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Abstract

Wireless sensor network applications face the problem of exchanging messages over
an unreliable network. For safety important applications like wireless fire sensor
networks, this characteristic assigns a hard task.

This thesis implements a highly reliable monitoring system that uses low power, ad-
dressing the fact, that nodes in a wireless sensor network are mostly battery pow-
ered. We achieved reliability with redundant information flow and acknowledged
messaging. Nodes were monitored with a round based heartbeat scheme and media
access was implemented in a central controlled TDMA scheme.

The implementation was done on a state of art wireless sensor platform, the Tmote
Sky. This platform features a 2.4GHz transceiver and a low power microcontroller.
The implementation was done based on TinyOS 2.0, a framework for wireless sensor
network applications.

The Deployment Support Network(DSN), developed at ETH, provided helpful sup-
port for the implementation process of the application. In order to use it, we built
a BTnode-Tmote Sky DSN-Adapter. This Adapter consists of a hardware connector,
a software logging component for TinyOS 2.0 and a bootstrap loader for the Tmote
Sky.

With help of the DSN, we profiled the implemented monitoring system. The calcu-
lated lifetime estimation amounts 0.96 to 2.65 years.

The developed DSN-adapter for Tmote Sky enables DSN support for further work
on this platform.
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1
Introduction

1.1 Motivation
Since a few years, wireless sensor networks are an emerging research field. The abil-
ity to deploy a huge amount of cheap nodes almost everywhere and to gather sensor
data for evaluation creates new possibilities for applications. Already established
applications can be re-implemented based on approaches using such a wireless net-
work in order to decrease the need for infrastructure (e.g. wires).

An interesting application is a wireless fire sensor multi-hop network. There is an
on-going industrial project that aims to build a reliable fire sensor system based on
a wireless multi-hop network.

The goal of this thesis is, to implement a demonstrator that addresses the challenges
of a reliable reporting system as it is needed in a wireless fire sensor network: Time
constraints, robustness and low power consumption.

While developing and implementing the sensor application, this work is also in-
tended to gain practical experiences with the JAWS deployment support network.
This supporting tool offers help developing and deploying wireless sensor networks.
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2
Related work

The area of wireless sensor networks (WSN) has become a very popular research
area in the last few years. A system built of a lot of independent, low cost comput-
ing units, interacting wirelessly with each other and gathering sensor data can be
applied for a huge number of applications. One important advantage of such net-
works is the little need for infrastructure. Sensors can be deployed virtually every-
where with extremely little effort compared to wired sensor systems. Recent sensor
projects, as example, were deployed in places like glaciers [36, 37], islands [39] or on
a volcano [38].

2.1 Low Power
Sensor nodes are usually powered by normal batteries, so low power consumption is
a main requirement for applications, where a long network lifetime is needed. This
requirement had been addressed by several MAC layer protocols for wireless sensor
networks. The main strategies for saving power are[1]:

Avoid collisions Packet collision leads to information loss. The packet has to be
retransmitted, which uses additional energy to send.

Avoid overhearing In WSNs, transmissions of a sender reaches all its neighbour-
ing nodes. Nodes that hear a packet do normally not know the intended re-
ceiver a priori. They all have to start receiving each packet. If the message is
for another node, the used energy for receiving data is unnecessarily wasted.

Minimise idle listening Nodes that do not know, when a packet is expected to
arrive, spend most of the time on idle listening.

Minimise protocol overhead For co-ordinated medium access, there is addi-
tional information sent over the network. These transmissions do not bring
information for the upper layer application but need energy. A lot of WSN ap-
plications do only send a few bytes per packet, so the overhead added by the
MAC protocol can be a big part of the transmitted data.

3



Chapter 2: Related work

MAC layer protocols for WSN applications can be roughly divided into contention
based [2, 3, 4] and schedule based protocols [5, 6, 7, 8, 9, 10]. The contention based
approach mostly has only a small protocol overhead, but does not completely elimi-
nate the first three points of the strategies described previously. TDMA protocols are
inherently collision free because every transmission is scheduled, but the protocol
overhead increases.

2.2 Network Supervision
For applications like fire sensing or intrusion detection, it is essentially to ensure
a fully serviceable system, or at least to get alarmed when a node is not available
anymore. For such scenarios, node supervision is an important task.

An approach to detect failures in distributed systems is to use a network heartbeat.
Every node periodically announces its heartbeat, which is then diffused across the
network. A node is considered to have failed, if the last known heartbeat excesses
a specified age. Wang et al.[11] analysed heartbeat failure detectors that distrib-
ute the heartbeat in a gossip style in wireless ad-hoc networks. Their aims were
to provide distributed, effective and robust mechanisms for failure detection. Two
gossiping schemes were simulated:

Linear scheme The order of nodes that send their heartbeat is fixed by the iden-
tifier of each node. Gossiping is done in rounds. At a network diameter of D,
gossiping will be completed (the information is diffused to every network mem-
ber) in at most D rounds.

Two-phase scheme This scheme divides gossiping in two phases. An inward
phase and an outward phase. Each edge between two nodes gets a direction.
Nodes with no inward links send their messages first. As soon as a node has
received messages from all inward pointing edges, it sends its own message.
When all inward messages are sent, the second phase begins and all edge di-
rections are reversed.

Their simulation showed, that in static networks, the advantage of the two-phase
over the linear scheme gets clear, when it comes to sparser networks: The heartbeat
information gets distributed faster.

Tai et al.[12] use clusters to organise the distribution of heartbeat information. They
make use of the fact, that transmissions can be overheard in WSNs from neighbour-
ing nodes to increase robustness when gathering alive information. Like in [11],
the heartbeat scheme is done in two phases. Different in this approach is to divide
the network into clusters. All nodes in a cluster can communicate directly with the
cluster head. Detected failures are then forwarded between clusters.

In this thesis, different to the previously presented work, we implemented such a
reporting system on a real sensor network based on Tmote Sky. Special attention
was paid on low power consumption.
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3
Prototype Platform and Operating

System

This chapter gives an overview on the used hardware platform. Besides general in-
formation, we give more detailed insight into the mechanisms of the radio communi-
cation and how low power concerns are addressed. These two issues are important to
understand the details of the later implementation. In a second part, characteristic
behaviour and power consumption are measured.

For software development we used TinyOS 2.0 [13], a popular framework for wire-
less sensor network applications. We explicate the mechanisms that make TinyOS
suitable for this task.

3.1 Tmote Sky
The Tmote Sky is a state of art sensor node for wireless sensor networks. This plat-
form, formerly named Telos [15], was developed at UC Berkeley. Since 2005 it is
commercially distributed by the Moteiv Corporation [14]. The key features of the
Tmote Sky platform are [16]:

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

• Interoperability with other IEEE 802.15.4 devices

• 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

• Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

• Integrated onboard antenna with 50m range indoors / 125m range outdoors

• Optional Integrated Humidity, Temperature, and Light sensors

• Ultra low current consumption

• Fast wakeup from sleep (< 6µs)

• Hardware link-layer encryption and authentication

5
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• Programming and data collection via USB

• 16-pin expansion support and optional SMA antenna connector

• TinyOS support : mesh networking and communication implementation

• FCC modular certification : conforms to all US and Canada regulations

For this thesis the most interesting features were the power consumption and the
characteristics of the radio module.

3.1.1 Microcontroller MSP430
The microcotroller [17] of the Tmote Sky module features extremely low active and
sleep current consumption. In the active mode, the microcontroller is driven by the
internal digitally controlled oscillator (DCO) that may operate up to 8MHz. The
DCO may be turned on from sleep mode in 6s. When the DCO is off, the MSP430
operates of an external 32.768kHz watch crystal. In the later implementation, we
will use this crystal clock source to maintain synchronisation between nodes.

3.1.2 Transceiver Chipcon 2420
The radio module on Tmote Sky is a single chip 2.4GHz IEEE802.15.4 compliant
RF transceiver [18]. It provides a data rate of 250 kbps and hardware support for
packet handling, data buffering, clear channel assessment and link quality indica-
tion. If a packet conforms to the IEEE standard [19], address recognition can be
done in hardware. A packet is accepted, if the address fields (address of receiver,
personal area network indentifier) of the packet correspond to the configuration of

Figure 3-1
MoteIV’s Tmote Sky
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3.2. TinyOS 2.0

the radio module. Otherwise the received data is ignored. This feature avoids un-
necessary computing steps in the attached microcontroller for overheard packets.
The transmitted packets do not have to comply with the IEEE standard. Sacrificing
some hardware support for packet handling, most of the packet frame can be freely
defined. Mandatory is only the length field of the packet. For receiver synchroni-
sation, a preamble of 0 to 16 bytes can be specified, followed by the start of frame
delimiter (SFD). The reception of a SFD triggers a pin on the CC2420 which can be
used to capture the arrival time of a packet. The integrated link quality indication
is calculated based on the correlation of the 8 first symbols received of a packet. This
value represents a sort of chip error rate. The payload of one packet can get as big
as 127 bytes.

A special feature of the packet based CC2420 supports timestamping of sent pack-
ets. The transceiver allows to modify a packet in the radio FIFO even when the
process of transmitting already has started. Therefore, a packet can be timestamped
with the measured time at start of the transmission.

