
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Window Based FIFOs for Communication
in On-Chip Multiprocessor Systems

Hardware Design, Testing Strategies and Design Flow Integration.

P1 Mem P2Mem

P3Mem

Master’s Thesis by

David Grünert, 1 April – 30 Sept. 2006

Tutor: Kai Huang

Supervisor: Prof. Dr. Lothar Thiele

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Abstract

This thesis introduces a new communication model for on-chip multi-processor systems. The
model is based on a high level interface that defines both the data transfer and the synchro-
nisation of the connected processors. It was designed to simplify the reuse of hardware and
software components and to support the automation of the design flow. On the one hand,
these improvements help to minimise the time-to-market and the design costs, on the other
hand it also leads to designs of higher quality because it avoids error-prone low level inter-
faces and ad-hoc synchronisations. The model of computation is based on an extension of
Kahn process networks (KPN). It is therefore particularly suitable for the design of stream-
based applications in signal processing.

The thesis includes the description of the new concept, the hardware implementation of the
new buffer type for an FPGA architecture, the definition and implementation of the API for
buffer access, the implementation of an automated testing environment, a tool for automated
system design and the discussion of theoretical aspects of WFIFO buffers such as memory
requirements and determinateness.

Zurich, 30 September 2006

David Grünert

Contents

1 Introduction 1
1.1 Problem Description: Limits of KPN . 3
1.2 Solution Approach: WFIFO Concept . 4
1.3 Research Contributions . 4
1.4 Related Work . 5
1.5 Content of this Report . 5

2 WFIFO: The Concept 7
2.1 WFIFO – Windowed FIFO . 7

2.1.1 WFIFO Protocol . 8
2.1.2 WFIFO Data Transport . 9

2.2 System Modelling with WFIFO Process Networks 11
2.3 WFIFO Target Architecture . 11
2.4 Example of Application . 13

3 The Hardware Design 15
3.1 Target Platform and Core Selection . 15

3.1.1 FPGA Platform . 15
3.1.2 Processor and Bus Selection . 16

3.2 WFIFO Overview . 17
3.2.1 Requirements and Problem Description 18

3.3 WFIFO State Machine . 18
3.3.1 Single and Dual Bus Application . 18
3.3.2 WFIFO State Machine Architecture 19
3.3.3 Protocol Violations . 20
3.3.4 WFIFO States . 20
3.3.5 Memory Management . 25

3.4 WFIFO Memory . 26
3.5 Bus Driver Interface . 27

3.5.1 Implemented Instruction Format . 27
3.5.2 Instruction Format Evaluation . 28

3.6 WFIFO Design Parameters . 29
3.7 WFIFO Implementation Details . 31

3.7.1 IPIF IO Signals . 31
3.7.2 BRAM IO Signals . 33
3.7.3 States for Memory Management . 34
3.7.4 Signal Level State Transitions . 36
3.7.5 Output Signal Values . 38
3.7.6 WFIFO Process Level . 38

3.8 myIPIF . 43

4 The WFIFO API 45
4.1 API Interface . 46

4.1.1 Command Details . 48
4.1.2 Error Handling and Compile Options 51
4.1.3 Command Latency . 53

4.2 WFIFO API Implementation . 53
4.3 Alternative Status Signalling Concept . 56

4.3.1 Accessing the Error Signal with MB 56
4.3.2 IPIF Problems with Error Signal . 57
4.3.3 MB Exception Handling . 57
4.3.4 Summary . 58

5 Testing 59
5.1 Challenge of Testing – Design for Testability 60
5.2 Testing Architecture . 63

5.2.1 Data Output . 64
5.2.2 Data Acquisition . 65
5.2.3 Example of Functional Test . 66
5.2.4 Example of Performance Test . 67
5.2.5 Summary . 68

5.3 Modular Testing Environment . 68
5.3.1 Command Line Options . 71
5.3.2 How to Write Test Cases . 72
5.3.3 How to Add New Systems . 72
5.3.4 Directory Structure . 73

5.4 OPB Recorder . 74
5.5 UART Logger . 76

6 Design Flow Integration and Automation 77
6.1 XPS Design Flow Integration . 77
6.2 Automated Design-Flow . 78

6.2.1 Automated Mapping . 79
6.2.2 WAB – WFIFO Architecture Builder 83

7 WFIFO Theory 87
7.1 KPN Compliance . 87
7.2 A Model for Data Transport in Communication Channels 88

7.2.1 Classifications of Communications Channels 90
7.3 Classification of Implementation Alternatives 90
7.4 Minimum Memory Size for Channels with Reordering Memory 91
7.5 Minimum Memory Size for WFIFO Channels 92

7.5.1 Channels with Equal Read and Write Windows 93
7.5.2 Channels with Non-Overlapping Windows 94
7.5.3 Channels with a Brick Wall Window Structure 95

7.6 Non-Blocking Acquiring and Determinism 97

8 WFIFO Compared with Other Approaches 99
8.1 Compared Concepts . 99

8.1.1 CAM . 99
8.1.2 Segment . 99

8.2 Motivation and Origin . 100
8.3 Hardware . 100
8.4 Memory Usage . 101
8.5 API Concept . 101
8.6 Latency . 103
8.7 Summary . 105

9 Outlook and Conclusion 107
9.1 Conclusion . 107

9.1.1 Summary of Completed Work . 107
9.2 Outlook . 108

9.2.1 FIFO Read and FIFO Write . 108
9.2.2 Block Transfer . 108
9.2.3 Multiple Processes on one Processor 108
9.2.4 Complete and Verify WFIFO Theory 109
9.2.5 Find Relevant Application Examples 109

A Thesis Assignment 111

B Source Code 113
B.1 WFIFO API . 113
B.2 OPB Recorder API . 117

C VHDL Code 119
C.1 WFIFO . 119

C.1.1 WFIFO Top . 119
C.1.2 WFIFO Logic . 125
C.1.3 WFIFO BRAM . 137
C.1.4 MPD . 143
C.1.5 PAO . 144

C.2 OPB Recorder . 144
C.2.1 MPD . 152

C.3 UART Logger . 153

D WFIFO Test-Cases 155
D.1 Single Bus Architecture . 155
D.2 Dual Bus Architecture . 157

1 Introduction

Today’s signal processing systems such as mobile-phones and set-top boxes have require-
ments that can not be satisfied with a single-processor architecture. The primary reasons
for choosing a multiprocessor architecture are that a single-processor has not enough com-
puting power or that it’s power consumption is too high. But the performance requirements
can not be the only reason for the trend to multiprocessor architectures. It can be observed
that dedicated components are replaced by general purpose processors whenever this can be
done with acceptable effort.1 This trend is clearly not motivated by the need for more com-
puting power, because dedicated hardware usually is more powerful than a general purpose
processor of similar size.

Although the required computing power and power consumption are important properties
for the system design, it emerged that other points in architecture and software design
are at least equally important for the success of the designed product. Depending on the
field of activity, these points are known under different key words. Where the management
talks about time to market, design costs or market size, engineers understand reuse, short
and automated design cycles and programmability. Although this thesis does not discuss
marketing aspects, engineers can benefit from this similarity of goals when explaining the
necessity for a development step to the management. Independently from the professional
background, the concepts aim at a more flexible solution while minimising the design time.
The following list summarises these trends and their motivation.

Software Solutions: Dedicated hardware is replaced by software running on processors.
Programmable systems simplify upgrades, bug fixes and make it possible to provide a
big array of products that are all based on the same hardware.

Reuse: The reuse of hardware leads to shorter design time. No time is used for the hardware
design of the reused blocks and the verification is limited to tests that check whether
they are properly connected and configured. It is not necessary to test the complete
functionality of the reused block if it was designed properly. Reuse also has a software
aspect. In most current designs, much more engineering power is used for software
design than for hardware design. Changes in the hardware can have major impact on
the software and cause high costs.

Automation: In the design cycles many steps are automated. Examples are automated test-
ing environments and the automated system assembly from IP libraries. The shorter
design cycles made possible by the automation allow multiple redesigns before the
product is launched, which leads to better quality. On the other hand, it is possible
to design a first version in a very short time. This version does not necessarily include
the complete functionality but in many cases it is good enough for the customer to
make first tests.

1 For high performance parallel systems, a similar trend can be observed. Parallel systems with specialised
hardware and architectures are replaced by clusters built from off-the-shelf computing systems.

2

In this thesis, a solution for the implementation of signal processing systems that follows
these trends is presented. A special property of signal processing systems is that they often
have a stream-based or pipelined structure. An input signal is processed in a number of
subsequent steps, and the output of one step serves as input for the next step. A popular
way for modelling signal processing systems is the Kahn process network (KPN). The KPN
models the system with a set of processes that are connected with FIFO buffers. Each
process follows a sequential program and uses only the FIFOs for data exchange. The used
FIFOs have unlimited size and blocking read. The blocking read stops the calling process
in case there are no data available until new data arrive. The model has become popular
because all systems modelled with KPN are determinate. Furthermore, synchronisation is
done with a simple blocking read semantic.

When implementing a KPN with a multiprocessor architecture, it is reasonable to treat the
processes as the smallest unit and to map one or more of them on the same processor. In
most cases, this is the best solution because it minimises the data dependencies between
the processors and leads to a smaller load on the interconnection network. However, the
common multiprocessor architectures are not very good for the realisation of such systems.
The best one of them is the MIMD-architecture (Figure1.1).2 The following list outlines the
problems of this architecture.

P1 Mem P2 Mem P3 Mem

Figure 1.1: MIMD example architecture with processors P and instruction/data
memories Mem.

• All communication modelled by the FIFO buffers has to share the same bus. This
limits the data throughput and even if the interconnection network satisfies the data
rates of the implementation, it limits the extendability of the system.

• A bus arbiter is required, which is equal to adding a global control structure to the
system. This kind of global control is not included in the KPN model. It must therefore
be shown that the bus arbiter does not violate the KPN rules and that the system
delivers the expected results. For many situations, this is difficult and the automation
of the design flow is very demanding.

• Synchronisation between the processes is based on low level mechanisms like interrupts
and shared memory. This makes the behaviour of the system dependent on the used
hardware and it is more difficult to migrate the design on a new processor type.

A solution for these problems is to use an architecture with a dedicated structure that is
more similar to the KPN model. Figure 1.2 shows such an architecture. In this architecture,

2 Multiple Instruction Multiple Data.

Introduction 3

each processor has its own bus and a special hardware block is used to implement the FIFO
channel. This channel implements the blocking read synchronisation in hardware.

P1 P2 P3FIFO FIFO

Figure 1.2: KPN based architecture with a dedicated structure.

Because the processor is the single master device, no bus arbitration or global scheduling
is required. Each processor can use the full bus speed and this speed is not reduced when
additional processing steps are added. The synchronisation is implemented in an isolated
block and makes no use of low level mechanisms.

1.1 Problem Description: Limits of KPN

The KPN architecture offers distributed control and a simple interface for programming,
but it also includes limitations that make the implementation of stream-based algorithms
difficult or inefficient. The following three limitations that are of great importance for signal
processing algorithms are addressed in this paper.

Reordering: The communication channel behaves in a strict first in first out manner,
which does not allow to read data in another order as they were written.

Multiple Read: The communication channel does not allow to read the same data item
more than once. After reading an item, it is deleted from the buffer and cannot be
read a second time.

Skipping: It is not possible to remove an item from the channel buffer without reading it.
If the buffer contains unwanted data, all of these data must be read.

The first two limitations can be handled with the FIFO architecture shown in Figure 1.2 if
a local memory is used to implement the reordering and the multiple read. In most cases,
the memory used to store the instructions of the processor can be used for this purpose.
In such an implementation, the process has to implement the memory management for the
reordering memory which is a task that was not modelled by the original process network.
Furthermore it requires computing time. A known solution for this problem is to use a
special address generation unit (AGU) ([11], [15]). Implementing skipping is not possible
with an architecture using FIFOs. A new buffer type is required for this purpose.

4 1.2 Solution Approach: WFIFO Concept

1.2 Solution Approach: WFIFO Concept

The solution presented in this thesis defines a new type of process network, the WFIFO
process network. It is based on the Kahn process network, but the FIFO buffers are replaced
by a new buffer type called windowed FIFO (WFIFO). The WFIFO buffer is similar to the
normal FIFO but it allows multiple read, reordering and skipping at the head and the tail
of the buffer. These memory regions at the head and the tail are called windows. They have
a user-defined size and are allocated and released at runtime by API instructions. The API
follows a protocol with three subsequent steps: acquiring, data read/write and releasing.
With acquiring, a new window is allocated, then its content can either be written or read.
Before acquiring the next window, the previous must be released. Details of the WFIFO
concept are presented in Chapter 2.

1.3 Research Contributions

• The WFIFO concept for the communication in on-chip multiprocessor systems is pre-
sented in detail. It is shown how data are transferred over a WFIFO buffer and the
protocol used is explained.

• The WFIFO buffer is implemented in hardware for a Xilinx FPGA platform. The prob-
lems and requirements of the design are discussed and details of the implementation
are shown.

• The API is defined in detail and it is realised for the WFIFO hardware implementation.
Extra functionality is added to the API to simplify testing.

• Different strategies for IP and system testing are discussed and the solution imple-
mented for the WFIFO design is presented. For testing purposes, two special IPs are
designed. The implemented solution allows to perform both functional and perfor-
mance tests.

• The testing procedure is automated with a SW tool. The program is controlled over
a command line interface and can run multiple tests on the same test system. After
test execution, a test report is generated.

• The design of WFIFO architecture is automated with a SW tool. The application takes
an abstract specification of the system as input and generates the target architecture
for the FPGA platform used.

• It is discussed whether a process network with WFIFO buffers is determinate or not.
It is shown that with some restrictions, a WFIFO process network is a subset of Kahn
process networks.

• The WFIFO concept is compared with two other concepts that are motivated by
similar ideas like the WFIFO concept.

• Aspects concerning the optimal usage of the WFIFO concept are discussed.

Introduction 5

1.4 Related Work

Discussions on the extension of the KPN model have a long tradition and many publica-
tions have been issued. Most of these publications can be assigned to one of the following
two approaches. The first includes design-flow-centric approaches and the second includes
interface-centric approaches. The WFIFO model was designed with both of theses aspects in
mind. It includes the definition of a new interface and the automation of the hardware design.

The interface-centric approaches focus on the improvement of the interface that is used by
the processes to communicate. An interface that is related to the interface used by the
WFIFO was presented in [3]. In contrast to the WFIFO, this interface allows multiple ac-
quiring before releasing and the transfer of data blocks. The proposed system has a MIMD
architecture with distributed memory which is very different to the WFIFO architecture.
Another interface-centric paper is [13]. It presents a set of seven different interface defini-
tions. The interfaces named CB and RB (Combined and Relative Blocking) are the ones
that are most similar to the WFIFO approach. In contrast to the WFIFO interface, CB and
RB both allow multiple acquiring before releasing. This paper is based on ideas from [1],
which also discusses the design-flow aspects.

The design-flow-centric approaches focus on the automation of the design flow. One of these
approaches it the Compaan/Laura tool-chain [8]. This tool-chain takes Matlab code with a
nested loop structure as input and converts it into a KPN model. In a second step, dedicated
hardware is generated and the KPN is mapped on this architecture. A set of solutions to
overcome the multiple-read and the reordering limitations were presented in [11] and [15].
Another approach was followed with the SHIM model [2]. SHIM takes a C-like description as
input where both hardware and software is described and shared variables are used to model
the communication. From this description, a dedicated hardware and the required software
is generated. A buffer using a rendezvous protocol is used to implement the communication
channel.

1.5 Content of this Report

Introduction

Chapter 2: Introduces the concept of the WFIFO buffer, gives a first impression of the
WFIFO API and shows how an algorithm can be modelled with a WFIFO process
network. It also shows the structure of the target architecture and a simple example
is made to give a first example of application.

6 1.5 Content of this Report

Practical Work

The practical work is described in four chapters which can not be completely separated.
Figure 1.3 gives an overview of the dependencies. This figure is repeated at the beginning
of each of the four chapters and the dependencies of the respective part are discussed. Each
chapter starts with the general aspects and goes more and more into the details.

Chapter 3: Presents the hardware implementation of the WFIFO concept. The require-
ments and problems for the hardware implementation are listed and details of the
implementation are presented. Furthermore, the FPGA platform used is indicated
and the selection of the processor and bus types is explained.

Chapter 4: Defines the API in detail and shows how it was implemented for the designed
WFIFO buffer. A concept to simplify testing is presented.

Chapter 5: Discusses the problem of hardware testing by explaining the solution imple-
mented for the WFIFO project. It also shows how testing was automated with the
design of a modular testing environment. The presented testing concept addresses the
IP verification and the performance measurement of complete systems.

Chapter 6: Presents the automation of the hardware design. A software tool was devel-
oped that can generate a complete and synthesizeable implementation of a WFIFO
process network from an abstract specification.

API
HW

Design
Automated
Sys. Design

Testing

a

b

cd

Figure 1.3: Chapter dependencies of the practical work.

Theoretical Work

Chapter 7: Discusses whether a process network with WFIFO buffers is determinate or
not. A concept for describing the data transport in communication channels is pre-
sented. This concept is used to calculate minimum memory requirements for WFIFO
channels and for channels with reordering memory.

Chapter 8: Compares the WFIFO concept with two other approaches for implementing
communication with multiple read and reordering in process networks.

Chapter 9: Contains the conclusion and the outlook. The conclusion refers to the begin-
ning of my work, gives an impression of its scope and lists the completed tasks. The
outlook shows how the WFIFO concept could be further developed.

2 WFIFO: The Concept

2.1 WFIFO – Windowed FIFO

The WFIFO buffer is related to the normal FIFO but it offers more functionality and
flexibility. The normal FIFO behaves in a strict first-in first-out manner which does not
allow to read data in another order than they were written to the FIFO. Furthermore, each
data item written to the buffer must be read exactly once. It is not possible to read the
same item more than once or to remove an item from the buffer without reading it. Unlike
the FIFO buffer, the WFIFO buffer allows to skip unwanted data. It also supports data
reordering and multiple read within a continuous data segment located at the FIFO’s head
or tail. These segments are called windows, which has lead to the name WFIFO for this
buffer structure. Figure 2.1 shows the simplified schematic representation of a FIFO and a
WFIFO buffer. It shows that the WFIFO has a more complex interface. Read and write
windows are indicated in gray.

DataData

DataData

Instruction Instruction

Figure 2.1: Simplified schematic of FIFO and WFIFO with write port on the left
and read port on the right side.

While the FIFO buffer allows a single instruction at both ports, i. e. data-write at the input
port and data-read at the output port, the WFIFO supports two additional instructions at
each port. Table 2.1 lists these instructions. They can not be used an in arbitrary order.
The next section explains the required protocol for the instructions and what they are used
for. A detailed description of the API is given in Chapter 4.

Write Port Instructions Read Port Instructions

• Acquire-read-window(port, size) • Acquire-write-window(port, size)

• Data-read(port, offset, data) • Data-write(port, offset, data)

• Release-read-window(port) • Release-write-window(port)

Table 2.1: WFIFO instructions for read and write port.

8 2.1 WFIFO – Windowed FIFO

2.1.1 WFIFO Protocol

Writing to and reading from a WFIFO are two independent transactions, which both follow a
protocol. The protocol is defined by three subsequent steps and four WFIFO-internal states
(Figure 2.2). The enumeration below explains the steps for the write port of the WFIFO.
It is assumed that the write port is currently in the idle state and the process connected to
the write port wants to write some data to the buffer.

Idle

Acquiring

Writing

Releasing
release-write-
window

acquire-write-
window

data-write

Figure 2.2: States of the WFIFO write port.

1. Before writing any data to the WFIFO buffer, a write window must be acquired, which
is done by passing an acquire-write-window instruction to the WFIFO. This instruction
takes the window size as argument. When receiving the instruction, the WFIFO port
changes into the acquiring state. If there is enough free memory1 in the WFIFO, it
acquires the window and changes into the write state. From then on data can be
written to the WFIFO (Step 2) or the window can be released (Step 3). If there is not
enough memory, the WFIFO’s behaviour depends on the instruction type used. There
are two versions of the acquire instruction: a blocking and a non-blocking one. When
using the blocking version, the WFIFO waits until enough memory becomes available
and the calling process is blocked during this time. As soon as enough memory is
available, the WFIFO changes into the write-state and wakes up the blocked process.
If there is not enough memory for the non-blocking version, the WFIFO returns into
the idle state and signals the calling process that acquiring failed.

2. As soon as the WFIFO reaches the writing-state, data can be written to the window.
The write instruction takes the data to write and an offset position as arguments. The
offset indicates to which position the data is written within the write window. The
instruction can be repeated an unlimited number of times as long as the WFIFO is in
the writing-state. It is possible to write the same offset position more than once, which
results in overwriting the old value. If an offset position is never written, its value is
undefined. The writing-state is left when executing the release instruction (Step 3).

3. The release instruction is executed to terminate writing, and it can only be executed
if the WFIFO is in writing-state. When receiving the release instruction, the WFIFO

1 The terms free-memory and internal FIFO used in this description are explained in 2.1.2.

WFIFO: The Concept 9

changes into the releasing-state and closes the write window. After that, no further
writing is possible until a new write window is acquired. After releasing is done, the
WFIFO changes into the idle state.

The protocol for the read port is very similar to the protocol of the write port. It is also
defined by three steps and four WFIFO-internal states (Figure 2.3). The enumeration below
is focused on the difference between the read and write protocols.

Idle

Acquiring

Reading

Releasing
release-read-
window

acquire-read-
window

data-read

Figure 2.3: States of the WFIFO read port.

1. The read port also offers two acquiring functions – a blocking and a non-blocking one.
Acquiring can be executed successfully if there are enough data available in the internal
FIFO buffer.

2. Step two is the same as for the write port except that data are read from the window
instead of written.

3. Releasing the read window is equal to deleting all of its content from the buffer. No
further read operations on the data within the window are possible. The memory that
was occupied by the read window is added to the free memory.

2.1.2 WFIFO Data Transport

From the perspective of data transport, the WFIFO buffer can be understood as a normal
FIFO channel with a reordering memory implemented as read and write windows at its head
and its tail. Such a model is shown in Figure 2.4. The logic block is used to implement the
WFIFO protocol. This model does not show the internal structure of the WFIFO. It is only
used to describe the data transport between the WFIFO write and read port. Differences
between the model and the WFIFO implementation are discussed at the end of this section.

10 2.1 WFIFO – Windowed FIFO

P Plogic logic

WFIFO-FIFO FIFO-WFIFOFIFO

Process Process

WFIFO

Write Read

Figure 2.4: Models used to explain the data transport in WFIFO buffers. The
reordering memories are indicated in gray.

When the logic at the write port receives an acquire-write instruction, it enables writing
to the reordering memory. This memory has a continuous address range starting with zero
and a size as big as the specified window. Subsequent write instructions are redirected to
this memory at the position indicated by the offset. When receiving a release instruction,
writing is disabled and the content of the memory segment is shifted to the FIFO without
changing its order.

The logic at the read port starts reading data from the FIFO when receiving an acquire-
read instruction. It reads as many items as specified by the window size and writes them
to the reordering memory with the same addressing concept as the write window. Also
here, the order of the data is not changed and the last item read has the memory address
zero. After reading from the FIFO is finished, read operations are redirected to the mem-
ory position indicated by the offset. When receiving a release instruction, reading is disabled.

As indicated above, the realisation with FIFO buffer and reordering memory only models
the WFIFO’s functionality. This model is useful to explain the data transport but it does
not describe all aspects of the WFIFO’s behaviour correctly. In the WFIFO hardware
implementation, a single memory block is used instead of the combination of FIFO and
reordering memory. This memory block is segmented into four regions: free-memory, read-
window, FIFO-buffer and write-window.2 Because the memory block has a finite size, there
is a maximum amount of memory that can be occupied by the windows and the FIFO-buffer.
If a process tries to acquire a new write window when all memory is used, it is blocked. This
kind of blocking is not modelled correctly by the WFIFO model from above because it never
blocks on acquiring. But the model can block in another situation: if the FIFO buffer
has limited size, the model blocks during the release instruction if there is not enough free
memory left to write all data. The implementation with the single memory never blocks
during release.

2 A detailed description of the required memory management is given in Chapter 3.

WFIFO: The Concept 11

2.2 System Modelling with WFIFO Process Networks

Implementing a signal processing system starts with modelling the system’s behaviour as a
WFIFO process network. This is similar to system modelling with Kahn process networks
but windowed FIFOs are used instead of normal FIFOs. A system model includes the source
code for the processes and the description of the topology of the underlying process network.
For all communication between the processes, WFIFO buffers are used. They are accessed
with the WFIFO API. A source code example is given in 2.4. Figure 2.5 shows a topology
of a WFIFO process network with three processes.

P1

P3

P2

InstuctionData

Figure 2.5: Example WFIFO process network with P1 as data source and P3 as
data sink.

In order to benefit from the advantages of the WFIFO concept it is important to use the
additional options in a reasonable way. With the read and write windows, a segmentation
of the data is introduced that was not necessary for the FIFO buffers in KPN networks. For
making a good WFIFO design, the definition of the data segmentation is essential. There
are situations where a segmentation is contained in the signal processing algorithm. In other
situations, the segmentation must be defined by the designer. In Chapter 7 mathematical
concepts are presented for data segmentation.

The advantages of a windowed FIFO can be summarised under multiplicity, reordering and
skipping. Multiplicity means that the same data item can be accessed more than once. On
the read port, the same item can be read an unlimited number of times as long as it is in the
read window. On the write port it is possible to update values that were already written to
the buffer until the write window is released. Reordering allows data items to be consumed
in an order other than produced. Both, the producer and the consumer can reorder the data
within the acquired windows. If the consumer does not read all data within the read window
this can be seen as skipping of unwanted data. Skipping makes sense if it is not possible for
the producer to know if data will be required by the consumer or not.

2.3 WFIFO Target Architecture

The target system has a dedicated architecture and is assembled from two building blocks.
One includes the WFIFO buffer, the other a processor with a bus and a memory for instruc-
tions and internal data (Figure 2.6).

12 2.3 WFIFO Target Architecture

P1

Bus

Mem

WFIFO

Figure 2.6: Building blocks for the WFIFO architecture. Mem is the instruction
and local data memory of processor P1.

To build the target architecture, the topology of the WFIFO process network and a mapping
definition is used. The mapping defines which processes have to share a processor. No
mapping is required for the WFIFO buffers because each buffer is mapped on one WFIFO
hardware block. The connections of the WFIFOs are well-defined by the topology and the
mapping defined for the processes. Figure 2.7 shows a WFIFO architecture of the process
network shown in Figure 2.5 for a one-to-one mapping.

P1 Mem P2Mem

P3Mem

Figure 2.7: WFIFO example architecture.

Since the WFIFO architecture is a dedicated solution, it is important to automate the
hardware design flow. In contrast to heterogeneous architectures, it is simple to implement
such an automation for a WFIFO architecture. Advantages are:

• Only two building blocks are used.

• No bus arbitration is required because each bus has a single master device, the pro-
cessor, and a set of equal slave devices, the WFIFOs.

• Bus address range segmentation is simple because the WFIFOs require a range of equal
and fixed size.

• No access arbitration for a global memory is needed.

• No global scheduler with access to all processors is needed.

WFIFO: The Concept 13

2.4 Example of Application

In this section a first simple example of application is shown. Details of the API are given
in Chapter 4. The example below does not use all the options offered by the WFIFO. It is a
first and simple code example. The algorithm is given as a C-code sequence (Figure 2.9). It
contains a producer and a consumer section. In the producer section, the two dimensional
array A is written. In the consumer section it is read. The communication channel used
when mapping the producer and the consumer section on two different processors must
support multiple read and reordering. The code for the process network is given in Figure
2.10.

P1 P2

WFIFO 0

Figure 2.8: Topology of WFIFO process network for a consumer producer pair.

// P1: producer

for (i=0; i<4; i++) {

for (j=0; j<3; j++) {

write(A[i][j]);

}

}

// P2: consumer

for (i=0; i<3; i+=2) {

for (j=0; j<2; j++) {

read(A[i][j]);

read(A[i+1][j]);

read(A[i][j+1]);

read(A[i+1][j+1]);

}

}

Figure 2.9: Source code of the algorithm.

14 2.4 Example of Application

// P1: producer

void main() {

WFIFO_ACQUIRE_WRITE(0,6);

WFIFO_WRITE(0,0,A[0][0]);

WFIFO_WRITE(0,1,A[0][1]);

WFIFO_WRITE(0,2,A[0][2]);

WFIFO_WRITE(0,3,A[1][0]);

WFIFO_WRITE(0,4,A[1][1]);

WFIFO_WRITE(0,5,A[1][2]);

WFIFO_RELEASE_WRITE(0);

WFIFO_ACQUIRE_WRITE(0,6);

WFIFO_WRITE(0,0,A[2][0]);

WFIFO_WRITE(0,1,A[2][1]);

WFIFO_WRITE(0,2,A[2][2]);

WFIFO_WRITE(0,3,A[3][0]);

WFIFO_WRITE(0,4,A[3][1]);

WFIFO_WRITE(0,5,A[3][2]);

WFIFO_RELEASE_WRITE(0);

}

// P:2 consumer

void main() {

WFIFO_ACQUIRE_READ(0,6);

WFIFO_READ(0,0,A[0][0]);

WFIFO_READ(0,3,A[1][0]);

WFIFO_READ(0,1,A[0][1]);

WFIFO_READ(0,4,A[1][1]);

WFIFO_READ(0,1,A[0][1]);

WFIFO_READ(0,4,A[1][1]);

WFIFO_READ(0,2,A[0][2]);

WFIFO_READ(0,5,A[1][2]);

WFIFO_RELEASE_READ(0);

WFIFO_ACQUIRE_READ(0,6);

WFIFO_READ(0,0,A[2][0]);

WFIFO_READ(0,3,A[3][0]);

WFIFO_READ(0,1,A[2][1]);

WFIFO_READ(0,4,A[3][1]);

WFIFO_READ(0,1,A[2][1]);

WFIFO_READ(0,4,A[3][1]);

WFIFO_READ(0,2,A[2][2]);

WFIFO_READ(0,5,A[3][2]);

WFIFO_RELEASE_READ(0);

}

Figure 2.10: Source code for the WFIFO process network.

3 The Hardware Design

This chapter shows details of the WFIFO hardware implementation. The implementation in-
cludes the design of new IPs, namely the WFIFO IP and the selection of the target platform
and the IP cores. All components together make it possible to realise a complete WFIFO
architecture.

API
HW

Design
Automated
Sys. Design

Testing

a

b

cd

Figure 3.1: Overview of practical work.

Figure 3.1 shows the dependencies of the hardware design. The WFIFO hardware is used
by the API and makes use of the testing infrastructure. Because the testing itself uses the
API there is a closed loop including hardware design, testing and API. This means that the
hardware design must be done in a way that allows to make tests. This fact is well known
as DFT – design for testability. The interface between API and hardware is defined by
the instruction format (See 3.5.1) and the bus driver. The interface offered by the testing
environment is presented in Chapter 5.

3.1 Target Platform and Core Selection

3.1.1 FPGA Platform

The hardware implementation of the WFIFO concept was designed for an FPGA platform.
It is also possible to use the WFIFO concept in an ASIC, but the fact that the WFIFO
architecture depends on the implemented algorithm makes an FPGA implementation more
reasonable. An other reason for selecting an FPGA is the available software. Most FPGA
providers offer a good software bundle that also includes an IP library for very low costs. A
disadvantage of using FPGAs is that the hardware design becomes dependant on the target
platform. For example, when designing a new IP, it is not enough to write the VHDL code.
The software used for system design and FPGA mapping needs additional data about the
new IP. The format and the content of these data depends on the software used. Another
point is that certain components from the IP library like the processors are only available in
a precompiled version that can not be used for other FPGAs. All of this makes it difficult
to migrate the design to a platform of a different provider.

16 3.1 Target Platform and Core Selection

The requirements when selecting the FPGA for the WFIFO design were that an IP library
must be available that includes processor cores and that it is possible to map a couple of them
on the FPGA. ML300 Evaluation Platform from Xilinx with a Virtex-II chip was selected.
ISE and EDK version 7.1 were used as design software. The most important software was the
EDK which includes a big library of IPs and the application XPS Studio. With XPS Studio
all steps of the design flow can be done. First, the system can be assembled and configured
using the IPs from the EDK library. Then, application code for the processors can be added
and compiled. And finally, XPS can generate a simulation model for Modelsim or it can
generate the bitmap used for programming the FPGA. A total of four IPs were designed
for this project. All of them are compliant with the standard of the XPS IP library. This
makes it possible to assemble and simulate a complete WFIFO architecture with XPS Studio.

3.1.2 Processor and Bus Selection

The first step in hardware design was to select those processors and buses from the IP library
that are best for the WFIFO architecture. The library includes two processor types, the
Micro Blaze and the Power PC. Table 3.1 shows the buses of these processors that can be
used for attaching a WFIFO.

Processor Type Bus Name Address Width Data Width Throughput
PPC PLB 32-bit 64 or 32-bit 1600MB/s
MB LMB 32-bit 32-bit 500MB/s
MB, PPC OPB 32-bit 32-bit 500MB/s

Table 3.1: Interfaces of PPC and MB

The only differences of interest between MB and PPC are the computing power and the
maximum data rates. Thats why it is not possible to make a decision between them without
knowing the requirements of the implemented algorithm. But for the target platform used,
the Micro Blaze is the only feasible solution because the ML300 board can only hold a single
PPC. Since the WFIFO architecture uses several processors in most cases, PPC can not be
used. However, it would be nice if the designed WFIFO IP could also be used together with
Power PC processors as soon as a bigger FPGA is available.

The problem when designing an IP for both MB and PPC is that the only bus type supported
by both processors is the OPB bus. This is a good solution for MB processors but with PPC
processors it is not possible to benefit from the higher data transferrate that is supported.
One could design the WFIFO IP for the PLB bus and use an OPB to PLB bridge to connect
with the MB. This approach has the disadvantage that an extra bus and bridge is required for
each MB processor which increases chip size. Such a bridge does also increase the latency
and reduces the system’s performance. This is why another concept was preferred. The
implementation made uses an extra IP called IPIF to connect the WFIFO to the bus (See
Figure 3.2). The IPIF offers a standardised IP interface at one side and a specific bus

The Hardware Design 17

interface at the other side. With such a design it is possible to connect the same IP to
different bus types by using different IPIF implementations. Since the interface for the IP
is the same for all bus types, it is not necessary to change it. The EDK library offers IPIF
implementations for OPB and PLB bus. This was the reason to use the OPB bus instead
of the LMB for the Micro Blaze. The LMB bus is used to connect the local instruction and
data memory of the processor.

IPIF IPIFWFIFO

OPB/PLB OPB/PLB

Figure 3.2: WFIFO implementation with IPIF bus adaptors.

3.2 WFIFO Overview

Figure 3.3 gives an overview of the WFIFO architecture. The IP consists of two IPIFs, a
dual port BRAM and the state machine. The IPIF first was taken from the EDK library but
a reimplementation was required because the original included too many design errors (See
3.8). The memory is built from a set of BRAMs. To simplify the usage, different memory
configurations have been integrated in a BRAM entity. Section 3.4 gives a short description
of the BRAM entity. The interface to the state machine and the access rules are described
in 3.7.2. The state machine is the heart of the WFIFO implementation. Its description is
divided up in several sections. First, the interface and the instruction format used for the
bus protocol are defined in 3.5.1. Details of the state machine are presented in 3.3 and the
structure of the VHDL implementation is discussed in 3.7.6.

wfifo logic

BRAM

Dual Port

IPIFIPIF

wfifo top

OPB/PLBOPB/PLB State Machine

Figure 3.3: WFIFO architecture overview

18 3.3 WFIFO State Machine

3.2.1 Requirements and Problem Description

This section list the requirements and the most important points to discuss for the WFIFO
implementation.

Simultaneous R/W: Die WFIFO IP is connected to two different buses. From one bus it
receives the read instructions and from the other one the write instructions. The IP
must be designed to support simultaneous read and write. At the same time it must
guarantee that no conflicts in data access occur. This problem was solved with an
adequate state machine architecture and memory management.

Bus interface definition: In the WFIFO concept, only the API is defined. For the IP,
design a bus protocol and an instruction format must be defined that allow an efficient
API implementation.

Minimum latency: The WFIFO IP must be designed for minimum latency because this has
major impact on the performance of the entire system.

