. It is sufficient toHierarchies are

expensive follow the observation from Section 2.8.1 which states that roles and groups are a
dual concept. In many cases, one entity has several roles which translates to: One
entity belongs to several groups. Each entity must be aware of its group memberships
and store this information locally. Entities then access the gatekeepers of a group
directly37.

37The problem of knowing the mapping of objects to groups is shortly addressed in Section 8.2.
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5.4 Access Control for Writers
In this section, the procedure of write access control from a writer’s point of view
is explained. The steps for a write are the same for the list-based and tree-based
approach. The sharing-based approach requires a different handling of the key ma-
terial. Before discussing the messages that are exchanged, it is briefly summarized
what the content of an access control list is, how it is constructed and how updates
can be performed on.

5.4.1 Access Control Lists

To perform access control properly, the owner needs to provide additional in-
formation. The owner can grant permissions on his objects at his discretion by
choosing the entities having privileges explicitly. He thus maintains an access
control list ACLW (cf. Section 2.5.5) listing public-keys or public-key certificates of
all authorized writers wk ∈ W . The owner can optionally add his own public key.

ACLW is stored in a replicated way in the object store using a self-verifying identifier
IDACLW

. Note that it does not make sense to encrypt the content of ACLW .
Although it can be desirable to hide the information of group membership, it is Why not

encrypting

ACLW ?

impossible to protect privacy by encryption in this case. Assume that ACLW is
encrypted and the decryption key is passed to all gatekeepers as each gatekeeper
needs access to the full AC list to verify whether a writer is authorized. Thus,
one malicious gatekeeper is already sufficient to reveal membership information. By
assumption 4.7.3, the number of Byzantine gatekeeper is usually larger than one. In
case that privacy of group membership is a critical issue, there is a more expensive
solution: For each writer, the owner initially creates a fresh public/private-key pair
and transmits it to the writer encrypted with his regular public key. The new public
keys are written to ACLW which is not encrypted. As long as the writer does not
announce his new public key, only the owner and the writer know to whom the new
public key belongs to.

5.4.2 Access Control List Update

Whenever a writer joins or leaves the group, ACLW needs to be updated. Updates
on ACLW are exclusively performed by the owner O:

1. O updates ACLW accordingly, increases the version counter vcACLW
by one,

computes IDACLW
and stores it in the object store.

2. The owner contacts all gatekeepers and sends

[IDACLW
, vcACLW

].

3. The owner receives the update confirmations of all gatekeepers in the form of:

[IDACLW
, vcACLW

+ 1].
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Gatekeepers only accept ACL updates that were sent by the owner of the group
and if vcACLW

is larger than the version counter that is locally stored.

As mentioned in Section 5.2.7 and 5.2.8, the procedure for write access control
depends on whether a list-/tree-based or a sharing-based approach is taken. The
two following sections explain the actions on a write request for both types of schemes
separately.

5.4.3 List- or Tree-Based Writer Access Control Procedure

When an authorized writer wk wants to commit his write operation, he needs to
convince all honest gatekeepers that he is authorized for that kind of operation:

1. Assume that a writer wk ∈ W has written a block obji of an object Obj.

2. wk generates a fresh secret key SK which is used to encrypt the written block
resulting in objenc

i .

3. The identifier IDobji
is computed and the block is stored in the object store.

4. wk finds the latest witness object ObjωG as described in Section 5.2.5.

5. To retrieve the group’s public key PKR, wk contacts 2t + 1 gatekeepers and
request PKR passing the object identifier IDObj . This message does not have
to be signed.

6. From a gatekeeper gj , the reply message consists of:

PKR, r

7. wk makes use of the PKR to encrypt the secret key:

SKenc = {SK}PKR

8. wk sets r′ = r + 1 and contacts all n gatekeepers passing:

[IDObj , IDobji
, SKenc, i, r′]

9. The writer does not need to take further actions as the process of storing the
block and header is done by the gatekeepers collectively.

The fact that all honest gatekeeper store a vcObj speeds up the process of writing
an object by n− 1 signatures. If each gatekeeper would choose a random number as
challenge, then wk would have to create n signatures to reply to all challenges. But
since all correct gatekeepers send the same vcObj , the writer only has to create one
signature.
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5.4.4 Sharing-Based Writer Access Control Procedure

The secret sharing-based approach requires to protect each single share by encryp-
tion. Encryption is necessary to guarantee secrecy for the transmission from the
writer to the gatekeepers. To guarantee authenticity of his shares, the writer creates
a key share object.

Key Share Object

The goal of a secret sharing in the context of access control is that authorized
readers can reconstruct the decryption key from the shares. The gatekeepers are
charged with holding the shares and only reveal them to proper readers. Since t
gatekeepers can be corrupted, they can also modify the stored shares. A reader
who operates on manipulated shares will finally reconstruct an incorrect key which
implies that decryption of data fails. Therefore, a reader must be able to verify
that the retrieved shares are authentic. This also applies to gatekeepers that are
executing the synchronization protocol in Section 5.2.6 which requires to reconstruct
the key shares from share-shares.

In principal, a writer can sign all his shares and share-shares individually with
his private key. The problem with this approach are the high costs for signature
generation and verification. A writer has to create n shares and n2 share-shares
which all need to be signed, where n is the number of gatekeepers. Even worse,
a reader which accesses an object with k blocks, where each block is encrypted
with a distinct secret key, has to verify at least tk digital signatures. For large
objects, this is computationally expensive. Therefore, the following approach KSO guarantees

authenticity of

shares

minimizes the number of digital signatures, but requires the existence of a key share
object (KSO), which allows to verify the authenticity of a single share or share-share.

A writer who has written a block i creates n shares s
(i)
1 , ..., s

(i)
n at polynomial eval-

uation points α
(i)
1 , ..., α

(i)
n for the secret key SKi. Additionally, the writer generates

share-shares38 of each share s
(i)
j , j = 1, ..., n:

s
(i)
1 → s

(i)
1,1, ..., s

(i)
1,n

...
s
(i)
n → s

(i)
n,1, ..., s

(i)
n,n

Then, the writer creates a key share object (KSO) which contains for each evaluation
point α

(i)
j the hash h(s(i)

j ) of the corresponding share s
(i)
j and the hash values of the

share-shares (red part of Figure 5.8). The self-verifying KSO does not need to be
encrypted or signed.

38For simplicity, it is assumed that the evaluation points are equal to α
(i)
1 , ..., α

(i)
n for the gener-

ation of the share-shares. Otherwise, the evaluations points need to be listed explicitly.
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Figure 5.8: The key share object (KSO) contains authenticators for the shares and
share-shares. For simplicity, the index i of the block has been omitted in the diagram.

Access Control Procedure for a Writer

Using the KSO, a writer can guarantee authenticity of his shares with a minimal
number of cryptographic operations. Only the messages to the gatekeepers need to
be encrypted and signed. Assume that a writer wk ∈ W has written a block obji of
an object Obj. The procedure to convince gatekeepers to accept the write operation
is as follows:

1. wk generates a fresh secret key SKi used to encrypt the written block, resulting
in objenc

i .

2. The identifier IDobji
is computed and the block is stored in the object store.

3. wk finds the latest witness object ObjωG as described in Section 5.2.5.

4. wk contacts all gatekeepers39. Each gatekeeper gj sends a challenge cj .

5. The writer creates a sharing of SKi, generates the KSO with identifier IDKSO

as described previously and files it to the object store.

6. For each gatekeeper gj , the writer computes

listenc
shares,j = {s(i)

j , s
(i)
1,j , ..., s

(i)
n,j}PKgj

7. wk contacts each gatekeeper gj passing:

IDObj , IDobji
, listenc

shares,j , IDKSO, i, cj + 1

8. The writer does not need to take further actions as the header is stored by the
gatekeepers collectively.

Gatekeepers include IDKSO into the header object such that readers can retrieve
the key share object (see Section 5.2.8).

39There is no need for signing this message as the only reason for the request is to obtain a fresh

challenge.
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5.5 List-Based Access Control for Readers
List-based access control is one of the simplest, yet quite efficient solutions to manage
the keys that readers need when accessing an object. Section 5.4 explains that
blocks are encrypted with a symmetric key SK while Section 5.2.7 mentions that
gatekeepers update the header object HObj . SK is encrypted with a public key
PKR of the group of readers.

5.5.1 Key List Object

The essential question is how keys need to be managed within a list such that the
number of cryptographic operations is minimal when changing reader membership
or when a reader accesses the list to decrypt a block. First, it is stated that there is
no pre-shared secret between the owner and a reader. Hence, at least one public-key
operation is inevitable per reader. The key list nevertheless tries to minimize the
number of public-key operations since they are significantly more expensive than
secret-key operations.

5.5.2 Reader Access Control Procedure Based on Key List Objects

The general idea of the key list object is to create a symmetric key for each reader
which is encrypted with the corresponding public key. Each secret key is then used
to encrypt the reader group key PK−1

R . Figure 5.9 shows the structure of a key list.

Figure 5.9: Structure of a key list object (KLO), where the first column contains
the encrypted secret key for each reader and the owner, the second column makes
the reader’s symmetric key accessible to the owner, and the last column contains the
reader group key encrypted for each reader.

As mentioned, there is no way to avoid one public key operation per reader. The
intent of the second column is to allow the owner to access each reader’s symmetric
key by only using symmetric cryptography. The last column contains the reader
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group key which is encrypted with the symmetric key of each reader.

During the gatekeeper initialization phase described in Section 5.2.4, the owner
creates the key list containing the entries for all authorized readers. The key list
with identifier IDKLO is filed to the object store. Similar to the access control list
for writers, IDKLO and vcKLO need to be transmitted to the gatekeepers and added
to their state.

5.5.3 Joining Reader

The owner can change the membership of the reader group by adding or removing
entries to the key list. For a joining reader rk, the owner creates a new secret key
SKrk

. That secret key needs to be encrypted using the reader’s public key PKrk
.

The owner will then use SKrk
to encrypt the reader group key PK−1

R . Since the
owner needs to have a backdoor to perform updates on the key list, he also encrypts
SKrk

using his own key SKO. As Figure 5.9 illustrates, the owner can access SKO

by using his private key PK−1
O . Finally, the owner sends

[ID′
KLO, vc′KLO]

to all gatekeepers to update their state accordingly and initializes the joining
reader with PKO, vcωG and IDGroup. From all gatekeepers, the owner receives
[ID′

KLO, vc′KLO + 1] as update confirmation.

5.5.4 Leaving Reader

As explained in Section 5.4.3, a writer makes use of the reader group key PKR

to encrypt the symmetric key that was used for encryption of the block. To
protect the content of future write operations, the owner needs to create a new
public/private-key pair [PK ′

R, PK ′−1
R ]. Then, he removes the entry from the key

list which belongs to the reader to be removed. The owner first decrypts SKO using
his own private key. For each entry in the key list, the owner decrypts all secret
keys of the backdoor column. Now having access to all symmetric keys, the owner
can use them to encrypt PK ′−1

R and add the encryptions to the last column. The
version counter vcKLO is incremented by one and the list is stored to the object
store using the new identifier ID′

KLO.

Next, the owner needs to inform the gatekeepers about this change by sending

[ID′
KLO, vc′KLO, PK ′

R]

to all gatekeepers. Each gatekeeper ensures that vcKLO is larger than the ver-
sion counter they are storing before accepting the update. The owner receives
[ID′

KLO, vc′KLO + 1] as update confirmation from all gatekeepers.
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5.5.5 Reader Access Control Procedure

A request of a reader rj can be described as follows:

1. rj finds the latest witness object ObjωG as described in Section 5.2.5.

2. rj contacts at most 2t + 1 gatekeepers requesting the anchor and IDKLO.

3. rj retrieves a valid header HObj which can be verified against IDHObj
of the

anchor.

4. If obji is about to be read, the reader retrieves a replica and verifies it against
IDobji

.

5. rj extracts the IDKLO from HObj of the ith entry and retrieves a valid key list
object.

6. Finding the entry matching the reader’s public key, the reader can first decrypt
the symmetric key SKrj before decrypting PK−1

R .

There is a subtle detail which is nevertheless worth to be mentioned. In step 2, the Why requesting

IDKLO?reader requests the anchor as well as the latest IDKLO. At first sight, this might
seem unnecessary since the header object HObj also contains an identifier ID′

KLO for
each block. The problem is that an authorized reader might be unable to read certain
blocks of an object since he might not have access to all key list objects. Section 5.8
will extend the key list and key tree data structures to solve this problem using the
latest IDKLO.
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5.6 Tree-Based Access Control for Readers
The tree-based approach tries to minimize the number of cryptographic operations
in the average case. The list-based approach is in the order of O(m) symmetric key
operations, where m is the number of readers within the group. Due to the property
of trees, the number of symmetric key operations can be decreased to O(log m) in
the average case. Operations are efficient even if m is very large. Open questions
include what information the tree nodes store, which entities can perform what kind
of operations on the tree, where the tree is stored and how it can be found.

5.6.1 Reader Access Control Procedure Based on Key Tree Objects

To handle group and key changes appropriately, an approach similar to group
key management in VersaKey [39] is examined. The basic idea is to provide a
tree-based key management scheme to realize efficient key updates. In VersaKey,
the root key is called traffic encryption key (TEK) while inner node keys are called
key encryption key (KEK). As opposed to VersaKey, the function of the root key is
similar to the other keys in the tree as it will also be used for encrypting other keys40.

Assume that an owner O shares an object Obj ≡ {obj1, ..., objv}. The keys which
are needed to decrypt the blocks have to be managed appropriately such that all
authorized readers R = {r1, ..., rm} can retrieve the content of the blocks efficiently.
The overall goal of the tree is that all readers share a private key PK−1

R which is set
as the root of the tree. The leaves of the tree consist of symmetric keys encrypted
with the readers’ public keys. A reader can then access the private key at the root
by finding the appropriate leaf and decrypt the path from the leaf up to the root.
The owner creates the tree in the following manner:

1. A backdoor key SKO is generated which is encrypted with the owner’s public
key PKO.

2. O generates m keys SKi for each reader ri as leaves of the tree.

3. A binary tree is built up by generating fresh secret keys SKi,i+1 for each i
where imod 2 = 0, such that SKi,i+1 is the parent node of the leaves SKi and
SKi+1.

4. The owner continues this procedure until the root of the tree is reached. The
root, in contrast to all other inner nodes, does not contain a symmetric key,
but the private key PK−1

R of the group.

5. The owner creates a so called key tree object (KTO) that contains the en-
crypted tree. Each SKi,i+1 is encrypted twice, once with his left child SKi

and once with his right child SKi+1. As the leaf keys do not have any succes-
sors, they are encrypted with the readers’ public keys. Since the owner needs

40However, the root contains an asymmetric key while the keys of the inner nodes and leaves are

symmetric.
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to perform updates on the tree, he also encrypts every leaf with his backdoor
key SKO. To allow a reader to find his encrypted leaf efficiently, the owner
can attach the reader’s identifier to a leaf or provide a lookup table.

6. The owner computes the self-verifying identifier IDKTO and stores the tree in
the object store.

Figure 5.10: The key tree containing the encrypted keys for read access.

Figure 5.10 illustrates the final KTO containing the encrypted keys. The pub-
lic/private key pair

[
PKR, PK−1

R

]
for the readers is called reader group key.

During the gatekeeper initialization phase described in Section 5.2.4, the owner
creates the key tree object containing the entries for all authorized readers. The
KTO with identifier IDKTO is filed to the object store. Similar to the access control
list for writers, IDKTO and vcKTO need to be transmitted to the gatekeepers and
added to their state.

5.6.2 Joining Reader

The key tree object KTO needs to be updated whenever a reader joins or leaves
the group. For the joining reader, new keys need to be generated and the leaf has
to be added to the tree. The rest of the tree should remain unaffected. All changes
on the KTO need to be announced to the gatekeepers by sending the new identifier
IDKTO with the version vcACLW

.
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An owner O can decide to add some reader rk to the group of readers R by adding
the reader appropriately to the KTO.