3.2 TinyOS 2.0
Software for embedded systems, especially for wireless sensor networks, has to sat-
isfy needs that are very different from those of personal computers. The most im-
portant issues are the limited system resources of a node, namely energy supply,
computing power and memory. TinyOS [13] is a standard framework for developing
WSN applications. The final release of the 2.0 version is planned for November 2006.
This new version has valuable improvements [20] compared to TinyOS 1.x. Over-
all stability has been increased at the expense of some flexibility. Some important
changes concerned the scheduler and the stability of the network stack. The modu-
lar composition of TinyOS allows to build reusable components and programs that
have a very small footprint. Applications are written in a special C language called
NesC. This programming language contains support for the concurrency model of
TinyOS and also the component based application architecture. In the following
sections, a description of the basic concepts of TinyOS is given.

3.2.1 Components Model
A TinyOS program consists of several modules, wired together by a configuration.
Figure 3-2 shows an example for this modular composition. A single module or con-
figuration is called a component. Such components implements defined interfaces
for interaction with other components. This leads to easily replaceable parts of code,
without having to make changes to the whole program. The advantages of this model
are also applied when it comes to portability to other node platforms. There are sev-
eral levels of hardware abstraction foreseen in the concept of TinyOS [21], each level
modelled as an component. The hardware presentation layer (HPL) represents the
lowest level interface to the hardware. At this level, the functionality of the inter-
face depends completely on the capabilities of the hardware. No states are stored
and also no resource arbitration is done. At the next level, the hardware adaptation
layer (HAL), useful abstractions are built on top of the HPL. The strategy is to give
an interface which does not compromise efficiency for convenience. Software which

7
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Figure 3-2
Example of the wiring in a TinyOS program [13]. The BlinkC program lets the LEDs flash
according to a counter. It is the NesC equivalent to the famous ‘Hello Word’ program.

implements time or performance critical actions can wire to this layer. This layer
saves its state and has the functionality to prevent simultaneous accesses from dis-
turbing each other. The highest grade of abstraction is provided by the hardware
independent layer (HIL). Obviously, this telescoping abstraction makes it very com-
fortable to write software for new hardware components, e.g. different microcon-
trollers or flash memory chips. Components, which do only use the API of the HIL
of a specific hardware module do not need to be rewritten.

3.2.2 Concurrency
The transformation of concurrent processes to software is an important task of an
operating system. In wireless sensor networks this concerns mostly communication
on several devices (radio, UART, ..) and events coming from sensors or timers. On
systems with less limitations, the processing of such concurrent events is realised
with threads. This solution results for every thread in an overhead for saving states
and other information in the stack. Each context switch needs computation power
for saving register contents. The fact that programs on sensor nodes are quite small,
the designers of TinyOS 2.0 implemented concurrency in a much simpler way. There
are no threads. Each time a task is started, it runs to completion. This behaviour
is referenced to as synchronous execution. Only hardware interrupts can pre-empt
a running process. Because no context switches are made when running such inter-
rupt code (asynchronous), the programmer has to take precaution for shared vari-
ables. NesC allows to declare a section of code to be atomic. Those sections can not
be interrupted. This approach makes it necessary to keep tasks and atomic sections
short in order to have fast reaction times for interrupts. The NesC preprocessor in-
cludes a race detection system which throws warnings when variables are not well
protected.

3.2.3 Low Power Support for Microcontrollers
Most microcontrollers support low power applications with several sleep modes.
Tmote’s microcontroller has five low power states, as shown in table 3-2. Low power
mode LPM0 for example disables only the CPU and the main system clock. In LPM4
the microcontroller can only be woken up by an external interrupt because all timers
are off.

8



3.2. TinyOS 2.0

Every time the task queue is empty, the scheduler of TinyOS puts the microcon-
troller in the deepest possible low power mode. This mode is determined by a chip-
specific low power state calculation function. So no explicit command is needed in
TinyOS to let the MSP430 sleep. A detailed description of this feature is available
at the TEP 112 [23]. Other hardware than the microcontroller have to be stopped
explicitly to save energy.

Mode CPU and Clocks Status
Active CPU is active, all enabled clocks are active
LPM0 CPU, MCLK are disabled

SMCLK , ACLK are active
LPM1 CPU, MCLK, DCO osc. are disabled

DC generator is disabled if the DCO is not used for MCLK or SMCLK in
active mode
SMCLK , ACLK are active

LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

LPM4 CPU and all clocks disabled

Table 3-2: Overview of the available low power modes of the MSP430 microcontroller [17]

3.2.4 Resource Arbitration
Resources, for instance timers, busses or ADCs, can be used by several components
in a TinyOS program. On way to deal with this is to create a virtual abstraction of
the resource in software. This enables a multiplexing of the underlying resource.
However, resources like busses need to grant full access to a bus-client. Such a
shared resource needs arbitration. For this purpose, TinyOS provides an arbiter
component [22] that can be wired into a program when needed. Every client that
wants to access the resource has to request it first from the arbiter. If the resource
is free, the arbiter signals a granted event to the requestor. The resource has to be
released by the client, before another one can use it.

This concept is used on the Tmote Sky for arbitrating the access to the shared bus
of the flash chip (storage) and the radio (network). In each case, the storage and
network stacks need exclusive access to the bus when using it, but they also need to
share it with the other subsystem.

There is no support for deadlock prevention. The programmer has to take care of
it. In order not to block other processes, a resource should be acquired as short
as possible. Additionally to the arbitration, the arbiter knows always, whether the
resource is in use. This can be used to resources into power save modes whenever
they are not needed.

9
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3.2.5 TinyOS MAC Layer Implementation on Tmote Sky
TinyOS 2.0 has implemented a contention based MAC protocol. No low power con-
siderations are made. Whenever a packet is to be sent, the channel is first sensed
by utilising the clear channel assessment (CCA) functionality of the CC2420 chip. If
the received signal power is over a programmable threshold, it is assumed, that the
channel is in use and a random congestion backoff timer is set in order to sense the
channel at another point in time. If the channel is clear, the packet is sent. No col-
lision avoidance is implemented but there exist an acknowledgement mechanism.
If acknowledges are enabled, the network stack keeps track on the acknowledged
packets. On the receiving end, an acknowledge packet is automatically sent by the
Chipcon radio module if the corresponding flag in the MAC header of the packet is
set. The link-layer implementation of TinyOS uses a IEEE 802.15.4 compliant MAC
header in order to take advantage of the hardware address recognition of the radio
chip.

PHY
Layer

Frame
Control Field

(FCF)

Data
Sequence
Number

2 1Bytes:

Address
Information

0 to 20

Frame payload

n
Frame Check

Sequence
(FCS)

2

MAC Header (MHR) MAC Payload MAC Footer
(MFR)

Frame
Length

MAC Protocol
Data Unit
(MPDU)

Start of Frame
Delimiter

(SFD)

Bytes: 1 1 5 + (0 to 20) + n

Preamble
Sequence

4

Synchronisation Header
(SHR)

PHY Header
(PHR)

PHY Service Data Unit
(PSDU)

PHY Protocol Data Unit
(PPDU)

11 + (4 to 20) + n

MAC
Layer

 

Figure 3-3
IEEE 802.15.4 Packet format [19]. TinyOS uses this structure in order to benefit from the
address recognition feature of the CC2420.

3.3 Measurements
3.3.1 Time and Current
The intention of the following measurements is to get an idea about the timing be-
haviour and the power consumption of the Tmote Sky while sending and receiving
packets with the CC2420. The results should provide a base for later implementa-
tion of a network protocol. All current measurements represent the power consump-
tion of the whole system, i.e. the Tmote Sky node.

3.3.1.1 Static Current Measurement

The first experiment was made with an ampere meter, so it was only possible to get
static data. The goal of those measurements was to get the power consumption of
the different low power modes of the microcontroller. For this purpose, we loaded
four different programs onto the Tmote Sky. The first one executed a loop. The other
three explicitely put the microcontroller into a sleep mode. The node was powered by
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3.3. Measurements

battery. For measurement, the ampere meter was put in series between the batteries
and the power connector of the Tmote. The measured values are shown in table
3-3. The measured values are slightly higher than those in the data sheet from

Mode Measured current Current by datasheet[16]
nom max

Running 3.23mA 1.8mA 2.4mA

LPM 1 194µA N/A N/A

LPM 3 38µA N/A N/A

LPM 4 35.5µA 5.1µA 21µA

Table 3-3: Current consumption of the Tmote Sky in different low power modes, CC2420
radio module is switched off

Moteiv[16]. Especially the current in LPM 4 is by a factor of seven higher. On older
Tmote Sky boards, which are not yet FCC certified, we could measure a current of
7.5µA. Maybe there are some differences in the board design. We could not find the
details that were responsible for this effect.

3.3.2 Radio Transmission
3.3.2.1 Time Related

This experiment was intended to measure the duration of important steps in the
transmission process over the radio. We wanted to know, how long it takes until a
packet’s SFD is sent after the send process had been initiated. Additionally, also the
arrival time of the packet at the receiver was of interest.

The setup is as shown in figure 3-4: We placed two nodes, one sender and one
receiver. They are connected with a wire. With this connection it was possible to
measure time relation of sender and receiver. For timing measurement the internal
timer on the node was used, which was clocked by the real time clock at 32.768 kHz.
For evaluation, each node was connected to a personal computer via USB.

The testing behaviour is as follows:

1. The sender wakes up regularly by a timer and initiates the transmission of a
short packet.

2. The radio chip CC2420 generates an interrupt as soon as the start frame de-
limiter (SFD) of the packet is sent.

3. At the same time, the SFD interrupt signal is transmitted over the connecting
wire and generates an interrupt in the receiver node.