Protocol violations: In the WFIFO protocol it was not defined how the buffer reacts if the
protocol is violated. Such violations can be treated by the API software or by the
hardware. If implemented in hardware an error signalling concept must be defined.

Easy to use: The WFIFO IP should be easy to use but flexible in application. This was
reached by integrating the entire WFIFO including the IPIF adaptors and the memory
in a single IP. This IP can be configured with design parameters (See 3.6).

DFT: The WFIFO IP must offer an interface that allows the testing of its functionality in
an efficient way. This was considered in the error signalling concept and a software
reset was added to make testing more efficient.

3.3 WFIFO State Machine

3.3.1 Single and Dual Bus Application

The WFIFO has two different applications. Either it is used as a dual bus IP or as a single
bus IP. Single bus means that both ports of the WFIFO are connected to the same bus. In

P1
P1 P2

Figure 3.4: Single and dual bus WFIFO.

The Hardware Design 19

the dual bus case it is connected to two different buses (see Figure 3.4). This difference also
has an impact on the design of the state machine. In the dual bus version it is possible that
two requests arrive at the same time. In this case the state machine has to react to two
commands at the same time. Furthermore it must be ensured that the two commands do
not affect each other in a way not permitted. In the single bus version it depends on the
bus type if two requests may arrive at the same time. The PLB bus allows simultaneous
read and write, whereas the OPB does not. To keep things simple, an IP that is suitable
for both cases was implemented. This results in an IP that is not optimal for the single bus
application on the OPB bus but it can be used for all of the proposed applications. As will
be seen later, this is not a disadvantage in terms of timing and throughput.

An implication of this architecture is that in the single bus application read and write access
must be sent to different ports (different address ranges). The required address range of
the single bus version is twice as large as for an IP optimised for the OPB bus. This is
acceptable since the single bus application is assumed to be less important than the dual
bus application.

3.3.2 WFIFO State Machine Architecture

For the architecture of the state machine, an implementation with two synchronised state
machines is used (see Figure 3.5). One state machine is connected to the write port and
handles all write commands, the other one does the same for the read port. Synchronisation
is done over a set of shared states. From the functional point of view, an architecture with two
synchronised state machines is not better than an architecture with a single state machine.
But the version with two state machines is easier to specify and to implement. The reason
for this is that the implementation with the single state machine not only has to encode all
possible read and write states but also all possible combinations of them. Therefore it can
even be assumed that the implementation with two state machines is more efficient in terms
of chip size, because less bits are used to encode the states.

Write

State

Read

State

Shared

State

wfifo logic

Read PortWrite Port

Figure 3.5: WFIFO state machine architecture

20 3.3 WFIFO State Machine

3.3.3 Protocol Violations

The WFIFO concept only defines the WFIFOs behaviour in case the used instructions follow
the protocol correctly. Examples of protocol violations are writing before acquiring or read-
ing with an offset bigger than the acquired window. In such situations it must be ensured
that the buffer is not set into an invalid or unknown state. There are two possibilities to
address this problem. The first is to make sure that the WFIFO hardware never receives
instructions violating the protocol. This can be done with a checking mechanism in the
API. The second one is to design the WFIFO IP in a robust way that checks for protocol
violations and rejects incorrect instructions. For the WFIFO design, the second solution
was selected because it reduces the latency. Checking within the API does always need
additional clock cycles, whereas checking can be implemented more efficiently in hardware.
On the other hand, the hardware solution must pay attention to the design for testability.

The testing infrastructure used for the WFIFO design can access the WFIFO hardware only
via the API. To test whether the WFIFO rejects incorrect instructions, rejection must be
signalled to the API. To submit this status information, it is possible to use the error signal
line of the bus or an extra bus transaction. Although the solution with the error signal
seems to be faster at first sight, the solution with the extra bus transaction was chosen. The
problems for an implementation using the error signal line are presented in 4.3.

The concept selected to detect protocol violations has impact on the state machine design.
First, the state machine must check all incoming requests whether they are compliant with
the protocol, and second it must support an additional state to read the status information.

3.3.4 WFIFO States

Figure 3.6 shows the timing diagram for executing a WFIFO instruction. The incoming
instruction is checked for correctness in the same clock cycle it arrives and is executed in
the next clock period. With this solution, the buffer needs only two clock cycles to execute
an instruction. Exceptions are the data read instruction that takes two clock cycles and the
blocking acquiring in case that the WFIFO has to wait for data or free memory. For the
total execution time, the time for bus transfer and pipelining in IPIF must be added. Table
4.5 gives an overview of the total execution times.

Operation

Clock

receive instruction
and validate

execute or
set error flag

State Idle Function Idle

Figure 3.6: Timing diagram for WFIFO instructions. For the read data operation
the function state takes two clock cycles.

The Hardware Design 21

This section presents the states of the read and write state machine and a simplified state
transition function. A more detailed but also more abstract description of the state transi-
tions is given in 3.7.4.

WFIFO Write States and Transitions

Write State Shortcut Function

Idle State WrIdle WFIFO is waiting for the next write function call.

Acquire Write Ack AcWrAck WFIFO executes an acquire write operation and
signals acknowledge to the calling process. The
write function status is set to OK.

Acquire Write Blocked AcWrBlk WFIFO is waiting until free memory is big enough
for an acquire write operation.

Acquire Write Failed AcWrFail WFIFO is not able to execute a non-blocking ac-
quiring operation because there is not enough free
memory. Acknowledge is signalled to the calling
process and the write function status is set to
FAILED.

Release Write Ack ReWrAck WFIFO executes a release write operation and sig-
nals acknowledge to the calling process. The write
function status is set to OK.

Write Data Acl WrDaAck WFIFO writes data to its memory and signals ac-
knowledge to the calling process. The write func-
tion status is set to OK.

Error State WrErr The last instruction received was incorrect. The
instruction is not executed and the write function
status is set to ERROR.

Write Status Ack WrStaAck The current write function status can be read from
the data bus and acknowledge is signalled to the
calling process.

Table 3.2: WFIFO write states. The write function status indicates the success
of the last instruction. It can have the values OK, ERROR and FAILED.

22 3.3 WFIFO State Machine

WrIdleAcWrFail AcWrBlk

AcWrAckReWrAck

WrDaAck WrErrWrStaAck

Figure 3.7: WFIFO state transition of the write state machine. The figure shows
all possible transitions. The conditions for the transitions are listed in Table 3.3.

Current State Next State Condition

WrIdle WrIdle No WFIFO write instruction received.

WrErr The received instruction violates the WFIFO protocol.

AcWrAck The WFIFO receives a correct acquire write instruction and
the free memory is big enough for the acquiring.

AcWrBlk The WFIFO receives a correct and blocking acquire write in-
struction but the free memory is not big enough for the ac-
quiring.

AcWrFail The WFIFO receives a correct and non-blocking acquire write
instruction but the free memory is not big enough for the
acquiring.

ReWrAck The WFIFO receives a correct release write window instruc-
tion.

WrDaAck The WFIFO receives a correct data write instruction.

WrStaAck The WFIFO receives a correct status signal report instruction.

WrErr WrIdle Transition occurs in any case.

AcWrAck

AcWrFail

ReWrAck

WrDaAck

WrStaAck

AcWrBlk AcWrBlk There is still not enough free memory for the acquire opera-
tion.

AcWrAck Now there is enough free memory.

Table 3.3: WFIFO write state transitions.

The Hardware Design 23

WFIFO Read States and Transitions

Read State Shortcut Function

Idle State RdIdle WFIFO is waiting for the next read function call.

Acquire Read Ack AcRdAck WFIFO executes an acquire read operation and
signals acknowledge to the calling process. The
read function status is set to OK.

Acquire Read Blocked AcRdBlk WFIFO is waiting until enough data is available
from the internal FIFO buffer.

Acquire Read Failed AcRdFail WFIFO is not able to execute a non-blocking ac-
quiring operation because there are not enough
data in the internal memory. Acknowledge is sig-
nalled to the calling process and the read function
status is set to FAILED.

Release Read Ack ReRdAck WFIFO executes a release read operation and sig-
nals acknowledge to the calling process. The read
function status is set to OK.

Read Data OK RdDaOk To execute the read instruction, the WFIFO needs
two states. In the OK state it provides the memory
with the read address.

Read Data Ack RdDaAck The data can now be read from the data bus. The
WFIFO signals acknowledge to the calling process
and the read function status is set to OK.

Error State RdErr The last instruction received was incorrect. The
instruction is not executed and the write function
status is set to ERROR.

Read Status Acknowledge WrStaAck The current read function status can be read from
the data bus and acknowledge is signalled to the
calling process.

Table 3.4: WFIFO read state
.

24 3.3 WFIFO State Machine

RdIdle AcRdFail

AcRdBlk

AcRdAckReRdAck

RdStaAck

RdDaOk

RdDaAck

RdErr

Figure 3.8: WFIFO state transition of the read state machine.

Current State Next State Condition

RdIdle RdIdle No WFIFO read instruction received.

RdErr The received instruction violates the WFIFO protocol.

AcRdAck The WFIFO receives a correct acquire read instruction and
there are enough data in the FIFO buffer for acquiring.

AcRdBlk The WFIFO receives a correct and blocking acquire read in-
struction but there are not enough data in the FIFO buffer
for acquiring.

AcRdFail The WFIFO receives a correct and non-blocking acquire read
instruction but there are not enough data in the FIFO buffer
for acquiring.

ReRdAck The WFIFO receives a correct release read window instruc-
tion.

RdDaOk The WFIFO receives a correct data read instruction.

WrStaAck The WFIFO receives a correct status signal report instruction.

RdErr RdIdle Transition occurs in any case.

AcRdAck

AcRdFail

ReRdAck

RdDaAck

WrStaAck

RdDaOk RdDaAck Transition occurs in any case.

AcRdBlk AcRdBlk There are still not enough data in the FIFO buffer for acquir-
ing.

AcRdAck Now there are enough data in the FIFO buffer.

Table 3.5: WFIFO read state transitions.

The Hardware Design 25

3.3.5 Memory Management

Since the WFIFO is implemented with a single memory block, a memory management is
required. In the BRAM memory, there are four distinguishable regions: read window, write
window, FIFO data and free memory. The size of these regions changes dynamically and
every memory cell belongs to one of these regions. There are different options to map the
regions to the BRAM. In this implementation a circular concept is used. Figure 3.9 shows
how the size and the position of the four regions change while executing an example code
sequence.

0 8 15

AcquireWrite(8)

ReleaseWrite

AcquireWrite(4)

ReleaseWrite

AcquireWrite(10)

ReleaseWrite

AcquireWrite(12)

ReleaseWrite

AcquireRead(8)

ReleaseRead

AcquireRead(12)

ReleaseRead

FIFO Data Write Window Read Window

Write Offset Read Offset

7

Figure 3.9: Memory management example for a memory of size 16. Read and
write offsets are only shown if they change. The number in brackets indicates the
window size.

26 3.4 WFIFO Memory

Address Translation

The address is calculated by adding the address passed by the instruction and the offset
value. If the resulting value extends the address range defined by the BRAM size, the
address is translated to the beginning of the BRAM memory by a modulo operator.

BramWrAddrxD = mod(BramWrOffsetxD + WrAddrxDI, BramSize)

BramRdAddrxD = mod(BramRdOffsetxD + RdAddrxDI + 1, BramSize)

Offset Updating

The read and write offset are updated whenever a read or write window is released. When
a write window is released, the occupied memory region is added to the FIFO data. When
a read window is released, the memory region is added to the free memory. During read
and write operations, the offset values are used to calculate the target address. During the
rest of the time, the input address is set to zero and the offset serves as a dummy read
address for the BRAM. The read and write BRAM address must never have the same value.
This is ensured by setting the read offset one position before the next read window. In case
there are no read or write windows but a maximum of FIFO data, two memory locations
must be reserved for the offset pointers. Therefore, the maximum amount of data that can
be written to the buffer is the BRAM size minus two. It is also possible to implement a
memory management that uses only one empty address, but more complex state machines
are required.

3.4 WFIFO Memory

The WFIFO memory is implemented with BRAM blocks. A BRAM is a parameterisable
memory module that is available on all newer Xilinx FPGAs. The BRAM has two inde-
pendent access ports. Simultaneous reading or writing on both ports is possible. The only
limitation is that simultaneous access must address two different memory locations. Usually
one BRAM memory is built up from a set of smaller BRAM blocks. The number of these
sub-blocks and how they are connected depends on the required memory size. To hide this
from the state machine, the different memory configurations are placed in a WFIFO BRAM
entity that offers a memory-size-independent interface for the state machine. The IO signals
of the BRAM entity and access rules are described in 3.7.2.

The total memory size is a parameter that is set during architecture design. Depending on
the required data scheduling, there is a lower bound for this design parameter and it is the
designer’s responsibility to select this parameter properly. How the minimum memory size
can be calculated is shown in section 7.5.

The Hardware Design 27

3.5 Bus Driver Interface

The physical interface between WFIFO IP and processor is a bus that includes an address
and a data line and a set of transfer qualifier signals. This section describes the instruction
format used on address and data bus. First the implemented format is shown, then it is
discussed why this format was selected.

3.5.1 Implemented Instruction Format

IP Type Port Func Offset

Data

31 23 19 15 0

031

Address Bus

Data Bus A

Wind. Size

031

Data Bus B B

16

Figure 3.10: WFIFO bus interface instruction format. For the data bus, two
different formats are used: A for data transfer and B for the other instructions.

Name Size (bit) Range/Value Function
IP Type 8 0x01 The IP type is used to separate the address range

of the WFIFO IP from other IPs. IP type for
WFIFO IPs is one.

Port 4 0x0-0xF The port number is used to identify the target
WFIFO. If a WFIFO connects both read and write
port to the same bus, two different port numbers
must be used.

Inst. 4 0x1-0x6, 0xF Instruction ID identifies the instruction to execute.

1 Read
2 Write
3 Acquire Read
4 Acquire Write
5 Release Read
6 Release Write
7 Status
F Mir/Reset

Offset 16 0x0000-0xFFFF Offset address for reading and writing to the
WFIFO window.

Table 3.6: Instruction format address bus.

28 3.5 Bus Driver Interface

Name Size (bit) Range Format Function
Data 32 all A Data for read and write.

Window Size 16 0x0000-0xFFFF B Window size for acquiring.

Blocking 1 0x10000 B
One for blocking, zero for non
blocking acquring.

Table 3.7: Instruction format data bus

3.5.2 Instruction Format Evaluation

There are different possibilities for the bus transaction format. An implementation with a
single instruction type format was selected because this simplifies the API implementation
and the hardware design. To make a decision for the instruction format, Table 3.8 was used.
This table lists all the information that must be transferred.

Item Name Size Address Data

Instruction ID 4 bit yes yes

Port number sizeP yes no

Window size sizeW yes yes

Offset sizeW yes yes

Data 32 bit no yes

IP type 4-8 bit yes no

Table 3.8: Items to include in the instruction format with required size and pos-
sible bus selection.

For the size of the instruction ID, four bits are proposed. With four bits, sixteen different
instructions are possible. Currently only eight are used and therewith it offers enough room
for an extension of the API. The IP type is used to separate the address range of the WFIFO
form other IPs connected to the same bus. Port number and IP type cannot be transfered
by the data bus because they are used to identify the target WFIFO.

Table 3.9 shows mappings for the address bus that lead to an acceptable maximum port
number and maximum window size1. Mapping for the data bus is not critical and needs
no detailed discussion. The value of <Max Ports> in Table 3.9 is the maximum number
of ports for a single processor. In the system there can be many more WFIFOs than this
number. The port parameter must not be understood as a unique identifier of the IP. It
defines the position of the WFIFO within the address range of the bus.

1 One data item is 32-bit. This is the smallest block that can be addressed.

The Hardware Design 29

IP Type SizeP Func Name SizeW Max Ports Max Window Size

4 10 4 14 1024 64 KB

4 8 4 16 256 256 KB

4 6 4 18 64 1 MB

4 4 4 20 16 4 MB

8 4 4 16 16 256 KB

Table 3.9: Possible mappings for the address bus. Left: bits used per item. Right:
Maximum number of ports and maximum window size.

For the WFIFO implementation the last format from Table 3.9 was used because it offered
enough port numbers and a big enough window size for our requirements. At the same time,
it uses the smallest address range. The API and and WFIFO IP have been designed to
simplify the change of the instruction format. How this can be done for the API is shown
in 4.2.

3.6 WFIFO Design Parameters

The WFIFO IP offers four design parameters. They must be set during hardware design.
With XPS Studio, they are listed under Project-> Add/Edit Cores in the Parameter tab.
If WAB is used, the parameters are defined in the platform file. Table 3.11 shows all design
parameters. The default values are marked with an asterisk.

The IPIF has a configurable pipeline architecture (Figure 3.11). The pipeline mode de-
sign parameter defines which pipeline registers are inserted. Table 3.10 shows all possible
configurations. More pipeline registers increase the latency but also the maximum clock
speed.

OPB IP
S0 S1

S2

logic

logic

myIPIF

Figure 3.11: WFIFO pipeline architecture

30 3.6 WFIFO Design Parameters

Pipeline Mode S0 S1 S2 Max Clk.

7
√ √ √

173.6 MHz

5
√ √

122.7 MHz

3
√ √

173.6 MHz

2
√

122.7 MHz

Table 3.10: WFIFO pipeline modes

Parameter Values Function

C WFIFO MEMSIZE 1, 4, 8∗ Defines the size of the used BRAM (in KB)
and therewith the maximum number of items
that can be stored in the WFIFO. Maximum
window size is equal to the maximum item
number. 8 KB = 254 items, 4 KB = 1022
items and 1 KB = 2046 items.

C WFIFO WINDWIDTH 11∗-1 Defines the maximum window width in bits.
A smaller value leads to a design with smaller
chip size because smaller registers, adders
and comparators can be used.

C WFIFO BRAMWIDTH 11∗, 10, 9 Defines the width of the address bus used for
the BRAM. This parameter cannot be chosen
freely. It depends on the memory size: 11 for
8 KB, 10 for 4 KB and 9 for 1 KB.

C WFIFO PIPELINEMODE 2, 3, 5∗, 7 The pipeline mode defines which pipeline reg-
isters are used in myIPIF. Details are shown
in Figure 3.11 and Table 3.10.

Table 3.11: WFIFO design parameters.

The Hardware Design 31

3.7 WFIFO Implementation Details

3.7.1 IPIF IO Signals

Both the read and the write port are connected to an IPIF IP. The IPIF offers many signals
to connect the IP, but only few of them are used for the WFIFO IP. Tables 3.12 and 3.14 list
all IO signals used by the WFIFO IP. It is important to note that all these IO signals exist
twice – once at the write port and once at the read port. The signal names in the design
are Bus2IP W Addr and Bus2IP R Addr for the input listed as Bus2IP Addr.

Signal Name Size Function

Bus2IP Addr 32 Encodes the function name and the offset for read or write
transaction. The address is valid at rising clock edge if
Bus2IP CS is high.

Bus2IP RNW 1 Is a single bit indicating whether the next transfer is read
(high) or write (low).

Bus2IP CS 1 Indicates that an address was decoded that is in the IP’s ad-
dress range. If Bus2IP CS is high at rising clock edge, there
is a transfer waiting to be processed.

Bus2IP WrCExDI 1 Write transaction is pending.

Bus2IP RdCExDI 1 Read transaction is pending

Bus2IP Data 32 WFIFO data input is used to transfer the data to the WFIFO
write port. It is also used to communicate the read and write
window sizes on the read and write port. The input is valid
on rising clock edge if Bus2IP CS is high and Bus2IP RNW
is low.

Bus2IP Clk 1 Bus Clock.

Bus2IP Reset 1 System Reset.

Table 3.12: WFIFO inputs.

32 3.7 WFIFO Implementation Details

To simplify the description of the state machine, new signals are defined as sub-vectors of
the input signals from Table 3.12.

Signal Range Signal Name

IP2Bus W Addr [15:0] WrAddrxDI

[19:16] WrCommandxDI

IP2Bus W Data [15:0] WrWindSizexDI

[16] WrBlockingxDI

IP2Bus R Addr [15:0] RdAddrxDI

[19:16] RdCommandxDI

IP2Bus R Data [15:0] RdWindSizexDI

[16] RdBlockingxDI

Table 3.13: Sub-vectors of IP2Bus Data and IP2Bus Addr.

Similar to the input signals, the output signals exist once per port. The two signals
for the output listed as IP2Bus Ack are IP2Bus R Ack and IP2Bus W Ack. The signal
IP2Bus R Data is not used because no data are written to the read port. Table 3.14 lists
the output signals.

IP2Bus Data WFIFO data output is used for the read port only. It trans-
fers the data read from the WFIFO. The data is valid on
rising clock edge if Bus2IP RNW and IP2Bus Ack are high
and IP2Bus Error is low.

IP2Bus Ack For write operations, IP2Bus Ack indicates that reading is
finished. For read operations, IP2Bus Ack indicates that the
data is available. Acquire and release operations are treated
as write commands. The acknowledge can be negated with
IP2Bus Error.

IP2Bus Toutsup Is set to one whenever the WFIFO needs more time than
eight clock cycles to send and acknowledge. IP2Bus Toutsup
is used for blocking read and write. As long as the signal is
high, the process keeps on waiting.

Table 3.14: WFIFO outputs

The Hardware Design 33

3.7.2 BRAM IO Signals

The IO signals of the WFIFO BRAM entity are listed in Table 3.15.

Bram W AddrxDI Address of write port.

Bram W DataxDI Data to write.

Bram W WrEnablexDI Enable BRAM writing. Data Bram W DataxDI is writ-
ten to address Bram W AddrxDI.

Bram R AddrxDI Address of write port.

Bram R DataxD0 Data at address Bram W AddrxDI. Data output is de-
layed by one clock cycle.

Wfifo Bram ClkxCI BRAM Clock.

Wfifo Bram RstxRI Bram Reset.

Table 3.15: WFIFO BRAM IO signals

Accessing the BRAM

Accessing the BRAM is very similar to reading and writing a register. For writing, data
and address must be available and write enable must be high during one clock cycle. For
reading, the read address must be available during one clock cycle. The corresponding data
can be read from the data port during the next clock cycle. This behaviour is shown by the
timing diagrams 3.12 and 3.13.

Bram W AddrxDI

Wfifo Bram ClkxCI

Bram W DataxDI

Bram W WrEnablexDI

Wfifo Bram RstxRI

A0

D0

A1 A2

D1 D2

Figure 3.12: Timing diagram for WFIFO BRAM for three subsequent write op-
erations.

34 3.7 WFIFO Implementation Details

Bram R AddrxDI

Wfifo Bram ClkxCI

Bram R DataxDO

Wfifo Bram RstxRI

A0 A1 A2

D0 D1 D2

Figure 3.13: Timing diagram for WFIFO BRAM for three subsequent read op-
erations.

It is important to note that the hardware does not offer a special write or read port. Both
ports can be used for writing and reading and there is no parameter to configure a port for
reading or writing only. This has an impact on the WFIFO BRAM write port. During the
time the write port is not used, the write enable signal is low. This causes the write port to
behave like a read port. The unwanted data delivered by the BRAM is not a problem since
it can be ignored, but it must be ensured that the address on the write port differs from the
address on the read port. How this is done is shown in 3.3.5.

3.7.3 States for Memory Management

Table 3.18 lists all states used for the memory management. The column named Type
indicates the state machine that uses the respective state. The two states FreeMem and
FifoSize are the shared states, used for the synchronisation of the two state machines. Tables
3.16 and 3.17 show the transitions of these states. Because there are situations where both
state machines want to change the shared states in the same clock cycle, a special hardware
structure with two adders is used (see Figure 3.17).

Current FreeMem Next FreeMem Next read state Next write state

FreeMem FreeMem − WrWindSizexDI ReRdAck !AcWrAck

FreeMem + RdWindSizexDI !ReRdAck AcWrAck

FreeMem − WrWindSizexDI

+ RdWindSizexDI
ReRdAck AcWrAck

FreeMem !ReRdAck !AcWrAck

Table 3.16: Free memory state transitions.

The Hardware Design 35

Current FifoSize Next FifoSize Next read state Next write state

FifoSize FifoSize + WrWindSizexDI ReWrAck !AcRdAck

FifoSize − RdWindSizexDI !ReWrAck AcRdAck

FifoSize + WrWindSizexDI

− RdWindSizexDI
ReWrAck AcRdAck

FifoSize !ReWrAck !AcRdAck

Table 3.17: Fifo size state transitions

Name Type Reset Type Function

BramWrOffset int 0 W

Memory address of the first item in the write
window. The value is changed if a write window
is released by adding the size of the released
window modulo to the total memory size.

BramRdOffset int 0 R

Memory address of the first item in the read
window minus one. The value is changed if a
read window is released by adding the size of
the window modulo to the total memory size.

RdWindowV bool false R Read-window-valid bit is true if a read window
has been set up and was not released yet.

RdWindowSize int 0 R Size of the read window. Is only valid if Rd-
WindowV=true.

WrWindowV bool false W Write-window-valid bit is true if a write window
has been set up and was not released yet.

WrWindowSize int 0 W Size of the write window. Is only valid if Wr-
WindowV=true.

FreeMem int Size-2 R/W
Size of the memory that is currently not used.
FreeMem is measured in items: FreeMem = 1
indicates that 32-bit are free.

FifoSize int 0 R/W
Current FIFO size without writing windows.
FifoSize = 2 indicates that 64-bit are used by
the FIFO.

Table 3.18: Variables for memory management.

36 3.7 WFIFO Implementation Details

3.7.4 Signal Level State Transitions

Command Name Encoding

ComAcRead ”0011”

ComReRead ”0101”

ComRead ”0001”

ComAcWrite ”0100”

ComReWrite ”0110”

ComWrite ”0010”

ComGetStatus ”0111”

Transition Input Signals Internal State

Current
State

Next State Address and Data bus Rnw Cs/Ce WrWindowV

RdIdle AcRdAck
RdCommandxDI = ComAcRead

0 < RdWindSizexDI ≤ FifoSize
0 1 false

RdErr
RdCommandxDI = ComAcRead 0 1 true

RdCommandxDI = ComAcRead

RdWindSizexDI ≤ 0
0 1

AcRdFail
RdCommandxDI = ComAcRead

RdWindSizexDI > FifoSize

RdBlockingxDI = 0

0 1

AcRdBlk
RdCommandxDI = ComAcRead

RdWindSizexDI > FifoSize

RdBlockingxDI = 1

0 1 false

RdIdle RdCommandxDI = ComAcRead 1 1

ReRdAck RdCommandxDI = ComReRead 0 1 true

RdErr RdCommandxDI = ComReRead 0 1 false

RdIdle RdCommandxDI = ComReRead 1 1

RdDaOk
RdCommandxDI = ComRead

0 ≤ RdAddrxDI < RdWindSizexDI
1 1 true

RdErr

RdCommandxDI = ComRead

RdAddrxDI ≥ RdWindSizexDI
1 1

RdCommandxDI = ComRead

RdAddrxDI < 0
1 1

RdCommandxDI = ComRead 1 1 false

RdIdle
RdCommandxDI = ComRead 0 1

0

RdStaAck RdCommandxDI = ComGetStatus 0 1

*Err RdIdle

*Ack RdIdle

RdDaOk RdDaAck

AcRdBlk AcRdBlk RdWindowSize > FifoSize

AcRdAck RdWindowSize ≤ FifoSize

Table 3.19: WFIFO read state transitions.

The Hardware Design 37

Transition Input Signals Internal State

Current
State

Next State Addr and Data Rnw Cs/Ce WrWindowV

WrIdle AcWrAck
WrCommandxDI = ComAcWrite

0 < WrWindSizexDI ≤ FreeMem
0 1 false

WrErr
WrCommandxDI = ComAcWrite 0 1 true

WrCommandxDI = ComAcWrite

WrWindSizexDI ≤ 0
0 1

AcWrFail
WrCommandxDI = ComAcWrite

WrWindSizexDI > FreeMem

WrBlockingxDI = 0

0 1

AcWrBlk
WrCommandxDI = ComAcWrite

WrWindSizexDI > FreeMem

WrBlockingxDI = 1

0 1 false

WrIdle WrCommandxDI = ComAcWrite 1 1

ReWrAck WrCommandxDI = ComReWrite 0 1 true

WrErr WrCommandxDI = ComReWrite 0 1 false

RdIdle WrCommandxDI = ComReWrite 1 1

WrDaAck
WrCommandxDI = Write Data

0 ≤ WrAddrxDI < WrWindowSize
0 1 true

WrErr

WrCommandxDI = ComWrite

WrAddrxDI ≥ WrWindowSize
0 1

WrCommandxDI = ComWrite

WrAddrxDI < 0
0 1

WrCommandxDI = ComWrite 0 1 false

WrIdle
WrCommandxDI = ComWrite 1 1

0

WrStaAck WrCommandxDI = ComGetStatus 0 1

*Err WrIdle

*Ack WrIdle

AcWrBlk AcWrBlk WrWindowSize > FreeMem

AcWrAck WrWindowSize ≤ FreeMem

Table 3.20: WFIFO write state transitions.

38 3.7 WFIFO Implementation Details

3.7.5 Output Signal Values

The values of the output signals depend on the state of the read or write state machine
(see Tables 3.21 and 3.22). They can be derived from the internal state by a combinatorial
output function. Only the IP2Bus R Data signal is different. It comes directly from the
WFIFO input.

Write State Output Signals

Data Ack Toutsup

AcWrBlk 0 0 1

AcWrAck, ReWrAck, WrErr 0 1 0

WrDaAck Valid Data 1 0

WrDaOk, WrIdle 0 0 0

Table 3.21: Write state machine outputs. All output signal names have the prefix
IP2Bus W.

Read State Output Signals

Ack Toutsup

AcRdBlk 0 1

AcRdAck, ReRdAck, RdDaAck RdErr 1 0

RdIdle 0 0

Table 3.22: Read state machine outputs. Both output signal names have the
prefix IP2Bus R.

3.7.6 WFIFO Process Level

In this section, the structure of the VHDL code is explained. A hierarchical view of the
processes, including the interconnection signals is shown and a short description of the
important processes is given. For implementation details, the VHDL code can be found in
Appendix C.1.

Overview

The wfifo top instantiates the IPIFs, the WFIFO BRAM and the state machine and connects
these entities. This organisation simplifies the hardware design because the WFIFO can be
added in a single step and only the bus connections must be made. Figure 3.14 shows
the top view of the WFIFO. In Figure 3.15, details of the WFIFO logic are shown. This
block includes the WFIFO state machine and it can be seen that there is a single sequential

The Hardware Design 39

process. This process makes the state transitions for tread and write state machine. All
other processes are combinatorial. In section 3.7.6, a description of these processes can be
found. The IPIF and the WFIFO BRAM will not be discussed any further because they are
mainly based on IPs included in the EDK.

OPB W ABusxDI

OPB W BExDI

OPB W ClkxDI

OPB W DBusxDI

OPB W RNWxDI

OPB W RstxDI

PB W selectxDI

OPB W seqAddrxDI

Sln W DBusxDO

Sln W errAckxDO

Sln W retryxDO

Sln W toutSupxDO

Sln W xferAckxDO

Bus2IP W AddrxDI

Bus2IP ClkxCI

Bus2IP W CSxDI

Bus2IP W DataxDI

Bus2IP ResetxDI

Bus2IP W RNWxDI

IP2Bus W DataxDO

IP2Bus W AckxDO

IP2Bus W ToutSupxDO

OPB R ABusxDI

OPB R BExDI

OPB R ClkxDI

OPB R DBusxDI

OPB R RNWxDI

OPB R RstxDI

PB R selectxDI

OPB R seqAddrxDI

Sln R DBusxDO

Sln R errAckxDO

Sln R retryxDO

Sln R toutSupxDO

Sln R xferAckxDO

Bus2IP R AddrxDI

Bus2IP R CSxDI

Bus2IP R DataxDI

Bus2IP R RNWxDI

IP2Bus R DataxDO

IP2Bus R AckxDO

IP2Bus R ToutSupxDO

Bram W AddrxDI

Bram W DataxDI

Bram W WrEnablexDI

Bram R AddrxDI

Bram R DataxD0

Wfifo Bram ClkxCI

Wfifo Bram RstxRI

IPIF

WFIFO

Logic

WFIFO

BRAM

IPIF

WFIFO Top

Bus2IP W CExDI

Bus2IP R CExDI

Figure 3.14: WFIFO top architecture

40 3.7 WFIFO Implementation Details

B
u
s2

IP
W

C
S
x
D

I

B
u
s2

IP
W

R
N

W
x
D

I

B
u
s2

IP
W

A
d
d
rx

D
I[
1
9
:1

6
]

p
W

rC
o
m

m
a
n
d
M

e
m

le
ss

W
ri

te
C

o
m

m
a
n
d
x
D

B
u
s2

IP
W

D
a
ta

x
D

I

p
W

rS
ta

te
M

e
m

le
ss

N
W

rS
ta

te
x
D

B
u
s2

IP
C

lk
x
C

I

p
W

fi
fo

S
ta

te
M

e
m

z
in

g

C
W

rW
in

d
o
w

V
x
D

IP
2
B

u
s

W
D

a
ta

x
D

O

IP
2
B

u
s

W
A

ck
x
D

O

IP
2
B

u
s

W
T
o
u
tS

u
p
x
D

O
B

u
s2

IP
R

e
se

tx
D

I
B

u
s2

IP
R

e
se

tx
D

I

C
F
re

e
M

e
m

x
D

N
R

d
S
ta

te
x
D

N
W

rW
in

d
o
w

V
x
D

N
W

rW
in

d
o
w

S
iz

e
x
D

N
R

d
W

in
d
o
w

V
x
D

N
R

d
W

in
d
o
w

S
iz

e
x
D

N
B

ra
m

W
rE

n
a
b
le

x
D

N
B

ra
m

W
rD

a
ta

x
D

N
W

rA
ck

x
D

N
R

d
A

ck
x
D

C
B

ra
m

W
rO

ff
se

tx
D

C
W

rW
in

d
o
w

S
iz

e
x
D

N
B

ra
m

W
rO

ff
se

tx
D

C
B

ra
m

R
d
O

ff
se

tx
D

C
R

d
W

in
d
o
w

S
iz

e
x
D

N
B

ra
m

R
d
O

ff
se

tx
D

B
u
s2

IP
W

A
d
d
rx

D
I[
1
5
:0

]

B
u
s2

IP
R

A
d
d
rx

D
I[
1
5
:0

]
C

B
ra

m
R

d
O

ff
se

tx
D

C
B

ra
m

W
rO

ff
se

tx
D

N
B

ra
m

W
rA

d
d
rx

D

N
B

ra
m

R
d
A

d
d
rx

D

A
d
d
T
o
F
if
o
S
iz

e
x
D

S
u
b
F
ro

m
M

e
m

S
iz

e
x
D

C
F
if
o
S
iz

e
x
D

C
F
re

e
M

e
m

x
D

S
u
b
F
ro

m
F
if
o
S
iz

e
x
D

A
d
d
T
o
M

e
m

S
iz

e
x
D

N
F
if
o
S
iz

e
x
D

N
F
re

e
M

e
m

x
D

IP
2
B

u
s

R
D

a
ta

x
D

O

IP
2
B

u
s

R
A

ck
x
D

O

IP
2
B

u
s

R
T
o
u
tS

u
p
x
D

O

B
u
s2

IP
R

C
S
x
D

I

B
u
s2

IP
R

R
N

W
x
D

I

B
u
s2

IP
R

A
d
d
rx

D
I[
1
9
:1

6
]

p
R

d
C

o
m

m
a
n
d
M

e
m

le
ss

B
u
s2

IP
R

e
se

tx
D

I
R

e
a
d
C

o
m

m
a
n
d
x
D

B
u
s2

IP
R

D
a
ta

x
D

I

p
W

rS
ta

te
M

e
m

le
ss

B
u
s2

IP
R

e
se

tx
D

I

C
R

d
W

in
d
o
w

V
x
D

C
F
if
o
S
iz

e
x
D

B
ra

m
W

A
d
d
rx

D
O

B
ra

m
W

D
a
ta

x
D

O

B
ra

m
W

W
rE

n
a
b
le

x
D

O

B
ra

m
R

A
d
d
rx

D
O

B
ra

m
R

D
a
ta

x
D

I

C
W

rS
ta

te
x
D

C
R

d
S
ta

te
x
D

B
u
s2

IP
R

e
se

tx
D

I

m
e
m

o
ry

u
sa

g
e

b
ra

m
a
d
d
re

ss

b
ra

m
o
ff
se

t

0

B
u
s2

IP
W

C
E

x
D

I

B
u
s2

IP
R

C
E

x
D

I

Figure 3.15: WFIFO-logic processes and interconnections. Figure 3.16 shows the
symbols used.

