
 Eidgenössische Technische Hochschule Zürich
 Swiss Federal Institute of Technology Zurich
 Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

 Institut für Technische Informatik
 und Kommunikationsnetze
 Computer Engineering and Networks Laboratory

Online Sensor Network Analysis Tools

Thomas Kalt

Masterthesis
MA-2006.17

Summer Term 2006

Betreuer: Jan Beutel
Matthias Dyer

Professor: Lothar Thiele

Contents

Abstract vii

1 Introduction 1
1.1 Wireless Sensor Network . 1
1.2 Deployment-Support Network 2
1.3 Jaws . 3

2 Motivation 5
2.1 Scenario . 5
2.2 Requirements . 5

3 Related Work 7

4 DSN Server 9
4.1 Concept . 9
4.2 Technology . 11

4.2.1 Java . 11
4.2.2 MySQL . 11
4.2.3 XMLRPC . 11

4.3 Implementation . 12
4.3.1 Communication . 12
4.3.2 Parser . 13
4.3.3 SQL . 20
4.3.4 XMLRPC . 21
4.3.5 Thread . 21
4.3.6 LoggingThread.java 22

4.4 Functionalities . 24
4.4.1 getDSN.getDSN . 24
4.4.2 setNodeInfo.setNodeInfo 26
4.4.3 getDBEvent.getDBEvent 26
4.4.4 getRPCS.getRPCS . 26
4.4.5 getConinfo.getConinfo 26
4.4.6 uploadFile.uploadFile 30
4.4.7 getFileList.getFileList 30

i

ii CONTENTS

4.4.8 loadFile.loadFile . 30
4.4.9 targetFlash.targetFlash 30
4.4.10 targetCommand.targetCommand 30
4.4.11 dsnCommand.dsnCommand 30
4.4.12 dsnVerbosity.dsnVerbosity 30
4.4.13 setDSNLocation.setDSNLocation 30
4.4.14 threadSwitch.threadSwitch 33
4.4.15 threadSwitch.get . 33
4.4.16 getServerTime.getServerTime 33
4.4.17 user.user . 33

4.5 Installation . 35
4.5.1 Requirements . 35
4.5.2 Installation . 36
4.5.3 Server.properties . 36

5 Web Based DSN Tool 43
5.1 Functionalities . 43
5.2 Installation . 45

5.2.1 Requirements . 45
5.2.2 Installation . 45
5.2.3 properties.php . 46

6 Transport Performance Tests 47
6.1 Scenarios . 47
6.2 Performance Evaluation . 48

6.2.1 Sending Performance 48
6.2.2 Push Log Stream . 49
6.2.3 Pull Log Stream . 50
6.2.4 Push Log Burst with Retransmission 56
6.2.5 Pull Log Burst . 57
6.2.6 Conclusion . 58

7 Conclusion 63
7.1 Summary . 63
7.2 Future Work . 64

A XMLRPC Examples 65
A.1 Java Code . 65
A.2 PHP Code . 67

B Problem Task 71

List of Figures

1.1 The concept of the DSN . 2
1.2 The graphical user interface for the DSN 4

4.1 Concept of the DSN . 9
4.2 Concept of the DSN Server 12
4.3 Flow chart of the CmdParserLogging 1/2 17
4.4 Flow chart of the CmdParserLogging 2/2 18
4.5 Flow chart of the CmdParserRPCS 19
4.6 Linear interpolation of DSNTimetoTime 20

5.1 Web based DSN Tool . 44

6.1 Log generating modes . 48
6.2 Measured yield of correctly received log messages in push log

stream mode . 49
6.3 Used model of pull log stream. 51
6.4 Plot of the pull log stream simulation with the settings r=13

l=0,5 d=1 c=25 . 52
6.5 Plot of the pull log stream simulation with the settings r=13

l=1 d=1 c=25 . 53
6.6 Plot of the pull log stream simulation with the settings r=13

l=1,5 d=1 c=25 . 54
6.7 Plot of the pull log stream simulation with the settings r=13

l=2 d=1 c=25 . 55
6.8 Measured yield of correctly received log messages in push log

burst with retransmission mode 56
6.9 Illustration of the pull log burst method. 57
6.10 Both methods of the log stream model. 59
6.11 Both methods of the log burst model. 60

iii

iv LIST OF FIGURES

List of Tables

4.1 The pattern that the Parser knows. 14
4.2 The header of a log message. 15
4.3 Parameter and Return of getDSN.getDSN 24
4.4 The fields of the table dsninfo 25
4.5 Parameter and Return of setNodeInfo.setNodeInfo 26
4.6 Parameter and Return of getDBEvent.getDBEvent 27
4.7 The fields of the table dsnlog 28
4.8 Parameter and Return of getRPCS.getRPCS 28
4.9 The fields of the table dsnrpcs 29
4.10 Parameter and Return of getConinfo.getConinfo 29
4.11 The fields of the table dsnconinfo 31
4.12 Parameter and Return of uploadFile.uploadFile 31
4.13 Parameter and Return of getFileList.getFileList 31
4.14 Parameter and Return of loadFile.loadFile 31
4.15 Parameter and Return of targetFlash.targetFlash 32
4.16 Parameter and Return of targetCommand.targetCommand . 32
4.17 Parameter and Return of dsnCommand.dsnCommand 32
4.18 Parameter and Return of dsnVerbosity.dsnVerbosity 32
4.19 Parameter and Return of setLocation.setLocation 34
4.20 Parameter and Return of setLocation.setLocation 34
4.21 The threads can be turned ”on” or ”off” with XMLRPC

threadSwitch.threadSwitch 34
4.22 Parameter and Return of threadSwitch.get 34
4.23 Parameter and Return of getServerTime.getServerTime . . . 35
4.24 Parameter and Return of user.user 35
4.25 The fields of the table dsnpwd 35
4.26 Variables of the ”Server.properties” under the section ”Gen-

eral Settings” . 37
4.27 Variables of the Server.properties under the section ”Threads”

(Part 1/3) . 38
4.28 Variables of the Server.properties under the section ”Threads”

(Part 2/3) . 39

v

vi LIST OF TABLES

4.29 Variables of the Server.properties under the section ”Threads”
(Part 3/3) . 40

4.30 Variables of the Server.properties under the section ”RXTX-
Connections” . 40

4.31 Variables of the Server.properties under the section ”SQL
Database” . 41

4.32 Variables of the Server.properties under the section ”Paths” . 41
4.33 Variables of the Server.properties under the section ”Target

Commands” . 41

5.1 Variables of the properties.php. 46

Abstract

In this master thesis a server was implemented for the use of the Deployment
Support Network. With an easy interface of the DSN Server it is possible to
attach and construct specific tools and GUI’s for developing a sensor target
network using the DSN.

The concept of the separation of the target layer, that includes the target
sensor node and a GUI, and the DSN layer that includes the DSN Server
and the DSN nodes is presented. Additionally the thesis gives an overview
of the functionality of the DSN Server, therefore a target sensor network
developer is able to attach or construct his own GUI.

Transport performance tests are made to see what the traffic maximum
is that a DSN is able to process. Furthermore the tests give a user a basis
to evaluate how many log messages in what time slices his sensor network
can produce and how he should collect them.

vii

viii ABSTRACT

Chapter 1

Introduction

The use of sensors in our life is increasing very fast. They are used to build
smart environments, that can interact with human actions, to give alarm of
environmental perils in good time or to observe environment changes. To
observe wide areas without interfering with the environment, we need small
autonomous sensor devices, which communicate wireless with each other.
Such devices are termed Wireless Sensor Network (WSN).

1.1 Wireless Sensor Network

A WSN consists of up to thousands of sensor nodes, which are spread over
a spacious area to collect different data without affecting the surrounded
environment. A sensor node is a small computer including a radio and some
sensors. In order to be used in hardly accessible, wide-spread areas, they
often have their own power supply, for example in form of a battery. These
sensor nodes organize themselves in a wireless ad hoc network to collect and
process the measurement data in order to provide high-level sensing results.

It is quite difficult to develop and test a WSN due to the following
reasons:

- Generally, debugging an embedded system is quite hard. Because of
the small size and the resulting lack of energy and resources, there are
not many possibilities for debugging.

- Resulting in the limited battery power the nodes are often in a low
power mode, where they aren’t able to communicate. Therefore the
only way to find out at any time in which state they are, is a direct
connection to the node.

- Sometimes it is not possible to use wired connections for debugging,
for example if the test is placed in a real environment. Therefore, the
sensors must contain additional functions, which generate extra debug-
ging output. In return these functions can disturb the test because of

1

2 CHAPTER 1. INTRODUCTION

additional CPU time and memory, which the additional debugging
functions need.

- If the sensor nodes send extra debugging messages over the radio, there
could be an interference with the normal traffic of the WSN.

- Simulation is not the same as testing in real environment, because it
is impossible to simulate the real world.

1.2 Deployment-Support Network

An interesting idea for deploying and developing a WSN is discussed in [1].
The idea in this paper is called Deployment-Support Network (DSN). The
idea of a DSN is to replace the serial connection, which is used for getting
debugging information out of special pins from the sensor to the PC, with
a wireless connection. Over such a connection it is possible to have features
including remote programming, debugging, monitoring and target control.

Figure 1.1: The concept of the DSN

To get rid of the wired connection from the PC and the sensor node,
the sensor node is attached to another node, which can be placed next to
the sensor node. Both, the DSN and the sensor node network build their
own independent wireless networks. Therefore there exists a possibility to
connect from a host, which is connected to a DSN node, to every other DSN
node. Over the connection from the PC through the multi hop network of
the DSN, it is possible to communicate with each node of the DSN. Therefore

1.3. JAWS 3

the debugging traffic goes through the wireless network of the DSN, instead
of a direct wired connection between a PC and a sensor node.

At the ETH Zürich a DSN is now operating. It is based on the BTnode
platform. This first implantation of a DSN is described in [2].

1.3 Jaws

Jaws is the implementation of a DSN at ETH Zürich. It is running on the
BTnode rev3 platform running NutOs, a multi-thread operating system for
embedded devices. The Bluetooth device is used to autonomously intercon-
necting the DSN nodes. There are two different network topologies that
can be established, a tree-based topology or a mesh based topology that
is called XTC [3]. The Jaws implementation includes features for remote
programming, logging, monitoring and target control.

A simple Graphical User Interface (GUI) is used to control the features
of the DSN. In Figure 1.2 is a plot of this GUI.

