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Abstract 
Nowadays, wireless sensor network applications can be used mostly everywhere to help 
gathering detailed environmental information. But these systems also have very strong 
constraints such as low battery power and few computing resources. In the case of wireless 
systems for fire detection, even harder problems like high dependability, fault-tolerance and 
real-time constraints appear. 

Because it is often difficult to have a testbed which is large enough to test a protocol in its full 
diversity, simulators are used to shorten the research and development phase. The problem 
that arises when using simulators is to have a radio model that is not only simple enough to be 
efficient but also complex enough to model the real-world behavior accurately enough. 
Nevertheless, experimental verification is needed to confirm the results gained from 
simulation. 

The main goal of this thesis is providing a tool which helps to understand wireless 
communication in non-deterministic environments such as office buildings, where one key 
aspect is bringing simulation and reality closer together. Information which comes from the 
measurements is analyzed and serves as input for the simulation model. The tool is based on a 
second independent network connected to the network in production and provides direct 
access to the sensor nodes using Bluetooth technology, as if we had a cable to each of them. 
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1 Introduction 

In this chapter we give an overview of what the master thesis is about and describe the basic 
challenges we had to solve. 

1.1 Safety Critical Sensor Networks for Building Applications 

In this section we define the scope by first introducing Wireless Sensor Networks (WSNs), 
then starting from the point of view of SBT which is building fire detection systems, 
explaining then the special topics of prototyping WSN and defining afterwards the DSN 
which should help to overcome the special challenges appearing in this kind of development 
area. 

1.1.1 WSN 
Moore’s law states that every one and a half years the storage capacity on a chip is doubled. 
This has consequences for a lot of different application areas [Culler/Estrin 2004, 1]. Because 
computers are getting smaller and cheaper, they can also be used as sensor nodes which 
measure data about their environment. In order to collect this data, the information is usually 
sent to the sink1 of the network. Sensor nodes which communicate by using radio are 
therefore called WSN. 

One special constraint of WSN is the fact of limited resources. Sensor nodes usually have 
small batteries, limited processing speed, small storage capacity and only little 
communication bandwidth [Culler/Estrin 2004, 1]. These limitations make the design of 
protocols and applications for WSN very difficult. 

Nevertheless, WSN are very popular nowadays and already used in a large variety of 
applications such as medical monitoring, animal monitoring, vehicle monitoring, building 
technology and many more [Lewis 2004, 1]. 

1.1.2 WSN at SBT 
One activity of the Fire Safety (FS) division at SBT is developing fire detection devices 
which are based on current WSN technology. Up to now, WSN systems for fire detection are 
a niche product mainly used for places like museums and churches, where cable installations 
should be avoided. SBT has been selling WSN fire detection systems which work with a star 
topology2 for several years [Siemens 2006]. 

This thesis is part of a Project (see 1.1.2.2) whose main goal is to provide an enhanced WSN 
fire detection system with mesh networking3 functionality. 

                                                           
1 A “sink” is a sensor node which collects the data from the WSN and delivers it to some kind of 

backbone network. 
2 In a star topology, a message is only sent from one target to another and cannot be routed over 

several Targets. 
3 Mesh Networking allows sending messages over several Targets using different paths. 
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1.1.2.1 Fire Detection 
A fire detector (FD) belongs to a fire detection network (FDN) which represents a multi-hop 
WSN. A FD uses fire sensors to measure its environment and forwards a fire alarm on sensing 
fire conditions. This alarm is sent to the sink of the WSN which then, for example, can inform 
the fire brigade and enable sounders as well as special lights which are nodes of the WSN. 

A FDN usually works in two phases: In a first phase, all FDs try to get information about the 
other FD in the system and initialize their internal data structures. In a second phase, the 
system starts to measure the environment and triggers alarms in case of a fire detection. 

In this special kind of WSN application, there are new requirements such as a maximum 
latency for a message over multiple hops4 and maximum energy consumption in order to 
design devices which can work for several years. 

1.1.2.2 CTI Project 
The multi-hop WSN for fire detection is developed with the support of the Commission for 
Technology and Innovation (CTI)5. The project runs under the name Safety Critical Sensor 
Networks for Building Applications and has a duration of 36 months. In contrast to traditional 
WSN technology, this CTI-Project is mainly about real-time constraints in WSN, which are 
needed in order to use WSN for fire detection systems as well as reliability and fault-
tolerance. Additional goals of the project are a high dependability, small energy consumption 
of the Targets and performance guarantees. [Siemens 2006]. 

In this project, SBT works together with the following partners: 

• Siemens Switzerland, Business Innovation Center (BIC) 

• Centre Suisse d’Electronique et de Microtechnique (CSEM) 

• Swiss Federal Institute of Technology (ETH) 

1.1.3 WSN Prototyping 
The classic approach in prototyping WSN is to specify the system, test it by using formal 
verification, simulate it and run the application on a small set of Targets.6 The Targets are 
often connected to a computer over serial cables which enable the system developer to check 
if the Target software7 works as intended and provides services such as reprogramming.8 An 
easier way to check the system status is by using Light-Emitting Diodes (LED) connected to 
the Targets which indicate the system condition using different colors but provide only very 
limited debugging possibilities [Beutel et al. 2006, 1]. 

                                                           
4 One hop means sending a packet from one node to another. 
5 The “CTI” is a Swiss Federal Founding Agency. See 

http://www.bbt.admin.ch/kti/index.html?lang=de 
6 A “Target” is a sensor node which runs most often using battery power and has limited system 

resources (see 2.1.1.3). 
7 An alternative term is “firmware”. 
8 An Example of this configuration is [MoteLab 2006]. 
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1.1.3.1 Simulation 
Because real WSN are considered to consist of several hundred Targets, experiments would 
be difficult at that scale. Therefore simulations are often used to gain information about the 
developed software [Reijers et al. 2004, 1]. 

One of the fundamental goals in designing a simulator is to create a radio model that is simple 
enough to be fast but also complex enough to model reality accurately. 

SBT has decided to use GloMoSim9 (see [GloMoSim 2006] for details) which is a simulation 
environment tailored for large wireless communication networks. GloMoSim allows 
simulating networks which consist of thousands of Targets and also supports multi-hop 
wireless communication [Nuevo 2004]. It also combines simulation of individual node 
behavior and sophisticated propagation models. 

1.1.3.2 Measurement 
A second way to prototype WSN is to run the developed software directly on the Targets. The 
results which can be retrieved by measurements are accurate and reflect the real-world 
properties of a WSN. 

But measurements are not only used for prototyping. A further usage is when the system is 
finished and the developers and testers want to be sure that the system works as expected; 
therefore, long-term tests under real-conditions have to be performed. Another reason for 
doing measurements comes from the fact that most protocols rely on some assumptions about 
the link quality and its temporal properties. In order to provide this very important 
information to the system designers, initial tests have to be executed to study the behavior of 
the Targets in the specified environment. 

1.1.3.3 Conclusion 
Simulators are a good and cheap way to test protocols and applications for WSN, but they 
cannot substitute measurements in the real world. An explanation is the fact that radio wave 
propagation cannot be modeled simply and accurately enough to gain the same results as with 
a real-world system. Another explanation is the fact that in most simulations, only the 
protocol is changed at different runs while other factors are kept constant which can lead to 
inaccuracies of the test outcomes [Andel/Yasinsac 2006, 48]. Therefore, it is indispensable to 
run software on a sufficient number of Targets over a time which is long enough to detect all 
major software bugs. 

Because of the advantages and drawbacks of the two prototyping methods described above, 
they have to be combined. We need simulation to overcome the complexity of setting up very 
large testbeds10 for basic measurements, but we also need real-world measurements to prove 
the simulation results on the one hand, and to get detailed link quality information which can 
be used as input for the simulator on the other hand. I.e. the simulation can be used to 
improve the implementation and the measurements help to improve the simulation models. 

                                                           
9 GloMoSim stands for Global Mobile Information System Simulator. 
10 A testbed is an experimentation platform for large projects. See 

http://en.wikipedia.org/wiki/Testbed 
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In order to gain the environmental information needed for the simulation as well as 
performing extensive measurements, we need a toolkit which enables easy access and control 
of all Targets of a WSN which is provided by the DSN discussed in 1.1.4. 

1.1.4 Deployment Support Network 
The Deployment Support Network (DSN) is a tool for prototyping WSN and was developed at 
the ETH Zurich to overcome the limitations in classical prototyping approaches. 

When a WSN is getting larger than just a few nodes, the prototyping methods using serial 
cables described above reach their limits. It would not be possible to place a cable from a 
single PC to every Target, especially if the tests should be made in an office building or harsh 
outdoor environments. But not only the monitoring of the WSN is getting more complicated 
with an increasing number of Targets, also controlling and reprogramming would be 
infeasible. Nevertheless, it is very important for the system engineer to be aware of what 
exactly happens in the network; therefore, a kind of virtual connection to every Target is 
needed. 

An approach for these issues would be to integrate the controlling and code dissemination11 
directly into the WSN currently being developed (see [Levis et al. 2004; Chlipala et al. 
2003]). However, this technique has the drawback that a stable network is needed for code 
dissemination and monitoring purposes, which is usually not the case. A second drawback of 
this approach is the fact that the controlling and monitoring network would influence the 
“real” network because maintenance data would also be sent through the network 
[Hobi/Winterhalter 2005, 3]. 

In order to solve the problems described, the Deployment Support Network was developed. 
The DSN is a tool which helps to deploy large WSN and consists of a wireless multi-hop 
network of DSN-Nodes12. The network creates a virtual connection to the Targets such that 
each Target can be controlled from a single computer. The DSN-Network itself is a network 
which runs independently of the Target network, i.e. it does not influence the Target 
network13. 

The system developer can use the DSN to work as if every node is still connected to its 
computer using a cable and can therefore use the same controlling and monitoring tools. The 
DSN can be used over the whole production cycle (see Figure 1-1) of a WSN starting from 
initial code distribution, control the Targets, run exhaustive validation tests and monitor the 
system in its final state [Beutel et al. 2004]. 

                                                           
11 Code dissemination or code distribution describes the task of distributing new software to the 

Targets which afterwards can be used to reprogram them. 
12 A DSN-Node is a WSN-Node itself and small enough to be attached to any Target of the WSN 

which is to be implemented. 
13 This statement is analyzed in 2.5.1.8. 
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Figure 1-1: DSN Application Domain [BTnode 2006] 

1.1.4.1 Hardware Platform 
In order to provide the services described above, the DSN needs an underlying hardware 
platform for the DSN-Nodes which can build multi-hop networks, allows efficient data 
transfer and has an interface for being easy connectable to Targets of all kinds. 

For these requirements, Bluetooth was chosen because of its reliable link layer, bandwidth 
and reliability. The fact of saving power is not that important because the DSN-Nodes do not 
have to live as long as the Target, which is designed to be energy-efficient. Another 
requirement which a DSN-Node should fulfill is to be easily adaptable to different kind of 
Targets. 

The developers of the DSN have chosen BTnodes [Beutel et al. 2003; BTnode 2006] as the 
hardware platform for the DSN-Nodes (see Figure 1-2). The BTnode is a Bluetooth based 
device which is small and runs on an Atmel ATMega128L microcontroller and was designed 
for fast prototyping WSN [Beutel et al. 2004].14 

 
Figure 1-2: BTnode Hardware [BTnode 2006] 

 

                                                           
14 More Details of the BTnode are shown in 2.1.2.2. 
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1.1.5 Other Concurrent Work 
This thesis is concurrently done with other subprojects: 

• ETH:  

• Development of the DSN-Server (Master Thesis) (see 1.1.2) 

• Enhancement of the DSN-Node software (see 1.1.2) 

• Development of the Dwarf protocol 

• Development of the ClusterMAC protocol 

• CSEM:  

• Development of the WiseMAC protocol 

• SBT:  

• Implementation of the physical layer of the A80 Target 

• Analysis of the battery usage of the A80 

The software developed in this thesis should be used to visualize the results of the simulations 
of the Dwarf, ClusterMAC and WiseMAC protocol. Additionally, it can be used for 
performing measurements with the A80 Targets from SBT. 

1.2 Problem Specification 

After having defined the scope of the thesis, we describe the specific problems to solve as 
well as the goals of the thesis. 

In 1.2.2.4 we specify the tool which is developed in this thesis and discuss why such a tool is 
necessary when analyzing WSN. 

1.2.1 Goals / Motivation 
The main goals of this thesis are: 

1. Integration of the existing Deployment Support Network (DSN) with the existing 
radio module by Siemens Building Technologies (SBT). 

2. Design and implementation of a tool for analyzing, controlling and testing WSN-
Applications. This tool has to handle both the output of a WSN simulator as well as 
the output of the DSN. 

3. Design, planning and execution of tests using the developed tool, which should help 
to understand the behavior of radio waves in special environments such as office 
buildings and should prove the functionality of the tool. These test results should also 
help to improve the communication protocols introduced in 1.1.5. 

1.2.2 System Overview 
In Figure 1-3 we see the whole DSN System. The system consists of various components 
which are defined and introduced in the following sections. The work on the DSN Layer is 
done by people at the ETH, while the WSN-Layer is a part of this thesis. 
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Figure 1-3: DSN System Overview 

1.2.2.1 DSN-Node 
The DSN-Node is a BTnode which runs the DSN software. It autonomously builds up a 
multi-hop network which is connected to the DSN-Server (see 1.2.2.2). The DSN-Nodes are 
usually placed in a box together with a Target (see 1.2.2.3), which allows controlling and 
monitoring services. 

1.2.2.2 DSN-Server 
The DSN-Server is the software which runs on a PC and allows clients to interact with the 
DSN. This server is mainly responsible for transforming user requests to DSN commands and 
handling the results. Another task is to collect logs15 from the DSN-Nodes and store them 
correctly in a database as well as providing access functions to this database. The DSN-Server 
is used by clients where the DSNAnalyzer (see 1.2.2.4) is the client software in this thesis. 
This software is concurrently developed as a master thesis at the ETH. 

1.2.2.3 Target 
The Target is the wireless sensor node which is under development and is controlled and 
monitored and reprogrammed by the DSN-Node (see 1.2.2.1). In our case the Target is a 
Siemens A80 radio module (see 2.1.2.1) which is being developed with the software of this 
thesis by people at SBT. 

1.2.2.4 Client (DSNAnalyzer) 
The DSNAnalyzer is a backend software application which communicates with the DSN-
Server (see 1.2.2.2) and allows the user to control, monitor and perform measurements on the 
Targets connected to the DSN-Nodes. A design decision was to be as independent of the DSN 
itself as possible, i.e. the DSNAnalyzer just takes advantage of the DSN but is not the 
backend for the DSN-Nodes. 

                                                           
15 A log or a log entry is a string which is generated at the DSN-Node. Events which are generated at 

Targets are stored as log entries at the DSN-Node. 
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The DSNAnalyzer is the intended tool for bringing simulation and real-world measurements 
closer together and is the result of the second goal described in 1.2.1. Therefore, it has the 
possibility of not only getting input from the DSN but also from performed simulations. 

The functionality of the DSNAnalyzer can be divided into the following three main parts: 

• The Control View is a place where the actor16 can completely control the Targets of 
the DSN as well as reprogramming them. There is a possibility to open a terminal to 
every single Target as well as controlling its state. 

• The Analyze View allows the user to analyze Traces which are a set of events17 that 
occurred either on the Targets or during a simulation. Events are displayed on three 
types of sub-views including a sequence chart where events are shown on timelines, a 
3D location map where the user can see the position of the Targets and a log window 
where the textual representation of the events are displayed. 

• In the Analyze Test View, the user can analyze results of previous test-runs18 in the 
Control View in the form of charts. This view is very easy extendable and allows the 
advanced user to draw exactly the charts which are important for the given WSN. 

With all the functionality mentioned above the DSNAnalyzer allows the user to gain a deep 
knowledge about system and radio propagation characteristics of the WSN and its radio 
hardware which is in development. Additionally, this tool could be used to do intensive 
validation checks of a final WSN as well as taking full control of all the Targets in the WSN. 

1.2.3 Channel Measurements 
WSN communicate over radio waves which have a well-defined propagation in the blank 
space. However, if we are in difficult environments such as office buildings, radio wave 
propagation becomes rather unpredictable due to reflection, diffraction and attenuation. 
Additionally, making predictions about link quality using low-power radio is much more 
complicated than with e.g. Wireless LAN [Woo/Culler 2002, 1]. 

In order to provide relevant information about the radio wave propagation in this special 
environment to the designers of wireless protocols, we need to perform channel 
measurements what refers to the third goal mentioned in 1.2.1. These measurements should 
give an insight into link quality, its symmetry, resistance to interferences and temporal 
behavior. 

For performing these measurements, the DSN system described in 1.2.2 extended with a new 
backend application should be used. 

1.3 Contributions 

The following items are my specific contributions to the subject matter of this master thesis: 

• Put the Adapter Board (see 2.1.2.3) into operation. Define, implement and execute 
initial tests on the A80 to check if the hardware works properly. 

                                                           
16 In this thesis, the term actor is used as a synonym for user 
17 An event is a description of what, where and when something happened (e.g. A message sent by 

Target A at time t). 
18 In our case, these tests are link quality tests. 
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• Find an appropriate way to prototype the A80 radio module and to integrate simulation 
output with the output of measurements using the DSN. This consists of requirement 
analysis, design and implementation of the DSNAnalyzer which is the main 
contribution of this thesis. 

• Integrate the DSN-Server and DSN-Node software which is being designed and 
developed by people at the ETH (TIK). 

• Design and implement test scenarios which help to understand the radio wave 
propagation in office buildings. 

• Take measurements of the DSN system installed at SBT and assess its current 
performance. 

• A method and a schedule to achieve the contributions mentioned above within the 
given time. 

• Perform and discuss link quality measurements with the A80 Target and the developed 
software. 

1.4 Document Overview 

This master thesis document is structured in three parts: Chapter 2 describes the developed 
tool as well as its evaluation. Chapter 3 describes the tests performed using the tool and 
analyzes the results. 
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2 DSNAnalyzer 

The DSNAnalyzer is the main contribution of this thesis and is a backend software 
application which allows the user to control and monitor the Targets connected to the DSN-
Nodes. In this chapter, we first give an overview of the whole DSN installed and configured 
at SBT. Afterwards, we mention the methodical processing of this thesis which is followed by 
a section about requirements and Use Cases. After that, we describe the design and 
implementation as well as the detailed evaluation of the developed system.  