The Hardware Design 41

Process or
Signal Assignment

Sensitivity

List

Edge Triggered

Input Signal

Figure 3.16: Legend for architecture drawings. Whenever a process has an edge-
triggered input, it is sequential, otherwise it is combinatorial.

WFIFO Process Description

This section gives a detailed description of the processes shown in Figure 3.15.

p WrCommandMemless This process acts like an input filter for the write state machine. It
outputs one of the states s AcWr, s ReWr or s WrDa whenever a valid write instruction
has been received (see Table 3.23). It does not check any internal states, it just reads
the bus and checks whether the bus transactions are valid. If no command is waiting,
the output is s NoWr.

WrCommandxDI Bus2IP W CSxDI Bus2IP W RNWxDI WriteCommandxD

0100 1 0 s AcWr

0110 1 0 s ReWr

0010 1 0 s WrDa

Default s NoWr

Table 3.23: p WrCommandMemless: Truth Table

p RdCommandMemless This process does the same as the corresponding write process
but for the read state machine (see Table 3.24).

RdCommandxDI Bus2IP R CSxDI Bus2IP R RNWxDI ReadCommandxD

0011 1 0 s AcRd

0101 1 0 s ReRd

0001 1 1 s RdDa

Default s NoRd

Table 3.24: p RdCommandMemless: Truth Table

42 3.7 WFIFO Implementation Details

memory usage The memory usage process synchronises the read and the write state ma-
chines. The architecture with two adders and two subtracters enables the read and
write state machines to change FifoSize and FreeMem in the same clock period.

CFifoSizexD

AddToFifoSizexD

SubFromFifoSizexD

CFreeMemxD

AddToMemSizexD

SubFromMemSizexD

NFifoSizexD

NFreeMemxD

memory usage

Figure 3.17: WFIFO memory usage calculation architecture

bram offset Calculates the next read and write offset. The new value is stored if the current
window is released (see Figure 3.19).

bram address Calculates the next BRAM write address from the current offset and the
address input. The result is not directly forwarded to the BRAM (see Figure 3.19).

p WfifoStateMemzing

For most signals, p WfifoStateMemzing behaves like a flip flop that separates the next state
from the current state. In addition, a multiplexer is used to set the reset value.

Reset Value

Next Value
Current Value

Reset Clock

Figure 3.18: Not gated signal in p WfifoStateMemzing

For some signals, a gate or switch was implemented. Figures 3.19 and 3.20 show these
signals. All other signals are connected as shown in Figure 3.18.

The Hardware Design 43

Reset Value

CBramWrOffsetxD

Reset Clock

NBramWrOffsetxD

NWrStatexD == s ReWrAck

1

Figure 3.19: Gated signals in p WfifoStateMemzing. The same structure exists
for the read offset.

Reset Value

CBramWrAddrxDO

Reset Clock

NBramWrAddrxD

NWrStatexD == s WrDaAck

1

CBramWrOffsetxD

Figure 3.20: Switched signals in p WfifoStateMemzing. The same structure exists
for the read address.

p WrStateMemless and p RdStateMemless

Include the rest of the logic shown in tables 3.19 and 3.20 that is required for the next state
transition.

3.8 myIPIF

During hardware design of the WFIFO IP, it turned out that the IPIF implementation of
Xilinx includes a lot of errors. At the beginning, workarounds could be found, but in the
end it turned out that it is better to make a new IPIF design. The main reason for the
redesign was the incorrect handling of the Toutsup signal that is used for blocking acquiring
instructions. Another reason for the redesign was the devious development of the Xilinx
IPIF module. There are many different versions, and each newer version implements more
functionality. Some errors were fixed in newer versions but new errors occured with the
new functionality. However, I found it amazing to find this kind of errors in a commercial
product. The reimplementation of IPIF was called myIPIF. It has the same interface to the
IP as the original but offers only part of the functionality. If a better version of IPIF becomes
available, then myIPIF will not be required any more. Configuring the myIPIF is complex
but it does not differ from configuring the original IPIF. For details, the documentation of
the IPIF can be consulted. The only difference of importance is that myIPIF only supports
part of the pipeline modes offered by the original. They are listed in 3.6.

44 3.8 myIPIF

4 The WFIFO API

The WFIFO API is the link between the program running on the processor and the WFIFO
IP. Most of the functionality offered by the WFIFO API is implemented in hardware and the
API’s job is to translate the WFIFO instructions into bus transactions. The requirements
for the API design were that commands are executed as fast as possible in order to reduce
the latency and that the API allows efficient IP testing. Figure 4.1 shows the API’s position
and its dependencies from hardware design and testing environment. The API does not
access the hardware directly. It makes use of the bus driver interface that is part of the
Xilinx design software (see Figure 4.2). The WFIFO API offers all the commands required
by the WFIFO protocol. In addition, it offers commands and functionality that enable or
simplify the IP testing.

API
HW

Design
Automated
Sys. Design

Testing

a

b

cd

Figure 4.1: Overview of practical work.

This chapter starts with a detailed description of the API that includes the instructions for
the WFIFO protocol and the instructions used for testing the IP. Then details of the API
implementation are presented and it is shown how the need for minimum latency was met.
Finally it is shown why error signalling by the error signal line that was proposed in the last
chapter could not be implemented.

App

Code
API

WFIFO

IP

WFIFO

API

Bus Driver

Interface

Bus Driver
Bus

Figure 4.2: Communication path from application code to WFIFO IP

46 4.1 API Interface

4.1 API Interface

The WFIFO API is used in application code to access the WFIFO buffer and in the testing
environment to verify the IPs functionality. Although the API is a software interface, it can-
not be separated from the target architecture. An application can only access the WFIFOs
that are connected to the bus of the processor. Each of the WFIFOs has its own address
range, which is represented in the API by the port number. For writing application code,
these port numbers of the target WFIFOs must be known.

Table 4.1 summarises the instructions offered by the WFIFO API and the subsequent tables
list the parameters used by the instructions and the return values. After that, a detailed
description of each command is given. To simplify the IP testing, configuration parameters
have been defined for the API. The problem description and the solution approach for this
configuration are given in 4.1.2.

Function Name and Parameter Description

WFIFO ACQUIRE WRITE
WFIFO ACQUIRE READ
WFIFO ACQUIRE WRITE NONBLK
WFIFO ACQUIRE READ NONBLK

size,
port

Acquires a read or write window of the
specified size. If there are not enough
data for a read window or not enough
free memory for the write window, the
instruction waits until data or memory
becomes available. The non-blocking
version does not wait. It returns im-
mediately if acquiring is currently not
possible.

WFIFO RELEASE WRITE
WFIFO RELEASE READ

port
Releases the current read or write win-
dow.

WFIFO READ WFIFO WRITE
port,
offset,
data

Reads or writes the window position in-
dicated by the offset.

WFIFO GETSTATUS port
Returns the status of the last WFIFO
instruction.

WFIFO RESET port Resets the WFIFO IP.

WFIFO GETMIR port
Returns the IP identifier of the
WFIFO.

Table 4.1: Summary of WFIFO API instructions.

The WFIFO API 47

The instructions of the WFIFO API can return the values defined in Table 4.2. The return
value FAILED is only used by the non-blocking acquiring instructions.

WFIFO OK The API command was executed successfully.

WFIFO ERROR The API command was rejected because it violated the WFIFO
protocol. The command has not changed the WFIFO’s state. The
API does only check for such violations if the ASSERT compile
option is set. If ASSERT NONBLK compile option is not set, the
execution of the calling process is blocked after such a violation.
See 4.1.2 for details.

WFIFO FAILED The API command could not be executed because there was not
enough free memory or not enough data.

Table 4.2: API Return Values.

The instructions of the WFIFO API take a subset of the parameters listed in Table 4.3.

Name Type Description

port uint The port number is a unique identifier for all WFIFO buffers con-
nected to the same bus. The port number is used by the API to
calculate the address range of the target WFIFO IP. Setting the
port number of a WFIFO IP is done during the design of the target
architecture.

offset uint The offset specifies the read or write position within a window. It
must be in the range 0 ≤ offset < window-size.

data int Data is a variable of type int. The variable is written on read
operations and its content is read on write operations.

size uint Defines the size of a read or write window. The smallest possible
value is one, the highest value depends on the memory size of the
WFIFO IP (see Table 3.11).

Table 4.3: API Parameters.

48 4.1 API Interface

4.1.1 Command Details

This section gives a detailed description of all API commands and lists possible exceptions.
One exception that all instructions have in common occurs if a read port instruction is
sent to a WFIFO write port or vice versa. Such an instructions is treated by the WFIFO
as a bus transaction outside of the WFIFO’s address range. In the architecture with MB
and OPB bus, the instruction call returns with the value zero after eight clock cycles. The
same happens if the used port number does not exist. All other exceptions are listed in the
instruction descriptions below.

WFIFO ACQUIRE WRITE(port, size)

Return Values: WFIFO OK, WFIFO ERROR

Description: A new write window with length size is created in the WFIFO connected to
port. If there is enough free memory for the new window, it is created and WFIFO OK
is returned. If there is not enough memory, the calling process is blocked until enough
memory becomes available. If the specified window size is bigger than the maximum
value (see Table 3.11), the calling process is blocked forever.

Exceptions: The instruction returns WFIFO ERROR if one or both of the following
conditions is met.

• There is already a write window in the target WFIFO that was not yet released.

• The size parameter is zero.

WFIFO ACQUIRE WRITE NONBLK(port, size)

Return Values: WFIFO OK, WFIFO ERROR, WFIFO FAILED

Description: A new write window with length size is created in the WFIFO connected to
port. If there is enough free memory for the new window, it is created and WFIFO OK
is returned. If there is not enough memory, the instruction returns WFIFO FAILED.
It does not matter whether size is bigger than the maximum value given in Table
3.11 or not.

Exceptions: The instruction returns WFIFO ERROR if one or both of the following
conditions is met.

• There is already a write window in the target WFIFO that was not yet released.

• The size parameter is zero.

WFIFO ACQUIRE READ(port, size)

Return Values: WFIFO OK, WFIFO ERROR

The WFIFO API 49

Description: A new read window with length size is created in the WFIFO connected to
port. If there is enough data in internal FIFO buffer, it is created and WFIFO OK is
returned. If there is not enough data, the calling process is blocked until enough data
are available in the FIFO. If the specified window size is bigger than the the maximum
value (see Table 3.11), the calling process is blocked forever.

Exceptions: The instruction returns WFIFO ERROR if one or both of the following
conditions is met.

• There is already a read window in the target WFIFO that was not yet released.

• The size parameter is zero.

WFIFO ACQUIRE READ NONBLK(port, size)

Return Values: WFIFO OK, WFIFO ERROR

Description: A new write window with length size is created in the WFIFO connected
to port. If there is enough data in internal FIFO buffer, it is created and WFIFO OK
is returned. If there is not enough data, the instruction returns WFIFO FAILED. It
does not matter whether size is bigger than the maximum value given in Table 3.11
or not.

Exceptions: The instruction returns WFIFO ERROR if one or both of the following
conditions is met.

• There is already a read window in the target WFIFO that was not yet released.

• The size parameter is zero.

WFIFO RELEASE WRITE(port)

Return Values: WFIFO OK, WFIFO ERROR

Description: The current write window in the WFIFO connected to port is released and
WFIFO OK is returned.

Exceptions: The instruction returns WFIFO ERROR if there is no write window to
release.

WFIFO RELEASE READ(port)

Return Values: WFIFO OK, WFIFO ERROR

Description: The current read window in the WFIFO connected to port is released and
WFIFO OK is returned.

Exceptions: The instruction returns WFIFO ERROR if there is no read window to re-
lease.

50 4.1 API Interface

WFIFO WRITE(port, offset, data)

Return Values: WFIFO OK, WFIFO ERROR

Description: The value of data is written to the write window in the WFIFO connected
to port at position offset.

Exceptions: The instruction returns WFIFO ERROR if one or both of the following
conditions is met. After writing, the instruction returns WFIFO OK.

• There is no write window in the target WFIFO.

• The offset is bigger or equal to the write window size.

WFIFO READ(port, offset, target)

Return Values: WFIFO OK, WFIFO ERROR

Description: The value of the read window position offset in the WFIFO connected to
port is read and written to data. After reading, the instruction returns WFIFO OK.

Exceptions: The instruction returns WFIFO ERROR if one or both of the following
conditions is met. After writing the instruction returns with WFIFO OK.

• There is no read window in the target WFIFO.

• The offset is bigger or equal to the read window size.

WFIFO GETSTATUS(port)

Return Values: WFIFO OK, WFIFO ERROR, WFIFO FAILED

Description: Returns the status information of the last instruction executed on the indi-
cated port. The status is one of the return values listed above. Although it is possible
to execute the WFIFO_GETSTATUS function in application code, this should not be done.
This function must be used for API programming only.

WFIFO RESET(port)

Return Values: none

Description: The WFIFO IP connected to port is resetted. This means that all valid
data in the WFIFO are lost and that address pointers and other internal values are
set to their initial state. The implementation of the software reset is located in the
IPIF module. When receiving the software reset command, the IPIF sets the reset
signal for one clock cycle. The WFIFO IP never receives this command, it only sees
the toggling of the reset line.

The software reset is very useful for IP testing. Without the software reset, a new
simulation must be started for each test-case because the IP has to be in a defined start

The WFIFO API 51

state. With the software reset, all test-cases can be copied to the same application.
The software reset that is performed after every test-case ensures that the different
test-cases cannot influence each other.

WFIFO GETMIR(port)

Return Values: mir-value

Description: The IP identification command returns an identification and a version num-
ber of the WFIFO connected to port. It can be used by the processor to test whether
the WFIFO is properly connected and it allows to execute WFIFO version dependent
code.

Again, this function is implemented in IPIF. When receiving the IP identification
command, the IPIF returns the ID immediately. No interaction is done with the
WFIFO IP. The ID is defined in the WFIFO IP as a constant and transferred to the
IPIF at compile time. IPIF also defines the encoding for the ID (vector 31 down to 0):

Bits Function Current Value

31–28 major version number 1
27–21 minor version number 0
20–16 minor version letter (a=0,b=1) a
15–8 block id 3
7–0 block type 1

Table 4.4: Encoding of WFIFO ID value

4.1.2 Error Handling and Compile Options

There are two different reasons why the execution of a WFIFO API command can fail. The
first is the execution of a non-blocking acquiring operation in case that there is not enough
memory or data. Such a situation is not an error, but still the acquiring is not executed.
Such a situation is signalled with the return value WFIFO FAILED. The second reason is a
violation of the WFIFO protocol such as reading before acquiring. In such a situation the
value WFIFO ERROR is returned. It is important to distinguish between the two reasons
because the first one happens during a correct operation, whereas the second one is caused by
a programming error. Errors caused by the illegal use of the WFIFO API occur only during
the software design phase but must be fixed for the final implementation. This situation
causes two problems:

• The WFIFO IP always rejects instructions that violate the WFIFO protocol but extra
computing time is required for the API to check if a command was rejected or not. An
API implementation that always does this checking results in a lower system perfor-
mance. It would be desirable if the checking could be enabled during software design
and disabled for the final version.

52 4.1 API Interface

• If errors are signalled by the return value, major changes of the source code are re-
quired between design phase and final version. The the source code listed below shows
an example code sequence during software design and the corresponding final version.
This process of code manipulation is error-prone and time consuming. For this situ-
ation it would be better if the errors were written to a log file and not signalled by
a return value. But there are situations where error signalling by return value is the
best solution. One such application is a test where an error is caused voluntarily in
order to check if it is correctly rejected.

// example code during software design
nrOfErrors = 0;
if (WFIFO_ACQUIRE_WRITE(1,6,0) != WFIFO_OK) nrOfErrors++;
if (WFIFO_WRITE(1,0,0x12345678) != WFIFO_OK) nrOfErrors++;
if (WFIFO_RELEASE_WRITE(1) != WFIFO_OK) nrOfErrors++;

// example code for the final implementation
WFIFO_ACQUIRE_WRITE(1,6,0);
WFIFO_WRITE(1,0,0x12345678);
WFIFO_RELEASE_WRITE(1);

In the following, checking for errors caused by the illegal use of API commands is called
assertion. The switching mechanism indicated above was implemented with preprocessor
statements in the API implementation. If the flag WFIFO_ASSERT is set, the version with
assertion is used, otherwise no assertion is done. The gcc-mb compiler offers the -Wp,...

option to pass statements to the preprocessor. A compilation call with assertion has the
following structure:

mb-gcc ... -Wp,-DWFIFO_ASSERT

The API offers two types of assertion, a blocking and a non-blocking one. The blocking
version writes an error message to standard output and stops the execution with an endless
loop if an error occurs. The non-blocking version only prints the error message. The flag
ASSERT_NONBLK must be set for the non-blocking version, the blocking version is the default.
If the WFIFO_ASSERT flag is not set, then ASSERT_NONBLK is ignored. A compilation call with
non-blocking assertion has the following structure:

mb-gcc ... -Wp,-DWFIFO_ASSERT -Wp,-DASSERT_NONBLK

There is a menu in XPS where additional compiler flags can be set. It is located in Project-
>Software-Platform-Settings in the processor tab. For the modular testing environment,
there are parameters to set the assertion and blocking compile options.

The WFIFO API 53

Discussion

The presented error handling concept satisfies the demands for safety, speed and debugging.
The error handling is save because the WFIFO cannot be set to an invalid state by violating
the WFIFO protocol. The API offers maximum performance for the final implementation
and debugging information during the design phase. Furthermore, no changes of the program
source are required for the final implementation.

4.1.3 Command Latency

The latency of the commands depends on the pipeline mode and on the assertion type used.
Tables 4.5 and 4.6 summarise the results.

Write Read Acquire Acq. Non-Blocking Release Pipeline Mode

5 6 5 12 5 2

6 7 6 13 6 3

6 7 6 13 6 5

7 8 7 14 7 7

Table 4.5: Number of required clock cycles for WFIFO instruction without asser-
tion.

Write Read Acquire Acquire Nonblk Release Pipeline Mode

12 13 12 12 12 2

13 14 13 13 13 3

13 14 13 13 13 3

14 15 14 14 14 7

Table 4.6: Number of required clock cycles for WFIFO instruction with assertion.

4.2 WFIFO API Implementation

This section presents details of the API implementation. The complete API source code
is shown in Appendix B.1. The job of the API is to translate WFIFO instructions into

54 4.2 WFIFO API Implementation

instructions for the bus driver. As already shown in Figure 4.2, the API uses a bus driver
for this purpose. The XIO-Driver from Xilinx offers the following instructions:

XIo_Out32(Address, Data) XIo_In32(Address)

The driver implements the handling of the transfer qualifier signals and the WFIFO API
only has to submit 32 bit values for data and address bus. The first instruction is used for
writing to the bus, the second one for reading. The data are provided by the application.
The API’s job is to translate the port number into the bus address of the WFIFO. Since
this translation is static, it is possible to implement the API with function macros instead of
normal functions. This speeds up the execution because the function call is done at compile
time. The preprocessor replaces the WFIFO API instructions with instructions for the bus
driver. No API function call is done at run-time. The translation from port number to bus
address depends on the selected instruction format. In order to simplify the adaptation of
the API for new instruction formats, the format is defined in a separate section of the API.
The code below shows this section.

//mask
#define WFIFO_IPTYP_MSK 0xFF000000 // 8 bit ip typ (31 downto 24)
#define WFIFO_PORTN_MSK 0x00F00000 // 4 bit port no (23 downto 20)
#define WFIFO_FUNCN_MSK 0x000F0000 // 4 bit instr. (19 downto 16)
#define WFIFO_OFFST_MSK 0x0000FFFF // 16 bit offset (15 downto 0)

// shift
#define WFIFO_PORTN_SFT 20
#define WFIFO_OFFST_SFT 0

// settings
#define WFIFO_READ_ID 0x00010000
#define WFIFO_WRITE_ID 0x00020000
#define WFIFO_ACQUIRE_READ_ID 0x00030000
#define WFIFO_ACQUIRE_WRITE_ID 0x00040000
#define WFIFO_RELEASE_READ_ID 0x00050000
#define WFIFO_RELEASE_WRITE_ID 0x00060000
#define WFIFO_GETSTATUS_ID 0x00070000
#define WFIFO_MIR_RESET_ID 0x000F0000
#define WFIFO_IPTYP_ID 0x01000000

The instruction format definition uses three types of values: MSK, SFT and ID. MSK stands
for mask. It is a bit mask with value one at the bit positions that are valid for the corre-
sponding parameter and zero elsewhere. SFT stands for shift and indicates the position of
the LSB bit. The ID values define the instruction numbers and the IP type identifications.
When changing the instruction format, the API can be updated by changing these values.

The WFIFO API 55

Because function macros are used, it is not possible to check parameters at run-time. Errors
caused by protocol violations are caught by the WFIFO IP but the API has to guarantee
that the instruction format is respected. For example, if there is a maximum of 16 ports,
it must be ensured that writing to port 20 does not lead to illegal bus transaction possibly
outside the IPs address range. As shown in the code below, the API makes a logical and
operation with the parameters and the bit masks defined above. This deletes all bits outside
the valid range of the parameter.

#define WFIFO_WRITE_I(port, offset, data) \
(XIo_Out32(\

(WFIFO_IPTYP_ID \
| (WFIFO_PORTN_MSK & (port<<WFIFO_PORTN_SFT)) \
| WFIFO_WRITE_ID \
| (WFIFO_OFFST_MSK & (offset<<WFIFO_OFFST_SFT))),\

data)\
)

The write function macros from above is called by one of the macros shown below. If the API
is compiled with assertion, the first macro is used. This macro makes two bus transactions
for each WFIFO instructions: one to execute the instruction and a second to read the status
of the execution. If the API is compiled without assertion, the status checking is skipped.

#ifdef WFIFO_ASSERT

#define WFIFO_WRITE(port, offset, data)\
(WFIFO_WRITE_I(port, offset, data), wfifoAssert(WFIFO_GETSTATUS(port)))

#else

#define WFIFO_WRITE(port, offset, data)\
(WFIFO_WRITE_I(port, offset, data))

#endif

The wfifoAssert() function checks the status of the instruction. If the status is WFIFO
ERROR, it writes an error message to standard output and blocks the calling process if
required. If the status is not equal to WFIFO ERROR, the assert function does nothing.
The source code of the assert function is given in Appendix B.1. More details of the assertion
are explained in 4.1.2.

56 4.3 Alternative Status Signalling Concept

4.3 Alternative Status Signalling Concept

The implementation of the status signalling developed for the WFIFO is not the most obvi-
ous one and it seems that it could be implemented more efficiently. The main disadvantage
of the used implementation is that it needs two bus transactions for a single instruction if
the status of the instruction must be checked. Furthermore, this situation has led to the
assert compile options, and the API became more complex.

The OPB bus offers a single bit line to signal an error. If this line is used, it is possible
to implement WFIFO instructions with a single bus transaction that includes the error
signalling and no function to read the status is used any more. In the first version of the
WFIFO API and the IP, the approach with the error signal was implemented. This section
describes the steps required and shows the problems that occurred. Finally, this concept was
replaced by the signalling concept with the extra bus transaction because it could not be
implemented with acceptable performance. An advantage of the version finally implemented
is that it is less hardware dependant. It can also be used on a bus that has no error signal.

4.3.1 Accessing the Error Signal with MB

The MB-Processor has a set of general purpose registers and a set of special purpose registers.
The special purpose registers of interest are the Machine Status Register (MSR) and the
Exception Status Register (ESR). The incoming error signal is saved to the ESR register
if error signalling is enabled in the MSR register. There is no API or driver to access the
MSR and ESR registers. The only possibility for reading and writing is to use assembler
instructions. Fortunately, the MB C-Compiler allows to use inline assembler. In the code
below, the EE bit in the MSR register is set and ESR register is read to memory.

int esrRegister;

int main(void){

// set ee bits in msr register

asm("msrset r12, 256");

// read esr register

asm("mfs r12, resr");

asm("swi r12, r0, esrRegister");

}

Configuring the MSR register can be done with msrset. The register r12 is used to store
the content of the MSR register before setting the EE bit and is of no relevance here. The
msrset instruction requires a single clock cycle. On the other hand, reading the ESR register
needs two instructions and three clock cycles. In a first step, the content of the ESR register
is written to the register r12, then r12 is written to the memory. By default, access for

The WFIFO API 57

MSR and ESR register is disabled by hardware. It must be enabled with the MB design
parameters C_USE_MSR_INSTR, C_IOPB_BUS_EXCEPTION and C_DOPB_BUS_EXCEPTION.

4.3.2 IPIF Problems with Error Signal

To signal an error, the WFIFO IP has to reply by setting both IP2Bus Error and IP2Bus Ack
to high for one clock cycle. This signalling worked correctly for read but not for write
transactions. After spending a lot of time on tracking this problem, the error was located
in the IPIF block. The IPIF implementation used allows error signalling only during the
first clock period, which is in contradiction to the IPIF specification [14]. The WFIFO IP
usually replies one clock cycle after receiving a new command (see Figure 3.6). To overcome
the problem, the WFIFO implementation was changed to signal the error immediately. The
disadvantage of this solution is the long data path from the OPB bus through the IPIF
and all the logic in the WFIFO IP. This may have major impact on the timing for the
entire design. The IPIF has a design option that breaks down the length of this path by
adding additional pipelining registers. Therewith the timing problem is reduced at the cost
of latency. Another option would be to fix the IPIF.

4.3.3 MB Exception Handling

The MB processor handles an incoming error on the OPB bus like a hardware exception or
an interrupt. On incoming error, the MB branches to the hardware exception vector and
from there to the label hw exception handler. Then it does the following operations.

r17 ← PC
PC ← 0x00000020
MSR[EE] ← 0
MSR[EIP] ← 1
ESR[EC] ← exception specific value
ESR[ESS] ← exception specific value
EAR ← exception specific value
FSR ← exception specific value

Some of the operations listed above are of minor interest, but the list shows that many
operations are involved. Many more instructions are used for context saving and restoring.
The table below gives an overview of the required time. It ignores the time used for reading
the ESR register.

58 4.3 Alternative Status Signalling Concept

Command Signal Required Clk Cycles

Write No Error 8

Error 100

Read No Error 8

Error 100

Table 4.7: Required time for error signalling

It might be possible to overwrite the exception handler in order to speed up the procedure,
but no documentation is available. Furthermore this is not a good idea for compatibility
reasons.

4.3.4 Summary

The solution using the error signal of the OPB bus requires a lot of processor specific
instructions and is extremely slow. Furthermore, implementation is made more difficult by
the errors in IPIF IP and the smart model. The preprocessor of the MB C-Compiler does not
like assembler instructions. Calling assembler instructions from a function macro is possible
only if it is hidden in a normal function. This slows down the operation because an extra
function call must be done. In the Modelsim simulation, access to ESR and MSR register
does not seem to work correctly. I assume that the problem is located in the smart model
used by Modelsim.

5 Testing

This chapter deals with two different aspects of testing: verification and performance mea-
surement. Although they address different problems, it will be shown that they demand
a similar infrastructure. This chapter starts with a summary of the requirement of func-
tional and performance tests. Section 5.1 points out the problems of testing the WFIFO
IP by analysing some general aspects of hardware testing. In 5.2 the implemented testing
environment is presented and in 5.3 it is shown how testing was automated.

API
HP

Design
Automated
Sys. Design

Testing

a

b

cd

Figure 5.1: Overview of practical work.

Verification: Verification is focused on testing an IP or a system for functional correctness.
These tests ignore timing or performance constraints. They are only concerned with
the output generated for known input data or a known start state. Functional tests
usually end with the result passed or failed. Because a single test can only verify a part
of the functional behaviour, a big set of tests is used. Functional test are important
during the design and redesign phase, where the same tests are frequently executed.
For efficient testing, the execution of a set of tests for a given IP must be automated.

Performance measurement: Performance tests are used to estimate the performance of an
IP or an entire system. These tests assume that the IP is working functionally correct
and measures parameters like latency and data throughput. If the IP is not working
functionally correct, a performance test does not necessarily provide meaningful results.
Performance tests end with a score for a certain parameter. They can only pass or fail
if a constraint to be met was defined. Performance test are used after a redesign to
check whether a system meets the requirements, or to compare different systems. For
a comparison, the same test is executed on different IP versions or different system
architectures. To make design more efficient, the testing environment should automate
this process.

60 5.1 Challenge of Testing – Design for Testability

5.1 Challenge of Testing – Design for Testability

Testing and verifying a hardware IP is very different from doing tests on a software imple-
mentation. Because hardware is designed in languages like VHDL and Verilog, that look
very similar to programming languages, software engineers usually have difficulties to un-
derstand the difference. I will to point out the problems that appear when testing hardware
by explaining the implementation alternatives for making hardware testable. Each of the
following itemisations deals with one question and explains which decisions were made for
the WFIFO IP. The concepts used are not based on textbook knowledge, as far as I know.
They are based on my practical experience and they show my own approach to this subject.

• To perform tests on hardware, an execution environment is required. Such an envi-
ronment can be a simulator like Modelsim or an FPGA system. The advantage of a
simulator is that it offers maximum controllability and observability of internal signals,
but the simulation speed is very low. For systems of medium complexity, a simulation
of one second of operation usually requires a simulation time in the dimension of hours
or days. In contrast to the simulator, the FPGA environment runs with high speed,
but it does not allow access to internal signals. In order to observe or control such
signals, additional hardware is required. When mapping the design on an FPGA, the
hardware must be written in the subset of VHDL that allows synthesis.

The WFIFO test environment allows to execute tests with the simulator Modelsim or
with an FPGA board. This approach combines the advantages from simulator and
FPGA execution environments.

• An isolated IP does not perform any operations. To test its behaviour, the IP must
be stimulated and the IP’s response must be analysed. For systems without proces-
sors, a test-bench is a popular solution for this purpose. Most test-benches read the
stimulation data from a file and save the output of the IP for further analysis. Such
test-benches can only run on a simulator, and mapping on an FPGA is not possible.
For systems with processors, the stimulation, and for certain applications even the
verification of the output, can be done with a test application running on the IC’s
processor. Instead of the software environment of the test-bench, the IP runs in the
target hardware architecture which also allows FPGA mapping of the test system.

The testing concepts presented for the WFIFO do not use a test-bench. Tests are
performed by integrating the IP in the target architecture and by executing a special
test code on the processors. The solution presented can be executed with a simulator
or mapped on an FPGA.

• A further challenge of testing is to get enough information from the test to state if
or how good something works. There are different locations that can serve as a data
source. This can be seen when the system shown in Figure 5.2 is examined. This
system shows that test data can be delivered from processor, memory, bus and IP. For
a more complex system, the situation is the same except that there are more sources
of the same type. All of these sources have partial information about the state of the

Testing 61

system and it must be decided which information is required. It must be considered
that functional and performance tests require different data. For functional test, the
data transferred and stored are of interest. In addition, performance tests need timing
information.

P
IP

Mem

Test Data

Bus

Figure 5.2: Possible sources for test data.

Processor: The processor source type is particularly suitable for functional tests be-
cause it is the only device that can stimulate and verify. For such a test, the
processor executes a code sequence and checks whether the IP behaves as ex-
pected. Several processors even have special debugging interfaces that allow a
step by step execution or additional data exchange. Performance tests are more
difficult to accomplish with a processor because the testing itself can have an
influence on the performance. Furthermore, a timer is required to measure the
elapsed time.

Memory: The memory contains a lot of information of which usually only a small
part is of interest. In order to find this part, the address map of the application
must be known. A possible implementation for performance tests is to stop the
execution after a known number of clock cycles and to make a memory dump.
This gives all stored data for a specific point in time.

Bus: The bus implementation is usually taken from an IP library and it is difficult
to change the hardware for testing purposes if it is not already integrated. In
contrast to the processor, it is not possible to change the behaviour of the bus by
software. This is why the data from the bus are more difficult to read. A possible
approach is to use an extra hardware block connected to the bus that acts as a
recorder of bus transactions. Such recorders are usually not taken from a library
and it is possible to add a timer that allows to save a time stamp for the data
observed. The data from the recorder can be used for functional and performance
tests.

IP: The advantage of the IP data source is that it makes it possible to change the
hardware. This allows to integrate additional testing hardware. If this testing
infrastructure is added permanently, additional chip size is required. If it can be
removed, it must be verified that removing the test hardware does not change the
test results. Data produced by the IP can be used for functional and performance
tests.

62 5.1 Challenge of Testing – Design for Testability

For the WFIFO design, the processor and the bus are used as sources for test data.
Data from the processor are used for functional tests because this solution offers the
best functionality. A bus recorder is used for performance tests. It was selected because
it can be added and removed to a system without changing its behaviour for the test
execution and because no changes of the tested IP are required.

• All the data collected during a test must be written out. The options depend on the
execution environment:

Modelsim: In a Modelsim simulation, data can be written out to a file with VHDL
instructions. Such a kind of log-file writing can only be done if changing the
corresponding VHDL code is possible. This is the case for self-written IPs but it
is usually not possible for third-party components like processor, memory or bus,
because they are taken from a protected library. There are two approaches to
overcome this restriction. The first approach is to replace the protected IP with
a simulation model that implements the functionality of the original IP and the
logging. The second approach makes no changes on the protected IP. To write
out the information, a sniffer is used that is connected to some of the IP’s signal
lines. From the information grabbed, the sniffer writes a log-file. Since the sniffer
and the simulation model do not have to be synthesizeable, it is possible to use
higher level languages like System C for this implementation. A popular solution
is to connect a sniffer with a memory region.

FPGA: For FPGA simulations, one can choose the output interface from the ports
offered by the FPGA board (COM, LPT, PS2, SATA etc.). Figure 5.3 shows a
simplified WFIFO architecture. In this architecture, only the IP and the pro-
cessor P have access to the I/O device. For the WFIFO IP, the processor is the
only device with I/O access because the WFIFO is a slave device that cannot
initiate any bus transfers. During the simulation, the selected output port must
be observed to store the data. This can be done by a computer or another storage
device.

It would be best if the implementations for FPGA and Modelsim did not differ at all
in order to run the same tests in both environments. But unfortunately this is difficult
to achieve because the FPGA simulation inevitably needs a hardware interface like the
COM port to write out the data. For the Modelsim simulation, it is difficult to read
such an output because this would mean reading from a virtual COM port that exists
only in a simulation.

P IP

Mem

Bus

I/O

Figure 5.3: Architecture example for WFIFO IP

Testing 63

The WFIFO system uses a UART IP that is connected to a COM port to write out
data during the FPGA execution. When running a Modelsim simulation, the UART is
replaced by an UART-Logger that has the same bus interface as the UART, but writes
out the received data to a text file. With this solution it is possible to use the same test
software for FPGA and Modelsim but two versions of the same system are required:
one with UART IPs and a second one with UART-Loggers. The advantage of this
approach is that the changes between Modelsim and FPGA are limited to the output
device. All of the central components like the IP, the processor and the software are
unchanged because they do not include components that can be used for simulation
only. The solution with a sniffer was not used because it can be used for simulation
only. Furthermore, there is a major dependency from the version of the observed IP.
Whenever a new version of the IP is used, the sniffer must be update.

5.2 Testing Architecture

Two systems were mainly used to test the WFIFO IP. They are called single- and dual-
bus system (see Figure 5.4 and 5.5 respectively). In the single bus system, the WFIFO is
connected with a single processor, in the dual bus system with two processors. With the
two processor system it is possible to test simultaneous read and write, whereas in the single
processor system read and write are executed alternately. For functional verification, a set
of test cases was used. A short description of each test is given in Appendix D. Besides
the test architectures, the present section contains a short description of the OPB recorder
and the UART IPs and presents two example test cases, one for functional testing and one
for performance testing. A more detailed description of OPB recorder and UART-Logger is
given in 5.5 and 5.4 respectively.

MB

Test
Case

WFIFO

OPB Recorder

UART or UART-Logger

OPB

Single-Bus System

Mem Output
File/Port

0 1

Figure 5.4: Single bus WFIFO IP test architecture. The digits next to the WFIFO
are the port numbers.

64 5.2 Testing Architecture

MB 0

Test
Case

WFIFO

Rec

UART

OPB

Dual-Bus System

Mem

Output Files/Ports

Rec

UART

MB 1

Mem

OPB

Test
Case

0 0

Figure 5.5: Dual bus WFIFO IP test architecture.