4. When the receiving radio module detects an SFD of the incoming packet, an
interrupt is signalised.

5. When the whole packet has arrived, the TinyOS network stack signals an
event to the higher application layer.

The timestamp of each interesting event (timer, SFD sender, SFD receiver) was sent
to the PC. In order not to influence the timing behaviour of the transmission, the
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interrupt line

usb

PC

usb

Tmote 1
(Sender)

Tmote 2
(Receiver)

Figure 3-4
Setup of the time measurement experiment. The two nodes are connected by a wire in order
to correlate the time, when a packet was sent, on both nodes. For data evaluation, the nodes
were connected to a PC.

logging component was implemented as a task. Hence, time critical elements that
were implemented as asynchronous code, could interrupt this task. This gives the
logging component implicitly the lowest priority.

First measurements showed that the interval between the timer event and the SFD
event of the sender is not deterministic (Figure 3-5). This can be traced back to the
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Figure 3-5
Time for sending a packet, including radio startup time
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implementation of the MAC-Layer in TinyOS 2.0. By default, carrier sense is done
before sending a packet. If the media seems to be occupied, the packet is held back
for a random backoff time. Without this feature, the intervals are constant. As could
be expected, both SFD events (measured at the sender and receiver) occur at the
same point in time or in any case no time difference can be measured with this time
resolution. When setting the sender node in sleep mode (radio off) between sending
packets, an additional wakeup period of 88 clock ticks is needed. As seen in later
experiments, most of this additional time is spent for starting the oscillator of the
radio module.

3.3.2.2 Power Consumption

For power consumption estimations we need an exact picture of the current flow in
the different transmitting states of the Tmote Sky. This information was gathered
by measuring with an oscilloscope (Tektronic TDS 540). In the test setup we had
again two nodes, a sender and a receiver. The sender did periodically wake up and
send a packet. After that, it immediately went to sleep again. This time, the CCA
feature of the radio module was disabled. The relation between the measured cur-
rent curve and the events that happened in the running program was established
by setting IO pins. At every event of interest, one line of code was inserted to set a
pin. In this way it was possible to trigger the time of occurrence very precisely with
the oscilloscope. As the oscilloscope could only measure voltage, the used current
was indirectly measured with the voltage over a 10 Ohm shunt resistor. Data was
sampled at a time resolution of 20µs.

3.3.2.2.1 Sender

Figure 3-6 show the resulting oscilloscope output for the sender. The trigger events
are indicated by dotted lines.
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Figure 3-6
Current curve of the Tmote Sky node when transmitting a packet. The time of the events are
measured by triggering on IO pins.
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Following processes can be observed (corresponding figure tags in brackets):

1. The node is in a low power mode (sleep mode)

2. When it wakes up, it first starts the voltage regulator of the radio module
(starting voltage regulator)

3. As the voltage level is stable, the oscillator of the CC2420 is started (starting
radio oscillator)

4. The packet is prepared for sending (preparing packet)

5. The packet to send is loaded into the FIFO buffer of the radio module (loading
radio FIFO)

6. The radio module switches to transmission state and begins to send the SFD
(set radio to TX mode)

7. The whole packet is transmitted (sending packet)

8. The radio module is stopped (stopping radio)

9. The whole system is going to shut down (radio stopped, going to sleep mode)

The round ascent and descent of the curve around the transmission result from
charging and discharging capacitors on the Tmote Sky. The sending time interval
from radio start until sending of the SFD approximates the lower bound of figure
3-5.

3.3.2.2.2 Receiver

For a complete power estimation, we made the same current measurement for the
receiving node. As the receiver does not know the exact arrival time of a packet, we
implemented a program that runs in an idle listening mode until the packet arrives.
After the full packet has been received, the node goes to sleep. The resulting current
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Figure 3-7
Current curve of the Tmote Sky node when receiving a packet. The time of the events are
measured by triggering on IO pins.
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curve is plotted in figure 3-7.

Following events happened:

1. The node has started and is ready to receive packets (idle listening)

2. A SFD is detected and receiving starts (receiving packet)

3. The whole packet has been received and moved to the microcontroller’s mem-
ory for further processing. The system is going to sleep mode (radio stopped,
going to sleep mode)

As described in the datasheet of CC2420[18], current consumption in receiving (or
listening) mode is higher than in sending mode.

3.3.3 Lifetime Estimation Model
With the previously gathered data, it is now possible to create a model for power
usage and energy consumption. Also an estimation for lifetime can be made. We
divide the phases of a node’s program as follows:

Phase Duration Current Description
Startup Tstartup Istartup Wake-up phase from sleep mode
Shutdown Tshutdown Ishutdown Phase for going to sleep mode
Idle/Rx Tidle/rx Iidle/rx Total time spent in receiving mode (includ-

ing idle listening)
Tx Ttx Itx Total time spent in trasmission mode (in-

cluding rx/tx switch)
Sleep Tsleep Isleep Low power mode, radio module off

Table 3-5: Parameters of the power estimating model. All currents are average values.

For a program with a periodic behaviour, the mean current consumption can be
calculated as follows:

Iavg =

∑
phases I · T

∑
phases T

(3.1)

Based on this mean current and with a given battery capacity Qbat, a lifetime esti-
mation can be made:

Tlifetime = Qbat/Iavg (3.2)

Different implementations have different time characteristics. Duty cycle and the
ratio between sending time and receiving time differ. Tstartup and Tshutdown can be
assumed as constant. Those two values and the current usage in each phase can be
taken from the previous measurements. Repeatedly measured curves were almost
identical, so we took the average current and time over ten measurements. The
values are shown in table 3-6. We use this model in chapter 5 in order to characterise
our implementation.
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Parameter Value
Tstartup 3.804ms

Istartup 5.5mA

Tshutdown 3.008ms

Ishutdown 4.6mA

Iidle/rx 20.8mA

Itx 17.5mA

Isleep 35.5µA

Table 3-6: Values of the model. Each is an average of measured values
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4
Connection to the Deployment

Support Network

4.1 Introduction
Developing applications for wireless sensor networks implicates various difficulties.
Not only that it is hard to debug an embedded system but also applications run on
several sensor nodes, maybe up to a few hundreds, which makes the task of find-
ing an error even harder. The reprogramming of a whole network in is very time-
consuming when each node needs to be programmed individually and such code up-
dates are common. To make development of big sensor networks feasible, a system is
required that (1) can handle code updates efficiently, (2) is able to monitor the state
of every node and (3),for testing purposes, is also capable of sending commands to
arbitrary nodes to influence their behaviour. For all these tasks, information needs
to be exchanged between the sensor network, later referenced to as target network,
and a host. This can be done in several ways.

4.2 Deployment Support
4.2.1 Communication over the Target Network
Additional messages for these tasks could be sent over the radio interface of the sen-
sor nodes. Deluge [24] for example provides a network programming feature based
on target network communication. Such a solution assumes that the sensor applica-
tion already has a working network protocol stack, which is not always the case. In
fact network protocols are a main area of interest when it comes to wireless sensor
networks, so many applications will contain new and untested implementations of a
network stack. Giving a guarantee for the robustness of such a network in develop-
ment is almost impossible. Another fact that should be considered is, that additional
messages would most certainly influence the behaviour of the whole network. With
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a contention based protocol for example, there would occur more collisions and mes-
sages would have longer delay. One can also think of a scenario where the bandwidth
of the network is too small for any additional debug packet. Software updates need
additional memory to save the received update before it is flashed. Some nodes may
not have this additional storage.

4.2.2 Communication over a Wired Overlay Network
Another way to get the debugging information from the sensor network is to use a
second network infrastructure. There are testbeds [25][26] that set up a backbone
based on Ethernet or WLAN (802.11b) to connect several base stations. These sta-
tions could be normal personal computers or dedicated hardware like Stargate[27].
Every base station has access to several nodes via a wired interface. Other testbeds
[28][29] mount an Ethernet adapter to every target node and connect them with ca-
bles. Such networks need a huge infrastructure, especially when it comes to widely
distributed systems with a bigger number of nodes.

4.2.3 Communication over a Wireless Overlay Network
Yet another option is an entirely wireless overlay network. Such a network is be-
ing developed at ETH. This Deployment Support Network (DSN)[30] is based on
BTnodes [31] that maintain an independent multihop ad-hoc network. Every sensor
node of the target network is attached to a BTnode via a target adapter. The target
network and the DSN are coexisting as illustrated in figure 4-1. All debug infor-

Figure 4-1
DSN with targets. The Deployment Support Network acts as separate Network to gather
status information that can be used for debugging. The network can also be used for
surveillance and code updates.

mation and code updates are transported over the DSN, not influencing the target
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network. Every platform needs its adapter in order to be supported by the DSN. This
adapter consists (1) of the target specific implementation in the DSN software, (2) a
hardware connection between DSN node and target node and (3) an implementation
on the target node for communication with the DSN (sending of log date, receiving
of commands). At this time, the DSN has target implementations for the following
motes: BTnode rev3[31], Shockfish TinyNode 584[32] and Siemens A80.

The last solution for deployment support has two advantages over the testbeds men-
tioned before: There is no need for long cables, which makes this DSN more flexible.
Furthermore the targets can be placed virtually everywhere. This feature allows the
nodes of our wireless fire sensor network to be placed in the same locations as for
conventional fire sensors. For this reasons, we used this DSN for our master thesis.