1. The owner O accesses his backdoor key SKO by using his private key PK−1
O .

2. For the joining reader rk, O creates a fresh secret key SKk.

3. SKk is encrypted twice, once with the reader’s public key PKrk
and once with

the backdoor key SKO. The two encryptions form a new leaf that is added to
the tree.

4. O decrypts the secret key of the parent node again using SKO via the other
child node and re-encrypts it with SKk. The new encryption is added in the
parent node of the new leaf. Then, the version counter vcKTO is incremented
by one.

5. O computes ID′
KTO, stores the KTO to the object store, an-

nounces [ID′
KTO, vc′KTO] to all gatekeepers and receives their confirmation

[ID′
KTO, vc′KTO + 1].

6. O transmits [PKO, IDGroup, vcω] to the new reader rk such that the reader
can retrieve the witness object ObjωG by computing the SVID.

5.6.3 Leaving Reader

When a reader rk is removed by the owner O, all keys on the path from the leaf
of rk to the root need to be replaced. This approach has been adopted fromWhich keys need

to be replaced

when a reader

leaves?

VersaKey [39]. For each inner node on the path, a fresh secret key is created and
encrypted with the two child keys (except for the leaving reader). For the root,
a new public/private-key pair

[
PK ′

R, PK ′−1
R

]
is generated such that the leaving

reader can no longer read the content of new blocks. To be able to update and
re-encrypt the new keys, the owner makes use of his backdoor key SKO. After
having incremented the vcKTO and the new identifier ID′

KTO has been computed,
the KTO is stored in the object store. O then announces [ID′

KTO, vc′KTO] to all
gatekeepers which send as confirmation [ID′

KTO, vc′KTO + 1].

Note that only the owner can remove readers. A reader that does not want to
participate in a group has no means to remove itself. Hence, the system does not
support voluntary leaves.

5.6.4 Reader Access Control Procedure

The access control scheme for readers is almost equivalent to the procedure described
in Section 5.5.5. Instead of retrieving a list, the key tree object is fetched and
decrypted appropriately.
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5.7 Secret Sharing-Based Access Control for Readers
In the last two approaches, a reader could access the secret key that was used for
block encryption by using the reader group private key. That private key was stored
in a key list object KLO or in a key tree object KTO and could only be decrypted
by authorized readers. Although that approach seems intuitive, it is not the only one
which is applicable. The following proposal no longer depends on the KLO or KTO
and secures the keys by sharing them among the gatekeepers. Although changes
on the KTO are in logarithmic dimensions, frequent changes on large groups will
finally sum up to a large number of de- and encryptions, including the generation
of public/private key pairs. In contrast, the secret sharing-based approach does not
require encryption of keys within a data structure, but aims at protecting the keys
by sharing them among the gatekeepers.

5.7.1 Access Control Lists

There is an access control list ACLW that contains all public keys of the authorized
writers W . However, the schemes for list- and tree-based access control did not
require an access control list for readers since access control was implicitly carried
out by the data structures that contained the encrypted reader group key. As
those data structures are obsolete due to the sharing approach, there is a need Why ACLR?

to explicitly list all authorized readers R in another access control list ACLR.
Optionally, the owner can add his own public key to ACLR to be an authorized
reader.

During the initialization phase of the gatekeepers in Section 5.2.4, IDACLR
and

vcACLR
need to be additionally passed to the gatekeepers. Those values have to be

stored persistently as the state of a gatekeeper.

5.7.2 Joining and Leaving Reader

The procedure for adding or removing readers follows precisely the description for
membership changes of writers in Section 5.4.2. Readers can be added to or re-
moved from ACLR at the owner’s discretion. After the update of ACLR, the
owner sends the new [ID′

ACLR
, vc′ACLR

] to the gatekeepers which is confirmed with
[ID′

ACLR
, vc′ACLR

+ 1].

5.7.3 Reader Access Control Procedure

Unlike the list- and tree-based approaches where read access control was implicitly
carried out by using a data structure for keys, it is essential to perform read access
control explicitly on the gatekeepers. A reader rj proceeds as follows:

1. rj finds the latest witness object ObjωG as described in Section 5.2.5.

2. rj contacts at most 2t + 1 gatekeepers requesting access to an object with
identifier IDObj including an explicit challenge-response round.
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3. rj receives replies with [AnchorObj , list
enc
shares] as outlined in Section 5.2.8.

4. The reader retrieves the header object HObj from the object store.

5. If a block i is about to be read, the reader extracts IDKSO, retrieves KSO and
compares the shares of the gatekeepers to their hash values in KSO. Invalid
shares are discarded, whereas the others are used to reconstruct the block
secret key.

Observe that since the challenge of the gatekeepers is vcObj , a replay attack is
possible as long as vcObj does not change. Although the attacker cannot read the
reply of the gatekeepers, it could have an impact on the availability of the system.
Concretely, many reply requests would force the gatekeepers to encrypt all keys
for the requesting reader every time which is computationally expensive. This is a
typical denial-of-service attack. There are basically two ways to handle such attacks:

1. The challenge vcObj is replaced by a real nonce generated separately by each
gatekeeper. This implies that a reader who issues a request has to generate
and verify more signatures since the replies of the gatekeepers are all distinct.

2. The gatekeepers maintain a cache that is periodically updated which contains
the last few replies. This also makes sense in case of a retransmission of
messages that are lost on the way to the reader.

Since denial-of-service (DoS) attacks are a general problem of all kinds of systems,
it seems reasonable to follow the original proposition. However, if it comes to a
choice between one of the two mentioned DoS-mechanisms, the first one should be
preferred. The reason is that the latter still allows a DoS attack which is directed
against the bandwidth of the gatekeepers.
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5.8 Read Semantics
Section 5.8 mentioned that reader might have problems to decrypt certain blocks
of an object while others in the group do not have this problem. According to
Section 2.8.2, an entity joining a group should immediately gain all permissions
of that group. Section 2.8.4 suggests that some permissions can be delayed in
distributed systems, such that a new member of a group does not necessarily have
all permissions instantly. Nevertheless, it is assumed that being added to a group
will eventually transmit all permissions to the new entity such that all members of
the group have the same privileges.

For writers, this is indeed the case. The owner updates ACLW and informs
all gatekeepers about this change. The new writer will immediately gain the
permissions that all other writers of the group have.

For readers, one has to distinguish once more between the list-/tree-based approaches
and the sharing-based scheme. For the sharing-based model, readers always have the
same permissions for the same reasons as writers: ACLR is immediately updated and
gatekeepers are notified about those changes. However, for the list- and tree/based
approach, this does not hold. For brevity, the term key object (KO) is used instead
of key list object (KLO) or key tree object (KTO).

Figure 5.11: Changes on the reader group membership and creation of key objects
as well as execution of write operations over time.

The problem is illustrated in Figure 5.11. Initially, readers r1, r2 and r3 join the Readers of a

group have

different read

semantics

group. Then, an object having three blocks is created and added to the group. All
blocks use the same key object for encryption of the block keys, which is indicated
by ID

(1)
KO having the same version (namely 1). Reader r1 is removed from the group.

Consequently, a new key object with version 2 is created. The next write operation
on block b2 will use the new key object with ID

(2)
KO. The identifiers of the other

blocks remain unchanged. Reader r4 joins the group before r2 is removed. Because
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the owner adds r4 to the key object, a new version is created. The same holds when
r2 is removed. Finally, a last write operation occurs on block b3, updating the key
object identifier appropriately. All blocks contain a different identifier for the used
key object.

• What happens if r3 attempts to read all three blocks b1, b2 and b3?

• What happens if r4 tries to read those blocks?

The behavior of a read access for r3 differs from the one of r4! Since r3 is member
of the group from the beginning, he can access all blocks since every key object
contains an entry for that reader. r4 can access b3 without any problems since at
the time when b3 was written, the reader was already member of the group.

Accessing b2 is complicated, but not impossible. Of course, if the reader uses ID
(2)
KO

as indicated by the object header, the read access will fail since version 2 of the
key object does not contain an entry for r4. Nevertheless, r4 can use ID

(3)
KO that he

received when he was added to the group. Although the version of the key object
is not correct, the reader group key is identical. Therefore, decryption of the block
key will succeed.

Unfortunately, reader r4 has no means to read b1. The key object with version 1 was
created long before r4 joined the group. Since there was no write operation on that
block, the key object was never updated. Hence, r4 will fail when trying to decrypt
the reader group key. As one assumes in general that entities do not maintain a
state, even b2 is unreadable. This leads us to the following proposition:

Proposition 5.8.1 In list- and tree-based access control schemes, a reader can only
read the content of blocks that were written after the reader joined the group.

Proposition 5.8.1 does not directly conflict with the requirements on groups in
Section 2.8.4. A reader will eventually be able to read all blocks since all blocks can
be assumed to be written after some time since the reader has become a member
of the group. Nevertheless, it is impossible to make any statement about how long
it takes until a reader has read permissions on all blocks.

That disparity of read access control is very unfortunate. In many cases, being able
to only read some small part of an object is useless. Therefore, it is desirable to
allow a reader to access all blocks from the time on the reader is member of the
group. The following sections will show how key lists and key tree objects have to
be modified to allow access even to old key objects.

5.8.1 Complete Read Access with Key Lists

The overall idea is to allow a future reader rk to access a key list which was createdLinking key lists

long before the reader joined the group. It is not possible that there is an entry
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which is encrypted with the reader’s public key PKrk
. But one can link the key

lists such that being able to decrypt one key list allows to decrypt all key lists with
older versions.

To make access to a key list as efficient as possible, the last column in Figure 5.9
which contained the encrypted reader group key now contains a reader secret key
SKR. That additional indirection allows a more efficient access to the previous key
list. The reader group private key PK−1

R is encrypted with SKR just like SK ′
R,

which is the reader secret key from the previous key list. ID′
KLO is the identifier of

the former key list. Figure 5.12 illustrates the new layout.

Figure 5.12: The key list extended with a reader secret key SKR that can be used to
access the reader group key PK−1

R and the previous reader secret key SK ′
R.

Since the secret key SK ′
R for the previous key list object allows direct access to the

previous reader group key PK ′−1
R , no public key decryption will be required when

decrypting an older key list.

5.8.2 Complete Read Access with Key Trees

The original layout of the key tree object in Figure 5.10 remains mostly un-
changed. Only the top of the tree has to be altered. The root of the tree is
no longer the reader group private key, but the reader secret key SKR. Like
for the key list scheme, SKR encrypts PK−1

R . As mentioned in the last section,
the additional indirection via SKR allows a faster access to a previous key tree
object by using symmetric-key cryptography. SKR encrypts the secret key of the
previous key tree object SK ′

R. Figure 5.13 shows the new layout of a key tree object.
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Figure 5.13: The key tree extended with a reader secret key SKR that can be used
to access the reader group key PK−1

R and the previous reader secret key SK ′
R.

Linking of key trees speeds up the process of decrypting the private key in an old key
tree object. A reader has to access the latest tree and perform O(log m) decryptions,
one of them being a public-key operation. But from that point on, all previous treesAccess to key

tree in O(1) can be decrypted in O(1) since SK ′
R allows direct access to the root of the tree.



CHAPTER 5. DISTRIBUTED ACCESS CONTROL 73

5.9 Protection Against Former Readers
The last three approaches for access control prevent readers from accessing data
that was written after read permission has been revoked. This is equivalent to a
scheme which encrypts the differences on an object since the reader left the group. Encrypting

differencesWhile being sufficient for most scenarios, it might be intolerable for certain security
sensitive applications. The goal of this section is to analyze mechanisms to prevent
readers from retrieving and accessing old data after the loss of read privileges. Former reader

Those readers are called former readers.

The following considerations disregard recent technologies like trusted computing
platforms and trusted platform modules (TPMs) [52]. Research in that area is
still very young and a lot of concepts are not well understood. Although TPMs
are already shipped with commercial computers, they are rarely used by software
applications. From a security viewpoint, a trusted platform would make a lot of
security related issues remarkably comfortable. As the ideas and implications of
trusted computing are not well understood, such technologies are not considered
further.

5.9.1 Perfect Solution and Feasibility

In a centralized system, revocation of read permission is fairly simple. The access
control information that resides at the central authority is changed which prohibits
all future unauthorized read attempts. In a distributed setting, revocation of read
permissions is more complex. The previous sections explained that read access
relies on the knowledge of a key that is only known to authorized readers. The goal
is to prevent a former reader from reading the content of an object when either the
object or the key is unknown to the reader41.

The straightforward solution proceeds as follows: The owner determines all objects
of the group which are affected by the leaving of a reader. He retrieves those objects
and decrypts their content followed by a re-encryption of all objects with a fresh
key that is unknown to the former reader. Then, he stores the newly encrypted
objects in the object store, issues a delete request to all storage nodes that were in
possession of the old objects and informs the gatekeepers with an update message.
The former reader then has no means to read the content of the object because he
does not know the key.

This simple solution has two major drawbacks regarding efficiency and security:
Security of the approach depends on how the blocks are distributed among the
storage nodes. Following the description of Chapter 4 where each storage node
holds an encrypted block of an object, deletion of the old objects might fail because
assumption 4.7.1 states that there is only at least one honest storage node. The

41Trivially, if the reader is in possession of both, the key to decrypt the object and the object

itself, decryption can be carried out without interaction with the object store.
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other storage nodes can be arbitrarily malicious and ignore the delete request which
in turn allows former readers to access old objects. Efficiency is critical because
the owner needs to retrieve all objects, de- and encrypt them and store them in the
object store. For many or large objects, such an approach is infeasible albeit of the
success of the delete operation.

The layout of an object does not necessarily have to follow the description of
Chapter 4. For example, the blocks could be further decomposed into fractionsFractions

using erasure codes or other techniques. If the rate of an erasure code is r, then r
fractions are required to reconstruct the full block. Assumption 4.7.1 needs then
to be adjusted such that at least r storage nodes are honest and available, but
there are always less than r corrupted storage nodes. Then, deletion succeeds since
the honest storage nodes follow the request while the number of fractions of the
corrupted ones is not sufficient to reconstruct the block.

Based on fractions, another idea is that the owner charges the storage nodes with
re-encrypting the fractions on their own. However, this solution results in a lot
of subsequent questions such as whether storage nodes should be able to read
the content of the fractions, whether they have to decrypt the fraction and if
so, how they know the decryption key. Moreover, erasure codes are in general
not information-theoretically secure such as a secret sharing scheme. This means
that even less than r fractions can reveal some information. One could also
think of applying a secret sharing to each block instead of using erasure codes.
Unfortunately, secret sharing schemes are not designed for sharing large secrets, for
example mega- or gigabytes of data.

The following sections only adjust the object layout slightly. The goal is to omit
delete operations and re-encryption of the data part of objects. Instead, the gate-
keepers are used to prevent access of former readers in conjunction with the encryp-
tion of some part of the object’s meta data.

5.9.2 Version Capabilities

In order to address the issue of a reader accessing an old version of an object, the
model for the object representation needs to be slightly adjusted. Header objects
contain a reference to the previous header similar to the linked key lists and key
trees from Section 5.8. The new layout is shown in Figure 5.14.

It is the gatekeepers’ responsibility to ensure that the chain of links is correctly
constructed on each write operation. The consensus protocol cannot be used
as previously described because a malicious king can force the acceptance of an
arbitrary value by sending the same value to all players42. Since gatekeepers must
ensure a correct linking, it is insufficient that honest gatekeepers update the anchor

42If assuming that the writer that initialized the write operation was malicious and distributed

distinct values to each gatekeeper
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Figure 5.14: Versioning of objects through back references to headers of former object
versions.

to some value, even if the value is equal for all gatekeepers43. For the layout in
Figure 5.14, this means that the king must send the information of all written
blocks to the other gatekeepers. Honest gatekeepers disregard the king’s values if
IDHObj

is incorrect. The size of the king’s message is in the order of the written
blocks which is inefficient if many blocks are written.

Alternatively, one can decompose the header object into two parts, whereas the
second part is called reference object RefObj . On each write operation, a new H ′

Obj Reference object

is created that maintains an additional reference linking to the HObj of the previous
write operation and one reference for RefObj . The consensus protocol is performed
on the content of the header object which are only two identifiers in the layout of
Figure 5.15.

