ETH Distributed
Eidgenossische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich ComPUt’ng Gro

Master Thesis

Updating Wireless Sensor Networks

J
» o »

N “ 4

Andreas Pfenninger
{ apfenninger@student.ethz.ch }

Winter, 2006/2007

Prof. Dr. Roger Wattenhofer
Advisor: Pascal von Rickenbach

Distributed Computing Group
Department of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Abstract

This thesis describes a mechanism to update large wiredasssnetworks. Due to the dynamic
nature of such networks, sensor nodes occasionally have tegsrogrammed, especially for
design-implement-test iterations. Manually reprograngrevery node by physically reaching
it is a very cumbersome task, and may be infeasible if nodélseohetwork are unreachable.
Therefore, a wireless update mechanism is needed. Exciwatige running application on a
node by transmitting the complete program image is not efiidior small changes in the code.
It consumes a lot of bandwidth and time. The goal of this thissio use an incremental network
programming approach to minimize the transmitted code sizifference file for the new code

is computed using the Xdelta algorithm, and is then distéwver the network. The delta is
decoded on the node to build and install the new applicatiime proposed update protocol
has been implemented for the Tinynode sensor nodes, whichinyOS, a component-based
operating system for highly constraint embedded platforms

Preface

This thesis is submitted for partial fulfillment of the resgments of the degree Master of Sci-
ence in Computer Science at the Swiss Federal Institute dihtdogy (ETH) Zurich. The thesis
was derived during a six month project from June 6th to Deaarbth 2006 in the Distributed
Computing Group headed by Prof. Dr. Roger Wattenhofer at thepDten Engineering and
Networks Laboratory of the Information Technology and Eieal Engineering Department of
the Swiss Federal Institute of Technology Zurich.

Acknowledgments

| would like to thank all the people who supported me duringdburse of this work and made
this thesis possible. First | like to thank the people of thstibuted Computing Group for
a great time. Special thanks go to my advisor Pascal for hosl gileas and feedback and his
invaluable support.

Throughout my studies my family has accompanied me thropghamd downs and has given
me support and care all the time. My friends continuouslg gime confidence, for which | am
very grateful. Michi has always been there for me, her urtdading, encouraging and love has
given me the strength needed to keep up.

Vi

ETH Distributed

Eidgenossische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Computing GrO

Prof. Dr. Roger Wattenhofer
http://www.dcg.ethz.ch

Diploma/Master’s Thesis “Updating Wireless Sensor Networks”

Recently, increasing research attention has been directed toward wireless sensor
networks. Large numbers of small, inexpensive devices that integrate sensing, computation
and communication will be monitoring environmental changes, water contamination,
seismic activity etc. These sensor nodes exhibit multiple constraints such as limited CPU
power, narrow bandwidth, and limited energy budget.

There are many reasons nodes

occasionally have to be reprogrammed. <

An important one is that applications go o

through a number of design-implement- ‘ m : ¥
test iterations during the development = U~ &

cycle. It is clear that it is highly " A
impractical to physically reach all -
nodes in a network, so wireless < -
updating scheme is required.

In this thesis we will develop a new update mechanism, aimed at the requirements and
restrictions specific to wireless sensor networks. In general, such an updating procedure
consists of three steps: encoding, dissemination and decoding of a new program code. We
will consider all three steps in detail to come up with a tailored solution. In a second step
the proposed update protocol will be implemented for the mica2 motes. These quasi-
standard sensor nodes run TinyOS, an operating system for highly constraint embedded
platforms.

The goal of this thesis is to design and implement a new wireless updating scheme for
sensor networks. The solution should take the specific characteristics of such networks
into account. Secondly, the obtained solution should be implemented for the TinyOS
platform. Finally, we are intressted in comparing this solution with already existing work in
this field.

Required

e Advanced Programming skills.
e Basic C knowledge.
e Interest in designing and implementing new protocols on an embedded platform.