With the GUI there exists a user friendly possibility to reprogram the
sensor node targets or the DSN nodes, to get the logs from a DSN node or
to send a command to a sensor node or a DSN node. Additionally, there is
a feature implemented to display the connections between the DSN nodes.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: The graphical user interface for the DSN

Chapter 2

Motivation

2.1 Scenario

A typical scenario of a sensor network, which is descriptive to illustrate
what is needed for developing it, is a wireless fire sensor network. A wireless
fire sensor network is distributed in a building. Therefore the nodes aren’t
accessible very good, even if they are attached to the roof. It would be quite
difficult to connect them with a wire to a PC to control them, because the
wires would go through the whole building. For this purpose the use of the
DSN can eliminate these wires. Next to every fire sensor node a DSN node
is placed and it is connected to the fire sensor node. Therefore a sensor node
developer has all the options, which are mentioned in Chapter 1.2.

During the developing phase it must be possible that the nodes can
be easily reprogrammed. For monitoring, the sensor nodes can write log
messages to the log buffer of the DSN nodes. These log messages should be
accessible to several users at any time.

During a test the sensor node developer wants to send commands to
different sensor nodes, for example to simulate a link break, that a fire
sensor breaks or that a fire is detected on a node. In order to do the same
tests several times, a test scenario has to be automated.

2.2 Requirements

The GUI that was mentioned in Chapter 1.3 is design for developing the
DSN and not especially for the target sensor node network. Every sensor
network has its own requirements and features therefore it should be possible
to implement a specific target user interface without a huge knowledge of
the DSN.

To create automated tests very easy, there has to exist a simple interface
to access all the features of the DSN.

The DSN has a bottleneck that is given by the node that is directly

5

6 CHAPTER 2. MOTIVATION

connected to the PC. All incoming and outgoing messages have to go over
this node. Because several users would like to access the DSN at the same
time, sending of messages must be coordinated. Due to the fact that the log
messages are the largest amount of the traffic on the DSN, it is reasonable
to store the log messages central that the log messages have to be requested
once of the DSN nodes and can be distributed to different users several times
at any time.

Because several users are able to access the DSN, there have to be an
authentication that not everybody is able to reprogram the nodes over the
internet or to send the nodes commands.

Chapter 3

Related Work

At UC Berkley there are three different testbeds [4] implemented and in
operation. The sMote testbed consists of 78 Mica2DOT sensor motes, which
are connected over ethernet for debugging and reprogramming. The Omega
testbed consists of 28 Telos, which are connected to USB for debugging and
reprogramming. The Trio testbed, an outdoor testbed which consists of
500 Trio motes temporary deployed in the wild at UCB’s Richmond Field
Station. sMote has its own web interface for uploading the program to the
building-wide network.

The Harvard University implemented the MoteLab [5] that includes 190
TMote Sky sensor motes. They were connected to Ethernet for debugging,
logging and reprogramming. MoteLab provides a public, permanent testbed
where registered users can upload online executables for testing them on
the MoteLab. During a test, all messages and other data are logged to a
database that is accessible to the test owner.

There are several other test beds that are used for research. Most of
them have a wired connection for power supply and reprogramming, for ex-
ample over a Ethernet cable.

Another implementation of distributed sensors is EarthScope [6]. This
is a collection of different geological sensors in North America. It is an in-
teresting implementation for collecting different data to provide high-level
sensing results and to manage a huge data pool. A part of the data out of
this huge data collection is available through a web based interface.

SeNeTs [8] is a software environment to test senor network software
on independent hosts such as PCs or evaluation boards. SeNeTs contains
two communication channels, one for the sensor network application and the
other for controlling and logging data. A server manages the communication

7

8 CHAPTER 3. RELATED WORK

between test scripts and the node applications.

Chapter 4

DSN Server

4.1 Concept

Cause of the experience with running a DSN over a year and using the GUI,
there were some good ideas to improve the usability of the DSN. Some of
the problems were already mentioned in the Chapter 2.

In Chapter 2 is mentioned that for different implementation of sensor
networks different GUI’s are needed. Due to the fact that different target
user interfaces will exist, we decided to make a clear separation between the
sensor network, including analysis tools and GUI’s and the target sensor
nodes, and the DSN layer, including the DSN Server and DSN nodes. This
separation of concerns is shown in Figure 4.1.

Figure 4.1: Concept of the DSN

9

10 CHAPTER 4. DSN SERVER

The DSN layer consists of a DSN server that is directly connected to
one DSN node, which is called GUI node. Over this connection the DSN
server has the ability to send commands over the GUI node through a multi
hop distribution to every other DSN node. A main task of the DSN server
is to collect information, for example the log messages, regularly from the
DSN nodes and stores them into a database. This has the advantage that
no information gets lost if a node breaks. Moreover it is a method to save
the slow connection between server and node, so every message must be
sent just once and can afterwards be distributed several times over a fast
Ethernet connection to a GUI and possible multiple users. All incoming and
outgoing data is passing the GUI node, therefore the server needs a good
strategy to safe this bottleneck.
The DSN Server provides some functions for the GUI’s or analysis tools to
get information about the sensor target nodes or the DSN nodes. Further-
more it is possible to send commands to every node by sending the command
to the server that distribute the command to the write node without that
the developer have to know the specific DSN commands.

4.2. TECHNOLOGY 11

4.2 Technology

In order to enable users to use the DSN Server on almost every platform
and without great requirements, the server is built on widely used and free
available technologies.

4.2.1 Java

The DSN server is written in Java, due to the fact that we had already some
experiences with the communication over a serial port in Java. Additionally
Java is an easy to use object-oriented programming language and there exist
a lot of different packages to use that were needed for some technologies the
DSN server needs.

4.2.2 MySQL

MySQL is a multithreaded SQL database with more than six million in-
stallation. It is available as free software under the GNU and there exists
API’s for different programming language to access to a MySQL database,
including Java.

4.2.3 XMLRPC

The protocol XMLRPC is used for the communication between the DSN
server and the GUI. It is a very simple protocol that can be printed out in
two pages. XMLRPC uses http for transporting and XML to encode the
calls. There are a lot of API’s for different program languages, therefore
GUI’s can be written in almost any programming language.

12 CHAPTER 4. DSN SERVER

4.3 Implementation

The DSN Server consists of 5 different parts that interact with each other,
what is shown in the Figure 4.2. The communication module is responsible
for the communication with the GUI node, it is reading and writing on the
serial port. All incoming traffic form the GUI node is processed by the
parser, it checks if the incoming line corresponds with one of the pattern
it knows. The information won out of the incoming traffic is stored in a
database. All the communication with the database is done by the SQL
module. The XMLRPC module enables the communication with GUI’s,
therefore it provides some functionalities that are explained in Chapter 4.4.
Thread is a module, which requests regularly information from the BTnodes.

Figure 4.2: Concept of the DSN Server

4.3.1 Communication

The communication module is responsible for the communication with the
GUI node. Communication.java is an interface for this module and defines
the functions that are used. At the moment there is just one implementation
of this interface available. RXTXComm.java is the used implementation of
the interface Communication.java. The communication is done over the
serial port. The function writeLine(command) is for writing something out
of the serial port to the GUI node. This function has to be protected with
a semaphore to guarantee that not more than one function is writing to
the serial port simultaneously. This is very important, if a file is uploaded,

4.3. IMPLEMENTATION 13

because during this procedure the BTnode would interpret every other line
as a line of the .hex file as well and corrupt the data. The BTnode detect
that the data is corrupted and stops the receiving process, therefore the
upload procedure would fail. Additional the RXTXComm.java writes every
incoming and outgoing line into the file msglog.txt.

4.3.2 Parser

The Parser is the module, which is checking every incoming line for some
special patterns. For every known pattern a class exists that implements
the interface CmdParser. If a pattern is recognized the corresponding Cmd-
Parser class is processing the line. A line is a string which is ending with a
”\n”.

The Parser.java is a thread that is started at the beginning. All the
CmdParsers are instantiated in this class and are linked to the correspond-
ing pattern. The parser thread is checking every line that is coming from
the GUI node, if a pattern occurs, it passes the line to the corresponding
CmdParser. Table 4.1 lists, which CmdParser is responsible for which line.

Parser.java provides two functions for every CmdParser that are used to
force the Parser.java to pass the next arrived line to a special CmdParser.

SetParserState(CmdParser) this function sets a variable which indi-
cates that the Parser passes the arrived line to the declared CmdParser
without checking for the patterns.

resetParserState() resets the variable.

This functions are used if message consists out of several lines, therefore
the CmdParser has the ability to say the Parser that the following lines
belongs to the previous line and has to parsed by the same CmdParser. For
example this functionality is used with a log message. A log message consists
of a header, which starts with :SL, several lines of Data and is terminated
with an endtag.

CmdParserDSNID.java / CmdParserVersion.java / CmdParser-
Location.java / CmdParserDSNProgInfo.java

These CmdParsers parses the content out of the lines and update the cor-
responding fields of the table dsninfo including the field lastseen.

CmdParserGetAddr.java

This function is responsible for the answer of the command ”addr”, which
the server writes directly out on the serial port and receives the address of the
GUI node. CmdParserGetAddr.java provides to variables DSNnodeAddr

14 CHAPTER 4. DSN SERVER

pattern CmdParser line

:DP CmdParserDSNID.java :DP <addr> <boot count>
:DV CmdParserVersion.java :DV <addr> <version>

:DL CmdParserLocation.java :DL <addr> <location str>
:XP CmdParserDSNProgInfo.java :XP <addr> PI <type>

<version> <size> <name>
:XP NP

Local CmdParserGetAddr.java Local bt addr: <addr> (error
code=0)

:T CmdParserConinfo.java :T <source-addr> <num-
entries>
:TE <neighbor addr 1>
<con-state><rssi>
:TE <neighbor addr 2>
<con-state> <rssi>
...

:SL CmdParserLogging.java :SL <addr> <msg id>
<frag nr> <dsn time>
<class> <level> <data>
{<breaktag> or <endtag>}

:RP CmdParserRPCS.java :RP <addr> <data>
{<breaktag> or <endtag>}

ready CmdParserLoadFile.java ready to receive hex data,
press enter for quit

:LH CmdParserLoadFile.java :LH completed: <number>
lines read
:LH failed: <reason>

:TP CmdParserTargetFlash.java :TF OK
:TF FAILED

:DT DSNtimetoTime.java :DT <bt count>

Table 4.1: The pattern that the Parser knows.

4.3. IMPLEMENTATION 15

and DSNpreAddr. DSNnodeAddr is the address string of the GUI node.
Due to the fact that some functions on the BTnode returns only the last
four bytes of the address, DSNpreAddr provides the first eight bytes that
are the same on all BTnodes at the moment that the server can complete a
short address.

CmdParserConinfo.java

It parses the coninfo replies that gives information, which nodes are directly
connected and store it to the table dsnconinfo (see Table 4.11).

CmdParserLogging.java

All the Log messages are stored in the database, therefore CmdParserLog-
ging parses the logs and stores the log messages to the database.