Figure 5.15: Alternative layout for objects with version where the block references
are separated from the header object.

Note that the linking of headers only eases the way how old header objects are
accessed. In principle, a reader could also cache old anchors locally or start an
exhaustive brute-force search on all possible IDHObj

.

5.9.3 Former Reader in List- and Tree-Based Schemes

As explained previously, re-encryption of blocks itself is not feasible. Another in-
tuitive way to address the problem of obsolete read permissions is to encrypt meta

43In the original object layout, this was not a problem since a reference to an inexistent header

object is equal to overwriting all blocks with zeros.
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data. The best way is to operate on the header object. To be able to decrypt the
meta data, the header object itself needs a field for key information that has to be
added to the figures 5.14 and 5.15. Depending on the content of the object header,
one can draft two different schemes.

Full Header Re-Encryption

If taking the layout from Figure 5.14, there are two entries that are suitable to be
re-encrypted: The identifiers of the blocks and the secret keys. In the following
explanation, the secret keys are chosen to be re-encrypted. From a security point of
view, encryption of the block identifiers is equivalent. For a single object Obj, the
owner proceeds as follows:

1. The owner creates a new key object with reader group key
[
PK ′

R, PK ′−1
R

]
for

the group that the object belongs to.

2. The owner retrieves the latest header object HObj and extracts all encrypted
keys SKenc

i .

3. He decrypts those keys by using the private key indicated by the IDKO of
each block entry44 and re-encrypts all keys by using the new reader public key
PK ′

R.

4. If the system supports versioning of objects, the reference to the last header
object is also encrypted using PK ′

R.

5. The owner constructs the new header H ′
Obj with the encrypted keys SK ′enc

i and
the information for the latest IDKO, stores H ′

Obj in the system and updates
the anchor at all gatekeepers.

The leaving reader has no means to decrypt the secret keys of the object header as
he has been removed from the key list or key tree respectively. Although blocks are
not re-encrypted, the costs of the protocol are nevertheless remarkable. Let n be
the number of objects in the group and m be the maximal number of blocks of an
object. Then the costs are in the order of O (n×m) public-key operations.

Encryption of Link to Reference Object

The layout in Figure 5.15 allows to protect against former readers by only using two
encryptions per object. Since the block references are separated from the header
object, it suffices to only encrypt both references in the header object. A former
reader can then neither follow IDRefObj

nor IDHObj
. The costs reduce to O(n),

where n is the number of objects.

44IDKO stands for IDKLO or IDKTO depending whether the list- or tree-based approach is

taken.
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Analysis

Both schemes are equally secure, but differ in therms of complexity. Full header en-
cryption is more expensive regarding cryptographic operations. But from a reader’s
point of view, the encryption of the header speeds up access to an object because all
blocks are encrypted with the same public key. Although encryption of the reference
object is more efficient, a reader needs one additional fetch operation for RefObj .
Moreover, if the following assumption does not hold, both schemes fail to protect
against former readers:

Assumption 5.9.1 Neither malicious gatekeepers nor malicious readers cache the
identifiers or content of old object headers.

5.9.4 Former Reader in Secret Sharing-Based Schemes

Readers always have to contact the gatekeepers to obtain the suitable secret key.
This makes the solution trivial: Each gatekeeper always uses the latest ACLR to
determine whether a share should be revealed or not. This also holds if a reader
tries to access a key for which he was once authorized. Hence, even in the presence
of t malicious gatekeepers, the secret key will not be revealed and a read attempt is
bound to fail. Note that this mechanism is independent of the object representation.
There are no further costs to the protocol described in Section 5.7. The following
assumption must hold:

Assumption 5.9.2 The leaving reader does not have a local copy of one of the
secret keys.

The key could have been retrieved and cached when the reader was still authorized.
The assumption is somewhat equivalent to assumption 5.9.1, but does not depend
on the maliciousness of a single gatekeeper.

5.9.5 Conclusion

Since the secret sharing-based approach has no additional cost for protection
against former readers, it is more efficient than the list- and tree-based approaches.
Further, there are no additional changes needed regarding the structure of an
object. Gatekeepers only have to verify the authorization of a reader by inspecting
the latest ACLR.

The list- and tree-based solutions require either to change the layout of a header
object or to perform re-encryption of some part of all header objects of a group. For
groups with many objects, partial encryption of the header object is too expensive.
Another problem is the fact that a single corrupted gatekeeper can store information
and hand it out to malicious readers when requested to bypass the protection mea-
sures. Finally, many object store systems constantly move objects between peers to
ensure availability. One possibility is to follow references of objects starting at the
anchor which is impossible if they are encrypted.
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5.10 Self-Organizing Gatekeepers
The presented schemes implicitly assume that gatekeeper are long-living entities.
The owner can change gatekeeper members at his discretion as outlined in Section
5.2.6. For a peer-to-peer network where nodes can join and leave arbitrarily, the
assumption of long-living entities is crucial. In this chapter, the mechanisms that
allow gatekeepers to organize themselves autonomously without the intervention of
the owner are analyzed.

Recall that the public keys of all gatekeepers are stored in a so-called witness object
ObjωG as described in Section 5.2.4. Since the witness object is non-self-verifying,
the owner has to sign the witness object and compute the identifier in a specific
way (see Section 4.5). The owner could transfer the capability to sign the witness
object to every gatekeeper by sending the signing key. But a corrupt gatekeeperMutual

signatures could then sign and store any arbitrary witness object, which implies that the
scheme could not even tolerate one malicious gatekeeper. Hence, the problem
of creating a valid signature on the witness object without knowing the private
key has to be solved. Gatekeepers are in possession of a share of the private
key and partially sign the witness object. By executing a multi-party computa-
tion, the full signature can be reconstructed without ever computing the private key.

The second hard problem is to re-share the private key in a secure way such thatRe-sharing is

hard every gatekeeper does not gain additional information that would help to infer the
private key.

First, the procedure of generating a share of the private key is discussed, followed
by the verification of the correctness of a partial signature and the reconstruction
of the full signature. Then, the problem of creating new and correct shares of the
private key to add new entities to the group of gatekeepers is seized. Two blackbox
mechanisms are assumed to be in place:

1. One for detecting and deciding which gatekeepers are no longer available and
need to be replaced.

2. One to determine and jointly deciding for new gatekeepers that replace the
leaving ones.

The implementation of the two black box algorithms is far from trivial. Implicitly,
gatekeepers have to perform consensus protocol runs to agree on joining or leaving
members. Another crucial point is to avoid that the malicious entities convince
the group to accept a new entity that is also controlled by the adversary such that
assumption 4.7.3 fails. Those considerations lead to the the following assumption:

Assumption 5.10.1 There exist two methods:

1. LeavingGatekeeper() determines which members of the gatekeeper group are
removed from the witness object.
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2. JoiningGatekeeper() determines which entities join the gatekeeper group and
have to be added to the witness object.

Both protocols return sets of entities SetLeaving and SetJoining, with |SetLeaving| =
|SetJoining|. All honest gatekeepers that execute those methods will finally obtain the
same set of leaving and joining members.

The fact that those algorithms already achieve consensus regarding the membership
of the gatekeeper group implies that subsequent protocols do not have to involve
further consensus protocol runs.

5.10.1 Signature Key Sharing

For a new group of gatekeepers, the owner initially creates a public/private-key pair[
PKG, PK−1

G

]
. Then, he creates n shares di of the private key PK−1

G using Shamir’s
(t+1, n)-secret sharing scheme [18] and distributes share di to gatekeeper gi. As the
gatekeepers need to prove the correctness of their signature without revealing their
share, the owner needs to extend the witness object. The following considerations
closely follow the description of [40]. For each gatekeeper gi with private key share
di, the owner chooses a random number rgi and computes the witness ωi as:

ωi = rdi
gi

(mod n′)

where n′ is the RSA modulus of the public key PKG. Then, the entries of the
witness object consist of:

IDgi , PKgi , rgi , ωi, αi

where IDgi is the identifier of gatekeeper gi, PKgi is the public key and αi is the
x-coordinate of the polynomial share. The owner’s public key PKO needs to be
replaced by the gatekeepers’ public key PKG in the witness object since PKG is
used for signing ObjωG .

5.10.2 Signature Share Verification

To explain the procedure of shared signature verification, the notation common
for RSA is introduced. Instead of writing PKG for the gatekeepers’ public
key, one uses [n′, e], with both n′ and e being publicly known. n′ is known Common RSA

notationas the RSA modulus while e is the public exponent for encryption. The RSA
modulus is constructed by choosing two prime numbers p and q, p 6= q, such
that n′ = pq. The Euler function ϕ(n′) is computed as ϕ(n′) = (p − 1)(q − 1).
e is chosen such that gcd(e, ϕ(n′)) = 1. Similarly, the private key is replaced by
d, such that d×e = 1 (mod ϕ(n′)) [27]. The following approach is adopted from [40].

An entity A that tries to verify a partial signature of gi on a message45 m proceeds
as follows:

45For example, a message can be a hash value.
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1. A sends the message m to be signed to a gatekeeper gi.

2. gi partially signs m and sends back msig,i = mdi (mod n′).

3. A chooses two random numbers p, q ∈ ϕ (n) and creates a challenge c by
computing: c = mp × rq

i (mod n′), where ri is gi’s random number from the
witness object.

4. gi signs the challenge c using his shared key: csig,i = cdi (mod n′).

5. A checks that csig,i ≡ mp
sig,i × ωq

i (mod n′).

The equation holds since:

csig,i = cdi = (mp × rq
i )

di =
(mp)di × (rq

i )
di = mpdi × rqdi

i =
(mdi)p × (rdi

i )q = mp
sig,i × ωq

i (mod n′)

Observe that this scheme is possibly vulnerable against chosen-plaintext or chosen-
ciphertext attacks. The interested reader is referred to [59].

The reason why such a complicated verification of a partial signature is required isWhy verifying

the validity of

partial

signatures?

that one invalid partial signature suffices to corrupt the full signature reconstruction.
Since the number of malicious gatekeepers is t, the scheme intends to be robust
against t invalid signatures.

5.10.3 Signature Reconstruction

Assume that t + 1 valid partially signed messages [msig,1, msig,2, ..., msig,t+1] have
been received. From the witness object ObjωG , one can extract the appropriate poly-
nomial evaluation points {α1, α2, ..., αt+1}. Then, the coefficients of the polynomial
are:

ki =
t+1∏
j=1
j 6=i

αj

αj−αi
, ∀i ∈ [1, ..., t + 1]

Finally, the full signature on m can be computed:

msig =
t+1∏
i=1

(msig,i)
ki (mod n′)

The equation holds since:

msig = md (mod n′) = m
Pt+1

i=1 kidi (mod n′) =
t+1∏
i=1

(
mdi

)ki (mod n′) =

t+1∏
i=1

(msig,i)
ki (mod n′)
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5.10.4 Gatekeeper Signature Agreement

In this section, a protocol that allows the gatekeepers to create a full signature on the
witness object is outlined. For simplicity, the standard communication model with
a complete (fully connected) synchronous network of pairwise authentic channels
among the players is assumed. Assume that the gatekeepers have already decided Distributed

signature

generation

which entities need to be removed and added to the witness object. The protocol
for generating a full signature and storing the witness object is as follows:

Protocol 5.10.1 GatekeeperSignatureAgreement(ObjωG)

1. Determine SetLeaving := LeavingGatekeeper() and
SetJoining := JoiningGatekeeper()

2. Replace all entities in ObjωG which are in SetLeaving by the entries in SetJoining

to obtain Obj′ωG
and set vc′ω = vcω + 1.

3. Compute ID′
ωG

= h (PKG, vc′ω, IDGroup).

4. SendToAll([ID′
ωG

, h(Obj′ωG
), Obj′sig,i

ωG ]).

5. Wait for > t messages having an equal identifier and hash for the new witness
object and which carry a correct partial signature.

6. Compute the full signature Obj′sigωG and file the witness object to the object store.

7. Initialize the joining entities gj ∈ SetJoining with

PKG, IDGroup, vc′ω, SetJoining

and some keying material (see Section 5.10.5). The joining gatekeepers will
have to start the synchronization protocol of Section 5.2.6.

8. Return vc′ω.

The protocol will work if more than t honest gatekeepers are participating since the
reconstruction of the full signature requires at least t + 1 correctly signed messages.
No consensus protocol run needs to be executed. This is possible since the protocols
LeavingGatekeeper() and JoiningGatekeeper() implicitly achieve consensus.

5.10.5 Share-Share Generation and Distribution

If a gatekeeper gi becomes permanently unavailable, the owner wants to provide Why are

share-shares

needed?

means to other gatekeepers to transfer gi’s share di to a new gatekeeper gn+1. The
gatekeepers that participate in share distribution must not gain any information
about di. Otherwise, if t malicious gatekeepers would obtain a new share, they
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could reconstruct the private key on their own.

The procedure is the same as described in Section 5.4.4 where a writer created shares
and share-shares for his block encryption key. It is the owner who creates a KSO
for his signature key and who sends the identifier IDKSO to the gatekeepers during
initialization. The KSO only changes if the owner creates a new public/private
key for the gatekeepers and/or a new sharing of the private key. A version counter
vcKSO is added to the KSO such that gatekeepers only accept updates which have a
higher counter than the previous one. Note that the owner does not need to sign the
KSO because the object is self-verifying and all honest gatekeepers hold the same
IDKSO similar to the anchor objects. Joining gatekeepers can use the KSO to verify
the authenticity of the retrieved share-shares before reconstructing the share of the
signature key.

5.10.6 Ownership Transfer

As explained, witness objects are signed by a shared private key PK−1
G of the gate-

keepers. Section 5.10.1 already mentioned that PK in the witness object is set to
PKG instead of PKO. This change has also an effect on the ownership transfer
procedure of Section 5.3.3. ONew must replace the current gatekeepers’ signing key
by a new one which is unknown to OOld. Otherwise, OOld could create and sign
arbitrary witness objects. OOld must therefore set PKNext to the new public key of
the gatekeepers. However, that public key might be unknown to OOld. In this case,
PKNext is set to PKONew

. The first action of ONew is to create a new witness object
that contains his newly created PKGNew

and distribute the shares of PK−1
GNew

to
the gatekeepers. Besides, ONew can also choose to replace some gatekeepers.

5.10.7 Conclusion

The previous sections outlined how self-organizing gatekeepers would proceed to
create a valid signature on the new witness object and how to distribute the shares
to the joining entities. Unfortunately, the description of the share-share generation
and distribution has some major drawbacks. The assumption on the number of
malicious gatekeepers needs to be tightened:

Assumption 5.10.2 From the set of current and former gatekeeper nodes, at most
t are allowed to be malicious, where t is the threshold of a (t + 1, n)-threshold secret
sharing scheme. Conversely, at least t + 1 of the current gatekeepers must be honest
and available.

Note that the scheme could even tolerate more than t malicious entities over the
whole lifetime of the gatekeeper group if the joining and removing entities are both
malicious. Then, the joining entity would receive a share which the adversary
already has known. However, in the general case, it would also happen that an
honest gatekeeper is replaced by a malicious one. Assumption 4.7.2 and 4.7.3
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did not include the former gatekeepers. It was possible that a previously honest
gatekeeper has been offline for a long time and thus was removed from the witness
object. After that, the gatekeeper could have turned into a malicious entity without
any effect on security. The situation is now different since gatekeepers need to
mutually sign the witness object. If former gatekeepers keep their key share, they
can help reconstruct the full signature and then sign the witness object on their own.

One could demand that the JoiningGatekeeper() protocol would only select mali-
cious gatekeepers with negligible probability. A better solution would be to create a Other solution:

re-sharing with

3D polynomial

re-sharing of the secret such that the new shares are statistically independent of the
old ones. For further information, the description in [60] is recommended that uses a
three-dimensional polynomial and can detect malicious input. The protocol is com-
plex and includes broadcast primitives which results in high protocol costs (either
for the number of rounds or the number of messages). Although the scheme in [60] is
not discussed in this thesis, it is important to emphasize that such mechanisms exist.