Contacts

e Pascal von Rickenbach, pascalv@tik.ee.ethz.ch, ETZ G61.3, phone 27007
e Roger Wattenhofer, wattenhofer@tik.ee.ethz.ch, ETZ G61.4, phone 26312

vii

viii

Contents

List of Figures Xi
List of Tables Xiii
1 Introduction 1
1.1 Wireless Sensor Networks 1
1.2 TinyOS e e 2
1.3 TinyNode 2
1.4 Motivation e e 3
2 Related Work 5
2.1 Network Programming 5
2.1.1 XNP . 5
2.1.2 Deluge e 6
2.2 Differential Network Programming 8
2.2.1 ReijersandLangendoen 8
2.2.2 Multi-hop Over-The-Air-Programming (MOAP) .. 9
223 JeongandCuller 9
224 KoshyandPandey 10
225 FlexCup. 11
2.2.6 DresslerandTruchat 21
2.3 Dissemination in Wireless Sensor Networks 12
231 Trickle 12
2.3.2 Sprinkler 12
233 Infuse 12
2.3.4 MNP . . 13

Contents

235 Gappa
2.3.6 Aqueduct

2.4 \Virtual Machine Approach e

241 Maté/Bombilla

2.4.2 SensorWare e e

3 Analysis
3.1 Requirements e
3.2 Wireless Dissemination e

3.3 Encoding e e

331 Diff ..

3.3.2 RSYNC e
3.3.3 Xdelta. e
3.34 Zdelta e
3.35 VCDIFF

3.4 Update Dissemination and Feedback
3.5 Code Recombination

3.5.1 HalveMemory
3.5.2 2PhaseApproach
3,53 BUIldinEEPROM

4 Design and Implementation
4.1 Wireless Dissemination e

4.2 Encoder e

4.3 Update Installation

4.4 Decoder e

5 Results

5.1 SizeofCodeUpdates

5.2 TimeUsedforUpdates

5.2.1 StarTopology
5.2.2 LineTopology

6 Conclusions and Future Work

6.1 Summary e

6.2 Evaluation and Discussion

6.3 FutureWork

A Software Manual
A.1l Installingthe BootLoader
A.2 Installing DelugeDiff
A.3 Reprogramming with a New ProgramIlmage
A.4 Updating with a New Programlmage
A.5 Frequently Asked Questions o e

Bibliography

List of Figures

1.1 Atypicalsensornode e 2
1.2 TheTinyNodesensornode 3
1.3 TinyNode module placement 4
2.1 Networkprogramming e 6
2.2 Spatial multiplexinginDeluge a 7
2.3 Addressshiftsduetoinsertedcode e ... 8
2.4 Number of instructions affected by address shifts 9
2.5 Memory layout for diff-based approach 10
2.6 Memory layout for slop space approach 11
2.7 Forwarding bridgein Aqueduct 14
3.1 Pseudo-code for the Xdelta algorithm 20
4.1 Memory layout of Delugeimage 26
4.2 Deluge Image Descriptorstruct e . 26
4.3 Thedecoding ProCesS o v i i i e e e 28
4.4 EEPROM Storagecomponent 29
5.1 Testsetup withstartopology 33
5.2 Testsetup withlinetopology 34

Xi

List of Figures

Xii

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6

Code size of delta patches for different update scenarios.
Update time for Blink to BlinkFast in star scenario e
Update time for Blink to CntToLeds in starscenario
Update time for Blink to Oscilloscope in star scenario
Update time for Blink to BlinkFast in line scenario
Update time for Blink to CntToLeds inlinescenario

33
33
34
34
35

Xiii

List of Tables

Xiv

Introduction

1.1 Wireless Sensor Networks

In our everyday life, we encounter sensors of all differantlk without even taking notice of.
Motion sensors turn on lights when we walk by, the heatingiocanditioning of rooms is
controlled by temperature sensors and fire detectors aentaase of emergency.

Recently, a lot of attention has been directed toward exténtletelligent” sensors, that
can not only conduct certain measurements, but are equiwpkcomputational power and
over-the-air communication. A lot of additional applicatiareas have appeared for these new
devices, ranging from medical applications, home autamnatraffic control and monitoring of
eco-systems to security and surveillance applications.