Log Header :SL <addr> <msg id> <frag nr> <dsn time> <class> <level>
<data> <breaktag or endtag>

The BTnode wraps every log messages with a header and a tag that
indicates the end of the package. The following information, which is listened
in the Table 4.2, is stored in the Header:

header explanation

<addr> The address of the BTnode that generated the log message.
<msg id> This is a increasing sequence number for every log. This

number is set back to one after a reboot of the BTnode.
<frag nr> If a log message is longer than 86 Bytes, the log message

has to be sent in several packages. The fragment number
indicates, which part of the log message it is.

<dsn time> The BTnode time, when the log message was generated.
<class> Class of the log message
<level> Level of the log message

Table 4.2: The header of a log message.

On the next line after the header the <data> is starting. The data can
consist out of several lines, but is 86 bytes long at most. The end of data
is marked with one of the two tags, breaktag (0x03) or endtag (0x04). A
breaktag indicates the end of the package but not the end of the log that
means, that there will follow an other package with data that belongs to
the same log message. This happens if the log message was longer than 86
bytes, therefore the log message will be split and sent in several packages.
An endtag indicates that it is the last package of this log message.

16 CHAPTER 4. DSN SERVER

Algorithm Due to the fact that it is possible that a log message can be
split in several packages and packages can be lost, the CmdParserLogging
must do some checks for every log package. The chain of checks of the
CmdParserLogging is shown in Figure 4.3 and in Figure 4.4. CmdParser-
Logging.java stores for every DSN node some variables, these has to be
known to understand the flow chart.

Log Hashtable CmdParserLogging stores the header data and the frag-
ment of the log message into the hashtable log and writes the log
message into the database as soon as all fragments have arrived. (keys
of the hashtable: DSNID, MsgID, FragNr, DSNtime, Class, Level,
LogText)

Received List A List of the received MsgNr Request List A List of MsgNr,
which have to be requested again.

Requested Hashtable it shows which MsgNr was requested how many
times (is not used in CmdParserLogging.java)

Following assumption are made:

- If a package arrives with a fragment number that is not equal to the
fragment number of the last package plus one, it is assumed that the
package with the fragment number, which is one greater than the last
package number, is lost, rather than the package order is out of order.

- If a log message with a higher MsgNr from the same BTnode arrives
before the package with the endtag of the lower MsgNr arrives, it is
assumed that the packages are lost of the log message with the lower
MsgNr, rather than they could be overtaken by other messages.

CmdParserRPCS.java

The answer of a remote procedure call string (rpcs) command is parsed
by the CmdParserRPCS.java and the parsed message is stored in the table
dsnrpcs (see Table 4.9). An answer can be split in several packets, if it is
too long for one packet. An answer can contain several lines. The end of a
packet is marked with an endtag (0x04) or a breaktag (0x03). The endtag
means that this was the last packet of this answer and the breaktag indicates
that there will follow one more packet at least. If the whole message is stuck
together, the Parser.java checks the message on known pattern, and starts
the corresponding CmdParser. There is a flow chart of CmdParserRPCS in
Figure 4.5.

4.3. IMPLEMENTATION 17

Figure 4.3: Flow chart of the CmdParserLogging 1/2

18 CHAPTER 4. DSN SERVER

Figure 4.4: Flow chart of the CmdParserLogging 2/2

CmdParserLoadFile.java

The DSN provides the possibility to upload and distribute a .hex file to
reprogram the target nodes or the BTnodes. Therefore the DSN server has
to upload the .hex file to the GUI node. Before the server starts with sending
the lines of the .hex file, it has to wait till the GUI node is ready to receive,
hence CmdParserLoadFile.java is parsing the ready message and starts the
send process afterwards. During the send process can happen some errors,
if one of them occurs the CmdParserLoadFile.java parses them as well and
stops the send process.

CmdParserTargetFlash.java

The BTnode sends back a message after trying to flash the target node.
CmdParserTargetFlash parses this message and passes the line to the Xml-
RpcTargetFlash function.

DSNTimetoTime.java

The Btnode counts up a variable after a reboot, this tic count is used as
internal time on the BTnode, for example for the log messages. DSNTime-
toTime.java provies a function, which converts the BTnode time to a real

4.3. IMPLEMENTATION 19

Figure 4.5: Flow chart of the CmdParserRPCS

20 CHAPTER 4. DSN SERVER

time. This functionality makes only sense if the BTnodes are synchronized.
Therefore the DSN Server requests regularly the BTnode time from the GUI
node and stores them together with the real of the request. To convert a
time, DSNTimetoTime interpolate or extrapolate linearly the time to the
stored time, like it is shown in Figure 4.6.

Figure 4.6: Linear interpolation of DSNTimetoTime

4.3.3 SQL

SQLDBCommunication.java

SQLDBcommuniction provides some functions to use the MySQL Database:

getResultfromDB(query) makes a query on the database, is used for
SELECT statements

sendQuerrytoDB makes a query on the database, is used for the state-
ments INSERT, DROP TABLE, CREATE TABLE

connectToDB opens a connection to the database

closeConnectionToDB closes the connection

makeTable makes all tables that the DSN Server needs, if they don’t exist

lock acquire a semaphore

unlock release the semaphore

4.3. IMPLEMENTATION 21

Java is not able to close a SQL statement with the garbage collector
during the connection is open. A SQL statement object is used to execute a
query. Therefore the server can do only one query at same time. The server
must wait till the result is not used any more until the server can do the
next query. Hence every resultset must be locked with a semaphore until it
is not used anymore.

4.3.4 XMLRPC

The XMLRPC module is responsible for the communication between the
server and every GUI. We use the Apache XMLRPC Version 2. The class
XmlRpcServer.java starts the XMLRPC server on a specific port that can be
defined in ”Server.properties” (see Table 4.26). Furthermore the XMLRPC
commands are specified in here as well.

Several XMLRPC commands need an authentication to use them. They
are listed in Chapter 4.4.17. Each of these have a function checkPass-
word(user, password), it checks, if there exists an user with the correspond-
ing password in the table dsnpwd and if this user is authorized for this
specific function. In the field function of the table dsnpwd (see Table 4.25)
can be the name of the function or ”all”, if the user has access to every
XMLRPC function.

If you would like to implement a new XMLRPC function, you have to
add a new Handler to the server in the file ”XmlRpcServer.java” with a
name that defines how the class of the new programmed function can be
accessed through XMLRPC.

4.3.5 Thread

Threads are used in the DSN Server to request specific information regularly.

ThreadCommand.java

The ThreadCommand.java is a class to generate a thread, which sends a
command on the serial port to the GUI node and waits a defined time till
it sends the same command again. The time, the thread is waiting till it
will send the command again, is defined in the file ”Server.properties” (see
Table 4.27, Table 4.28 and Table 4.29). The ThreadCommand.java is used
for the following commands:

- ”rpc 0 dsn ping” (to get a sign of life of every DSN node)

- ”rpc 0 dsn version” (to get the version string of the DSN node, which
indicates, which version is running on the BTnode)

- ”rpc 0 dsn loc get” (to get the location string of every DSN node)

22 CHAPTER 4. DSN SERVER

- ”rpc 0 xbank get proginfo” (to get the program info of the .hex file
which is on the BTnode to reprogram the Target node or the BTnode)

- ”coninfo” (to get information about the connections between the BTn-
odes)

- ”jaws time” (to get the tic count of the GUI node)

Every thread can be interrupted with the XMLRPC threadSwitch.threadSwitch.
In the Server.properties it is defined, if the thread should be interrupted at
the start of the DSN Server, but they can be started later with the XMLRPC
threadSwitch.threadSwitch as well.

4.3.6 LoggingThread.java

The LoggingThread.java is responsible for requesting the log messages from
the nodes. There are two different modes how the LoggingThread.java can
work, pull mode or push mode. In the pull mode the server requests the logs
of the BTnodes and detects, if a log message is missing and requests these
logs again. In the push mode the logs are not requested, because the BTn-
odes send the logs automatically to the GUI node, but the server detects
the missing logs as well and requests these logs. Thus the only difference be-
tween these two modes is, that in the push mode the request function, which
requests every log, is not running but the same function, which is requesting
the lost logs, is running in both modes. In the file ”Server.properties” is
defined in which mode the Server is working (see Table 4.29). This thread
can be stopped with the XMLRPC threadSwitch.threadSwitch as well. It
is important, that the thread, which sends out the dsn pings, is running,
otherwise the server isn’t requesting any logs.

To request the logs in the pull mode, the server takes all nodes, which
have answered to the last dsn ping, out of the dsninfo table and stores these
node addresses in a list. Afterwards the server goes through this list and
requests for every node all new logs. Therefore the server knows from every
node which is the log with the highest message ID, the node sent. The
CmdParserLogging.java stores every received message ID for every node in
a list. The LoggingThread assorts this list and detects the numbers which
are missing in the sequence and requests these missing logs again. It is de-
fined in the file ”Server.properties” how many time the server should request
the missing log till it gives up and writes into the file ”msglog.txt” that this
log is missing. If the start sequence is lost, the server is not able to request
these logs, because the server can’t know with which message ID the Btnode
starts. The same is with a sequence of the last logs, if there no other log is
following, the server will not detect that these logs are missing, because it
doesn’t know that these logs are sent.
The sever starts with the first node in the list of all nodes and sends the

4.3. IMPLEMENTATION 23

request for the newer logs and the requests for the missing logs to the cor-
responding BTnode. The BTnode will process this requests and sends the
requested logs back to the server. After a time D, which is defined in the file
”Server.properties”(logging, see Table 4.28), the server haven’t received any
log messages of this node, the server assumes that the Btnode has finished
the requests and take the next node in the list and does the same requests.
If the server has finished the list, it builds up the list with all nodes, which
has answered to the last dsn ping, again and starts the same process.

The difference between the pull and the push mode is, that in the push
mode the server doesn’t request any logs from the BTnode, but the server
generates a list with the received message IDs as well. Therefore in both
modes the server requests the lost messages.
In the push mode it is assumed that the BTnodes sends there log messages
immediately to the server. Therefore the verbosity mask of the BTnode
should be set ”on” of all log levels, this can be done with the XMLRPC
function dsnVerbosity.dsnVerbosity (see Chapter 4.18).
In the push mode the Server goes to the next node for requesting the missing
log after a time D, which is defined in the file ”Server.properties”(pushtime
Table 4.28).

24 CHAPTER 4. DSN SERVER

4.4 Functionalities

The DSN-Server provides some XMLRPC functions that can be accessed
through the internet by using a normal XMLRPC client. There are a lot
of implementations of XMLRPC in different languages. It doesn’t depend
which programming language is used to do an XMLRPC request to the
DSN Server. The implemented XMLRPCs are specified below, including
parameters and returned values. In Appendix A there are two code examples
in different languages to do and process a XMLRPC request.