An alternative to a re-sharing is a distributed RSA key generation protocol as
presented in [34, 35].

Despite the schemes of [60, 34, 35], the sharing and consensus protocol can still only
tolerate t malicious entities in the gatekeeper group at the time. Hence, the protocol
JoiningGatekeeper() nevertheless needs to select malicious gatekeepers with only
small probability.
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5.11 Complexity Analysis
The schemes presented in Sections 5.2 and 5.4 - 5.7 have different complexity con-
straints, which are examined in this section. This complexity analysis aims at count-
ing the number of cryptographic operations. The costs of a scheme vary for different
types of entities. The complexity of an operation is thus analyzed separately for read-
ers, writers, gatekeepers and the owner. For a compact representation of the tables,
the following abbreviations are used:

PKGen: Public/private-key generation.

PKEnc: Public-key encryption.

PKDec: Public-key decryption.

DSGen: Generation of a digital signature.

DSV er: Verification of a digital signature.

SKGen: Generation of a fresh secret key.

SKOP : A secret-key operation, which is either a de- or encryption.

Msgs: Number of exchanged messages.

Consensus: Execution of an agreement protocol.

Public-key de- and encryption have been separated since the costs of practical
algorithms vary for each of those functions. The same holds for signature generation
and verification. In contrast, symmetric de- and encryption is assumed to be equally
expensive which allows to accumulate both in a variable counting the number of
secret-key operations (cf. Table 7.1).

The complexity of store and block retrieval operations are not listed in detail as
it depends on the functionality and caching strategy of a concrete object store.
Therefore, it only makes sense to count the number of store and retrieve operations.
As the complexity analysis aims at determining the number of cryptographic
operations instead of the number of requests to the object store, a short summary
of those costs is given on the next few lines.

The gatekeepers need to fetch the most recent version of the access control list to
authorize writers and - only for the sharing-based approach - also readers. Further,
they have to retrieve the latest header object if it turns out that the write request
was authorized and store the agreed header after the consensus protocol run. For
frequent requests, it makes sense to cache this information to minimize latency and
save bandwidth.

Readers and writers both have to find the witness object to communicate with
the latest group of gatekeepers. In general, one cannot predict the number of
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retrievals to get the latest version. However, for every retrieved witness object one
digital signature needs to be verified. Let m be the average number of attempts to
fetch the latest witness object. Then m digital signatures have to be verified. The
owner does not need to search the witness object as long as gatekeepers are not
self-verifying since he stores the latest version counter vcObjω locally which allows
direct access to the latest witness object. Gatekeepers only have to retrieve the
witness object on an update of the owner or during the initialization phase and
verify its signature.

Finally, readers have to fetch the header object and the blocks which are in-
tended to be read. For the list- and tree-based schemes, it is further required
to retrieve the data structure that stores the encrypted keys. The number of
retrieve operations depends on the number of blocks that were written with
different reader group keys. If k is the number of blocks to be read, at most O(k)
fetch operations for the key data structures are necessary46. Since all key data
structures as well as ACLs are self-verifying, no digital signatures need to be checked.

In the following considerations, n defines the overall number of gatekeepers while
t is the number of corrupt gatekeepers, t < n/4. k denotes the number of blocks
which are read or written. For analyzing the complexity of group membership
changes, m stands for the number of entities that already belong to the group or
which are added or removed, depending on the context of the analysis. In the
average case, a constant number of entities c which is unrelated to m is assumed to
be added. Note that the complexity analysis does not consider loss of packets or
manipulation of packets which would force a retransmit.

The costs for the former readers has already been analyzed in section 5.9. Regard-
ing self-organizing gatekeepers, the costs are not analyzed in detail. However, the
complexity is in the order of O(tn) because consensus protocol runs are required.

5.11.1 Gatekeeper Operations

This section analyzes the complexity of operations and protocols on gatekeepers such
as the initialization of gatekeepers, the consensus protocol, version synchronization
and the nomination of new gatekeepers.

Gatekeeper Initialization

Before gatekeepers become operational, the owner needs to initialize them. The
initialization message consists of parameters relevant to the group. The costs for
initialization are one signature generation and n signature verifications for the

46Under the assumption that between two used key data structures, there is only a constant

number of unused data structures.
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owner47. Gatekeepers, only need one signature generation and verification. The
owner needs to transmit the initialization message to all gatekeepers. Table 5.1
gives an overview of the costs.

Entity DSGen DSV er Msgs

Owner O(1) O(n) O(n)

Gatekeeper O(1) O(1) O(1)

Table 5.1: Costs for the initialization of gatekeepers for the owner and for a gate-
keeper.

Since gatekeepers can verify whether the initialization message was a replay or not
by inspecting the corresponding witness object, the number of sent messages n is
minimal.

Consensus Protocol

Many operations require gatekeepers to communicate with each other and to decide
for a common value. This is done by a consensus protocol. In appendix A, the king
consensus protocol is explained. Since the message complexity is in the order of
O(tn2), the costs for signature generation and verification must also be in O(tn2)
for all gatekeepers and O(tn) for a single gatekeeper as depicted in Table 5.2.

Entity DSGen DSV er Msgs

Single gatekeeper O(tn) O(tn) O(tn)

All gatekeepers O(tn2) O(tn2) O(tn2)

Table 5.2: Complexity of the consensus protocol based on king consensus.

Version Synchronization

It might happen that a gatekeeper is temporary offline which implies that some
updates that happened on the other gatekeepers are lost. When the gatekeeper
recovers and connects to the object store system, it needs to synchronize with the
other gatekeepers as Section 5.2.6 suggests.

47As mentioned before, the creation and verification of the digital signature on the witness object

are not counted.
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Entity DSGen DSV er Msgs

Existing gatekeeper O(1) O(1) O(1)

Joining gatekeeper O(1) O(n) O(n)

Table 5.3: Costs for version synchronization of gatekeepers for joining and existing
gatekeepers in a list-/tree-based scheme..

List- and Tree-Based Synchronization Due to the gatekeeper counter countergj , the
number of digital signature generations can be reduced to a constant number be-
cause countergj serves as a common challenge for each gatekeeper. However, the
joining gatekeeper needs to verify the received signatures. The version synchroniza-
tion request is targeted at 2t + 1 gatekeepers. Since the joining gatekeeper totally
broadcasts 2t + 1 + n + t = n + 3t + 1 messages, the number of signatures to be
verified is also n+3t+1 which is in O(n). The last t in the formula emerges because
there might possibly be t additional polling messages to receive a proper state. Note
that the number of digital signature generations is still constant, namely 4, because
all polling messages contain the incremented counter. The existing gatekeepers have
to generate at most 3 messages and 3 digital signatures. Additionally, at most 3
digital signatures have to be verified. If no polling messages are needed, the constant
number reduces to 2.

Sharing-Based Synchronization In the sharing-based approach, an existing gate-
keeper needs to symmetrically decrypt the shares of all objects, where u denotes the
number of objects of the group. To decrypt SKShares, one public-key decryption is
necessary and one public-key encryption must be performed to secure the shares for
the transmission. A joining gatekeeper requires at most 2t+1 public-key decryptions
to access the shares and the precise number of messages is reduced to n + 2t + 1.
Table 5.4 summarizes the costs. Note that the verification of the share-shares does
not require cryptographic operations since only hash values have to be compared.

Entity PKEnc PKDec DSGen DSV er SKOP Msgs

Existing gatekeeper O(1) O(1) O(1) O(1) O(u) O(1)

Joining gatekeeper - O(t) O(1) O(n) - O(n)

Table 5.4: Costs for version synchronization of gatekeepers for joining and existing
gatekeepers in a sharing-based scheme..
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Gatekeeper Nomination

The nomination of new gatekeepers according to Section 5.2.6 involves the owner
and the new as well as the existing gatekeepers. Let m be the number of joining gate-
keepers and n, as before, the number of existing gatekeepers. Then the complexity
for nominating new gatekeepers can be determined as outlined in Table 5.5.

Entity DSGen DSV er Msgs

Owner O(1) O(n) O(n)

Existing gatekeeper O(1) O(1) O(1)

Joining gatekeeper O(1) O(1) O(1)

Table 5.5: Complexity of gatekeeper nominations.

To be more precise, the joining gatekeepers only have to verify 2 digital signatures
of the owner: One for the initialization message and one for the state update
message. The existing gatekeepers have to create maximally 4 digital signatures
to respond to the owners state request and to confirm the update and to verify
at most 4 signatures of the owner, 3 because the version synchronization protocol
is carried out and 1 because of the update message of the owner. The precise
number of messages for the owner is computed as follows: n + 3t + 1 messages are
required for the synchronization protocol followed by m messages to initialize the
joining gatekeepers and a broadcast of n messages for the witness update on all
gatekeepers, which is in O(n). The complexity for the sharing-based gatekeeper
nomination is analogous.

In the following sections, the complexity for changing group membership of readers
for each scheme is analyzed. Recall that it is the owner that has the sole competence
to add or remove entities to/from one of his groups. The notification of all n gate-
keepers always has a message complexity of O(n), and requires only one signature
to be generated and n to be verified for the update confirmation. The reason is that
each object has a version counter. That version counter can implicitly be used as
a challenge-response mechanism. Gatekeepers only accept updates where the new
version is higher than the last one, thus injections of old update messages will not
succeed. If not mentioned otherwise, those costs are silently assumed to be added.

5.11.2 Changing Group Membership Using List-Based Access Control

The list-based scheme from Section 5.5 contains an entry for each authorized reader.
Each entry consists of three parts: The first entry is the reader session key encrypted
with the reader’s public key, the second entry is the owner’s backdoor to the reader’s
session key and the last entry is the reader group private key encrypted with the
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session key. Since the list is a trivial data structure, it holds that the best case
equals the average case equals the worst case.

Adding Readers

The costs for adding readers is linear to the number of added readers m. Table 5.6
depicts the costs for adding readers.

Nr. Readers PKDec PKEnc SKGen SKOP

m O(1) O(m) O(m) O(m)

Table 5.6: Complexity for adding readers to a group using the list-based approach.

The number of public-key decryptions is 1 since the owner needs to access his secret
key SKO to be able to decrypt the reader group private key. Since for each reader, a
new secret key needs to be generated and encrypted with its public-key, the number
of secret-key generations and public-key encryptions is m. The number of secret-key
operations is 2m because the owner needs to establish the backdoors.

Removing Readers

In contrast, removing readers is proportional to the number of remaining readers in
the list. Given that the number of readers is m before the removal of entities, the
costs of removing some number of entities is given as in Table 5.7.

Nr. Readers PKGen PKDec PKGen SKOP

1 O(1) O(1) O(1) O(m)

c O(1) O(1) O(1) O(m)

m/2 O(1) O(1) O(1) O(m)

Table 5.7: Complexity for removing readers from a group using the list-based ap-
proach.

If only one reader is removed, exactly 2m− 1 secret-key operations are required as
the owner needs to decrypt m− 1 backdoor keys and encrypt the new reader group
key m times for all remaining readers and once for himself. If the number of removed
readers is m

2 , then m + 1 secret-key operations must be carried out. For a constant
number c, the number of secret-key operations is 2(m− c) + 1. Hence, the number
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of secret-key de- and encryptions is proportional to the number of remaining readers
which is in O(m).

5.11.3 Changing Group Membership Using Tree-Based Access Control

The analysis of the tree-based approach is not as trivial as for the list data structure.
Since the tree can - in the worst case - be less efficient than the list, it is required
to analyze best, average and worst case behavior of the tree separately. First, the
complexity for adding a certain number of readers to the tree is considered. The
costs all refer to the owner since the owner is the only entity that can change group
membership. The second row uses for the number of readers a constant c. This is
realistic since it is rarely the case that the number of added or removed readers is
proportional to the number of existing readers, therefore c is independent of m.

Adding Readers

In general, the cryptographic operations needed when adding readers to the group
is proportional to the number of added entities as shown in Table 5.8.

Nr. Readers PKDec PKEnc SKGen SKOP

m O(1) O(m) O(m) O(m)

Table 5.8: Complexity for adding readers to the key tree.

The number of generated secret keys and the number of secret-key operations is
in the order of O(m), m being the number of added entities, since in general,Tree requires m

additional SKOP

and 2× SKGen

than list

a new subtree for the joining readers needs to be created. Consequently, given
m readers, the space complexity of the tree is in O(m). Because the focus
lies on a practical approach, it is also worth to describe the precise number of
secret-key generations and secret-key operations. If the total number of joining
readers is given by m which form the leaves of the tree, then the total number
of nodes including the root and the leaves is 2m − 1, which is also the number
of secret-key generations. Since every inner node is symmetrically encrypted
twice and since the owner encrypts the the leaves with his own secret key SKO,
the total number of symmetric encryptions is 2(m − 1) + m + 1 = 3m − 1.
One has to be added because the owner needs to decrypt the parent node of
the subtree. This means that the key tree needs m additional secret-key opera-
tions and twice as much secret-key generations compared to the list-based approach.

If the existing tree has some unused branches, there is no need for a full creation
of a subtree. An algorithm that aims at creating a balanced tree would use those
free branches to add new readers. If there are m readers to be added, exactly m
secret keys would have to be created followed by m log m symmetric de- and 2m
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Figure 5.16: The key tree optimized for the number of computations by encrypting
all inner nodes with the owner’s secret key SKO.

symmetric encryptions resulting in totally m (log m + 2) symmetric-key operations.
The decryptions are necessary because the new leaves need to encrypt the key of the
parent node which first has to be decrypted starting at a leaf node. Although the
number of encryptions is equal to the list-based scheme, the decryption of the nodes
makes the tree still behave worse than the list and worse than a full subtree creation
as mentioned above. If the tree is modified as Figure 5.16 suggests where each
inner node is additionally encrypted with the owner’s secret key SKO, the costs for
decypting an inner node becomes constant instead of log m, which reduces the total
costs for decryption to m instead of m log m. The total number of cryptographic
operations sums up to 3m, which equal to a full tree creation. The asymptotic costs Tree needs 1

3

more storage

space than list

remain the same as depicted in Table 5.8. Note that in the optimized tree in Figure
5.10, more space is needed, namely 6m − 3 instead of 4m − 2. This is significantly
more than for the list which needs 3m + 2 entries.

Removing Readers

Since the tree is worse than the list when considering joining readers, one would
expect some advantages for the removal of readers in the average case. Let’s start
with a worst case scenario. In the worst case, every second reader is removed from
the tree. Table 5.9 gives an overview of the worst case analysis.
Again, for practical reasons it is interesting to stick to a precise number of operations
instead of using the O notation. For one reader, log (m

2 ) secret-key generations, Tree is better

when removing

one reader

1
2 log m (log m + 1) symmetric decryptions and 2 (log m− 1) symmetric encryptions
are required. The tree already behaves significantly better than the list with
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Nr. Readers PKDec PKGen SKGen SKOP

1 O(1) O(1) O(log m) O(log2 m)

c O(1) O(1) O(m) O(m)

m/2 O(1) O(1) O(m) O(m)

Table 5.9: Worst case complexity for removing readers from the key tree.

more than eight readers when only removing one entity. In the worst case where
half of the readers is removed, all secret keys need to be replaced and encrypted,
resulting in m− 2 secret-key generations, m

2 symmetric de- and 3
2m− 2 symmetric

encryptions, which yields in totally 2m − 2 symmetric operations. The list-based
approach needed m + 1 secret-key operations and no secret-key generations.Tree requires 2×

more SKOP than

list

Hence, when removing half of the readers, the list-based scheme is better than the
tree-based approach. Note that the tree in Figure 5.16 even increases the number
of encryptions such that the total number of symmetric encryptions is 2m and the
total number of symmetric operations sums up to 5

2m. Table 5.10 shows the costs
for the best case scenario.

Nr. Readers PKDec PKGen SKGen SKOP

1 O(1) O(1) O(log m) O(log2 m)

c O(1) O(1) O(log m) O(log2 m)

m/2 O(1) O(1) - O(log m)

Table 5.10: Best case complexity for removing readers from the key tree.