2.1 DSN System Overview 

This chapter provides an overview about the whole DSN System with all its components and 
not only about the DSNAnalyzer implemented in this thesis. The DSN is a network which 
consists of DSN-Nodes connected to Targets. These DSN-Nodes can be controlled by the 
DSN-Server and are able to interact with the Targets. The DSN-Server is controlled by a 
client application which is a visible backend to the system developer (see Figure 1-3). 

2.1.1 System Components 
The DSN could be split up into two main parts (see Figure 1-3): 

• The DSN Layer which already exists and consists of the DSN-Nodes and the DSN-
Server. 

• The WSN Layer which is specific to the application and consists of the Target 
Node software as well as the client which is in this thesis a Graphical User 
Interface (GUI) Application. 

2.1.1.1 DSN-Node 
The BTnodes (see 2.1.2.2) which are usually directly connected to a Target (see 1.2.2.3) are 
called DSN-Nodes and are used for controlling and monitoring the Targets. A DSN-Node is 
running the open source software JAWS19 which is basically used to build up a multi-hop 
network between all available DSN-Nodes.  

The DSN software, which is written in C, supports on the one hand functions on the DSN-
Node itself (e.g. reset, get log entries) and on the other hand functions for the Target (e.g. 
reset, reprogramming, toggle pins, send commands, receive events). 

There is a special kind of DSN-Nodes called GUI-Node20 which runs the same software as the 
other nodes but in a different mode. The GUI-Node is connected to the DSN-Server (see 
2.1.1.2) over USB and is therefore the connection between the server and the multi-hop 
network. The GUI-Node can communicate with all other DSN-Nodes in the system by using a 
Remote Procedure Call (RPC) command which allows executing an arbitrary command on 
one or multiple DSN-Nodes. 

                                                           
19 See also http://www.btnode.ethz.ch/Projects/JAWS-DSNSpecification 
20 This node is called GUI-Node because of historical reasons when it was directly controlled by a 

GUI-Application. The GUI-Node could also be referred to as Sink of the DSN. 
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The software release we use for the DSN-Node uses 50Kbytes out of the 180Kbyte memory 
which are totally available for storing log entries.21 

2.1.1.2 DSN-Server 
The DSN-Server is the software that connects the client to the DSN-Nodes. This piece of Java 
software was developed concurrently with the client by another master-student of the ETH 
and is an improved version of old DSN server application (see [Zimmermann 2005]). 

The DSN-Server interconnects the clients to the DSN-Nodes over the GUI-Node. It provides 
an XML-RPC interface for the following services: 

• Executing commands on Targets/DSN-Nodes 

• Programming Targets/DSN-Nodes 

• Reset  Targets/DSN-Nodes 

• Get connection information for the DSN-Nodes 

• Get program version of the DSN-Nodes 

• Get events from the database 

2.1.1.3 Target 
The Target is the sensor node which is under development and is therefore monitored and 
controlled by a DSN-Node (see 1.2.2.1). In this thesis, the Target is the Siemens A80 radio 
module (see 2.1.2.1). The interface between the Target and the DSN-Node is described in 
2.1.3.4. 

2.1.1.4 Client (DSNAnalyzer) 
The client component (introduced in 1.2.2.4) is the main contribution of this thesis and called 
DSNAnalyzer. It is a Java backend application for the DSN and used for controlling, 
monitoring and reprogramming the Targets as well as to perform measurements. The design 
of the client and its functions are described in more detail in 2.4. 

2.1.2 Hardware 
In the following subsections we describe the hardware of the DSN-Node, the Target and the 
Adapter Board which is the device that combines them. 

2.1.2.1 Siemens A80 
The Siemens A80 (see Figure 2-1) is a Target based on a MSP43022 microprocessor and has a 
Texas Instruments Chipcon CC1020 UHF Radio Transceiver. This hardware is designed for 
low power applications in the Industrial, Scientific and Medical (ISM) domain. 

                                                           
21 Each log entry takes 14 bytes overhead for the data structure 
22 See also 

http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342 
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Figure 2-1: Siemens A80 

The CC1020 has a frequency range from 402 MHz – 470 MHz and 804 MHz – 940MHz, a 
sensitivity of -118 dBm and includes an RSSI indicator [Chipcon 2006]. The CC1020 has a 
data rate of 4.8Kbit/s and supports (among other) Frequency Shift Keying (FSK) for 
modulation. 

In the A80 Software, antenna A is called antenna 0 and antenna B is called antenna 1. 

The CC1020 supports antenna diversity which makes it possible to change between two 
antennas. Because we are sending on 4.8Kbits/s and have a channel spacing of 25kHz we 
have a receiver sensitivity of -112 dBm. 

2.1.2.2 BTnode rev3 
The BTnode rev3 is the hardware platform of the DSN-Nodes. It is a versatile computing 
platform based on a Bluetooth radio module. Additionally, it includes a second low-power 
radio module (which is also used on the Berkeley Mica2 Motes23) as well as a microcontroller 
(see Figure 2-2). These two Radio modules can be turned on and off independently but can 
also be used simultaneously. 

The BTnode is primarily used for prototyping WSN and Mobile AdHoc Networks 
(MANETs).  

The System-Software of the BTnode in this setup is called BTnut24 which consists of the 
Nut/OS operating system, the Bluetooth stack and BTnode specific drivers.  

                                                           
23 See also http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf 
24 See also http://sourceforge.net/projects/btnode 
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Figure 2-2: BTnode rev3 System Overview [BTnode 2006] 

The BTnode contains 64+180 Kbyte SRAM, 128Kbyte Flash ROM and 4 Kbyte EEPROM. 
The size is 58.15 x 33 mm [BTnode2006]. 

2.1.2.3 Siemens Adapter Board 
The Adapter Board is the hardware platform where the DSN-Node (see 2.1.1.1) and the 
Target (see 1.2.2.3) are connected together (see Figure 2-3). The Adapter Board is a Printed 
Circuit Board (PCB) which mainly consists of the connector for the BTnode (DSN-Node), the 
connector for the A80 (Target) and a plug for power. 

 
Figure 2-3: Siemens Adapter Board 
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Additionally, it includes the Support MSP which is an MSP43025 microprocessor used for the 
following features: 

• Current measurements (Up to now, the current can only be measured manually but 
it is planed to extend the BTnode software such that it can communicate with the 
Support MSP over I2C serial bus and retrieve current measurements.) 

• Spy feature (Allows the user to connect a cable to the onboard cinch plug and 
follow the communication between the BTnode and the A80. This feature can also 
be used to work with the A80 and the Adapter Board without a DSN.) 

• Possibility for externally influence the Target. 

The communication between the DSN-Node and the Targets takes place over a serial 
interface (see 2.1.3.4). 

The Adapter Board is placed into a box (see Figure 2-4) which includes a battery pack and 
protects the hardware. The battery back allows the following battery configuration: 

• 1 x 9V 

• 1 x AA 3.6V 

• 4 x AA 1.5V 

 
Figure 2-4: Siemens “Blue Box” 

On the bottom of the box there are magnets which are used to put the box onto a magnetic 
surface (e.g. the ceiling of the office at SBT as shown in Figure 2-5). 

                                                           
25 See also 

http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342 
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Figure 2-5: "Blue Box" at the ceiling close to a fire detector 

2.1.3 Protocols / Interfaces 
As already mentioned, we have four different components in the DSN: 

• Client 

• DSN-Server 

• DSN-Node 

• Target 

In the following section, the communication protocols among these subparts are described. 
Whenever possible we try to use standardized and generic protocols which we can use as 
much as possible out of the box and had only to adapt them to our specific system needs. This 
was done to make the system easy accessible by other software. 

 
Figure 2-6: DSN Interfaces 
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The most important interfaces are shown Figure 2-6 in where Interface A is described in 
2.1.3.1 and interface B in 2.1.3.4. 

An overview of the protocols used between the DSN interfaces can be seen in Figure 2-7. 

 
Figure 2-7: RPC Schema 

2.1.3.1 Client – DSN-Server 
The DSN-Server provides a bunch of methods which could either be used to control the DSN 
or to get information out of the server database (see interface A in Figure 2-6). 

For the communication between the Client (the DSNAnalyzer) and the DSN-Server, we have 
chosen to use XML-RPC for the protocol. 

XML-RPC is a specification about doing Remote Procedure Calls (RPC) using the Hyper 
Text Transfer Protocol (HTTP) as transport protocol. XML-RPC is able to run on different 
platforms, is designed to be very simple and easy to use and allows exchanging complex data 
structures [XML-RPC 2006]. 

The implementation we used was Apache XML-RPC26 which is a java implementation of the 
XML-RPC standard. 

2.1.3.2 Client – Target 
For the communication between the Client (DSNAnalyzer) and the Target (A80), we have 
chosen to use a kind of an RPC interaction.  

A simple lightweight RPC protocol is JSON-RPC27 which provides a common representation 
of data transferred from the client to the server. In our case, the client is the DSNAnalyzer and 
the server the Target (A80). The reason why we do not take XML-RPC is, that the JSON-
RPC standard is easier to implement on the Target because it is easier to write a parser for 
JSON-RPC than for XML-RPC. Additional advantages are that a parser for JSON-RPC is 
smaller and that the protocol includes less overhead. 

JSON-RPC allows the data types String, Number, Boolean, Array and Dictionary28 and the 
composition of these. 

JSON-RPC uses Requests from the clients which are answered by Responses from the server 
(A simple message flow is shown in Figure 2-8). A Request includes the name of the method, 
the parameters and an ID. A Response includes the result, an error message and the ID of the 
Request. The exact data flow from the Client to the Target it shown in Figure 2-8. 

                                                           
26 See also: http://ws.apache.org/xmlrpc/ 
27 See also http://json-rpc.org 
28 A dictionary is a set of key-value pairs. 
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Figure 2-8: Client/Target Sequence Diagram 

2.1.3.3 DSN-Server – DSN-Node 
The DSN-Server communicates with the DSN-Node over the GUI-Node (see 2.1.1.1). 
Therefore, it uses the commands provided by the JAWS software on the DSN-Nodes.  

The DSN-Server uses the following function to execute a command on the Target: “tg cmd 
<cmd>”, where <cmd> refers to the command which should be executed on the Target. This 
command is in the JSON-RPC format (see 2.1.3.2). The DSN-Node immediately sends back 
an acknowledgement which states that the command was executed (see Figure 2-9). 

 
Figure 2-9: DSN-Server/DSN-Node Sequence Diagram 

The JAWS software supports a lot of other commands which allow the DSN-Server to 
distribute software in the DSN, get log entries, reset DSN-Nodes, retrieve the battery status 
and many more29. 

2.1.3.4 DSN-Node – Target 
The interface between the DSN-Node and the Target (shown as interface B in Figure 2-6) 
consists of two components, the hardware and the software component. 

Hardware Component 30 

The hardware component defines the wiring and electrical specification. The pin connections 
are described in Table 2-1. 

                                                           
29 A detailed list of all available commands can be found at 
http://www.btnode.ethz.ch/Projects/JAWS-TerminalCommands 
30 For a detailed description of the hardware interfaces see      

http://www.btnode.ethz.ch/pub/uploads/Projects/a80_pinout.txt 
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Adapter Logic AVR Pin BTnode Pin Function 

UART0_RXD PE1 4 UART0_TXD 
UART0_TXD PE0 5 UART0_RXD 
RESET PB0 27 SS 
PROG PB4 14 PB4 
IRQ PE6 29 PE6 
TG_BAT PF0 10 PF0 
TRIGGER PE3 31 PE3 
SDA PD1 14 SDA 
SCL PD0 13 SCL 

Table 2-1: A80 Target Adapter [BTnode 2006] 

The Target supports baud rates up to 38400 baud. 

Software Component 

The software component of the interface to the Target allows the client to do the following 
operations on the Target (see Figure 2-11) [BTnode 2006]: 

• Target Programming (Flash the Target with new software) 

• Power control of the Target (Power on/off and battery status) 

• Control the pins of the Target 

• Send commands31 via UART (see ) 

• Receive events32 via UART (see ) 

 
Figure 2-10: DSN-Node/Target Sequence Diagram 

The interaction between the Target and the DSN-Node consists of messages (commands sent 
by the DSN-Node and replies and events sent by the Targets). These messages are shown in 

                                                           
31 A command is an arbitrary null-terminated string 
32 An event is an arbitrary null-terminated string 
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Figure 2-10 and defined in Table 4-2 in the Appendix. Note that the prefix E, W, I or D and 
the whitespace is removed by the DSN-Node; the rest is sent to the DSN-Server. 

 

 
Figure 2-11: DSN-Node Target Adapter [BTnode 2006] 

2.2 Methodical Proceeding 

Because this thesis is part of a large project and had to deliver its results within a given time, 
we have chosen to use methodical engineering whenever possible. The methods described 
above provided a clear understanding about the problems which had to be solved and enabled 
the developer and the users to talk in the same language about problems and improvements. 

A guideline during this thesis was to spend more time in design than in implementation. But 
whenever design decisions were not clear, we developed a prototype in order to make correct 
decisions. 

The methodical procedure of the whole thesis was to develop use cases and system 
requirements (see 2.2.1), doing design and implementation which was followed by a testing 
phase (see 2.2.4). The whole process was supported by a lightweight version of the Unified 
Process and the help of the Unified Modeling Language (UML) (see 2.2.2) and 
documentation tools like a ticketing system and a Wiki website (see 2.2.6). 

2.2.1 Requirements / Use Cases 
Requirements are used to define the capabilities a system must have. The act of finding 
requirements, organize, track and write them down is referred to as Requirements 
Management [Leffingwell/Widrig 1999, 16]. 

Use Cases are used to describe an interaction between the user and the system. The whole 
system can be described by listing all these Use Cases. Use Cases are usually listed in a 
document where most important information such as a description and the main interaction 
flow are shown for each of them [Ariadne 2001, 39 ff.]. Use cases are principally used for 
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getting the functional requirements of the system which should be designed and implemented 
[Fowler 2003, 99]. 

Even if only one person is working fulltime on this thesis, there are reasons for doing a 
lightweight requirements management. There are a lot of developers involved which 
implement systems that later should be integrated with the software developed in this thesis. 
Additionally, this thesis has also its customers, namely SBT and ETH Zurich, which all have 
their own vision of what the system should be supposed to do. 

Because of the reasons mentioned above we have chosen to start the project by defining the 
Use Cases of the system which should be developed and are described in 2.3. 

2.2.2 Unified Process / UML 
A secondary goal of this thesis is to use a lightweight version of a developments lifecycle 
model even if only one person is working 100% on the project in order to have a clear defined 
project structure. Therefore, we use a unified process with the help of the UML. 

2.2.2.1 Unified Process / Project Lifecycle 
When talking about software development processes the Waterfall33 and the Spiral Model34 
often appear. As these processes lack in flexibility or are difficult to manage, we have chosen 
the Iterative, Incremental Framework35 which is an extended version to the spiral model and 
consists of the following four phases: 

1. Inception (In this phase the scope of the project is defined what results in a first vision 
document and an initial project plan.) 

2. Elaboration (In this phase, most of the analysis work is done what ends in a 
fundamental understanding of the problem and the first Use Case- and Class-
Diagrams (see 2.2.2.2)). 

3. Construction (In this phase, there are several iterations which consist of the phases 
which we know from the waterfall model (see 2.2.2.1). These short iterations are 
repeated until there is a running system.) 

4. Transition (At the end the final product is deployed. This phase includes beta-releases 
and large testing.) 

In this thesis, we follow this process whenever possible and also used it for creating the 
project plan (see Figure 4-1 in the Appendix). The most work will be done in the construction 
phase where we try to do iterations with 2 week length. All the time it is important that we 
have a running system which can be tested by the developer as well as by first alpha users in 
order to detect bugs as early as possible. During the phases of the process we use, we try to 
apply the UML (see 2.2.2.2) whenever needed to have a common understanding of the 
problem [Ariadne 2001, 10 ff.]. 

2.2.2.2 UML 
The UML stands for Uniform Modeling Language and consists of graphical notations for 
designing and describing software [Fowler 2003, 1]. The UML is used in the software 

                                                           
33 In the waterfall model, each phase (e.g. design or implementation) has to be completed in order 

that the next phase can start. 
34 In the spiral model all phases (e.g. analysis, design, implementation, testing) are executed several 

times until the project is finished. 
35 The widely known Rational Unified Process (RUP) is an example of this process. 
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development process to support a common understanding of the problem in design questions. 
It allows different stakeholder (e.g. designers, testers, coders) to talk about the same problem 
by using diagrams in addition to textual specifications. 

In the following, we list the UML-Diagrams we took advantage of in this thesis: 

• Use Case Diagram (This diagram shows the behavior of the system from the 
viewpoint from the user.) 

• Class Diagram (The Class Diagram consists of graphical representation for classes 
and their dependencies. The more detailed a Class Diagram is, the more attributes, 
operations and dependencies are drawn.) 

• Sequence Diagram (This diagram shows the call flows of a set of objects. Each 
object in the diagram has a timeline and an arrow to the timeline of another object 
for a call to that object.) 

• Package Diagram (The package diagram shows the packages of the software and 
its dependencies.) 

Additionally to the diagrams described there exist many more like the State Diagram, 
Component Diagram and the Collaboration Diagram [Ariadne, 26 ff.]. 

2.2.3 Software Design Guidelines 
At the beginning of a software project, the design is often clear and beautiful. But after the 
implementation and the first change requests, the design often begins to change, little hacks 
are introduced in order to be fast and as a consequence, the design becomes ugly [Martin 
2000, 1]. 

In order to avoid the scenario described above, design guidelines can be used which help to 
leave the system in a clean and stable state, even if the requirements change or features should 
be added. 

We can roughly distinguish between design on the high package level which is about the 
contents of packages and their dependencies, and the class level design which describes some 
fundamental principles of object orientation when designing classes. 

2.2.3.1 Class Design Guidelines 
For a system to be well designed it should be easy to understand, easy to reuse and easy to 
change. In order to enable good design, we need some simple basic guidelines [Martin 2000, 
63]. 