4.4.1 getDSN.getDSN

Parameter: int order (
0 - no order,
1 - (ascending) DSNID,
2 - (descending)DSNID,
3 - (ascending) DSNVersion,
4 - (descending) DSNVersion,
5 - (ascending) DSNLocation,
6 - (ascending)DSNLocation,
7 - (descending) DSNProgInfo ,
8 - (descending) DSNProgInfo,
9 - (ascending) DSNlastSeen,
10 - (descending) DSNlastSeen)

Return: Hashtable result (Keys: DSNID, BootCount, DSNVer,
DSNLocation, DSNProgInfo, DSNlastSeen)

Table 4.3: Parameter and Return of getDSN.getDSN

The DSN Server generates a table in the database that includes all the
DSN nodes, which were ever seen on the network. The fields of this table are
explained in Table 4.4. The server stores additionally to every DSN address
some information, which are explained in Table 4.4.

To update this table, the DSN-Server queries regularly a ”sign of live” of
the nodes. The server sends out four different requests, a normal ping, a ver-
sion request, a location request and a request to update the ProgInfo. With
every answer of such a request the DSNlastSeen field is updated as well. The
time of the iteration of each request is declared in the file ”Server.properties”.
It is possible to switch those requests ”on” or ”off” per default in the file
”Server.properties” or switch them during runtime ”on” or ”off” with the
XMLRPC function switchThread.switchThread, which is explained in Chap-
ter 4.4.14.

4.4. FUNCTIONALITIES 25

field explanation

DSNID: The address of the BTnode.
BootCount: The BootCount is a number, which is stored in the eep-

rom on the BTnode. This number increases every time
if the BTnode reboots.

DSNVer: The program version, which is currently running on the
DSN node. It is a timestamp of the compilation time.

DSNLocation: This is a string, which is stored in the eeprom on the
BTnode and should give an information about the loca-
tion, where the BTnode is located. It can be set by the
XMLRPC setDSNLocation.setDSNLocation and it is a
string of 16 Bytes.

DSNProgInfo: The BTnode has the ability to reprogram itself or to
reprogram the connected Target. DSNProgInfo declares
the program which is stored on the BTnode for this func-
tionality and looks something like this ”PI 1 0608311052
32364 senso.btnode3.hex”. The first number after ”PI”
declares whether the program is for the DSN node (0) or
if it is for the Target node (1). It is followed by an iden-
tification number, which is used by the BTnode to see,
if a program on an other BTnode is newer and therefore
it is worth to update the saved program. Normally it is
a timestamp (yymmddhhmm). The third number is the
size of the program in byte. The last string is the name
of the program, there is only 20 byte left for this string
so it could happen that it is not the original string the
file had.

DSNlastSeen: It is a timestamp, that is updated, whenever an answer
of a ping arrived.

NodeInfo: It is a string that can be set with the XMLRPCSetN-
odeInfo. This string should give additional information
about the Node and it is stored in the database only.

Table 4.4: The fields of the table dsninfo

26 CHAPTER 4. DSN SERVER

4.4.2 setNodeInfo.setNodeInfo

Parameter: String DSNID DSNID of the node about which the
information is.

String NodeInfo Information about the node. (255
byte)

Return: int return The number of affected rows in the
database. (Should be 1)

Table 4.5: Parameter and Return of setNodeInfo.setNodeInfo

This XMLRPC is to store additional information about the node in the
table dsninfo (see Table 4.4).

4.4.3 getDBEvent.getDBEvent

Due to the concept that no logs should get lost, the Server requests the log
messages of the BTnode and writes them into a table in the database, the
fields of the table are shown in Table 4.7. This XMLRPC gives back the
log messages out of the database, which were requested, according to the
set parameters that are explained in Table 4.6. In order to produce not too
much traffic the DSN Server requests only the latest logs of the BTnode,
which aren’t yet in the table. The time of the iteration of each request is
declared in the file ”Server.properties”. In the file ”Server.properties” is
defined, if the log requests should be done or not as well.

4.4.4 getRPCS.getRPCS

The DSN provides a function to send a command through the DSN to a
specific BTnode, where the command sent will be executed. This function
is called remote procedure call sting (rpcs). If the command, which was
sent with the rpcs function to a BTnode, generates an answer, this answer
will be wrapped into a specific packet and sent back to the server. All this
answers are stored in the table dsnrpcs. getRPCS.getRPCS gives back the
entries out of the table dsnrpcs.

4.4.5 getConinfo.getConinfo

To evaluate how stable the DSN network is, the DSN Server requests infor-
mation about the connection of every node and store it to the table in the
database that is explained in the Table 4.11. With this XMLRPC you can
get the entries out of this table according to the set parameters. The time
of the iteration of each request is declared in the file ”Server.properties” and
if the requests should be done, is declared in the same file as well.

4.4. FUNCTIONALITIES 27

Parameter: String DSNID
int levelmask a mask in decimal values that is

generated out of set bit values
(x01-Error x02-Warning x03-Info x04-
Debug) (set all = 15, set Error &
Warning = 3)

int logclass which log class you would like to get
(0 = all classes)

String logtext it is looking for this String in the log-
text in the DB, if the String is empty
””, it gives back all rows which corre-
spond with the other clauses

String time from to get all messages that are newer
or equal than this value (yyyy-MM-
dd HH:mm:ss)

String time till to get all messages that are older
or equal than this value (yyyy-MM-
dd HH:mm:ss)

int order how the entries should be ordered
(0 - DBTime;
1 - DSNID;
2 - MsgID, DSNID;
3 - DSNtime, DSNID;
4 - time, DSNtime;
5 - class, DBtime;
6 - Level, DBtime;
7 - LogText, DBtime, DSNID)

String ascdesc if it should be ordered ascending or
descending (”asc” or ”desc”)

int start it gives back the entries after this row
int maxReply the number of messages that you get,

maxReply = 0 is to get all back
Return: Hashtable result Keys: DSNID, DSNtime, time, Level,

DBtime, LogText

Table 4.6: Parameter and Return of getDBEvent.getDBEvent

28 CHAPTER 4. DSN SERVER

field explanation

DSNID: The address of the BTnode.
MsgID: The BTnode gives every log message a number. After a re-

boot the BTnode starts with one and increase the number
on every log message and goes up to 65535.

DSNtime: It is a tick count of the BTnode that is reset after reboot of
the BTnode.

time: It is the calculated real time out of the DSNtime. It works
only if there is a time synchronization between the GUI node
and the rest of the nodes and the CommandThread jawstime
must run.

Class: The Class of the log message.
Level: The Level of the log message. There exists the following log

levels: 1 = E: Errors, 2 = W: Warnings, 3 = I: Info, 4 = D:
Debug (If none of the above levels is detected the message
will be classified per default with Class = 18 and Level = 3
(Info))

DBtime: The time when the log messages was stored into the database.
LogText: The log message.

Table 4.7: The fields of the table dsnlog

Parameter: String DSNID
String msg The server looks for this string in the

msg field in dsnrpcs table in the data-
base, if the string is empty ””, it gives
back all rows that corresponds with
the other clauses

String time from To get all messages that are newer
or equal than this value (yyyy-MM-
dd HH:mm:ss)

String time till To get all messages that are older
or equal than this value (yyyy-MM-
dd HH:mm:ss)

int maxReply The number of messages that you get,
maxReply = 0 is to get all back and
will be ordered ascending, if you spec-
ify maxReply the order will be de-
scending and will start with the latest
entry

Return: Hashtable result Keys: DSNID, time, msg

Table 4.8: Parameter and Return of getRPCS.getRPCS

4.4. FUNCTIONALITIES 29

field explanation

DSNID The address of the BTnode that sent the answer
Time Time when the answer was written to the database
Msg The answer of the sent command

Table 4.9: The fields of the table dsnrpcs

Parameter: String Source DSNID The DSNID of the BTnode
that sent this message to the
server

String Neighbor DSNID The DSNID of the BTnode
that is the neighbor of the
BTnode that sent this message

String State 0: visible/not connected
1: neighbor is slave
2: neighbor is master
3: connection error
all: to get all four states

String time from To get all messages that are
newer or equal than this value
(yyyy-MM-dd HH:mm:ss)

String time till To get all messages that are
older or equal than this value
(yyyy-MM-dd HH:mm:ss)

int maxReply The number of messages that
you get, maxReply = 0 is to
get all back

Return: Hashtable result Keys: time SourceAddr,
NeighborAddr, State, rssi

Table 4.10: Parameter and Return of getConinfo.getConinfo

30 CHAPTER 4. DSN SERVER

4.4.6 uploadFile.uploadFile

Before a hex file can be distributed in the DSN network, it has to be uploaded
to the DSN-Server. In order to be able to send the file with XMLRPC to
the server, it has to be converted to base64 at first. Base64 describes an
encoding system to encode 8bit binary data into a string that consists out
of ASCII characters only. It is allowed to upload files with a suffix .hex or
.ihex using uploadFile.uploadFile.

4.4.7 getFileList.getFileList

To see which files are already on the DSN-Server.

4.4.8 loadFile.loadFile

A file, that is already on the DSN-Server, can be sent to the GUI node.
When the file is correctly transmitted, the GUI node will distribute the file
to the next nodes that will do the same. The parameter ”type” specifies, if
the uploaded file is for reprogramming the DSN node or the Target node.

4.4.9 targetFlash.targetFlash

After a file was uploaded with the XMLRPC loadFile.loadFile and the type
was set to 1, the target node can be reprogrammed by flashing it. The
command to flash a target is not the same for every Target application,
therefore it has to be declared in the file ”Server.properties”.

4.4.10 targetCommand.targetCommand

To send a command to a target through the DSN.

4.4.11 dsnCommand.dsnCommand

To send a command to a DSN node.

4.4.12 dsnVerbosity.dsnVerbosity

The DSN node has the ability to send back special log messages immediately
back to the GUI node. This has to be declared for every DSN node.

4.4.13 setDSNLocation.setDSNLocation

There is reserved 16 byte on the eeprom of the BTnode to safe a location
string. This location string should give some hints on the location of this
DSN node. Every string can be used, but it is recommended to use following
format: xxx/yyy/zzz. This format is needed to plot the map in the DSN
Tool that is introduced in Chapter 5.1.

4.4. FUNCTIONALITIES 31

field explanation

time: When it was stored to the database
SourceAddr: The address of the BTnode that sent back the informa-

tion
NeighborAddr: The address of the BTnode that the sender of this mes-

sage is connected to.
State: Declare which state the neighbor node has.

0: visible/not connected
1: neighbor is slave
2: neighbor is master
3: connection error)

rssi: It is the received signal strength. (range: -1 (good) to
-127 (bad))

Table 4.11: The fields of the table dsnconinfo

Parameter: String filename The name, how the file should be stored
in the folder hex/. Should not be longer
than 20 Byte. (if this name already ex-
ists in the folder hex/, the file will be
overwritten.)

String base64 The file to upload. It has to be con-
verted into base64.