Since the height of the tree is logarithmic in m and since removal of an entity
is proportional to the height of the tree, all operations also become logarithmic.Best case for tree

is logarithmic This is a significant improvement compared to the list which was in O(m). Let’s
examine the values in detail. While the complexity for the removal of only one
reader remains unchanged, the costs for removing a constant number and half of
all readers has been drastically reduced. First, observe that the best case for the
removal of readers is when all readers form a subtree such that it suffices to remove
the branch to the subtree. Hence, removing half of all readers is equivalent to
removing either the left or the right child of the root note. Since no reader knows
one of the secret keys of the opposite subtree, there is no need to generate new
secret keys. The number of secret-key operations is in O(log m) since the owner
needs to decrypt a path from a leaf to the root to re-encrypt the new reader group
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key at the root. If c readers are removed, then there is a need to generate log(m
c )

secret keys because the subtree with the c leaving readers can be removed. The
number of symmetric operations consists of 1

2(log m (log m + 1)− log c (log c + 1))
symmetric de- and 2 log(m

c ) symmetric encryptions which is in O(log2 m).

When using the extended tree from Figure 5.16, the best case complexity can be
further reduced to a constant or logarithmic size as Table 5.11 indicates. The
reason is that the owner has a backdoor at each node which makes logarithmic
decryptions unnecessary.

Nr. Readers PKDec PKGen SKGen SKOP

1 O(1) O(1) O(log m) O(log m)

c O(1) O(1) O(log m) O(log m)

m/2 O(1) O(1) - O(1)

Table 5.11: Best case complexity for removing readers from the extended key tree of
Figure 5.16.

Figure 5.17: Three situations for removing a constant number of readers for N = 16:
a) two removed readers, b) four removed readers, c) eight removed readers. The blue
node denotes the point where the path of two neighboring removed readers intersect.

Since it can be assumed that the best case and the worst case are very rare, it
is more interesting to reason about the average behavior of the tree if a constant
number of readers c is removed. This means that, in the average case, every (m/c)th

reader is removed which is equivalent to removing every (m
c )th leaf of the tree. For

simplicity, c is assumed to be a power of 2 and c 6= m. Since an upper bound in
the average case is of interest, the leaves are chosen to be removed such that they
have a maximal distance to each other with respect to the parent node where the
paths of the leaf nodes meet. Figure 5.17 illustrates this situation for m = 16 and
c = 2, 4 and 8. A blue node represents the first common parent node of two leaves.
The number of subtrees is c

2 and the distance between two leaf nodes in a subtree
is 2m

c including the two leaves that are removed. Let’s first consider the complex-
ity of the part of the tree which is above the blue nodes. This part is called supertree.
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The supertree consists of c
2 − 1 nodes and for each of them except for the root, a

new secret key needs to be generated:

SKsuper
gen = c

2 − 2

The construction of the tree then requires that all those nodes including the root
are symmetrically encrypted twice, once with the keys of each direct child node.

SKsuper
op = c− 2

The analysis for the subtrees is slightly more complex. By choosing c to be a power
of 2, the subtrees are symmetric and it suffices to compute the costs for only one
subtree. The number of secret keys to generate is equal to the number of nodes on
the path from the leaf to the blue parent node which only must be counted once.
For one subtree, there are 2 log m

c + 1 secret key generations times the number of
subtrees c

2 :

SKsub
gen = c log m

c + c
2

Each of the new secret keys needs to be encrypted twice except for the nodes whose
child was one of the removed nodes. Those nodes only need one encryption. Conse-
quently, there are 4 log m

c encryptions for one subtree multiplied by the number of
subtrees c

2 :

SKsub
enc = 2c log m

c

The number of decryptions is given by the number of nodes on a path to a new secret
key which have to be decrypted. For one subtree, there are log

(
m
c

) (
log

(
m
c

)
+ 1

)
decryptions, again multiplied with the number of subtrees c

2 :

SKsub
dec = c

2 log m
c

(
log m

c + 1
)

Summing up the number of secret-key generations and symmetric cryptographic
operations reveals

SKgen = c log m
c + c− 2 = O (log m)
and

SKop = 2c log m
c + c− 2 + c

2 log m
c

(
log m

c + 1
)

= O
(
log2 m

)
Sticking to the asymptotic notation, it turns out that the average case is optimal:Average case:

logarithmic

instead of linear

SKgen = O (log m) and SKop = O
(
log2 m

)
. For the sake of completeness, the

complexity for the optimized tree of Figure 5.16 is also given:

SKgen = c log m
c + c− 2 = O (log m)
and

SKop = 2c
(
2 log m

c + 1
)
− 3 = O (log m) 48

48The detailed costs are:

• SKsuper
op := 3

2
c− 4

• SKsub
dec := c log m

c

• SKsub
enc := c

2

�
6 log m

c
+ 1

�
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Since the optimized tree can make use of the owner backdoor encryption on each
node, the asymptotic runtime can be improved to O (log m) for both, the number
of secret-key generations SKgen and the number of symmetric de- and encryptions
SKop.

5.11.4 Changing Group Membership Using Sharing-Based Access Control

The sharing-based scheme is completely orthogonal to the list and tree approach.
There is no data structure that contains keys for readers. Instead, the gatekeepers
need to manage the shares of keys explicitly and only reveal them to authorized
readers. Like the authorized writers, all authorized readers are itemized in an access
control list ACLR. Hence, there are no costs in terms of cryptographic operations
since ACLR is stored in plaintext.

5.11.5 Read and Write Access

After the analysis of the costs for changing the membership on all three schemes, the
costs for read and write access are analyzed and the perspective of both gatekeepers
and reading/writing entities is considered.

List-Based Access Costs

To make a statement about the complexity of read and write operations, k is defined
as the number of blocks that are accessed, while n is the number of gatekeepers of
the group.

Write Access The list- and tree-based schemes behave similarly when considering
write operations. A writer needs to generate one fresh secret key to encrypt the
data of the written blocks and then encrypts the secret key using the reader group
public key PKR. To get the latest version of the public key, the writer needs to
contact the gatekeepers. After having carried out the encryption, the writer again
contacts all gatekeepers passing all necessary information about the newly written
blocks resulting in totally n + 2t + 1 messages. Table 5.12 gives an overview of the
costs for a writer that has written k blocks.

PKEnc SKGen SKOP DSGen DSV er Msgs

O(1) O(1) O(k) O(1) O(t) O(n)

Table 5.12: Costs for a writer accessing k blocks of an object.

As Section 5.4.3 mentions, when contacting the gatekeepers for requesting the
reader group public key, there is no need for a signature. Further, only 2t + 1
gatekeepers are contacted and their signature is verified on their reply, which is in
O(t). Later, when the writer again contacts the gatekeepers to finalize the write
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operation, he only needs to generate one digital signature and to send the same
message to all n gatekeepers. This is possible since the common challenge from the
gatekeepers is the latest version counter of the object.

The costs of the gatekeepers on a write access are dominated by costs of the consensus
protocol listed in Table 5.2. Apart from the consensus protocol, all other operations
are constant as shown in Table 5.13.

DSGen DSV er Msgs Consensus

O(1) O(1) O(1) O(1)

Table 5.13: Costs for a gatekeeper on a write request.

Totally, one gatekeeper needs O(tn) signature generations, verifications and mes-
sages which results in a total complexity of O(tn2) for all gatekeepers.

Read Access Read access only requires a constant number of cryptographic op-
erations. First, a reader needs to request the anchor from the gatekeepers. The
message does not need to be signed and is sent to 2t + 1 gatekeepers with the same
challenge. The signatures of the received messages need then to be verified. After
that, the key list object is retrieved and the key is decrypted. For the decryption
of the reader group private key, one asymmetric and one symmetric decryption is
required. After having decrypted the reader group private key, it can be used to
decrypt the symmetric block key, which in turn allows to decrypt the content of the
block. Since the reader is assumed to access k blocks and since it depends on how
many different reader group keys were used, a best, average and worst case analysis
is given as shown in Figure 5.14.

Case PKDec SKOP DSV er Msgs

best O(1) O(k) O(t) O(t)

average O(k) O(k) O(t) O(t)

worst O(k) O(k) O(t) O(t)

Table 5.14: Costs for a reader accessing k blocks of an object using lists.

A closer look reveals significant differences for the number of digital signature
verifications and public-key decryptions for the best and worst case. In the best
case, one writer has written all blocks and encrypted the block key with the same
reader group public key. A reader then has to perform two public-key decryptions,
first to infer its secret key and then to decrypt the block key using the reader group
private key. All k blocks need to be decrypted with the secret key in addition to
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the symmetric decryption of the reader group key. In the worst case, all block
keys are encrypted with different reader group public keys. The reader then needs
2k public-key and 2k symmetric decryptions. The number of messages is in O(t)
instead of O(n) since the reader contacts only 2t + 1 gatekeepers instead of n (cf.
Section 5.5.5). The number of digital signature verifications directly follows from
the number of exchanged messages.

Section 5.8.1 presented how to link key lists to each other to achieve the expected
read semantics. Additionally, the linking of the data structures has the comfortable
side-effect that read access becomes significantly cheaper. The reason is that
the number of public-key decryptions can be reduced to k instead of 2k in the
worst case because one can access previous versions by only using symmetric-key
cryptography. Table 5.15 shows the costs for read access.

PKDec SKOP DSV er Msgs

O(k) O(k) O(t) O(t)

Table 5.15: Costs for a reader accessing k blocks of an object using linked lists. Each
list object contains a backward reference to the previous version of the list along with
a key that allows direct access to the reader group private key which reduces the
number of asymmetric decryptions to k instead of 2k.

Gatekeepers are not involved in the read access control procedure except for the an-
chor request. The costs for a reply to an anchor message is one signature generation
on one message.

Tree-Based Access Costs

In the last section, the analysis of the list-based approach revealed a complexity of
O(k) asymmetric and symmetric operations. This section examines the costs when
the list is replaced by a tree.

Write Access The costs for write access in the tree-based approach are equal to the
complexity for the list-based scheme as explained in the previous section.

Read Access For each tree that the reader accesses, one asymmetric decryption
is necessary for the leaf of the tree. Conversely, one asymmetric decryption with
the reader group key is needed when accessing a symmetric block key. Hence, the
complexity regarding asymmetric cryptographic operations is the same for the list
and tree approach. Table 5.16 gives an overview of the tree for a reader. Variable
m denotes the number of readers which is a relevant factor since the number of
symmetric operations depends on this value.
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Case PKDec SKOP DSV er Msgs

best O(1) O(k + log m) O(t) O(t)

average O(k) O(k log m) O(t) O(t)

worst O(k) O(k log m) O(t) O(t)

Table 5.16: Costs for a reader accessing k blocks of an object using tree-based access
control with m readers.

The analysis in Table 5.16 reveals that the asymptotic costs for symmetric-key
operations are in O(k log m) which is more by a factor of log m than the list-based
scheme. The important difference between a list and the tree is that the number
of symmetric operations on the tree depends on the number of readers which is
not the case for the list. The precise number of pubic-key decryptions for the
best and worst case are 2 and 2k as for the list-based approach. For the number
of secret-key operations, the best case requires k + log m while the worst case
degenerates to k(1 + log m). At last, it is noteworthy that with linked key data
structures like those in Section 5.8, access to old keys are all in O(1) as for the
list-based scheme. The number of secret-key operations is then 2k + log m, log m to
access the first tree, k for the old trees and k to decrypt all blocks. It is even not
required to communicate with the gatekeepers after having retrieved the identifier
of the latest version. Table 5.17 shows the costs for the linked key tree data structure.

PKDec SKOP DSV er Msgs

O(1) O(k + log m) ≈ O(k) O(t) O(t)

Table 5.17: Costs for a reader accessing k blocks of an object using tree-based access
control with m readers. Each tree object contains a backward reference to the previous
version of the tree along with a key that allows direct access to the reader group
private key.

What is worth mentioning in Table 5.17 is the approximation of O(k+log m) ≈ O(k).Linked tree and

list are

approximately

equally expensive

This can be justified for two reasons: First, the logarithmic function grows very
slowly. Secondly, the number of blocks to be read can be assumed to be significantly
larger than the logarithm of m in the average case. Therefore, O(k + log m) ≈ O(k)
is a realistic approximation. The costs for the gatekeepers are the same as for the
list-based approach.
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Sharing-Based Access Costs

Unlike the other two schemes, the number of cryptographic operations in the sharing-
based approach depends on the number of gatekeepers. There is no data structure
that stores the keys for the readers explicitly. Instead, all keys need to be managed
by the gatekeepers. Since a single gatekeeper cannot be trusted, the keys need to
be shared among the gatekeepers with a (t + 1, n) secret sharing scheme.

Write Access As Table 5.18 illustrates, the number of public-key encryptions,
digital signature generations and verifications is linear in the number of gatekeepers
n which implies a linear growth in n compared to the other two approaches. The
reason is that the shares are individual for each gatekeeper which requires separate
encryption for each of the n shares. Moreover, each message needs to be signed
separately.

PKEnc DSGen DSV er SKGen SKOP Msgs

O(n) O(n) O(n) O(1) O(k) O(n)

Table 5.18: Costs for a writer accessing k blocks of an object using secret sharing.

The complexity for the gatekeepers on a write access differs only by the fact that
the encrypted shares need to be decrypted and re-encrypted with a symmetric key.
The re-encryption is necessary in case that the nodes are compromised. Although
an adversary has access to all shares, they are encrypted with a secret key which in
turn is encrypted with the gatekeeper’s public key. Without knowledge of the private
key, the adversary cannot retrieve the content of the encrypted shares. Table 5.19
illustrates the complexity analysis for gatekeepers. Since it was decided to encrypt
all shares of one object together, only two secret key operations are necessary - one
to decrypt the shares and one to encrypt the new shares of the affected object.

PKDec DSGen DSV er SKOP Msgs Consensus

O(1) O(1) O(1) O(1) O(1) O(1)

Table 5.19: Costs for a gatekeeper on a write request.

Read Access Read access control is mostly influenced by the fact that the signa-
tures on the replies from the gatekeepers need to be verified. Since the shares are
encrypted, it is inevitable to use public-key decryptions to access them. Table 5.20
summarizes the costs for a single reader.
Since the gatekeepers use as challenge the witness counter, the number of digital
signature generations is 2. Due to the fact that the protocol requires an explicit
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DSGen PKDec SKOP DSV er Msgs

O(1) O(t) O(k) O(t) O(t)

Table 5.20: Costs for a reader accessing k blocks of an object using secret sharing.

challenge-response round, the reader needs to send 2(2t + 1) = 4t + 2 messages to
the gatekeepers. Since at most 2t + 1 messages need to be decrypted, the number
of public-key decryptions is bound by O(t).

Gatekeepers only have to perform a constant number of operations to reply to
a request of a reader as Table 5.21 illustrates. They require 2 digital signature
generations and verifications and 2 messages as well as one symmetric decryption
for the shares of the object.

PKEnc DSGen DSV er SKOP Msgs

O(1) O(1) O(1) O(1) O(1)

Table 5.21: Costs for a gatekeeper on a read request.

The costs for all operations of the initial proposals in Section 5.5, 5.6 and 5.7 have
been listed in detail. The next section concludes the results and compares the
approaches to each other.

5.11.6 Conclusion

Based on the analysis of the previous sections, one can now compare the different
approaches to each other. The operations on the gatekeepers are in the same order
for all schemes. The interesting differences occur on group membership changes
and read/write access attempts. The schemes will therefore be compared in those
categories before an overall statement is given.

Changing Group Membership

Due to the different approaches, the costs for changing the membership depends on
the concrete scheme. Further, one has to distinguish between adding and removing
readers and writers and also consider best, worst and average case situation, whereas
the average case is the most meaningful.

Adding Readers The number of secret-key operations for both, the list- andList/Tree: O(m)

SKGen & SKOP tree-based scheme is in O(m). Although the asymptotic runtime is equal, the
tree needs twice as much symmetric-key generations and additional m secret-key
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operations compared to the list. Also regarding the space complexity, the list Less space for list

requires 25 − 50% less entries. The reason is that the tree needs to be built up,
which requires additional efforts.