The following principles from [Martin 2000, 64 ff.] for object oriented software help the 
developer to achieve a good design: 

• Single Responsibility Principle (A class should not include every operation related 
to it, it should only have a single responsibility.) 

• Open Closed Principle (Software should be extendable without the need for 
modification.) 

• Liskov Substitution Principle (Users of a base class should also be able to use a 
derivative of the base class.) 
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• Dependency Inversion Principle (Classes should not depend on classes that are 
concrete and change often.) 

• Interface Segregation Principle (Clients should not have to recompile classes just 
because methods have changed which are not used by them.) 

2.2.3.2 Package Design Guidelines 
In order to organize a design package level and not class level, principles have to be used. The 
following six principles which we tried to use in this thesis are mainly about the question, 
which classes should be in which packages [Martin 2000, 16 ff.]: 

• Release Reuse Equivalence Principle (What should be reused together should also 
be together in a release.) 

• Common Closure Principle (Group classes together about we think they change 
together.) 

• Common Reuse Principle (Classes which are not reused together should not be 
placed in the same package.) 

• Acyclic Dependencies Principle (There must not be any dependency cycles in the 
package diagram.) 

• Stable Dependencies Principle (If package A changes more often than package B, 
than package A should depend on package B.) 

• Stable Abstractions Principle (Stable packages should consist of abstract classes.) 

2.2.3.3 Conclusion 
The design guidelines mentioned above should be applied reactively, what means that the 
developer should not spend hours in just trying to design the code using the guidelines, but 
should use them when structural problems occur [Martin 2000, 82 ff.]. 

In this thesis, we try to agree on design guidelines whenever possible but we only apply them 
where they are useful, because otherwise we would create e.g. a lot of interfaces and 
abstractions which are not really needed. Because we do not very often use class inheritance 
the class design guidelines cannot be applied everywhere. As we have few structural 
problems, we do not spend a lot of time making our classes compatible with the guidelines 
mentioned above. However, we strictly try to use the Release Reuse Equivalence Principle, 
the Common Closure Principle and especially the Acyclic Dependencies Principle which is 
fully fulfilled (see Figure 2-14). 

Because the classes in this thesis are very specific and a lot of them are not directly thought to 
be reused, not all classes follow the entire guidelines in the first release. 

2.2.4 Testing and Deploying 
As mentioned above, testing is very important in developing reliable systems. Therefore, we 
use JUnit36 for performing unit tests on the classes which could be tested alone. Most of the 
classes which do not have an associated unit test are GUI-Related classes. There exist 

                                                           
36 JUnit is an open source unit test tool for Java which could easily be integrated into the IDE 

Eclipse. See also http://www.junit.org/index.htm 
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approaches to create unit tests for GUI-Related classes (see [Hammel 2006]) but we do not 
use them because most of the critical behavior always has to do with several components. 

A second method which we use is the distribution of alpha versions to the people related to 
this project. Because letting users, instead of computers, check the software reveals much 
more bugs, we should be able to create a final release which has an advanced stability and is 
ready to be used by WSN programmers. Additionally, we will do a lot of testing by using the 
application to perform link quality measurements (see chapter 3). The alpha users cannot only 
help in finding bugs, but also propose conceptual improvements. 

The third way to help testing the system was the application of a ticketing system which is 
accessible to the people of SBT. This system allows the testers to create tickets with a detailed 
error description as well as information about the state and importance of the problem. These 
tickets are then available to the programmer of the software. 

2.2.5 Documenting 
When working on large projects which have later to be maintained by other people, clear code 
conventions are unavoidable. Using code conventions also helps finding bugs because about 
80% of programming work lies in maintenance. Even if a software project is correctly 
implemented, uniform conventions help people to add new features because they need less 
time to go trough the code. Therefore, we used the Java code conventions from [Sun 1997]. 
Additionally, we used the software CheckStyle37 which checks the source code for formats 
which are against the code conventions. 

For the documentation of implementation details we use Javadoc38 and do not include 
implementation details in the written thesis. 

2.2.6 Wiki Website 
In order to track the system development we used a Wiki system where all the new steps were 
listed and the interfaces were defined. Additionally, we used a ticket system where bugs and 
improvements related to the DSNAnalyzer could be stored in form of a ticket which provided 
information about the importance and a detailed description of the bug or improvement. 

2.3 Use Cases 

As already mentioned, Uses Cases are used for capturing the functional system requirements. 
In this section we show the fundamental Use Cases which we discovered in the Inception 
Phase (see 2.2.2.1) of the project in Table 2-2 and as a diagram in Figure 2-12. 

                                                           
37 See http://checkstyle.sourceforge.net 
38 Javadoc is a tool which generates a HTML documentation of special tags in the java source code. 

See also http://java.sun.com/j2se/javadoc 
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Use Case Short Description 

Create Test The actor creates a test for link quality measurements 
which is stored in a text file. This test includes 
parameters like the number of packets, the period, the 
sending power, the antenna to use and the 
participating Targets. 

Execute Test Series Execute several tests one after another by specifying 
the tests, their order and an optional delay before and 
after the test. 

Execute Test The actor executes a test that is specified in a text file. 
Program Target The actor loads a new binary file to a Target and 

flashes it. 
Program Targets Program several Targets with a new binary. 
Control Target Control a Target by setting its power state. 
Execute Target Command Execute an arbitrary command on one or a set of 

targets. 
View Trace The actor loads a trace of events from the DSN-Server 

of an external trace file. The events are displayed in 
different representation in several windows. 

Choose Filter-Settings Choose filter-settings according to the set of targets, 
log properties and time properties. 

Choose Zoom-Setting Choose the time range which should be visible without 
scrolling. 

Export Trace Export a trace into a file so that it can be imported 
later. 

Analyze Test Result Use charts to display the results of a test including the 
ranges of the signal strength of the correct received 
frames, the faulty received frames and the noise. 

Analyze Link Show the quality of a specified link. 
Analyze Packet Errors Show detailed information about the time and quantity 

of frame errors. 
Analyze Bit Errors Show detailed information about the time and quantity 

of bit errors. 
Export Test Result Export the result of a test for making in accessible in 

third-party software. 

Table 2-2: Use Cases 
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Figure 2-12: Use Case Diagram 

2.4 Design and Implementation 

In this section we describe the design decisions of the software implemented in this thesis. We 
start by describing the general design (see 2.4.1) followed by the design of the three different 
views: Control View (see 2.4.2), Analyze View (see 2.4.3) and Analyze Test View (see 
2.4.4). 
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2.4.1 General GUI and System Design 
In the following sections, the general design of the DSNAnalyzer and parts of the whole DSN 
is described. 

2.4.1.1 DSN Modification 
The existing DSN with DSN-Nodes, Server and Client (see [Hobi/Winterhalter 2005; 
Zimmermann 2005]) has to be extended in order to meet the requirements by SBT of having a 
prototyping system for controlling, monitoring and testing their Targets. Therefore, we need a 
clear separation between the DSN-Node and the Target (see 2.4.1.2). 

Because the GUI application proposed by [Zimmermann 2005] is more a backend for the 
DSN itself than for the Targets, we decided to separate the DSN and the Target system by 
developing an application which is only responsible for the WSN Layer (see Figure 1-3). The 
tool should control the WSN Layer, analyze events from the Targets and analyze the output 
from a WSN simulator. 

2.4.1.2 Interfaces 
Because we require a client application that does not have to be at the same place as the DSN-
Server, we need a clear interface at the DSN-Server which allows IP-based communication. 

In order to use the DSN for various Target systems and different kinds of Client/Target 
interactions, we also need a clear interface between the DSN-Node and the Target. 

We place the interfaces between the Client and the DSN-Server (See Interface A in Figure 
2-13) as well as between the DSN-Node and the Target (see Interface B in Figure 2-13) 
because this is the best option for developing the system concurrently. 

 
Figure 2-13: DSN Interfaces 

The lower two parts of Figure 2-13 are implemented by SBT where the client in the left-lower 
part is the main contribution of this thesis. 

2.4.1.3 Programming Language 
For developing the client application, we use the object oriented programming language Java 
because it can be used to implement sophisticated GUI-Software and is nowadays known to a 
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lot of software developers. This allows an easy extension of the software. Additionally, there 
are a lot of Java development tools such as Eclipse39, Javadoc and Ant40 that are free, easy to 
use and provide the necessary functionality. 

2.4.1.4 Application or Applet? 
Another design decision is to choose between java applet and application. The two most 
important properties which have to be considered are security and distribution. 

Applets are displayed in a web browser. They are easy to distribute because they are running 
within a web server. Users can use their web browsers for downloading and running the 
applet. Applets are more secure than applications because they have the limitation of being 
not allowed to read or write on the hard disk of the user because the user does often not know 
the source of the applet. 

Applications run standalone on the platform of the user. For the distribution, the developer 
needs to ship the software to the end-user or get the user downloading the new software from 
a website or a network share. Applications are allowed to read and write on the hard disk of 
the user. 

In our environment, software distribution is easy because we can simply copy the new 
software to a network share and we only have a limited number of users. A second important 
point is, that the software needs to import events from files and also has to support export 
functions which allow persistency of test information.  

Because of the two points described above, we decided to use the application and not the 
applet. 

2.4.1.5 Extendibility / Hardware Independence 
An important design goal of the client software is to support different kinds of hardware and 
applications. Even though this tool is designed for prototyping fire sensor networks, it should 
also help to develop all other kind of sensor networks and therefore other types of hardware. 

As the functions provided by the DSN-Server change during time, we put everything that 
depends directly on the DSN-Server into the class DSNCommunication.  

Also the software on the Targets is frequently changing; therefore we only put calls to these 
functions into the classes which really need them (e.g. the classes in the Test package). 

Whenever a method or variable fully depends on the hardware of the Target, it is marked in 
the code using the tag HARDWARE. 

The fact that changes in the Target software affect some components of the system (e.g. 
Target Control) more than others (e.g. Analyze Events) is one reason for splitting the 
application into several mostly independent parts (see 2.4.1.6). 

2.4.1.6 Views / MVC 
The most important features of the system to develop are: 

• Control the Targets (Commands, Reprogramming, Reset) 
                                                           
39 See http://www.eclipse.org 
40 See http://ant.apache.org 
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• Analyze Events from Targets and Simulations 

• Analyze Test Results 

The DSNAnalyzer is structured into the three parts described above by using views that can 
be selected with tabs. Views also allow easy extendibility by just adding a new view when 
new features are requested. The separation of the application into views can also be seen in 
the structure of the packages (see 2.4.1.7). 

By defining the classes of the application, we considered the Model-View-Controller (MVC) 
Pattern. The MVC Pattern is used to divide classes that model the problem domain (Model) 
from classes that control the model (Controller) and classes that display the model (View). 
The MVC Pattern also reflects the Observer Pattern where the Model notifies its observers 
(the Views) about its changes [Deacon 2005, 2 ff.]. 

We try to apply the MVC pattern as strong as possible when dividing models and their views 
and controllers, because keeping the models clean allows easy reusability of classes that work 
on the same problem but use a different user interface. 

2.4.1.7 Packages 
The system is structured into packages which, whenever possible, fulfill the package design 
guidelines proposed in 2.2.3.2. The package design is shown in Figure 2-14 where we can see 
the three main partitions controlview, analyzeview and analyzetestview. Additionally, there 
are common classes such as Target which are used by all GUI classes. The classes in the test 
package are used for channel measurements and util classes are used by all other packages. 

 
Figure 2-14: UML Package Diagram 

2.4.1.8 ID Mapping 
When accessing nodes, we need IDs to identify them. The DSN-Nodes have a 6 byte ID 
which is used by the DSN-Server to communicate with the DSN-Nodes. The A80 Targets 
have a 4 byte ID which is used by the client. 

Because the DSNAnalyzer should communicate with the Targets over the DSN-Nodes, we 
have to find a mapping from the Target-IDs to the DSN-Node-IDs and vice versa. 
Additionally, we have the problem that we need the whole 4 bytes of the Target-ID because 
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the IDs of the Targets are random and not consecutive which would e.g. enable us to use only 
the lowest byte41. 

For solving this issue we have the following possibilities: 

1. Change the ID of the Target to the ID of the DSN-Node which is connected to it 
and access the Target with the ID of the DSN-Node. 

2. Use a mapping function on the DSNAnalyzer that maps DSN-Node-IDs to 
Target-IDs. 

3. Proposal 2 with an additional mapping to a virtual ID which makes the ID more 
user-friendly. 

Proposal 1 is not very flexible because we cannot easily  recombine DSN-Nodes with Targets 
but would have to flash the Target at every change with the new DSN-Node-ID. Because of 
that and because proposal 3 would lead to a complex mapping process we took proposal 2 as 
it can be implemented using a special network-file which maps the IDs and can easily be 
edited. 

2.4.1.9 Property File 
For storing long-term properties of the DSNAnalyzer we use a property file. In this file we 
specify the following properties: 

• The location of the network-file (see 2.4.1.8). 

• Filter properties for log level, log layer, log aspect, time range and targets. 

• A property which specifies if events are colored according to their log level or to 
their log aspect. 

• The address of the DSN-Server. 

• A property for enabling and disabling the 3D Map in the Analyze View. 

• The default path. 

2.4.2 Control View 
The Control View (see Figure 2-15) should provide all functionality which is needed to 
control the Targets. This includes execution of commands, reprogramming, showing active 
Targets and performing tests. 

                                                           
41 We cannot abbreviate “804404ab” with “ab” because there could be a second target with the ID 

“806404ab”. 
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Figure 2-15: Control View 

The structure of the Control View is shown in Figure 2-16. 

 
Figure 2-16: Control View Class Diagram 

2.4.2.1 Command Execution 
One of the basic features which are needed to prototype sensor nodes is to communicate with 
them directly. For this purpose, we use a terminal which allows the user to send commands to 
the Targets and retrieve replies. The control flow of a command/reply interaction can be seen 
in Figure 2-17. The reply of the Target is an event in the JSON-RPC format (see 2.1.3.2) 
which includes the same ID as the command. At the DSN-Node, this event is referred to as 
log entry. In the case shown in Figure 2-17, the DSN-Node is in the push mode whereas it 
automatically sends all log entries to the GUI-Node. 

The communication with the DSN-Server is non-blocking. Because a reply is only an event 
(see 2.1.3.4), we use the same method to get the reply as if a set of events is requested (see 
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2.4.3.1). The DSNAnalyzer requests the reply-event of the command by requesting an event 
which includes the ID from the command. This request is done every 200 ms and for at most 
10 s. 

The format of the commands and replies is the JSON-RPC format (see 2.1.3.2). 

 
Figure 2-17: Command Sequence Diagram 

2.4.2.2 Map 
A requirement of the client software is to display the Targets which are currently running by 
showing them using icons in a map. For the map, there are two possibilities: 

• A common 2D map which shows a Targets using an icon at a (X, Y)-position. This 
kind of map has the advantage of being very simple and supported by many open 
source libraries. The drawback is the lack of 3D drawing which would be helpful 
for Targets which are on different floors or on different height in a floor. 

• A 3D map which shows the Targets using a (X, Y, Z)-position. The advantage of a 
3D map is to be able to draw Targets on different floors or different height in a 
floor. The drawback is that for this kind of map, there are not many open source 
libraries. 

For fire detection networks, it is very common that Targets are distributed on different floors. 
Therefore we decided to use a 3D map. For showing this map in the Control View, we use the 
Wilmascope 3D graph visualization system42 since no working open source alternatives could 
be found which met our requirements. The map we use additionally provides easy view 
customization features like Zoom, Move and Rotate which enable the user to look at every 
possible perspective onto the set of Targets which is helpful if there are a lot of Targets 
distributed over several floors. 

The map shows each Target which is connected to a running DSN-Node using the position 
information from a network file. This network file has the default ending .in and the format 
shown in Table 4-3. 

                                                           
42 See http://wilma.sourceforge.net 
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Actions belonging to only one Target can be executed by choosing an option in the pull down 
menu when right-clicking on a Target icon. Actions belonging to all Targets can be chosen in 
the menu bar. 

2.4.2.3 Target Programming 
During prototyping processes, Target software changes occur very often. Therefore, we need 
a way to perform code distribution and Target flashing very fast and flexible. The 
DSNAnalyzer uses the programming functions of the DSN which work in the following 
manner: 

1. The user chooses if one or multiple Targets should be programmed. 

2. The user chooses the software (e.g. a hex file). 

3. The selected binary is translated into a String and sent to the DSN-Server. 

4. The DSN-Server translates the String into a binary and sends it to the GUI-Node. 

5. The GUI-Node begins to distribute the binary to all DSN-Nodes. 

6. The DSNAnalyzer repeatedly checks the current software versions of the Targets 
which should be reprogrammed. 

7. When all the necessary Targets have the new binary, the DSNAnalyzer sends a 
command to flash them. 

8. The DSN-Node returns an reply if the flashing was successful or not. 

9. The DSN-Server redirects this reply to the DSNAnalyzer. 

We think that the points 6 to 9 should be handled by the DSN-Server and added it therefore to 
the further work in 2.5.3.3. 

2.4.2.4 Tests 
Tests are a way of externally stimulating the Target software. There are two different types of 
tests: 

• A set of commands using the test software running on the Targets which is used to 
do measurements in the WSN (see Figure 2-18). This kind of test, which is referred 
to as Link Quality Test, we use in Chapter 3. Link Quality Tests have always a 
software-counterpart which actually performs the measurements on the Targets. 

• A set of commands which stimulate the default behavior of the Target software 
(see Figure 2-19). An example for this kind of test is a simulated fire alarm where 
we are interested in the reaction of the system. 

 
Figure 2-18: Link Quality Test 
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Figure 2-19: Stimuli Test 

More formally, tests are a set of commands in the format described in Table 4-4 in the 
appendix. 

A test in the DSNAnalyzer is represented by the class Test which consists of the properties of 
the test as well as the test elements (see Figure 2-20). A TestElement corresponds to one 
command for either one specific target or all targets. It optionally includes a time at which the 
command should be executed. Special types of test elements are wait commands which tell 
the test engine to wait for the specified amount of time or trace file commands which tell the 
system where to store the results of the test. 