Return: String filename The name of the stored file in the folder
/hex

Table 4.12: Parameter and Return of uploadFile.uploadFile

Parameter: none
Return: Hashtable result Key: Filename

Table 4.13: Parameter and Return of getFileList.getFileList

Parameter: String filename The name of the file to upload to the
GUI node. The file has to be already in
the folder /hex.

String type 0 = file is to reprogram dsn nodes
1 = file is to reprogram target nodes

Return: Vector result Key = ”err” (the value of transmis-
sion err)

Table 4.14: Parameter and Return of loadFile.loadFile

32 CHAPTER 4. DSN SERVER

Parameter: String DSNID DSNID of the BTnode to which the com-
mand should be sent (”all” to send it to
all nodes)

Return: String msg It is set to the output of the command
”tg flash”, if the command is not send
to all nodes, otherwise it gives back ”un-
known”. After a time, which is declared
in ”Server.properties” (Table 4.26), it
gives back unknown as well.

Table 4.15: Parameter and Return of targetFlash.targetFlash

Parameter: String DSNID DSNID of the BTnode to which the
command should be sent (”all” to send
it to all nodes)

String command The command that will be sent to the
target, must be shorter than 110 bytes

Return: String return If the command could be sent: ”OK!”
if the command was to long: ”too
long!”

Table 4.16: Parameter and Return of targetCommand.targetCommand

Parameter: String DSNID DSNID of the BTnode to which the
command should be sent (”all” to send
it to all nodes)

String command The command for the DSN node
Return: String return It returns an empty string (””)

Table 4.17: Parameter and Return of dsnCommand.dsnCommand

Parameter: String DSNID DSNID of the BTnode to which the com-
mand should be sent (”all” to send it to
all nodes)

int Class Which class should be sent immediately
back to the server

int Levelmask Which level of the class should be sent
back immediately, it is a mask in deci-
mal values that is generated out of set
bit values (x01-Error x02-Warning x03-
Info x04-Debug) (set all = 15, set Error
& Warning = 3)

Return: String return it returns an empty string (””)

Table 4.18: Parameter and Return of dsnVerbosity.dsnVerbosity

4.4. FUNCTIONALITIES 33

4.4.14 threadSwitch.threadSwitch

There are running seven different threads on the server. Each of them is in-
terruptible with the XMLRPC threadSwitch.threadSwitch. These threads
can be interrupted per default in the file ”Server.propertie”, however the
threads can be started afterwards with the XMLRPC threadSwitch.threadSwitch
as well. All thread, which can be turn ”on” or ”off”, are listened in the Ta-
ble 4.21.

4.4.15 threadSwitch.get

ThreadSwitch.get returns ”true” if the thread is running and ”false” if the
thread was stopped.

4.4.16 getServerTime.getServerTime

It gives back the internal time of the server.

4.4.17 user.user

Some of the XMLRPC commands need a username and a password to use
them. The server has a table with all registered users that table is shown in
Table 4.25.

For every function, the user is allowed to use, there is a row in the table
with the name of the function. If the user is allowed to use every function,
there is only one row with the entry ”all” in the field function.

The XMLRPC user.user gives back all rows that correspond with the
given username and password. The following XMLRPC functions need a
password authentication:

- uploadFile.uploadFile

- loadFile.loadFile

- targetFlash.targetFlash

- targetCommand.targetCommand

- dsnCommand.dsnCommand

- dsnVerbosity.dsnVerbosity

- setDSNLocation.setDSNLocation

- threadSwitch.threadSwitch

- threadSwitch.get

- setNodeInfo.setNodeInfo

34 CHAPTER 4. DSN SERVER

Parameter: String DSNID DSNID of the BTnode to which the
command should be sent (”all” to send
it to all nodes)

String location The location string that is stored to the
eeprom of the BTnode (16 byte)

Return: String return It returns ”OK!”

Table 4.19: Parameter and Return of setLocation.setLocation

Parameter: String thread The name of the thread which has to be
switch ”on” or ”off”
(logging, dsnping, dsnversion, dsnloca-
tion, dsnproginfo, coninfo, jawstime)

String state ”on” or ”off”
Return: String return ”on” or ”off”

Table 4.20: Parameter and Return of setLocation.setLocation

field explanation

logging The thread that requests the logs from every BTnode. Be-
fore the server stops this thread it terminates the started
round robin of the nodes and request the logs of the re-
maining nodes in the current round.

dsnping The thread that sends a ping
dsnversion The thread that requests periodically the program version,

which is running on the BTnode
dsnlocation The thread that requests the location of the BTnode
dsnproginfo The thread that requests the information of the program,

which is stored on the BTnode for reprogramming the BTn-
ode or the target node

coninfo The thread that requests the connections of every BTnode
jawstime The thread that requests the ticcounts of the GUInode.

This time is used to convert the ticcounts to a real time.

Table 4.21: The threads can be turned ”on” or ”off” with XMLRPC
threadSwitch.threadSwitch

Parameter: none
Return: Hashtable result (Keys: LoggingSwitch, DSNPingSwitch,

DSNVersionSwitch, DSNLocationSwitch, DSNProgInfoS-
witch, ConinfoSwitch, JawsTimeSwitch)

Table 4.22: Parameter and Return of threadSwitch.get

4.5. INSTALLATION 35

Parameter: none
Return: String time (yyyy-MM-dd HH:mm:ss)

Table 4.23: Parameter and Return of getServerTime.getServerTime

Parameter: String - username
String - md5pwd password encrypted with the md5 al-

gorithm
Return: Hashtable result Key: Function

Table 4.24: Parameter and Return of user.user

field explanation

name username of the user.
pwd the password of the user, it is stored with a md5 encryption
function the function the user is allowed to use

Table 4.25: The fields of the table dsnpwd

4.5 Installation

There are some requirements that are needed to run the DSN Server, but all
of them are free available on the internet for the common operating systems.

4.5.1 Requirements

Concurrent Versions System (CVS) A CVS client is used to to check-
out a complete copy of the project dsn server.

Java Development Kit (JDK) JDK is used to compile the Java code of
the DSNServer. It is recommended to use the jdk1.5.0 or higher.

Apache Ant Ant is used to build the project, like it is described in the file
build.xml.
An installation instruction is available online on the Apache Ant Home-
page [7].

MySQL Database MySQL is used as database server.
An easy installation of a MySQL Database can be done with XAMPP.
XAMPP is a free software package containing the Apache HTTP
Server, MySQL database, PHP, phpMyAdmin and other useful tools.
An HTTP Server and the PHP module have to be installed to use the
DSN Tool (see Chapter 5.1). And the phpMyAdmin tool is an useful
extension for the administration of MySQL over a web browser.

36 CHAPTER 4. DSN SERVER

4.5.2 Installation

1. Check-out with a CVS client the module ”proj/dsn server” from ”btn-
ode.cvs.sourceforge.net:/cvsroot/btnode”.

2. Edit the file ”Server.properties” in the main directory of the DSNServer.
The settings are explained in the Chapter 4.5.3

3. Create a MySQL database with the name ”BTnode” (This is the de-
fault name, which is set in the file ”Server.properties”, certainly the
name can be changed)
SQL-Statement: ”CREATE DATABASE ‘BTnode‘ ;”

4. Create a user with all data and structure privileges on the BTnode
database, use the same credentials as in the file ”Server.properties”.
SQL-Statement: ”GRANT SELECT , INSERT , UPDATE , DELETE
, CREATE , DROP , INDEX , ALTER , CREATE TEMPORARY
TABLES ON ‘BTnode‘ . * TO ’username’@’localhost’ IDENTIFIED
BY ’password’;”

5. Compile the server with the commando ”ant server”

6. Start the server
Two different commands exists depending on the system used:

- ”ant run-server” for windows

- ”ant run-server-linux” for unix

7. Create a new XMLRPC user

- Open the file src/testserver/NewUser.java and enter a new user
and password with appropriate permissions (set the function to
true or set ”all” to true if the user have access to every XMLRPC
function)

- Run again ”ant server” for compilation

- Run ”ant new-user”

4.5.3 Server.properties

In the following tables the variables of the Server.properties are listed.

4.5. INSTALLATION 37

name value explanation

truncate Table (”yes” or ”no”) If the tables in the data-
base should be cleared,
when the server starts.

reboot node (”yes” or ”no”) If the server should re-
boot all nodes in the net-
work, when the server
starts.

logFile (”yes” or ”no”) If the value is set to
”yes”, the server puts
all incoming and outgo-
ing lines into the file ”ms-
glog.txt”, which is placed
in the root directory of
the DSNServer.

deletLog (”yes” or ”no”) The Server deletes the
file msglog.txt if it is set
to ”yes”.

clearLogBTnode (”yes” or ”no”) If the server should send
all the BTnodes in the
network the command
”log clear” to delete all
log messages in the BTn-
ode log buffer, when the
server starts.

FlashTimeout [milliseconds] How long the server
should wait for the
acknowledgment of the
flash process of the
target. If the server
doesn’t receive an ac-
knowledgment of the
BTnode, the server gives
back ”unknown” to
the XMLRPC request
targetFlash.targetFlash.

xmlrpcPort (between 1024 and 65535) The port the XMLRPC-
Server is listening to

Table 4.26: Variables of the ”Server.properties” under the section ”General
Settings”

38 CHAPTER 4. DSN SERVER

name value explanation

JawsTime (”yes” or ”no”) If the thread, that requests the
DSNTime of the GUI node,
should start, when the Server
starts. The thread can be started
later with the XMLRPC function
threadSwitch.threadSwitch as well.

TimeSync (”yes” or ”no”) If a command should be sent to the
GUInode that starts the time syn-
chronization of the BTnodes.

getTime Time [milliseconds] How long the interval of the thread,
which requests the DSNTime of the
GUI node, should be.

DSNPing (”yes” or ”no”) If the thread, which sends out a ”dsn
ping” to all nodes in the network to
get a sign of life, should start, when
the server starts. The thread can
be started later with the XMLRPC
function threadSwitch.threadSwitch
as well.

getDSN Ping [milliseconds] How long the interval of the thread,
which sends out a ”dsn ping” to all
nodes in the network, should be.

DSNVersion (”yes” or ”no”) If the thread, which sends out
a ”dsn version” to all nodes in
the network to get there version
string, should start, when the server
starts. The thread can be started
later with the XMLRPC function
threadSwitch.threadSwitch as well.

getDSN Version [milliseconds] How long the interval of the thread,
which sends out a ”dsn version” to
all nodes in the network, should be.

DSNLocation (”yes” or ”no”) If the thread, which sends out
a ”dsn loc get” to all nodes in
the network to get there location
string, should start, when the Server
starts. The thread can be started
later with the XMLRPC function
threadSwitch.threadSwitch as well.

Table 4.27: Variables of the Server.properties under the section ”Threads”
(Part 1/3)

4.5. INSTALLATION 39

name value explanation

getDSN Version [milliseconds] How long the interval of the thread,
which sends out a ”dsn loc get” to
all nodes in the network, should be.