The sharing-based approach only requires operations in O(1) because readers are Sharing: O(1)

maintained in an ACL which does not require cryptographic computations, but only
the notifications of the gatekeepers. But since the notification also occurs for the
list- and tree-approach, the sharing-based approach is optimal for adding readers.

Adding Writers Adding writers is equally expensive for all three schemes. The
access control lists for the writers is updated and the gatekeepers are informed,
which is in O(1).

Removing Readers In general, removing readers from a list is in O(m) cryp- List:

O(m) SKOPtographic operations because the entries for the remaining entities need to be
re-encrypted. The costs in the tree-based scheme is different for best, worst and
average case and the number of removed readers. If only one reader is removed,
the complexity is in O(log m) secret-key generations and O(log2 m) secret-key
operations for the original tree and O(log m) for the extended tree. However, when
removing c or a number proportional to m readers, the worst case reveals O(m)
secret-key generations and operations. Using precise numbers, the tree turns out
to be worse by a factor of 2− 2.5 secret-key operations in the worst case. Further,
the list does not require any secret-key generations. Conversely, the best case of
the tree requires between zero and O(log m) secret key generations and between
O(log m) and O(log2 m) secret key operations. In a rare case, the extended tree
even comes by with O(1) secret-key operations and zero secret-key generations.
But as stated in the text, the best and worst cases can be assumed to occur rarely. Tree:

O(log m) SKOP

and

O(log2 m) SKGen

While the average case for the list remains unchanged, the tree can be expected
to use O(log m) secret-key operations and O(log2 m) secret-key generations for the
normal tree and O(log m) operations for the extended tree.

As for adding readers, the costs for removing an arbitrary number of entities can be Sharing: O(1)

done in O(1) cryptographic operations when using the secret-sharing scheme.

Removing Writers Since all schemes use an access control list for writers, the re-
moval of any number of writers is equally expensive for all schemes, namely O(1).

Read / Write Access

As for the analysis of group membership changes, the costs for read and write access
mostly depend on the used data structures.

Read Access Read access in the list-based model requires public-key decryptions
and secret-key operations in the order of blocks k, which is O(k). The tree requires List: O(k) SKOP

more computations since it has O(k log m) secret-key computations. The reason
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for this discrepancy is, that access to the tree depends on the number of readers
m within the tree while the list only has a constant number of cryptographic
operations. This analysis induces to assume that the tree is significantly worse
than the list for read access. However, this is only partially true. When considering
the mechanisms of Section 5.8 where a linking of the data structures was shown,Tree49:

O(k + log m) ≈
O(k) SKOP

only the access to the latest tree is in O(log m) as opposed to O(1) in the list,
which is practically feasible even for a large number of readers m. After the
decryption of the latest tree, access to all old versions can be done in O(1). Hence,
if k is very large, the first log m decryptions do not preponderate which results in
O(k + log m) ≈ O(k).

Read access in the sharing-based scheme is more expensive regarding the number ofSharing: O(t)

PKDec & DSV er asymmetric operations since it requires O(t) public key decryptions and O(t) digital
signature verifications.

Write Access The costs for write access is equal for the list- and tree-based scheme.
In contrast, the sharing-based scheme has a higher complexity for the number of
public-key encryptions, digital signature generation and verification because the
shares need to be created and signed separately for the transmission to each gate-
keeper. The number of secret-key operations and the number of messages is equal for
all schemes. As opposed to the list- and tree-scheme, the gatekeepers in the sharing
approach additionally have to perform O(1) secret-key operations for the shares of
an object while writers have to asymmetrically encrypt the shares and share-shares.

Overall Comparison

Since the sharing-based approach is the most extraordinary one, that scheme is
first highlighted:

If it is necessary that changes on the membership of the group either for readers or
writers must be efficient, it best to decide for the sharing-based scheme. Unlike theSharing: cheap

group updates

but expensive

read/write access

other approaches, membership changes are all in O(1), which is optimal. However,
both read and write access are more expensive than in the list and tree approaches
regarding asymmetric-key operations. The reason is, that the number of digital
signature generations and verifications as well as the number of public-key de- and
encryptions are in the order of the number of gatekeepers. A read attempt requires
digital signature verifications in the order of O(t) where t is the number of Byzantine
gatekeepers. The same holds for a write process where even all gatekeepers n are
invoked instead of only 2t + 1. Another issue to consider when using secret sharing
is that the state of the gatekeepers heavily grows. Moreover, if for some reason, all
gatekeepers leave the network, the owner has no means to recover his objects since
the keys are only known to the gatekeepers. One could require that the gatekeepers
also encrypt the key shares for the owner and store them in the object store, but

49Only when using linked key trees. Otherwise, the costs are O(k log m)
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the owner has then the problem of finding the latest object containing the shares50.
The synchronization of a gatekeeper is more expensive since the key shares of each
object’s blocks need to be reconstructed and verified which is inefficient if the state
of a gatekeeper is large (i.e. if there are many and large objects). Regarding former
readers, the sharing-based scheme is more robust since access control is explicitly
performed for readers. However, the synchronization protocol for a system that
maintains object versions is impractical since the number of verifications on the
shares is very large.

Coming back to the list- and tree-based schemes: According to the analysis, a key
list is optimized for frequently adding readers while the tree has better performance
on removal of readers in the average case. While asymptotically, adding readers
to a list is equally expensive as adding them to a tree, the asymptotic behavior
of the list on removal is O(m) while the tree only has O(log m) or O(log2 m) in
the average case, depending on the kind of tree that is used. This is a significant Reader removal:

tree is

logarithmic, list

is linear in

average case

improvement. Access to the list can be done in a constant number of computations
whereas the number of steps in the tree are logarithmic to the number of readers
of the group. The tree is thus worse by a factor of O(log m) compared to the list.
However, since Section 5.8 states that it is more natural to establish backward links
between the versions of the data structures regarding read semantics, the additional
costs of log m becomes negligible when considering the costs of O(1) for accessing
an old version of the tree compared to the number of blocks k to be read. The costs
are then in O(k+log m) ≈ O(k) which practical even for a large number of readers m.

Concluding, the tree is the preferred data structure since it has a logarithmic be-
havior in the average case while the list is linear. Only when adding readers, the
tree’s performance is worse than for the simple list because the inner nodes of the
tree need to be created. The sharing-based approach should only be used in systems
that require fast and frequent group updates.

50Unless the objects containing the keys use a SVID.
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6
Implementation

This chapter describes a prototypical implementation of the tree-based access control
scheme that was explained in the previous chapter. The implementation intends to
be a proof-of-concept which is used to measure how the mechanisms scale in a real-
world setting with all its difficulties. The underlying object store is Celeste [61] which
is written in Java 5.0. Celeste is being developed by Sun Mircosystems Laboratories
in partial cooperation with ETH Zurich. Before explaining some delicate aspects of
the implementation, a short overview of Celeste is given.

6.1 Celeste
Celeste is a self-managing, secure, massively distributed, random-access, read/write
data store with high availability properties. The most important aspects regarding
security were already mentioned in Section 3.7. The actual implementation did not
feature any access control mechanisms.

6.1.1 Celeste Layers

Three basic layers of Celeste can be identified: The Celeste file system layer, the The three basic

Celeste layersobject store layer and the overlay network layer (cf. Figure 6.1). The file system
layer exposes a file-like interface to the user and abstracts the mapping to objects.
The object store layer can functionally be divided into two sub-layers: A Celeste
part and a Distributed Object Location and Retrieval (DOLR) part. The Celeste
part can be seen as the client side of the system. It offers interfaces to create, delete
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and modify objects. The underlying DOLR layer implements an overlay networkDOLR

on top of the basic IP network, and constructs its own naming and routing scheme
with a Distributed Hash Table (DHT) [67, 68, 69, 70, 71]. The DOLR layer is
responsible for publishing and unpublishing objects, GUIDs of objects and nodes as
well as invoking and retrieving them. Moreover, the DOLR layer fulfills persistency
and refreshing tasks, which means that objects are replicated to guarantee maximal
availability.

Figure 6.1: The three basic layers of Celeste. The object store layer can be further
subdivided into two parts.

The Celeste part and the DOLR part are separated by a HTTP interface. There
are no direct method calls from a class in the Celeste part to one in the DOLR part.
Instead, a HTTP connection is established to exchange data and information. The
idea is that the Celeste file system and Celeste part of the object store layer canWhy HTTP

interface? be used on a thin client while computationally expensive operations can be shifted
to a central server. The connection is not secured for the sake of simplicity. Note
that a further reason for segregation between the Celeste and DOLR part is that
private user data (i.e. secrets, unencrypted content) is never exposed to the Celeste
node, or the network as a whole. The Celeste part signs and possibly51 encrypts
the content of the written object before it is passed to the HTTP interface.

Communication between DOLR nodes is protected using SSL [26] to achieve
authentic and confidential communication channels.

For the implementation of the access control mechanism, the focus is only on the
object store layer.

Celeste Objects

The organization of Celeste objects is similar to the description in Section 4.3.
All objects are uniquely identified by self-verifying GUIDs. Every write operation
creates a new object. It is not possible to effectively overwrite existing blocks.
Celeste maintains versions of objects. The entry point into the version chain is
called the active object , which has an AGUID.AObject

51The original implementation only signed the object’s content. The implementation for access

control additionally adds encryption.
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Figure 6.2: The layout of Celeste objects: AObject, VObject and BObject (fragments
were omitted for simplicity).

The AGUID is the only identifier which is not self-verifying. It can be seen as the
name of an object which never changes. The active object contains the VGUID
of the latest version object . A version object consists of a list of BGUIDs to the VObject

block objects and the VGUID of the previous version. By storing the VGUID of the BObject

previous version in the VObject, Celeste is able to traverse the list of versions starting
at the AObject. The BObjects are further decomposed into so-called fragments. Fragment

Figure 6.2 shows a graphical illustration of the Celeste object as described. Note
that this is just one possibility to implement objects. Other approaches might choose
a different layout.

Celeste Serializer

One of the most important components in Celeste is the Serializer [72]. The task of Serializer

the Serializer is to maintain the ordering of VObjects. The Serializer is a replicated
component that can tolerate node failures. It can also recover from a network par-
tition. When an object is created, it is associated with a Serializer by storing the
Serializer’s GUID with the object. All read and write attempts are directed to the
Serializer which then ensures that the VObject’s reference to the previous version is
correct and also updates the AObject’s reference. On a network partition, the ob-
ject’s Serializer in each partition can still operate and accept write operations. This
leads to different generations of the same object which are be merged by branching
histories in the VObjects when the network reconnects.

Profiles and Nodes

Each user who joins the Celeste system creates a new profile and files it to the Profiles

object store. The profile contains among other information: The name of the user,
a public key, a signed certificate and a private key52. Since the profile is publicly
stored, the private key must be protected. This is done by locking the profile with

52The presence of the private key in the profile is optional. It could as well reside on a smart card

or be provided by other external media. Storing it in the profile is a deliberate security-convenience

tradeoff.
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a passphrase. When the profile is retrieved, the passphrase unlocks the profile.
Profiles are the root of all user-related identification and authentication mechanisms
and are handled at the Celeste part of the object store layer.

There is also the concept of a node. Each node owns a public/private-key pair andNodes

a self-signed certificate. Since owners use SSL for the communication, they must
know with which node they are communicating. The problem of relating a public
key to a node has been solved by setting the node’s GUID to the hash of the publicGUID is a hash

of the public key key. This allows authentic and secure channels between any node. Observe that
nodes are orthogonal to user profiles since they reside at a lower abstraction level,
namely at the DOLR part of the object store. Nodes transmit messages to other
nodes via a SSL connection. The addressing uses the GUID of the target node. The
translation of a GUID to a real network address is done by the DOLR layer.

6.2 Implementation
This section explains important parts of the access control system implementation
in Celeste. The implementation was separated into two stages: First, the necessary
data structures were designed and implemented. The data structures include the
access control list, the witness object, the gatekeepers’ storage for managing groups,
and the key tree object. To enhance the author’s personal programming skills, the
data structures were implemented following the extreme programming paradigmExtreme

programming [74], where a unit test is created before the corresponding functionalities exist.
Second, the data structures were embedded into Celeste whereas some modifications
to the Celeste source code were necessary. The implementation was carried out
within less than three weeks. Unit tests [75] turned out to be particularly useful for
the development cycle.

The following sections aim at giving an idea of the efforts that were done in order
to implement the most important concepts of Chapter 5 related to the tree-based
approach. Thus the text does not include code fragments or detailed information,
but provides a high level and compact view of the implementation. The CD that is
provided with the printout of the thesis includes a detailed Javadoc documentation.

6.2.1 Overview

The implementation affected two of the sub-layers mentioned in Figure 6.1: The
Celeste part and the DOLR part of the object store layer. Reading and writing
including de- and encryption, signature generation and verification all happen at
the level of the Celeste part. The reason is that signing and public-key decryption
requires unlocking of a profile which depends on a PIN. For security reasons, the
PIN is never passed across the HTTP connection. Therefore, all operations related
to group initialization, membership changes of gatekeepers, object creation, object
addition or removal to/from a group, addition or removal of readers or writers
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to/from a group, write and read operations are bound to the object store layer.

Gatekeepers, on the other hand, are independent of profiles. They are implemented
at the DOLR layer. Hence, every node connected to the system can serve as a
gatekeeper. The identification of gatekeepers can be done by using the node’s key
material as mentioned in Section 6.1.1. Due to the extension for access control, the
implementation of a node was modified such that requests can be sent to nodes to
retrieve their certificate. The owner uses this functionality when initializing a group.

Storage Client The most important functionalities of the Celeste layer are encapsu-
lated in a storage client class which implements the Celeste interface. The interface
offers method signatures to read, write, fetch, delete and create objects and profiles.
The functionalities for access control reside in a new class which also implements
the Celeste interface to be backward compatible. However, most operations require
additional parameters53 for access control which the interface does not offer. To
keep the interface stable, the extended storage client offers additional methods to Backward

compatibility

through stable

interfaces

set those parameters either via a new method or using the constructor. The Javadoc
documentation states explicitly that certain calls to other methods are required in
order to carry out access control properly. That design decision allows to smoothly
replace the old storage client. Since the extended storage client is not yet fully
implemented, it uses the original storage client for certain operations (cf. Figure 6.3).

The functionalities for distributed access control in Chapter 5 are complex.
Furthermore, since the different functions can be associated with distinct types of
entities, the implementation encapsulates those functionalities in separate classes. One class for

each entity typeThose classes are then invoked from the extended storage client which initialized
them and holds a reference. Such a design strictly follows the object-oriented
principles of data encapsulation and information hiding. Figure 6.4 illustrates
the relationship between the extended storage client and the owner, reader and
writer classes. Since the entities share some common functionalities, those function-
alities are encapsulated into a so-called system entity class to avoid code duplication.

As this chapter only gives a brief overview, Figure 6.4 does not list all functions
and fields except for the most important ones.

Gatekeeper Gatekeepers are situated at the level of DOLR nodes. A DOLR node DOLR nodes

basically allows to transmit a DOLR message to some other node and to receive
messages. Incoming messages are dispatched by an application framework to a Gatekeepers as

DOLR

application

DOLR application that previously registered for the corresponding type of message.
The gatekeepers were implemented as one of these DOLR applications.

The handleMessage() method in Figure 6.5 is not just one method, but a set of meth-

53For example the name of the group.
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Figure 6.3: UML diagram of the Celeste interface which is extended by the original
storage client. The extended storage client offers access control capabilities.

ods. Each of these methods implements the function needed for a certain type of
message such as group initialization, read or write requests. The content of a DOLR
message first needs to be parsed before it can be dispatched by the routeToNode()
method. In some cases, it is necessary to verify a signature on a DOLR message.
On a write operation, the consensus manager is invoked to get an instance of a
consensus module which then communicates with the other gatekeepers of the group.