The development of these enhanced sensors is a logicalqueersee of the continuing tech-
nological progress. Moore’s Law states that the transgosity of integrated circuits doubles
about every 24 months. The law still fulfills it's predictigaear after year, leading to more pow-
erful and smaller devices. The low power and miniature erdbdgrocessors, radios, sensors
and actuators are often integrated on a single chip, ancetatvely cheap. The combination
of sensor, micro controller and radio transceiver is oftfienred to asensor node A picture
of a typical sensor node is shown in Figure 1.1. To take fuiaathge of theses new devices,
they are often used in large numbers, resulting in systeatsatte called wireless sensor net-
works. These networks differ considerably from currenwiwoeked and embedded systems.
They combine the large scale and distributed nature of n&gdosystems such as the Internet
with the extreme energy constraints and physically coupktdre of embedded control sys-
tems. Since the CPU power, battery lifetime, memory size adarbandwidth are inherently
constrained resources, the design of wireless sensor rietweuires a proper understanding
of the interplay between network protocols, energy-awasegh, signal-processing algorithms
and distributed programming.

The concept of miniaturization has been pushed to the lintit the vision of “Smart Dust”

1 Introduction

WISAN Vil -

Figure 1.1: A typical sensor node (cite).

[WLLPO1], that could enable real “Smart Environments”. Tleasor nodes should be scaled
down to the size of a dust particle, and manufactured in latgebers, to be distributed over an
area like dust, and remain functionally as long as possible.

1.2 TinyOS

TinyOS [HSW"00] is an open-source embedded operating system designeddtess sensor
networks. It features a component-based architecturdakes into account the inherent mem-
ory constraints of sensor networks. TinyOS is programmedasC a language derived from
C and specially tailored toward sensor nodes. It appliesvantadriven execution model, that
flexibly integrates into the unpredictable nature of wissleommunication and physical world
interfaces by enabling fine-grained power management.eTisaro traditional kernel, process
management or memory management. Dynamic data structerestssupported, since there is
no possibility to dynamically allocate memory. Multithceag is only possible through events.
Basic functionality as well as certain applications for taesor nodes are contained in the com-
ponent library, including timer interfaces, sensor dsy@&etwork protocols, distributed services
and data acquisition and storage tools. Most of the toolsamngpleted with Java utilities for
cooperation with desktop computers. At compile time, the/@OS code is statically linked with
program code, and compiled into a small binary, using a casd®NU tool chain.

The large open-source community around TinyOS has poredytbtem to numerous plat-
forms and sensor boards, the most popular being the Mica fawmidy and Telos nodes. Most
current research projects on wireless sensor network®relynyOS and keep on contributing,
making it the standard operation system for sensor nodes.

1.3 TinyNode

The sensor node platform used in this thesis is the TinyN&dd-MMO06]. It has been de-
veloped and is manufactured by Shockfish SA. The platformasetd on a MSP430 micro
controller and a Xemics XE1205 radio transceiver. The degpigilosophy behind the node

1.4 Motivation

architecture was to integrate the core components on a gmiatéd circuit board, and place
additional functionality on extension boards. The platidully supports TinyOS and imple-
ments an own network stack. A picture of the TinyNode can lea seFigure 1.2.

Figure 1.2: A TinyNode sensor node [SAO5].

The 8 MHz MSP430 micro controller from Texas Instruments esrwith 10K bytes of
RAM, 512K bytes of external flash memory and 48K bytes of progspace. 19 configurable
I/O pins offer up to 6 analog inputs, up to 2 analog outputsasdrial interface. The RS-232
interface and Jtag, that is principally used for debuggarg, present on the extension board.
The Xemics XE1205 wireless transceiver offers an outputgra¥ O to +12 dBm and a data
rate of 1.2 - 152.3 kbps. It operates on 2 - 10 channels at 86® MHz. At 76.8 kbps, it
reaches a range of 40 m indoors and up to 200 m outdoors. Theisibadsed on an ultra low
power 3V design. The placement of the modules on the boatwisrsin Figure 1.3.

1.4 Motivation

There are many reasons sensor nodes occasionally have eprogrammed, for example for
updates of the running program. An additional module maghawe added to the program, or
a complete protocol implementation exchanged. Anotheomapt reason is that applications
go through a number of design-implement-test iteratiominduhe development cycle. It is
highly impractical to physically reach all nodes in a netvand manually reprogram them by
attaching the node to a laptop or PDA, especially for a langalrer of distributed sensors. It
may also be simply infeasible in various scenarios, if thdasoare located in areas that are
inaccessible to deployers.