DSNProgInfo (”yes” or ”no”) If the thread should be started
that sends out a ”xbank get
proginfo” to all nodes in the net-
work to get there programm info
string of the programm which is
stored on the BTnode to repro-
gramm the BTnode or the target
node. The thread can be started
later with the XMLRPC function
threadSwitch.threadSwitch as well.

getDSN ProgInfo [milliseconds] How long the interval of the thread,
which sends out a ”xbank get
proginfo” to all node in the net-
work, should be.

Coninfo (”yes” or ”no”) If the thread, which sends out a
”coninfo” to the GUI node to find
out which nodes are connected,
should start, when the Server
starts. The thread can be started
later with the XMLRPC function
threadSwitch.threadSwitch as well.

getDSN coninfo [milliseconds] How long the interval of the thread,
which sends out a ”coninfo” to the
GUI node, should be.

LogThread (”yes” or ”no”) If the LoggingThread that is
explained in Chapter 4.3.6 should
start, when the Server starts.
The thread can be started later
with the XMLRPC function
threadSwitch.threadSwitch as
well.

Table 4.28: Variables of the Server.properties under the section ”Threads”
(Part 2/3)

40 CHAPTER 4. DSN SERVER

name value explanation

logMethod (”pull” or ”push”) If the LoggingThread that is ex-
plained in Chapter 4.3.6 should run
in the ”push” or ”pull” mode. Both
modes are explained in the Chap-
ter 4.3.6.

logging [milliseconds] This time is only used in the pull
mode. If the server receives no log
messages during this time, the server
assumes that the BTnode has fin-
ished the requests and the server re-
quests the log messages of the next
node. This time depends on the esti-
mated Round Trip Time of the used
network.

pushtime [milliseconds] This time is only used in the push
mode. After the server has received
the last logs of a node, the server
waits this time until he starts to re-
quest the missing logs of the next
node.

numRequest [Integer] How many times the server should
try to request a missing log message.

Table 4.29: Variables of the Server.properties under the section ”Threads”
(Part 3/3)

name value explanation

portName [String] The port to which the GUI node is connected. On
a Windows system it is something like ”COM3”
and on a unix system something like ”ttyUSB1”

baudrate [bit/sec] This is the rate, the server can write to the GUI
node. This is defined in the jaws on the BTnode.
Normally it is 57600.

Table 4.30: Variables of the Server.properties under the section ”RXTX-
Connections”

4.5. INSTALLATION 41

name value explanation

mySqlDriver [String] The JDBC driver (JDBC driver for MySQL =
”com.mysql.jdbc.Driver”)

mySqlUrl [bit/sec] The url to the database server (e.g.:
”jdbc:mysql://localhost/BTnode” (the name
after the last ”/” is the name of the used data-
base))

mySqlUser [bit/sec] The username, which has access to the data-
base.

mySqlPasswd [bit/sec] Corresponding password to the username.

Table 4.31: Variables of the Server.properties under the section ”SQL Data-
base”

name value explanation

hexPath [String] A folder where the server can store the uploaded .hex
files. The server must have writing permissions on
this folder.

Table 4.32: Variables of the Server.properties under the section ”Paths”

name value explanation

tgFlash [String] The command, which is used to flash a target.

Table 4.33: Variables of the Server.properties under the section ”Target
Commands”

42 CHAPTER 4. DSN SERVER

Chapter 5

Web Based DSN Tool

The web base DSN Tool was developed to substitute the GUI, which was
shown in Figure 1.2. Additionally we could show, how easy it is to develop
a new GUI that is interacting with the DSNServer over the distributed
XMLRPC interface.

The DSN Tool is written in php, because it is an easy to use web oriented
programming language. Therefore we have the ability to access the tool with
a web browser from every computer with internet access.

The functions, that are explained in Chapter 4.4, are implemented into
the DSN Tool. Due to the fact that some XMLRPC functions need an
authentication to use them, you have to login to the tool with username
and password of a XMLRPC account to use all functionalities.

At the moment the web based DSN Tool can be used only with the web
browser FireFox, this is the only web browser that we have tested with the
tool.

The DSN Tool is shown in the Figure 5.1.

5.1 Functionalities

In this section we explain shortly some features of the DNS Tool

GetDSN In Figure 5.1 we can see, what is shown under GetDSN. It shows
a picture with all the nodes on it and the corresponding links between
two nodes.
The background picture can be changed, therefore you have to place
into the root directory of the DSN Tool a picture in the jpg-format
with the name ”Bild.jpg”.
The picture is recreated, if someone access GetDSN and the last pic-
ture is older than the time ”coninfoUpdate” (Table 5.2.3) that is de-
fined in the file ”properties.php”. The generated pictures are saved
in the folder img/ and is named ”conimg YYYYMMDDHHmm.jpg”.

43

44 CHAPTER 5. WEB BASED DSN TOOL

Figure 5.1: Web based DSN Tool

5.2. INSTALLATION 45

The Tool displays always the latest picture.
The arrows on the picture points from the slave node to the master
node. This information is taken from the last entries out of the table
dsnconinfo (see Table 4.11). If an arrow is red, it means that only one
entry of both node is in the database. This can happen if only one
node means that he has a connection to the other node, or a coninfo
packet hasn’t reached the server.
If a node in the picture is red that means that the node hasn’t respond
to the last ping request.
Under the picture there is a list with all nodes the server has ever seen.
If a node hasn’t respond to the last ping request the line is colored red.
The rows can be sorted by clicking on the corresponding title you want
to assort.

SetLocation We implemented a function to set the location of the BTn-
ode relative to the picture, which is shown under GetDSN. Therefore
you have to click with the mouse pointer into the picture and the co-
ordinates of this point appears in the form. You have to choose the
DSNID for this point and push ”set Location”.

5.2 Installation

5.2.1 Requirements

DSNServer The DSNServer has to run.

Webserver with PHP module A webserver has to run with a PHP mod-
ule, but this server hasn’t to run on the same computer as the DSNServer.
We recommend for an easy installation for testing the toll an installa-
tion from the XAMPP project.

GD Library You need a GD PHP module that the tool is able to dynamic
create the image on the GetDSN page.

5.2.2 Installation

1. Check-out with a CVS client the module ”proj/dsngui” from ”btn-
ode.cvs.sourceforge.net:/cvsroot/btnode” into a directory of the web-
server.

2. Create a directory in the root directory of the Tool with the name
”img” and configure it that the webserver has write access to it.

3. Edit the file ”properties.php” in the main directory of the Tool. The
settings are explained in the Chapter 5.2.3.

46 CHAPTER 5. WEB BASED DSN TOOL

4. Change the picture ”Bild.jpg” in the root directory of the Tool with
your own picture of the environment, where the nodes are placed. The
picture has to have the name ”Bild.jpg”.

5.2.3 properties.php

In the following table the variables of the properties.php are listed.

name value explanation

$host String It is the Host of the DSNServer, how
the XMLRPC can be accessed. If
the DSNServer and the Tool are on
the same computer you can use ”lo-
calhost”.

$port Integer The port on which the XMLRPC
is listening. This is defined in the
file ”Server.properties” (see Chap-
ter 4.5.3).

$radius Integer It defines the radius of the black cir-
cles on the picture under GetDSN,
which indicates the location of a
node.

$width real, $height real Integer It is the width and height of the pic-
ture in real scale. It is used to con-
vert the location string of the BTn-
ode to a coordinate in the picture.

$offset x, $offset y Integer Not needed anymore.
$coninfoUpdate Integer Time in seconds after a new con-

info request is sent to the GUI
node. It is defined in the
file ”Server.properties” (see Chap-
ter 4.5.3).

$pingInterval Integer Time in seconds after a new ping
request is sent out to the DSN
network. It is defined in the
file ”Server.properties” (see Chap-
ter 4.5.3).

Table 5.1: Variables of the properties.php.

Chapter 6

Transport Performance Tests

An important thing of the DSN Server is the smart use of the bottleneck,
we discussed earlier in Chapter 4.1. The largest amount of data in the DSN
network comes from the collection of the log messages of the DSN Server.
Therefore we have to make some considerations how the server should collect
the log messages.
Hence we have two different method to collect the logs, push and pull method
that are explained in Chapter 6.1
Moreover we are interested to do an estimation how much log messages can
be generated on how many nodes that the server has the ability to store
them all in the database.

6.1 Scenarios

As already mentioned there are two different methods to collect the log mes-
sages. An detailed explanation of these methods is given in Chapter 4.3.6.

Pull The Server goes in a kind of a round robin through all nodes in the
network and requests the log messages of these. The server requests
the log messages of the next node if it received no logs for a defined
time of the current node.

Push As soon as a log messages is written to the log buffer, the BTnode is
sending the message immediately to the DSN Server.

Hence for both methods we can discuss, if it is useful to do a retransmission
for the lost logs.

We examine two different scenarios, how the logs are generated on a
sensor node and written to the buffer of the DSN node.

Log Stream The log messages on a node are generated regularly, every
specific time one log message is written to the buffer of the BTnode.

47

48 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

Log Burst After a pause some log messages are written together into the
buffer of the BTnode.
This scenario can be described with a sensor node, which is sleeping a
time, wake up, make some measurements, write these to the log buffer
on the BTnode and sleep again.

In Figure 6.1 both modes are shown.

Figure 6.1: Log generating modes

Hence there are four different scenario each of them with or without
retransmission of the lost messages:

- Push Log Stream (see Chapter 6.2.2)

- Pull Log Stream (see Chapter 6.2.3)

- Push Log Burst (see Chapter 6.2.4)

- Pull Log Burst (see Chapter 6.2.5)

6.2 Performance Evaluation

6.2.1 Sending Performance

We did a simulation for the model pull log stream (see Chapter 6.2.3) and a
estimation for the model pull log burst (see Chapter 6.2.5) for the transport
performance tests. Both models are dependent on the sending rate, which
defines how many logs can be sent pro second from a node to the GUI node
that has requested them.

To calculate the sending rate, we built a chain with BTnodes with a
maximal hop count of five and measured the time to get one hundred log
messages with a packet size of 121 bytes. We measured the time between
the first and the hundredth log.

We measured log sending rates between 12,98 and 13,7 logs
s .

6.2. PERFORMANCE EVALUATION 49

Therefore we assumed for our simulations and estimations a log sending
rate of 13 logs

s .

The measured log sending rate is astonishingly small, if we consider that
we have a baud rate of 57600 bit

s that corresponds with a rate of 60 logs
s if

the log packet size is 120 byte.
In the log sending algorithm of the BTnode is a delay implemented that is

probably too big. Therefore we consider that we can increase the log sending
rate up to 30 logs

s , if we decrease the delay in the log sending function on
the BTnode.