Tests that are executed in the DSNAnalyzer are parsed from a text file. Such test files can 
either be created by using a text editor or by using the class TestFactory. This class allows the 
user of the DSNAnalyzer to specify all parameters of a test such as participating Targets, 
number of frames to be sent, time between two frames, sending power and all other 
parameters which are supported by the test software running on the Targets. The TestFactory 
(see Figure 2-20) is used by the ChooseTestParametersDialog which serves as a graphical 
representation for the user to choose the test parameters. 

 
Figure 2-20: Test UML Diagram 

Link quality tests consist of several subtests where in each subtest one Target is sending test-
frames and all others are listening and recording errors. Up to now, there exist two test modes: 

• Rotation Mode (In this mode, every participating Target is the sender only, i.e. a 
test containing n Targets consists of n subtests.) 

• One Sender Mode (In this mode, tests consist of only one subtest where a set of 
listening Targets along with a sender is specified.) 

Tests are executed by the class TestEngine (see Figure 2-20) which parses test files and 
executes specified tests one after another. The execution of a test consists of executing one 
test element after another. During execution, the TestEngine displays debug, warning and 
error output about the current state of the test.  
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Figure 2-21: Test Sequence Chart (The DSN-Nodes are left out for a better 

presentation) 

A part of a simple link quality test can be seen in Figure 2-21 with two Targets A and B. The 
corresponding test file in shown in Figure 2-22. In this test, both Targets receive the 
parameters (e.g. channel) of the test. Target B begins to receive and Targets A begins to send. 
After the frames are sent, Target A stops and Target B computes the results which are sent to 
the DSN-Server. When the DSNAnalyzer has performed all subtests of the tests, it requests 
the results.  
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Figure 2-22: Example Test File 

The reason why methods such as “Start Sending” are acknowledged immediately and not 
after they have completely finished, is the following: If “Start Sending” would be 
acknowledged only after the whole number of frames are sent and the Target either does not 
receive the command correctly or fails during execution, the test would hang up. This is one 
reason for our general rule, that commands should be acknowledged immediately. This rule 
belongs to the overall principle that the whole test-system should be fault-tolerant and 
therefore be able to continue a test with all the remaining running components. This principle 
is realized in that commands, for which no acknowledgements are received, are executed 
again. 

The results from the tests are stored by the DSN-Server into the database. Results have the 
form of Events (see 2.4.3.1) and can be retrieved in the Analyze View (see 2.4.3). The test 
results, which are either retrieved in the Analyze View or stored using the result file test 
command (see Table 4-4), can be analyzed using the Analyze Test View (see 2.4.4). 

In order to allow parsing of test results we need a clearly defined format. This format is 
defined in Table 4-6. 

In order to allow the user to do a sophisticated scheduling of tests, we introduce the Test 
Suite. This feature can be used to run a set of tests one after another where for each test, a 

# A80 - Link Quality Test 
# Creation Date: 2006-09-18 16:17:52 
 
# Target List 
%targets=80640400:80440124 
 
# Set test configuration 
all bet.init 
all set.chan 20 
all set.power 21 
all set.iter 50000 
all set.ant 0 
all set.txper 120 
all set.preamb 3 
all set.confset 1 
all set.rssi_thr 25 
all get.betpar 
 
# Subtest with target 80440124 as sender 
all bet.rx_on "80440124" 
80440124 bet.tx_on 
%wait=7200000 
all get.betres 
 
# Stop all targets 
all bet.stop 
 
# Store results into this trace file 
%tracefile=test 
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delay before, a delay after and the number of iterations can be specified. The delays can also 
be used to run a test at given time in the future. 

2.4.3 Analyze View 
The goals of the Analyze View (see Figure 2-23) are to provide the functionality of analyzing 
the events that occurred at the Targets in both the simulation and the real world. In the 
following sections we show how events are managed, why real-time monitoring was not 
implemented, how events can be filtered, how they are displayed in a sequence chart, a map 
and a log window and how they can be exported. 

The Analyze View also works in a standalone mode, i.e. when no DSN-Server is available. In 
this mode, the user can import trace files which consist of events. 

 
Figure 2-23: Analyze View 

The structure of the Analyze View is shown in Figure 2-24. 
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Figure 2-24: Analyze View Class Diagram 

2.4.3.1 Event and EventList 
In order to analyze the behavior of the Targets, we need a mechanism to see what is 
happening on them. The solution is to create events whenever something important happens. 

An event is a textual representation of a happening at a given Target at a given time. It 
describes what happened and additionally gives information about the severity (log level), the 
place of the occurrence in the software (log layer) and what it is related to (log aspect). 
Because the DSNAnalyzer should handle both outputs from Targets and from the simulator, 
the simulator also creates events according to the described format (see Table 4-5). 

A special kind of an event is the communication event. It contains information which can later 
be used by the analysis tool to fetch the sender and receiver of the message (see Table 4-5 in 
the appendix). 

The data structure for the event in the DSNAnalyzer is the EventList which contains an 
ordered list of events between a time A and a time B (see Figure 2-25). 

 
Figure 2-25: Event List UML Diagram 

For archiving, an EventList can be exported into a trace file which consists of events. The 
detailed format of a trace file and its events is shown in Table 4-5. 

2.4.3.2 Real-Time Monitoring  
A first goal of a user of an analyzer-system for WSN is to be able to real-time monitor what 
happens in the network. The user would like to have a map where all Targets are represented 
by icons and events happening on them are displayed exactly when they happen. 

Although this would be a nice feature for the user, we have decided not to implement that 
because of the following reasons: 
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• The logging mechanism of the DSN works with a pull mode, i.e. events43 are 
requested by the DSN-Server and not directly sent to the GUI-Node when they 
appear44. This mode was required because the GUI-Node is a bottleneck of the 
DSN and cannot process unlimited logs, which would appear in the case that every 
Target sends all its logs directly. Because of this pull mode, the events will be kept 
at the DSN-Node until requested what makes it impossible to show events in real-
time45. 

• Even if the events are sent using a push mode exactly when they are created, we 
would have the problem that an event created at Target A with a distance of 2 hops 
to the GUI-Node at time t could be at the DSN-Server before an event created at 
Target B with a distance of 10 hops at time t-1. 

• If events would not arrive in correct time order (because log entries go over a 
different number of hops), it is difficult to draw them into a sequence chart (see 
2.4.3.4) because all graphical events would have to be rearranged in case an event 
with a timestamp between them would arrive, which makes the drawing process 
complex and therefore slow. 

Although events cannot be shown in real-time, they can be requested at the DSN-Server after 
a short time46 and displayed e.g. in the Sequence Chart (see 2.4.3.4). 

2.4.3.3 Filter 
Because the user is sometimes interested in only a set of events, the concept of a filter is 
needed. The filter should allow the user to see exactly the events which are of interest and 
should be easily configurable. 

The filter has the following properties: 

• Log 

• Log level (Error, Warning, Informational, Debug) 

• Log layer (System, Physical, MAC, Network, Transport, Application) 

• Log aspect (User customized) 

• Time range 

• Target list 

Using the log filter, the user can define exactly which events should be visible (e.g. the triple 
“enc” filters all events which have log level Error, happened in the network layer and belong 
to a communication process) 

                                                           
43 In the DSN, events are referred to as logs or log entries. 
44 The opposite of the “Pull-Mode” is the “Push-Mode” in which the log entries are immediately sent 

back to the GUI-Node. 
45 We think that the performance of a pull or a push mode very depends on the implementation of 

the DSN-Node software. We also think that this question has to be treated separately. 
46 This time depends on the DSN-Server configuration and the number of active Targets but should 

be in range of one or several minutes. 
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In a first design we allowed the log aspect to be only one of a list of possible values. After 
having discussed this property with alpha users of the system, we have decided to allow user-
define values. This makes it possible for users to use a special string for the log aspect for 
certain events for filtering them later. 

Because some user may always be interested in the same information, we have decided to put 
the filter configuration into a property file (see 2.4.1.9 and the DSNAnalyzer Readme in the 
Appendix) where they can easily be changed. 

2.4.3.4 Sequence Chart 
A Use Case for the DSNAnalyzer is to show events using graphical support (see Table 2-2). 
A way to display events is using a sequence chart which shows events on timelines (we have 
one timeline per Target). 

The sequence chart should be able to draw events on the lifeline of the Target on which the 
event happened. Additionally, it should display arrows between Targets which exchange 
messages. A message should be displayed by an arrow from the sender to the receiver. In 
order to solve that, we created the concept of a communication event, i.e. events that happen 
not only at one Target but are a combination of a send and a receive event. Here we have the 
problem to match a send event with its corresponding receive events which is difficult 
because of the reason that we cannot just insert the ID of the sender into a message because 
the message could be corrupted. 

We have found that the only method to correctly draw a communication event in the sequence 
chart is to include the message ID at the send event and the message ID as well as the sender 
ID at the receive event47. Therefore, we have to use error control mechanisms of the MAC 
layer to be sure that the message was correctly received at the sender. Only if we are sure 
about the correctness of the message, we can create a proper receive event. It is obvious that a 
lost or corrupted message can be identified in the sequence chart when only a send event and 
no corresponding receive event is visible.  

In a first approach, we only showed arrows between the highest log-layer available, i.e. if we 
have network layer enabled, we only show communication events from the level network. 
However, because the source and the target of a message from different layers could be 
different (e.g. between network layer and a MAC layer), we have chosen to draw all 
communication events independently of their layer. In order to avoid that the whole screen is 
full of arrows, the user can filter layers which produce a lot of messages. 

Another requirement is to combine all windows of the Analyze View, i.e. the Sequence Chart, 
the Map (see 2.4.3.5) and the Log Window (see 2.4.3.6). The goal is that the user can see 
when and where the events happened and how they are related to each other. 

As a result of the decisions above, we have designed a sequence chart that displays events that 
match the filter settings (see 2.4.3.3) according to their timestamp (y-axis) and the Target on 
which they happened (x-axis). The Sequence Chart has a zoom property which is set to the 
time which should be visible without scrolling. The Sequence Chart can be controlled by the 
scrollbar and by setting the time-range which should visible without zooming. An example of 

                                                           
47 Unfortunately, this is against our rule of not including relevant information into messages but up 

to now, it is the only solution that works. 
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a sequence chart that shows a protocol which is currently in development can be seen in 
Figure 2-26. 

 
Figure 2-26: Example Sequence Chart 

The control concept of the Analyze View is the following: The Sequence Chart is the 
controller of the map (see 2.4.3.5) and the log window (see 2.4.3.6). In the map and the log 
window we can see all the events which are visible in the current section of the sequence 
chart, i.e. what is visible in the sequence chart without scrolling is also visible in the other 
windows48. When the user slowly moves down the scrollbar, event order and place become 
visible in the map49. If an event of the head of the timeline is selected in the Sequence Chart, 
the corresponding Target is marked in the Map. 

For the coloring of the events, we used the log level information. Error events are shown red, 
warning events yellow, informational events green and debug events blue. As a help for the 
user, the time in the middle of the sequence chart is also displayed. 

As a result of evaluation and input from alpha testers, we added the following features to the 
Sequence Chart: 

• If an event is selected and the zoom or filter settings are changed, the 
sequence chart centers on the selected event (in case it is not filtered). 

• A feature for reloading imported trace files which allows the users of 
simulators to display new created output without explicitly reloading the 
file. 

• A feature for showing all events without scrolling. 

• Possibility to quickly hide Targets lifelines without opening the filter 
dialog. 

                                                           
48 If a communication event has a counterpart that is not visible in the sequence chart anymore, it is 

shown even though in the two other windows. 
49 A first idea of including a play function which changes the time automatically was dismissed 

because the user can perform that using the scrollbar and the mouse. 
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2.4.3.5 Map 
The user of this client is not only interested in the Target on which an event was created, there 
should also be information about where this Target is located. If a message is sent from one 
Target to another, it should be visible to the user over which path and distance this message 
was sent. The map should give the user a feeling of how large the WSN is and in which area 
traffic is. This enables the user quickly find protocol errors. 

For the map, we took the same software base as used in the map of the control view (see 
2.4.3.5). Additionally, communication events happening on the Targets are shown by drawing 
arrows. In the map we see all communication events which are currently visible in the 
sequence chart without scrolling. 

After discussions with alpha testers, we decided to add an option to enable or disable the map 
in runtime as well as with a property in the application property file. Disabling the map makes 
the application faster and displays a larger Sequence Chart to the user. 

2.4.3.6 Log Window 
The user of the system should be able to see the details of an event. Because the Sequence 
Chart and the Map are used to get a picture of where and why the event was created, we need 
a third view which displays the event details. 

The Log Window of the Analyze View shows all events which are currently visible in the 
sequence chart without scrolling. For showing the context of a selected event, it can be 
selected to highlight it in the other two windows. 

2.4.3.7 Data Export 
A requirement of the application is to make the traces persistent. We need a way to export 
data which the application gathered from the Targets in a format which is easy to import. 

The Analyze View provides the following export mechanisms: 

• Export all textual events from the trace 

• Export only the textual events which are currently displayed in the Log 
Window 

• Export the whole Sequence Chart as a graphic 

An additional export feature is included in the Analyze Test View (2.4.4) and is used for 
exporting the results from a measurement. 

2.4.4 Analyze Test View 
Important Uses Cases described in (2.3) are analyzing a link and analyze packet as well as bit 
errors. There should be a way to make the results of different link quality measurements 
visible using charts which show the quality of the link and information about the link strength. 
Additionally, there should be a possibility to analyze the frequency distribution of bit errors 
and the link strengths when they happened. 

In this section we show how the Analyze Test View (see Figure 2-27) was designed by 
defining the data structure of a test result (2.4.4.1), introducing charts and chart containers 
(2.4.4.2) and further features. 
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Figure 2-27: Analyze Test View 

The structure of the Analyze Test View is shown in Figure 2-28. 

 
Figure 2-28: Analyze Test View Class Diagram 

2.4.4.1 Test Result 
A test executed in the rotation mode (see 2.4.2.4) contains several subtests, one for each 
participating Target. After a subtest, each receiver generates its subtest result. During the 
sending phase, each Target which receives a frame creates a frame result50. Both the subtest 
result and the frame result are events which are sent to the DSN-Server. As described in 
2.4.2.4, test results can be stored into a text file. 

                                                           
50 This depends on the log setting of the Target. 
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While parsing the test result text file, the application creates the data structure shown in 
Figure 2-29 for storing the results. 

 
Figure 2-29: Test Result UML Diagram 

2.4.4.2 Charts 
For analyzing the results of the measurements, we need to draw charts which show 
information about the test results. After analyzing and discussing the main questions which 
we want to answer using this tool, we decided to use the following charts: 

• Stacked Bar Chart with correct received frames, faulty received frames 
and missed frames for all receivers. 

• Chart which shows the range of RSSI values of the correct received 
frames, the faulty received frames and the noise for all receivers. 

• X/Y-Chart which shows the RSSI for each frame for one receiver. 

• RSSI Histogram (How many correct frames and faulty frames we had at 
which RSSI). 

• Chart which shows how much bit errors we had at which RSSI. 

For the creation of charts, we evaluated the following three candidates: 

• Microsoft Excel51 

• Mathworks Matlab52 

• JFree Chart53 

The first two candidates would need an export function in the DSNAnalyzer which exports 
the test results in a common format. 

Microsoft Excel is easy available at most office computers but has the drawback of providing 
only basic chart drawing functionality which cannot be easily extended. 

Mathworks Matlab needs an expensive license but provides rich functionality in chart 
drawing and has a good performance. 

JFree Chart bases on java and is therefore not very fast but supports a lot of drawing 
possibilities, is open source and easy to extend. Additionally, it is the only tool that can be 
directly integrated into the DSNAnalyzer. 

                                                           
51 See http://office.microsoft.com 
52 See http://www.mathworks.com/products 
53 See http://www.jfree.org/jfreechart 
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In the DSNAnalyzer, we decided to use JFree Chart because of its advantages. We use it to 
draw the charts described above in the Analyze Test View. Additionally, we decided to 
support Matlab because of its rich functionality and easy usability by providing an export 
function for the test results. For non-automated chart generation we also use Microsoft Excel. 

The general idea of using this view is to provide an overview about the most important results 
with the charts directly integrated. If special results are found, they can be exported to Matlab. 
Matlab provides an easy programming language which enables the user to write very short 
code for analyzing data in a special way which is not needed for all kind of results. 

A design goal of the Analyze Test View is easy extendibility because the charts and the 
measurement results change for each application or field of interest. Therefore, we developed 
a framework which is based on containers in which the charts are represented. 

When the developer of the DSNAnalyzer wants to extend the Analyze Test View with new 
charts, only two methods have to be added and little has to be changed. 

The first container of this view is the Network container which contains all charts which are 
about a set of links. In the second container, the Link Container, we draw all charts which are 
only about one link and allow representing detailed data. 

2.5 Evaluation 

In this section, we evaluate the application described above as well as the whole DSN. 
Because integration of the existing DSN is an important part of this thesis, we primarily 
concentrate on the evaluation on the DSN itself (see 2.5.1).  Although we did not work on this 
software, we have to know how it performs and how stable it is because our software acts as a 
client to it. 

For the DSNAnalyzer we additionally performed a survey (see 2.5.2). 

2.5.1 Measurements 
In this section, we perform several measurements in order to determine values for import 
durations, power consumption, stability, latency, fault-tolerance, performance and range of 
the DSN. 

2.5.1.1 Trace File Load Duration 
In this measurement we evaluate how long it takes to load a large trace file in the Analyze 
View. We take a trace file with over 17000 events54 and a file size of 1 Mbyte. The setup 
consists of three Siemens computers with different hardware. On every computer we perform 
three iterations of the measurements and compute the average times which are shown in Table 
2-3. 

                                                           
54 9300 of them are communication-events. 
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Computer Load Duration 

Intel Pentium 4, 2.8 GHz, 504 MB RAM 16.7 s 
Intel Pentium 4, 2.6 GHz, 504 MB RAM 18.6 s 
AMD Mobile Athlon, 1.8 GHz, 448 MB RAM 28.6 s 

Table 2-3: Trace File Load Duration 

The times shown in Table 2-3 are the durations for parsing the trace file (generating events), 
creating a graphical element for every matching event and drawing the messages in the map. 