4.3 Target Connection for the Tmote Sky
There existed no target adapter for the Tmote Sky, so we had to design it first.
Following functionality is implemented in the DSN and should also be applicable
for the Tmote Sky target:

• Resetting

• Target programming

• Communication in both directions

• Target powering (optional)

In the remaining chapter, we describe the challenges and the details of the target
adapter implementation for the Tmote Sky.

4.4 Target Programming
4.4.1 Challenges
There are three options of how to program the TI MSP430 microcontroller [17].
Either via the default bootstrap loader, the JTAG1 interface or with a new imple-
mentation of a bootstrap loader. A short overview on this topic is given in table 4-2.

4.4.1.0.3 Bootstrap Loader

From the DSN point of view, there exists already an implementation for the normal
MSP430 bootstrap loader protocol [33]. The Tmote Sky has an onboard USB inter-
face that is connected to the pins of the bootstrap loader (BSL) of the microcontroller
(Figure 4-5). This makes programming very convenient if the node is directly con-
nected to a personal computer, as no additional hardware is required. The fact that
the USART1 module of the MSP430 is also wired to this USB connection, makes se-
rial communication available through the same interface. This USB feature makes

1An acronym for Joint Test Action Group, is the usual name used for the IEEE 1149.1 standard
entitled Standard Test Access Port and Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan.
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Programming
method

Advantages Disadvantages

Bootstrap loader Default programming pro-
cedure
Pins for BSL and UART1
wired together on Tmote
Sky. Needs only one connec-
tion for programming and
communication

Pins are connected to the
onboard USB interface (not
easily reachable). Need of a
USB master circuit on the
DSN side

JTAG Default programming pro-
cedure
Pins are accessible

Needs additional protocol
implementation on the DSN
Needs an additional inter-
face for communication

Adapted bootstrap
loader

Can use arbitrary default
communication interface
(USART0, USART1)
Can use same pins (e.g.
only one connection) for
programming and commu-
nication

Needs special programming
procedure

Table 4-2: Comparison of different programming methods for the MSP430

the connection to the DSN more complex. A simple direct connection to the pins
of the bootstrap loader is not possible. To use this interface all the same, it would
require designing an additional adapter board with a USB master on it.

4.4.1.0.4 JTAG

For the second programming option, the Tmote Sky provides a connector to the
JTAG interface of the MSP430, but this requires an implementation of the JTAG
protocol in the BTnode DSN software. It would also be a big effort to generate a
proper software based clock signal for JTAG. Moreover, this interface is not intended
to be used for communication of the running program and therefore an additional
connection would be necessary for communication between BTnode and Tmote Sky
in order to exchange logging information with the DSN.

4.4.1.0.5 Adapted Bootstrap Loader

Most freedom is provided by a new implementation of a bootstrap loader. This solu-
tion uses the feature of the TI microcontroller, that a user program has full access to
the internal flash memory. Such custom programmers exist already for wireless sen-
sor platform applications like Deluge[24] or JAWS[34] which provide an in-network
programming feature. We decided to use this method because it lets us utilise an
easy accessible interface (UART0) for both, programming and communication with
the DSN. The pins of this serial interface are provided by the 10 pin expansion con-
nector of Tmote Sky. While using this interface, it is possible to build an adapter
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that adds as less additional hardware as possible to the existing DSN. Our adapted
bootstrap loader would have to implement code reception over the serial interface,
preferably compliant to the MSP430 bootstrap loader protocol. Then it would have
to save the received program into the flash memory.

4.4.2 Realisation of the Bootstrap Loader
Our new bootstrap loader is actually a normal TinyOS program, running on the
microcontroller. Like the default bootstrap loader, it can be invoked by a special
entry sequence on a defined pin. Additionally is loads program code over the serial
interface UART0 and saves it into the flash memory.

As the new BSL resides in the same memory area like other programs, we have to
take care, that the new BSL does not disturb the execution of any other program.
Special attention has to be paid on interrupts.

4.4.2.1 Memory Organisation of the MSP430

As depicted in figure 4-2, the flash memory of the MSP430 is partitioned into seg-
ments of 512 bytes. Single bits, bytes or words can be written to flash memory, but
the segment is the smallest size of flash memory that can be erased.

Segment 0

Segment 1

Segment 2

Segment 6

Segment 7

Segment 94

Segment 95

Segment A

Segment B

...
...

48 kbyte
Flash

Main Memory

256 byte
Flash

Information Memory

FFFFh

FE00h
FDFFh

FC00h
FBFFh

FA00h

F3FFh

F200h
F1FFh

F000h

Memory used
by the bootloader

Segment containing
interrupt vector

Free memory
available for programs

FFFFh
FFFEh Reset address = F200h

FFE0h

...

End of interrupt vector

FE00h Node ID

43FFh

4200h
41FFh

4000h

10FFh

10F0h
10EFh

1000h

Figure 4-2
Memory organisation of the MSP430F1611. The bootloader is once programmed into the
upper end of the memory. The interrupt vector resides at FFFFh.
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Program code usually starts at the lowest flash memory address (4000h, Segment
95) and is contiguous. Additionally, every program saves its interrupt vector in seg-
ment 0 at the end of the memory block. Every time the microcontroller starts, it
first reads the reset address out of the interrupt vector. Then the program counter
is loaded with this value and code execution begins.

4.4.2.2 Location of the Adapted Bootstrap Loader

For convenience, a user should not need to compile his program in a special way
in order to use our BSL, so we assume the normal properties of a program like
described in the previous section. In order to reserve as much memory as possible
for a user program, we place the adapted BSL at the top of the memory, right before
segment 0. Segment 0 can not be used, because the interrupt vector is overwritten
with every new program and, as mentioned before, in this cycle the whole segment 0
has to be erased. Now the maximal space available for another program is reduced
by the size of the new bootloader (approx. 4kBytes), but programs can still be as big
as 45.5kBytes and do not need to be compiled with special displacement in memory.

4.4.2.3 Interrupts

In segment 0 there is only one interrupt vector. The bootstrap loader has to guar-
antee, that every time another program is running, the right interrupt vector is in
place. Otherwise there would be a conflict and the behaviour of the program would
be incorrect, every time an interrupt is generated.

We managed to implemented the new bootloader without the need for interrupts. All
interrupt routines could be replaced by polling registers. This allowed us to disable
all interrupts when running the bootloader, making it independent of the interrupt
vector. Data of another program in this table does not affect the behaviour of the
bootloader.

4.4.2.4 Start-up

When the adapted BSL is installed, there are actually two different programs loaded
into the MSP430 but the controller can only start one. To solve this problem, we start
the BSL first and decide, based on the state of an input pin (Figure 4-3), whether
to start the bootloader or the user program. This behaviour is sketched figure 4-4.
To maintain this starting order, the adapted BSL always makes sure, that the reset
vector in the interrupt vector always points to the start address of the bootloader.

reset

prog

Figure 4-3
Bootstrap loader entry sequence
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4.4.2.5 TinyOS Node Address

In TinyOS, the identification number of every node is saved in the program code
at a non deterministic memory address. This implies that every node programmed
with the same binary would have the same identifier, which is the case when code is
distributed and programmed by the DSN. To circumvent this issue, we assume that
the adapted BSL on every node is programmed with a unique ID. Whenever the
adapted BSL is started, it sets its own node ID to a fixed address in segment 0. If
the user program is compiled with the NesC DSN component, then this component
initially reads out the ID at this address in segment 0 and sets it as its own network
identifier.

4.4.2.6 Program Flow

The chart of the program flow is shown in figure 4-4. The BSL entry sequence at
start up lets the bootloader execute the left branch. This branch is essentially the
TI BSL protocol with two exceptions. A mass erase command does erase all seg-
ments but the bootloader segments and every time segment 0 is erased, the boot-
strap loader rewrites its start address into the reset vector. This ensures that the
bootstrap loader is always started when the microcontroller starts. Also shown in
the flow chart are the handling of the TinyOS network identifier and the start-up
sequence as described in the previous sections.

4.4.3 Installation of the Bootloader
The DSN-bootstrap loader is installed with the normal procedure over the USB-
Interface. The node keeps the ID that was declared while installing the bootstrap
loader. The command to install the bootloader looks like this, where ID is the node
identifier:

make tmote install,ID bsl,COMPORT

The bootloader will be removed if a real mass erase is performed. This is usually the
case when programming with the default BSL or over the JTAG interface.

4.5 Communication
4.5.1 Challenges
When the program on the target node is running, it sends its logging date to the
DSN. The standard (an only implemented) method in JAWS2 is to send those mes-
sages over an UART interface. As shown in figure 4-5, there are two interfaces that
are intended to be used for this kind of communication: USART0 and USART1. As
mentioned earlier, access to the latter module is very difficult due to the USB con-
troller. Therefore we use the former interface (USART0) for this functionality, the
same as already used for programming.

Tmote’s Chipcon 2420 radio module is connected to the same USART0 hardware
module. The USART0 can be configured exclusively in SPI, I2C or UART mode.

2Name of the software that is running on the BTnodes of the DSN. Jaws is an allusion of several
(Blue)teeth building a jaw.
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Is the programming pin set?
(=BSL entry sequence)

Is node id 
already 
written?

no

Write node id into 
flash memory

no

yes

Disable all interrupts
Initialise hardware for 

bootloader (UART, Leds)

Data for 
writing?