Therefore, a wireless updating scheme is required to stiteatiodes up to date with the new
version of the application. Another consideration is the@am of code transferred. While it is
normal to send the whole code if the application needs to placed, it does not make much
sense in other cases. If we just add or exchange a part of thee e transmit code that is
already available on the node, maybe just shifted from itgraal location in program memory
by a certain offset. Also if a bug has been identified and firdtié test process, the biggest part

1 Introduction

Module Overview Extension Connector for cusfom interfaces

Breadboard for custom electronics

4 ¥ Jumpers =1 ff,_.-;_.;_; - o o Light Sensor
{optional) = PN ETZEL]
= S le: Humidity/Temperature
JTAG — - 3 Sensor (optional}
. gelielafalolalafoiafofeals e
R e R 2 Terperatre Sensor
Reset Button sfsfalalefajaffafajalalalials e
;.Giiktinll’lt 3x LED
- 2 ») fu'l_l'-? PEDDDDDDD
! & EEE{,& ; =8 ¥ ¥ ¥ TinyNode Connector
. = \'I.
RS232 = = B £ | / RF SMA Connector
] 2 ‘ = C (optional)
—— " _ :- ot . 1 &
9' . %, e RF Bridge or
N o, T - Attenuator (opfional)
f { 1 =l =
Power (Jack) — - H Ja (7
RF MMBX Connector
{optionai)
Battery Connect Power LED {Jack)

Figure 1.3: The placement of the TinyNode modules on the [(8A85].

of the code remains exactly the same, probably only difefar some functions or constants.
To reduce this redundancy, it is much more efficient in terfngsed bandwidth and time to
only send the changes in the code, and leave the recombirgititne new code to the node
itself.

This thesis will deal with the design and implementationwflsa system for wireless sen-
sor networks. In Section 2, we will give an overview of exigtiapproaches to the problem,
ranging from single-hop reprogramming over multi-hop oggamming to complete virtual
machine approaches. Section 3 gives a detailed analydis oé¢uirements and discusses vari-
ous encoding algorithms. The implementation of the syssemwilined in Section 4, explaining
the architecture and design decisions taken. A discuss$ithre @eveloped system can be found
in Section 5, together with test results. Finally, we drawoaatusion and give indications on
future work that could be done in Section 6. A software usemumawith detailed instructions
on how to use the program is contained in the appendix A.

Related Work

In this section, we will summarize some previous work on tipdawireless sensor networks
that has been presented over the last years. We will stdrtiatfirst straight forward solutions,
that completely exchange the affected program images, ctidde2.1. Afterwards, we will
take a closer look at the more sophisticated differentigir@@ches in Section 2.2, and also
outline some theoretical papers written on disseminatfatata in wireless sensor networks in
Section 2.3.

2.1 Network Programming

In this context, network programming means wirelesslyailtisiy a new program image on a
sensor node. Instead of establishing a direct connectitimetmode and loading the program
onto it, what is referred to gsarallel programming, the binary image is sent in packets over
the radio and stored outside the program memory. Withrtéig/ork programming approach,
the downloaded code is then transferred to the program mebyaihe node itself. Figure 2.1
illustrates both parallel and network programming.

2.1.1 XNP

One of the very first approaches used to reprogram sensos maaeincluded in TinyOS ver-
sion 1.1. WithXNP [CTO03], mica2 and mica2dot nodes can be reprogrammed ovaithe
Only complete images can be transferred to the node, sinde dd¢s not consider identical
code parts. There is no forwarding mechanism in the progsaronly the nodes in the imme-
diate neighborhood of the basis station can be reprogramified is also callegingle-hop
reprogramming.