5.2.1 Data Output

All data are written out by the processor(s). As output device, the UART-Logger is used
alternately with a normal UART IP. The normal UART IP writes out to a hardware port,
whereas the UART-Logger writes out to a log-file. For FPGA simulations, the normal UART
is used. For Modelsim simulations it is replaced by the UART-Logger. Since both IPs have
same input interface, the rest of the IC cannot see any difference.

UART and UART-Logger belong to a special IP class, called the standard output peripherals.
For each processor in the system, a standard output peripheral can be defined. This causes
all write operations to stdout to be redirected to this peripheral.1 Xilinx offers a slimmed
version of the printf function named xil_printf. It only supports the format parameters
%d, %l, %x, %s and %c but uses much less instruction memory than printf. Below, an
example for data output is shown where errNo is a variable of type integer. If the test is
running on the FPGA, the data can be read from the COM port. If the test is running on
the simulator, the result is written to a file.

xil_printf("number of errors: %d\n",errNo);

The default UART speed of 9600 baud is acceptable for FPGA simulations but for Modelsim
simulations it is too slow. To speed up, the baud rate can be changed to 921600 for Modelsim
simulations. For both simulation types it must be considered that the UART is not suitable
to write out big amounts of data. More information on the UART can be found in the Xilinx
IP description.

1 In XPS this setting is located in Project->Software Platform Settings->Library/OS Parameters.

Testing 65

5.2.2 Data Acquisition

Data are collected by the processor and the OPB recorder. For functional tests, only data
from the processor are used. A typical functional test sends instructions to the WFIFO
buffer and checks if it behaves as expected. After checking, the processor writes out whether
the test passed or failed.

Performance tests are accomplished in two phases. In the first phase, data are collected by
the OPB-Recorder, in the second phase, the recorded data are transferred to the processor
and from there to the output device. For these two phases, the recorder operates in two
modes, the record mode and the play mode. In record mode, it only records the bus trans-
action but it never writes anything to the bus. For all other IPs connected to the bus, the
recorder is invisible and their behaviour is not affected by the recorder. If the recorder is
switched to play mode, it writes out the data recorded. Table 5.1 lists the functions of the
recorder’s API. The source code is given in Appendix B.2.

Name Return Function

OPB RECORDER INIT() none Clean the recorder memory and set it
to record mode.

OPB RECORDER PLAY() none Set recorder to play mode. Output will
start with the oldest item and end with
the newest. Data output is triggered by
the GETNEXT function.

OPB RECORDER HASMORE() int Returns one if there are items in
the record buffer that have not been
played yet and returns zero otherwise.
Recorder must be in play mode for this
function.

OPB RECORDER GETNEXT() int Returns the next unread data. Each
data item requires two read operations
because one item uses 36 bits.

replayOpbRecorder() none This function reads all of the recorder
memory and writes it to standard out-
put.

Table 5.1: API of OPB Recorder

Below, a typical code sequence in a functional test is shown. First, the recorder is initialised,
then the WFIFO is stimulated and finally the recorded results are written out.

66 5.2 Testing Architecture

OPB_RECORDER_INIT(); // init the recorder

... // execute some wfifo instructions

replayOpbRecorder(); // write out all recorded data

The OPB-Recorder does not record all bus transactions. It makes a filtering for WFIFO
commands and records only these commands. The address range that is recorded is defined
by design parameters (see 5.4). The OPB-Recorder saves the exact time and the WFIFO
command type to the BRAM. The time is encoded with 32 bits, which is enough to record
for 43 seconds at 100 MHz. The command is encoded with four bits.

5.2.3 Example of Functional Test

Functional tests make use of UART or UART-Logger but do not use the OPB-Recorder.
As stated above, every functional test includes two steps. First, the processor executes a
code sequence and checks whether the IP behaves as expected. Then it signals whether the
test passed or failed. The UART is used to write out this simulation result. The example
code below shows a test on the single-bus architecture. First, a write window of size six is
acquired, then a correct write operation to position zero is made. Then it tries to write at
position six, which is outside the window, and checks if an error is signalled. After that, the
write window is released, and the data are read back and checked. Finally, the test result is
written out. If the test passed, it ends with: test ended with 0 error(s). The test must
be complied with nonblocking assertion.

/* include files */

int temp, nrOfErrors;

int main(void){
nrOfErrors = 0;
temp = 0;

//write
if (WFIFO_ACQUIRE_WRITE(0,6) != WFIFO_OK) nrOfErrors++;
if (WFIFO_WRITE(0,0,0x12345678) != WFIFO_OK) nrOfErrors++;
if (WFIFO_WRITE(0,6,0xFFFF0000) != WFIFO_ERROR) nrOfErrors++;
if (WFIFO_RELEASE_WRITE(0) != WFIFO_OK) nrOfErrors++;

//read
if (WFIFO_ACQUIRE_READ(1,6) != WFIFO_OK) nrOfErrors++;
if (WFIFO_READ(1,0,temp) != WFIFO_OK) nrOfErrors++;
if (temp != 0x12345678) nrOfErrors++;
if (WFIFO_RELEASE_READ(1) != WFIFO_OK) nrOfErrors++;

xil_printf("test ended with %d error(s)\n",nrOfErrors);
}

Testing 67

5.2.4 Example of Performance Test

Performance tests make use of the UART IPs and the recorder IP. A test starts by setting
the recorder IP to record mode. Then a code sequence that is of interest from the perfor-
mance point of view is executed. After that, the recorder is set to play mode. The processor
reads line by line from the recorder and writes it out over the UART. The example code
below shows a test on the dual-bus architecture. Processor MB 0 writes two items to the
WFIFO and MB 1 reads them. The output of the recorder shows the time elapsed. To get
the best performance, the test must be complied without assertion.

Code for processor MB 0.

/* include files */

int main(void){
xil_printf("start testcase on mb 0\n");
OPB_RECORDER_INIT(); // start recorder

WFIFO_ACQUIRE_WRITE(0,2); // write data
WFIFO_WRITE(0,0,0x12345678);
WFIFO_WRITE(0,1,0xFFFFAAAA);
WFIFO_RELEASE_WRITE(0);

replayOpbRecorder(); // write out recorded data
xil_printf("test ended with 0 error(s)\n"); // signal end of test

}

Code for processor MB 1.

/* include files */

int main(void){
int temp = 0;

xil_printf("start testcase on mb 1\n");
OPB_RECORDER_INIT(); //start recorder

WFIFO_ACQUIRE_READ(0,2); // write data
WFIFO_READ(0,0,temp);
WFIFO_READ(0,1,temp);
WFIFO_RELEASE_READ(0);

replayOpbRecorder(); // write out recorded data
xil_printf("test ended with 0 error(s)\n"); // signal end of test

}

68 5.3 Modular Testing Environment

Output

start testcase on mb 0
9 4 // acquire write
15 2 // write
21 2 // write
27 8 // release write
test ended with 0 error(s)

start testcase on mb 1
33 3 // acquire read
40 1 // read
47 1 // read
54 5 // release read
test ended with 0 error(s)

5.2.5 Summary

• The testing includes functional tests and performance tests.

• All tests can run on the FPGA or in a Modelsim simulation.

• All tests can run with the same version of the WFIFO IP.

• The results of performance tests are cycle true.

5.3 Modular Testing Environment

A single IP test can be done manually, but in practise many tests must be executed or the
same test is executed repeatedly which makes testing boring and error-prone. With the
modular testing environment that is presented in this section the testing is automated. As
indicated by the name, the testing environment is designed with a modular concept. It uses
three types of libraries: iplib, syslib and tclib. This concept is shown in the next figures.
The testing environment was called iptester.

syslib tclib iplib

singlebus fpga

singlebus modelsim

dualbus fpga

wfifo v1 00 a

wfifo v1 00 b

singlebus RW 1

singlebus RW 2

singlebus uart 1

IP Tester

Assembled
Test System

Command Line
Interface

Simulation Report

Figure 5.6: Libraries used in the iptester

Testing 69

The syslib contains XPS-compliant systems that do not include the test application and the
implementation of the IP to test. The missing test application is located in the tclib library
and the IP implementation is located in the iplib library. The iptester is started from a
command line interface and the configuration for the test is specified with command line
arguments. The testing includes the following three steps:

System Preparation: The system to test is assembled form the three libraries and the
required compilation and generation steps are done. The command line arguments
define the system and the test case that are used. It is possible to run multiple tests
with one function call. This causes the iptester to repeat the required steps for each
test case. For system assembly, the components of the libraries are copied together.
For the compilation and generation, the command line interface of XPS is used. If the
system is prepared for a Modelsim simulation, the simulation model is generated. If it
will run on the FPGA, the bit-stream for FPGA programming is generated.

Test Execution: Depending on the simulation type, either Modelsim is started or the sim-
ulation is downloaded on the FPGA. During test execution, the iptester waits for
the end-of-test signal. A process can signal that it has finished by writing out a line
test ended with .. error(s). A command line argument specifies which proces-
sors will signal end-of-test. The iptester runs the simulation until all of them have
signalled completeness or until a timeout is reached.

Simulation Report: From the information read from the COM port and the files generated
during execution and preparation, the iptester generates a simulation report. It is
stored in a directory named after the current time. It contains one folder for each test
case executed that contains detailed information about this test and a text file that
summarises the results.

70 5.3 Modular Testing Environment

Figures 5.7 and 5.8 show assembled single-bus systems for an FPGA and a Modelsim simu-
lation, respectively. The gray level indicates the source library.

Test

Case

MB

OPB

WFIFO

UART

Sim

Rep

Download Cable

COM Port

IP Tester

FPGA

Figure 5.7: Assembled system for FPGA simulation and single bus architecture.

Test

Case

MB

OPB

WFIFO

UART-Logger

Sim
Rep

run, stop

IP Tester

Modelsim

Log

File

Figure 5.8: Assembled system for Modelsim simulation and single bus architec-
ture.

Testing 71

5.3.1 Command Line Options

The iptester is implemented with TCL, which is the standard script language for most chip
design applications. The script requires ISE, EDK and Modelsim. Modelsim is not required
if only FPGA tests are executed. For Windows systems2, the best way for running the script
is to use the normal command line window and to call the TCL interpreter from there. The
syntax for such calls is given below. If the TCL command line window is used, the script
can be called directly, but all environmental variables of EDK and ISE must be set again.

>tclsh84 iptest.tcl parameters

Parameters

A single parameter consists of a parameter name that starts with a minus sign followed by
a space and the value of the parameter.

Parameter Function

-sys Select the system to simulate. The value is the directory name of the
XPS built system. It is located in the syslib directory.

-tc Select the test cases to run. The value is a pattern that consists of letters,
numbers and stars. All test-cases in the tclib directory that match this
pattern will be executed.

-mode Set the simulation mode. The possible values are <clean> and <up-
date>. update is used if only the test-cases have been updated and no
hardware changes were done. clean must be set after hardware changes.
clean takes much longer to run than the update mode for FPGA simula-
tion. For Modelsim simulations the difference is smaller.

-sim Set the simulation type. The two possible values are <modelsim> and
<fpga>. If fpga is selected, the FPGA board must be connected with the
parallel programmer cable and serial cable to read the simulation result.
Furthermore, the board must be supplied and switched on ;-).

-assert Set the assertion mode. <off> turns assertion off, <blk> enables asser-
tion with blocking, <nonblk> enables non-blocking assertion.

-waitfor List of log files or COM ports to read in order to detect the end of
simulation.

Table 5.2: Parameters for iptester function call

2 ISE and EDK are available for Microsoft Windows only.

72 5.3 Modular Testing Environment

Examples

>tclsh84 iptest.tcl -sys singlebus_fpga -waitfor com_1

Simulate with single-bus system, use default mode (update), use default simulation type
(Modelsim) and run all test-cases.

>tclsh84 iptest.tcl -sys dualbus_modelsim -mode update -sim modelsim

-tc *WErr* -assert off -waitfor log_0 log_1

Simulate with dual-bus system, use mode clean, run the simulation with Modelsim and run
all test-cases that match the pattern *WErr* until both processors signal end of test. The
listing below shows an example for the test report summary.

--
Summary for simulation run 2006-06-07-17-43-31
Simulation type: fpga
Simulation mode: clean
Used System : singlebus_fpga
--
wfifo_WErr_1: test ended with 0 error(s)
wfifo_WErr_2: test ended with 0 error(s)
wfifo_WErr_3: test ended with 0 error(s)
wfifo_WErr_4: test ended with 0 error(s)
--

5.3.2 How to Write Test Cases

A single test case consists of one source file named main.c for each processor of the target
system. They must be stored in the folder tclib as shown in Figure 5.9. The execution of
the test case is stopped as soon as all processors specified by the waitfor command line
option have written out "test ended with x error(s)" (see Table 5.2). When writing a
new test case, it must be considered that the execution is not stopped before all steps of
interest are executed. If none of the processors signals end-of-test, then the execution is
stopped after a timeout is reached.

5.3.3 How to Add New Systems

New systems can be built with XPS or with the tool for automated system generation called
WAB presented in Chapter 6. If the system is designed with XPS, the systems generated
with WAB can be used as reference designs. At least one of the processors should be
connected to an UART or an UART-Logger in order to signal end-of-test to the testing
envrionment. After the design is finished, it must be copied to the syslib directory of the
testing evironment. The complete directory structure is shown in Figure 5.9.

Testing 73

5.3.4 Directory Structure

/tester iptester home directory.

/syslib Contains all systems used for simulation.

/singlebus fpga Contains an XPS built system. The directory name
consists of the system name followed by the simula-
tion type.

/iplib . Contains all IPs that are tested.

/wfifo v1 00 a WFIFO IP.

/opb ipif wfifo v1 00 a IPIF IP for WFIFO to OPB connection.

/tclib . Contains all test cases.

/singlebus wr 1 Contains a single test case. The directory name starts
with the system name of the test case it is written for,
followed by a test case name and a number.

/mb no Source code for MB processor with ID <no>. Small-
est number is zero.

/scripts Scripts used by iptester.

iptest.tcl Tester script main file.

iptest-toolkit.tclFunction definitions.

/logfilesAll log-files of the last simulation.

/simresult Contains one folder for each simulation run.

/2006-06-07-17-43-31 . . Contains all results for a test run that was started at
the indicated time.

summary.logContains a summary of all test cases run in this ses-
sion.

/singlebus RW 1 . . . Contains all log-files of the indicated test case.

Figure 5.9: Directory structure of the testing environment.

74 5.4 OPB Recorder

5.4 OPB Recorder

The VHDL source code of the OPB-Recorder is given in Appendix C.2. This section is not
a complete documentation of the recorder but it explains some points of interest. The API
of the OPB-Recorder is shown in Table 5.1.

When using the recorder, it must be configured with design parameters. Table 5.3 lists all
parameters required.

Parameter Function

C BASEADDR Recorder base address.

C HIGHADDR The high address. Minimum address range is 512 bits
(0x1FF).

C WFIFO R BASE Base address of the WFIFO read port to record. For the cur-
rent instruction format, the base address is given by 0x01[read
port no]00000. The default is set to 0xFFFFFFFF and must
be changed. If only the write port is used, the read port base
is set to the same value as the write port base.

C WFIFO R HIGH High address of the WFIFO read port to record. For the cur-
rent instruction format, the base address is given by 0x01[read
port no]FFFFF. The default is set to 0x00000000 and must
be changed. If only the write port is used, the read port high
address is set to the same value as the write port high address.

C WFIFO W BASE Base address of the WFIFO write port to record. For
the current instruction format, the base address is given by
0x01[write port no]00000. The default is set to 0xFFFFFFFF
and must be changed. If only the read port is used, the write
port base is set to the same value as the read port base.

C WFIFO W HIGH High address of the WFIFO write port to record. For
the current instruction format, the base address is given by
0x01[write port no]FFFFF. The default is set to 0x00000000
and must be changed. If only the read port is used, the write
port high address is set to the same value as the read port
high address.

Table 5.3: OPB recorder design parameters.

The OPB recorder contains logic and a BRAM block. The most interesting part of the logic
is the state machine. Figures 5.10 and 5.11 show the states and possible transitions.

Testing 75

The recorder has three system states.

Record Init

Play

INIT

INITPLAY INIT

HASMORE
GETNEXT

Figure 5.10: System states of the recorder

The play state has four sub-states.

HasMoreAck GetNextAck

Idle GetNext
GETNEXT

HASMORE

Figure 5.11: Play states of the recorder

The recorder encodes the bus transactions with four bits. Table 5.4 shows how the transac-
tion types are encoded.

Encoding Command

1 Read
2 Write
3 Acquire Read Window
4 Acquire Write Window
5 Release Read Window
6 Release Write Window
7 Status OK
8 Status Error
9 Status Failed

Table 5.4: Encoding of WFIFO commands by the OPB-Recorder

76 5.5 UART Logger

5.5 UART Logger

The UART-Logger is a simulation model for the Xilinx UART lite. It offers the same bus
interface as the lite version but it writes the received data to a text file instead of a COM
port. The UART-Logger can be used for simulation only. It cannot be synthesised and
mapped on an FPGA. Compared to the UART lite, the UART-Logger offers one additional
design parameter. It is shown in Table 5.5.

Parameter Function

C LOG FILE NAME This parameter takes a string as value that defines the name
of the log file. It must be ensured that this name is unique in
the system. The default name is uart logger 1.out.

Table 5.5: UART-Logger design parameter.

6 Design Flow Integration and
Automation

This chapter shows how the WFIFO and the other IPs designed were integrated in the
XPS design flow and how the system design was automated. Beside normal system de-
sign, automated design is very useful for generating different architectures for testing. This
dependency between testing and design automation is shown in Figure 6.1.

API
HW

Design
Automated
Sys. Design

Testing

a

b

cd

Figure 6.1: Overview of practical work.

6.1 XPS Design Flow Integration

The application Xilinx Platform Studio (XPS) is used to develop systems based on the Em-
bedded Development Kit (EDK) from Xilinx. XPS allows to design the complete HW/SW
system. It includes all the tools for compilation and can generate a simulation model for
Modelsim or a bit-stream for FPGA programming. In order to integrate a user defined IP
in XPS, two files are required in addition to the VHDL files.

MPD: The microprocessor peripheral description file defines the bus interfaces supported
by the IP, the required design parameters and the port definitions. It also defines the
type of the IP, i.e. normal peripheral or standard output peripheral.

PAO: The peripheral analyse order file lists all dependencies for the compilation of the
VHDL files. It is required to compile all VHDL files in the right order.

A detailed description of the MPD and PAO file format is given in the Platform Specification
Format Reference Manual. The MPD and PAO files of the WFIFO are shown in C.1.5 and
C.1.4. How systems are designed with XPS is described in the Platform Studio User Guide.
The systems single-bus and dual-bus presented for IP testing can be used as a reference
design for WFIFO architectures.

78 6.2 Automated Design-Flow

6.2 Automated Design-Flow

System design with XPS for multiprocessor systems, as required for WFIFO architectures, is
time consuming and error prone. This is why an automated system design was implemented.
Very similar work was presented in [4]. The automated design flow presented in this section
takes an abstract definition of the system as input and generates a complete XPS system.
After the generation, the system can be opened with XPS or used to perform test with the
modular testing environment presented in 5.3.

The automated system design is performed in two steps: mapping and architecture gen-
eration (see Figure 6.2). Currently, the mapping step is only partially integrated because
it is limited to a one-to-one mapping. Its main purpose in the current implementation is
to simplify the input file format. The topology file required for the mapping step has a
simpler structure than the platform file. Sections 6.2.1 and 6.2.2 describe the mapping and
the architecture generation and define the input file formats.

Map Topo
Proc

Code

Mapping

Plat-

form

App

Code

WAB

XPS

arch

App

Code

tester XPS Studio

modelsim FPGA

Sim
rep

Mapping

Architecture

Generation

Testing

IP

Lib

Figure 6.2: Overview of the WFIFO architecture design and testing flow.

Design Flow Integration and Automation 79

6.2.1 Automated Mapping

The mapping step takes a topology file, a mapping file and one folder for each process
containing its application as input. The topology file defines the structure of the WFIFO
process network. It defines how many processes and WFIFOs are used and how they are
connected and configured. It also defines a unique number for each process and each WFIFO.
During the mapping step, port numbers for each WFIFO are generated. The format of the
output file is defined in 6.2.2.

Before mapping is done, the port numbers of the WFIFOs are not known. Processes only
know the ID of the WFIFO they are connected with. It is not possible to predefine the port
numbers before the mapping because if two processes are mapped on the same processor,
port number change. Therefore, the application code uses the WFIFO IDs instead of the port
numbers. How this looks like is shown in the example code below. Mapping is implemented
in a single TCL script named map.tcl.

Input Directory Structure

topology.txt Defines the topology oft the WFIFO process network.

mapping.txtDefines the mapping for each process of the network.

p 0Contains all the source code for process zero.

main.c Source file for process zero. WFIFO IDs are used instead
of port numbers.

p 1Contains all the source code for process one. Similar
directories exist for all other processors.

Topology File Format

Each line in the topology file starts with a block name and is followed by a list of parameters
and parameter values. The block name defines the parameters that can be used. Table 6.1
defines these parameters. The used WFIFO design parameters are explained in 3.6.

80 6.2 Automated Design-Flow

Block Parameter Function and Values

p_x -in list of WFIFOs that are read by process x. If more than
one WFIFO is read, they are separated by a space.

-out list of WFIFOs that are written by process x.

-dev IO devices used by the process. Possible values are
uartlite_x and uartlog_x.

wfifo_x -mem memory size design parameter of wfifo x.

-windsize window size design parameter of wfifo x.

-bramsize bram address size design parameter of wfifo x.

-pipeline pipeline mode design parameter of wfifo x.

rec_x -read block name of the WFIFO read port recorded by rec x.

-write block name of the WFIFO read port recorded by rec x.

Table 6.1: Topology file format. x is the unique number of the corresponding
block.

Example WFIFO process network.

P2

P0

P1UART 2 UART 1

UART 0

Rec

Rec

WFIFO 0

WFIFO 1 WFIFO 2

Figure 6.3: Example WFIFO process network with output devices and OPB
recorders.

Design Flow Integration and Automation 81

Topology file for the process network shown in Figure 6.3.

p_0 -in wfifo_1 wfifo_2 -dev uartlog_0
p_1 -in wfifo_0 -out wfifo_2 -dev uartlog_1
p_2 -out wfifo_0 wfifo_1 -dev uartlog_2
wfifo_0 -mem 8 -windsize 7 -bramsize 11 -pipeline 7
wfifo_1 -mem 4 -windsize 7 -bramsize 11 -pipeline 7
wfifo_2 -mem 4 -windsize 7 -bramsize 11 -pipeline 7
rec_0 -write wfifo_0
rec_1 -read wfifo_2

Mapping File Format

Block Parameter Function and Values

mb_x -proc List of all process names that are mapped on Micro
Blaze number x.

Table 6.2: Mapping file format.

Mapping file example for a one-to-one mapping of a network with three processes.

mb_0 -proc p_0
mb_1 -proc p_1
mb_2 -proc p_2

Process Source Code

In the source code shown below, strings like WFIFO W 2 and WFIFO R 0 are used instead
of the port numbers. The corresponding port numbers are generated during the mapping
and saved to wfifo-portmap.h.

//***/
#include "xparameters.h" /* generated system parameters */
#include "xbasic_types.h" /* basic types for device drivers */
#include "xio.h" /* bus access */
#include "wfifo-level1.h" /* wfifo level API */
#include "wfifo-portmap.h" /* wfifo port to address mapping */
//***/

82 6.2 Automated Design-Flow

int temp, i;

int main(void){
temp = 0;

// acquire read and write window
WFIFO_ACQUIRE_READ(WFIFO_R_0,5);
WFIFO_ACQUIRE_WRITE(WFIFO_W_2,5);

// read one item form WFIFO 0, add 10 and write it to WFIFO 2
for (i=0; i<5; i++) {
WFIFO_READ(WFIFO_R_0,i,temp);
temp = temp + 10;
WFIFO_WRITE(WFIFO_W_2,i,temp);

}

// release read and write window
WFIFO_RELEASE_READ(WFIFO_R_0);
WFIFO_RELEASE_WRITE(WFIFO_W_2);

// signal end of test
xil_printf("# test ended with 0 errors");

}

Command Line Options

Parameter Function

-input Path of the input directory. This director must include the mapping
and topology files and the directories for the application codes as defined
above.

-output Path of the output directory. The generated output can be used as input
of WAB.

Table 6.3: Mapping command line options

map -input c:/mapin -output c:/mapout

Design Flow Integration and Automation 83

Output

The mapping script generates the platform file used by WAB, changes the directory structure
for the source files and generates port-map files. The platform file is shown in the next section
and the port map file is listed below.

#define WFIFO_R_1 0
#define WFIFO_R_2 1

#define WFIFO_R_0 0
#define WFIFO_W_2 1

#define WFIFO_W_0 0
#define WFIFO_W_1 1

6.2.2 WAB – WFIFO Architecture Builder

The WFIFO Architecture Builder is an application that generates an XPS compliant ar-
chitecture from an abstract specification. WAB takes as input parameter a directory path.
This path must have the following content:

platform.txt Defines the architecture. The format is explained below.

/mb 0Contains all the source code for processor zero.

main.c Source code file.

/mb 1Contains all the source code for processor one. Similar
directories exist for all other processors.

XPS stores the information about the architecture and the used software in four files. To
automate the architecture generation, these files must be generated. Below, a short summary
of these files is given. A detailed description is given in the XPS manual.

MHS: The Microprocessor Hardware Specification file defines all hardware components of
the system with the required design parameters and signal connections.

MSS: The Microprocessor Software Specification file defines software parameter such as the
standard output peripheral or the used compilers for the processors.

XMP: The Xilinx Microprocessor Project file contains all required paths such as the path
to the application source files for each processor and some target platform and system
dependant settings.

UCF: The User Constraint file defines timing constraints and pin connections for the FPGA
board.

84 6.2 Automated Design-Flow

Platform File Format

Each line in the platform file starts with a block name and is followed by a list of parameters
and parameter values. The block defines which parameters can be used. Table 6.4 defines
theses parameters.

Block Parameter Function and Values

mb_x -bus name of the bus for Micro Blaze x for example opb_0.

-dev devices connected to mb x. Possible values are
uartlite_x and uartlog_x.

wfifo_x -rport read port number.

-wport write port number.

-rbus read bus number.

-wbus write bus number.

-mem memory size design parameter.

-windsize window size design parameter.

-bramsize bram address size design parameter.

-pipeline pipeline mode design parameter.

rec_x -bus bus number.

-rport read port number.

-wport write port number.

Table 6.4: Platform file format. x is the unique block number.

MB 2 MB 1

MB 0

01
OPB 2

1

WFIFO 1

OPB 0

OPB 1

WFIFO 2

0
WFIFO 0

10

Figure 6.4: Example architecture for platform definition. Recorder and UART
devices are not shown.

Design Flow Integration and Automation 85

Platform file for the architecture shown in Figure 6.4.

mb_0 -bus opb_0 -dev uartlog_0
mb_1 -bus opb_1 -dev uartlog_1
mb_2 -bus opb_2 -dev uartlog_2
wfifo_1 -rport 0 -wport 1 -rbus 0 -wbus 2 -mem 4 -windsize 7

-bramsize 11 -pipeline 7
wfifo_2 -rport 1 -wport 1 -rbus 0 -wbus 1 -mem 4 -windsize 7

-bramsize 11 -pipeline 7
wfifo_0 -rport 0 -wport 0 -rbus 1 -wbus 2 -mem 8 -windsize 7

-bramsize 11 -pipeline 7
rec_0 -bus 2 -rport 0 -wport 0
rec_1 -bus 0 -rport 1 -wport 1

WAB Script Structure

The WAB application includes a TCL script and a set of templates. The templates are used
to create the XPS files listed above. The code below shows the UART template for the MSS
file. This template is sourced by the TCL script. The strings that start with a Dollar-sign
are TCL variables and get replace with the correct value. This implementation with TCL
script and templates makes it easy to update WAB for new IP versions.

set template "
BEGIN DRIVER
PARAMETER DRIVER_NAME = uartlite
PARAMETER DRIVER_VER = 1.00.b
PARAMETER HW_INSTANCE = RS232_Uart_\$uartNo
END
"

WAB Command Line Options

Table 6.5 lists the command line options for WAB. An example is given below.

86 6.2 Automated Design-Flow

Parameter Function

-input Path of the input directory

-output Path of the output directory

-style Possible styles are <XST> and <tester>. With option XST, a normal
XPS compliant system is created. With option tester, the source code
and the architecture are separated in a syslib and a tclib directory. This
is the file structure used by the modular testing environment (iptester).

-arch This parameter is only used if style is set to tester. It defines the name
of the resulting architecture (e.g. singlebus modelsim 3).

-code This parameter is only used if style is set to tester. It defines the name
of the test-case.

Table 6.5: WAB command line options.

Command Line Examples:

wab.tcl -input C:/wabin/test_1 -output C:/wabout/test_1 -style XST

wab.tcl -input C:/wabin/test_1 -output C:/wabout/test_1 -style tester
-arch dualbus_fpga_1 -code dualbus_mir_1

7 WFIFO Theory

In this chapter, aspects of WFIFO theory are discussed. The first section shows that with
certain restrictions, the WFIFO process network can be considered as a subset of KPN.
The subsequent sections discuss the calculation of the minimum memory requirements for
communication channels in general and for WFIFO channels in particular.

Disclaimer: Since the WFIFO is a new buffer type, most concepts presented in this chapter
are based on my own ideas. It is possible that I have not chosen the best approaches
to solve the problems addressed, but I think it is a first step for the theory on WFIFO
channels. I think that the presented ideas are right but I was not able to verify them
completely. I also present some problems that I could not solve completely but I show
the reflections I made.

7.1 KPN Compliance

The reason why the KPN is so popular to model signal processing algorithms is that it offers
a set of favourable properties. The most important one for signal processing application is
that the KPN model is determinate, which means that the input/output relation is indepen-
dent from the timing of the processes and therefore computation delay insensitive. These
conditions make it interesting to investigate whether a process network with WFIFOs is
compliant with the KPN model of computation. This section shows that with some restric-
tions, the WFIFO process network is a subset of Kahn process networks. A KPN compliant
process network must meet the following conditions [5]:

1. The processes can only communicate over FIFO buffers with blocking read and unlim-
ited size.

2. A communication line transmits information within an unpredictable but finite amount
of time.

3. Every process follows a sequential program.

4. At any time, a process is either computing or waiting for information on one of its
input ports.

In case a WFIFO network makes use of non-blocking acquiring operations, it is not KPN
compliant. For non-blocking acquire-read operations this is obvious because it is possible
to implement a process that waits for data on two or more of its input lines, which is a
contradiction to condition four. For the non-blocking write operation, it is assumed that the
used FIFOs are of limited size. With a process that uses the non-blocking write instruction
to write data to the first buffer that is not full, it is possible to implement a non-determinate
system. It will be shown later that it is possible to realise FIFO buffers of limited size from
FIFO buffers of unlimited size.

88 7.2 A Model for Data Transport in Communication Channels

The following statement will be shown:

WFIFO process networks are a subset of Kahn process networks if all acquiring
operations are executed with blocking.

To proof this it must be shown that it is possible to realise a WFIFO process network with
a Kahn process network. Two statements must be shown to be true:

• It is possible to realise the WFIFO’s functionality with a process network that uses
only FIFO buffers of limited size.

• It is possible to realise FIFO buffers of limited size from FIFO buffers of unlimited
size.

The second point addressing the limited buffer size was discussed in [2]. It was shown how
a buffer with rendezvous protocol can be implemented with FIFOs of unlimited size. Here
a similar proof is made for FIFOs of limited size that is not restricted to the rendezvous
protocol. We start with a FIFO process network with buffers of limited size. Each of these
buffers Bi with memory sizes Si is replaced by two FIFOs with blocking read and unlimited
size. The first one has the same direction as Bi, the second one goes in the opposite direc-
tion. The second FIFO initially contains Si data items if Bi is empty at reset. If Bi contains
x items at reset, the second FIFO is initialised with Si − x items.

The channel access is changed as follows: The writing process always reads an item from
the backward channel before writing the data to the forward channel. The reading process
writes an item to the backward channel immediately after reading an item from the forward
channel. With the backward channel it is warranted that there are never more than Si data
items in the forward channel, which is equivalent to a FIFO buffer of limited size.

For the first point from above, it must be shown that it is possible to implement the WFIFO’s
API using a FIFO buffer of limited size. When the API receives an acquire-write instruction,
a local memory segment with the specified window size is allocated. Subsequent write
instructions are redirected to this local memory. When receiving a release instruction, all
data from the memory segment are written to the FIFO buffer. When receiving an acquire-
read instruction, the API reads as many data as specified by the window size and writes
them to a local memory. Subsequent read operations are redirected to this local memory.
When receiving a release operation, the memory segment is removed. This description shows
that the implementation is possible.

7.2 A Model for Data Transport in Communication
Channels

This section presents a model to describe the data transport in a communication channel.
In the following, a single channel is examined that is connected with two different processes.

WFIFO Theory 89

The writing process is called producer, the reading process is called consumer. The channel
is not restricted to FIFO channels. It allows multiple read of the same data and reordering.
There are different possibilities to specify a data transport sequence on such a channel. A
common option is to use a code sequence as shown in Example 7.1, where variable A indi-
cates the channel. In this section, a more general approach is presented.

To make a comparison of the order data is produced with the order it is consumed, rank
values for each data item i transferred over the channel are defined.1 There are two kinds
of rank values: production rank values rankP (i) and consumption rank values rankC(i).
The value of rankP (i) expresses how many items have been produced up to item i, whereas
rankC(i) expresses how many items have been consumed up to item i. It is assumed that all
items are written once, and read once or more times. This results in a situation where each
item i has one rankP (i) value and one or more rankC(i) values.

For minimum memory calculations, only the relation from production to consumption is of
interest and not the item itself. This is why a more general concept is introduced:

Consumption Sequence: The consumption sequence C(t) is a function from rankC(·)
to rankP (·). For each consumer rank value the producer rank value that refers to the
same data item is returned.

Production Sequence: The production sequence P (t) is a function from rankP (·) to
rankC(·). For each production rank value the highest consumption rank value that
refers to the same data item is returned.

The production and consumption sequences allow to describe the relation between produc-
tion and consumption on an abstract level. It is not limited to program code-like channel
definitions. Below, an example is given.

Example 7.1

// producer
for (i=0; i<4; i++) {
for (j=0; j<3; j++) {
write(A[i][j]);

}
}

// consumer
for (i=0; i<3; i+=2) {
for (j=0; j<2; j++) {
read(A[i][j]);
read(A[i+1][j]);
read(A[i][j+1]);
read(A[i+1][j+1]);

}
}

1 A very similar concept was introduced in [9].

90 7.3 Classification of Implementation Alternatives

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 16
C(t) 1 4 2 5 2 5 3 6 7 10 8 11 8 11 9 12

t 1 2 3 4 5 6 7 8 9 10 11 12
P (t) 1 5 7 2 6 8 9 13 15 10 14 16

7.2.1 Classifications of Communications Channels

The communication between a producer and a consumer process can be classified under the
aspects of multiplicity and reordering. If the consumer wants to read the same data item
more than once, it is said that the communication uses multiplicity. If the data are read
by the consumer in a different order than written by the producer, then the communication
needs reordering. Paper [10] introduces a classification of communication types based on the
mapping matrix. The mapping matrix can be derived from polytopes defined by the read
and write sequences. A simple example is given in [12].

The consumption sequence defined in this section simplifies the classification of communica-
tions channels. Table 7.1 summarises the naming convention introduced in [10] that is used
to classify channels.

Without Multiplicity With Multiplicity

Without Reordering IOM– IOM+

With Reordering OOM– OOM+

Table 7.1: Naming convention for channel classification.

Multiplicity: A channel uses multiplicity if there are any two entries in the consumption
sequence of equal value:

∃m, n |C(m) = C(n), m, n ∈ rankC(·).

Reordering: A channel uses reordering if the consumption sequence is not monotonic in-
creasing:

∃ t |C(t) > C(t + 1), t ∈ rankC(·).

7.3 Classification of Implementation Alternatives

This section shows implementation alternatives for channels with multiple read and reorder-
ing. From the hardware point of view, there are three possibilities:

1. Reordering Memory: The communication channel is realised with a single FIFO and
the local memory of the process is used to implement the reordering and the multiple

WFIFO Theory 91

read. From the functional perspective, it does not matter if this memory is located
in the producer or in the consumer. To accelerate memory access, special address
generation units (AGU) can be used.