Full frame 
received?

Check address to 
write

Checksum ok?

Perform requested action:
- Erase
- Verify

- Send BSL version
-Change baudrate

Action 
successfull?

yes

yes

yes

yes

no
Set program pointer to 
start of user program

Receive 
byte from 

UART

Send NACK

Send ACK

Write byte 
to internal 

flash 
memory

Reset

Write 
startaddress 
of booloader

Send NACK

yes

Address=reset vector

Address is not in bootloader segment

else

no

no

Action = set 
program pointer?

no

yes
Send ACK

no

Figure 4-4
Flowchart of the bootstraploader for Tmote Sky.
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Each mode uses different pins on the MSP430. The radio module is connected in
SPI mode and communication to the DSN node is done in UART mode. This implies
following restriction: Communication can either go on between the microcontroller
and the DSN (via expansion connector and UART) or between the microcontroller
and the radio module. The program running on the Tmote Sky must ensure, that
the USART0 module is in the right mode for the ongoing communication. Imple-
mentation details are provided in the following paragraph.
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USART1 module
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Figure 4-5
Available connectors to the Tmote Sky. USART0 and USART1 provide several operation
modes but only one at a time. The radio module is hard wired to the USART0 module in
SPI mode.

4.5.2 DSN Component
We have written a TinyOS component that can be wired to any other program in
order to use the DSN. This component properly initialises the UART and handles the
communication with the DSN-node (logging and receiving commands). As described
in chapter 3, shared resources (UART and SPI) are handled with arbiters in TinyOS
2.0. Components that want to use a shared resource first have to request it and
wait then until access is granted. This works fine when sending log messages to the
DSN. Receiving commands from the DSN node requires an additional mechanism
that tells the DSN component when to acquire the USART0 module, since the UART
cannot be used when the radio module is in use.

This is accomplished using a RTS/CTS scheme. Every time the DSN node wants to
send data to the Tmote target, it sets the RTS signal on a pin and waits until the
Tmote node has successfully configured the UART module. Then the target notifies
that it is ready via the CTS signal. Since the RTS signal triggers an interrupt on
the Tmote Sky, the microcontroller can respond even if it was in sleep mode.

4.5.2.1 Features

Following events and commands are provided by the DSN interface:
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interface DSN {
command error_t log(void * msg);
command error_t logLen(void * msg, uint8_t len);
command error_t logError(void * msg);
command error_t logWarning(void * msg);
command error_t logInfo(void * msg);
command error_t logDebug(void * msg);

async command void logInt(uint32_t n);

command error_t logPacket(message_t * msg);

command error_t stopLog();
command error_t startLog();

event void receive(void * msg, uint8_t len);

command void emergencyLogEnable(uint32_t timeout);
command void emergencyLogDisable();
command error_t emergencyLogAdd(

void * pointer,
uint8_t numBytes,
uint8_t * description);

}

Listing 4.1
Code: Interface to the DSN component

We provide seven commands for logging messages. Two of them are for general pur-
pose. log() takes a null terminated string and logLen() a string with known
length. The other four logging commands correspond to the log levels defined in
JAWS, each representing a level of severity, listed in table 4-3. Numbers are logged

Log Level DSN Command Description
LOG ERROR logError(void * msg) Severe errors that impact the system.
LOG WARNING logWarning(void * msg) Warnings. Indicate a non-critical failure.
LOG INFO logInfo(void * msg) Informational messages.
LOG DEBUG logDebug(void * msg) Debug output intended for developers.

Table 4-3: Log levels of JAWS [34]

with the logInt() command. Like standard C, the DSN component replaces %i in
msg with the previously logged integers. Other replacements are shown in table 4-4.

The logging of numbers in messages is therefore done in several consecutive
logInt() commands followed by one log() command. This splitting is necessary
because NesC does not provide functions with unknown number of arguments. For
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4.6. Tmote Sky Target Adapter Hardware

Symbol Replacement
%i decimal representation
%h hexadecimal representation
%b binary representation

Table 4-4: Symbols for numerical logging

logging of radio packets in TinyOS, we provide the logging function logPacket(),
which writes the header and payload of the packet in hexadecimal format to the
UART.

A TinyOS component that wants to evaluate received commands from the DSN
needs to implement the event receive(). As soon as a whole command is received,
the event is signalled.

There are testing scenarios where we are not interested in the log messages when
the system behaves normal, but in the messages of an error case. If this error does
prevent the program flow in such a way, that normal logging output is not possible,
we are at least interested in the state of the program. The emergency logging feature
lets the user specify a number of variables that are logged in an error case. The error
case can be defined by a timeout, in which no logging activity is done.

The two commands logStart() and logStop() are provided to control the active
logging output. If it is disabled, logging is only done to a local buffer. This can be
used for instance, when the message is logged in a time critical part of the program.
In this case, the message is just buffered, which need less computation power. This
controlling of logging output can also be applied to make sure that the USART mod-
ule is not used for logging at a specified moment. Critical radio commands like the
modification of the transmission buffer make this necessary.

4.6 Tmote Sky Target Adapter Hardware
The hardware of the target adapter consists of a 7-wire cable and the DSN adapter
board for BTnodes. Tables 4-5 and 4-6 show the connected signals.

Target
Logic

Target Pin Tmote Net BTnode J1 AVR Pin BTnode Net

TG RESET 6 RESET 26 PB1 SCK
TG PROG /
TG RTS

3 GIO2 27 PB0 SS

TG CTS 4 GIO3 29 PE6 PE6

Table 4-5: Tmote 6-pin Expansion (U28)
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Target Logic Target
Pin

Tmote Net BTnode J1 AVR Pin BTnode Net

ISP MOSI TXD 2 UART0RX 4 PE1 UART0 TXD
ISP MISO RXD 4 UART0TX 5 PE0 UART0 RXD
TG BAT SENSE
/ VCC TG

1 AVCC 29 PF6 TDO

GND 9 GND 40 GND GND

Table 4-6: Tmote 10-pin Expansion (U2)

Figure 4-6
Fotos of the Tmote Sky
DSN-Adapter. The
prototype (at the top) used
a ribbon cable and the
BTnode DSN adapter
board. The final Tmote
adapter board (below) has
a special connector in order
to fit to the displaced
jumpers of the tmote Sky.
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5
Implementation of Status

Monitoring

In this thesis, we focused on the monitoring of a sensor network, especially on the
detection of failed nodes. The goals were to design and implement a robust system
which consumes very little energy.

5.1 Failure Detection Strategies
Following possible failures can prevent a sensor node from providing its duty:

• The battery of a node has drained out.

• A hardware defect occurs.

• A software failure occurs that makes the behaviour of the node unpredictable.

• The needed communication channels to a node are permanently missing or
disturbed.

The common characteristic of all cases is, that the missing node is unable to send
proper radio messages. Obviously, a node can not detect its failing by itself, so neigh-
bours have to find out somehow the erroneous state of the node. When they eventu-
ally have found, that a node is missing, this can be reported to a base station. With
this method, only missing nodes are reported and the network is supposed to run
fine, if no information is provided. This would actually work, if the network is highly
reliable and no message losses occur. In WSNs there are often lost packets due to
interference, packet collisions or limited transmission power. A sent failure report
can therefore be lost and the absence of information could also indicate a network
failure.

Another approach is to positively report error-free nodes like a network heartbeat.
In this scenario, the base has to know all available sensors in the network. Different
to the error reporting approach, missing nodes can be actively searched by the base
station. Both failure detection approaches referenced in section 2.2 are based on
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such a heartbeat. Each node periodically sends a status message and as long as this
information reaches the interested nodes or the base station within a predefined
interval, the referred node is considered as alive.

5.2 Approach
Our status monitoring is based on the information of active nodes. In steady state,
status information of all sensor nodes is gathered towards a base stattion within a
reporting wave. In this wave, information is aggregated and routed through various
paths to achieve robustness through redundancy. At the base, the reported status of
the network is acknowledged with an acknowledge wave in the opposite direction.
The co-ordination of these waves is done at the base station with a time division
multiple access (TDMA) schedule. Every node gets a specified sending slot in order
to avoid packet collisions. Synchronisation and schedule information are propagated
within this acknowledge wave. At start-up, every node registers itself at the base
station.

For later usage, we call the combination of the reporting wave and the acknowledge
wave a round. A period starts, when all nodes switch from the low power mode to
the active mode for sending a reporting wave.

5.2.1 Requirements and Assumptions
The implemented monitoring sytem has to satisfy following requirements (Problem
task, Appendix A):

1. Failed nodes have to be reported by the whole system in a hard time limit
TReport,Max of 100 seconds (Time constraint)

2. Robustness: Individual temporary link failures must not affect the reporting
facility (Robustness)

3. If one radio frequency is temporary disturbed, an alternative frequency must
be used for proper functionality (Robustness)

4. The nodes have limited energy and should therefore mostly stay in a sleep
mode (Low power)

For the following considerations we assume, that the network is bounded to N nodes.
Additionally, every node is no further away than H hops from its base station, which
implies, that the network has a maximum diameter of 2 · H hops. Not every node
might have a direct link to the base station, so multi-hop functionally has to be im-
plemented. When deployed, the position of every node can be chosen within a certain
radius in order to increase the probability of having a connected network. Once put
in place, nodes are not moved around anymore. Therefore we do not have to consider
link quality changes due to mobility but rather due to interference from electrical
devices such as communication systems (e.g. 802.11 or Bluetooth) or household ap-
pliances (e.g. micro wave ovens).
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5.3. Concepts

5.3 Concepts
In this section, we describe the strategies that are used in our implementation in
order to meet the requirements for robustness, time constraint and low power.