In order for the process to work, like in all other approagclhies reprogramming module has

2 Related Work

— Node — Node
I~ T T T T T | I~ _| I~ — — = 7 7 7 [
| Program | | External J_s Program |
| Memaory : : Memory | I Memory :
|

1 I
Program
Code
PC Base Station k—E

(a) Parallel programming (b) Network programming

Figure 2.1: Network programming

to be part of the application running on the node. Furtheenaboot loader must be residing
in the sensor node’s boot loader section. It is usually llestaon the node together with the
application itself. A Java program splits up the new progcamde in packets and sends them
to the node over the radio. The received packets are stotéeé iexternal flash memory by the
sensor nodes, because it is not possible to write them Wir@td the program memory with
the application still running. Another reason to write thenthe external memory is the size of
the image, because it does probably not fit into RAM. When alptiekets have been sent, the
node has the possibility to request missing or corrupte#tgiacuntil the complete image has
been received. Then the program image is verified and thelbadér is called, which transfers
the program code to the program memory. The system is théartex, hopefully running the
new application.

2.1.2 Deluge

Currently the “standard” application for wireless node cgpamming isDeluge [HCO04]. It

is integrated into the TinyOS system, and in contrast to XK o disseminate whole code
images from one or more nodes to all the other nodes of a wgatelti-hop network. On
each node, multiple application images can be stored irgdatad slots on the external flash
memory, and it is possible to switch between these images. daia is represented as a set
of fixed-sized pages that provide a manageable unit of buffEmagement and transmission.
Every code image is tagged with a version humber and the nuofbgages it consists of.
Additionally, the node keeps a vector with the version nuralosd each page of the current
image, describing when it was updated the last time. Thisrétion builds a profile of the
sensor node.

For the dissemination, an epidemic approach comes to uiee astwork topology is chang-
ing constantly, with nodes entering or leaving unpredilgtabo maintain a consistent state for
the network, an adaption of the Trickle [LPCSO04] algorithmapplied that is also referred to as
“polite gossiping”. Every node broadcasts “advertisers&periodically, announcing the ver-
sion number of the images stored on it. Upon reception of aerdidement, the sensor node

2.1 Network Programming

checks if this image is already contained in its profile. If,rtbe new image is set up and a
request message broadcasted. Every time a node realizesigsing some or all pages of a
newer version of an image, it requests the missing pagestfierather nodes. While an image
gets updated, only one page, split into packets, is sentes®ived at a time, to simplify the

mapping of the data messages. As soon as a page has beeedemmiwletely, the page is
inserted into the profile of the node, increasing the numbepotential senders of that particu-
lar page. This “spatial multiplexing” speeds up the disttibn of the pages in the network by
allowing pipelining of the transmission. The mechanisnilistrated in Figure 2.2.

page ! Page 4 .
o o ® e °
® s G_Q . (B .
® © @ @
(a) Phase 1 (b) Phase 2 (c) Phase 3

O No Page received
. Page 1 received
@ Page 2 received

(d) Legend
Figure 2.2: Spatial multiplexing in Deluge.

The blue node in Figure 2.2(a), node A, is the source nodes Adde gets the image injected
from a computer or PDA, here depicted as PC. Node A initiated#ta transfer by broadcasting
the first page to the other nodes in its neighborhood. All sdtat have completely received
the first page turn blue. After having sent page 1 to the nadiés heighborhood, node A starts
receiving the second page from the attached PC in phase&nshd-igure 2.2(b).

Having completely received page 1, node B immediately dtbe=r its newly received page
to notify the nodes in its neighborhood of the new data. Thesele make a request then, to
which node B responds by broadcasting the data. Node A diayext advertisement to node
B since it is currently receiving page 2 from the PC.

In phase 3, shown in Figure 2.2(c), node B is now ready to vedée next page from node
A, page 2. At the same time, node C can propagate its newlyeztpage 1.

Once a new image has been received, the system checks ifésponds to the currently
running image and initiates a reboot immediately. Othezwésreboot command can be sent
to the node at any time, switching to a new application imagerder for the reboot to work,
aboot loader has to be installed on the node. After every reset or repnogriag of a node,
the boot loader is executed first, checking the external nmgiha new image has to be loaded
into program memory. Without the presence of such data, dlo¢ loader does not take any
action and just begins the execution of the current imagéhe@itse, the selected image is
copied from external memory into program memory and the mgdli@ation is executed. Since
TinyOS 1.14 [Web05], the TOSBoot boot loader is now instaligdlefault when installing any
TinyOS application.