This increased sending rate will have an impact to methods with a pull
mode. If a node is able to send the log messages faster, the time can be
decreased, which is needed to send all logs to the server. The methods with
a push mode won’t change, because they send immediately there logs if they
are written to the buffer of the BTnode to the server that is independent
how many logs a BTnode can send in a specific time.

6.2.2 Push Log Stream

In Figure 6.2 are the result shown of a test in the push log stream mode
without retransmission, which were done by Matthias Dyer [9].

0.5 1 1.5 2 2.5 3 3.5 4

70

75

80

85

90

95

100

message rate [1/s]

m
es

sa
ge

 y
ie

ld
 [%

]

n=10n=15n=20n=25

Figure 6.2: Measured yield of correctly received log messages in push log
stream mode

50 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

Figure 6.2 shows the yield of correctly received log messages with a size
of 86 bytes payload, which accords to a packet size of 121 bytes. During this
test 100 log messages were generated on 10, 15, 20 or 25 nodes. Each test
were processed with different message generation rates from 0.5 to 4 packets
per node per second.

As we can see in Figure 6.2 a DSN can be run with following log gener-
ating rate on given nodes of the DSN to achieve a good message yield:

- 10 nodes ⇒ l = 3,0 logs
s

- 15 nodes ⇒ l = 1,5 logs
s

- 20 nodes ⇒ l = 1,0 logs
s

- 25 nodes ⇒ l = 1,0 logs
s

We don’t think that there will be a gain, if we do the test with retrans-
mission. If we are loosing messages, it is a sign that too much traffic is on
the network and the traffic won’t decrease later because the log messages are
generated in a stream. Retransmission produces additional traffic, therefore
it would have additional traffic and less messages will arrive at the server.

6.2.3 Pull Log Stream

For the pull log stream method we think that there will be no gain if we
do it with retransmission of the lost messages. Because if the server request
them, there should be no collision of the log messages.
Therefore we did a MatLab simulation of the method pull log stream without
retransmission.

Model

With the MatLab simulation we would like to show if the time, which is
needed to request the log messages of every node once, converges after some
cycles or not. Therefore we added up the time that is needed to get the
logs of every node over several cycles. On basis of Figure 6.3 we explain
the model. As already mentioned we calculated the time which is needed to
request all logs that is the time T in Figure 6.3.

- At the time zero all three nodes start to generate logs into the buffer
of the BTnode.

- At the time zero the server requests the logs of the node 1 as well. But
at this time the node 1 hasn’t got any logs in the buffer, therefore no
logs are sent to the server.

6.2. PERFORMANCE EVALUATION 51

- The server waits the time D before it recognize that the node 1 won’t
send any logs.

- The server requests the logs of the node 2 and the node 2 sent its log
to the server.

- When all logs are arrived at the server, the server has to wait the time
D again, before it recognize that the node 2 finished the request.

- This goes now on and on.

MatLab Simulation

We calculated the times T and plotted them for several cycles to show, if
it still increases or levels off. If the time T increases over all the cycles, it
indicate that it is not possible to collect all logs. Because the number of logs
on the buffer of the BTnode is increasing as well, consequently logs will be
overwritten before they can be requested.
In the Figures 6.4 to 6.7 there are the plots for several log generating rates
l. On the left side it is plotted the time T over the cycles and on the right
side is plotted the maximal numbers of logs on a node over the cycles.

Conclusion

With the MatLab simulation we could show, how much nodes out of a
network we can process, if they generate logs with a given rate l:

Figure 6.3: Used model of pull log stream.

52 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

0 5 10 15 20 25
0

1

2

3

4

5

6
x 10

4 T r=13, l=0.5, d=1

tim
e

fo
r

on
e

cy
cl

e
[s

]

cycle

15 nodes
20 nodes
25 nodes
26 nodes
27 nodes

0 5 10 15 20 25
0

200

400

600

800

1000

1200
L r=13, l=0.5, d=1

m
ax

im
al

 n
um

be
r

of
 lo

gs
 o

n
a

no
de

cycle

15 nodes
20 nodes
25 nodes
26 nodes
27 nodes

Figure 6.4: Plot of the pull log stream simulation with the settings r=13
l=0,5 d=1 c=25

6.2. PERFORMANCE EVALUATION 53

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
T r=13, l=1, d=1

tim
e

fo
r

on
e

cy
cl

e
[s

]

cycle

11 nodes
12 nodes
13 nodes
14 nodes

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400
L r=13, l=1, d=1

m
ax

im
al

 n
um

be
r

of
 lo

gs
 o

n
a

no
de

cycle

11 nodes
12 nodes
13 nodes
14 nodes

Figure 6.5: Plot of the pull log stream simulation with the settings r=13
l=1 d=1 c=25

- l = 0,5 logs
s ⇒ 25 Nodes

- l = 1,0 logs
s ⇒ 12 Nodes

- l = 1,5 logs
s ⇒ 8 Nodes

- l = 2,0 logs
s ⇒ 6 Nodes

We did our tests with a sending rate r = 13 logs
s and a delay, which the

server is waiting until it assumes that no more logs are coming, d = 1s. If
we increases the value of r, we could process more nodes. The value of d has
no influence on the numbers of nodes that can be processed, but the time
T and the maximal numbers of logs on a node increases.

That it is possible to compare this simulated results with the results from
the tests with the push log stream mode, we tested, which log generating
rate l is possible with 5, 10, 15, 20 or 25 nodes.
With log sending rate r = 13 logs

s :

- 5 nodes ⇒ l = 2,5 logs
s

- 10 nodes ⇒ l = 1,2 logs
s

54 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400
T r=13, l=1.5, d=1

tim
e

fo
r

on
e

cy
cl

e
[s

]

cycle

06 nodes
07 nodes
08 nodes
09 nodes

0 2 4 6 8 10
0

50

100

150

200

250
L r=13, l=1.5, d=1

m
ax

im
al

 n
um

be
r

of
 lo

gs
 o

n
a

no
de

cycle

06 nodes
07 nodes
08 nodes
09 nodes

Figure 6.6: Plot of the pull log stream simulation with the settings r=13
l=1,5 d=1 c=25

6.2. PERFORMANCE EVALUATION 55

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400
T r=13, l=2, d=1

tim
e

fo
r

on
e

cy
cl

e
[s

]

cycle

05 nodes
06 nodes
07 nodes

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450
L r=13, l=2, d=1

m
ax

im
al

 n
um

be
r

of
 lo

gs
 o

n
a

no
de

cycle

05 nodes
06 nodes
07 nodes

Figure 6.7: Plot of the pull log stream simulation with the settings r=13
l=2 d=1 c=25

- 15 nodes ⇒ l = 0,8 logs
s

- 20 nodes ⇒ l = 0,6 logs
s

- 25 nodes ⇒ l = 0,5 logs
s

As we already mentioned in Chapter 6.2.1, we expect that we can increase
the sending rate up to r = 30 logs

s . This would have a great impact to this
method.
With log sending rate r = 30 logs

s :

- 5 nodes ⇒ l = 5,9 logs
s

- 10 nodes ⇒ l = 2,9 logs
s

- 15 nodes ⇒ l = 1,9 logs
s

- 20 nodes ⇒ l = 1,4 logs
s

- 25 nodes ⇒ l = 1,1 logs
s

56 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

6.2.4 Push Log Burst with Retransmission

We tested the the performance of the DSN in the push log burst with re-
transmission mode on the DSN that was distributed on the G floor of the
ETZ building at the ETH Zürich.

Therefore we sent to some nodes a command to generate a specific num-
ber of log messages at the same time. As soon as the log messages were
written to the buffer of the BTnode, there were sent to the server. At the
time of a burst a lot of messages were sent to the server and according to
this some log messages were lost and had to request again after the burst.

0 5 10 15 20 25
55

60

65

70

75

80

85

90

95

100
Log Burst with Retransmission

lo
g

yi
el

d
[%

]

number of logs per burst

number of nodes = 5
number of nodes = 10
number of nodes = 15
number of nodes = 20

Figure 6.8: Measured yield of correctly received log messages in push log
burst with retransmission mode

In Figure 6.8 we can see the yield of correctly received log messages.
Therefore it is possible to get all log messages from 5, 10 15 or 20 nodes
with following burst amount of log messages, if a burst occurs every 30
seconds:

- 5 nodes ⇒ ba = 55 logs
burst

- 10 nodes ⇒ ba = 15 logs
burst

6.2. PERFORMANCE EVALUATION 57

- 15 nodes ⇒ ba = 7 logs
burst

- 20 nodes ⇒ ba = 6 logs
burst

6.2.5 Pull Log Burst

For the Pull Log Burst mode we found a condition that has to be achieved
in order to request all logs properly:

bt ≥ ba ∗ k

r
+ k ∗ d

This equation says that the time between two bursts must be greater or
equal then the time that is needed to request all logs from the BTnodes.
These two times are illustrated in Figure 6.9. If it is not possible to request
all logs of the first burst before the second burst occurs then it won’t be
possible to request all logs of the second burst before the third burst occurs
as well. Therefore the logs on the BTnode will still increase and the log
buffer on the BTnode will overflow.

Figure 6.9: Illustration of the pull log burst method.

There won’t be a gain if we do retransmission in this mode, because if
the server is not able to request the log messages without retransmission, it

58 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

won’t be able to do it with retransmission, due to the fact that retransmis-
sion needs some extra time.

To be able to compare the pull mode with the push mode directly, we cal-
culated some values with the formula above.
With log sending rate r = 13 logs

s and a burst every 30 seconds:

- 5 nodes ⇒ ba = 65 logs
burst

- 10 nodes ⇒ ba = 26 logs
burst

- 15 nodes ⇒ ba = 13 logs
burst

- 20 nodes ⇒ ba = 6,5 logs
burst

And again with the increased sending rate r = 30 logs
s and a burst every 30

seconds:

- 5 nodes ⇒ ba = 150 logs
burst

- 10 nodes ⇒ ba = 60 logs
burst

- 15 nodes ⇒ ba = 30 logs
burst

- 20 nodes ⇒ ba = 15 logs
burst

6.2.6 Conclusion

Log Stream

In Figure 6.10 we show how many nodes can produce how many log messages
per seconds that are correctly received at the server. This is done for the
push log without retransmission and pull log without retransmission with
two different sending rates.

As we explained in the previous chapter, we did tests for evaluating the
push mode and we did a simulation for the pull mode. The curves in the
Figure 6.10 have the same range of values and a similar characteristic of
the curve. This indicates that our simulation is probably not far away from
reality.

The Figure 6.10 points out that for the log stream model a push method
is considerably better than pull method if the BTnode has a slow sending
rate. But if it is possible to increase the log sending rate of the BTnode up
to r = 30 logs

s , the pull method will be slightly better.

6.2. PERFORMANCE EVALUATION 59

10 15 20 25
0.5

1

1.5

2

2.5

3
Log Stream without Retransmission

lo
gs

 p
er

 s
ec

on
d

number of nodes

Push
Pull r = 13 logs/sec
Pull r = 30 logs/sec

Figure 6.10: Both methods of the log stream model.