Both reader and owner have to deal with the key tree object, the central data
structure of this implementation. The key tree is explained in the following section.
Afterwards, the design of the gatekeeper storage is described.

6.2.2 Key Tree Object

The complexity analysis revealed a promising behavior for the key tree in the
average case. Therefore, the tree described in Section 5.6 and depicted in Figure
5.10 was implemented. Measurements aim at verifying the claim that the tree is
efficient in the average case. Although a binary tree is a trivial data structure,
the key tree is complex due to the distinct content of different types of nodes.
The implementation intends to be both well-designed and efficient. The complete
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Figure 6.4: The extended storage client delegates calls to specialized classes im-
plementing the functionalities of the owner, reader and writer. The system entity
encapsulates functions shared by all three entities.

realization consists of six classes, as shown in Figure 6.6.

The key tree object offers a high-level interface to the user of the tree and allows
to add or remove readers and to build, respectively encrypt, the tree. Changes on
the key tree are not immediately carried out because they require cryptographic
operations. Instead, when adding or removing entities, those entities are stored
in a list. The lists are processed when the generateTree() method is invoked by Batch mode

the owner. There are other additional fields to store the version counter of the
tree and the name of the group that the tree belongs to. A detail mentioned in
Section 5.6.1 is the lookup table, which is also located in the key tree object. Lookup table

The lookup table is implemented as an ordinary hash table mapping each reader’s
profile GUID to the matching leaf node. When a reader accesses the tree using the
getPrivateKey() method passing his GUID, public key and private key54, the lookup
table is consulted to find the correct leaf. An exception is thrown in case that the
reader’s GUID is not contained in the table. The key tree object is extended by a
linked tree, which stores a reference to the previous tree to achieve the desired read
semantics discussed in Section 5.8.

The remaining four classes represent the different types of nodes of the tree. There
exists an abstract node class which encapsulates the basic methods and fields that
each node requires. Examples are the references to the left and right child or the
encryptions of the contained key with its left and right neighbor. This is the reason
why the inner node class does not contain any significant functions. The root and

54Or the reader’s unlocked profile.
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Figure 6.5: The gatekeeper application uses a consensus manager and storage to
save group information persistently on the local device.

the leaf nodes are slightly more complex.

A leaf node must contain the public key of the reader to which it is associated.
When the tree is constructed, the public key of the reader is used to fill up the
index table. But the most important aspect of a leaf node is the getPrivateKey()
method which allows a reader to access the private key stored at the root node.
This method will recursively invoke the method on its parent node until the root is
reached, which then returns the decrypted private key. Another detail to mention is
the invalidation method that is called by a leaf if a reader is removed to invalidate
the keys of all parent nodes.

The attentive reader might have realized that the root node differs from the one
in Figure 5.10. This becomes even more apparent if one considers that there is an
extension of the tree which allows the linking of key trees as described in Section
5.8. Therefore, the root does not only contain the readers’ private and public key,
but also a symmetric reader key as depicted in Figure 5.13. Consequently, the root
also offers direct access to the reader group private key by offering an overloaded
method getPrivateKey(). The owner’s backdoor key is also stored at the root node
and must be decrypted by the owner if entities are added or removed from the tree
by calling decryptOwnerSecretKey().

What is not visible in the UML diagram in Figure 6.6 is that the tree heavily usesRecursion and

overloading recursion and method overloading to provide a tight and structured design.

One last point to examine is the strategy used when readers are added to the tree.
As mentioned, the key tree object maintains two lists to add and remove readers.
In a first pass, all obsolete readers are removed by invalidating the respective nodes
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Figure 6.6: The key tree consists of four classes implementing the different node
types: An abstract key tree node with common methods and fields and implementa-
tions is used for the root, inner and leaf nodes.

in the tree. Nodes are also removed if they no longer have at least one child node.
In a second pass, the readers are added to the tree following a simple algorithm.
The algorithm aims at generating a balanced tree in an efficient way by adding the
readers at adequate branches.

Figure 6.7 gives a visual representation of the algorithm. In short, the algorithm
adds subtrees to the existing tree such that the new subtree does not increase the
height of the tree. This can be done until there is only one free branch. At this point, Preserve height

of the treea subtree for all remaining readers is created which might change the height of the
tree. However, this is not a problem since the tree can be assumed to be volatile and
thus, subsequent modifications might re-balance the tree. One last point is that if
there is no free branch, a new inner node is inserted which replaces either the left or
the right child of the root, choosing the one with lower height. The existing subtree
is appended to the left of the new inner node and a new subtree containing the keys
of the joining readers is added on the right branch of the inner node. Figure 6.8
visualizes how the algorithm proceeds.
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Figure 6.7: Visualization of the algorithm that adds readers to the tree. First, the
algorithm adds subtrees such that the height of the tree does not grow as shown in
a), b) and c). In the last free branch, a subtree for the remaining remaining readers
is added which might unbalance the tree as step d) shows.

Figure 6.8: Adding readers to a full tree proceeds in three steps: a) The child of the
root with the lower height (orange nodes) is selected to be moved; b) A new inner
node (blue) is created and the selected subtree is appended as the left child; c) The
new readers are added as a new subtree (red) that is appended on the right of the
orange node. The resulting tree does not necessarily have to be balanced.

6.2.3 Gatekeeper Storage

The data structure to hold the gatekeepers’ state is another important aspect of the
implementation. One design decision was that the data structure should not behave
like a unresponsive container. Instead, it should simplify the implementation of
the gatekeepers by performing verifications on the stored data. One example is
that the gatekeepers’ storage verifies on an update of either the access controlResponsive data

structures list or the key tree object so that the version counter is higher than the current
one. This makes the implementation of the gatekeepers more concise. The
implementation only requires two classes: GatekeeperStorage serves as a container
that holds references to GatekeeperStorageEntry and dispatches requests to them.
In turn, a storage entry contains all information of one group. This includes the
owner’s public key, the reader group public key, the group name, the VGUID of
the ACL and KTO and their version counters as well as a list of object iden-
tifiers mapping to the most recent VGUID, which equals to the anchor in Section 4.3.

When an update on a gatekeeper is performed, be it on the access control list, the
key tree object or a normal object, the gatekeeper updates his storage data structure
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Figure 6.9: A storage entry maintains the state of one group, including all anchor
objects. The gatekeeper storage then organizes all storage entries.

and immediately stores it on the local device. What has not been mentioned so
far is that all data structures are serializable. This means that a data structure is Serializable data

structuresconverted into an equivalent byte array which can later be deserialized by passing
it to the appropriate constructor.

There are other data structures such as the access control list or the witness object
which are not discussed further. Their implementation is straightforward.

6.2.4 Unimplemented Features

The access control mechanism has been successfully implemented in Celeste and
is operational. However, since it is a prototype, some of the features described in
Chapter 5 have not been realized for three reasons:

1. They are not of any significant importance regarding the functionality of the
system.

2. They require additional and unproportional efforts compared to the outcome.

3. They involve major changes to the existing Celeste system.

From the beginning on, it was intended that the implementation serves as a
proof-of-concept and not as a complete and detailed implementation. Therefore,
some simplifications seemed appropriate if they do not alter the general concept.
The general concept includes the existence of gatekeepers and the key tree object
comprising the most important interactions with the gatekeepers .

Challenge-response was one of the details that did not find its way into the
implementation. This mechanisms would be of importance to avoid replay attacks
and to guarantee freshness of messages. From a conceptual point of view, they
only add additional complexity and do not have a direct influence on the general
procedure.
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Another point is the consensus protocol. An approximation of the protocol was
implemented which is not equal to the king consensus protocol (cf. Section 5.2.6).
For simplicity, it executes only two rounds where messages are exchanged between
the gatekeepers. Nevertheless, it is believed that this is sufficient to estimate the
performance of the system.

The theoretical description explains that the version object maintains additional
entries for the key material such as a reference to the key tree object. The
implementation does not follow this proposal because decryption is performed at
the Celeste part of the object store layer. But at this level of abstraction, there is
no direct access to blocks. One would have to shift the en- and decryption to the
DOLR layer instead. For the prototype, it is sufficient to write the whole object
instead of only certain blocks. This allows to carry out both de- and encryption at
the Celeste part of the object store layer.

Last but not least, there is still the Serializer which executes write operations. The
Serializer is thus a trusted component, and this is what gatekeepers intend to im-
prove. Since the Serializer is deeply rooted in the Celeste system, the decision was
made not to refactor the Serializer. But it is clear that a full and correct imple-
mentation would require to encapsulate the functionality of the Serializer within the
gatekeepers. Nevertheless, the implementation was extended such that the Celeste
system is able to read old objects passing a VGUID instead of an AGUID. This al-
lows direct access to a certain version of an object which is of particular importance
for the witness, access control and key tree objects. Or in other words: Although
malicious entities can write unharmed to an object via the Serializer, their updates
will not be considered since the gatekeepers hold the direct VGUIDs of the objects.
Further, the tree maintains his own backward-linking which cannot be influenced
by an attacker. Note that shifting de- and encryption to the DOLR layer implies
trust in the node that executes those operations and also requires to think about
the usefulness of the HTTP interface. Clearly, this is an issue which is outside the
scope of a simple prototypical implementation.



7
Performance Analysis

This chapter gives the results of a performance test for both the original implemen-
tation and the one with access control capabilities. The goal of the performance test
is to make a statement about the behavior of the tree-based access control scheme
in a real-world setting and to compare the results to the theoretical estimations of
Section 5.11. The tests measured the time to initialize a set of gatekeepers and the
data structures for readers and writers. Additionally, the time for read and write
operations was measured and compared with the performance of the original system.

7.1 Test Environment
The test environment consisted of 25 Linux machines, each with an Intel Pentium 4
3 GHz processor and 1 GB RAM. The hosts all belong to the department of
electrical engineering at ETH and are connected by a switched 1 Gbit university-
internal network. The Celeste source code was uploaded to all hosts using bash
shell scripts55. The shell script initialized and started the performance test as soon
as all nodes were running.

The test suite was written in Java. Every time an operation starts, the current
system time is obtained and then compared to the system time after the operation
finished. For each type of test, a log file is created that contains information about
the parameters of the executed test, such as the number of readers or writers in the
group and the number of gatekeepers.

55Most of them written by Marcel Baur.
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In contrast to measurements with Celeste, the performance test on the key data
structure was carried out separately on a multiprocessor machine with four Intel
Xeon 3 GHz processors and a main memory of 2 GB. CPU time was not exclusively
granted for the duration of the test and was shared with other processes and users.

7.2 Group Initialization and Membership Changes
This section analyzes the performance on group initialization. Initialization involves
several steps and requires creating and updating data structures in the system. First
of all, gatekeepers have to be selected and set up to guard access to a group. Then,
entities can be added to or removed from a group, either as readers or as writers.

7.2.1 Gatekeeper Initialization

When an owner initializes a group, he needs to select entities as gatekeepers. The
Gatekeepers are initialized with all necessary parameters such as the owner’s public
key or the name of the group. In addition to this procedure, the owner creates empty
data structures for the access control list and the key tree object and stores them in
the object store. As for updates on group membership changes, all gatekeepers are
initialized in parallel. Figure 7.1 shows that the initialization is linear with a very
small gradient.

Figure 7.1: Average initialization time of gatekeepers is linear with a very small
gradient.

The following two sections examine the time needed to change membership of either
readers or writers.

7.2.2 Writer Membership Changes

In general, changes on the members of the writer group are assumed to be linear.
There are no cryptographic operations and no consensus protocol run required. The
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owner simply needs to retrieve the latest access control list and witness object,
change the content of the ACL and inform all gatekeepers about this change.

Adding Writers

When initializing a group with m writers, the runtime turned out to be linear in
the number of writers. The implementation allows to pass writers by their profile
name that is then used to fetch the profile from the system and extract the public
key for the access control list. The more writers are added to a group, the more
time is needed to fetch all profiles. This explains the linear behavior in Figure 7.2.

Figure 7.2: Measured and average time to add a linear number of writers to a new
group with respect to the number of writers (left) and the number of gatekeepers
(right) in the group.

The updates on the gatekeepers are constant because all gatekeepers are notified in
parallel. The number of writers in the group has no influence on the time to update
all gatekeepers.

Removing Writers

After the previous test had initialized a group of writers, the following test intends
to determine the time needed to remove half of them. As before, the profile names
of the writers to be removed are passed as parameters. Since the access control
list also contains the identifier of the corresponding writer profile, there is no need
to invoke the object store as before. Entries can be removed directly by using the
profile GUID. Figure 7.3 shows that the trend is constant in the number of writers.

Figure 7.3 shows that the time to remove writers increases after 100 entities. With
increasing number of GUIDs, the efficiency of the object store decreases dramati- Inefficient object

storecally. Because of decreased efficiency, the probability that a publish message for new
GUIDs is not propagated in the system increases with the number of objects in the
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Figure 7.3: Measured and average time to remove half of the writers from an existing
group with respect to the number of writers (left) and the number of gatekeepers
(right) in the group. The x-axis shows the number of entities that were removed.
The group’s size was therefore twice as large before the removal.

system. In particular, the time for single operations increases the more profiles were
involved [76].

7.2.3 Reader Membership Changes

Changes to the group of readers can be assumed to be more expensive than for
writers. The reason is that the tree data structure is more complex than the sim-
ple access control list. It is required to perform cryptographic operations on each
modification of the tree. One would expect to see the additional complexity for the
cryptographic operations in the measurements on reader membership changes.

Adding Readers

When a new tree with a linear number of readers is created, the time for the ini-
tialization is linear in the number of readers for the same reason as for the access
control list. The profile names are passed to the routine which retrieves all profiles
from the object store. Figure 7.4 shows the time for this operation. Again, the
notification of the gatekeepers is more or less constant.

Removing Readers

For the removal of readers, the same holds as for the removal of writers. Each leaf
stores the reader’s profile GUID together with his public key. The remove operation
can then use the profile GUID to determine the leaves to be removed. There is no
need to retrieve profiles for a remove operation. Hence, the time to remove half of
the entities is constant as Figure 7.5 shows.
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Figure 7.4: Measured and average time to add a linear number of readers to a new
group with respect to the number of readers (left) and the number of gatekeepers
(right) in the group.

7.3 Access Time
This test aimed at determining the time needed to read and write objects in the
object store, once using the extended version that supports access control and once
with the original system. Due to the additional complexity of access control, it is
expected that the measured time is not as good as in the native system. As before,
there are two variables which are of interest: The number of readers/writers and the
number of gatekeepers.

7.3.1 Write Access

The time needed to write to an object was as anticipated. A write operation is
always independent of the number of writers in the group. The cryptographic keys
can be generated and used without the need for a data structure such as the tree.
Of course, the size of the access control list grows linearly in the number of writers
which means that gatekeepers need more time to fetch the access control list if the
number of writers is large. Since one entry in the access control list is in the order
of a few bytes, write access can still be assumed to be constant with respect to the
number of writers. Figure 7.6 illustrates this circumstance.

When comparing the time for a write access compared to the number of gatekeepers,
the measured time is linear in the number of gatekeepers as shown in the left plot
of Figure 7.6. The most important reason is that gatekeepers need to agree on
the written object using a consensus protocol. For each gatekeeper, the message
complexity is in the order of O(tn), where n is the number of gatekeepers and
t < n/4. Although the prototypical implementation only executed a constant
number of rounds, the complexity of the consensus protocol is obvious. Moreover, a
write operation involves additional retrieve operations in the object store. A writer
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Figure 7.5: Measured and average time to remove a half of the readers from an exist-
ing group with respect to the number of writers (left) and the number of gatekeepers
(right) in the group. The x-axis shows the number of entities that were removed.
The group’s size was therefore twice as large before the removal.

needs to retrieve the latest witness object and the key tree object. A gatekeeper
must also determine the witness object to communicate with the other gatekeepers
and fetch the latest access control list.

A separate experiment with ten gatekeepers and ten writers shows the distribution
of the costs. For a write operation with one megabyte of data, the time to store the
written object and the time to wait for the gatekeepers’ replies is the dominating
factor. The cryptographic operations are negligible as Figure 7.7 shows.