2 Related Work

2.2 Differential Network Programming

The drawback of the approaches presented above is the lageaof time they take to update
large networks. Small bug fixes or updates for software reasrice do not really need all the
code to be exchanged, often they affect only single line®déc This holds even more for test
cycles, when some new lines of code are inserted into a progrethe developer would like to
test it on a network where all the nodes have the previouséesion of that program installed.
Here, the differential idea comes into play.

2.2.1 Reijers and Langendoen

The first paper to discuss the advantages of differentiahtgsdwas written by Reijers and
Langendoen [RLO3], presenting the idea only to distribugediianges to the currently running
code. The differences between the old and the new code amaatmed in an edit script of
commands, that is to be processed by the nodes to rebuileetheade image. This diff script
uses two basic commandsnsert that appends a specified array of bytes to the code at the
given position, and@opy, that takes the sequence of bytes to be inserted at the tposition
from the given address. That way, the fact that sequencesdd epeat or are similar in
both codes is exploited. An additional command has beendaduiece there could be some
sequences of bytes that only differ in very few positionstdéad of specifying a chain cbpy
andi nsert commands, aepai r command can be used. This one correspondsfyy, but
additionally corrects single bytes at specified offsets.

When inserting or deleting code at a certain position in mgmbe following code is ac-
cordingly shifted up or down. This code shift changes theeskes of functions and variables
which pose a problem. All the references in the code thabviolifter the inserted code have to
be checked and possibly corrected. An example illustratiegoroblem is given in Figure 2.3.
A group of functions has been moved from address addressn because new code was in-
serted. This means that each calf twill be a call instruction to addressinstead of addreds
in the new binary, and the corresponding instruction willdnéo be repaired in the edit script.
Reijers and Langendoen conducted some experimental datadtthe percentage of instruc-
tions that are affected by address shifts. Figure 2.4 shbatsabout every sixth instruction
would have to be aepai r instruction.

QLD CODE NEW CODE

60K .
- FUNC h 60K

FUNC g

FUNC h
FUNCg

FUNCT

FUNCf

| INSERTED
CODE

CALL k CALL m

0K 0K

Figure 2.3: Address shifts due to inserted code [RLO3].

2.2 Differential Network Programming

Instruction type Count | Percentage
call instructions 475 7.1%
RAM access 422 6.3%
mov instructions 291 4.3%
RAM as source 141 2.1%
RAM to register 99 1.5%
RAM as destination 159 2.4%
register to RAM 65 0.96%

mov constant to register 193 2.9%
constant value is an address 158 2.4%
push constant onto stack 18 0.27%
constant value is an address 18 0.27%
Total number of instructions 6707 100%
Vulnerable to address shifts 1073 16%

Figure 2.4: Number of instructions affected by addresss®LO3].

This inevitably leads to a long edit script, even for minoacbes. A specigbatch list
command has been designed to adapt all addresses in a cartgéwith a specified offset. It
is used for example after@ALL reference to correct the addresses to jump to. Even with this
approach, some data has to be reset witpai r commands if it was wrongly taken for an
address.

2.2.2 Multi-hop Over-The-Air-Programming (MOAP)

Stathopoulos et al. [SHEO3] extend and refine the ideas oeRegnd Langendoen. Their
Multi-hop Over-The-Air-ProgrammingMOAP) application uses the same basic set of com-
mands for an edit script, but add some speci@by commands. The script is computed sepa-
rately for both the code and the data part of the object fild,raarged afterwards. Sorcepy
commands can be optimized that way.

For dissemination, an algorithm call®ipple is used, that distributes the code packets to a
selective number of nodes, not flooding the network. Cordiptemissing packets are retrans-
mitted using a sliding window protocol, that allows the nddeprocess or forward received
packets while waiting for the retransmission of the misgagket.

2.2.3 Jeong and Culler

Another version of an update algorithm is presented froomgemd Culler [Jeo05] with their
Incremental Network Programming protocol. It relies on the Rsync algorithm [Tri99] for
computing the difference files. This algorithm was originaleveloped to synchronize remote
files over a network. It chops the data into smaller parts amapuites their checksums to find
variable-sized blocks that exist in both code images. Ofdgks with different checksums
are transmitted. In contrast to the original algorithm, ¢benparing is performed on the cen-
tral computer, not requiring the node to do hardware intensomputation. A more detailed
explanation of fixed-size block comparison and Rsync can tedidn Section 3.3.2.