5.3.1 Robustness
5.3.1.1 Redundancy and Acknowledgements

There are two main concepts to increase robustness of communication: Acknowl-
edged messaging and redundant message paths. We use both principles in for our
reporting system.

To achieve redundant communication, we exploit that transmissions from a node
in a WSN can be overheard by all its neighbours. If we send the alive information
in local broadcasts (to all 1-hop neighbours), every listening node can aggregate
the status of its neighbours. For information aggregation we use a bitmask. Such
a strategy is comparable to flooding. It gradually enhances the robustness of the
network but also increases the power consumption. Link failures or total loss of
communication can influence the completeness of both waves. Although there is
redundancy in the information flow, it can happen that a node misses a message.
For this case, our monitoring system implements a recovery mechanism.

We differentiate two cases:

1. The reporting wave does no contain the information of all registered nodes

2. A node does not receive the acknowledge wave and is therefore not synchro-
nised anymore

t0

t

Faultless case

TPERIOD

t0

t

Shortwaves in error cases

t0

t

Nodes missing

Schedule missing

Figure 5-1
Overview on the recovery mechanism. In the faultless case, only two waves are sent in one
period.

When a node is not reported in a round, a rerun of the waves in a recovery round
could bring the missing information. This is the case, when this failure is caused by
a temporary link error or an unsynchronised node. In our case, the sink sets a flag in
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the acknowledge packet that indicates, that an immediate next round follows after
the regular acknowledge wave. This behaviour is shown in figure 5-1. The following
wave rounds end either when all nodes are reported or when the maximum count of
retries is reached.

In the case, where an outgoing acknowledge wave is affected by errors (Figure 5-1,
last case), some or all nodes did not receive the time synchronisation information.
Unsynchronised transmissions can lead to collisions and should be avoided. Nodes
that have lost synchronisation do not send a message until they have received time
information again. Meanwhile, this node has to sustain its schedule based on the
local clock. In order to compensate clock drift, the wake-up phase has to be started
earlier, introducing an additional guard time. The successful recovery process of this
case is depicted in the last row of figure 5-1.

5.3.1.2 Channel Fault

When an entire frequency is temporarily jammed (e.g. by a garage opener), there
could be a whole wave round affected. We address this concern by a simple channel
hopping. Every set of recovery wave rounds is sent in an evading channel. Between
the two channels used, there are some buffer channels in order to avoid frequencies
potentially used or affected by the jammer. With this mechanism, a jammed default
channel can be circumvented with two additional short wave rounds in the auxil-
iary channel. A first round for resynchronisation and a second round for the final
reporting.

5.3.1.3 Simple Implementation

We address robustness in terms of ‘failure free software’ with the strategy of a sim-
ple implementation. This keeps the overall state machine of the program manage-
able and thus reduces the possibility of errors. Furthermore, a simple algorithm
needs less computation and therefore possibly less power.

5.3.2 Meeting Time Constraints
The used TDMA scheme gives us the ability to react on missing nodes after a well
known time because the duration of each wave, reporting and acknowledging, can
be limited to a determined duration. This is done by generating a TDMA schedule
in such a way that the sending order of the nodes is according to the logical informa-
tion flow. If, for the reporting wave, it can be ensured, that outer nodes (bigger hop
distance to the base) send before their inner neighbours, the alive information of the
whole network can be gathered with only one message per node. The same applies
to the acknowledge wave in the opposite order. Unlike contention based protocols,
TDMA approaches are inherently collision free. This and the fact, that every wave
consists of only one message per node leads to an exactly definable duration for each
wave. Our status monitoring system sorts the time slots for the nodes according to
their hop distance from the base station. The drawback of such a protocol is its over-
head for schedule calculation and the need of a network synchronisation. In section
5.4.2, we will describe our simple synchronisation approach in detail.
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As seen in the previous section 5.3.1, retransmissions can occur when not all nodes
are reported in a wave round. The base station maintains a node table that contains
the time when a node was last reported as beeing alive. When an entry update is
missing for more than the maximal reporting time TReport,Max, the according node
is reported as missing. In order not to report temporarily missing nodes (false posi-
tive), more wave rounds can be done per TReport,Max.

5.3.2.1 TDMA Scheme

An overview on the principle of our TDMA scheme is given in figure 5-2 (Example
for a network consisting of N = 16 nodes). Every wave is divided into N slots. At the
beginning of a period (t0), the reporting wave takes place. In this phase, all nodes
are listening for alive packets. Every node sends its aggregated alive information
in the assigned slot. When the reporting wave has finished, the sink initiates the
acknowledge wave. If all registered nodes are reported, the whole network is put in
a sleep mode.

The network schedule is calculated at the sink and then propagated within the ac-
knowledge wave. The order in the schedule is determined as follows: In the reporting
wave, nodes with a higher distance to the sink have earlier slots assigned. The or-
dering between nodes with the same hop count is random. The slots are assigned
contiguous from the latest slot towards the earliest. The reporting slot of the sink
is not used for transmission but for calculating the schedule and evaluating the
received status information.

Report wave Acknowledge wave sleep
t0

t0

Slot ..
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TLOAD TRXTX TTXRXTTRANSMIT

Guardtime >= TLOAD + TRXTX Processing time >= TTXRX

t

t

t

Wave round

Period TPeriod

Figure 5-2
TDMA scheme for one wave round. In this example, the network consists of maximal 16
nodes (N = 16)
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The third axis in Figure 5-2 shows the time composition of a slot. As already dis-
cussed in chapter 3, the radio module needs time TLoad for loading packets into the
FIFO buffer and time TRxTx respectively TTxRx for switching between receive and
transmit mode. Additionally, each slot contains a guard time in order to avoid over-
lapping transmissions due to clock drift. This is mainly necessary in the report wave,
as nodes have not synchronised for the duration of a period. If two neighbours are as-
signed to contiguous time slots, the second node must be able to process the received
information from the forerunner. For this purpose we reserve the time TProcessing in
each slot. The values for all those time parameters are derived in section 5.4.4.

5.3.3 Low Power
We address this concern with the TDMA approach described in the previous section
5.3.2.1. This scheme does not only determine when a node has to send, it also allows
to let the sensors sleep, when no transmission is to be expected. In other words,
idle listening time is effectively minimised. The schedule also helps to minimise
overhearing and avoids collisions, a main cause of power loss in contention based
MAC protocols.

5.4 Implementation Details
In this section, we discuss some parts of the implementation of the status monitor-
ing system in TinyOS. This should not be a repetition of the concepts, but rather
describe how theoretical work was realised practically. We also present an example
of how we used the DSN for the implementation. Our implementation was made for
a network with N = 16 nodes and a maximal hop count H of 2.

5.4.1 Component Overview
Figure 5-3 shows an overview over the directly used components of the implementa-
tion in TinyOS. Every component with a C at the end of the name is a configuration
that is wired up from several sub-components. The dark components ClusterNet-
workP, ClusterAdminC and DSNC contain most of the coding work of this thesis.
ClusterNetworkP is the main block of the failure detector. ClusterAdminC manages
the scheduling and DSNC represents the DSN component for logging and receiving
commands. The components with a dashed background contain the changes made
to the CC2420 network stack. At the bottom, there are six components with dashed
borders. These are generic components, which means, they represent each an in-
dividual instance of the same component. For every packet type (from left to right:
Acknowledge packet, report packet, report packet with a joining request), there exist
a dedicated sending and receiving component.

5.4.2 Time Synchronisation
Every node has a local clock (calibrated by a crystal). These clocks do mostly not run
exactly with the same offset and drift. Clock drift is caused by manufacturing errors
of the crystal. Additionally, the clock frequency depends on temperature. In the case
of the Tmote Sky, the manufacturing precision of the crystal is 20ppm [44].
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MainC

DSNC

CC2420ControlC

ClusterNetworkP

AMReceiverC
(AMReceiverPRwdC)
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AMReceiverC
(AMReceiverRwdC)
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(AMReceiverFwdC)
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RandomC

CC2420TransmitC
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Init
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BootCC2420Config

DSN

AMPacket

Alarm<T32khz, uint32_t>

SplitControl

Packet
AMPacket
AMSend

CC2420Packet

Leds

Receive

AMSend

ClusterAdmin
ClusterSchedule

CC2420Transmit
CC2420Tdma

RadioTimeStamping

Receive
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Receive

AMSend

Random
ParameteInit<uint16_t>

Figure 5-3
Wiring of theimplementaton of the failure detector. Each box represents a component and
each arrow a wiring through the indicated interface.

Offset adjustment between two nodes can be done in several ways[40]: unidirec-
tional, with a roundtrip time measurement or with reference broadcasts.

With unidirectional synchronisation, only one packet is sent. The receiver can then
set its time offset according to the transmitted timestamp but has no information
about the delay during the transmission. This delay has to be estimated.

Round trip time based synchronisation estimates this delay based on an exchange
of two messages, which provides an upper bound on the synchronisation error [41].
In this approach, the needed messages increase linearly with the number of nodes
to synchronise.