2. Multiple FIFOs: The communication channel is realised with a set of FIFOs. The
reordering is implemented by a redirection of the read/write operations to one of the
FIFOs. A local FIFO with both read and write ports connected to the consumer
process is used to store items if they are used later on (multiplicity).

3. Extended Semantics: The FIFO buffer is replaced by a new buffer type that allows
reordering and multiple reading. This approach is used for the implemented WFIFO.

Different implementations to solve the reordering and multiplicity problem were presented
in the context of the Compaan/Laura tool-chain. Paper [11] gives an overview. Most of the
presented solutions are of the Reordering-Memory type. A comparison is made in Chapter
8.

7.4 Minimum Memory Size for Channels with Reordering
Memory

In this section, it is shown how the minimum memory requirements for a channel with re-
ordering memory can be calculated from given production and consumption sequences. It
is assumed that random access to the memory is possible and that the items transferred
over the channel and the memory cells have equal size. What is addressed in this section is
the minimum amount of total memory. It does not matter how this memory is distributed
over the different locations such as channel memory or local memory. In the following, it is
assumed that all data written to the channel are read at least once.

The calculation of the minimum memory size is based on the observation that a data item
cannot be removed from the memory before it is read for the last time. As soon as it is
read for the last time, it can be removed immediately. Equation 7.1 shows the calculation
of the minimum memory size that is based on this idea. The calculation is made from the
consumers point of view. For a given consumption rank value k, the function L(k) defined
in Equation 7.2 indicates if the item consumed at k is consumed for the last time. If it is
the last consumption, L(k) is equal to one, else it is zero. If k is not in rankC(·), L(k) is also
zero. L(k) is computed from P (x), which by definition only contains the consumption rank
values of the last consumption . The cumulated sum of L(k) in equation 7.1 is the total
number of items that can be removed before item t is read. The minimum memory size is
the maximum difference of the number of items produced to the number of items that can be
removed. After t read operations, at least C(t) items have been produced because each item
is produced only once. But it is possible that there is a ts < t with C(ts) > C(t). For this
case, at least C(ts) items have been produced after t read operations. Nevertheless, equation
7.1 is also right in this case. The reason is that if C(ts) > C(t) for ts < t, then the maximum

92 7.5 Minimum Memory Size for WFIFO Channels

difference is not at t because the cumulated sum over L(k) is monotonic increasing. For
Example 7.1, the minimum memory size is three.

Memmin = max

(
C(t)−

t−1∑
k=0

L(k)

)
, t ∈ rankC(·) (7.1)

L(k) =

{
1 ∃x : P (x) = k
0 else

(7.2)

7.5 Minimum Memory Size for WFIFO Channels

Calculation of the minimum memory requirement for WFIFO channels differs from the cal-
culation for channels with reordering memory. The WFIFO channel does not allow to remove
items selectively because only entire windows can be released. Furthermore, reordering is
limited to the windows and cannot be done on the entire memory as is it the case for an
implementation with reordering memory. For the following minimum memory calculation,
it is assumed that the processes only use the WFIFO for storing data and that no local
memory is used.

For calculating the memory requirements, the concept of minimum item-life-time is intro-
duced. This minimum life-time shows how long an item has to stay in the memory after the
production. What is known is that each item is written to the channel at production time.
The question is how long this data item has to stay in memory after that. The channel used
for this concept allows random access to the channel memory. There are two conditions to
consider:

Condition 1: A data item cannot be removed from memory until it is consumed for the last
time.

Condition 2: A data item cannot be removed from memory before all items that are read
earlier have been produced.

Equation 7.3 shows how the item life-time can be calculated from consumption and produc-
tion sequence. The value of lifen(t), t, n ∈ rankC(·) is equal to one during the time the nth
item produced has to stay in the memory and zero elsewhere. At production time the item
has to be in the memory, even if it is consumed immediately. This is taken into account
with the condition t = n. After that, it stays in the memory until the two conditions from
above are met. Condition 2 is represented by C(j) and condition 1 is represented by P (n).

lifen(t) =

1 t = n ∨ n < t ≤ max

(
C(j)

)
,

j ∈ [1, 2, . . . , (P (n)− 1)]

0 else

(7.3)

WFIFO Theory 93

Figure 7.1 shows the life-time for the producer/consumer example from 7.2. At the positions
indicated with a cross, the item can be removed and at positions with a dot, it is written to
the memory. If there is no dot, the item can be removed immediately after production.

1

2

3

4

5

6

7

8

9

10

11

12

life1

life3

life5

life7

life9

life11

Figure 7.1: Life-time for the P/C pair from Example 7.1.

The item-life-time cannot be used directly for the calculation of the memory requirements of
a WFIFO implementation, because the WFIFO does not allow random access to the channel
memory. How this calculation can be done is shown in the next sections.

7.5.1 Channels with Equal Read and Write Windows

For the calculation of the minimum memory requirements, a step by step approach is chosen.
First the problem is discussed for a situation where read and write windows are equal. Here
equal means that read and write windows have the same position and size relating to the
data. All items that are at the first position within a write window are also at the first
position in a read window. The same thing holds for the last items. Figure 7.2 shows a data
stream with read and write windows of equal size.

Stream of Data

W1W2W3

R3 R2 R1

Figure 7.2: Data stream with read and write windows of equal size.

The minimum memory size is equal to the biggest read/write window. This can be seen from
the fact that it is always possible to acquire the next read window after a write window was
released. After the reading is finished and the read window is released, the channel is empty
if no write window was acquired in the meantime. It would be possible to already acquire the
next write window, but for a scheduling that requires the minimum memory, the producer

94 7.5 Minimum Memory Size for WFIFO Channels

waits until all data are removed from the buffer before acquiring the next write window.
This shows that boundaries of read and write windows must be in a position within the data
stream where it is possible that the channel memory is empty. When setting boundaries at
other locations, this will result in a loss of data. To identify positions where it is possible to
have boundaries, the minimum fill level is defined:

Fill(t) =

max(rankP (·))∑
n=1

lifen(t), t ∈ rankP (·) (7.4)

Equation 7.4 defines the minimum fill level for the memory after t write operations. It is
calculated from the item-life-time by adding up all items that are in the buffer at the same
time. Now it is possible to calculate the minimum memory requirements for the case of equal
read and write windows: If a new read/write window is started whenever this is possible,
the minimum amount of memory is used. The size of the required memory is equal to the
size of the biggest window.

A window can be started before the first item in the production sequence or
before every production t with Fill(t) = 1. A window can end at the end of the
production sequence or before every production t with Fill(t) = 1. The minimum
memory size for a channel with equal read and write windows is given by the
length of the longest sequence in Fill(t), t = {1, 2 . . . max(rankP (·))} without a
one.

The fill level can also be used to calculate the minimum memory requirements for a channel
with reordering memory. The required memory size is equal to the maximum fill level. For
Example 7.1, the fill level is shown below. The minimum memory size for a WFIFO channel
with equal read and write windows is four.

t 1 2 3 4 5 6 7 8 9 10 11 12
Fill(t) 1 1 2 3 3 1 1 1 2 3 3 1

7.5.2 Channels with Non-Overlapping Windows

Figure 7.3 shows an example of non-overlapping windows. The minimum memory require-
ments of non-overlapping windows is equal to the requirements for the case of equal read-
/write windows discussed above. When starting with the solution for equal read and write
windows that uses the smallest windows possible, the non-overlapping structure allows to
add additional boundaries to a read window or the corresponding write window but not
to both of them. Adding new boundaries at different positions in both windows of a read-
/write window pair violates the structure. This case is discussed in the next section. Adding
new boundaries at the same position in a read/write window pair is not feasible because all
possible boundaries of this type are already included. Because of this, a non-overlapping
structure requires the same amount of memory as the corresponding structure with equal
read and write windows. Adding new boundaries only in one window of a read/write window

WFIFO Theory 95

pair does not change the minimum memory size because it does not changes the size of the
biggest window.

W1W2W3

R1R2R3

Figure 7.3: Non-overlapping read and write windows.

7.5.3 Channels with a Brick Wall Window Structure

Definition: The brick wall structure for read/write windows has the following properties:
each read window must not use data from more than two write windows and in addition
it must not contain more than one write window completely. Same thing holds for the
write windows. Figure 7.4 shows an example of a brick wall window structure.

W1W2W3

R1R2R3

Figure 7.4: Read and write windows with a brick wall structure.

The brick wall structure is the most general structure for calculating the minimum memory
size. All other structures of interest are a subset of the brick wall structure. This can be
seen when examining the structure shown in Figure 7.5. In this example, R2 uses data from
three different write windows, which is not allowed for brick wall structures. In the structure
shown, R1 can be acquired after W1 is released. But before R2 can be acquired, both W2
and W3 must be released. This shows that W2 and W3 can be replaced with a single read
window without changing the required memory size, which results in a correct brick wall
structure.

W1W2W3

R1R2

Figure 7.5: Other read and write window structure.

With the brick wall structure, it is possible to shift items in the data stream over a longer
distance than the window size. This is shown in Figure 7.6. The longest distance an item

96 7.5 Minimum Memory Size for WFIFO Channels

can be shifted is from the first position in W1 to the last position in R2. The number of
items that can be shifted is limited by the size of the overlap.

Overlap

W1

R2

Figure 7.6: Data stream with read and write windows of equal size.

The following observations refer to Figure 7.6.

Observation 1: The overlap must contain all data that cannot be consumed as soon as W1
is released. This means that the overlap at t contains all data that are in the memory
at t and that are not removed then. This can be calculated from the item life-time.

Observation 2: All items in the overlap must be consumed within R2. This defines the
minimum length of R2 and also the minimum length of W2. For calculating the
minimum length, the number of items that must be written to the channel until the
overlap can be read completely must be known. How this can be calculated from the
life-time is shown in Equation 7.5.

Observation 3: The minimum amount of memory that is required if a write window is
released at t is the sum of the size of the next write window plus the size of the overlap
from the preceding write window. The biggest read window can have equal size but it
cannot be bigger than the sum of overlap and write window.

The function next() returns the minimum size of the next write window if a write window is
released after item t was written to the memory. n includes all items that are in the memory
at t. From these items, the maximum function searches the item that is removed last. The
distance between this last removal and t is the minimum size of the next write window.

next(t) = t−max
(
ti | lifen(ti) = 1

)
, ∀n | lifen(t) = 1 (7.5)

With these observations, it is possible to calculate for each item written to the channel the
cost for releasing a write window immediately after this item. The costs are calculated from
the size of the overlap and from the minimum size of the next write window.

Problem 1: Only the minimum size for the next write window is known. In certain situa-
tions it is better to use a window bigger than the minimum size because this can lead
to smaller windows later in the data transfer. An algorithm to calculate the minimum
memory size also has to check windows with bigger size than the minimum value.

Problem 2: Multiple read was not considered so far. If an item is consumed multiple times,
it is not possible to release a read window between the first and the last consumption.

WFIFO Theory 97

7.6 Non-Blocking Acquiring and Determinism

The WFIFO API offers a blocking and a non-blocking version of the acquire window com-
mand. In section 7.1 it was shown that a WFIFO channel without blocking is not compliant
with the Kahn model of computation. One of the main reasons to use this model is that all
specified systems are determinate: for any fixed input sequence, the system always generates
the same output sequence. But it is not a necessary condition to be KPN compliant in order
to get a determinate system.

When using non-blocking acquiring, it is the designer’s responsibility that the resulting sys-
tem is determinate. In the example below, a determinate system is presented that uses
non-blocking acquiring. With the non-blocking operations, data throughput could be in-
creased considerably.

Example 7.2

The system in Figure 7.7 has three input channels namely, a, b and c, which receive data in
an unsteady manner. Never, more data are written to the channels than the process P is
able to consume. On average, each channel receives the same amount of data. The task of
process P on channel a is to read four items, calculate the sum of them and write the result
to a′. The same must be done for the other channels.

P

a

b

c

a
′

b
′

c
′

Figure 7.7: Example architecture for non-blocking read.

The advantage of using the non-blocking acquiring function is that process P can check if
there are already four items in the input buffer. If not, it checks the next buffer. A blocking
implementation has to decide in advance which channel to read, which leads to a success
rate of 1

3
. The important thing is that both implementations are determinate.

98 7.6 Non-Blocking Acquiring and Determinism

8 WFIFO Compared with Other
Approaches

In this chapter, the WFIFO concept is compared with two other approaches that address
the limits of KPN architectures.

8.1 Compared Concepts

The concepts used for the comparison both use a reordering memory to implement multiple
read and reordering. Various concepts have been presented for Compaan tool-chain. They
mainly differ in the address generation concept and the used memory type. Two versions
are discussed here: The Segment realisation and the CAM realisation (see [11] [15]). A short
summary is given below.

8.1.1 CAM

CAM is a special memory type. A user defined key is used for data read access instead of
an address. This key is defined during the write operation. The location where data are
written is not known and the only way to recover the data is to make a read with the same
key as used for writing. The procedure is as follows: The producer writes its data to a FIFO
buffer. From there, they are written to the CAM memory by a storing process. Usually, the
storing process is part of the consumer process and is executed whenever a read operation
on the CAM fails. The key for storing the data is either provided by the producer or, in the
case where the production sequence is known in previous, generate by the storing process
itself. For reading, the consumer has to know the right keys. How data are removed from
the CAM memory is discussed in 8.5.

8.1.2 Segment

The Segment realisation is similar to the CAM realisation. Also here data are written to
a FIFO and transfered to a memory but Segment realisation uses normal memory instead
of CAM. The producer and the consumer agree on the coordinates of data items within
the iteration domain. In a write operation, the coordinates and data are both saved. A
special memory is used to save the coordinates called the segment memory. This memory
makes a simple compression of the coordinate data. For reading, the consumer calculates
the memory address of the item it wants to read from the coordinates of the item and the
information stored in the segment memory. No mechanism to remove data from the memory
was presented.

100 8.2 Motivation and Origin

8.2 Motivation and Origin

Although the concepts compared are all motivated by the limitations of KPN they have
different origins. CAM and Segment realisation have been presented in connection with
the Compaan tool-chain ([7],[8]). This tool-chain transforms sequential program code into a
process network. The program code must be written in Matlab with a nested loop structure.
This is a very powerful subset of the Matlab language and many algorithms can be written
in this form. In the Matlab code, array variables of one or more dimension are used as a
data buffer. Compaan replaces each of this variables by a FIFO buffer. In order to avoid
problems caused by the reuse of the same variable the Matlab code is first translated in
single assignment form ([6]). In this context, different realisations have been presented to
implement algorithms that use out of order data transfer and multiplicity.

The WFIFO realisation was developed to offer a simple interface for the communication in
on chip multiprocessor systems. Such architectures are used for data stream based systems
in multimedia and other applications asking for high computing power. The interface was
requested to support out of order communication, multiple read and skipping in a way that
this is comprehensible from the program code. The focus was not to automate parallelisation.
This is done manually during the design process.

8.3 Hardware

The difference between the compared concepts also manifests in the required hardware. The
simplified block diagrams below give an impression of the variety. In the block diagram of
the reordering memory, there is a connection between the producer and the logic. For a
fixed production sequence, this connection can be removed because the logic can generate
this information itself. It is also possible to implement the logic block in software, usually
on the cost of speed.

P P

Figure 8.1: WFIFO

P
logic mem

P

Figure 8.2: Reordering Memory

WFIFO Compared with Other Approaches 101

8.4 Memory Usage

In this section the memory requirements of the different channel implementations are com-
pared. The comparison is done on an abstract level, independent from the implemented
algorithm.

CAM

The structure of the CAM memory allows to individually define the duration which a data
item stays in the memory. All items that are not required any more can be removed im-
mediately and selectively. Therefore it is possible to implement a channel with the smallest
possible memory size as defined by Equation 7.1. However, there are situation where a
memory bigger than the minimum size is chosen in order to optimise throughput or latency.

Segment

The Segment realisation requires a memory as big as the iteration domain. The difference
between the size of the iteration domain and the minimum memory size depends on the
access sequence and can not be expressed by fixed ratio. If the iteration domain has size N ,
then the ratio to the minimum memory size is defined in the interval:

sizeItr

sizeMin

∈ [1, . . . , N] (8.1)

In the best case, the Segment realisation needs as much memory as the CAM realisation. In
the worst case, it uses N times more.

WFIFO

The memory size of the WFIFO solution is between the CAM and the Sequential solution.
The reason why WFIFO uses more memory than the CAM realisation is that it is not
possible remove items selectively from the memory. Deleting occurs when the read window
is released and affects all data within this window.

8.5 API Concept

In this section the API concepts are compared. It must be stressed that the shown APIs are
only correct from the conceptual point of view. An implemented API may look different. The
syntax of an operation only shows which parameter are required in principle. It is possible
that these parameters are not encoded in program code, but delivered from hardware. A
parameter only means that the corresponding information must be known somehow by the
channel. The parameter port identifies the buffer in case that there is more than one buffer
connected to the same process.

102 8.5 API Concept

CAM

The producer and the consumer process can agree on an arbitrary key to identify a certain
data item. The implementation presented in [15] uses the coordinates of the iteration point
for key generation. This computation can be implemented in hardware and is therefore fast.
CAM read and write commands:

write(Port,Data,Key,Multiplicity)

read(Port,Key)

Different versions of the CAM write function have been presented – once with a multiplicity
parameter [11] and once without [15]. The version without this parameter does not support
multiplicity at all and uses therefore less memory.

The consumer is free to choose the read sequence but the number of read operation on a data
item is fixed. The consumer is responsible to read each item as many times as expected. If
an item is read less often, it stays in memory forever which may lead to a lack of memory.
Another thing that must be considered is that the calculation of the required memory size
depends on the access sequence. If the consumer makes a read access that would require a
bigger memory, the system will end in dead lock.

for (int i=1; i<=N; i++) {

for (int j=M; j<0; j--) {

tKeq = getKey(i,j);

read(port,tKey);

}

Segment

For writing and reading data to/from the reordering memory the coordinates of the data
in the iteration domain must be known. Usually this information is located in the iteration
variables of the loops.

write(Port,Data,Coordinates)

read(Port,Coordinates)

Since the memory is as big as the iteration domain, it is possible to read any data item written
to the memory in an arbitrary order and as often as required. No limits for reordering and
multiplicity exist. Data items are identified by their coordinates. The producer and the
consumer have to agree on these coordinates. Usually this is done at compile time but it is
also possible to implement the coordinate calculation data dependent. Then the agreement
on the coordinates is made at runtime.

for (int i=1; i<=N; i++) {

for (int j=M; j<0; j--) {

read(port,i,j);

}

WFIFO Compared with Other Approaches 103

WFIFO

The API of the WFIFO offers four extra instructions for acquiring and releasing a window.

acquireRead(Port,Size)

releaseRead(Port)

acquireWrite(Port,Size)

releaseWrite(Port)

write(Data,Port,Offset)

read(Port,Offset)

The commands can not be used in an arbitrary order. The way they can be used is defined
by a protocol described in 2.1.1 The process has unlimited access to all items in a window.
But when releasing a write window it is the responsibility of the process that no further
write operations in this segment are required. The same holds for read operations. It is not
possible to reacquire the same type of window over the same data after releasing. Therefore,
the main difference is that the process is also responsible to acquire the windows and to
choose the right window size.

for (int i=1; i<=N; i++) {

acquireRead(port,M);

for (int j=M; j<0; j--) {

read(port,i);

}

releaseRead(port);

}

8.6 Latency

The latency addressed in this section is the time from writing a data item to the channel
until it can be read. The analysis of the latency is done in a qualitative manner. It is not
measured in clock cycles but in execution steps. The comparison is focused on the question
what has to be done between read and write.

In CAM and Segment realisation, a data item can be read as soon as it is written to the
memory. The latency between reading and writing depends on how the data is transfered
from the FIFO to the memory. In the implementation presented in [11], data are transferred
from the FIFO to the memory by the consumer processor. Transfer starts as soon as a read
operation fails because the wanted data is not in the memory and ends when this data is
written to the memory. With this implementation latency depends on the read sequence
and is somewhere between zero and the minimum memory size.

For the CAM realisation, an implementation was proposed in [15] that works without a
FIFO. For the Segment realisation it is possible to do something similar. In figure 8.3, the

104 8.6 Latency

schematic of this concept is shown. In such an implementation, the consumer process is no
longer responsible for reading the FIFO. This task is done by a controller located in the
channel. An implementation without a FIFO has less latency, because data are transfered
to the CAM as soon as they are written to the channel.1 The cost of this latency reduction
is the increasing complexity of the CAM controller.

P logic P

mem

data data

key key

Figure 8.3: Reordering realisation without FIFO.

Latency calculation for a WFIFO is more complex than for the other concepts and depends
on a lot of parameters. Here, not a complete calculation for the latency is given but the
dependencies are shown. In the best case, a data item is written, and the write window is
released immediately after that. Then the consumer acquires a read window that contains
this item and reads it. The following questions must be answered:

• How many other items are written before the window is released and how long does
this take?

• How long does it takes until the consumer can acquire a window that contains the
respective item.

The first question can be answered by examining the producer and is not discussed any
further. The more complex one is the second question because both consumer and producer
process are involved. Following questions are of interest:

• Do read and write window have fixed sizes or do they change?

• Do read an write window have equal size? See Figure 7.2.

• Are the windows overlapping or not? See Figures 7.3 and 7.4.

A detailed discussion of the latency question for a WFIFO realisations is to long for this
short comparison. It must treat all the combinations of possible answers to the questions
listed above.

1 In certain situations it is necessary to use a bigger CAM memory for such an architecture in order to
benefit from the latency reduction.

WFIFO Compared with Other Approaches 105

8.7 Summary

In contrast to the FIFO buffer, CAM, Segment and WFIFO allow multiple read and re-
ordering. For CAM, the number of read operations of an item is fixed in previous. The
WFIFO allows multiple read and reordering only within the acquired windows. In Table 8.1
the complexity of the WFIFO API is classified as high because the process has to follow a
protocol. CAM and Segment are both classified as medium because address generation is
required.

Multiplicity Reordering Complexity

CAM fixed free medium

Sequential free free medium

WFIFO window window high

Table 8.1: Summary of API comparison.

The CAM is the only realisation that allows to delete items selectively from the buffer.
Selectively means that it is possible to freely choose the next item to delete.

Operation Selectively

CAM number of reads = multiplicity counter yes

Sequential not defined

WFIFO release window no

Table 8.2: Removing data from the communication channel.

The CAM uses fewest memory of the concepts compared. The Segment realisation uses the
most and the WFIFO is somewhere in between.

CAM sizeMin

Sequential sizeItr sizeItr ≥ sizeMin

WFIFO sizeWFIFO sizeMin ≤ sizeWFIFO ≤ sizeItr

Table 8.3: Memory requirement

106 8.7 Summary

To check if data are available, CAM and Segment realisation use the read operation. They
can only check if a single item is available. With the WFIFO it is possible to check if a data
sequence is available with a single instruction.

Command Entity

CAM, Sequential read single item

WFIFO acquireRead data block

Table 8.4: How to check disposability

9 Outlook and Conclusion

9.1 Conclusion

At the beginning of my thesis, I started with the idea of the windowed FIFO concept that
was sketched out by my tutor Kai Huang. Together, we have defined the concept in more
detail during the past six months. Although the WFIFO is a new concept and therefore this
is the first work on this issue, I was able to make a complete and easy to use implemen-
tation that covers the complete functionality. With the automation of testing and system
design and the theory on the WFIFO buffer, I have exceeded the objectives formulated at
the beginning of my work. During my work I was able to benefit from my broad knowledge
in digital IC design and could use my practical experience in testing of complex IC systems.

My implementation shows that the WFIFO concept is a feasible solution for the communi-
cation in on-chip multiprocessor systems. In addition, I have shown that the modularity of
the concept enables automation of the design flow. For this purpose I designed a tool for
automated system design and a tool for automated testing.

9.1.1 Summary of Completed Work

• The concept of the WFIFO buffer and the interface for buffer access were defined in
detail. The interface was implemented with an API that includes features for buffer
and system testing.

• The WFIFO concept was completely implemented for an FPGA platform. Processor
and bus were taken from an IP library. A new IP was designed for the WFIFO buffer
and two additional IPs were designed to simplify testing. The WFIFO IP is easy to
use and no knowledge about WFIFO internals is required. It is realised in a single IP
that can be configured over design parameters and it is compliant with the Xilinx IP
library standard. Therefore it can be used in the Xilinx Platform Studio (XPS).

• An automated system design flow was implemented. The tool takes the application
code for each process and a description of the process network topology as input and
generates a synthesizeable and XPS compliant implementation of the system.

• A test concept was defined that is suited for testing the WFIFO IP and for complete
WFIFO systems. It supports functional and performance tests and can be executed
with a simulation environment (Modelsim) or it can be mapped on the FPGA.

• It was shown that with some restrictions the WFIFO concept is compliant with the
KPN model of computation. Approaches to calculate the minimum memory require-
ments were presented.

108 9.2 Outlook

9.2 Outlook

This section shows how the WFIFO concept could be further investigated and how it could
be improved.

9.2.1 FIFO Read and FIFO Write

The FIFO read and write commands are a possible extension of the WFIFO concept. The
format of these commands is shown below. They allow to transfer data to a WFIFO buffer
without using windows but also without the possibilities of reordering, skipping and multiple
read. FIFO read and write commands can only be executed if no windows are acquired.

FIFO_WRITE(port, data)

FIFO_READ(port, target)

The advantage of the new command is that the WFIFO can behave like a normal FIFO at
the write port and like WFIFO at the read port or vice versa. If a producer or a consumer
expects being connected to a FIFO, no changes are required. In many situation it is enough
to use windows at one port. At the other port, all the acquire and release commands can
be saved, which speeds up the execution. This approach can also reduce the latency. From
the functional point of view, it is even possible to use FIFO and WFIFO commands at the
same port. The only limitation is that windows must be closed before a code sequence with
FIFO commands. A new window must not be opened before the code sequence of FIFO
commands is finished. The question remains whether this is good practise.

9.2.2 Block Transfer

Block transfer is another option to extend the functionality of the WFIFO concept. The
WFIFO read and write functions allow the transfer of single data items only. The new block
read and write functions allow the transfer of continuous data blocks. A possible format
is shown below. The parameter start-offset is used to position the first item to read or
write within the window, length indicates the length of the data block and address is the
start address of an array to read or write the data.

WFIFO_WRITE(port, start-offset, length, source-address)

WFIFO_READ(port, start-offset, length, target-address)

9.2.3 Multiple Processes on one Processor

The current implementation of the system generation tool (WAB) only allows a one-to-one
mapping. This means that one processor is used for every process of network. An improved
version of WAB allows to execute multiple processes on the same processor. The simplest
solution for this is to use the operating system Xilkernel that was developed for the Xilinx
FPGA processors and that allows to execute multiple processes. A problem of this OS is
that it is non-preemptive. This means that the WFIFO API must be changed for the usage

Outlook and Conclusion 109

on a system with Xilkernel. The blocking acquiring must be implemented with a polling
mechanism that uses the non-blocking WFIFO instructions and that suspends the process
if acquiring is not possible. Executing blocking instructions on a non-preemptive OS can
cause a dead-lock.

9.2.4 Complete and Verify WFIFO Theory

The theory on the minimum memory requirements does not include a simple solution for
the most general case of usage. The theory could be improved to cover also this case.
Furthermore, Chapter 7 contains concepts and statements that I could not verify completely.
The current version gives an idea of the solution approach but the concepts should be stated
more precisely in order to prove their correctness.

9.2.5 Find Relevant Application Examples

In this thesis, only few examples of application are given and none of them is of great rel-
evance. In order to show the advantages of the WFIFO concept, a problem must be found
that benefits from the additional functionality. The chapter on the WFIFO theory may help
to identify problems of interest.

From my point of view, a comparison must not be limited to properties like data throughput
or latency. A major advantage of the WFIFO concept is that it can simplify hardware and
software design and that the implementation is less hardware dependant. These advantages
cannot be shown with a set of test data, they can only be discussed. I outlined some of these
aspects in the comparison in Chapter 8.

110 9.2 Outlook

A Thesis Assignment

Window-Based FIFOs for Communication in On-Chip Multipro-

cessor Systems

1 Introduction

We are looking for motivated students, willing to contribute to a large European project called
SHAPES (http://www.shapes-p.org), which involves several partners from all over Europe. The
project team includes such leading companies, universities and research labs as ST Microelectron-
ics, ATMEL, THALES, TIMA, Target Compiler Technologies, Aachen University of Technology,
Fraunhofer-Gesellschaft, and others. This project aims to find a scalable HW/SW design style
for future CMOS technologies.

In TIK, a Distributed Operation Layer (DOL) is developing special for SHAPES. The pur-
pose of the DOL is to significantly reduce the effort associated with the mapping of applications
(from a restricted domain) onto multiprocessor SHAPES hardware platforms. Therefore, new
communication model and interface are introduced for data transfer to fully decouple the appli-
cation functionality from the hardware architecture and the mapping procedure.

In the DOL, we propose an extended read-write interface, instead of the traditional read

and write functions. The proposed interface features a window-based access: Sliding windows
are placed at both ends of a channel, one window at each end. Within a window the data in
the channel can be accessed (i.e. be read and written) in a random order, while the window
itself can move only in one direction (determined by the channel direction). This concept is
illustrated in Figure 1.

Data stream

Access window

Access window

Figure 1: Window-based access mechanism.

2 Task

This diploma project includes several subtasks:

• Prototype this window-based access mechanism in FPGA and evaluate the trade-off of
this approach.

• Explore FPGA-based test technique for both the Hardware WFIFO IPCore and target
system which uses this IPCore.

• Probe possible ways for design flow and test flow automation for this approach.

Kind of Work: 20% theory, 50% design and implementation, 30% evaluation

112

B Source Code

B.1 WFIFO API

/∗ ∗∗∗∗∗∗∗∗∗∗∗ wf i fo− l e v e l 1 . h : WFIFO l e v e l 1 API ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Address Bus S e t t i n g s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

//mask
#define WFIFO IPTYP MSK 0xFF000000 // 8 b i t i p typ (31 downto 24)
#define WFIFO PORTN MSK 0x00F00000 // 4 b i t por t no (23 downto 20)
#define WFIFO FUNCN MSK 0x000F0000 // 4 b i t f unc t i on (19 downto 16)
#define WFIFO OFFST MSK 0x0000FFFF // 16 b i t o f f s e t (15 downto 0)

// s h i f t
#define WFIFO PORTN SFT 20
#define WFIFO OFFST SFT 0

// s e t t i n g s
#define WFIFO READ ID 0x00010000
#define WFIFO WRITE ID 0x00020000
#define WFIFO ACQUIRE READ ID 0x00030000
#define WFIFO ACQUIRE WRITE ID 0x00040000
#define WFIFO RELEASE READ ID 0x00050000
#define WFIFO RELEASE WRITE ID 0x00060000
#define WFIFO GETSTATUS ID 0x00070000
#define WFIFO MIR RESET ID 0x000F0000
#define WFIFO IPTYP ID 0x01000000

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Data Bus S e t t i n g s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// mask
#define WFIFO WSIZE MSK 0x0000FFFF // 16 b i t o f f s e t (15 downto 0)
#define WFIFO BLOCK MSK 0x00010000 // 1 b i t b l o c k i n g (16)

// s h i f t
#define WFIFO WSIZE SFT 0
#define WFIFO BLOCK SFT 16

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFIFO API with a s s e r t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#ifde f WFIFO ASSERT

#define WFIFO WRITE(port , o f f s e t , data)\
(WFIFO WRITE I(port , o f f s e t , data) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

#define WFIFO READ(port , o f f s e t , t a r g e t) \
(WFIFO READ I(port , o f f s e t , t a r g e t) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

#define WFIFO ACQUIRE READ(port , s i z e)\
(WFIFO ACQUIRE READ I(port , s i z e , 1) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

114 B.1 WFIFO API

#define WFIFO ACQUIRE READ NONBLK(port , s i z e)\
(WFIFO ACQUIRE READ I(port , s i z e , 0) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

#define WFIFO ACQUIRE WRITE(port , s i z e)\
(WFIFO ACQUIRE WRITE I(port , s i z e , 1) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

#define WFIFO ACQUIRE WRITE NONBLK(port , s i z e)\
(WFIFO ACQUIRE WRITE I(port , s i z e , 0) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

#define WFIFO RELEASE READ(port)\
(WFIFO RELEASE READ I(port) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

#define WFIFO RELEASE WRITE(port)\
(WFIFO RELEASE WRITE I(port) , w f i f oAs s e r t (WFIFO GETSTATUS(port)))

/∗ ∗∗∗∗∗∗∗∗∗∗∗ WFIFO API wi thout a s s e r t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#else

#define WFIFO WRITE(port , o f f s e t , data)\
(WFIFO WRITE I(port , o f f s e t , data))

#define WFIFO READ(port , o f f s e t , t a r g e t) \
(WFIFO READ I(port , o f f s e t , t a r g e t))

#define WFIFO ACQUIRE READ(port , s i z e)\
(WFIFO ACQUIRE READ I(port , s i z e , 1))

#define WFIFO ACQUIRE READ NONBLK(port , s i z e)\
(WFIFO ACQUIRE READ I(port , s i z e , 0) , WFIFO GETSTATUS(port))

#define WFIFO ACQUIRE WRITE(port , s i z e)\
(WFIFO ACQUIRE WRITE I(port , s i z e , 1))

#define WFIFO ACQUIRE WRITE NONBLK(port , s i z e)\
(WFIFO ACQUIRE WRITE I(port , s i z e , 0) , WFIFO GETSTATUS(port))

#define WFIFO RELEASE READ(port)\
(WFIFO RELEASE READ I(port))

#define WFIFO RELEASE WRITE(port)\
(WFIFO RELEASE WRITE I(port))

#endif

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Asser t ion Functions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#ifde f WFIFO ASSERT

#ifde f ASSERT NONBLK
void wfi foWait () // do noth ing
{}

Source Code 115

#else
void wfi foWait ()
{

x i l p r i n t f ("Execution STOPPED\n") ;
int w=0;
while (w==0) {}

}
#endif //ASSERT NONBLK

int wf i f oAs s e r t (int s t a tu s) {
i f (s t a tu s==1) {

x i l p r i n t f ("ERROR: illegal operation\n") ;
wf i foWait () ;

}
return s t a tu s ;

}

#endif //WFIFO ASSERT

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Reset /MIR Function ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#define WFIFO GETMIR(port) \
(XIo In32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO MIR RESET ID))\

)

#define WFIFO RESET(port) \
(XIo Out32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO MIR RESET ID) ,0xA)\

)

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Sta tus Report Function ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#define WFIFO GETSTATUS(port) \
(XIo In32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO GETSTATUS ID))\

)

/∗ ∗∗∗∗∗∗∗∗∗ Function Macros Without S ta tus Report ∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ WFIFO READ ∗/

#define WFIFO READ I(port , o f f s e t , t a r g e t) \
(t a r g e t = XIo In32 (\

116 B.1 WFIFO API

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO READ ID \
| (WFIFO OFFST MSK & (o f f s e t <<WFIFO OFFST SFT)))) \

)

/∗ WFIFO WRITE ∗/

#define WFIFO WRITE I(port , o f f s e t , data) \
(XIo Out32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO WRITE ID \
| (WFIFO OFFST MSK & (o f f s e t <<WFIFO OFFST SFT))) , \

data)\
)

/∗ acqu i re wr i t e window ∗/

#define WFIFO ACQUIRE READ I(port , s i z e , b lock ing) \
(XIo Out32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO ACQUIRE READ ID) ,\
(WFIFO BLOCK MSK & (block ing<<WFIFO BLOCK SFT))\
| (WFIFO WSIZE MSK & (s i z e <<WFIFO WSIZE SFT)))\

)

/∗ acqu i re read window ∗/

#define WFIFO ACQUIRE WRITE I(port , s i z e , b lock ing) \
(XIo Out32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO ACQUIRE WRITE ID) ,\
(WFIFO BLOCK MSK & (block ing<<WFIFO BLOCK SFT))\
| (WFIFO WSIZE MSK & (s i z e <<WFIFO WSIZE SFT)))\

)

/∗ r e l e a s e read window ∗/

#define WFIFO RELEASE READ I(port) \
(XIo Out32 (\

(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO RELEASE READ ID) ,\
0)\

)

/∗ r e l e a s e wr i t e window ∗/

#define WFIFO RELEASE WRITE I(port) \

Source Code 117

(XIo Out32 (\
(WFIFO IPTYP ID \
| (WFIFO PORTN MSK & (port<<WFIFO PORTN SFT)) \
| WFIFO RELEASE WRITE ID) ,\
0)\

)