The complexr epai r command used by other algorithms is completely removed. &vhil
this command helps to minimize the size of the transmittetbcd also slows down the de-
coding process by requiring more time-intensive access#set external flash memory. The

2 Related Work

characteristics of the Rsync algorithm lead to a big dependehthe performance on the type
of difference of the codes. The Rsync algorithm works wellrfonor changes, but there are
only very few identical blocks that can be copied in the cadtler anajor changes.

2.2.4 Koshy and Pandey

Koshy and Pandey [KP0O5] also use the incremental networgramming scheme and try to
cope with the code shift problem by using another concept ta#l Remote Incremental
Linking . They realized that even for small changes, the code shsitiitein large difference
protocols for the following code. Their approach startshatlinking stage, trying to take into
account the possible consequences of a code shift. Theyogedea special version of the
linker, that tries to keep the original memory layout of tloele after changes. The linker places
so calledslop spacesn between the functions, allowing them to grow or shrink e certain
extent, without having to shift the following functions. &ldetermination of the size of these
buffer spaces is everything else than trivial, a balanceéen wasting to much memory by
choosing spaces too big, and having to adapt too much furscafter a change for too small
slop spaces has to be found.

In Figure 2.5, three functiorfs, g andh are laid out in memory. 1§ is updated and its size
shrinks or grows, all the code below it is shifted. Functioremains the same, but still needs
to be shifted, and all the pages indicated with tabs need tevogtten.

Initial layout

Function g shrinks

Function g grows

Function f

=all h

4 |Functien £

2all h

4 |Functien £

zall h

Function g

Functien h

16

17|

18

19

i

:

Figure 2.5: Memory layout for diff-based approach. Tabsdatk which pages are rewritten

[KPO5].

Figure 2.6 shows the approach taken by Koshy and Pandey.tiusare provided with a

slop region to grow without running into other functions. e be seen, the number of pages
that has to be rewritten for the two scenarios where the imahrinks or grows has been
reduced substantially. On the other hand, unused gaps meh®ory layout are introduced. Of
course this method only works if the slop space allocatedrgel enough, otherwise the same
relocation as in Figure 2.5 takes place.

A special memory manager is added to the original linket, tifias to position the functions
optimally in memory. The base station maintains hash teblesymbol resolution and linking
related activities. Besides the large memory overhead hangiroblem arises after several

10

2.2 Differential Network Programming

- Initial layout Function g shrinks Function g grows

.
lt Function f 12 Function £ ., |Function £
1 13 3
______ sla | |___zalg | call g
14 call b 14 call h 14 call b
otale] £ : mzert/ iapelatel) msert!
15 I R
|Function g-- [PuncEion g- -1 Function g
16 @ & @
17 q ks @
2
K3 S
1 s @ RRRRREEKS
10 Function h 19 Function h 19 Function h
0 20 0
: e S
27

Figure 2.6: Memory layout for slop space approach. Slopepabatched, and tabs indicate
which pages are rewritten [KP05].

update processes, as the memory gets fragmented everywiima¢ may require a complete
reinstallation of the image.

A new algorithm has been chosen for the comparison and emgodihe differences. Xdelta
[Mac00] is a binary diff algorithm, that produces differerfdes, also referred to as deltas. This
algorithm is further described in Section 3.3.3. Unfortighg an implementation of this paper
is not available.

2.2.5 FlexCup

FlexCup [MGL "06] is another application used for differential reprognaimy. Before the
installation, FlexCup extracts the binary code for the TiBy@ogram and generates single
components, that can be compiled independently, and aréinecdhthrough clearly defined
interfaces. The linking process takes place on the nodé it&&h these binary components, a
global optimization of the code is no longer possible, iEstricted to the single components.

To be able to perform the linking on the node, some additidad4 is required. When an
application is installed, the following meta-data is getted: some generic program informa-
tion that describes the wiring of the components, a prograde symbol table as well as a
relocation table for each binary component in the programs.dlso stored on the sensor node,
using the external flash memory.