With reference broadcasts [43], a beacon node sends a broadcast packet. The mea-
sured arrival time is used as common time reference in order to synchronise the re-
ceivers of the beacon with each other. The synchronisation error is typically smaller
than with unidirectional or round-trip synchronisation [40].

For our implementation, we decided to use unidirectional clock synchronisation for
two reasons: (1) With the timestamping support of the CC2420, uncertainties in
the transmission delay get reasonable small, as shown later in this section. (2) The
synchronisation of the network can be done with little effort regarding the amount of
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messages and the complexity of the implementation. Figure 5-4 shows three phases
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preamble SFD header payload FCS

T0 TSFD

t

sending pointer

time
offset

preamble SFD header payload FCS

T0 TSFD

t

sending pointer

time
offset

Toffset

modification of the TX buffer

modification of TX buffer

SFD header payload FCS

T0 TSFD

t

sending pointer

time
offset

Figure 5-4
Timestamping with the CC2420 on a packet while sending

in the process of timestamping. As soon as the start of frame delimiter (SFD) has
been sent, an interrupt is generated which triggers a capture of the current time.
Now, time information can be added to the packet being sent. On the receivers end,
the arrival of the packet, in particular the SFD, triggers an interrupt again. As we
only capture time in the resolution of the ACLK (32.768kHz), the propagation time
of the packet is negligible.

The problematic of clock drift in WSNs can be addressed with periodic resynchroni-
sation or estimation of the clock drift [40][42]. We chose the former method, because
we already have a periodic message exchange for failure detection and can therefore
piggypack synchronisation information on these packets.

5.4.2.1 Synchronisation Performance

In order to estimate the performance of the unidirectional clock synchronisation
with the CC2420 MAC layer time stamping feature, we set up a test application
with seven nodes. All nodes had a common wake-sleep schedule and were placed in
a ring. At the beginning, one node started sending a packet with time information
to the next neighbour. The packet was then forwarded from node to node in the ring.
The one that had the packet, adjusted its time offset accordingly to the offset infor-
mation provided from the predecessor. A sniffer node captured all sent packets and
logged their SFD time. The gathered information, mapped in figure 5-5, shows the
clock drift of each packet relative to the sniffer node’s clock. It can be observed, that
SFDs are tendentially sent earlier, the more hops involved. We measured a maximal
deviation TSyncError,Max per hop of 2 clock ticks which corresponds to 61.035µs.

Applied to our failure detector network, the error of the synchronisation offset at
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Offset deviation with MAC-layer timestamping and unidirectional clock synchronisation

the maximal distance of H hops from the base station amounts is in the range of
±H · TSyncError,Max. Compared to the clock drift of 2ms (at a period of 100s), the
maximal synchronisation error of 60µs is negligible.

5.4.3 Radio Configuration, CC2420 Stack Changes
The chosen MAC layer made it necessary to change the network stack of TinyOS.
First of all, we wanted to control the time a packet is sent as precise as possible. This
was not possible with the existing implementation. The CCA feature was removed
and with this also the need for backoff timers. Furthermore we created an interface
that allows a program to load a packet in the radio FIFO and tell the radio explicitly
when to switch to the transmitting mode. With this preloading mechanism it is
possible to load the frame (header, schedule) of a packet to the FIFO and change
some small amount of data (time offset, bitmask) on transmission.

For timing purposes we had to add support for 32-bit timestamps to the stack. This
stamping ability is used for saving the time a packet has arrived.

For later extensions, for example for usage in a clustered network, we made use of
the address recognition feature of the CC2420 chip. The PAN (personal area net-
work) field in the packet header would give us the opportunity to separate the com-
munication of inter-cluster communication. As soon as a node becomes a member of
a cluster, it sets its PAN field to the node id of the cluster head. In order to use this
feature, additional commands had to be implemented in the TinyOS network stack.

5.4.4 TDMA Slot Duration
For the implementation of the TDMA scheme, we had to estimate the duration of
the slots. As depicted in figure 5-2, a slot is composed of a guard time TGuard, a
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transmission time TTransmit and a processing time TProcess. A slot duration can be
calculated as follows:

TSlot = max(TGuard, TLoad + TRxTx) + TTransmit + TProcess (5.1)

Times concerning the radio chip were measured with the already mentioned experi-
ments in chapter 3. In order to justify the measured values, we calculated some time
interval based on values in the datasheet [18]. Those values are listed in table 5-1.
The size of a packet can be calulated with following formula:

LPacket = LHeader + LPayload + LCRC (5.2)

where
LHeader = 11bytes

LCRC = 2bytes

Parameter Calculated based
on datasheet

Measured

TLoad − 1.1ms

TRxTx + TSFD 352µs 360µs

TTx (29 Bytes) 928µs 1020µs

TTx (n Bytes) n · 32µs −
TRx,Stack − 1.23ms

TGuard,Report 20ppm of TPeriod −
Table 5-1: Values for the calculation of slot duration

The guard time TGuard in Equation 5.1 is only necessary for the first reporting wave
of each period. After this wave, a resynchronisation happens in the acknowledge
wave. This guard time prevents slots from overlapping each other due to clock drift.
Otherwise, packet collisions could occur. In the worst case, the clocks of two consec-
utive nodes drift with maximal deviation in opposite directions. This is illustrated
in figure 5-6. TGuard has therefore to be 2 · TDrift,WorstCase. In the following calcula-
tions, we evaluate the slot duration of the first report wave (TSlot,Report,1st) and of the
report waves of the recovery action (TSlot,Report,Recover) individually.

In order to get a good estimation for the processing times, we implemented a first
version of the failure detector where these processing times were set very conser-
vatively. With this implementation we measured the time from receiving a packet
from the radio stack until it was fully processed by the application. This was done
within the program itself, using the local clock. This measurements were logged to
the DSN, using the DSN component.

The gathered data gave us a good estimation for the final implementation and
showed us potential optimisation possibilities. An example evaluation in Matlab is
illustrated in figure 5-7. The histograms shows the application processing time of ac-
knowledge(ACK) packets on several nodes. We recognised relation between TDMA
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Transmission time with worst case clock drift. The guart time TGuard needs to be twice
TDrift,WorstCase. The local clock of node x is too slow, the clock of node y too fast.
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Figure 5-7
Measured application layer processing time of the acknowledge packets. Each plot
represents an individual node. In this experiment we could observe, that nodes that are
scheduled later have a longer processing time. This insight, supported by the DSN, allowed
us to improve the according packet processing steps. Finally, the reporting time depended
not anymore on the slot position.
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slot position and duration of the application processing time. By examining the code,
it turned out, that the reason for this relation was a loop in the timing calculations.
Every slot needed an additional iteration. As this code was located in a time critical
part, we made an effort to transfer the main calculation component to a less time
critical place. In the end, the slot position of a node had no effect on the processing
time anymore. The final application processing times are listed in table 5-2.

Parameter Measured
TAppProcess,Report,Max 224µs

TAppProcess,Ack,Max 264µs

Table 5-2: Measured application processing time

If we fill the values from table 5-1 and table 5-2in formula 5.1, we get an estimation
for the duration of the reporting and acknowledge slots (TPeriod is assumed to be
45s):

TGuard,Report,1st = 2ms > TLoad + TRxTx

TTransmit,Report = LPacket,Report · 32µs = 896µs

TProcess,Report = TRx,Stack + TAppProcess,Report,Max = 1.23ms + 224µs

TSlot,Report,1st = TGuard,Report,1st + TTransmit,Report + TGuard,Report,1st = 4.35ms

TGuard,Report,1st = TLoad + TRxTx = 1.46ms

TSlot,Report,Recover = TGuard,Report,1st + TTransmit,Report + TGuard,Report,1st = 3.81ms

TGuard,Ack = TLoad + TRxTx = 1.46ms

TTransmit,Ack = LPacket,Ack · 32µs = 1.216ms

TProcess,Ack = TRx,Stack + TAppProcess,Ack,Max = 1.23ms + 264µs

TSlot,Ack = TGuard,Ack + TTransmit,Ack + TProcess,Ack = 4.17ms

The implemented TDMA scheme has still potential for optimisation in terms of low
power consumption. For instance, the number of slots could be set adaptive to the
number of effectively existing nodes in the cluster. Also possible is a shutdown of the
radio module after the information of a node is sent in each wave. The saved power
is paid by decreased robustness as alive information cannot be gathered anymore
for consecutive wave rounds.
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5.4.5 Start-up Phase
The initialisation of wireless sensor networks are rarely discussed in detail in theo-
retical papers. Our approach was inspired by LEACH [35]: When a node is started,
it waits for a random time, listening for an acknowledge wave with synchronisation
information. If an expected packet arrives, a joining request is sent if

• the immediate sender of the packet is at least a (H − 1)-hop neighbour of the
sink or the sink itself

• the cluster is not full

• the measured link quality is above a specified threshold

This request is piggypacket on the next report wave. If other requests are made in
the same round, they are aggregated in the wave. In an early state of network ini-
tialisation, the number of requests is usually high. Therefore we decided to limit
the maximal aggregated joining requests per packet. Once a node is registered at
the base station, the following acknowledge wave carries its invitation. If a request-
ing node is not invited, the node switches again to the listening mode for receiving
another acknowledge wave. If no sink is present or no joining possible until the ran-
dom waiting time is over, the node nominates itself as a sink. This behaviour could
be used in a clustered network.