In a second measurement we turn off the 3D Map of the Analyze View in order to measure its 
influence in the loading time. The results are shown in Table 2-4. We can see that drawing 
messages in the 3D Map takes between 21 % and 27 % of the whole loading duration. The 
time to draw messages in the 3D Map is very dependent on the type of events in the trace file. 
If there are a lot of communication events, it takes longer. 

Computer Load Duration 

Intel Pentium 4, 2.8 GHz, 504 MB RAM 12.2 s 
Intel Pentium 4, 2.6 GHz, 504 MB RAM 13.9 s 
AMD Mobile Athlon, 1.8 GHz, 448 MB RAM 22.6 s 

Table 2-4: Trace File Load Duration (Without Map) 

2.5.1.2 Power Consumption / Battery Lifetime 
In this section we determine power consumption properties of the “Blue Box”. We therefore 
measure the average power consumption of a “Blue Box” with all meaningful configuration 
modes. 
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Setup Adapter Board A80 BTnode Average Current 
Consumption 

I2C-Mode X - - 1.3 mA 
Serial-Mode X - - 1.3 mA 
Spy-Mode X - - 7.3 mA 
Pass-Through-
Mode X - - 5.9 mA 

Spy-Mode X X  7.5 mA 
Spy-Mode X X X 47.8 mA 
Spy-Mode 
(Sending A) X X X 50.0 mA 

Spy-Mode 
(Sending A, 
Logging) 

X 
X X 

50.2 mA 

Spy-Mode 
(Sending B) X X X 57.0 mA 

Spy-Mode 
(Sending B, 
Logging) 

X 
X X 

57.6 mA 

Spy-Mode 
(Sending C) X X X 76.6 mA 

Table 2-5: Average Current Consumption (X: present, -: not present) 

In the test mode “Adapter Board Spy-Mode, A80 (Sending A, Logging), BTnode” (see Table 
2-5), the A80 is sending test-frames with a period of 1000 ms what results in the creation of 
an event every 1000 ms. This event is directly transmitted by the DSN-Node. In “Sending B” 
the period is 300 ms and in “Sending C” it is 100 ms. We also measured the maximum peak 
which is 83.0 mA. What seems strange is that we have a very small difference in current 
consumption between the logging-mode and the non-logging-mode of the A80. 

In a second measurement we determine the lifetime of the “Blue Box” when powering it with 
batteries. For this measurement we used 4 NiMH AA 1.2V “GP 2300” rechargeable batteries 
with 2250 mAh. In order to be sure that we have the same power at all boxes, we recharged 
all batteries again at the same day. 

Our setup consists of 10 “Blue Boxes”. In the first measurement we place an A80 Target and 
a BTnode on the Adapter Board. The A80 does not communicate and does not create any 
events. The BTnodes run the JAWS software, i.e. the Bluetooth stack is running, therefore 
there is a continuously Bluetooth communication between the 10 BTnodes. The Adapter 
Board is running in the spy mode. When taking 47.8 mA (the average power consumption 
from Table 2-5 for this mode) we would expect a lifetime of 2250mAh / 47.8 mA = 47.1 h. 

The result of this measurement is shown in Figure 2-30. We can see that we have a mean 
value of 44.45 h which is near to the expected value. It is obvious that we measured less than 
expected because of the fact that current is dropping over the time and because the devices 
turn of before all the energy is used. We also see the standard deviation of 4 h. However, we 
also see one “Blue Box” which performed very bad and stopped running after only 39 h. 
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Figure 2-30: "Blue Box" Battery Lifetime 

The result of this measurement can be compared to a measurement performed in 
[Hobi/Winterhalter 2005, 59] where BTnodes were powered using 2 NiMH AA researchable 
batteries. The result of the measurement is a lifetime of 27 hours. This result is in the same 
range as ours if we regard the fact that we use 4 batteries but also power the Adapter Board 
and the A80. 

2.5.1.3 Binary Distribution 
The DSN supports a mechanism for distributing a binary file to all DSN-Nodes which can 
later be used to flash the Target or the DSN-Node itself. In this section we measure the time 
which is needed until all DSN-Nodes have the newly distributed binary file. We start 
measuring after the user enters the command to distribute the binary. This process includes 
converting the binary into a string format, loading it using XML-RPC to the DSN-Server, 
converting the string-binary to a hex-binary, loading the binary to the GUI-Node and finally 
distributing it in the DSN. We perform this measurement on a small DSN with 8 DSN-Nodes 
and on a large DSN with 26 DSN-Nodes. We use a binary file with a file size of 70 Kbyte. 

On the small setup it takes 25 s until the file is loaded to the GUI-Node. After that it takes 
another 30 s until all 8 DSN-Node have the new binary. 

On the large setup it takes 46 s until the file is loaded to the GUI-Node55. The additional 
duration for the distribution of the binary is shown in Table 2-6. 

                                                           
55 The time-difference is a result of several retries of the DSN-Server to load the binary to the GUI-

Node. 
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Number of DSN-Node with new binary Duration 

5 30 s 
11 60 s 
24 90 s 
26 120 s 

Table 2-6: Binary Distribution Duration 26 DSN-Nodes 

2.5.1.4 Target Flashing 
In this section we show the results of a flashing measurement. In a first part we show how 
dependable the flashing mechanism of the DSN-Node is, i.e. how often it fails. Please note 
that flashing does not include distribution of the binary in the DSN but is only the process of 
loading the binary from the DSN-Node to the Target and resetting it. 

We used 7 Targets that were 10 times flashed using a baud rate of 38400. 5 Targets flashed 10 
times successfully, 2 Targets flashed only 2 times successfully. This test was repeated several 
times with more or less the same outcome. 

In a second measurement, we test how long the flashing process takes at which baud rate. The 
time we measure starts when the user of the DSNAnalyzer enters the flashing command and 
ends when the result of the flashing process is displayed. We perform the measurement by 
flashing 7 Targets with a 70 Kbyte file one after another and compute the average duration. 

The flashing process consists of sending the flash command to the DSN-Node, starting the 
boot loader, erasing the existing binary, flashing the new binary and verifying it and returning 
a message to the DSNAnalyzer. Because the binary is a hex-file and the DSN-Node is sending 
the binary data, we actually have to transmit less than half of this size (about 30 Kbyte). 
Flashing and verifying with a baud rate of 38400 should take both (30 * 1024 * 8) / 38400 = 
6.4 s. Together they use 12.8 s. Additionally, we need time for starting the boot loader, 
erasing and for communication which take several seconds. This makes about 20 seconds. 

The results of the measurement are shown in Table 2-7. We can see that we are in the range 
we expected. If we halve the baud rate, we get less than the double of the duration because the 
time to erase and start the boot loader remains constant. 

 Baud Rate Average Duration 

38400 22.2 s 
19200 38.5 s 
9600 70.3 s 

Table 2-7: Target Flashing Duration 

2.5.1.5 DSN-Node Watchdog Resets 
Unfortunately, software running on embedded devices can also hang. They therefore use a 
technique called watchdog which automatically resets a device in case it hangs. 

Here we measure the number of watchdog resets a DSN-Node performs within a specified 
time range. This property is determined because in case of a watchdog reset, the log of the 
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DSN-Node is reset what could lead to data loss. A watchdog reset is executed if a DSN-Node 
does not receive any ping from the DSN-Server within five minutes. 

For this measurement we let 27 DSN-Nodes run over 63 hours. The watchdog reset statistics 
are shown in Figure 2-31. We can see that 11 Targets had 0 watchdog resets and that we have 
a mean value of about 1.5 watchdog resets in 63 hours and a standard deviation of 1.7. That is 
about one watchdog reset every two days. 

 
Figure 2-31: DSN-Node Watchdog Resets 

2.5.1.6 Command Latency 
The command execution mechanism is described in 2.4.2.1. Here we measure the roundtrip 
time of a command, i.e. the time between the user presses enter and the result is displayed. 

This time depends on where the DSN-Node is located in the connection tree of the DSN. The 
closer the DSN-Node is to the GUI-Node (the root) in the connection tree, the less hops are 
needed to transmit a message. 

The result of a measurement with a hop distance of 1 is shown in Figure 2-32. We have a 
mean value of 974 ms. The time spent between the DSNAnalyzer and the DSN-Server is 400 
ms. This results in a mean value of 574 ms on the DSN-Nodes and the Target. 

What looks a bit strange is that we have a very large latency at the first five commands. This 
could be a property of the routing mechanism of the DSN. 
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Figure 2-32: Command Latency 1 Hop Distance 

In Figure 2-33 we see the result of a measurement with a Target that is 6 hops away from the 
GUI-Node. Here we have a mean execution time of about 1.5 seconds where the standard 
deviation is smaller. This results in a mean value of 1.1 seconds on the DSN-Node and the 
Target. 

If we interpolate the two results we would expect an increase of 100 ms in latency for every 
additional hop. 

 
Figure 2-33: Command Latency 6 Hops Distance 

2.5.1.7 Log Verbosity 
In this section we determine how many events per second can be created by a Target. A DSN-
Node receives events from the Target and creates a log message out of it. This log message is 
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then directly sent to the GUI-Node in case we are in the push mode.56 In this measurement, 
we determine the number of log messages that n DSN-Nodes can send to the GUI-Node at 
different rates which are received correctly57. In Figure 2-34 we can see the result of this 
measurement. These results can be compared to the results from a measurement with almost 
the same test parameters at the ETH (see Figure 2-35). The only difference is the number of 
active DSN-Node in the system and the topology of them. 

 
Figure 2-34: Correctly Received Log Messages 

 
Figure 2-35: Correctly Received Log Messages (Results from ETH) 

                                                           
56 “Push mode” means that log messages are directly sent to the GUI-Node at the time they are 

created. Although this is not the default mode of the DSN-Server, we used it in order to get a higher 
number of log messages back. 

57 This number is also refereed to as yield. 
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The reason why log messages can get lost is because they cannot be relayed. A log message is 
relayed by a set of DSN-Nodes until it reaches the GUI-Node. DSN-Nodes have a buffer for 
temporarily storing a fixed number of messages58. If one of these DSN-Nodes has a buffer 
which is already full, the message is thrown away. 

What remains unanswered is the question if the log messages are lost only at the root of the 
DSN (the GUI-Node) or also at intermediate DSN-Nodes. 

2.5.1.8 Influence of the “Blue Box” 
Here we measure the influence of a “Blue Box” to the RSSI and PRR. The factors that could 
influence these metrics are the communicating BTnode, the Adapter Board with its various 
electronic components and the box itself. In order to do that, we take the result of another test 
with two Targets with a distance of 2 meters as the base. In this test, 1500000 frames were 
sent and all were received correctly. The range of RSSI was between -43.5 and -61.5 dBm, 
the range of noise between -108 and -126 dBm. 

The test setup is the same as in the base test except that we use “Blue Boxes” instead of only 
A80 boards. We received all of the 1500000 sent packets without any errors and had an RSSI 
signal range between -42 and -43.5 dBm and an RSSI noise range between -105 and -121.5 
dBm. 

2.5.1.9 Range of DSN-Node 
In this section, we determine the maximum distance between two DSN-Nodes such that they 
can communicate. This value is determined indoor in an office building and outdoor on a 
parking lot. The measurement was done by executing a command on the GUI-Node which 
triggers the DSN-Node to blink. The maximum distance was determined by the place where 
the DSN-Node did not receive the command anymore. 

In the first measurement on a parking lot, we measured a maximum distance of 25 m if both 
nodes were on the ground. After we put the nodes onto a height of 70 cm, we measured a 
maximum distance of 105 m. 

In the second measurement which we performed indoor, we also measured 25 m if the nodes 
are both on the ground. After setting the nodes to a height of 70 cm we reached a distance 
from the one ending of the building to the other which is 55 m (see point 1 and 2 in Figure 
3-1). 

2.5.2 Survey 
For the DSNAnalyzer itself we performed a small survey because, when evaluating a GUI-
Application, the acceptance of the users is more important than concrete metrics. This survey 
does only reflect the user acceptance of the Analyze View. 

The participants of the survey stated that the DSNAnalyzer has the advantage of enabling the 
user to see what happened in the network, has zoom functionality and shows the information 
which is visible in the sequence chart also in a log and a 3D map. The negative points and 
feature requests are that there should be no need for a network file, that a selected events is 

                                                           
58 The default value which is also used in the test is 10. 
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not optimal positioned after changing the zoom and that there should be a possibility for 
setting the colors of the events by the user. 

As a result of that survey, we added the last two negative points and changed the system 
accordingly. 

2.5.3 Conclusion 
In this section, we conclude the evaluation of the DSNAnalyzer (see 2.5.3.1) and the DSN-
Server/DSN-Node (see 2.5.3.2) and describe further work on these parts of the system (see 
2.5.3.3). 

2.5.3.1 DSNAnalyzer 
We think that the only meaningful quantitative value for the DSNAnalyzer itself is the time to 
load trace files. We have found that on a fast computer with the 3D map turned off it takes 
about 12 s to load a very large trace file what seems feasible. However, laptops with slow 
mobile processors are often not fast enough to load very large trace files quickly. 

As a result of the evaluation we can state that we need special tools in order to efficiently 
analyze complex protocols for WSN. This functionality is provided by the DSNAnalyzer. 

2.5.3.2 DSN-Server / DSN-Node 
What results from the power consumption and lifetime measurements described in 2.5.1.1 is 
that a “Blue Box” is running on batteries for about two days. For short measurements to 
evaluate the link quality at special places in the building or outdoors, this time is sufficient. 
However, if we keep in mind that the most important places for the “Blue Boxes” are the 
locations of existing fire detectors which are mounted on the ceilings, this time is too short. 
Additionally, for proving the failure-resistance of an algorithm, we need up-times of several 
days or even weeks. Therefore, some work has to be done on a low-energy mode for the 
DSN-Node because that device is responsible for most of energy consumption. 

We measured the time to distribute a binary in the DSN and found that it takes about three 
minutes for a network with up to 30 DSN-Nodes. Another result is that the distribution 
duration does scale well with an increasing number of DSN-Nodes. The time to flash is about 
half a minute when using a high baud rate which is fairly negligible when flashing in parallel. 
The overall reprogramming duration of less than 4 minutes is therefore fast if we compare it 
with the process of manually reprogramming devices. 

The Target flashing does not work well enough because there can be some DSN-Nodes which 
are unable to flash their Targets even after several tries. However, the speed of flashing is 
fast. 

We have seen that we still have hang-ups and watchdog resets in the DSN. Watchdog resets 
do only matter if we do not send our events immediately back to the GUI-Node which can 
lead to data losses. However, hang-ups can stop measurements to be executed correctly.  

The results on the command latency shown in 2.5.1.6 are important for the discussion of 
executing several commands at different Targets at the same time. We have to keep in mind 
that if we send a command to the DSN-Server which should be executed at several Targets, 
there could be a time deviation of up to several seconds in the execution time of the 
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command. This has impact on the design of application level tests because we cannot execute 
a command at several targets at the very same time59. This is one reason why we need Timed-
Commands (see 2.5.3.3). 

From the measurements of the log verbosity we know that we can produce about one event 
per second at up to 25 Targets. If we want to produce more events, we have to use a smaller 
set of Targets. However, if we are doing only measurements with a set of five Targets, we can 
produce up to five events per second or even more. 

We measured the influence of the DSN-Node, the “Blue-Box” and the Adapter Boards which 
turned out to be negligible. We can also say that we have a maximum signal strength of -42 
dBm.  

In measurements about the range of the DSN-Node we found out that the maximum distance 
between two DSN-Nodes very depends on the height above ground. We can say that 2 DSN-
Nodes can communicate with each other over more than 50 m in our office building when 
they are placed 70 cm above ground. 

All in all we can say that we now have a very powerful system that enables the developer to 
control the Target-Network and analyze its performance in a manner which is not possible 
without using the system described in this thesis. Another important point is that we have 
already discovered a lot of problems and communicated them to the DSN development team, 
some of which have already been solved. However, because we work in an environment with 
restricted resources (such as battery lifetime) we have to do a trade-off between a very 
powerful and a very long-living system. 

2.5.3.3 Further Work 
Here we list features and improvements for the DSNAnalyzer which are meaningful: 

• Extend the 3D Map to draw the ground plans and ceilings from 
information provided by the network file. Also drawing walls or 
obstacles could be possible. 

• Show results of measurement also using arrows in the 3D map. This 
introduces a discussion of how much the views should depend on each 
other. 

• A feature to create a link quality matrix which includes a histogram of 
RSSI values and the average PER of all possible combinations of a set of 
links. 

• Use different shapes for representing events in the Sequence Chart. This 
helps the user to distinguish between different types of events. 

We also list features and improvements for the rest of the DSN: 

• The DSN-Sever should provide a reliable command execution function 
which blocks until the result is received. 

                                                           
59 Something like that is needed if we want to simulate a link failure on the Target using a command. 
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• A Timed-Command feature on the DSN-Node. A Timed-Command is a 
common command with a time. The DSN-Node executes this command 
exactly at this time. 

• A binary distribution feature which continuously checks the current 
software versions of the Targets which should be reprogrammed and 
starts flashing when all of them have the new binary. 

• A reliable Target flashing function at the DSN-Server which 
automatically retries flash operations and returns the list of successfully 
flashed Targets. 
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3 WSN Link Quality Measurements 

In this third part of the thesis we describe the reasons, the design and the results of the 
measurements we performed using the application described in chapter 2. We first introduce 
the problem (see 3.1), describe the methodical preceding (see 3.2), the measurements itself 
(see 3.3), provide a discussion (see 3.4) and give a conclusion (see 3.5). 

3.1 Introduction 

In this section we introduce the WSN link quality measurements by describing the problem 
(see 3.1.1), define the influencing factors (see 3.1.2), describe the metrics (see 3.1.3), describe 
why we have to perform tests (see 3.1.4) and draw a conclusion (see 3.1.5). 

3.1.1 Problem Specification 
As mentioned in 1.1.3, we need real-world measurements of the link quality on the one hand 
to compare them with the results from the simulation and on the other hand to gain a deep 
understanding of the radio wave propagation in office buildings which serves as input to the 
radio models used for simulations again. Additionally, most protocols rely one some 
assumptions about the link quality which have to be determined in different conditions. 