B.2 OPB Recorder API

/∗∗∗∗∗∗∗ opb−recorder . h : Record WFIFO opb bus even t s ∗∗∗∗∗∗∗∗∗ ∗/

/∗ ∗∗ ∗/
#include "xparameters.h" /∗ genera ted system parameters ∗/
#include "xbasic_types.h" /∗ ba s i c t ype s f o r dev i c e d r i v e r s ∗/
#include "xio.h" /∗ bus acces s ∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Se t t i n g s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

//#de f i n e RECORDER IPTYP ID XPAR OPB RECORDER 0 BASEADDR
#define RECORDER IPTYP ID 0x02000000

// command encoding
#define OPB RECORDER INIT ID 0x00000000
#define OPB RECORDER PLAY ID 0x00000001
#define OPB RECORDER GETNEXT ID 0x00000002
#define OPB RECORDER HASMORE ID 0x00000003

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Function Macros ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#define OPB RECORDER INIT() \
(XIo Out32 (RECORDER IPTYP ID | OPB RECORDER INIT ID,0 x0))

#define OPB RECORDER PLAY() \
(XIo Out32 (RECORDER IPTYP ID | OPB RECORDER PLAY ID,0 x0))

#define OPB RECORDER HASMORE() \
(XIo In32 (RECORDER IPTYP ID | OPB RECORDER HASMORE ID))

#define OPB RECORDER GETNEXT() \
(XIo In32 (RECORDER IPTYP ID | OPB RECORDER GETNEXT ID))

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Functions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

void replayOpbRecorder ()
{

OPB RECORDER PLAY() ; // sw i t ch to p lay mode

int tmp1 , tmp2 ;

x i l p r i n t f ("# start replay\n") ;

118 B.2 OPB Recorder API

while (OPB RECORDER HASMORE() == 1) //has more tokens
{

tmp1 = OPB RECORDER GETNEXT() ;
tmp2 = OPB RECORDER GETNEXT() ;
x i l p r i n t f ("%d %d\n" , tmp1 , tmp2) ;

}

x i l p r i n t f ("# end replay\n") ;

OPB RECORDER INIT() ; // r e s t a r t recorder
}

C VHDL Code

C.1 WFIFO

C.1.1 WFIFO Top

−−−
−− Filename : w f i f o . vhd
−− Version : v1 .00 a
−− Descr ip t ion : top o f w f i f o
−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

l ibrary o pb i p i f w f i f o v 1 0 0 a ;
use o pb i p i f w f i f o v 1 0 0 a . a l l ;

l ibrary Unisim ;
use Unisim . a l l ;

l ibrary wf i f o v1 00 a ;
use wf i f o v1 00 a . a l l ;

−−−
−− Ent i ty Sect ion
−−−

entity wf i f o i s
generic
(

C W BASEADDR : s t d l o g i c v e c t o r (0 to 31) := X"FFFFFFFF" ;
C W HIGHADDR : s t d l o g i c v e c t o r (0 to 31) := X"00000000" ;
C R BASEADDR : s t d l o g i c v e c t o r (0 to 31) := X"FFFFFFFF" ;
C R HIGHADDR : s t d l o g i c v e c t o r (0 to 31) := X"00000000" ;
C OPB AWIDTH : i n t e g e r := 32 ;
C OPB DWIDTH : i n t e g e r := 32 ;
C WFIFO MEMSIZE : i n t e g e r := 8 ;
C WFIFO WINDWIDTH : i n t e g e r := 10 ;
C WFIFO BRAMWIDTH : i n t e g e r := 10 ;
C WFIFO PIPELINEMODE : i n t e g e r := 5

) ;
port
(

−− wr i t e
OPB W ABus : in s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1);
OPB W BE : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH/8−1);
OPB W Clk : in s t d l o g i c ;
OPB W DBus : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
OPBWRNW : in s t d l o g i c ;
OPB W Rst : in s t d l o g i c ;
OPB W select : in s t d l o g i c ;
OPB W seqAddr : in s t d l o g i c ;
Sln W DBus : out s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
Sln W errAck : out s t d l o g i c ;
Sln W retry : out s t d l o g i c ;
Sln W toutSup : out s t d l o g i c ;
Sln W xferAck : out s t d l o g i c ;
−− read
OPB R ABus : in s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1);
OPB R BE : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH/8−1);

120 C.1 WFIFO

OPB R Clk : in s t d l o g i c ;
OPB R DBus : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
OPB R RNW : in s t d l o g i c ;
OPB R Rst : in s t d l o g i c ;
OPB R select : in s t d l o g i c ;
OPB R seqAddr : in s t d l o g i c ;
Sln R DBus : out s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
Sln R errAck : out s t d l o g i c ;
S ln R re t ry : out s t d l o g i c ;
Sln R toutSup : out s t d l o g i c ;
S ln R xferAck : out s t d l o g i c

) ;

end entity wf i f o ;

−−−
−− Arch i t ec ture Sect ion
−−−

architecture behav io ra l of wf i f o i s

−−−
−− Constant Dec lara t ions
−−−

−− wf i f o ip i d e n t i f i c a t i o n (mir)
−− major ver s ion number
constant C WFIFO VER MAJ : s t d l o g i c v e c t o r (3 downto 0) := "0001" ;
−− minor vers ion number
constant C WFIFO VER MIN : s t d l o g i c v e c t o r (6 downto 0) := "0000000" ;
−− minor vers ion l e t t e r
constant C WFIFO VER LET : s t d l o g i c v e c t o r (4 downto 0) := "00000" ;
−− b l o ck id
constant C WFIFO BLK ID : s t d l o g i c v e c t o r (7 downto 0) := "00000011" ;
−− b l o ck typ
constant C WFIFO BLK TYP : s t d l o g i c v e c t o r (7 downto 0) := "00000001" ;

constant C WFIFO MIR CODE : i n t e g e r :=
t o i n t e g e r (unsigned (C WFIFO VER MAJ & C WFIFO VER MIN & C WFIFO VER LET

& C WFIFO BLK ID & C WFIFO BLK TYP)) ;

constant C WFIFO MIR BAOFFSET : s t d l o g i c v e c t o r (0 to 31)
:= "00000000000011110000000000000000" ;

constant C WFIFO MIR HIOFFSET : s t d l o g i c v e c t o r (0 to 31)
:= "00000000000011110000000000000001" ;

−−−
−− Signa l and Type Dec lara t ions
−−−
signal Bus2IP W Addr : s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1);
signal Bus2IP W Clk : s t d l o g i c ;
signal Bus2IP W CS : s t d l o g i c ;
signal Bus2IP W WrCE : s t d l o g i c ;
signal Bus2IP W RdCE : s t d l o g i c ;
signal Bus2IP W Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
signal Bus2IP W Reset : s t d l o g i c ;
signal Bus2IP W RNW : s t d l o g i c ;
signal IP2Bus W Ack : s t d l o g i c ;
signal IP2Bus W Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
signal IP2Bus W Error : s t d l o g i c ;
signal IP2Bus W PostedWrInh : s t d l o g i c ;
signal IP2Bus W Retry : s t d l o g i c ;
signal IP2Bus W ToutSup : s t d l o g i c ;

signal Bus2IP R Addr : s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1);
signal Bus2IP R Clk : s t d l o g i c ;

VHDL Code 121

signal Bus2IP R CS : s t d l o g i c ;
signal Bus2IP R WrCE : s t d l o g i c ;
signal Bus2IP R RdCE : s t d l o g i c ;
signal Bus2IP R Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
signal Bus2IP R Reset : s t d l o g i c ;
signal Bus2IP R RNW : s t d l o g i c ;
signal IP2Bus R Ack : s t d l o g i c ;
signal IP2Bus R Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
signal IP2Bus R Error : s t d l o g i c ;
signal IP2Bus R PostedWrInh : s t d l o g i c ;
signal IP2Bus R Retry : s t d l o g i c ;
signal IP2Bus R ToutSup : s t d l o g i c ;

signal Bram W AddrxD : s t d l o g i c v e c t o r (31 downto 0) ;
signal Bram W DataxD : s t d l o g i c v e c t o r (31 downto 0) ;
signal Bram W WrEnablexD : s t d l o g i c ;

signal Bram R AddrxD : s t d l o g i c v e c t o r (31 downto 0) ;
signal Bram R DataxD : s t d l o g i c v e c t o r (31 downto 0) ;

signal WfifoResetxD : s t d l o g i c ;
−−−
−− Component Dec lara t ions
−−−

component w f i f o l o g i c i s
generic
(

C WFIFO MEMSIZE : i n t e g e r := 8 ; −− in KB
C WFIFO WINDWIDTH : i n t e g e r := 11 ; −− in b i t
C WFIFO BRAMWIDTH : i n t e g e r := 11 −− in b i t

) ;
port
(

−− wr i t e por t
Bus2IP W AddrxDI : in s t d l o g i c v e c t o r (0 to 31) ;
Bus2IP W ClkxCI : in s t d l o g i c ;
Bus2IP W CSxDI : in s t d l o g i c ;
Bus2IP W WrCExDI : in s t d l o g i c ;
Bus2IP W RdCExDI : in s t d l o g i c ;
Bus2IP W DataxDI : in s t d l o g i c v e c t o r (0 to 31) ;
Bus2IP W ResetxDI : in s t d l o g i c ;
Bus2IP W RNWxDI : in s t d l o g i c ;
IP2Bus W DataxDO : out s t d l o g i c v e c t o r (0 to 31) ;
IP2Bus W AckxDO : out s t d l o g i c ;
IP2Bus W ErrorxDO : out s t d l o g i c ;
IP2Bus W ToutSupxDO : out s t d l o g i c ;
Bram W AddrxDO : out s t d l o g i c v e c t o r (31 downto 0) ;
Bram W DataxDO : out s t d l o g i c v e c t o r (31 downto 0) ;
Bram W WrEnablexDO : out s t d l o g i c ;
−− read port
Bus2IP R AddrxDI : in s t d l o g i c v e c t o r (0 to 31) ;
Bus2IP R ClkxCI : in s t d l o g i c ;
Bus2IP R CSxDI : in s t d l o g i c ;
Bus2IP R WrCExDI : in s t d l o g i c ;
Bus2IP R RdCExDI : in s t d l o g i c ;
Bus2IP R DataxDI : in s t d l o g i c v e c t o r (0 to 31) ;
Bus2IP R ResetxDI : in s t d l o g i c ;
Bus2IP R RNWxDI : in s t d l o g i c ;
IP2Bus R DataxDO : out s t d l o g i c v e c t o r (0 to 31) ;
IP2Bus R AckxDO : out s t d l o g i c ;
IP2Bus R ErrorxDO : out s t d l o g i c ;
IP2Bus R ToutSupxDO : out s t d l o g i c ;
Bram R AddrxDO : out s t d l o g i c v e c t o r (31 downto 0) ;
Bram R DataxDI : in s t d l o g i c v e c t o r (31 downto 0)

) ;

122 C.1 WFIFO

end component w f i f o l o g i c ;

component o p b i p i f w f i f o i s
generic
(

C BASEADDR : s t d l o g i c v e c t o r (0 to 31) := X"FFFFFFFF" ;
C HIGHADDR : s t d l o g i c v e c t o r (0 to 31) := X"00000000" ;
C MIR BASEADDR : s t d l o g i c v e c t o r (0 to 31) := X"FFFFFFFF" ;
C MIR HIGHADDR : s t d l o g i c v e c t o r (0 to 31) := X"00000000" ;
C WFIFO MIR CODE : i n t e g e r := 1 ;
C PIPELINE MODEL : i n t e g e r := 5 ;
C OPB AWIDTH : i n t e g e r := 32 ;
C OPB DWIDTH : i n t e g e r := 32 ;
C FAMILY : s t r i n g := "virtex2"

) ;
port
(

OPB ABus : in s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1);
OPB BE : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH/8−1);
OPB Clk : in s t d l o g i c ;
OPB DBus : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
OPBRNW : in s t d l o g i c ;
OPB Rst : in s t d l o g i c ;
OPB select : in s t d l o g i c ;
OPB seqAddr : in s t d l o g i c ;
Sln DBus : out s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
S ln errAck : out s t d l o g i c ;
S l n r e t r y : out s t d l o g i c ;
S ln toutSup : out s t d l o g i c ;
S ln xferAck : out s t d l o g i c ;
Bus2IP Addr : out s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1);
Bus2IP BE : out s t d l o g i c v e c t o r (0 to C OPB DWIDTH/8−1);
Bus2IP Burst : out s t d l o g i c ;
Bus2IP Clk : out s t d l o g i c ;
Bus2IP CS : out s t d l o g i c ;
Bus2IP Data : out s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
Bus2IP RdCE : out s t d l o g i c ;
Bus2IP Reset : out s t d l o g i c ;
Bus2IP RNW : out s t d l o g i c ;
Bus2IP WrCE : out s t d l o g i c ;
IP2Bus Ack : in s t d l o g i c ;
IP2Bus Data : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1);
IP2Bus Error : in s t d l o g i c ;
IP2Bus PostedWrInh : in s t d l o g i c ;
IP2Bus Retry : in s t d l o g i c ;
IP2Bus ToutSup : in s t d l o g i c

) ;
end component o p b i p i f w f i f o ;

component wfi fo bram i s
generic
(

C BRAM SIZE : i n t e g e r := 8 ; −− in KB
C BRAM AWIDTH : i n t e g e r := 32 ;
C BRAM DWIDTH : i n t e g e r := 32

) ;
port
(

Wfifo Bram ClkxCI : in s t d l o g i c ;
Wfifo Bram RstxRI : in s t d l o g i c ;
−− wr i t e
Bram W AddrxDI : in s t d l o g i c v e c t o r (C BRAM AWIDTH−1 downto 0) ;
Bram W DataxDI : in s t d l o g i c v e c t o r (C BRAM DWIDTH−1 downto 0) ;
Bram W WrEnablexDI : in s t d l o g i c ;

VHDL Code 123

−− read
Bram R AddrxDI : in s t d l o g i c v e c t o r (C BRAM AWIDTH−1 downto 0) ;
Bram R DataxD0 : out s t d l o g i c v e c t o r (C BRAM DWIDTH−1 downto 0)

) ;
end component wfi fo bram ;

−−
begin
−−

wf i fo bram 0 : wf i fo bram
generic map
(

C BRAM SIZE => C WFIFO MEMSIZE, −− in KB
C BRAM AWIDTH => 32 ,
C BRAM DWIDTH => 32

)
port map
(

Wfifo Bram ClkxCI => Bus2IP W Clk ,
Wfifo Bram RstxRI => WfifoResetxD ,
−− wr i t e
Bram W AddrxDI => Bram W AddrxD ,
Bram W DataxDI => Bram W DataxD ,
Bram W WrEnablexDI => Bram W WrEnablexD ,
−− read
Bram R AddrxDI => Bram R AddrxD ,
Bram R DataxD0 => Bram R DataxD

) ;

OPB IPIF W I : o p b i p i f w f i f o
generic map
(

C BASEADDR => C W BASEADDR,
C HIGHADDR => C W HIGHADDR,
C MIR BASEADDR => C W BASEADDR or C WFIFO MIR BAOFFSET,
C MIR HIGHADDR => C W BASEADDR or C WFIFO MIR HIOFFSET,
C WFIFO MIR CODE => C WFIFO MIR CODE,
C PIPELINE MODEL => C WFIFO PIPELINEMODE,
C OPB AWIDTH => C OPB AWIDTH,
C OPB DWIDTH => C OPB DWIDTH

)
port map
(

OPB ABus => OPB W ABus,
OPB BE => OPB W BE,
OPB Clk => OPB W Clk ,
OPB DBus => OPB W DBus,
OPBRNW => OPB W RNW,
OPB Rst => OPB W Rst ,
OPB select => OPB W select ,
OPB seqAddr => OPB W seqAddr ,
Sln DBus => Sln W DBus ,
S ln errAck => Sln W errAck ,
S l n r e t r y => Sln W retry ,
Sln toutSup => Sln W toutSup ,
S ln xferAck => Sln W xferAck ,
Bus2IP Addr => Bus2IP W Addr ,
Bus2IP BE => open ,
Bus2IP Burst => open ,
Bus2IP Clk => Bus2IP W Clk ,
Bus2IP CS => Bus2IP W CS ,
Bus2IP Data => Bus2IP W Data ,

124 C.1 WFIFO

Bus2IP RdCE => Bus2IP W RdCE ,
Bus2IP Reset => Bus2IP W Reset ,
Bus2IP RNW => Bus2IP W RNW,
Bus2IP WrCE => Bus2IP W WrCE ,
IP2Bus Ack => IP2Bus W Ack ,
IP2Bus Data => IP2Bus W Data ,
IP2Bus Error => IP2Bus W Error ,
IP2Bus PostedWrInh => IP2Bus W PostedWrInh ,
IP2Bus Retry => IP2Bus W Retry ,
IP2Bus ToutSup => IP2Bus W ToutSup

) ;

OPB IPIF R I : o p b i p i f w f i f o
generic map
(

C BASEADDR => C R BASEADDR,
C HIGHADDR => C R HIGHADDR,
C MIR BASEADDR => C R BASEADDR or C WFIFO MIR BAOFFSET,
C MIR HIGHADDR => C R BASEADDR or C WFIFO MIR HIOFFSET,
C WFIFO MIR CODE => C WFIFO MIR CODE,
C PIPELINE MODEL => C WFIFO PIPELINEMODE,
C OPB AWIDTH => C OPB AWIDTH,
C OPB DWIDTH => C OPB DWIDTH

)
port map
(

OPB ABus => OPB R ABus ,
OPB BE => OPB R BE,
OPB Clk => OPB W Clk , −− same c l o ck i s used f o r both IPIF
OPB DBus => OPB R DBus ,
OPBRNW => OPB R RNW,
OPB Rst => OPB R Rst ,
OPB select => OPB R select ,
OPB seqAddr => OPB R seqAddr ,
Sln DBus => Sln R DBus ,
S ln errAck => Sln R errAck ,
S l n r e t r y => Sln R retry ,
Sln toutSup => Sln R toutSup ,
S ln xferAck => Sln R xferAck ,
Bus2IP Addr => Bus2IP R Addr ,
Bus2IP BE => open ,
Bus2IP Burst => open ,
Bus2IP Clk => Bus2IP R Clk ,
Bus2IP CS => Bus2IP R CS ,
Bus2IP Data => Bus2IP R Data ,
Bus2IP RdCE => Bus2IP R RdCE ,
Bus2IP Reset => Bus2IP R Reset ,
Bus2IP RNW => Bus2IP R RNW,
Bus2IP WrCE => Bus2IP R WrCE ,
IP2Bus Ack => IP2Bus R Ack ,
IP2Bus Data => IP2Bus R Data ,
IP2Bus Error => IP2Bus R Error ,
IP2Bus PostedWrInh => IP2Bus R PostedWrInh ,
IP2Bus Retry => IP2Bus R Retry ,
IP2Bus ToutSup => IP2Bus R ToutSup

) ;

WFIFO LOGIC I : w f i f o l o g i c
generic map
(

C WFIFO MEMSIZE => C WFIFO MEMSIZE,
C WFIFO WINDWIDTH => C WFIFO WINDWIDTH,
C WFIFO BRAMWIDTH => C WFIFO BRAMWIDTH

VHDL Code 125

)
port map
(

−− wr i t e
Bus2IP W AddrxDI => Bus2IP W Addr ,
Bus2IP W ClkxCI => Bus2IP W Clk ,
Bus2IP W CSxDI => Bus2IP W CS ,
Bus2IP W WrCExDI => Bus2IP W WrCE ,
Bus2IP W RdCExDI => Bus2IP W RdCE ,
Bus2IP W DataxDI => Bus2IP W Data ,
Bus2IP W ResetxDI => Bus2IP W Reset ,
Bus2IP W RNWxDI => Bus2IP W RNW,
IP2Bus W DataxDO => IP2Bus W Data ,
IP2Bus W AckxDO => IP2Bus W Ack ,
IP2Bus W ErrorxDO => IP2Bus W Error ,
IP2Bus W ToutSupxDO => IP2Bus W ToutSup ,
Bram W AddrxDO => Bram W AddrxD ,
Bram W DataxDO => Bram W DataxD ,
Bram W WrEnablexDO => Bram W WrEnablexD ,
−− read
Bus2IP R AddrxDI => Bus2IP R Addr ,
Bus2IP R ClkxCI => Bus2IP R Clk ,
−−Bus2IP R ClkxCI => Bus2IP W Clk ,
Bus2IP R CSxDI => Bus2IP R CS ,
Bus2IP R WrCExDI => Bus2IP R WrCE ,
Bus2IP R RdCExDI => Bus2IP R RdCE ,
Bus2IP R DataxDI => Bus2IP R Data ,
Bus2IP R ResetxDI => Bus2IP R Reset ,
Bus2IP R RNWxDI => Bus2IP R RNW,
IP2Bus R DataxDO => IP2Bus R Data ,
IP2Bus R AckxDO => IP2Bus R Ack ,
IP2Bus R ErrorxDO => IP2Bus R Error ,
IP2Bus R ToutSupxDO => IP2Bus R ToutSup ,
Bram R AddrxDO => Bram R AddrxD ,
Bram R DataxDI => Bram R DataxD

) ;

IP2Bus W PostedWrInh <= ’0 ’ ; −− do not i n h i b i t pos ted wr i t e
IP2Bus R PostedWrInh <= ’0 ’ ; −− do not i n h i b i t pos ted wr i t e

IP2Bus W Retry <= ’0 ’ ;
IP2Bus R Retry <= ’0 ’ ;

WfifoResetxD <= Bus2IP W Reset or Bus2IP R Reset ;

end architecture behav io ra l ;

C.1.2 WFIFO Logic

−−−
−− Filename : w f i f o l o g i c . vhd
−− Version : v1 .00 a
−− Descr ip t ion : WFIFO l o g i c
−−−

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

l ibrary Unisim ;
use Unisim . a l l ;

entity w f i f o l o g i c i s
generic
(

126 C.1 WFIFO

C WFIFO MEMSIZE : i n t e g e r := 8 ; −− in KB
C WFIFO WINDWIDTH : i n t e g e r := 11 ; −− in b i t
C WFIFO BRAMWIDTH : i n t e g e r := 11 −− in b i t

) ;
port (

−− wr i t e por t (NU stands f o r not used)
Bus2IP W AddrxDI : in s t d l o g i c v e c t o r (0 to 31) ; −− address
Bus2IP W ClkxCI : in s t d l o g i c ; −− c l o ck
Bus2IP W CSxDI : in s t d l o g i c ; −− address in range
Bus2IP W WrCExDI : in s t d l o g i c ; −− wr i t e i s pending
Bus2IP W RdCExDI : in s t d l o g i c ; −− read i s pending
Bus2IP W DataxDI : in s t d l o g i c v e c t o r (0 to 31) ; −− data in
Bus2IP W ResetxDI : in s t d l o g i c ; −− r e s e t
Bus2IP W RNWxDI : in s t d l o g i c ; −− read not wr i t e
IP2Bus W DataxDO : out s t d l o g i c v e c t o r (0 to 31) ; −− data out
IP2Bus W AckxDO : out s t d l o g i c ; −− output acknowledge
IP2Bus W ErrorxDO : out s t d l o g i c ; −− error (NU)
IP2Bus W ToutSupxDO : out s t d l o g i c ; −− t imeout supress
Bram W AddrxDO : out s t d l o g i c v e c t o r (31 downto 0) ; −− bram wr i t e address
Bram W DataxDO : out s t d l o g i c v e c t o r (31 downto 0) ; −− bram data out
Bram W WrEnablexDO : out s t d l o g i c ; −− bram wr i t e enab le
−− read port
Bus2IP R AddrxDI : in s t d l o g i c v e c t o r (0 to 31) ; −− address
Bus2IP R ClkxCI : in s t d l o g i c ; −− c l o ck
Bus2IP R CSxDI : in s t d l o g i c ; −− address in range
Bus2IP R WrCExDI : in s t d l o g i c ; −− wr i t e i s pending
Bus2IP R RdCExDI : in s t d l o g i c ; −− read i s pending
Bus2IP R DataxDI : in s t d l o g i c v e c t o r (0 to 31) ; −− data in
Bus2IP R ResetxDI : in s t d l o g i c ; −− r e s e t
Bus2IP R RNWxDI : in s t d l o g i c ; −− read not wr i t e
IP2Bus R DataxDO : out s t d l o g i c v e c t o r (0 to 31) ; −− data out
IP2Bus R AckxDO : out s t d l o g i c ; −− output acknowledge
IP2Bus R ErrorxDO : out s t d l o g i c ; −− error (NU)
IP2Bus R ToutSupxDO : out s t d l o g i c ; −− t imeout supress
Bram R AddrxDO : out s t d l o g i c v e c t o r (31 downto 0) ; −− bram read address
Bram R DataxDI : in s t d l o g i c v e c t o r (31 downto 0) −− bram data in
) ;

end entity w f i f o l o g i c ;

−−−
−− Arch i t ec ture s e c t i on
−−−

architecture behav io ra l of w f i f o l o g i c i s

−−−
−− Constants
−−−
−− command s i z e and po s i t i on in Bus2IP Addr (b i g endian)
constant CommandLsb : i n t e g e r := 15 ;
constant CommandMsb : i n t e g e r := 12 ;
constant CommandSiz : i n t e g e r := 3 ;

−− b l o c k i n g b i t p o s i t i on in Bus2IP Addr (b i g endian)
constant BlockLsb : i n t e g e r := 15 ;

−− data s i z e and po s i t i on in Bus2IP Data (b i g endian)
constant DataLsb : i n t e g e r := 31 ;
constant DataMsb : i n t e g e r := 0 ;
constant DataSiz : i n t e g e r := 31 ;

−− address (= o f f s e t) s i z e and po s i t i on in Bus2IP Addr (b i g endian)
constant AddrLsb : i n t e g e r := 31 ;
constant AddrMsb : i n t e g e r := 32−C WFIFO WINDWIDTH;
constant AddrSiz : i n t e g e r := C WFIFO WINDWIDTH−1; −− width−1

VHDL Code 127

−− window s i z e and po s i t i on in Bus2IP Data (b i g endian)
constant WindLsb : i n t e g e r := 31 ;
constant WindMsb : i n t e g e r := 32−C WFIFO WINDWIDTH;
constant WindSiz : i n t e g e r := C WFIFO WINDWIDTH−1; −− width−1

−− h i g h e s t mem address
constant BramSizeAbs : i n t e g e r := C WFIFO MEMSIZE∗256 ;

−− Address s i z e (requ i red b i t s −1) depends on the used memory
−− Values : 9 (2K) , 10 (4K) , 11 (8K) , 12 (16K)
constant BramAddrSize : i n t e g e r := C WFIFO BRAMWIDTH−1; −− width−1

−− command id s
constant ComRead : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0001" ; −− read
constant ComWrite : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0010" ; −− wr i t e
constant ComAcRead : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0011" ; −− Acquire Read
constant ComAcWrite : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0100" ; −− Acquire Write
constant ComReRead : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0101" ; −− Release Read
constant ComReWrite : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0110" ; −− Release Write
constant ComGetStatus : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0111" ; −− Get Sta tus

−−−
−− Types
−−−

type WfifoWrState i s (s WrIdle , s WrStAck , s WrErr ,
s AcWrAck , s AcWrBlk , s ReWrAck , s WrDaAck) ;

type WfifoRdState i s (s RdIdle , s RdStAck , s RdErr ,
s AcRdAck , s AcRdBlk , s ReRdAck , s RdDaAck , s RdDaOk) ;

type WfifoReadCommand i s (s AcRd , s RdDa , s ReRd , s NoRd , s StRd) ;
type WfifoWriteCommand i s (s AcWr , s WrDa , s ReWr , s NoWr , s StWr) ;

−−−
−− Signa l d e c l a r a t i on s
−−−

−− inpu t s
signal WrAddrxDI : s t d l o g i c v e c t o r (AddrSiz downto 0) ;
signal WrCommandxDI : s t d l o g i c v e c t o r (CommandSiz downto 0) ;
signal WrDataxDI : s t d l o g i c v e c t o r (DataSiz downto 0) ;
signal WrWindSizexDI : s t d l o g i c v e c t o r (WindSiz downto 0) ;
signal WrBlockingxDI : s t d l o g i c ;

signal RdAddrxDI : s t d l o g i c v e c t o r (AddrSiz downto 0) ;
signal RdCommandxDI : s t d l o g i c v e c t o r (CommandSiz downto 0) ;
signal RdDataxDI : s t d l o g i c v e c t o r (DataSiz downto 0) ;
signal RdWindSizexDI : s t d l o g i c v e c t o r (WindSiz downto 0) ;
signal RdBlockingxDI : s t d l o g i c ;

signal LogicResetxD : s t d l o g i c ;

−− outputs
signal CBramWrAddrxDO : s t d l o g i c v e c t o r (BramAddrSize downto 0) ;
signal NBramWrAddrxD : s t d l o g i c v e c t o r (BramAddrSize downto 0) ;
signal NBramWrAddrLongxD : s t d l o g i c v e c t o r (BramAddrSize+1 downto 0) ;

signal CBramRdAddrxDO : s t d l o g i c v e c t o r (BramAddrSize downto 0) ;
signal NBramRdAddrxD : s t d l o g i c v e c t o r (BramAddrSize downto 0) ;
signal NBramRdAddrLongxD : s t d l o g i c v e c t o r (BramAddrSize+1 downto 0) ;

signal CBramWrDataxDO : s t d l o g i c v e c t o r (DataSiz downto 0) ;
signal NBramWrDataxD : s t d l o g i c v e c t o r (DataSiz downto 0) ;
signal BramRdDataxD : s t d l o g i c v e c t o r (DataSiz downto 0) ;

128 C.1 WFIFO

signal NWrAckxD : s t d l o g i c ; −− acknowledge f o r wr i t e por t
signal CWrAckxD : s t d l o g i c ;
signal NRdAckxD : s t d l o g i c ; −− acknowledge f o r read port
signal CRdAckxD : s t d l o g i c ;

signal NWrToutSupxD : s t d l o g i c ;
signal CWrToutSupxDO : s t d l o g i c ;
signal NRdToutSupxD : s t d l o g i c ;
signal CRdToutSupxDO : s t d l o g i c ;

−− processed inpu t s
signal WriteCommandxD : WfifoWriteCommand ; −− wr i t e command (der i ved from WrCommandxDI)
signal ReadCommandxD : WfifoReadCommand ; −− read command (der i ved from RdCommandxDI)

−− s t a t e s
signal NWrStatexD : WfifoWrState ; −− next wr i t e s t a t e
signal CWrStatexD : WfifoWrState ; −− current wr i t e s t a t e

signal NRdStatexD : WfifoRdState ; −− next read s t a t e
signal CRdStatexD : WfifoRdState ; −− current read s t a t e

signal NWrWindowVxD : s t d l o g i c ; −− wr i t e window va l i d
signal CWrWindowVxD : s t d l o g i c ;

signal NRdWindowVxD : s t d l o g i c ; −− read window va l i d
signal CRdWindowVxD : s t d l o g i c ;

signal NWrWindowSizexD : s t d l o g i c v e c t o r (WindSiz downto 0) ; −− wr i t e window s i z e
signal CWrWindowSizexD : s t d l o g i c v e c t o r (WindSiz downto 0) ;

signal NRdWindowSizexD : s t d l o g i c v e c t o r (WindSiz downto 0) ; −− read window s i z e
signal CRdWindowSizexD : s t d l o g i c v e c t o r (WindSiz downto 0) ;

−− s t a t u s
signal NWrStatusxD : s t d l o g i c v e c t o r (1 downto 0) ; −− s t a t u s o f l a s t wr i t e operat ion
signal CWrStatusxDO : s t d l o g i c v e c t o r (1 downto 0) ;
signal NRdStatusxD : s t d l o g i c v e c t o r (1 downto 0) ; −− s t a t u s o f l a s t read operat ion
signal CRdStatusxDO : s t d l o g i c v e c t o r (1 downto 0) ;

−− current f r e e memory . va lue does not inc lude read and wr i t e windows .
signal CFreeMemD : unsigned (BramAddrSize downto 0) ;
signal NFreeMemD : unsigned (BramAddrSize downto 0) ;

−− add t h i s va lue to mem s i z e (used by read s t a t e machine)
signal CAddToMemSizexD : unsigned (WindSiz downto 0) ;
signal NAddToMemSizexD : unsigned (WindSiz downto 0) ;
−− s u b t r a c t t h i s va lue mem f i f o s i z e (used by wr i t e s t a t e machine)
signal CSubFromMemSizexD : unsigned (WindSiz downto 0) ;
signal NSubFromMemSizexD : unsigned (WindSiz downto 0) ;

−− current f i f o s i z e . va lue does not inc lude read and wr i t e windows .
signal NFifoSizexD : unsigned (BramAddrSize downto 0) ;
signal CFifoSizexD : unsigned (BramAddrSize downto 0) ;

−− add t h i s va lue to f i f o s i z e (used by wr i t e s t a t e machine)
signal CAddToFifoSizexD : unsigned (WindSiz downto 0) ;
signal NAddToFifoSizexD : unsigned (WindSiz downto 0) ;
−− s u b t r a c t t h i s va lue from f i f o s i z e (used by read s t a t e machine)
signal CSubFromFifoSizexD : unsigned (WindSiz downto 0) ;
signal NSubFromFifoSizexD : unsigned (WindSiz downto 0) ;

−− bram wr i t e o f f s e t
signal CBramWrOffsetxD : unsigned (BramAddrSize downto 0) ;
signal NBramWrOffsetxD : unsigned (BramAddrSize downto 0) ;
signal NBramWrOffsetLongxD : unsigned (BramAddrSize+1 downto 0) ;

VHDL Code 129

−− bram read o f f s e t
signal CBramRdOffsetxD : unsigned (BramAddrSize downto 0) ;
signal NBramRdOffsetxD : unsigned (BramAddrSize downto 0) ;
signal NBramRdOffsetLongxD : unsigned (BramAddrSize+1 downto 0) ;

signal NBramWrEnablexD : s t d l o g i c ; −− wr i t e enab le (f o r bram wr i t e por t only)
signal CBramWrEnablexD : s t d l o g i c ;

−−−
−− Begin a r c h i t e c t u r e
−−−

begin −− a r c h i t e c t u r e IMP

−− input s i g n a l s
WrAddrxDI <= Bus2IP W AddrxDI (AddrMsb to AddrLsb) ;
WrCommandxDI <= Bus2IP W AddrxDI (CommandMsb to CommandLsb) ;
WrDataxDI <= Bus2IP W DataxDI (DataMsb to DataLsb) ;
WrWindSizexDI <= Bus2IP W DataxDI (WindMsb to WindLsb) ;
WrBlockingxDI <= Bus2IP W DataxDI (BlockLsb) ;

RdAddrxDI <= Bus2IP R AddrxDI (AddrMsb to AddrLsb) ;
RdCommandxDI <= Bus2IP R AddrxDI (CommandMsb to CommandLsb) ;
RdDataxDI <= Bus2IP R DataxDI (DataMsb to DataLsb) ;
RdWindSizexDI <= Bus2IP R DataxDI (WindMsb to WindLsb) ;
RdBlockingxDI <= Bus2IP R DataxDI (BlockLsb) ;

−−−
−− Function : c a l c u a l t e WRITE command (f i l t e r non v a l i d commands)
−− Typ : combinator ia l
−−−

p WrCommandMemless : process (WrCommandxDI, Bus2IP W CSxDI , Bus2IP W RNWxDI , LogicResetxD ,
Bus2IP W WrCExDI , Bus2IP W RdCExDI) i s

begin

i f Bus2IP W CSxDI = ’1 ’ and Bus2IP W RNWxDI = ’0 ’ and Bus2IP W WrCExDI = ’1 ’ then
case WrCommandxDI i s

when ComAcWrite =>
WriteCommandxD <= s AcWr ;

when ComReWrite =>
WriteCommandxD <= s ReWr ;

when ComWrite =>
WriteCommandxD <= s WrDa ;

when others =>
WriteCommandxD <= s NoWr ; −− check !

end case ;
e l s i f Bus2IP W CSxDI = ’1 ’ and Bus2IP W RNWxDI = ’1 ’ and Bus2IP W RdCExDI = ’1 ’ then

i f WrCommandxDI = ComGetStatus then
WriteCommandxD <= s StWr ;

else
WriteCommandxD <= s NoWr ;

end i f ;
else

WriteCommandxD <= s NoWr ;
end i f ;

end process p WrCommandMemless ;