5.5 Tests and Analysis
In order to verify our implemented failure detection system, we run some tests. The
results are summarised in this section.

5.5.1 Testbed
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Figure 5-8
Arrangement of noded in the testbed

The following tests were made in a testbed consisting of 11 nodes on a table. Every
Tmote had a DSN node attached. To simulate lossy links, we adjusted the transmis-
sion power of the failure detector nodes to a minimum. An impression of the setup
is given in figure 5-8.
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5.5.2 TDMA Schedule Verification
In the implementation phase of the TDMA scheme, we wanted to have a tool to
verify the implemented behaviour. This tool should not only be able to display the
slot of a transmission but also the exact position in the slot. For this purpose we used
one sensor node as a packet monitor. This node was set in a promiscuous listening
mode and logged the whole traffic in the cluster. For logging, we used the already
described DSN component. In order to get real-time status information, the output
of the node had to be made on the integrated USB interface. So we added a software
switch to change the logging output between UART0 (DSN-connection) and UART1
(USB). Figure x shows an output example of the sniffer node. This node used its
internal clock to measure the arrival times of the packets. From these times, the
corresponding slot number and offset were calculated. More flexibility was achieved
through adding filter abilities. The final version of the sniffer could filter out packets
of a certain type or from a specified sender and display them in a short form, like
in figure x, or print out whole packets for detailed debugging. In the printout of the
example (Figure 5-9)we see two wave rounds in a cluster with five sensor nodes. The
slots are numbered from 0 to 32, which represents the combination of a report wave
and an acknowledge wave. Slot 15 is always used for calculations at the base station,
so this slot is not logged by the sniffer. Packets of the reporting wave apparently
arrive later in a slot. This has to do with the nature of the network initialisation.
A report packet could contain a join request of a node. Such a request would need
computation time in every forwarding node. For this reason, packet preloading (see
section 5.4.3) is not is not applicable here.
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diff:98304
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report wave
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report wave

acknowledge wave

measured period duration

round number
slot offset
slot number
node address

start of 1st report wave

start of immediate 2nd report wave

Figure 5-9
Output of the packet sniffer
in a network of 5 nodes. In
this case, a normal round
and one recover round is
logged. For slot number
and offset measuring, the
first packet from the base
station is used as time
base. Packets from the
reporting wave are sent
later in a slot than packets
of the acknowledge wave.
This is due to the
preloading feature used for
the later wave.
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5.5.3 Reporting Time Measurement
We measured the reporting time of our implementation in an experimental setup.
In order to eliminate environmental impact on the linkquality, we run the testbed
at maximal transmission power. Particular nodes were then selectively shut down
by using the target command feature of the DSN. A Java program was used to inject
those shutdown-commands at a random time. Three runs with different period time
TPeriod were made. We set the timeout for an entry in the node table to 90s.

The results, shown in figure 5-10, look as could be expected. As no retransmissions
were needed, missing nodes could be reported within a period. The shorter the pe-
riod is, the faster the reaction of the system. Some measured reporting times were
slightly (maximal 2s) higher than 90s. This can be traced back to the accuracy of the
logging timestamps of the DSN.
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Figure 5-10
Histogram of the measured reporting times with different periods T Period

5.5.4 Power Consumption Estimation
5.5.4.1 Measuring Rounds per Period

For power consumption estimation, we used our model in chapter 3. First, we have
to calculate the mean current over a period. This value is not always constant be-
cause of retransmissions. In order to get example data from our failure detector,
we added round logging support. Each node reported the number of wave rounds
used in each period. The samples were then gathered with the attached DSN. The
testbed run with the parameters listed in table 5-3 and the calculated duration of
the slots from section 5.4.4. We run a total of three test cycles, each time with a
different transmission power set. As the nodes in the testbed had little distance to
each other we configured the radio module with the three lowest possible values for
transmission power.

The resulting data from these runs is shown in figures 5-11 to 5-13. We grouped
the curves according to the hop count of the nodes. For better readability, the curves
were filtered by a sliding average window of 50 samples.
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Figure 5-11
Plot of the round count experiment at a transmission power parameter of 1
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Figure 5-12
Plot of the round count experiment at a transmission power parameter of 2
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Figure 5-13
Plot of the round count experiment at a transmission power parameter of 3

Parameter Value
Tperiod 45s
Maximal retries 3
Transmission power {1, 2, 3}

Table 5-3: Parameters for the round count experiment.
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Nodes with a higher hop count seem to run more additional rounds than those with
lower distance to the sink. This can be explained with the fact, that a wave has to be
forwarded from the inner nodes to the outer ones. A message for an outer node has to
be transmitted over twice as much links, so the probability of a link failure increases.
Comparing the three test runs with each other, we can observe, that transmission
power increases the robustness of the network. The higher the power, the lesser
rounds are counted per period. In the last run (Figure 5-11), the radio range is so
high, that the initialisation procedure of the network does not anymore recognise
2-hop nodes.

5.5.4.2 Lifetime Estimation

With the measured data in the previous section, we could estimate the lifetime for
each setup. As the energy consumption is individual for each node, we define the
lifetime of the network as the time, when the first node’s energy is used up. Ad-
ditionally, we were also interested in the theoretical minimum and maximum life-
time, limited by the capacity of the battery. The following calculations characterise
the network profile for our estimation. Time intervals had to be calculated for the
scenarios, where one or more wave rounds happened in a period.

The time used for transmission in a round (TTx) and the idle listening time
(Tidle/rx,1st, Tidle/rx,recover) were calculated based on values derived in section 5.4.4:

TTx = 2 · TRxTx + TTx,Report + TTx,Ack = 2.83ms

Tidle/rx1st = N · (TSlot,Report,1st + TSlot,Ack) − TTx = 133.49ms

Tidle/rxrecover = N · (TSlot,Report,Recover + TSlot,Ack) − TTx = 124.85ms

From this values, we calculated the average current in each case, according to our
model in section 3.3.3. These values are shown in table 5-4. In Table 5-5 we present

Rounds per
period (n)

Average
current

(IAvg)
1 98.96µA

2 157.67µA

3 215.61µA

4 274.31µA

Table 5-4: Average currents for n rounds per period

the theoretical lifetime of our implementation if the node were energised by a typical
NiMH cell. We assumed a battery capacity of 2300mAh.
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Setup Average
current

(IAvg)

Calculated
lifetime in

years
Max. current 274.31µA 0.96
Min. current 98.96µA 2.65
Tx power 1 225.1µA 1.17
Tx power 2 187.4µA 1.40
Tx power 3 146.2µA 1.80

Table 5-5: Calculated network lifetime with a 2300mAh battery. Theoretical bounds and re-
alistic values, based on round measurements.
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6
Conclusion and Outlook

Development of embedded distributed systems is a very hard and time consuming
task. During our implementation of the network monitoring application (and also
several test applications), a lot of time has been invested in debugging. In this area,
support for implementation and deploying is substantial in order to get satisfying
results in a reasonable time. As a premier to the Tmote Sky platform, we could use
the JAWS deployment support network for gathering information from the whole
target network.

With TinyOS 2.0, we used a wireless sensor network software framework that is
still in development. Although we could not use the end product, we think TinyOS
2.x has great potential to continue the successful history of its predecessor TinyOS
1.x. The community around TinyOS and Tmote Sky is very active, which promise
further improvements in software architecture.

6.1 Contributions
We implemented a package for Tmote Sky that enables the support with the JAWS
deployment support network also to other developers on this hardware platform.
This package consists of three elements:

1. The hardware connection between Tmote Sky and a DSN node (BTnode rev3).

2. The NesC component that enables TinyOS 2.0 applications to log messages
to the DSN, receive target commands and set the network identifier of each
Tmote Sky node.

3. A TI-BSL protocol compliant bootloader for programming the microcontroller
MSP430 over its non-standard serial interfaces UART0.

This DSN package had been used for implementing a heartbeat style network mon-
itoring system. The features of the application are listed below:

• A given reporting time limit can be guaranteed with very high probability.
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• With support of redundant information flow and acknowledged messaging, the
monitoring facility is not affected by temporary link failures or channel fail-
ures.

• With a TDMA scheme, the application stays mostly in a sleep mode and is
therefore applicable for battery powered long term deployment.

In order to profile the implemented system, we made following measurements:

• Time and current on the Tmote Sky platform, focused on the sending and re-
ceiving processes.

• Network wide data gathering concerning retransmissions and several time as-
pects (reporting, processing, TDMA schedule).

The observed data can be used as base for further implementations on the Tmote
Sky platform. With the parameters for our lifetime estimation model, other Tmote
WSN applications can be characterised.

6.2 Further Work
Our DSN component for TinyOS worked well with the version from the development
branch. The final release is expected to have changes that will make adaptions nec-
essary to our component. Changes will mostly affect lower level UART interfaces.

The implementation of a monitoring system has still potential for optimisation an
enhancement. We see the biggest opportunities in following points:

Low Power Altough already trimmed, further energy savings could be achieved
with a smart wakeup-sleep scheme during the active phase (the wave round)
of the TDMA schedule.

Redundant sink If the base station is inteneded to forward detected errors, it gets
a single point of failure in the forwarding chain. This could be avoided with a
second sink.

Larger networks For large networks, the used mechanism gets inefficient. A clus-
tering approach could provide the needed scalability.

Fast event forwarding This ability is needed for security related reporting sys-
tems like example fire sensor networks.
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