In this section, we show how radio waves propagate (see 3.1.1.1), describe why we need 
reliable protocols (see 3.1.1.2) and mention the work which is related to this thesis (see 
3.1.1.3). 

3.1.1.1 Radio Wave Propagation 
In the free space, radio waves propagate according to the inverse-square law what means that 
when the distance is doubled, the signal strength is divided by four. But because we are on 
earth and not in the free space, we have a set of additional factors which disturb the 
propagation but also allow the signal to reach areas which are not in line-of-sight [Wikipedia 
2006A, Radio Electronics 2006]: 

• Absorption: Radio waves with high frequency are partially absorbed by 
obstacles like walls. 

• Reflection: Radio waves are reflected by objects. When reflection occurs, 
parts of the signal can be lost due to absorption or because of passing the 
obstacle. 

• Slow Fading (Shadowing, Attenuation): Radio waves are shadowed by 
obstacles (this is a combination of absorption and reflection) [NGMN 
2006]. 

• Diffraction: Radio waves can move around objects. 

• Refraction: Radio waves can undergo refraction. 

• Fast Fading (Rayleigh-Fading): Because of the multi-path propagation, 
which results from the effects described above, signals arrive at the 
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receiver at different times which could lead to amplification, attenuation 
or effacement [NGMN 2006]. 

3.1.1.2 Reliability 
What follows from radio wave propagation properties described above is the complexity of 
deriving the strength of a signal at a given place. Additionally, if we are in an office building, 
which is the main application area of fire detectors, the propagations become even more 
complex [Reijers 2004, 232]. 

However, if we would like to design e.g. an efficient MAC protocol or a physical layer, we 
have to consider the properties of the radio wave propagation and the resulting link quality. 

For designing WSN applications, we have to use reliable protocols which allow the correct 
transmission of messages. The design of these protocols depends very much on the channel 
characteristics which have to be determined by measurements. 

3.1.1.3 Related Work 
In this section, we present work which is related to ours and which we use to verify the results 
of our measurements. 

In [Nguyen/Thiran 2006], the authors propose to use end-to-end data transmissions to say 
something about the quality of links. They also show that most data in a sensor network is 
transported over a few number of links and that basically there are good or bad links but 
hardly any in between. Another finding is that links are very stable if there are no external 
influences. 

The authors of [Willig/Mitschke 2006] analyzed the detailed link behavior and checked 
different error control mechanisms such as Forward Error Correction (FEC) and Automatic 
Repeat Request (ARQ). They propose that FEC is not applicable in WSN because bit errors 
most often come in bursts. 

In [Cerpa et al. 2005], the authors analyzed the temporal properties of links in WSN. They 
state that trying to use multiple paths concurrently when sending a packet does not help to 
improve the end-to-end link because if one good link performs badly at a given time, all other 
good links are very likely to perform also badly at the same time. 

The authors of [Son et al. 2005] determine the influence of concurrent packet transmissions in 
WSN. They introduce an extended SNR which includes interference and show that this value 
should be higher than a specified threshold in order to guarantee successful packet 
transmission. They also state that it is hard to determine the level of interference in case there 
are multiple interferers. 

[Thelen et al. 2005] describe propagation of radio waves in potato fields. They show that the 
foliage influences the propagation of the radio waves. They also state that at times with high 
humidity (in the night and when it is raining) radio wave propagation is better. 

[Zuniga/Krishnamachari 2005] shows how radio waves propagate and describes a way to 
create link layer models for different environments. 

The authors of [Reijers et al. 2004] did a detailed research of the radio wave propagation in 
different indoor and outdoor environments. They investigated different factors like multi-path 
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effects, directionality and human activity which can influence the link quality. They also 
looked at interference, symmetry and the correlation of RSSI and link quality. Additionally, 
they proved the existence of a gray area which includes good as well as bad links. 

In [Zhou et al. 2004] the authors describe the impact of radio irregularity on WSN. They show 
that radio irregularity comes from multiple factors like directionality and small changes in the 
sending power of radio transceivers. As a result of their research, they created the Radio 
Irregularity Model which can be used for simulations. 

The authors of [Zuniga/Krishnamachari 2004] describe the causes for the gray area. They 
show that the gray area is not a result of hardware non-ideality but exists because of multi-
path effects. As a result they propose an expression for the PRR (see Table 3-3) using the 
distance to the sender. 

The authors of [Zhao/Govindan 2003] did measurements of the link quality in an office 
building, a habitat and in a parking lot. They show the existence of a gray area where 
communication is difficult and describe the reasons for such a region. 

Most of the papers presented above used the popular MICA2 sensor node with the CC1000 
radio chip for their measurements. Because of that, the results of our tests cannot easily be 
compared with those presented in the papers. 

3.1.2 Influencing Factors 
In this section we describe factors that influence the metrics shown in 3.1.2.3. Influencing 
factors can be divided into internal factors (see 3.1.2.1) which are related to the hardware and 
external factors (see 3.1.2.2) which are results of changes in the environment. In Table 3-1 
and Table 3-2 the number 6 means easy manageable and respectively, 1 means not 
manageable. 

3.1.2.1 Internal Factors 
In Table 3-1, we describe the internal factors which are related to the hardware and most often 
can be managed easily. 
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Factor Manageability 

Channel (Frequency) 6 
Preamble length 6 
Adjustments Values (Target characteristics) 6 
Modulation Schemes 6 
Sending Power 6 
Remaining Battery Power 4 
Coding Schemes (4B5B, Manchester, SECDED) (see 
[Zhao/Govindan 2003, 10]) 6 

Frame Size 6 
Receiver Noise (see [Zuniga/Krishnamachari 2004, 2]) 3 
Antenna-Diversity 6 
Receiver Sensitivity [Zhou et al. 2004, 126] 4 
Amplifier Properties 4 
Battery powered / USB powered 6 

Table 3-1: Internal Factors 

3.1.2.2 External Factors 
External factors (see Table 3-2) consist of all the things which are not dependant of the 
hardware. 

Factor Manageability 

Receiver Location 360 
Fading61 1 
Directionality of the sender (vertical/horizontal) 4 
Directionality of the receiver (vertical/horizontal) 5 
Humidity 2 
Room Temperature 2 
Sender/Receiver proximity to the desk/ceiling 3 
Interference from other Devices 2 

Table 3-2: External Factors 

3.1.2.3 Conclusion 
We have shown a variety of internal and external factors that influence the radio wave 
propagation. It can easy be seen that creating a fast simulator model using all these factors is 
nearly impossible. However, if we can quantize the impact of these factors we can provide 
information that helps designing models which are accurate enough for simulation. 
Additionally, a quantization helps also for the design of algorithms for WSN. 

                                                           
60 The number 3 comes from the fact that sometimes the location of the receiver is determined by 

non-radio requirements (e.g. optimal placement of a fire sensor). 
61 Fading is more a result of the other external factors than a factor itself. If we talk about fading we 

often mean the variation of the signal strength. See http://en.wikipedia.org/wiki/Fading. 
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3.1.3 Metric Evaluation 
In order to measure the link quality in WSN we need a way to quantify it. Therefore, we list 
possible metrics in Table 3-3. 

Metric Description Evaluated 

RSSI (Received 
Signal Strength 
Indication) 

The strength of the received signal for a receiver in 
dBm. 

Yes 

Packet Error 
Rate/Ratio (PER) 

The number of incorrectly received packets out of 
the total number of packets. Incorrectly received 
packets are the sum of “missed” packets (= packets 
where the Start Frame Delimiter (SFD62) was not 
seen) and the packets with at least one bit error. 

Yes 

Packet Reception 
Rate (PRR) 1 – PER [Zuniga/Krishnamachari 2004, 1] Yes 

Bit Error Rate/Ratio 
(BER) 

The number of incorrectly received bits out of the 
total number of bits (e.g. BER = 10-3 means that out 
of 1000 sent bits 1 bit is sent with error) [Wikipedia 
2006B]. 

Yes 

Average Bit-Burst 
Length 

A metric that tells us something about the distribution 
of bit errors. Bit errors can be very seldom but if they 
arise then in a burst, or bit errors are linearly 
distributed over the time [Willig/Mitschke 2006]. 

No 

Average Packet-
Burst Length 

Average of how much packets received one after 
another are missed/have bit errors. 

No 

Average Number of 
Bit-Errors per Packet - No 

Signal-to-Noise 
Ratio (SNR) 

The ratio of meaningful information (signal) to the 
noise. 

No 

Signal-to-
Interference-Plus-
Noise Ratio (SINR) 

SNR that explicitly includes the signal strength from 
interfering senders into noise [Son et al. 2005, 1]. 

No 

Required Number of 
Packets (RNP) 

The required number of packets to be sent before a 
packet is successfully received (When using ARQ) 
[Cerpa et al. 2005, 3]. 

No 

Table 3-3: Link Quality Metrics 

For getting a first impression of the complex behavior of radio propagation in office 
buildings, we do not want to use every metric listed in Table 3-3. We therefore choose a set of 
important metrics. 

In order to compare our results to previous work, we have to use the RSSI and PER. For 
detailed link analysis, we are also interested in the BER. The SNR is a result of RSSI 
measurements from the signal and the noise and therefore needs no additional measurements. 
The rest of the metrics are considered to be used in cases we explore special behavior.  

Because the PER can be computed from the number of packets which have BER greater zero, 
we just have to explicitly measure BER and RSSI in the Target software. 

                                                           
62 An SFD marks the start of a frame. 
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3.1.4 Tests 
In 2.4.2.4 we described what a test is and how it is performed using the DSN. Here we want 
to describe why we do perform tests in the way described. 

In order to get values for the metrics chosen in (3.1.2.3), we have to perform tests which 
consist of Targets which send test-frames and receivers which receive them. A test-frame is 
just a set of bytes. The Target which is continuously receiving has a copy of the reference 
test-frame which is sent and compares it to the test-frame received. Using simple bit 
operations, we can get the number of bits which do not match the reference test-frame. 
Additionally, we measure the RSSI while receiving and also shortly after reception to get the 
RSSI value of the noise. 

Because the DSN is limited in its resources, we need a way to control the granularity of the 
events that are created at the Target. We therefore included a logging mechanism at the Target 
which allows controlling the number of events which are generated during the receiving 
phase. 

3.1.4.1 Test Setup 
In our measurements we use the Siemens A80 (see 2.1.2.1) with FSK-Modulation and a baud 
rate of 4.922 Kbit. Most of the measurements are done in our office (see Figure 3-1). 

The placement of our Targets is chosen differently than in other work (see [Reijers et al. 
2004, 225; Zhao/Govindan 2003, 3]) where the Targets are paced in a chain topology. In our 
measurements, the Targets are most often placed on locations in the office building which 
seem difficult according to fading effects. We do this because in the fire detection application, 
for which we perform these measurements, the Targets are also placed in complex topologies. 

For all our measurements, we used channel 20 in the 868 ISM band. In order to avoid 
collisions with other communicating devices we use an Excel sheet which is used by all 
developers to reserve frequencies. If not specially defined, we send using 9.7 dBm. The test 
frame is a string with the size of 26 bytes (208 bits). 

For sending the A80 uses the antenna A. 

3.1.5 Conclusion 
We have defined radio wave propagation, influencing factors as well as metrics. Now we use 
this information to plan the measurements which should be performed in this thesis (see 
3.2.2). 

We want to remark that the link quality measurements performed in the last part of the thesis 
are not only for answering questions related to radio wave propagation but also to evaluate the 
software described in chapter 2 under real conditions and over a long time. 

3.2 Methodical Proceeding 

As already done in chapter 2, we present the methods we used in order to provide accurate 
results and allow other developers to see the results of our measurements. 
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3.2.1 Wiki Website 
For temporary storing the test results and related discussions we create Wiki-Sites (see 2.2.6) 
for each successful measurement. On this website we list the test parameters, pictures of the 
result charts and links to the test file and the test result file which allows other developers to 
do analysis on the test material. 

Because a Wiki-Site should be easily creatable, we create a template for link quality 
measurements which already includes the framework for describing the result of a 
measurement. 

3.2.2 Roadmap / Planned Measurements  
We have briefly introduced how radio waves propagate in the free space, how this situation 
changes if we are on earth in office buildings (see 3.1.1.1) and listed the internal and external 
factors which influence this propagation (see 3.1.2) and as result, change the values for the 
metrics mentioned  in 3.1.2.3. 

In order to plan the measurements shown in 3.3, we analyze the influencing factors to check 
which are important and which do influence the metrics in office buildings. 

We start our measurements by leaving the internal factors static because they are not as 
interesting as the external factors. When deciding which external factors we want to examine 
more detailed, we have to take those factors which can be managed. 

One of the most important factors, we think, is the placement of the nodes because about this 
factor we can show that it influences the signal strength. However, there are also far places 
from the sender that have better signal strength then close places [Reijers et al. 2004, 226]. 
Therefore, it is obvious that we have to analyze this influencing factor (see 3.3.1.1). In all the 
measurements we do not try to move Targets until we find a good place, but we try to 
describe why we have a poor link quality at given place. 

Fading primarily comes from obstacles or humans that change their positions due to several 
reasons. Therefore, we would like to analyze the fading e.g. at day and night (see 3.3.1). We 
found that fading is largely influenced by human activity and saw that there is less fading at 
night than at daytime.  

Interference is an influencing factor that depends very much on the environment. Because we 
are performing measurements for prototyping fire sensor networks, we are in difficult 
environments such as office buildings with a lot of interference (see 3.3.2). We found that 
interference from different channels really influences the link quality, especially if the 
channels are close to each other. 

An influencing factor that is very easy to manage is directionality. Here we can analyze if the 
sender or receiver directionality does influence the link quality. Another thing to determine is 
if directionality only has influence if the Targets are close to each other (see 3.3.3). We found 
that the influence of directionality is not that much. 

Something we also want to analyze is the temporal behavior of the factors described in 3.3. 
We want to see if RSSI values change between milliseconds or between hours or even both 
(see 3.3.1.4). We found that there could be large fading about short and long periods of time. 
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3.3 Measurements 

In this section we describe the measurements and show how they are performed. The 
measurements include a determination of fading and link quality in our office (see 3.3.1), a 
valuation of interference (see 3.3.2), a description of the influence of sender or receiver 
directionality (see 3.3.3) and a description of link quality at different sending power (see 
3.3.4).  

3.3.1 Signal Strength / Link Quality / Fading 
In this section we determine the signal strength and the resulting link quality in our office 
building. We analyze changes in signal strength, which also refers to as fading. 

3.3.1.1 Base Measurements 
In these base measurements, we often use a fixed set of Targets which are distributed all over 
the floor (see Figure 3-1). We do these measurements in order to get a feeling of where we 
can receive all packets without errors and where not. We are also interested in where we have 
good signal strength and where not. In these first measurements we do not analyze any 
external circumstances such as interference and people moving around. 

In Figure 3-2 we see the results of such a measurement with one sender (80640419) and 6 
receivers (the y-axis of the chart). The bars show the range of measured RSSI values of the 
receivers where the red bars are for RSSI values of correct received frames, the blue bars for 
the RSSI values of faulty received frames and the green bars for the RSSI values of the noise. 
If a bar is large, we know that a this time and place we have a large change of signal strength 
what also refers to fading. We can see that we have RSSI values around -40 dBm if the 
receiver is near to the sender (such as 80640400) and values around -105 dBm if the receiver 
is on the other side of the building at a distance of about 50 m with 4 small walls in between. 
We can also see a receiver (806403ec) which is near to the sender but has large fading. The 
noise is measured with an RSSI value between -120 dBm and -110 dBm. 
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Figure 3-1: Floorplan SBT Gartenstadt 2a Floor 3 
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Figure 3-2: RSSI Chart of simple base measurement 

3.3.1.2 EMC Measurements 
In order to be sure that our measurements reflect physical phenomena and not internal 
software or hardware bugs, we perform a “burn-in” test in a special isolated cell used to 
determine Electromagnetic Compatibility (EMC). This cell provides very large signal 
attenuation what allows us to perform tests without external influences of other devices and 
hardly any multi-path propagation because of special attenuating walls. 

The measurement is done with an iteration of 1500000 frames and a period of 120 ms sent by 
a sender that is 2 meters away from the receiver. The duration of the test is 50 h. We perform 
the measurement on channel 20, a period of 120 ms, sending power of 9.7 dBm and a 
preamble-length of 16 bytes. 

The result is that we received all 1500000 test-frames correctly. We had a maximum RSSI of 
the signal of -43.4 dBm and a minimum of -61.5 dBm. The noise level was between -126 
dBm and -109.5 dBm. 

3.3.1.3 SFD Noise Reception 
In most of the results of measurements with an iteration of more than just several hundred 
frames, we can see that we have always faulty frames with a very low RSSI (see Figure 3-13). 
The fact that the RSSI range of these faulty frames is included in the range of the noise is no 
accident: The Target is continuously listening while performing a test. If it detects an SFD it 
receives the following bytes and compares it against the reference frame (see 3.1.4). But 
because noise consists of random bit patterns there is also the probability of receiving an SFD 
out of the noise. This is exactly what happens when a frame with many bit-errors at a very 
low RSSI is received. 

The problem of this effect is not only that we have a number of frame-errors in the results of a 
test which result from noise but also that during reception of a frame out of the noise the 
receiver does not listen to the sender. This has the effect that a small number of frames are not 
seen by the receiver (see Figure 3-3). 
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Figure 3-3: SFD Noise Detection 

Because of the effect described above, we perform a special measurement in order to 
determine the number of wrongly detected SFDs (see Figure 3-13). We measure how much 
frames are detected out of the noise if no sender is active. For that we use 15 Targets which 
are listening for 12 hours. The result of this measurement is shown in Figure 3-4. We have an 
average of 297 received SFDs per Target what is 25 SFDs per hour. We also see that the 
values do not very depend upon the location of the Targets but more reflect the properties of 
the hardware. 