The implementation waits until all gatekeepers have completed their operations
without using a timeout. This means that the slowest gatekeeper dominates the
write operation. Besides updating their local state, gatekeepers basically have to
retrieve the writers’ access control lists and perform a consensus protocol. Compared
to the retrieval of the witness object in Figure 7.7, the time to fetch the ACL is
significantly higher. The reason is that Celeste uses locks to ensure serialized access
to an object. Since all gatekeepers need to retrieve the ACL concurrently, the locking
mechanism forces gatekeepers to wait until the object is unlocked. This also holds
for the consensus protocol that internally uses locking mechanisms. The time to
retrieve the witness object is included in the time for the consensus protocol. It can
be assumed that the time to retrieve the witness object is equal to the to retrieve
the ACL. The costs of a gatekeeper are shown in Figure 7.8.

7.3.2 Read Access

Read access is independent of both the number of gatekeepers and the number
of readers. Once more, the costs for the retrieval of the objects is responsible for
the additional time compared to the original object store without access control.
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Figure 7.6: Measured and average time for a write operation given a certain number
of writers (left) and gatekeepers (right).

Figure 7.7: Storing the written object and updating the gatekeepers with the new
object identifier are the dominating costs for a write operation.

A reader needs to retrieve at least three objects - two more than in the original
implementation. Moreover, there is one broadcast to all gatekeepers and the
decryptions on the tree and the object. As explained in the previous section, the
number of object retrievals is the significant factor for the read procedure. The
number of cryptographic operations and the parallel broadcast to all gatekeepers is
negligible compared to those costs (cf. Figure 7.10).

Moreover, the results in Figure 7.9 underline the statement from Section 5.11.5
which argued that O(k + log m) ≈ O(k). Or in other words: The time to retrieve
all necessary objects is much larger than the time to decrypt the tree. The number
of gatekeepers is of no importance since they can be contacted in parallel and there
is no consensus protocol to be executed as for a write operation (cf. right plot of
Figure 7.9).
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Figure 7.8: The costs for gatekeepers are dominated by the consensus protocol and
the retrieval of the writers’ access control list.

Figure 7.9: Measured and average time for a read operation given a certain number
of readers (left) and gatekeepers (right).

7.4 Operations on the Tree Data Structure
The previous sections described the measurements with Celeste as the underlying
object store. Although the measured times give information about the general
behavior in a real-world setting, all of them are influenced by the implementation
of the object store. Hence, it is desirable to measure the time on the key tree
object as a data structure independent from an object store as well. The goal is
to determine whether the theoretical estimates in Section 5.11 are comparable to
concrete measurements.

For the tree data structure, there are three operations which are of particular
interest: Creation of the tree for a given number of readers, access to the tree’s root
private key and removal of a constant number of keys.

The number of public keys which form the leaves of the tree was iteratively
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Figure 7.10: Retrieval of the KTO and the object needs most of the time of a read
operation.

incremented, starting with four keys up to 214 = 16′384. In every iteration, the
number of public keys was incremented by four. A fresh tree was created with the
respective number of leaves and then a full encryption on the tree was performed.
The creation time measured both, the time to create the full tree including all keys
and the time to encrypt each node of the tree. The generation of the reader group
private key was also added to the tree creation time, but not the creation of the
public keys of the leaves. In a practical system, those public keys can be assumed to
be given. All public/private-key pairs were generated using RSA and a key length
of 1024 bit. For the symmetric keys, AES was chosen with a key length of 128 bit.

The expected time resulted from a simple extrapolation. In an experiment with
100’000 iterations, the time for single cryptographic operations was measured. Their
average value is depicted in table 7.1.

PKGen PKEnc PKDec SKGen SKEnc SKDec

Time [ms]: 386.862 0.6791 8.82806 0.11733 0.12825 0.0901

Table 7.1: Average time for one cryptographic operation of the given types.

Section 5.11.3 explains that the number of asymmetric encryptions is m, the
number of symmetric-key generations is 2m − 1 and the number of symmetric
encryptions is 3m − 1, where m denotes the number of readers that are added.
With those formulas, an expected time can be computed which is linear in the
number of leaves or public keys respectively. Figure 7.11 depicts the measured
and expected times for the creation of a tree. The implementation is efficient
and is below the theoretically expected time. But more important is that the
statement for linearity of the tree creation could be underlined with this experiment.

The time needed to access the tree is as expected. Because of the logarithmic
characteristic of the tree, the number of secret key operations is of no significance.
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Figure 7.11: Measured and expected time to create the tree data structure.

Once more, this emphasizes the approximation from Section 5.11.5 which stated
that O(k + log m) ≈ O(k). The result is depicted in Figure 7.12.

Figure 7.12: Measured and expected time to access the tree data structure.

At last but not least, the removal of a constant number of keys from a given tree
is as estimated. The concrete performance test always used four as the constant
number independent of the size of the tree. To compute the expected time, the
precise formula from Section 5.11.3 was used. Figure 7.13 shows the results for the
removal test.

The reason for the strong variance in Figure 7.13 is probably the generation of
the new keys in the tree. The stand-alone measurements for the cryptographic
operations that resulted in table 7.1 revealed significant differences for both, the
symmetric and asymmetric key generation algorithms.
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Figure 7.13: Measured and expected time to remove four keys from the tree data
structure.

7.5 Conclusion
It is not surprising that the measured times for an object store with access control Deterioration of

performance by

constant factor

are worse than for a system without access control. Fortunately, the needed time is
only worse by a constant or linear factor, which is suitable for practical systems.

The measured time to add new group members was linear in the number of entities
because their profiles needed to be retrieved from the object store. Membership
updates require updates on data structures and gatekeepers. In the implementation,
the gatekeepers are all notified in parallel, which might be the reason why the
number of gatekeepers did not have any significant impact on the measured times.

Removal of entities is constant since profiles do not need to be fetched from the
object store. Entries can be directly removed by using the profile GUID.

It turned out that write operations are the most expensive form of interaction in
the system. Although the number of writers has no impact on the performance,
the time grows linearly in the number of gatekeepers. The reason is that the
gatekeepers need to perform a consensus protocol to agree on the validity of the
write request. A more efficient implementation might reduce the gradient of the
curve, but the general behavior can be expected to remain linear.

Since on a read request, gatekeepers do not need to communicate with each other,
read access time is constant or linear.

The time needed for operations on the tree data structure meets the theoretical
estimations of Section 5.11. Creation of the tree is linear while reader removal
and tree access turned out to be nearly constant even for a tree with 214 public
keys. From the measurements, it seems justified to conclude that the tree as a data
structure is adequate for large groups.
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Due to the constant or linear behavior of the system, one can conclude that gate-
keepers and the tree data structure are suitable for access control in a P2P storage
system.



8
Conclusion and Future Work

In the preceding chapters, techniques and mechanisms to realize access control in a
P2P storage system were presented. This chapter concludes the thesis and summa-
rizes the main contributions including their limitations and relevance. Moreover, it
mentions future work to be done in the area of P2P access control.

8.1 Conclusion
Security in general and P2P access control in particular are difficult topics. The
task of the central authority that controls access to objects must be replaced by a
distributed reference monitor called gatekeepers.

8.1.1 Contribution

This thesis described in-depth how gatekeepers communicate among themselves
and interact with other types of entities.

The group of gatekeepers can be changed by the owner or by the gatekeepers
themselves if they are self-organizing. A central aspect is that they must be found
by the members of the group since both readers and writers need the gatekeepers
for their operations. One important contribution of this thesis is a novel method to
determine the current set of gatekeepers without the need for a dedicated authority
by using a secure version identifier (SVID). The way how the SVID is constructed
is the key to determine subsequent versions of the witness object only by local
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computations.

The thesis explained in detail how write operations are processed. In principle,
gatekeepers have to perform consensus protocol rounds to ensure that all honest
gatekeepers agree on the same written object.

Read access has to be handled differently because it is implicitly defined via
the knowledge of a key. Two of the presented schemes, the list- and tree-based
approaches, only involved gatekeepers to get the latest version of an object.
Freshness of objects is an issue that was never addressed by other existing schemes.
It is important because the semantic of a replay of an old object version is equal to
an improper write operation. As an orthogonal approach, a scheme based on secret
sharing was explained that shared the decryption keys among the gatekeepers
instead of storing them in some data structure.

The implementation in Celeste allows evaluate the mechanisms under realistic con-
ditions.

8.1.2 Evaluation

The theoretical asymptotic runtime analysis revealed interesting properties of all
schemes. The list-based scheme is efficient for adding readers as well as read access,
but expensive with respect to the removal of members. The tree-based approach
is in the order of the list-based scheme, but is significantly more efficient when
considering leaving readers in the average case. The benefit of the sharing-based
scheme is that changes on the membership are in any case constant.

The implementation and the subsequent performance tests underlined the estima-
tions of the theoretical complexity analysis for the tree data structure. Measure-
ments revealed that the consensus protocol and the retrieval of the required objects
are time-consuming while cryptographic operations do not preponderate. This might
be different for other object store implementations. If the retrieval of objects is the
bottleneck of the system, it might be worth considering the sharing-based approach
because read and write attempts do not require the retrieval of objects56 for a writing
or reading entity57.

8.2 Limitations and Future Work
Although this thesis covered a wide range of topics related to P2P access control,
not all issues could be solved and considered. First of all, only two types of

56Except for the witness object that is always required.
57The gatekeepers need to retrieve the access control lists and the key shares. If there is enough

disk space, gatekeepers can store this information locally to speed up the time for an access attempt

significantly.
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permissions were explicitly discussed, namely read and write permissions. But there
are other permissions that need to be examined such as append, truncate or delete.
For instance, append permissions require gatekeepers to verify that only blocks are
added to the object and none of the existing ones are deleted or overwritten. Using
king consensus of appendix A on only the header object’s ID is insufficient. A
similar problem occurred for version capabilities (cf. Section 5.9.2). Of course, the
king can send the header object along with his messages. But this has a negative
impact on the efficiency of the consensus protocol with growing size of the header
object.

Another issue is the bootstrap problem for joining entities. How do they know
that they were added to the group? How is the group information transmitted to
the joining entities in a secure way? In general, one can send such information by
email, publish it on some website or use a well-known Internet service. However,
an initialization of joining members that uses other mechanisms than the ones
supplied by the object store implies additional complexity. The desirable solution is
that such kind of notifications can be handled by the object store itself. If append
permission is implemented, one can sketch out a scheme that follows closely normal
read/write access control: Each user initializes a group of gatekeepers to guard
access to messaging objects. To find the witness object of those gatekeepers, the
owner’s name can be used as the group name. Each entity can then send messages to
the gatekeepers that are appended to some object depending on the type of message.

A problem that was not addressed is how to determine which objects are contained
within a group. The text implicitly assumed that the mapping of objects to groups
is known. In general, such a knowledge cannot be presumed. A straightforward
solution is to request all anchors from the gatekeepers, which allows denial-of-service
attacks quite easily. Alternatively, the owner could maintain an object that lists
all IDs of the objects contained in a group and pass a reference to the gatekeepers.
Whenever the owner adds or removes objects, he updates the dedicated object and
informs all gatekeepers. A request for all anchors in the group can then be reduced
to simply one identifier that must be requested. Alternatively, one could use a
similar mechanism for the object containing all references as for the witness object.
Readers and writers can then find it on their own.

Finding the witness object was one of the major challenges. It is similar to the
bootstrap problem mentioned above. Members of a group must be able to find
and identify the current gatekeepers definitely. Since there is no authority that can
refer to the latest gatekeepers, group members must compute the witness object’s
identifier on their own. The current proposal involves cryptographic operations
like digital signatures. It is a challenge to find another mechanism that minimizes
the cryptographic operations further. Moreover, the secure version identifier only
works if the system can guarantee availability as assumed in this thesis. However,
if a witness object can temporarily not be found, operations are carried out on the
wrong group of gatekeepers.
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Former readers turned out to be a severe and hard to solve problem. Because of
efficiency reasons, re-encryption of all affected objects is not feasible. The presented
approaches described methods which are practically feasible, but nevertheless allow
readers to access old objects in some cases. The secret sharing-based approach
turned out to be very robust against former readers since gatekeepers control the
key shares. There might be several other approaches to tackle the problem of former
readers, for example an adequate encryption scheme or schemes using erasure codes
or secret sharing.

It has been shown that hierarchies of groups are very expensive. For many
applications, hierarchies are not necessary. But for those applications that require
hierarchies of groups, it is important to find a scheme that can handle operations
on hierarchies efficiently.

Last but not least, the mechanism for self-organizing gatekeepers used two black-
box protocols: One that determines which gatekeepers are excluded and one that
defines the entities which are added. Both algorithms imply consensus among the
gatekeepers. Therefore, a simple algorithm would perform separate consensus proto-
col rounds for each joining and leaving entity. As previously mentioned, a consensus
protocol is expensive and its use should therefore be minimized. It is a challenge
to describe two efficient algorithms that meet the required specification. Another
problem that occurred was the re-sharing of the signature key. The secure approach
requires three-dimensional polynomials and is not efficient since many broadcast
rounds are required. The approach that was chosen in this thesis is not secure in
every case, but is a good and efficient approximation to the problem. The next
step is to further improve the re-sharing scheme regarding security while retaining
efficiency.



A
King Consensus

In this section, the king consensus protocol is described [54, 55, 56] that will be used
by the gatekeepers to agree on a decision of a write operation. A modified version
of the protocol is used [57, 58] that allows an arbitrary value domain {0, 1}k , k > 0
since the standard protocols only foresee binary input values, but requires that
t < n/4 instead of t < n/3, where n is the number of players P . For the following
considerations, the standard communication model with a complete (fully connected)
synchronous network of pairwise authentic channels among the players is assumed.

A.1 King Consensus Protocol
The definition of king consensus is as follows:

Definition A.1.1 A protocol achieves king consensus (with respect to pk) if it sat-
isfies the following conditions.

Termination: All correct players terminate the protocol after a finite number
of communication rounds.

Consistency: If player pk is correct then all correct players agree on the same
value v′ ∈ {0, 1}k at the end of the protocol.

Persistency: If all correct players enter the protocol with the same input v ∈
{0, 1}k then v′p = v for every correct player p.
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The goal of the king is to affect the decision of the other players. Before the consensus
protocol is started, it is determined58 which t + 1 players out of n play the role of
the king. In the first phase of a round, all players broadcast their values. In the
second phase, the king of the corresponding round additionally sends his value to
all players. Players which do not yet have a solid majority of values will then decide
for the king’s value. Player p executes phase k of the king consensus protocol as
follows:

Protocol A.1.1 KingConsensuspk
(vp)

1. SendToAll(vp); ∀q ∈ P do Receive(vq) od;

2. Vx := {q ∈ P : vq = x∧ 6 ∃y : y 6= x ∧ |Vy| > |Vx|};

3. v′p := x;

4. if p = pk then SendToAll(v′p);

5. else Receive(v′k);

6. if |Vx| < n/2 + f then v′p := vk fi;

7. fi;

8. return v′p

Based on the king consensus protocol, one can derive the consensus protocol which
conforms to the following definition:

Definition A.1.2 A protocol achieves consensus if it satisfies the following condi-
tions.

Termination: All correct players terminate the protocol after a finite number
of communication rounds.

Consistency: All correct players decide on the same output value.

Persistency: If all (correct) players initially hold the same input value v then
all correct players decide on v.

The idea of king consensus is that there are t+1 different kings in each phase of the
protocol. If the honest players do not hold the same value, the king can break ties
by broadcasting his value. Since t + 1 rounds are executed, it is ensured that there
is at least one honest king. The full consensus protocol then proceeds as follows:

58In the context of this thesis, one possible solution is to choose the first t+1 gatekeepers in the

witness object list that are available.
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Protocol A.1.2 Consensus(vp)

1. for k := 0 to t do vp := KingConsensuspk
(vp) od;

2. return vp

The message complexity of the consensus protocol is O(tn2). See also [58] for cor-
rectness proofs of those consensus protocols.
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