−−−
−− Function : c a l c u a l t e READ command (f i l t e r non v a l i d commands)
−− Typ : combinator ia l
−−−

p RdCommandMemless : process (RdCommandxDI , Bus2IP R CSxDI , Bus2IP R RNWxDI ,
LogicResetxD , Bus2IP R WrCExDI , Bus2IP R RdCExDI) i s

130 C.1 WFIFO

begin
−− d e f a u l t

i f Bus2IP R CSxDI = ’1 ’ then
case RdCommandxDI i s

when ComAcRead =>
i f Bus2IP R RNWxDI = ’0 ’ and Bus2IP R WrCExDI = ’1 ’ then

ReadCommandxD <= s AcRd ;
else

ReadCommandxD <= s NoRd ;
end i f ;

when ComReRead =>
i f Bus2IP R RNWxDI = ’0 ’ and Bus2IP R WrCExDI = ’1 ’ then

ReadCommandxD <= s ReRd ;
else

ReadCommandxD <= s NoRd ;
end i f ;

when ComRead =>
i f Bus2IP R RNWxDI = ’1 ’ and Bus2IP R RdCExDI = ’1 ’ then

ReadCommandxD <= s RdDa ;
else

ReadCommandxD <= s NoRd ;
end i f ;

when ComGetStatus =>
i f Bus2IP R RNWxDI = ’1 ’ and Bus2IP R RdCExDI = ’1 ’ then

ReadCommandxD <= s StRd ;
else

ReadCommandxD <= s NoRd ;
end i f ;

when others =>
ReadCommandxD <= s NoRd ; −− check !

end case ;
else

ReadCommandxD <= s NoRd ;
end i f ;

end process p RdCommandMemless ;

−−−
−− Function : c a l c u a l t e next WRITE s t a t e based on input and current s t a t e s
−− Typ : combinator ia l
−− S e n s i t i v i t y :
−− > WriteCommandxD : new command input (output o f WrCommandMemless)
−− > CWrStatexD : i n t e rna l wr i t e s t a t e was updated by p WfifoStateMemzing
−− > LogicResetxD : i n i t i a l i z e s t a t e v a r i a b l e s such as NWrWindowVxD
−− > CWrWindowVxD, CFreeMemD: i n t e rna l s t a t e s used to determine the next s t a t e
−− > WrWindSizexDI , WrDataxDI , WrBlockingxDI , WrAddrxDI : d i r e c t inpu t s
−−−

p WrStateMemless : process (WriteCommandxD , CWrStatexD , LogicResetxD ,
CWrWindowVxD, CFreeMemD, CWrStatusxDO , CWrWindowSizexD ,
WrWindSizexDI , WrDataxDI , WrBlockingxDI , WrAddrxDI) i s

begin
−− d e f a u l t assignments
NWrWindowVxD <= CWrWindowVxD;
NWrWindowSizexD <= CWrWindowSizexD ;
NAddToFifoSizexD <= (others => ’ 0 ’) ; −− no change o f f i f o s i z e
NSubFromMemSizexD <= (others => ’ 0 ’) ; −− no change o f f r e e mem s i z e
NWrAckxD <= ’0 ’ ; −− no acknowledge
NBramWrEnablexD <= ’0 ’ ; −− bram wr i t e d i s a b l e d

VHDL Code 131

NBramWrDataxD <= (others => ’ 0 ’) ;
NWrStatexD <= s WrIdle ; −− i s not necessary
NWrStatusxD <= CWrStatusxDO ;
NWrToutSupxD <= ’0 ’ ; −− no timeout supress

−− current s t a t e i s i d l e
case CWrStatexD i s

when s WrIdle =>
case WriteCommandxD i s

−− acqu i re wr i t e window
when s AcWr =>

−− no wr i t e window (ok) , and t a r g e t s i z e > 0
i f CWrWindowVxD = ’0 ’ and unsigned (WrWindSizexDI) > 0 then
−− enough f r e e memory
i f CFreeMemD >= unsigned (WrWindSizexDI) then

NWrStatexD <= s AcWrAck ;
NWrAckxD <= ’1 ’ ;
NWrWindowVxD <= ’1 ’ ;
NWrWindowSizexD <= WrWindSizexDI ;
NSubFromMemSizexD <= unsigned (WrWindSizexDI) ;
NWrStatusxD <= "00" ;

−− not enough f r e e memory
else

−− b l o c k i n g
i f WrBlockingxDI = ’1 ’ then

NWrStatexD <= s AcWrBlk ;
NWrToutSupxD <= ’1 ’ ;
NWrWindowSizexD <= WrWindSizexDI ;

−− non b l o c k i n g (ok)
else

NWrStatexD <= s WrErr ;
NWrAckxD <= ’1 ’ ;
NWrStatusxD <= "10" ;

end i f ;
end i f ;

else −− t he re a l ready i s a wr i t e window (error)
NWrStatexD <= s WrErr ;
NWrAckxD <= ’1 ’ ;
NWrStatusxD <= "01" ;

end i f ;

−− r e l e a s e wr i t e window
when s ReWr =>

i f CWrWindowVxD = ’1 ’ then −− wr i t e window a v a i l a b l e (ok)
NWrStatexD <= s ReWrAck ;
NWrAckxD <= ’1 ’ ;
NWrWindowVxD <= ’0 ’ ;
NWrStatusxD <= "00" ;
NWrWindowSizexD <= (others => ’ 0 ’) ;
−− add window to f i f o s i z e
NAddToFifoSizexD <= unsigned (CWrWindowSizexD) ;

else −− no wr i t e window a v a i l a b l e (error)
NWrStatexD <= s WrErr ;
NWrAckxD <= ’1 ’ ;
NWrStatusxD <= "01" ;

end i f ;

−− wr i t e data to window
when s WrDa =>

−− wr i t e window a v a i l a b l e and address wi th in v a l i d range
i f CWrWindowVxD = ’1 ’ and unsigned (WrAddrxDI) < unsigned (CWrWindowSizexD) then

NWrStatexD <= s WrDaAck ;
NWrAckxD <= ’1 ’ ;
NWrStatusxD <= "00" ;

132 C.1 WFIFO

−− enab le wr i t e to bram
NBramWrEnablexD <= ’1 ’ ;
NBramWrDataxD <= WrDataxDI ;

else
NWrStatexD <= s WrErr ;
NWrAckxD <= ’1 ’ ;
NWrStatusxD <= "01" ;

end i f ;

−− ge t wr i t e s t a t u s
when s StWr =>

NWrStatexD <= s WrStAck ;
NWrAckxD <= ’1 ’ ;

when s NoWr =>
NWrStatexD <= s WrIdle ;

when others =>
NWrStatexD <= s WrIdle ; −− check !

end case ;

−− current s t a t e i s b l ocked
when s AcWrBlk =>

−− now enough space : acqu i re the window
i f CFreeMemD >= unsigned (CWrWindowSizexD) then

NWrStatexD <= s AcWrAck ;
NWrAckxD <= ’1 ’ ;
NWrWindowVxD <= ’1 ’ ;
NWrWindowSizexD <= CWrWindowSizexD ;
NSubFromMemSizexD <= unsigned (CWrWindowSizexD) ;
NWrStatusxD <= "00" ;
NWrToutSupxD <= ’1 ’ ;

−− s t i l l not enough space : cont inue b l o c k i n g
else

NWrStatexD <= s AcWrBlk ;
NWrToutSupxD <= ’1 ’ ;

end i f ;

−− current s t a t e i s not i d l e or b l ocked
when others =>

NWrStatexD <= s WrIdle ;
end case ;

end process p WrStateMemless ;

−−−
−− Function : c a l c u a l t e next READ s t a t e
−− Typ : combinator ia l
−− S e n s i t i v i t y :
−− > ReadCommandxD: new command input (output o f RdCommandMemless)
−− > CRdStatexD : i n t e rna l read s t a t e was updated by p WfifoStateMemzing
−− > LogicResetxD : i n i t i a l i z e s t a t e v a r i a b l e s such as NRdWindowVxD
−− > CRdWindowVxD, CFifoSizexD : i n t e rna l s t a t e s used to determine the next s t a t e
−− > RdWindSizexDI , RdDataxDI , RdBlockingxDI , RdAddrxDI : d i r e c t inpu t s
−−−

p RdStateMemless : process (ReadCommandxD, CRdStatexD , LogicResetxD ,
CRdWindowVxD, CFifoSizexD , CRdWindowSizexD , CRdStatusxDO ,
RdWindSizexDI , RdDataxDI , RdBlockingxDI , RdAddrxDI) i s

begin
−− d e f a u l t assignments
NRdWindowVxD <= CRdWindowVxD;
NRdWindowSizexD <= CRdWindowSizexD ;
NSubFromFifoSizexD <= (others => ’ 0 ’) ; −− no change o f f i f o s i z e
NAddToMemSizexD <= (others => ’ 0 ’) ; −− no change o f f r e e mem s i z e
NRdAckxD <= ’0 ’ ; −− no acknowledge
NRdStatexD <= s RdId le ; −− i s not necessary

VHDL Code 133

NRdStatusxD <= CRdStatusxDO ;
NRdToutSupxD <= ’0 ’ ; −− no timeout supress

−− current s t a t e i s i d l e
case CRdStatexD i s

when s RdId le =>
case ReadCommandxD i s

−− acqu i re read window
when s AcRd =>

−− no read window a v a i l a b l e (ok) and window s i z e > 0
i f CRdWindowVxD = ’0 ’ and unsigned (RdWindSizexDI) > 0 then
−− engough data f o r read window
i f CFifoSizexD >= unsigned (RdWindSizexDI) then

NRdStatexD <= s AcRdAck ;
NRdAckxD <= ’1 ’ ;
NRdWindowVxD <= ’1 ’ ;
NRdStatusxD <= "00" ;
NRdWindowSizexD <= RdWindSizexDI ;
−− sub form f i f o s i z e
NSubFromFifoSizexD <= unsigned (RdWindSizexDI) ;

−− not engough data f o r read window
else

−− b l o c k i n g (ok , b l o c k)
i f RdBlockingxDI = ’1 ’ then

NRdStatexD <= s AcRdBlk ;
NRdToutSupxD <= ’1 ’ ;
NRdWindowSizexD <= RdWindSizexDI ;

else
−− non b l o c k i n g (ok)

NRdStatexD <= s RdErr ; −− read window to l a r g e
NRdAckxD <= ’1 ’ ;
NRdStatusxD <= "10" ;

end i f ;
end i f ;

−− t he re a l ready i s a read window (error) or window s i z e <= 0
else

NRdStatexD <= s RdErr ;
NRdAckxD <= ’1 ’ ;
NRdStatusxD <= "01" ;

end i f ;

−− r e l e a s e read window
when s ReRd =>

i f CRdWindowVxD = ’1 ’ then −− read window a v a i l a b l e (ok)
NRdStatexD <= s ReRdAck ;
NRdAckxD <= ’1 ’ ;
NRdWindowVxD <= ’0 ’ ;
NRdStatusxD <= "00" ;
NRdWindowSizexD <= (others => ’ 0 ’) ;
NAddToMemSizexD <= unsigned (CRdWindowSizexD) ;

else −− no read window a v a i l a b l e (error)
NRdStatexD <= s RdErr ;
NRdAckxD <= ’1 ’ ;
NRdStatusxD <= "01" ;

end i f ;

when s RdDa =>
i f CRdWindowVxD = ’1 ’ and unsigned (RdAddrxDI) < unsigned (CRdWindowSizexD) then

NRdStatexD <= s RdDaOk ;
−− bram read address

else
NRdStatexD <= s RdErr ;
NRdAckxD <= ’1 ’ ;

134 C.1 WFIFO

NRdStatusxD <= "01" ;
end i f ;

−− ge t read s t a t u s
when s StRd =>

NRdStatexD <= s RdStAck ;
NRdAckxD <= ’1 ’ ;

when s NoRd =>
NRdStatexD <= s RdId le ;

when others =>
NRdStatexD <= s RdId le ; −− check !

end case ;

−− current s t a t e i s Read OK
when s RdDaOk =>

NRdStatexD <= s RdDaAck ;
NRdAckxD <= ’1 ’ ;
NRdStatusxD <= "00" ;

−− current s t a t e i s b l ocked
when s AcRdBlk =>

−− now enough data : acqu i re the window
i f CFifoSizexD >= unsigned (CRdWindowSizexD) then

NRdStatexD <= s AcRdAck ;
NRdAckxD <= ’1 ’ ;
NRdWindowVxD <= ’1 ’ ;
NRdStatusxD <= "00" ;
NRdWindowSizexD <= CRdWindowSizexD ;
−− sub form f i f o s i z e
NSubFromFifoSizexD <= unsigned (CRdWindowSizexD) ;
NRdToutSupxD <= ’1 ’ ;

−− s t i l l not enough space : cont inue b l o c k i n g
else

NRdStatexD <= s AcRdBlk ;
NRdToutSupxD <= ’1 ’ ;

end i f ;

−− current s t a t e i s not i d l e read or b locked
when others =>

NRdStatexD <= s RdId le ;
end case ;

end process p RdStateMemless ;

−−−
−− Function : s e t next s t a t e , i n i t s t a t e s on r e s e t
−− Typ : s e q u en t i a l
−−−

p WfifoStateMemzing : process (Bus2IP W ClkxCI) i s

begin
i f Bus2IP W ClkxCI ’ event and Bus2IP W ClkxCI = ’1 ’ then

i f LogicResetxD = ’1 ’ then −− synchronous r e s e t
−−
−− Reset va lue s
−−

−− wf i f o s t a t e s
CWrStatexD <= s WrIdle ;
CRdStatexD <= s RdId le ;

VHDL Code 135

−− wf i f o i n t e rna l s t a t e s
CWrWindowVxD <= ’0 ’ ; −− no v a l i d wr i t e window
CRdWindowVxD <= ’0 ’ ; −− no v a l i d read window
CWrWindowSizexD <= (others => ’ 0 ’) ; −− i n i t i a l wr i t e window l eng t h
CRdWindowSizexD <= (others => ’ 0 ’) ; −− i n i t i a l read window l eng t h
CFifoSizexD <= (others => ’ 0 ’) ; −− i n i t i a l f i f o s i z e
CWrStatusxDO <= "00" ; −− s t a t u s ok
CRdStatusxDO <= "00" ; −− s t a t u s ok
CFreeMemD <= to uns igned (BramSizeAbs−2,BramAddrSize+1); −− two addresses are not used

−− data t r an s f e r q u a l i f i e r s
CWrAckxD <= ’0 ’ ; −− no acknowledge by d e f a u l t
CRdAckxD <= ’0 ’ ;
CWrToutSupxDO <= ’0 ’ ; −− no timout supress
CRdToutSupxDO <= ’0 ’ ;

−− bram s i g n a l s
CBramWrAddrxDO <= (others => ’ 0 ’) ;
CBramRdAddrxDO <= (others => ’ 0 ’) ;
CBramWrOffsetxD <= (others => ’ 0 ’) ;
CBramRdOffsetxD <= to uns igned (BramSizeAbs−1,BramAddrSize+1);
CBramWrEnablexD <= ’0 ’ ; −− wr i t e d i s a b l e d
CBramWrDataxDO <= (others => ’ 0 ’) ;

CAddToMemSizexD <= (others => ’ 0 ’) ;
CSubFromMemSizexD <= (others => ’ 0 ’) ;
CAddToFifoSizexD <= (others => ’ 0 ’) ;
CSubFromFifoSizexD <= (others => ’ 0 ’) ;

else
−−
−− t r a n s i t i o n s on r i s i n g c l o c k edge wi thout r e s e t
−−

−−
−− wf i f o s t a t e s
−−
CWrStatexD <= NWrStatexD ;
CRdStatexD <= NRdStatexD ;

CWrWindowVxD <= NWrWindowVxD;
CRdWindowVxD <= NRdWindowVxD;

−−
−− window and f i f o s i z e s
−−
CWrWindowSizexD <= NWrWindowSizexD ;
CRdWindowSizexD <= NRdWindowSizexD ;

CFifoSizexD <= NFifoSizexD ;
CFreeMemD <= NFreeMemD;

CAddToMemSizexD <= NAddToMemSizexD ;
CSubFromMemSizexD <= NSubFromMemSizexD ;
CAddToFifoSizexD <= NAddToFifoSizexD ;
CSubFromFifoSizexD <= NSubFromFifoSizexD ;

−−−
−− BRAM: o f f s e t ga t ing
−− o f f s e t i s updated whenever a wr i t e / read window i s r e l e a s ed
−−−
i f NWrStatexD = s ReWrAck then

CBramWrOffsetxD <= NBramWrOffsetxD ;
else

136 C.1 WFIFO

CBramWrOffsetxD <= CBramWrOffsetxD ;
end i f ;

i f NRdStatexD = s ReRdAck then
CBramRdOffsetxD <= NBramRdOffsetxD ;

else
CBramRdOffsetxD <= CBramRdOffsetxD ;

end i f ;

−−−
−− BRAM: address sw i t ch ing
−− s e t wr i t e / read address to o f f s e t wh i l e not wr i t i n g / reading
−−−
i f NWrStatexD = s WrDaAck then

CBramWrAddrxDO <= NBramWrAddrxD ;
else

CBramWrAddrxDO <= s t d l o g i c v e c t o r (CBramWrOffsetxD) ;
end i f ;

i f NRdStatexD = s RdDaOk then
CBramRdAddrxDO <= NBramRdAddrxD ;

else
CBramRdAddrxDO <= s t d l o g i c v e c t o r (CBramRdOffsetxD) ;

end i f ;

CBramWrEnablexD <= NBramWrEnablexD ;
CBramWrDataxDO <= NBramWrDataxD ;

−−
−− output s i g n a l s
−−
CWrAckxD <= NWrAckxD;
CRdAckxD <= NRdAckxD;

CWrStatusxDO <= NWrStatusxD ;
CRdStatusxDO <= NRdStatusxD ;

CWrToutSupxDO <= NWrToutSupxD ;
CRdToutSupxDO <= NRdToutSupxD ;

end i f ;
end i f ;

end process p WfifoStateMemzing ;

−−−
−− concurrent and cond i t i ona l s i g n a l assignments f o r i n t e rna l usage
−−−

−− next f i f o s i z e
NFifoSizexD <= CFifoSizexD + CAddToFifoSizexD − CSubFromFifoSizexD ;
−− next mem s i z e
NFreeMemD <= CFreeMemD + CAddToMemSizexD − CSubFromMemSizexD ;

−− next wr i t e o f f s e t
NBramWrOffsetLongxD <= (CBramWrOffsetxD + unsigned (CWrWindowSizexD))

mod to uns igned (BramSizeAbs , BramAddrSize+2);
NBramWrOffsetxD <= NBramWrOffsetLongxD(BramAddrSize downto 0) ;

−− next read o f f s e t
NBramRdOffsetLongxD <= (CBramRdOffsetxD + unsigned (CRdWindowSizexD))

mod to uns igned (BramSizeAbs , BramAddrSize+2);
NBramRdOffsetxD <= NBramRdOffsetLongxD(BramAddrSize downto 0) ;

−− next wr i t e address
NBramWrAddrLongxD <= s t d l o g i c v e c t o r ((CBramWrOffsetxD + unsigned (WrAddrxDI))

VHDL Code 137

mod to uns igned (BramSizeAbs , BramAddrSize +2)) ;
NBramWrAddrxD <= NBramWrAddrLongxD(BramAddrSize downto 0) ;

−− next read address (address o f f s e t l a g s by one and po in t s to unused mem lo ca t i on)
NBramRdAddrLongxD <= s t d l o g i c v e c t o r ((CBramRdOffsetxD + unsigned (RdAddrxDI)+1)

mod to uns igned (BramSizeAbs , BramAddrSize +2)) ;
NBramRdAddrxD <= NBramRdAddrLongxD(BramAddrSize downto 0) ;

−−−
−− output s i g n a l connect ions
−−−

−− connect s i g n a l s to bram
Bram W WrEnablexDO <= CBramWrEnablexD ;
Bram W AddrxDO(BramAddrSize downto 0) <= CBramWrAddrxDO(BramAddrSize downto 0) ;
Bram R AddrxDO(BramAddrSize downto 0) <= CBramRdAddrxDO(BramAddrSize downto 0) ;
Bram W AddrxDO(31 downto BramAddrSize+1) <= (others => ’ 0 ’) ;
Bram R AddrxDO(31 downto BramAddrSize+1) <= (others => ’ 0 ’) ;
Bram W DataxDO <= CBramWrDataxDO;

−− t r an s f e r q u a l i f i e r s i g n a l s
IP2Bus W AckxDO <= CWrAckxD;
IP2Bus W ToutSupxDO <= CWrToutSupxDO;
IP2Bus R AckxDO <= CRdAckxD;
IP2Bus R ToutSupxDO <= CRdToutSupxDO ;

−− error s i g n a l i s not used
IP2Bus W ErrorxDO <= ’0 ’ ;
IP2Bus R ErrorxDO <= ’0 ’ ;

−− data output : sw i tch f o r ge t s t a t u s s ta t e , and gate data output with ack s t a t e
IP2Bus W DataxDO(0 to 31) <= ("000000000000000000000000000000" & CWrStatusxDO)

when CWrStatexD = s WrStAck
else (others => ’ 0 ’) ;

IP2Bus R DataxDO(0 to 31) <= ("000000000000000000000000000000" & CRdStatusxDO)
when CRdStatexD = s RdStAck
else BramRdDataxD ;

BramRdDataxD(31 downto 0) <= Bram R DataxDI when CRdStatexD = s RdDaAck
else (others => ’ 0 ’) ;

−−−
−− r e s e t l o g i c o f WFIFO
−−−

LogicResetxD <= Bus2IP W ResetxDI or Bus2IP R ResetxDI ;

end architecture behav io ra l ;

C.1.3 WFIFO BRAM

−−−
−− Filename : wf i fo bram . vhd
−− Version : v1 .00 a
−− Descr ip t ion : w f i f o BRAM
−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

l ibrary Unisim ;
use Unisim . a l l ;

l ibrary wf i f o v1 00 a ;

138 C.1 WFIFO

use wf i f o v1 00 a . a l l ;

−−−
−− Ent i ty Sect ion
−−−

entity wfi fo bram i s
generic
(

C BRAM SIZE : i n t e g e r := 8 ; −− in KB
C BRAM AWIDTH : i n t e g e r := 32 ;
C BRAM DWIDTH : i n t e g e r := 32

) ;
port
(

Wfifo Bram ClkxCI : in s t d l o g i c ;
Wfifo Bram RstxRI : in s t d l o g i c ;
−− wr i t e
Bram W AddrxDI : in s t d l o g i c v e c t o r (C BRAM AWIDTH−1 downto 0) ;
Bram W DataxDI : in s t d l o g i c v e c t o r (C BRAM DWIDTH−1 downto 0) ;
Bram W WrEnablexDI : in s t d l o g i c ;
−− read
Bram R AddrxDI : in s t d l o g i c v e c t o r (C BRAM AWIDTH−1 downto 0) ;
Bram R DataxD0 : out s t d l o g i c v e c t o r (C BRAM DWIDTH−1 downto 0)

) ;

end entity wfi fo bram ;

−−−
−− Arch i t ec ture Sect ion
−−−

architecture imp of wfi fo bram i s

signal alwaysZero : s t d l o g i c v e c t o r (0 downto 0) ;

−−−
−− Component Dec lara t ions
−−−

−−−
−− BRAM for 1 KB Memsize
−−−
component RAMB16 S36 S36 i s

port
(

−− A
ADDRA : in s t d l o g i c v e c t o r (8 downto 0) ;
CLKA : in s t d l o g i c ;
DIA : in s t d l o g i c v e c t o r (31 downto 0) ;
DIPA : in s t d l o g i c v e c t o r (3 downto 0) ;
DOA : out s t d l o g i c v e c t o r (31 downto 0) ;
DOPA : out s t d l o g i c v e c t o r (3 downto 0) ;
ENA : in s t d l o g i c ;
SSRA : in s t d l o g i c ;
WEA : in s t d l o g i c ;
−− B
ADDRB : in s t d l o g i c v e c t o r (8 downto 0) ;
CLKB : in s t d l o g i c ;
DIB : in s t d l o g i c v e c t o r (31 downto 0) ;
DIPB : in s t d l o g i c v e c t o r (3 downto 0) ;
DOB : out s t d l o g i c v e c t o r (31 downto 0) ;
DOPB : out s t d l o g i c v e c t o r (3 downto 0) ;
ENB : in s t d l o g i c ;
SSRB : in s t d l o g i c ;
WEB : in s t d l o g i c

VHDL Code 139

) ;
end component ;

−−−
−− BRAM for 4 KB Memsize
−−−
component RAMB16 S18 S18 i s

port
(

−− A
ADDRA : in s t d l o g i c v e c t o r (9 downto 0) ;
CLKA : in s t d l o g i c ;
DIA : in s t d l o g i c v e c t o r (15 downto 0) ;
DIPA : in s t d l o g i c v e c t o r (1 downto 0) ;
DOA : out s t d l o g i c v e c t o r (15 downto 0) ;
DOPA : out s t d l o g i c v e c t o r (1 downto 0) ;
ENA : in s t d l o g i c ;
SSRA : in s t d l o g i c ;
WEA : in s t d l o g i c ;
−− B
ADDRB : in s t d l o g i c v e c t o r (9 downto 0) ;
CLKB : in s t d l o g i c ;
DIB : in s t d l o g i c v e c t o r (15 downto 0) ;
DIPB : in s t d l o g i c v e c t o r (1 downto 0) ;
DOB : out s t d l o g i c v e c t o r (15 downto 0) ;
DOPB : out s t d l o g i c v e c t o r (1 downto 0) ;
ENB : in s t d l o g i c ;
SSRB : in s t d l o g i c ;
WEB : in s t d l o g i c
) ;

end component ;

−−−
−− BRAM for 8 KB Memsize
−−−

component RAMB16 S9 S9 i s
port
(

−− A
ADDRA : in s t d l o g i c v e c t o r (10 downto 0) ;
CLKA : in s t d l o g i c ;
DIA : in s t d l o g i c v e c t o r (7 downto 0) ;
DIPA : in s t d l o g i c v e c t o r (0 downto 0) ;
DOA : out s t d l o g i c v e c t o r (7 downto 0) ;
DOPA : out s t d l o g i c v e c t o r (0 downto 0) ;
ENA : in s t d l o g i c ;
SSRA : in s t d l o g i c ;
WEA : in s t d l o g i c ;
−− B
ADDRB : in s t d l o g i c v e c t o r (10 downto 0) ;
CLKB : in s t d l o g i c ;
DIB : in s t d l o g i c v e c t o r (7 downto 0) ;
DIPB : in s t d l o g i c v e c t o r (0 downto 0) ;
DOB : out s t d l o g i c v e c t o r (7 downto 0) ;
DOPB : out s t d l o g i c v e c t o r (0 downto 0) ;
ENB : in s t d l o g i c ;
SSRB : in s t d l o g i c ;
WEB : in s t d l o g i c

) ;
end component ;

−−
begin
−−

140 C.1 WFIFO

−−−
−− 1 KB
−−−

KB1 : i f C BRAM SIZE = 1 generate

ramb16 s36 s36 0 : RAMB16 S36 S36
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(8 downto 0) ,
CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(31 downto 0) ,
DIPA => (others => ’ 0 ’) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (8 downto 0) ,
CLKB => Wfifo Bram ClkxCI ,
DIB => (others => ’ 0 ’) ,
DIPB => (others => ’ 0 ’) ,
DOB => Bram R DataxD0(31 downto 0) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

end generate ;

−−−
−− 4 KB
−−−

KB4 : i f C BRAM SIZE = 4 generate

ramb16 s18 s18 0 : RAMB16 S18 S18
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(9 downto 0) ,
CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(15 downto 0) ,
DIPA => (others => ’ 0 ’) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (9 downto 0) ,
CLKB => Wfifo Bram ClkxCI ,
DIB => (others => ’ 0 ’) ,
DIPB => (others => ’ 0 ’) ,
DOB => Bram R DataxD0(15 downto 0) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

ramb16 s18 s18 1 : RAMB16 S18 S18
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(9 downto 0) ,

VHDL Code 141

CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(31 downto 16) ,
DIPA => (others => ’ 0 ’) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (9 downto 0) ,
CLKB => Wfifo Bram ClkxCI ,
DIB => (others => ’ 0 ’) ,
DIPB => (others => ’ 0 ’) ,
DOB => Bram R DataxD0(31 downto 16) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

end generate ;

−−−
−− 8 KB
−−−

KB8 : i f C BRAM SIZE = 8 generate

ramb16 s9 s9 0 : RAMB16 S9 S9
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(10 downto 0) ,
CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(7 downto 0) ,
DIPA => alwaysZero (0 downto 0) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (10 downto 0) ,
CLKB => Wfifo Bram ClkxCI ,
DIB => "00000000" ,
DIPB => alwaysZero (0 downto 0) ,
DOB => Bram R DataxD0(7 downto 0) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

ramb16 s9 s9 1 : RAMB16 S9 S9
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(10 downto 0) ,
CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(15 downto 8) ,
DIPA => alwaysZero (0 downto 0) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (10 downto 0) ,

142 C.1 WFIFO

CLKB => Wfifo Bram ClkxCI ,
DIB => "00000000" ,
DIPB => alwaysZero (0 downto 0) ,
DOB => Bram R DataxD0(15 downto 8) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

ramb16 s9 s9 2 : RAMB16 S9 S9
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(10 downto 0) ,
CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(23 downto 16) ,
DIPA => alwaysZero (0 downto 0) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (10 downto 0) ,
CLKB => Wfifo Bram ClkxCI ,
DIB => "00000000" ,
DIPB => alwaysZero (0 downto 0) ,
DOB => Bram R DataxD0(23 downto 16) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

ramb16 s9 s9 3 : RAMB16 S9 S9
port map (

−− A (wr i t e)
ADDRA => Bram W AddrxDI(10 downto 0) ,
CLKA => Wfifo Bram ClkxCI ,
DIA => Bram W DataxDI(31 downto 24) ,
DIPA => alwaysZero (0 downto 0) ,
DOA => open ,
DOPA => open ,
ENA => ’ 1 ’ ,
SSRA => Wfifo Bram RstxRI ,
WEA => Bram W WrEnablexDI ,
−− B (read)
ADDRB => Bram R AddrxDI (10 downto 0) ,
CLKB => Wfifo Bram ClkxCI ,
DIB => "00000000" ,
DIPB => alwaysZero (0 downto 0) ,
DOB => Bram R DataxD0(31 downto 24) ,
DOPB => open ,
ENB => ’ 1 ’ ,
SSRB => Wfifo Bram RstxRI ,
WEB => ’ 0 ’
) ;

end generate ;

a lwaysZero <= (others => ’ 0 ’) ;

end architecture imp ;

VHDL Code 143

C.1.4 MPD

#−−
wf i f o v 2 1 0 .mpd
#−−

BEGIN wf i f o

#−−
Per iphe ra l Options
#−−
OPTION IPTYPE = PERIPHERAL
OPTION EDIF=TRUE

#−−
Bus I n t e r f a c e s
#−−
BUS INTERFACE BUS = WOPB, BUS STD = OPB, BUS TYPE = SLAVE
BUS INTERFACE BUS = ROPB, BUS STD = OPB, BUS TYPE = SLAVE

#−−
Parameters
#−−−
PARAMETER c w baseaddr = 0xFFFFFFFF, DT = s t d l o g i c v e c t o r , BUS = WOPB,

MIN SIZE = 0x04
PARAMETER c w highaddr = 0x00000000 , DT = s t d l o g i c v e c t o r , BUS = WOPB
PARAMETER c r baseaddr = 0xFFFFFFFF, DT = s t d l o g i c v e c t o r , BUS = ROPB,

MIN SIZE = 0x04
PARAMETER c r h ighaddr = 0x00000000 , DT = s t d l o g i c v e c t o r , BUS = ROPB

PARAMETER c opb awidth = 32 , DT = in t e g e r
PARAMETER c opb dwidth = 32 , DT = in t e g e r

PARAMETER c wf i fo mems ize = 8 , DT = intege r , VALUES = (1= 1 , 4= 4 , 8= 8)
PARAMETER c wf i fo windwidth = 11 , DT = in t e g e r
PARAMETER c wf i fo bramwidth = 11 , DT = in t e g e r
PARAMETER c wf i f o p i p e l i n emode = 5 , DT = intege r , VALUES = (2= 2 , 3= 3 , 5= 5 , 7= 7)

#−−
Write WFIFO Port
#
entity bus
#−−
PORT opb W abus = OPB ABus , DIR = IN , VEC = [0 : (c opb awidth −1)] , BUS = WOPB
PORT opb W be = OPB BE, DIR = IN , VEC = [0 : ((c opb dwidth /8) −1)] , BUS = WOPB
PORT opb W clk = "" , DIR = IN , BUS = WOPB,

SIGIS = CLK
PORT opb W dbus = OPB DBus , DIR = IN , VEC = [0 : (c opb dwidth −1)] , BUS = WOPB
PORT opb W rnw = OPB RNW, DIR = IN , BUS = WOPB
PORT opb W rst = OPB Rst , DIR = IN , BUS = WOPB
PORT opb W select = OPB select , DIR = IN , BUS = WOPB
PORT opb W seqaddr = OPB seqAddr , DIR = IN , BUS = WOPB
PORT sln W dbus = Sl DBus , DIR = OUT, VEC = [0 : (c opb dwidth −1)] , BUS = WOPB
PORT s ln W errack = Sl errAck , DIR = OUT, BUS = WOPB
PORT s ln W retry = S l r e t r y , DIR = OUT, BUS = WOPB
PORT s ln W toutsup = Sl toutSup , DIR = OUT, BUS = WOPB
PORT s ln W xferack = Sl xferAck , DIR = OUT, BUS = WOPB

#−−
Read WFIFO Port
#−−
PORT opb R abus = OPB ABus , DIR = IN , VEC = [0 : (c opb awidth −1)] , BUS = ROPB
PORT opb R be = OPB BE, DIR = IN , VEC = [0 : ((c opb dwidth /8) −1)] , BUS = ROPB
PORT opb R clk = "" , DIR = IN , BUS = ROPB,

SIGIS = CLK
PORT opb R dbus = OPB DBus , DIR = IN , VEC = [0 : (c opb dwidth −1)] , BUS = ROPB

144 C.2 OPB Recorder

PORT opb R rnw = OPB RNW, DIR = IN , BUS = ROPB
PORT opb R rst = OPB Rst , DIR = IN , BUS = ROPB
PORT opb R se l e c t = OPB select , DIR = IN , BUS = ROPB
PORT opb R seqaddr = OPB seqAddr , DIR = IN , BUS = ROPB
PORT s ln R dbus = Sl DBus , DIR = OUT, VEC = [0 : (c opb dwidth −1)] , BUS = ROPB
PORT s l n R e r ra ck = Sl errAck , DIR = OUT, BUS = ROPB
PORT s l n R r e t r y = S l r e t r y , DIR = OUT, BUS = ROPB
PORT s ln R toutsup = Sl toutSup , DIR = OUT, BUS = ROPB
PORT s l n R x f e r a ck = Sl xferAck , DIR = OUT, BUS = ROPB

END

C.1.5 PAO

#−−
wf i f o v 2 1 0 . pao
#−−

l i b proc common v1 00 b proc common pkg
l i b proc common v1 00 b p s e l e c t
l i b proc common v1 00 b or muxcy

l i b ip i f common v1 00 c i p i f p k g
l i b ip i f common v1 00 c i n t e r r u p t c o n t r o l
l i b ip i f common v1 00 c i p i f s t e e r

l i b opb i p i f v 3 0 0 a r e s e t m i r
l i b opb i p i f v 3 0 0 a opb bam
l i b opb i p i f v 3 0 0 a opb i p i f

l i b opb myip i f v3 00 a opb myipi f

l i b o pb i p i f w f i f o v 1 0 0 a o p b i p i f w f i f o

w f i f o

l i b w f i f o v1 00 a wf i fo bram
l i b w f i f o v1 00 a w f i f o l o g i c
l i b w f i f o v1 00 a w f i f o

C.2 OPB Recorder

−−−
−− opb recorder : record WFIFO bus t ran sac t i on s f o r t e s t i n g
−−−