 
Figure 3-4: SFD Noise Detection Measurement 

As a result of the observations above, we introduce a threshold value at the Target software. 
This threshold can be used the set the minimum RSSI value an SFD must have in order to be 
accepted. After using this software with a threshold of -100 dBm, we could produce results as 
shown in Figure 3-5 where no wrong SFDs are detected. 
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Figure 3-5: RSSI Chart (No wrongly detected SFDs) 

3.3.1.4 Temporal Fading Properties 
In this section, we determine the period of fading effects. We want to know if the signal 
reaches its minimum and maximum several times per second, per minute or even per hour. 
This property is important for protocol design because some protocols retry transmissions in 
case of a failure after a certain time. In order to determine this time, we need to know the 
properties of large changes of the link quality. 

In these measurements we concentrate on links with high fading, i.e. links that have changes 
in their signal strength of more than 25 dBm. 

In a first measurement, which is performed at daytime, we evaluate a link which we saw that 
is has fading of about 27 dBm. The receiver is located 7 meters away from the sender which 
sends one frame every second. The test duration is two hours and 45 minutes. The whole link 
quality chart is shown in Figure 3-6. We can see that we have fading all over the time except 
during the period between frame 6000 and 7000 with almost no fading. All the faulty frames 
in the range of the noise are a result of the effect described in 3.3.1.3. What is not clear is the 
reason why we have a bunch of bit error with high RSSI between the frames 7500 and 10000. 
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Figure 3-6: Link Quality Chart Link 1, Daytime 

In Figure 3-7 we see a part with 100 frames from the measurement shown in Figure 3-6. We 
can see two types of fading: Some frames are received with a RSSI that is up to 20 dBm 
higher or smaller that at the previous frame. The second type is a change of the RSSI that 
holds for about a minute. 

 
Figure 3-7: Link Quality Chart Detailed Link 1 

In a second measurement, also performed at daytime, we also include Targets which are more 
far away. In this measurement we sent 5000 frames with a period of 500 ms. The test duration 
was 42 minutes. In Figure 3-8 we can see the Link Quality Chart of a link to Target 80640413 
(see Figure 3-1) with a distance of 30 m through several small walls. We can see that there is 
a change of the signal strength over the whole time with three bad phases around frame 1000, 
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frame 3000 and frame 4000. Although this link has large fading, we have received almost all 
packets without errors. 

 
Figure 3-8: Link Quality Chart Link, Daytime 

In Figure 3-9 and Figure 3-10 we can see the difference between a 3 m link between Target 
80640419 and Target 80640400, and a 35 m link between Target 80640419 and a Target, 
which is located 35 m away on the next floor at position H (see Figure 3-1). In Figure 3-9 we 
hardly have any fading because the signal changes only between 1.5 dBm. In Figure 3-10 we 
can see that we have more fading, but do not yet have bit errors. 

 
Figure 3-9: Link Quality Chart Link 3, 3m-distance 
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Figure 3-10: Link Quality Chart Link 4, 35m distance / 2 floors 

In Figure 3-11 we can see a hypothesis of the decrease of RSSI with increasing distance. 
Additionally to distance, obstacles also reduce the signal strength and increase the fading. 

 
Figure 3-11: Signal Strength / Distance 

 

3.3.1.5 Day and Night 
In this measurement we compare the fading during the night against the fading during the day.  
The measurement consists of 50000 frames sent with a period of 125 ms with 9.7 dBm 
sending power and takes about 1 h 45 min. The sender is placed at the ceiling in our office. 

The result of the measurement during the day is shown in Figure 3-12. We can see that we 
have fading only at two of the three receivers. This is because Target 80640400 is very near to 
the sender and also located at the ceiling. However, if we look at 80640413, which is also at 
the ceiling but has a distance of about 40 m to the sender, we can see fading at day. We also 
have fading at Target 80640407 which has a distance of 20 m and is located on the desktop of 
an employee (see Figure 3-1). 
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Figure 3-12: Fading Day 

In Figure 3-13 we see the result of the same measurement at night. We see that we have 
almost no fading. 

 
Figure 3-13: Fading Night 

In order to determine the difference of fading between day and night, we perform a second 
measurement set. We performed 6 iterations of a test with 50000 frames, a period of 125 ms 
and sending power of 9.7 using 4 Targets. The duration of one iteration is 1 hour 45 minutes. 
The first 3 iterations are performed at daytime when people are in the office, the second 3 
iterations are performed at night (In the first test of the night there could be movements of 
person because of the cleaners). 

In Figure 3-14 we can see the fading differences between day and night. We have drawn the 
difference between the maximum and the minimum value of the RSSI of correctly received 
frames what is also called fading. We see that the overall fading at daytime is larger than at 
night what seems obvious. What we clearly can see is that at the Target 80640400, which is 
like the sender on the ceiling and only 3 meter away from it, has hardly no fading. The Target 
806403ec has the largest fading because of its special location which is between two metallic 
objects (see Figure 4-8). That was also seen in other tests (see Figure 3-2). 
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Figure 3-14: Day/Night Fading 

In Figure 3-15 we can see the number of successful received packets out of 50000.63 We can 
see that the first 3 tests are worse than the second 3 tests. This result is due to people moving 
around and causing (fast-) fading. We can see that only two Targets perform worse in the first 
3 tests (80640124 and 806403f7). These are exactly the two Targets which are not near to the 
sender and are therefore influenced by people and movements of obstacles. 

 
Figure 3-15: Day/Night Received Packets 

                                                           
63 Note that we took not the same set of Targets as in the previous measurements due to software-

hanging problems. 
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3.3.1.6 Special Places 
In order to determine the behavior of the Targets in regions with high fading, we have to find 
such places. On the one hand we already know such places from initial measurements but on 
the other hand we use an analog receiver to find them. 

One place about which we know it has high fading is the location of Target 806403ec shown 
in Figure 3-1 and Figure 4-8. This Target is between two metallic boxes under the desk. In 
order to proof if the fading does not come from hardware failures, we also replaced the 
hardware. 

Another special place was found using an analog receiver. It is in the restrooms where we 
have reflecting elements such as a mirror and a heater (see Figure 4-4). However, in Figure 
3-13 we can see that we do not have large fading when performing our measurements. 

A third special place was the basement of our office building (see Figure 4-9). There we 
found that we can have over 30 dBm fading over the night without any human activity and no 
lights going on and off. This shows that fading is not a phenomenon that only arises in 
environments with visibly changing conditions, but also in static environments like 
basements. 

3.3.1.7 Measurement with Threshold 
In this measurement we determine the PER of a receiver which is on the same floor as the 
sender. The distance between sender and receiver is 50 m, we are sending with 9.7 dBm on 
channel 20 with a period 120 ms over 50000 frames. The duration of this measurement is 1 
hour 40 minutes. We first do the measurement at night were no people are in the office what 
reduces the fading. We also used a threshold of -99 dBm. The result of the measurement is 
that all receivers with an RSSI range higher than the threshold have a PER between 0 and 
0.0001. 

3.3.2 Interference 
Since the beginning of the measurement part we noticed different results in our measurements 
if devices in our environment were continuously communicating. Although these devices do 
not use the same channel as we do, we see some impact. We know that there is a SigmaSpace 
system (see Figure 3-16) which usually communicates on one channel, but also uses different 
channels in case of collisions. 
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Figure 3-16: SigmaSpace Test System 

In order to measure the influence of interfering devices to our communication we have to 
perform some tests. 

3.3.2.1 Link Symmetry 
Because we know that in Room A we have interference from a different fire detection system, 
which is in development, we perform the following test: First the Target in Room A is 
sending and the Target in Room B is receiving, afterwards they change roles. We perform this 
measurement using 8 iterations while at each of them 5000 frames are sent in a period of 125 
ms. The duration of one iteration is 10 minutes. 

The interferer is a testbed of wireless fire detectors which has a base channel but is also 
allowed to send in a set of different channels. Because of this property and the fact that the 
interferer is not always sending, it is very difficult to characterize the interference in a detailed 
manner. We therefore just see the interfering devices as a source of interference which 
influences receivers in the same room. 
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Figure 3-17: Link Symmetry Measurement Results 

The results of the measurement are shown in Figure 3-17. We see that in the first 
measurement, when devices in Room B were communicating, we have a good link quality if 
we send from B to A but a bad link quality the other way around (when the receiver was in 
the same room as the interferer). In the second measurement we disabled the interferer what 
lead to good reception in both directions. 

The reason why in iteration 7 and 8, in the first measurement, both directions are good is that 
the interferer was down at that time. 

After this measurement we know that other communicating devices influence our 
communication. Because we cannot clearly determine when this interferer is communicating 
on which channels we also perform a measurement with a controlled jammer (see 3.3.2.2). 

3.3.2.2 Jammer 
In this test we measured the influence of a jammer near the Target. They are both sending 
with 9.7 dBm, an iteration of 10000 and a period of 125 ms. The duration of one iteration is 
20 minutes. As a jammer we used another A80 which is positioned first 10 cm (Pos 1) and 
afterwards 100 cm (Pos 2) away from the receiver (see Figure 3-18). The sender is 15 meters 
away from the receiver. In both positions we set the jammer channel to 21, 23, 50 and finally 
turned it off. 
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Figure 3-18: Jammer Position 

In Figure 3-19 we see the results with a jammer on Pos 1. We can see that almost all packets 
are received when the jammer is off and also with a jammer with frequency 50. We can also 
see that if the channels are closer to the channel 20, which is used by the sender and the 
receiver, we almost get no correct packets. 

 
Figure 3-19: Jammer Result 10 cm Distance 
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Figure 3-20: Jammer Result 100 cm Distance 

If the distance is increased to 100 cm (see Figure 3-20), we can see the same effects but not as 
strong as with 10 cm distance. However, if the jammer is at a frequency close to the sending 
frequency we observe strong influence. 

3.3.3 Directionality of sender/receiver 
In this section, we determine the influence in signal strength and link quality when changing 
the antenna. This is possible because the A80 supports two different antennas (see 2.1.2.1). In 
this measurement we send 5000 frames with a period of 120 ms at Target 80640419 which are 
received by five Targets. The duration of the measurement is 10 minutes. 

The result when receiving with antenna 0 is shown in Figure 3-21. 

 
Figure 3-21: RSSI Chart Antenna 0 

The result when receiving with antenna 1 is shown in Figure 3-22. 
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Figure 3-22: RSSI Chart Antenna 1 

When we compare the results, we can see that we almost have the same signal strengths with 
antenna 0 and antenna 1. We just see that some links with antenna 0 have a maximum signal 
strength which is a bit larger than the maximum signal strength of the same link with antenna 
1. 

3.3.4 Link Quality at different Sending Power 
In this section we determine the changes of link quality and signal strength when the sending 
power of the sending Target is altered. 

In a first measurement we just run a set of measurements with 10000 iterations and a sending 
power of -2.06 dBm with the sender 80640419 with no threshold. The period is 120 ms and 
the duration is 20 minutes. The result is shown in Figure 3-23. If we compare it to results 
which are taken earlier with a sending power of 9.68 dBm (see Figure 3-24), we can see that 
the graph has shifted about 12 dBm to the left which is the change of the sending power. We 
can also see that fading has increased at Targets which are near to the sender (80640400). 
Some links, that already had a low RSSI range with 9.68 dBm, do receive nothing when 
sending with -2.06 dBm (see 80640411 which is placed at another floor). 
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Figure 3-23: RSSI Chart Power -2.06 dBm 

 
Figure 3-24: RSSI Chart Power 9.68 dBm 

We have already seen in other measurements, that if the RSSI goes under a certain value, we 
will have more bit errors and missed frames (see Figure 3-8). Using the lower sending power 
setting we can determine this value more detailed because we also have Targets on the same 
floor which have an RSSI of less than -100 dBm. 

In a second measurement with 1000 frames, a period of 1 s and a duration of 17 minutes, we 
undermine a link which is bad and has over 20 % erroneous frames. This link has a signal 
RSSI range between -111 dBm and -99 dBm and a noise RSSI range between -121.5 and -111 
dBm. I.e. we have a SNR which is about 1. In the RSSI histogram (see Figure 3-25), we can 
see that if we go under a certain RSSI value we get more and more bit errors (see Table 3-4). 
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Figure 3-25: RSSI Histogram Bad Link 

RSSI [dBm] Distance to Noise Max [dBm] Bit Error Probability 

- 102 7 3 % 
- 103.5 5.5 6 % 
- 105 6 28 % 
- 106.5 4.5 49 % 
- 108 3 56 % 

Table 3-4: Bit Error Probability 

If we look at the histogram of bit errors per frame (see Figure 3-26), we can see that most of 
the faulty frames have one or two bit errors while only a few have a lot of bit errors. 

 
Figure 3-26: Bit Error Histogram 
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3.4 Discussion 

In this section, we discuss the results from the measurements performed in 3.3. 

In the measurement shown in 3.3.1.1 we can look up the distances and the RSSI values from 
the 80640400 and 806403f7 in order to compute an estimation for the path loss in an office 
building. Target 80640400 is 3.7 m away from the sender and has an RSSI of about -42 dBm. 
Target 806403ec has a distance to the sender of 51.4 m and an RSSI of about -102 dBm (Note 
that there are obstacles between the sender and Target 806403f7). This would result in a path 
loss of about 1.25 dBm per meter. 

In the measurements performed in 3.3.1.2 we have proofed that the A80 Target works as 
intended. We can transmit 1500000 frames without errors. In other words, the bit errors and 
lost frames measured in our tests result from physical phenomena and not from internal hard- 
or software-problems. 

The fact that we receive about 25 SFDs per hour out of the noise (see 3.3.1.3) does not imply 
that we also would receive 25 SFDs per hour if a sender is active because the receiver is not 
always listening to noise what reduces the probability of receiving the correct pattern out of 
the noise. However, we would receive several faulty frames per hour if a sender is active what 
vaguely corresponds to the number of missed frames in a link quality test between two 
Targets which are close together (see Figure 3-2). 

In 3.3.1.5 we determined the difference of fading between day and night. We can clearly see 
that we have more fading if people are walking around in the office. But there are also places 
which are near the sender but have fading because they are located on special places with high 
fading. When we compare the PER and RSSI results at night, we can conclude that fading 
does not influence the PER as long it is above a certain RSSI value. We can say that fading 
influences the link quality (bit errors and missed frames) if it goes under a certain level which 
is near the noise level. Fading is therefore bad if we are already on a bad RSSI value. 

In 3.3.3 we have measured the difference in signal strength when using antenna 0 and antenna 
1. We found that the difference is very small, whereas antenna 0 is a bit better. This is 
probably a result of the Target orientation which is the same for all Targets in the building. 

In 3.3.4 we have seen that if the signal comes close to the noise level, we get more and more 
bit errors. If we are more than 10 dBm over the maximum noise level, we get hardly any bit 
errors. The point where we begin to get bit errors and missed frames in our environment is 
under -102 dBm. We can also see that most of the erroneous frames have only one or two bit 
errors. This is a good property if we want to do FEC because most often only a few bits are 
corrupted. 

Another reason for a bad link quality is the receiver sensitivity at -112 dBm. However, 
because we often have a maximum noise level which is in this region, the link quality 
frequently becomes bad even before it reaches the receiver sensitivity. 

3.5 Conclusion 

In this section we draw a conclusion of the measurements we performed. 
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Using the test in the EMC-Room, we proved the correct behavior of the Target hard- and 
software. 

From the results of the measurements in this chapter, we can conclude that the link quality 
depends on signal strength and its distance to noise (including noise from interferers). We 
found that if we go under a certain RSSI, which is about 10 dBm over the maximum of the 
noise, we start to get bit errors and missed frames. Confirming [Reijers et al. 2004, 232], we 
have found that RSSI is a good estimator for link quality if it is over a certain level. If the 
RSSI is under that level, the number of bit errors and missed frames changes with every dBm 
which makes it very difficult to derive the link quality from the signal strength. As a general 
rule of thumb we can say that if the RSSI minimum of the signal is higher than 10 dBm over 
the noise we get hardly any bit errors or missed frames. If we are completely in the noise 
range, we do not receive any frames. 

In 3.3.2 we analyzed the influence of interference to our communication. We can conclude 
that also devices which communicate over a different channel influence the link quality, 
especially if the channels are close together. We therefore have to try to keep as many 
channels as possible free around the sending channel. However, if a fire detector system is 
going life, it also has to sustain devices which communicate on a channel near to its own 
channel. Using these results, we can say that an algorithm, which changes the channel 
because of interference, should not take one of the six neighboring channels. 

We have seen that the link quality does change both slow and fast over the time. When a link 
has fading, the signal can change between up to 20 dBm over seconds. Obviously it can also 
change more than 35 dBm over minutes or hours if the environment between sender and 
receiver is changing. 

If we remember the influencing factors described in 3.1.2, we can say that the most important 
external factors are receiver location, fading and interference from other devices. The most 
important internal factor is obviously the sending power. 

We have seen that most of the links we measured are either good or bad. Good means a PER 
of more than 99%, bad means a PER of less than 50 %. Bad links should not be included in 
the list of neighbors of a Target. 

We have found that faulty frames often have only a few bit errors what contradicts the results 
of [Willig/Mitschke 2006] and makes it attractive for using FEC. However, because most of 
the links are either good or bad, we only have few links on which we would have to do error 
correction. For that reason, the overall cost of using FEC would be higher than the benefit 
because when using FEC, also good links would have to send more data. We therefore 
propose to use ARQ for reliable communication. 

3.5.1 Further Work 
We think that the following questions are meaningful to be answered if we want to get a 
deeper understanding of radio wave propagation in office buildings: 

• How does the hardware perform in different buildings? In basements? 

• Are there any other strong influencing factors than the one we found 
(micro-ovens, elevators)? 
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• Are links always symmetric in environments with no interferers? Under 
which conditions not? 
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4 Conclusion 

In this thesis we first gave an introduction to WSN, the difficulties in prototyping them and 
the specific goals of the thesis. In the second chapter we have described the development of 
the DSNAnalyzer and the evaluation of the whole DSN. In the third chapter we described the 
measurements performed using the tool developed in the second chapter. 

If we consider the three main goals described in 1.2.1, we can draw the following conclusion: 

1. The task of integrating the existing DSN with the A80 by SBT was done successfully. 
We tested the hard- and software of the A80 and the Adapter Board, designed a 
protocol for communicating with the A80, tested the interaction of the DSN-Node 
and the A80 and proofed its correct behavior in a shielded environment. 