60 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

5 10 15 20 25
0

50

100

150
Log Burst

lo
g

pe
r

bu
rs

t

number of nodes

Push with Retransmission
Pull without Retransmission r = 13
Pull wihtout Retransmission r = 30

Figure 6.11: Both methods of the log burst model.

6.2. PERFORMANCE EVALUATION 61

Log Burst

Figure 6.11 shows how many logs can be produced in a burst every 30 sec-
onds of how many nodes, that it is possible to collect all packets correctly.
This is done for the push log with retransmission and pull log without re-
transmission with two different sending rates.

In the Figure 6.11 we can see as well, that our test, which we did for
the push mode with retransmission, and the estimation, which we did for
the pull mode without retransmission, have the same range of values and
similar characteristic of the curve as well.

The pull method is better as the push method, especially with the in-
creased sending rate r = 30 logs

s .
The model that we have used for the test was fairly extreme, because the log
burst started at the same time on all BTnodes. If the burst are randomly
distributed over the time, the result of a push mode will be better then now.
But we have to consider that nodes will be wake up at the same time slot
because of communication reasons, therefore our model isn’t far away from
reality.

62 CHAPTER 6. TRANSPORT PERFORMANCE TESTS

Chapter 7

Conclusion

The last chapter summarizes the achievements of this thesis and proposes
some topics for future workings.

7.1 Summary

In this master thesis, a server could be implemented for an easy use of the
DSN functionality and a Tool, which communicates with the server, which
provides an easy use of all the functionalities of the server.

The server provides a method to collect all the logging data from the
BTnode and store it to a database that it can be accessed later as well.
Some status information are collected from the server regularly to provide
them to the user of the DSN. There is the possibility to give restricted access
to users.

Using the XMLRPC interface it is possible to attach and construct tools
and GUI’s to be used with the DSN. Therefore every developer of a sensor
network can build his own tool with special functions that are necessary to
develop, debug and test this network. There is already a GUI in use which
is using this server [10].

During the developing process of the server we had to change and build
some function on the jaws application on the BTnode, due to the fact that
with this thesis some new concept were built, e.g the log messages were
adjusted that the server had the possibility to notice lost messages.

In this thesis we did transport performance tests to estimate how many
log messages can be collected from the BTnodes.

Generally it is now quite easy to write and execute test scenarios for the
DSN, if we look in Appendix A how easy it is to do a XMLRPC request.

63

64 CHAPTER 7. CONCLUSION

7.2 Future Work

The server has to be maintained during the time the jaws application on the
BTnode is deployed. If there will be a new command implemented on the
BTnode that allows the server to get more information about the network,
which has to be stored into the database, there must be written a new
CmdParser.

Additionally a XMLRPC function has to be updated or there must be
written a new one.

During the time the DSN Tool is used, there will be some requirements
that would be nice to have and therefore have to be implemented.

It would be interesting to do more performance tests. At the moment it
occurs very often that a node doesn’t respond anymore, if there was a lot of
traffic in the network. If the network isn’t stabile, it is very exhausting to
do meaningful performance tests.

There is a watchdog implemented that reboots the BTnode, if it is in a
deadlock situation. It should be measured how much this reboot occurs and
how big the impact is due to the transport performance, if it has an impact
of loosing packets.

The tests that are described in Chapter 6, should be repeated, because
there were some changes on the server that could have an impact to the test
results.

The estimation of the pull log burst and the MatLab simulation of the
pull log stream should be tested on the real DSN network as well. It would
be interesting if the measured results would be the same as the estimated
results.

During the transport performing tests there was taken a random topology
of the network and the tests run several time. It must be tested how big is
the factor of the network topology.

Appendix A

XMLRPC Examples

A.1 Java Code

import java.io.IOException;
import java.net.URL;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Vector;

import org.apache.xmlrpc.DefaultXmlRpcTransportFactory;
import org.apache.xmlrpc.XmlRpcClient;
import org.apache.xmlrpc.XmlRpcException;

public class XmlRpcExample {

XmlRpcClient client;

public XmlRpcExample(String urlstring) throws Exception {
URL url = new URL(urlstring);
DefaultXmlRpcTransportFactory tf =

new DefaultXmlRpcTransportFactory(url);
tf.setBasicAuthentication("username", "password");
client = new XmlRpcClient(url, tf);

}

public static void main (String args[]) throws Exception {
if (args.length < 1) {
System.err.println ("Usage: java Client URL");

} else {
XmlRpcExample client = new XmlRpcExample (args[0]);

65

66 APPENDIX A. XMLRPC EXAMPLES

client.run ();
}

}

public void run () {
try {

Vector args0 = new Vector();
args0.add(new String("root"));
args0.add(new String("coninfo"));
client.execute("dsnCommand.dsnCommand", args0);

Vector<Object> args1 = new Vector<Object>();
args1.add(new String("all"));
args1.add(new String("all"));
args1.add(new String("all"));
args1.add(new String("0001-01-01 00:00:00"));
args1.add(new String("9999-01-01 00:00:00"));
Vector result1 = (Vector)client.execute("" +

"getConinfo.getConinfo", args1);

System.out.println("Result of getConinfo has "
+result1.size()+" elements.");

System.out.println("------------------"
+"------------------");

Iterator iter = result1.iterator();
while(iter.hasNext()){
Hashtable t = (Hashtable)iter.next();
System.out.println("time = "

+t.get("time"));
System.out.println("SourceAddr = "

+t.get("SourceAddr"));
System.out.println("NeighborAddr = "

+t.get("NeighborAddr"));
System.out.println("State = "

+t.get("State"));
System.out.println("rssi = "

+t.get("rssi"));
System.out.println("----------------"

+"--------------------");
}

} catch (IOException e) {
System.out.println("IO Exception: "

+ e.getMessage());

A.2. PHP CODE 67

} catch (XmlRpcException e) {
System.out.println("Exception within XML-RPC: "

+ e.getMessage());
}

}
}

A.2 PHP Code

<?php

require_once ’xmlrpc.inc’;

$_RPC_CLIENT = new xmlrpc_client(’/’, ’localhost’, 8887);
$_RPC_CLIENT->setCredentials(’kaltt’, ’mypwd’);

//===
function dsnCommand($destination, $command){
global $_RPC_CLIENT;

$args = array(
new xmlrpcval($destination, ’string’),
new xmlrpcval($command, ’string’),

);
$req = new xmlrpcmsg(’dsnCommand.dsnCommand’, $args);
$resp = $_RPC_CLIENT->send($req);

return $resp;
}
//===
function getConinfo($Source_DSNID, $Neighbor_DSNID, $State,

$time_from, $time_till, $maxReply){
global $_RPC_CLIENT;

$args = array(
new xmlrpcval($Source_DSNID, ’string’),
new xmlrpcval($Neighbor_DSNID, ’string’),
new xmlrpcval($State, ’string’),
new xmlrpcval($time_from, ’string’),
new xmlrpcval($time_till, ’string’),
new xmlrpcval($maxReply, ’int’),

);
$req = new xmlrpcmsg(’getConinfo.getConinfo’, $args);

68 APPENDIX A. XMLRPC EXAMPLES

$resp = $_RPC_CLIENT->send($req);

return $resp;
}
//===

dsnCommand(’all’, ’log clear’);

$r = getConinfo(’all’, ’all’, ’all’, ’0001-01-01 00:00:00’,
’9999-01-01 00:00:00’, 10);

if ($r->faultCode()) {
print "An error occurred:<pre>";
print "Code: " . htmlspecialchars($r->faultCode()) .

"\nReason: ’" . htmlspecialchars($r->faultString()).
’\’</pre><hr/>’;

}
else{
$v = $r->value(); // array
$max = $v->arraysize();
if($max == 0){
print "no entries found.\n";
return;

}

echo’
<table border="1">
<tr>
<th>Time</th>
<th>Source</th>
<th>Neighbor</th>
<th>State</th>
<th>rssi</th>

</tr>’;

for($i=0; $i < $max; $i++){
$rec = $v->arraymem($i);
$time_temp = $rec->structmem("time");
$time = $time_temp->scalarval();
$source_temp = $rec->structmem("SourceAddr");
$source = $source_temp->scalarval();
$neighbor_temp = $rec->structmem("NeighborAddr");
$neighbor = $neighbor_temp->scalarval();

A.2. PHP CODE 69

$state_temp = $rec->structmem("State");
$state = $state_temp->scalarval();
$rssi_temp = $rec->structmem("rssi");
$rssi = $rssi_temp->scalarval();
print "<tr><td>".htmlspecialchars($time).

"</td><td>".htmlspecialchars($source).
"</td><td>".htmlspecialchars($neighbor).
"</td><td>".htmlspecialchars($state).
"</td><td>".htmlspecialchars($rssi).
"</td></tr>\n";

}

print "</table>\n";

}
?>

70 APPENDIX A. XMLRPC EXAMPLES

Appendix B

Problem Task

71

72 APPENDIX B. PROBLEM TASK

73

74 APPENDIX B. PROBLEM TASK

75

76 APPENDIX B. PROBLEM TASK

Bibliography

[1] J. Beutel, M. Dyer, L. Meier, M. Ringwald, and L. Thiele. Next-
generation deployment support for sensor networks. Technical Report
207, Computer Engineering and Networks Lab, ETH Zürich, Switzer-
land, November 2004.

[2] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology con-
trol for deployment-sensor networks. Technical Report 208, Computer
Engineering and Networks Lab, ETH Zürich, Switzerland, November
2004.

[3] K. Martin, Adaptive XTC on BTnodes, Masterarbeit, ETH Zürich,
Switzerland, Wintersemester 04/05

[4] http://www.millennium.berkeley.edu/sensornets/

[5] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A wireless
sensor network testbed. In Proc. 4th Int’l Conf. Information Processing
in Sensor Networks (IPSN ’05), pages 483488. IEEE, Piscataway, NJ,
April 2005

[6] http://www.earthscope.org/

[7] http://ant.apache.org/manual/install.html

[8] Jan Blumenthal, Frank Reichenbach, Frank Golatowski, Dirk Timmer-
mann: Controlling Wireless Sensor Networks using SeNeTs and En-
viSense, 3rd IEEE International Conference on Industrial Informatics,
INDIN 05, ISBN: 0-7803-9095-4, Perth, Australien, August 2005

[9] M. Dyer, P. Blum, L. Thiele: Deployment Support Network, A toolkit
for the development of WSNs, submitted to EWSN 07, Delft, The
Netherlands, January, 2007

[10] P. Oehen, DSNAnalyzer: Backend for the Deployment Support Net-
work, Master Thesis, ETH Zürich, Switzerland, September 2006

77

78 BIBLIOGRAPHY