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

l ibrary unisim ;
use unisim . a l l ;

l ibrary opb reco rde r v1 00 a ;
use opb reco rde r v1 00 a . a l l ;

entity opb recorder i s
generic (

C OPB AWIDTH : i n t e g e r := 32 ;
C OPB DWIDTH : i n t e g e r := 32 ;
C BASEADDR : s t d l o g i c v e c t o r (0 to 31) := X"FFFF_8000" ;
C HIGHADDR : s t d l o g i c v e c t o r := X"FFFF_80FF" ;
C WFIFO R BASE : s t d l o g i c v e c t o r (0 to 31) := X"FFFF_FFFF" ;
C WFIFO R HIGH : s t d l o g i c v e c t o r (0 to 31) := X"0000 _0000" ;

VHDL Code 145

C WFIFO W BASE : s t d l o g i c v e c t o r (0 to 31) := X"FFFF_FFFF" ;
C WFIFO W HIGH : s t d l o g i c v e c t o r (0 to 31) := X"0000 _0000"

) ;
port (

−− Globa l s i g n a l s
OPB Clk : in s t d l o g i c ;
OPB Rst : in s t d l o g i c ;

−− OPB s i g n a l s
OPB ABus : in s t d l o g i c v e c t o r (0 to 31) ;
OPB BE : in s t d l o g i c v e c t o r (0 to 3) ;
OPBRNW : in s t d l o g i c ;
OPB select : in s t d l o g i c ;
OPB seqAddr : in s t d l o g i c ;
OPB DBus : in s t d l o g i c v e c t o r (0 to 31) ;

Sln DBus : out s t d l o g i c v e c t o r (0 to 31) ;
S ln errAck : out s t d l o g i c ;
S l n r e t r y : out s t d l o g i c ;
S ln toutSup : out s t d l o g i c ;
S ln xferAck : out s t d l o g i c
) ;

end entity opb recorder ;

architecture IMP of opb recorder i s

constant t imerS i z e : i n t e g e r := 31 ; −− t imer b i t width−1
constant CommandLsb : i n t e g e r := 15 ;
constant CommandMsb : i n t e g e r := 12 ;
constant t imerStep : unsigned (t imerS i z e downto 0) := to uns igned (1 , t imerS i z e +1);

constant CommandSiz : i n t e g e r := 3 ;
constant ComRead : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0001" ;
constant ComWrite : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0010" ;
constant ComAcRead : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0011" ;
constant ComAcWrite : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0100" ;
constant ComReRead : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0101" ;
constant ComReWrite : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0110" ;
constant ComGetStatus : s t d l o g i c v e c t o r (CommandSiz downto 0) := "0111" ;

constant LogIdSiz : i n t e g e r := 3 ;
constant ReadLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0001" ;
constant WriteLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0010" ;
constant AcReadLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0011" ;
constant AcWriteLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0100" ;
constant ReReadLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0101" ;
constant ReWriteLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0110" ;
constant StatusOkLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "0111" ;
constant StatusErrLogId : s t d l o g i c v e c t o r (LogIdSiz downto 0) := "1000" ;

signal CtimerxD : unsigned (t imerS i z e downto 0) ;
signal NtimerxD : unsigned (t imerS i z e downto 0) ;

signal CcommandxD : s t d l o g i c v e c t o r (CommandSiz downto 0) ;

signal AddrInRdRangexD : s t d l o g i c ;
signal AddrInWrRangexD : s t d l o g i c ;
signal AddrInMyRangexD : s t d l o g i c ;
−− l a s t va lue o f AddrInMyRangexD
signal LastAddrInMyRangexD : s t d l o g i c ;
−− i s h igh f o r one c l o c k cy c l e i f address in range was de t e c t ed
signal AddrCSxD : s t d l o g i c ;

146 C.2 OPB Recorder

signal COpbABusxD : s t d l o g i c v e c t o r (0 to 31) ;
signal COpbRNWxD : s t d l o g i c ;
signal COpbDBusxD : s t d l o g i c v e c t o r (0 to 31) ;

signal NBramAddrWrxD : s t d l o g i c v e c t o r (10 downto 0) ;
signal CBramAddrWrxD : s t d l o g i c v e c t o r (10 downto 0) ;

signal NBramAddrRdxD : s t d l o g i c v e c t o r (10 downto 0) ;
signal CBramAddrRdxD : s t d l o g i c v e c t o r (10 downto 0) ;

signal CBramRdItemCntxD : s t d l o g i c ;
signal NBramRdItemCntxD : s t d l o g i c ;

signal CBramAddrxD : s t d l o g i c v e c t o r (10 downto 0) ;

signal BramDataInxD : s t d l o g i c v e c t o r (35 downto 0) ;
signal BramDataOutxD : s t d l o g i c v e c t o r (35 downto 0) ;
signal BramWrEnablexD : s t d l o g i c ;

signal LogCommandxD : s t d l o g i c v e c t o r (LogIdSiz downto 0) ;

type l o g g e rS t a t e i s (s r e co rd , s p lay , s i n i t) ;
type p laye rS ta t e i s (s i d l e , s hasMoreAck , s getNextOk , s getNextAck) ;

signal CBusLoggerState : l o gg e rS t a t e ;
signal NBusLoggerState : l o gg e rS t a t e ;

signal CPlayerState : p l aye rS ta t e ;
signal NPlayerState : p l aye rS ta t e ;

constant ComInit : s t d l o g i c v e c t o r (1 downto 0) := "00" ;
constant ComPlay : s t d l o g i c v e c t o r (1 downto 0) := "01" ;
constant ComGetNext : s t d l o g i c v e c t o r (1 downto 0) := "10" ;
constant ComHasMore : s t d l o g i c v e c t o r (1 downto 0) := "11" ;

signal InputCommandxD : s t d l o g i c v e c t o r (1 downto 0) ;
signal InputCommandLongxD : s t d l o g i c v e c t o r (31 downto 0) ;

signal BramHasMoreTokensxD : s t d l o g i c ;

signal CCommandAckxDO : s t d l o g i c ;
signal NCommandAckxD : s t d l o g i c ;

signal CDataOutputxDO : s t d l o g i c v e c t o r (31 downto 0) ;
signal NDataOutputxD : s t d l o g i c v e c t o r (31 downto 0) ;

signal alwaysZero : s t d l o g i c v e c t o r (0 downto 0) ;

−−−
−− Component Dec lara t ions
−−−

component RAMB16 S36 S36 i s
port
(

−− A
ADDRA : in s t d l o g i c v e c t o r (8 downto 0) ;
CLKA : in s t d l o g i c ;
DIA : in s t d l o g i c v e c t o r (31 downto 0) ;
DIPA : in s t d l o g i c v e c t o r (3 downto 0) ;
DOA : out s t d l o g i c v e c t o r (31 downto 0) ;
DOPA : out s t d l o g i c v e c t o r (3 downto 0) ;
ENA : in s t d l o g i c ;
SSRA : in s t d l o g i c ;
WEA : in s t d l o g i c ;
−− B

VHDL Code 147

ADDRB : in s t d l o g i c v e c t o r (8 downto 0) ;
CLKB : in s t d l o g i c ;
DIB : in s t d l o g i c v e c t o r (31 downto 0) ;
DIPB : in s t d l o g i c v e c t o r (3 downto 0) ;
DOB : out s t d l o g i c v e c t o r (31 downto 0) ;
DOPB : out s t d l o g i c v e c t o r (3 downto 0) ;
ENB : in s t d l o g i c ;
SSRB : in s t d l o g i c ;
WEB : in s t d l o g i c

) ;
end component ;

−−−
−− Begin a r c h i t e c t u r e
−−−

begin

−−−
−− connect ions
−−−

CcommandxD <= COpbABusxD(CommandMsb to CommandLsb) ;

alwaysZero <= (others => ’ 0 ’) ;

ramb16 S36 S36 0 : RAMB16 S36 S36
port map (

−− A (used)
ADDRA => CBramAddrxD(8 downto 0) ,
CLKA => OPB Clk ,
DIA => BramDataInxD(31 downto 0) ,
DIPA => BramDataInxD(35 downto 32) ,
DOA => BramDataOutxD(31 downto 0) ,
DOPA => BramDataOutxD(35 downto 32) ,
ENA => ’ 1 ’ ,
SSRA => OPB Rst ,
WEA => BramWrEnablexD ,
−− B (not used)
ADDRB => (others => ’ 0 ’) ,
CLKB => OPB Clk ,
DIB => (others => ’ 0 ’) ,
DIPB => (others => ’ 0 ’) ,
DOB => open ,
DOPB => open ,
ENB => ’ 0 ’ ,
SSRB => OPB Rst ,
WEB => ’ 0 ’

) ;

−−−
−− command to l o g
−−−

p LogCommand : process (CcommandxD, COpbDBusxD) i s
begin

case CcommandxD i s

when ComRead =>
LogCommandxD <= ReadLogId ;

when ComWrite =>
LogCommandxD <= WriteLogId ;

when ComAcRead =>
LogCommandxD <= AcReadLogId ;

148 C.2 OPB Recorder

when ComAcWrite =>
LogCommandxD <= AcWriteLogId ;

when ComReRead =>
LogCommandxD <= ReReadLogId ;

when ComReWrite =>
LogCommandxD <= ReWriteLogId ;

when ComGetStatus =>
−− No p i p e l i n e r e g i s t e r !
i f OPB DBus(31) = ’0 ’ then

LogCommandxD <= StatusOkLogId ;
else

LogCommandxD <= StatusErrLogId ;
end i f ;

when others =>
LogCommandxD <= (others => ’ 0 ’) ;

end case ;

end process p LogCommand ;

−−−
−− next i n t e r na l s t a t e
−−−

p NextState : process (AddrCSxD , InputCommandxD , OPB Rst , CBusLoggerState) i s
begin

−− command in my address range
i f AddrCSxD = ’1 ’ then

case InputCommandxD i s
when ComInit =>

NBusLoggerState <= s i n i t ;
when ComPlay =>

i f CBusLoggerState = s r e c o rd then
NBusLoggerState <= s p lay ;

else
NBusLoggerState <= CBusLoggerState ;

end i f ;
when others =>

i f CBusLoggerState = s i n i t then
NBusLoggerState <= s r e c o rd ;

else
NBusLoggerState <= CBusLoggerState ;

end i f ;
end case ;

−− no command rece i v ed
else

i f CBusLoggerState = s i n i t then
NBusLoggerState <= s r e c o rd ;

else
NBusLoggerState <= CBusLoggerState ;

end i f ;
end i f ;

end process p NextState ;

−−−
−− next p l ayer s t a t e
−−−
p NextPlayState : process (AddrCSxD , InputCommandxD , OPB Rst , CPlayerState) i s
begin

case CPlayerState i s
when s hasMoreAck =>

NPlayerState <= s i d l e ;

VHDL Code 149

when s getNextOk =>
NPlayerState <= s getNextAck ;

when s getNextAck =>
NPlayerState <= s i d l e ;

when s i d l e =>

i f AddrCSxD = ’1 ’ then
case InputCommandxD i s

when ComGetNext =>
NPlayerState <= s getNextOk ;

when ComHasMore =>
NPlayerState <= s hasMoreAck ;

when others =>
NPlayerState <= CPlayerState ;

end case ;
else

NPlayerState <= CPlayerState ;
end i f ;

when others =>
NPlayerState <= CPlayerState ;

end case ;
end process p NextPlayState ;

−−−
−− memzing
−−−

p BusLogger : process (OPB Clk) i s
begin

i f OPB Rst = ’1 ’ then
−− r e s e t t imer
CtimerxD <= (others => ’ 0 ’) ;

−− r e s e t wr i t e and address
CBramAddrWrxD <= (others => ’ 0 ’) ;
CBramAddrRdxD <= (others => ’ 0 ’) ;

−− s t a r t in record ing mode
CBusLoggerState <= s r e c o rd ;
CPlayerState <= s i d l e ;

LastAddrInMyRangexD <= ’0 ’ ;
CCommandAckxDO <= ’0 ’ ;
CDataOutputxDO <= (others => ’ 0 ’) ;

CBramRdItemCntxD <= ’0 ’ ;

else
i f OPB Clk ’ event and OPB Clk = ’1 ’ then

−− save input
COpbABusxD <= OPB ABus ;
COpbRNWxD <= OPBRNW;
COpbDBusxD <= OPB DBus ;

−− update t imer
i f CBusLoggerState = s i n i t then

CtimerxD <= (others => ’ 0 ’) ;
else

CtimerxD <= NtimerxD ;
end i f ;

−−−

150 C.2 OPB Recorder

−− BRAM
−−−
−− Write enab le
i f CBusLoggerState = s r e c o rd then

BramWrEnablexD <= AddrInRdRangexD or AddrInWrRangexD ;
else

BramWrEnablexD <= ’0 ’ ;
end i f ;

−− Write address
i f CBusLoggerState = s r e c o rd then

CBramAddrWrxD <= NBramAddrWrxD;
else

CBramAddrWrxD <= CBramAddrWrxD;
end i f ;

−− Read address
i f CBusLoggerState = s p l ay then

CBramAddrRdxD <= NBramAddrRdxD ;
else

CBramAddrRdxD <= CBramAddrRdxD ;
end i f ;

−− used address
i f CBusLoggerState = s r e c o rd then

CBramAddrxD <= CBramAddrWrxD;
else

CBramAddrxD <= CBramAddrRdxD ;
end i f ;

−− Data
BramDataInxD(35 downto 32) <= LogCommandxD ;
BramDataInxD(31 downto 0) <= s t d l o g i c v e c t o r (NtimerxD) ;

−−−
−− opb output
−−−
CCommandAckxDO <= NCommandAckxD;

−−−
−− update i n t e rna l s t a t e
CBusLoggerState <= NBusLoggerState ;
CPlayerState <= NPlayerState ;
LastAddrInMyRangexD <= AddrInMyRangexD ;
CDataOutputxDO <= NDataOutputxD ;
CBramRdItemCntxD <= NBramRdItemCntxD ;

end i f ;
end i f ;

end process p BusLogger ;

−−−
−− recorder output
−−−

p DataOutput : process (NCommandAckxD, NBusLoggerState , NPlayerState , CBramRdItemCntxD) i s
begin

i f NCommandAckxD = ’0 ’ then
NDataOutputxD <= (others => ’ 0 ’) ;

else
i f NBusLoggerState = s p l ay then

case NPlayerState i s
when s hasMoreAck =>

NDataOutputxD <= "0000000000000000000000000000000" & BramHasMoreTokensxD ;
when s getNextAck =>

i f CBramRdItemCntxD = ’0 ’ then

VHDL Code 151

NDataOutputxD <= BramDataOutxD(31 downto 0) ;
else

NDataOutputxD <= "0000000000000000000000000000" & BramDataOutxD(35 downto 32) ;
end i f ;

when others =>
NDataOutputxD <= (others => ’ 0 ’) ;

end case ;
else

NDataOutputxD <= (others => ’ 0 ’) ;
end i f ;

end i f ;
end process p DataOutput ;

−−−
−− increment counter
−−−
NtimerxD <= CtimerxD + timerStep ;

−−−
−− increment bram wr i t e address i f w f i f o addr range i s l e f t
−−−

NBramAddrWrxD <= s t d l o g i c v e c t o r (unsigned (CBramAddrWrxD) + 1) when
BramWrEnablexD = ’1 ’ and (AddrInRdRangexD or AddrInWrRangexD) = ’0 ’
else CBramAddrWrxD;

−−−
−− increment bram read addres on getNext s t a t e i f the current item
−− was read comple t l y
−−−
NBramAddrRdxD <= s t d l o g i c v e c t o r (unsigned (CBramAddrRdxD) + 1) when

CPlayerState = s getNextAck and CBramRdItemCntxD = ’1 ’
else CBramAddrRdxD ;

−−−
−− address decoding
−−−
AddrInRdRangexD <= ’1 ’ when unsigned (COpbABusxD) >= unsigned (C WFIFO R BASE)

and unsigned (COpbABusxD) <= unsigned (C WFIFO R HIGH)
else ’ 0 ’ ;

AddrInWrRangexD <= ’1 ’ when unsigned (COpbABusxD) >= unsigned (C WFIFO W BASE)
and unsigned (COpbABusxD) <= unsigned (C WFIFO W HIGH)

else ’ 0 ’ ;

AddrInMyRangexD <= ’1 ’ when unsigned (COpbABusxD) >= unsigned (C BASEADDR)
and unsigned (COpbABusxD) <= unsigned (C HIGHADDR)

else ’ 0 ’ ;

AddrCSxD <= ’1 ’ when LastAddrInMyRangexD = ’0 ’ and AddrInMyRangexD = ’1 ’
else ’ 0 ’ ;

−−−
−− command decoding
−−−
InputCommandLongxD <= s t d l o g i c v e c t o r (unsigned (COpbABusxD) − unsigned (C BASEADDR)) ;
InputCommandxD <= InputCommandLongxD(1 downto 0) ;

−−−
−− bram f i l l l e v e l
−−−
BramHasMoreTokensxD <= ’1 ’ when CBramAddrRdxD < CBramAddrWrxD

else ’ 0 ’ ;

−− t o g g l e on every read

152 C.2 OPB Recorder

NBramRdItemCntxD <= (CBramRdItemCntxD xor ’ 1 ’) when CPlayerState = s getNextAck
else CBramRdItemCntxD ;

−−−
−− unused bus s i g n a l s
−−−
Sln errAck <= ’0 ’ ;
S l n r e t r y <= ’0 ’ ;
S ln toutSup <= ’0 ’ ;

Sln DBus <= CDataOutputxDO ;

−− s i g n a l acknowledge i f a new address in my range was de t e c t ed
−− de lay ack f o r ge t next by one cy c l e
NCommandAckxD <= ’1 ’ when (AddrCSxD = ’1 ’ and CBusLoggerState /= s p l ay)

or NPlayerState = s getNextAck
or NPlayerState = s hasMoreAck
or (AddrCSxD = ’1 ’ and CBusLoggerState = s p l ay and InputCommandxD = ComInit)

else ’ 0 ’ ;

S ln xferAck <= CCommandAckxDO;

end architecture IMP;

C.2.1 MPD

BEGIN opb recorder

Per iphe ra l Options
OPTION IPTYPE = PERIPHERAL
OPTION IMP NETLIST = TRUE
OPTION SIM MODELS = BEHAVIORAL : STRUCTURAL
OPTION USAGE LEVEL = BASE USER
OPTION CORE STATE = ACTIVE
#OPTION IP GROUP = MICROBLAZE:PPC:LOGICORE:SERIAL
OPTION IP GROUP = MICROBLAZE:PPC:LOGICORE:LOGGER
OPTION ARCH SUPPORT = qrv i r t e x2 : qv i r t ex2 : spartan2 : spartan2e : spartan3 : v i r t e x : v i r t e x2 :
v i r t ex2p : v i r t e x4 : v i r t e x e

IO INTERFACE IO IF = uart 0 , IO TYPE = XIL UART V1

Bus I n t e r f a c e s
BUS INTERFACE BUS = SOPB, BUS STD = OPB, BUS TYPE = SLAVE

Gener ics for VHDL or Parameters for Ver i l og
PARAMETER C BASEADDR = 0xFFFFFFFF, DT = s t d l o g i c v e c t o r , MIN SIZE = 0x100
PARAMETER C HIGHADDR = 0x00000000 , DT = s t d l o g i c v e c t o r
PARAMETER C OPB DWIDTH = 32 , DT = in t e g e r
PARAMETER C OPB AWIDTH = 32 , DT = in t e g e r

PARAMETER C WFIFO R BASE = 0xFFFFFFFF, DT = s t d l o g i c v e c t o r , PERMIT = BASE USER
PARAMETER C WFIFO R HIGH = 0x00000000 , DT = s t d l o g i c v e c t o r , PERMIT = BASE USER
PARAMETER C WFIFO W BASE = 0xFFFFFFFF, DT = s t d l o g i c v e c t o r , PERMIT = BASE USER
PARAMETER C WFIFO W HIGH = 0x00000000 , DT = s t d l o g i c v e c t o r , PERMIT = BASE USER

Ports
PORT OPB Clk = "" , DIR = IN , SIGIS = CLK, BUS = SOPB
PORT OPB Rst = OPB Rst , DIR = IN , BUS = SOPB
PORT OPB ABus = OPB ABus , DIR = IN , VEC = [0 :C OPB AWIDTH−1] , BUS = SOPB
PORT OPB BE = OPB BE, DIR = IN , VEC = [0 :C OPB DWIDTH/8−1] , BUS = SOPB
PORT OPBRNW = OPB RNW, DIR = IN , BUS = SOPB
PORT OPB select = OPB select , DIR = IN , BUS = SOPB
PORT OPB seqAddr = OPB seqAddr , DIR = IN , BUS = SOPB

VHDL Code 153

PORT OPB DBus = OPB DBus , DIR = IN , VEC = [0 :C OPB DWIDTH−1] , BUS = SOPB

PORT Sln DBus = Sl DBus , DIR = OUT, VEC = [0 :C OPB DWIDTH−1] , BUS = SOPB
PORT Sln ErrAck = Sl errAck , DIR = OUT, BUS = SOPB
PORT Sln Retry = S l r e t r y , DIR = OUT, BUS = SOPB
PORT Sln ToutSup = Sl toutSup , DIR = OUT, BUS = SOPB
PORT Sln XferAck = Sl xferAck , DIR = OUT, BUS = SOPB

END

C.3 UART Logger

−−−
−− ua r t l o g g e r : s imu la t ion model f o r uart l i t e ip
−−−

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

use STD. t e x t i o . a l l ;

l ibrary unisim ;
use unisim . a l l ;

l ibrary opb uar t l ogge r v1 00 a ;
use opb uar t l ogge r v1 00 a . a l l ;

entity OPB UARTLOGGER i s
generic (

C OPB AWIDTH : i n t e g e r := 32 ;
C OPB DWIDTH : i n t e g e r := 32 ;
C BASEADDR : s t d l o g i c v e c t o r (0 to 31) := X"FFFF_8000" ;
C HIGHADDR : s t d l o g i c v e c t o r := X"FFFF_80FF" ;
C DATA BITS : i n t e g e r range 5 to 8 := 8 ;
C CLK FREQ : i n t e g e r := 125 000 000 ;
C BAUDRATE : i n t e g e r := 19 200 ;
C USE PARITY : i n t e g e r := 0 ;
C ODD PARITY : i n t e g e r := 1 ;
C LOG FILE NAME: s t r i n g := "uart_logger_1.out"

) ;
port (

−− Globa l s i g n a l s
OPB Clk : in s t d l o g i c ;
OPB Rst : in s t d l o g i c ;

−− OPB s i g n a l s
OPB ABus : in s t d l o g i c v e c t o r (0 to 31) ;
OPB BE : in s t d l o g i c v e c t o r (0 to 3) ;
OPBRNW : in s t d l o g i c ;
OPB select : in s t d l o g i c ;
OPB seqAddr : in s t d l o g i c ;
OPB DBus : in s t d l o g i c v e c t o r (0 to 31) ;

UART DBus : out s t d l o g i c v e c t o r (0 to 31) ;
UART errAck : out s t d l o g i c ;
UART retry : out s t d l o g i c ;
UART toutSup : out s t d l o g i c ;
UART xferAck : out s t d l o g i c ;

−− UART s i g n a l s
In t e r rup t : out s t d l o g i c ;
RX : in s t d l o g i c ;
TX : out s t d l o g i c
) ;

154 C.3 UART Logger

end entity OPB UARTLOGGER;

architecture IMP of OPB UARTLOGGER i s

signal UartXferAckxDO : s t d l o g i c ;
signal InputLetterxDI : s t d l o g i c v e c t o r (7 downto 0) ;

begin
InputLetterxDI <= OPB DBus(24 to 31) ;

UartXferAckxDO <= ’1 ’ when (OPB ABus(0 to 15) = C BASEADDR(0 to 15) and OPB select = ’1 ’)
else ’ 0 ’ ;

UART xferAck <= UartXferAckxDO ;
UART DBus <= (others => ’ 0 ’) ;
UART errAck <= ’0 ’ ;
UART retry <= ’0 ’ ;
UART toutSup <= ’0 ’ ;
I n t e r rup t <= ’0 ’ ;
TX <= ’0 ’ ;

p UartLogger : process (OPB Clk) i s
f i l e my output : TEXT open WRITE MODE i s C LOG FILE NAME;
variable my line : LINE ;

begin

i f OPB Rst = ’1 ’ then
−− nothing

else
i f OPB Clk ’ event and OPB Clk = ’1 ’ and UartXferAckxDO = ’1 ’ then

−− ingnore inpu t s o f va lue zero
i f (t o i n t e g e r (s igned (InputLetterxDI))/=0) then

−− wr i t e l i n e to f i l e i f i t s a \n
i f (t o i n t e g e r (s igned (InputLetterxDI))=10) then
−− not suported by x s t
wr i t e l i n e (my output , my l ine) ;

else
−− conver t to char and add to l i n e b u f f e r
−− not suported by x s t
wr i t e (my line , CHARACTER’VAL(t o i n t e g e r (s igned (InputLetterxDI)))) ;

end i f ;

end i f ;

end i f ;
end i f ;

end process p UartLogger ;

end architecture IMP;

D WFIFO Test-Cases

D.1 Single Bus Architecture

wr 1 Check if a single data item is transferred correctly: Open write
window of size one, write 0x12345678 to the window and release
the window. Open a read window of size one, read its content and
and check if it equal to the value written.

wr 2 Correct read and write of all positions in a window of size six: Open
write window of size six, write to the six addresses the values 0xA
to 0xF and release the write window. Open a read window of size
six, read all elements and check if they equal to the value written

wr 3 Do the same as for singlebus wr 2 but do it twice.

w err 1 Error before acquiring: write before acquiring any window and
check if error is signalled.

w err 2 Error after release: write after a write window has been correctly
released and check if an error is signalled.

w err 3 Write outside a correctly acquired write window and check if an
error is signalled.

w err 4 Acquire a new write window before the old one has been released
and check if an error is signalled.

r err 1 Read before acquiering a read window: acquire a write window of
size six, release the write window. Read from the WFIFO and check
if an error is signalled.

r err 2 Read after releasing a read window: acquire a write window of size
six, release the write window, acquire a read window of size six and
release the read window. Read from the WFIFO and check if an
error is signalled

r err 3 Read outside an acquired read window: acquire a write window of
size six, release the write window. Then acquire a read window of
size six and read address 7 and check if an error is signalled.

r err 4 Acquire a new read window before releasing the old one: acquire a
write window of size six, release the write window, and acquire a
read window of size two. Then acquire a read window of size two
and check if an error is signalled

156 D.1 Single Bus Architecture

r err 5 Try to read before doing anything else and check if an error is
signalled

r err 6 Acquire a read window and check if an error is signalled. Read
address 0 and check if an error is signalled. Release the read window
and check if an error is signalled.

Table D.1: Single bus test cases

WFIFO Test-Cases 157

D.2 Dual Bus Architecture

Name Function

mir 1 Processor A and B both read the MIR register of the WFIFO and check if the
value is correct. The MIR value is written to the uart log file.

wr 1

- Processor A: acquire write window (nonblocking) of size one, write the
value 0xAAAAFFFF to it and release the window.

- Processor B: acqure read window (blocking) of size one, read the data
item and check if its equal to the value written. Release the read
window.

wr 2

- Processor A: Same as in wr 1.

- Processor B: acqure read window nonblocking of size one. Keep on
acquiring until ok is returned. Then read the data item and check if its
equal to the value written. Release the read window. Print the number
of pollings.

wr 3

- Processor A: acquire write window (nonblocking) of size two, write the
value 0xA at position 0 and 0xB at 1 and release the window. Do the
same thing again but write now 0xC and 0xD.

- Processor B: acqure read window (blocking) of size four and read it in
the reverse order. Check if the sequence is equal to 0xD, 0xC, 0xB,
0xA.

wr 4

- Processor A: acquire write window (nonblocking) of maximum size and
write offset+7 to each position.

- Processor B: acqure read window (blocking) of maximum size and check
all values.

werr 1
- Processor A:

- Processor B:

Table D.2: Dualbus test cases

158 D.2 Dual Bus Architecture

Bibliography

[1] E. A. de Kock, J.-Y. Brunel, K. A. Vissers, P. Lieverse, P. van der Wolf, W. M. Kruijtzer,
W. J. M. Smits, and G. Essink. Yapi: Application modeling for signal processing
systems. In Proceedings of 37th Conference on Design Automation (DAC’00), pages
402–405.

[2] Stephen A. Edwards and Olivier Tardieu. Shim: A deterministic model for heteroge-
neous embedded systems. In Proceedings of the ACM Conference on Embedded Software
(Emsoft), Jersey City, NJ, September 2005.

[3] Om Prakash Gangwal, André Nieuwland, and Paul Lippens. A scalable and flexible data
synchronization scheme for embedded hw-sw shared-memory systems. In Proceedings
of ISSS, October 1-3, 2001, Montréal, Québec, Canada.

[4] Kai Huang and Ji Gu. Automatic platform synthesis and application mapping for
multiprocessor systems on-chip. Technical report, Leiden Embedded Research Center,
LIACS, Netherlands, 2005.

[5] Gilles Kahn. The semantics of a simple language for parallel programming. In Proceed-
ings of IFIP Congress 74, Stockholm, Sweden, August 5-10 1974, pages 471–475.

[6] Bart Kienhuis. Matparser: An array dataflow analysis compiler. Technical report,
University of California at Berkeley, February 2000.

[7] Bart Kienhuis, Edwin Rijpkema, and Ed Deprettere. Compaan: Deriving process net-
works from matlab for embedded signal processing architectures. In Proceedings of the
8th International Workshop on Hardware/Software Codesign (CODES 2000), May 3 –
5 2000, San Diego, CA, USA.

[8] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System Design
using Kahn Process Networks: The Compaan/Laura Approach. In Proceedings of the
7th Int. Conf. Design, Automation and Test in Europe (DATE 2004), pages 340–345.

[9] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A compile time based approach
for solving out-of-order communication in Kahn Process Networks. In Proceedings of
International Conference on Application Specific Array Processors (ASAP 2002).

[10] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A hierarchical classification
scheme to derive interprocess communication in process networks. In Proceedings of the
14th IEEE Int. Conf. on Application-specific Systems, Architectures, and Processors
(ASAP 2004).

[11] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Realizations of the extended
linearization model in the compaan tool chain. In Proceeding of the 2th Int. Workshop
on Systems, Architectures, Modeling, and Simulation, (SAMOS 2002), July, Samos,
Greece, 2002s.

160 Bibliography

[12] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A technique to determine inter-
process communication in the polyhedral model. In Proceedings of the 10th Int. Work-
shop on Compilers for Parallel Computers, (CPC 2003), January, Amsterdam, The ,
Netherlands 2003.

[13] Pieter van der Wolf, Erwin de Kock, Tomas Henriksson, Wido Kruijtzer, and Gerben
Essink. Design and programming of embedded multiprocessors: An interface-centric
approach. In Proceedings of CODES+ISSS 2004 Stockholm, Sweden.

[14] Xilinx Inc. OPB IPIF (v3.01a) Product Specification, Octobre 2004.

[15] Claudiu Zissulescu-Ianculescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprettere.
Solving out of order communication using CAM memory; an implementation. In Pro-
ceedings of the 13th Annual Workshop on Circuits, Systems and Signal Processing
(ProRISC 2002), 28-29 November, Utrecht, Netherlands, 2002.

List of Figures

1.1 MIMD example architecture, . 2
1.2 KPN based architecture with a dedicated structure. 3
1.3 Chapter dependencies of the practical work. 6

2.1 Simplified schematic of FIFO and WFIFO. 7
2.2 States of the WFIFO write port. 8
2.3 States of the WFIFO read port. 9
2.4 Model for data transport in WFIFO buffers 10
2.5 Example WFIFO process network with P1 as data source and P3 as data sink. 11
2.6 Building blocks for the WFIFO architecture. 12
2.7 WFIFO example architecture. 12
2.8 Topology of WFIFO process network for a consumer producer pair. 13
2.9 Source code of the algorithm. 13
2.10 Source code for the WFIFO process network. 14

3.1 Overview of practical work. 15
3.2 WFIFO implementation with IPIF bus adaptors. 17
3.3 WFIFO architecture overview . 17
3.4 Single and dual bus WFIFO. 18
3.5 WFIFO state machine architecture . 19
3.6 Timing diagram for WFIFO instructions. 20
3.7 WFIFO state transition of the write state machine. 22
3.8 WFIFO state transition of the read state machine. 24
3.9 Memory management example for a memory of size 16. 25
3.10 WFIFO bus interface instruction format. 27
3.11 WFIFO pipeline architecture . 29
3.12 Timing diagram for BRAM writing. 33
3.13 Timing diagram for BRAM reading. 34
3.14 WFIFO top architecture . 39
3.15 WFIFO-logic processes and interconnections. 40
3.16 Legend for architecture drawings. 41
3.17 WFIFO memory usage calculation architecture 42
3.18 Not gated signal in p WfifoStateMemzing 42
3.19 Gated signals in p WfifoStateMemzing . 43
3.20 Switched signals in p WfifoStateMemzing. 43

4.1 Overview of practical work. 45
4.2 Communication path from application code to WFIFO IP 45

5.1 Overview of practical work. 59
5.2 Possible sources for test data. 61

162 List of Figures

5.3 Architecture example for WFIFO IP . 62
5.4 Single bus WFIFO IP test architecture. 63
5.5 Dual bus WFIFO IP test architecture. 64
5.6 Libraries used in the iptester . 68
5.7 Assembled system for FPGA simulation and single bus architecture. 70
5.8 Assembled system for Modelsim simulation and single bus architecture. . . . 70
5.9 Directory structure of the testing environment. 73
5.10 System states of the recorder . 75
5.11 Play states of the recorder . 75

6.1 Overview of practical work. 77
6.2 Overview of the WFIFO architecture design and testing flow. 78
6.3 Example WFIFO process network. 80
6.4 Example architecture for platform definition. 84

7.1 Life-time for the P/C pair from Example 7.1. 93
7.2 Data stream with read and write windows of equal size. 93
7.3 Non-overlapping read and write windows. 95
7.4 Read and write windows with a brick wall structure. 95
7.5 Other read and write window structure. 95
7.6 Data stream with read and write windows of equal size. 96
7.7 Example architecture for non-blocking read. 97

8.1 WFIFO . 100
8.2 Reordering Memory . 100
8.3 Reordering realisation without FIFO. 104

List of Tables

2.1 WFIFO instructions for read and write port. 7

3.1 Interfaces of PPC and MB . 16
3.2 WFIFO write states. 21
3.3 WFIFO write state transitions. 22
3.4 WFIFO read state . 23
3.5 WFIFO read state transitions. 24
3.6 Instruction format address bus. 27
3.7 Instruction format data bus . 28
3.8 Items to include in the instruction format with required size and possible bus

selection. 28
3.9 Possible mappings for the address bus. 29
3.10 WFIFO pipeline modes . 30
3.11 WFIFO design parameters. 30
3.12 WFIFO inputs. 31
3.13 Sub-vectors of IP2Bus Data and IP2Bus Addr. 32
3.14 WFIFO outputs . 32
3.15 WFIFO BRAM IO signals . 33
3.16 Free memory state transitions. 34
3.17 Fifo size state transitions . 35
3.18 Variables for memory management. 35
3.19 WFIFO read state transitions. 36
3.20 WFIFO write state transitions. 37
3.21 Write state machine outputs. 38
3.22 Read state machine outputs. 38
3.23 p WrCommandMemless: Truth Table . 41
3.24 p RdCommandMemless: Truth Table . 41

4.1 Summary of WFIFO API instructions. 46
4.2 API Return Values. 47
4.3 API Parameters. 47
4.4 Encoding of WFIFO ID value . 51
4.5 Number of required clock cycles for WFIFO instruction without assertion. . 53
4.6 Number of required clock cycles for WFIFO instruction with assertion. . . . 53
4.7 Required time for error signalling . 58

5.1 API of OPB Recorder . 65
5.2 Parameters for iptester function call . 71
5.3 OPB recorder design parameters. 74
5.4 Encoding of WFIFO commands by the OPB-Recorder 75
5.5 UART-Logger design parameter. 76

164 List of Tables

6.1 Topology file format. x is the unique number of the corresponding block. . . 80
6.2 Mapping file format. 81
6.3 Mapping command line options . 82
6.4 Platform file format. x is the unique block number. 84
6.5 WAB command line options. 86

7.1 Naming convention for channel classification. 90

8.1 Summary of API comparison. 105
8.2 Removing data from the communication channel. 105
8.3 Memory requirement . 105
8.4 How to check disposability . 106

D.1 Single bus test cases . 156
D.2 Dualbus test cases . 157