2. We developed a tool which helps to overcome problems in prototyping and testing 
WSN. The development included requirements engineering, design, implementation 
and intensive testing. The tool is able to handle output from the Targets as well as 
from the simulator and proved its functionality by delivering all the data used for the 
WSN link quality measurements. The DSNAnalyzer also supported the alpha testers 
by developing and evaluating their protocols. Additionally we evaluated the DSN 
itself and showed under which conditions it can be used efficiently. 

3. We designed and implemented a test environment with a counterpart on the Target. 
The test engine which is integrated in the DSNAnalyzer allows executing test scripts 
that can control all the functionality of the target. The test suite can be used to 
schedule and automate the execution of tests over several days with different 
parameters. Using this test environment we were able to analyze the behavior of radio 
wave propagation in our office building. Additionally, we tested and improved the 
physical layer of the Target itself. 

The industry is mainly interested in information about radio wave behavior which helps to 
improve protocol design. However, in order to get this information we need a sophisticated 
toolset. The DSN and its new client DSNAnalyzer is such a toolset which proofed its 
functionality in several manners and also allows analyzing protocols which are already 
developed. 

4.1 Experiences / Lessons Learned 

Here I provide a list of experiences which describe what I would do differently in further 
projects: 

• Because I wanted the whole DSN system at SBT to run stable as fast as 
possible, we often asked for quick software updates. Unfortunately, this 
software was often not sufficiently tested and introduced new bugs 
instead of solving the existing ones. In a next project, I would give other 
system developers enough time to check if the updated software works as 
intended. 
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• In order to save time, I often merged the deployment of several new 
software features into one download. Because of that, I often didnt know 
which part of the new software is responsible for a newly discovered bug. 

• Because this thesis is part of a large project which includes people from 
multiple locations, the collaboration was hard work. I have learned that 
all participants need detailed and well-structured interfaces and 
requirement-documents in order to allow a clean integration. 
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Appendix A – Project Plan 

 
Figure 4-1: Project Plan Master Thesis 
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Appendix B –Definitions 

Notation 

Symbol Definition Example 

(…) Grouping (ab)* = ab, abab, ababab 

[…] Any charter between 
the brackets [EWID] = E, W, I, D  

[^…] Any character not 
between the brackets 

[^\n] = every character but no 
newline 

* Zero of more 
occurrences 1* = nothing, 1, 1111 

+ One or more 
occurrences 1+ = 1,111 

\s Whitespace the\shouse = the house 
\n Newline - 
[:alnum:] Any letter or digit [:alnum:] = a, b, 1, 5 
[:digit:] Any digit [:digit:] = 1, 3, 6 
[:xdigit:] Any hex number [:xdigit:] = 1, 2, 9, a, f 
x{n} Exactly n times y a{3} = aaa 
x? Optional x? = nothing, x 

<x> The symbol x 
If <x> is a regular expression, 
there is somewhere a definition of 
this symbol. 

A | B Alternation (Either the 
one or the other) A | B = A, B 

Table 4-1: Notation [McKinney 2006] 

Message Definition 

Message Definition Description 

<command> [^\n]*\n The command that the DSN-Node 
has received from the GUI-Node. 

<reply> I\s[^\n]*\n 

A special kind of an event which 
have their own log class64 which 
means that they are immediately 
sent back to the DSN-Server. 

<event> [EWID]\s[^\n]*\n Stored at the DSN-Node until it is 
requested from the DSN-Server. 

Table 4-2: Message Definition 

Network File Definition 

                                                           
64 Every log on the DSN-Node belongs to a log class which describes the type of the log. 
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Message Definition Description 

<network_file> (<target_entry>\n)* - 
<target_entry> <target_id>\s0\s(<position>)\s<dsn_node>? <dsn_node> is the ID of 

the DSN-Node connected 
to the target with ID 
<target_id> 

<target_id> [:alnum:]+ e.g. 80440334 
<position> <pos_comp>,\s<pos_comp>,\s<pos_comp> e.g. 240, 34.3, 4 
<pos_comp> [:digit:]*(.[:digit:]*)? e.g. 230.7 
<dsn_node> <dsn_node_id><description>? - 
<dsn_node_id> [:xdigit:]{2}(:[:xdigit:]{2}){5} e.g. 00:04:3F:00:01:57 
<description> [^\n]* e.g. Office Oehen 

Desktop 

Table 4-3: Network File Definition 

Test Definition 

Message Definition Description 

<test> (<test_element>\n)* The whole test. 
<test_element> <target_command> | <result_file> | 

<wait> 
There are 4 different types of 
commands. 

<target_command> <target_id>\s<command>(<param>\s)* The default test element. 
<result_file> %tracefile=[:alnum:]* When this kind of command 

appears in a test file the 
results of the test are 
requested after execution and 
stored into a file which has 
the specified name as the 
second part of the filename. 

<wait> %wait=[:digit:]+ Wait for a specified number of 
milliseconds. 

<target_id> all | [:alnum:]+ “all” means all Targets, 
otherwise the ID of one 
specific Target is specified. 

<param> [:alnum:]* A parameter of a Target 
command. 

Table 4-4: Test Definition 
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Event Definition 

Message Definition 

<tracefile> <event>(\n<event>)* 
<event> <target_id>\s<log_level><log_layer>\s<log_aspect><description> 
<target_id> [:alnum:]+ 
<log_level> [ewid] 
<log_layer> [spmnta] 
<log_aspect> [:alpha:]* 
<description> <general_desc>|<sender_desc>|<receiver_desc>| 

<test_parameters>|<test_result>|<frame_result> 
<general_desc> [:alnum:]* 
<sender_desc> [:alnum:]*\sid=<message_id>(\s[:alnum:]*)+ 
<receiver_desc> [:alnum:]*\sid=<message_id>\ssource=<source_id>(\s[:alnum:]*)+ 
<test_parameters> See Table 4-6 
<test_result> See Table 4-6 
<frame_result> See Table 4-6 
<source_id> [:alnum:]+ 
<message_id> [:alnum:]+ 

Table 4-5: Event Definition 

Test Result Definition 

Message65 Definition Description 

<test_parameters> {<tsn>,<channel>,<power>, 
<iteration>,<rx_antenna>, 
<preamble_length>, 
<transmit_period>, 
<radio_set>, 
<rssi_threshold>} 

A special type of an event 
description and includes 
information about the 
parameters of a test. 

<test_result> {<tsn>,<cfr>,<ffr>(,<macfr>)? 
(,<micfr>)?(,<marffr>)?(,<mirffr>)? 
(,<marn>)(,<mirn>)} 

The result of a test. RSSI values 
are only included if there were 
correct resp. faulty frames. 

<frame_result> {<tsn>,<fn>,<be>,<rs>,<rn>(,rxd)?} The result of a frame reception. 
<rxd> is only included if there 
were errors. 

<tsn> "tsn":[:alnum:]* The ID of the sender. 
<channel> "Channel":[:alnum:]* The channel on which was sent. 
<power> "Power":[:alnum:]* The power used to send. 
<iteration> "Iteration":[:alnum:]* The number of iterations. 
<rx_antenna> "RxAntenna":[:alnum:]* The antenna used. 
<preamble_length> "PreambleLength":[:alnum:]* The number of 2-byte tuple in 

the preamble. 

                                                           
65 Note that this format follows the JSON-RPC standard. 



106     Patrice Oehen 

<transmit_period> "TransmitPeriod":[:alnum:]* The time between two frames. 
<radio_set> "RadioSet":[:alnum:]* A special setting for frequency. 
<rssi_threshold> "RssiThreshold":[:alnum:]* The minimum signal strength. 
<crf> “CFr:”[:alnum:]* The number of correct frames. 
<ffr> “FFR:” [:alnum:]* The number of faulty frames. 
<macfr> “MaRCFr”:[:alnum:]* The maximum RSSI of the 

correct frames. 
<micfr> “MiRCFr”:[:alnum:]* The minimum RSSI of the 

correct frames. 
<marffr> “MaRFFr”:[:alnum:]* The maximum RSSI of faulty 

frames. 
<mirffr> “MiRFFr”:[:alnum:]* The minimum RSSI of faulty 

frames. 
<marn> “MaRN”:[:alnum:]* The maximum RSSI of the 

noise. 
<mirn> “MiRN”:[:alnum:]* The minimum RSSI of the noise. 
<fn> “fn”:[:alnum:]* The number of the frame. 
<be> “be”:[:alnum:]* The number of bit errors in the 

frame. 
<rs> “rs”:[:alnum:]* The RSSI of the signal. 
<rn> “rn”:[:alnum:]* The RSSI of the noise. 
<rxd> “rxd”:[:alnum:]* The received data in hex. 

Table 4-6: Test Result Definition 
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Appendix C – DSNAnalyzer Readme 
-------------------------------------------------------------------------------- 

                          README                      

                DSNAnalyzer V.1.2a               

-------------------------------------------------------------------------------- 

 

Author: Oehen, Patrice (patrice.oehen.ext@siemens.com) 

 

 

0. Introduction 

********************************** 

 

For the release notes please look at the file CHANGELOG.txt 

 

Please note that the current release of DSNAnalyzer is in alpha status and does neither 
provide all the necessary functionality nor is proofed to be free of bugs. 

 

If you find anything that does not work as intended please send an email to 
patrice.oehen.ext@siemens.com 

 

The DSNAnalyzer includes a property file which is located in /etc/dsnanalyzer.properties. 
This file can be used to configure properties according to the network file, filters, DSN-
Server, view and paths. 

 

1. Installation & Build 

********************************** 

The following two sections describe installation and the build process. 

 

1.1 Installation 

********************************** 

 

1.  Check if JRE 1.5.0 is installed: (Note: On Siemens machines this could be done by 
checking: Start->Utilities->CAT Tools->Java 2 Runtime->Java Switcher) 

  

2.  Download Java 3D Run Time Environment from (http://java.sun.com/products/java-
media/3D/download.html) and install it into your Java home (e.g. C:\Program 
Files\Java\JRE1.5.0_06). This installation places some jars into the /lib/ext folder of 
Java home. 
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3. If you are using DSNAnalyzer as stand-alone, i.e. without the DSN Server, you have 
to check the property "serverURL" in etc/properties.conf is commented out.  

  

4.   Double-click onto "DSNAnalyzer.jar". If this does not work, use  Start -> Execute -> 
type "cmd" to open a "Command Window", change directory to where the 
DSNAnalyzer.jar file is located and type: "java -jar DSNAnalyzer.jar". If you are 
working with very large trace files  (i.e. up to several MBs) use: "java -Xmx256m -jar 
DSNAnalyzer.jar" and specify enough memory. 

   

   

Note: If you want to use the DSN-Server, ensure that the user "dsnanalyzer" is added. For 
more information please look at the DSN-Server documentation.   

   

   

1.2 Ant Build 

********************************** 

 

For building the jar files out of the source files perform the following steps: 

 

1. Change to the root of the DSNAnalyzer project directory 

 

2. Execute "ant" to build the jar (there is also a zip file created which resists in the dist 
directory, this file includes all the necessarily files to run the DSNAnalyzer on a 
different place than directly at the root of the DSNAnalyzer project) 

  

  

1.3 Logging 

**********************************   

 

The logging can be controlled with the file etc/logging.conf which configures log4j. 

 

Note: The library WilmaScope does not depend on this logging properties but does logging 
using System.out.prinln(). There are also debug outputs enables because the application of 
this library is not without errors up to now. 

 

   

2. Tutorial 

**********************************  

The following three sections describe how to use the DSNAnalyzer. 
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Note that the positions of the Targets in the Analyze View and the Control View come from 
the .in network file which is located in /data. 

 

 

2.1 Analyze View 

********************************** 

 

To check the application functionality, you can do the following steps: 

 

1.  Run the application as mentioned in the installation part above or use "java -jar 
DSNAnalyzer.jar FILE" to directly open the trace file with filename FILE.  

 e.g. java -jar DSNAnalyzer.jar "data/test_events.out"  

 

2. Change to the "Analyze" tab (Now the targets are displayed in the "Map" according to 
their position listed in the file which is defined as "networkFilename" in the property 
file). The Property file is located at "etc/properties.conf". 

 

3. Use "File -> Import Tracefile" to import a trace file (e.g. "test_event.out" which is 
located in /data) 

 NOTE: 

 The color of the message arrow is 

 - Yellow if the message has log layer PHY 

 - Blue if the message has log layer MAC 

 - Red message has log layer NETWORK 

  

4. Use the zoom functionality to change the time which should be displayed (Enter a 
number in the zoom text field, select a unit and click "Enter"). Note: The "Map" is 
controlled by the sequence chart, i.e., all events and messages between them which 
are visible in the "Sequence Chart" are also displayed in the "Map". E.g. Enter 1 and 
select "Second", now press "Enter". The vertical "Sequence Chart" scrollbar also 
controls the scrollbar of the "Log". 

5. Further functionality: 

-  You can click on events to highlight them in all three windows (Hold 
"CTRL" pressed to highlight multiple events). 

-  Open "View -> Define Filter" to specify filter properties. E.g. Select the IDs 
of targets from which events should be displayed or disable the drawing of 
events which do not match the specified log properties. 

- Use "File -> Export Sequence Chart" to store the current sequence chart into a 
jpeg file.  

 - Use "File -> Export Event" to store the content of the log into a text file. 
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 - Right-click on the ID of a target (the boxes on the top of the sequence chart)
  and select "Hide Target" to put a target to the excluded list (like in the filter). 

 

 

There are two ways to color events in the sequence chart using the property "coloring" in the 
property file: 

1.  If "coloring=layer" the events are colored: 

  - Red if the error has log level ERROR 

  - Yellow if the log level is WARNING 

  - Green if the log level is INFORMATIONAL  

  - Blue if the log level is DEBUG. 

2.  If "coloring=aspect" the events are colored according to the 

 first character of the log aspect.  

  - y for yellow 

  - m for magenta 

  - c for cyan 

  - r for red 

  - g for green 

  - b for blue 

  - w for white 

  - k for black 

 

 

2.2 Control View 

********************************** 

 

Note: The Control View is only displayed if the property "serverURL" in the property file is 
set. 

 

The Control View displays all the Target which are active, i.e. all the Target which have a 
running DSN-Node connected to it. This View can be used to do the following operations for 
all Target: 

 

 - Program Targets with new Software (includes flashing) 

 - Flash Targets 

 - Reset Targets 

 - Program DSN-Nodes with new Software (does not include reset) 

 - Reset DSN-Nodes 

 - Run Tests 
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 - Run Multiple Test 

 - Use the Test Suite to have sophisticated test scheduling 

  

Additionally, the user can control one or a set of Targets by selecting them with a left-click 
and opening the menu with the right-click. 

 

Important things that are run in the Control View are logging in the log window. 

 

 

2.3 Analyze Test View 

********************************** 

 

In this view the user can import a result of a test previously ran in the Control View. In the 
Network Analysis part, the sending Target can be selected. In the Link Analysis, an arbitrary 
link can be selected. 

 

"Import Extern Test Result" can be used to import the direct output of the A80 which does not 
have a timestamp as prefix. 

 

"Export Test Result" can be used to export the result for all links into a format which is easy 
parsable by Matlab. 

  

3. File Formats 

**********************************  

Here we describe the file formats. 

 

 

3.1 Trace-File Format 

********************************** 

  

A trace file is the file that consists of events generated e.g. by a simulator and usually has the 
suffix ".out". A trace file has the following format which is specified in a mix of EBNF and 
regular expressions. 

(Caution: "\n" means here exactly one whitespace) 

 

<tracefile> = <event>(\n<event>)* 

<event> = <target_id>\s<log_level>\n<log_layer>\s<log_aspect>\s<description> 

<target_id> = [:alnum:]+ 

<log_level> = [ewid] 

<log_layer> = [spmnta] 
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<log_aspect> = [:alpha:]* 

<description> = <general_desc>|<sender_desc>|<receiver_desc> 

<general_desc> = [:alnum:]* 

<sender_desc> = [:alnum:]*\sid=<message_id>\s[:alnum:]* 

<receiver_desc> = [:alnum:]*\sid=<message_id>\ssource=<source_id>(\s[:alnum:]*)+ 

<source_id> = [:alnum:]+ 

<message_id> = [:alnum:]+ 

 

Comments: 

 

<log_level>:  e: error, w: warning, i: informational, d: debug 

<log_layer>:  s: system, p: physical, m: mac, n: network, t: transport, a: application 

<log_aspect>: any number of characters defining properties of the event 

 

In the Analyze View, an arrow is drawn for every event pair which fulfills the following 
properties: 

(A is the event that results from sending a message, B is the one that results from receiving a 
message) 

-  Event A has a description of type <sender_desc> and event B has a description of t
 ype <receiver_desc> 

- The <message_id> of both events are equal 

- The <source_id> of B and the <target_id> of A are equal 

 

 

3.2 Network-File Format 

********************************** 

 

The network file is used for displaying the Targets in the Control View and to compute the 
distance between two Targets in the Analyze Test View. The network file can be configured 
in etc/dsnanalyzer.properties and has usually the ending .in.  
 

<network_file> = (<target_entry>\n)* 

<target_entry> = <target_id>\s0\s(<position>)\s<dsn_node>? 

<target_id> = [:alnum:]+ 

<position> = <pos_comp>,\s<pos_comp>,\s<pos_comp> 

<pos_comp> = [:digit:]*(.[:digit:]*)? 

<dsn_node> = <dsn_node_id><description>? 

<dsn_node_id> = [:xdigit:]{2}(:[:xdigit:]{2}){5} 

<description> = [^\n]* 
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Appendix D – Target Locations 
Here we show pictures of the following Targets which are also shown in Figure 3-1: 
806403f7 (see Figure 4-2), 80640124 (see Figure 4-3), 8064 0413 (see Figure 4-4), 80640407 
(see Figure 4-5), 80640400 (see Figure 4-6), 80640136 (see Figure 4-7), 806403ec (see Figure 
4-8) and 806403d8 (see Figure 4-9). 

 
Figure 4-2: Target 806403f7 



114     Patrice Oehen 

 
Figure 4-3: Target 80640124 

 
Figure 4-4: Target 80640413 
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Figure 4-5: Target 80640407 
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Figure 4-6: Target 80640400 

 
Figure 4-7: Target 80440136 
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Figure 4-8: Target 806403ec 

 
Figure 4-9: Target 806403d8 
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