The exchange of a component works as follows: the binary obtte object files is extracted
from the component to be exchanged on the central compotduging symbol and relocation
table. Then the program code of the new component is tratesiiid the node, as well as the
new meta data. The nodes store the update information inxtieen@al memory. When the
complete component has been received, it has to be linkelseamode.

The linking at runtime requires several steps. First, thal®yl table has to be merged with
the newly received symbol data. After this task, for whiclutidr of 3kB in RAM is needed, the
symbol table is written back to the external memory. Thendhmation table has to be replaced
with the new one. All the references in the relocation talaeehto be checked, whether they

11

2 Related Work

need to be updated. Updates are required for referencestfromew component code and
for references that changed their destination addresshdrinal step, the code of the new
component has to be loaded into program memory by the FlexGopldader.

2.2.6 Dressler and Truchat

Dressler and Truchat [FTDO06] present a method for disteithsoftware management in wire-

less sensor networks using profiling techniques. They m®pwbile robots, that perform man-

agement and configuration tasks in stationary networkstw@oé architectures can be main-
tained and applied for task allocation, sensor calibratomd general-purpose reconfiguration
of surrounding sensor nodes, all based on the availablemes®at the robot systems. No new
concepts for the network programming are presented, tHeaexe of software modules is built

upon an extended version of Deluge.

2.3 Dissemination in Wireless Sensor Networks

Besides the discussed approaches dealing with the aspedbes @hdate process, there is also
some work that takes a closer look at the dissemination step.

A naive scheme of single retransmission of packets resultisd broadcast storm problem
[TNCSO02]. This problem occurs when each broadcasted megsag®ts a receiving node to
respond by broadcasting its own messages. These message prampt further responses,
and so on. The collisions and contention affects the réifglaf the communication and also
the energy efficiency. The following references focus otrithgtion of data in a wireless sensor
network.

2.3.1 Trickle

Trickle [LPCS04] is the epidemic algorithm used by Delugegospagating and maintaining

code updates in wireless sensor networks. A “polite gogsgiity is applied, where nodes

periodically broadcast a code summary to the local neigh oot stay quiet if they have recently
heard a summary identical to theirs. A node that hears am slolemary than its own broadcasts
an update. Instead of flooding the network with packets, ldp@rihm controls the send rate so
each node hears a small trickle of packets, just enough yaugtdo date. An implementation

of Trickle is contained in TinyOS 2.x.

2.3.2 Sprinkler

Another algorithm for reliable data dissemination is Skien [NASZO05]. It embeds a virtual
grid over the network, whereby it can locally compute a catee dominating set of the nodes.
Redundant transmissions can be avoided and a transmissiedusde helps to avoid collisions.

2.3.3 Infuse

Infuse [Aru04] uses TDMA based scheduling to avoid collisio Although TDMA guaran-
tees collision-freedom during message communicationsages can be lost due to unexpected

12

2.3 Dissemination in Wireless Sensor Networks

channel errors (e.g., message corruption, environmefiigate on signal strengths). To over-
come such errors, implicit acknowledgments are used tovezdoom lost messages.

2.3.4 MNP

Multihop Network Reprogramming (MNP) [Wan04] is anothernegramming service for sen-
sor networks. A Ripple-like propagation mechanism distabuthe new image to the entire
network. At each ripple, a subset of nodes is acting as sowdes, and all the other neighbor-
ing nodes are receivers. A publish-subscribe mechanissed to prevent multiple nodes from
becoming source nodes in the same neighborhood. Source pabiksh their newest version
and all interested nodes subscribe. MNP suppresses theenahbenders by selecting a few
senders in a local manner. However, it does not pipelinegidokwarding and requires the en-
tire image to be reliably received before the next ripplelwagin. This results in larger latency.
To optimize energy efficiency, the active radio time of a sem®de is reduced by putting the
node into “sleep” state when its neighbors are transmitiisggment that is not of interest.

2.3.5 Gappa

To reprogram a sensor network, one can either communicattire new program to one (or a
few) node in the field, or communicate parts of the code to aedulif sensor nodes on multiple
channels at once. In the latter approach, the nodes needrtmeoicate with each other to
receive the remaining segments.

A protocol for such gossip between nodes is presented wigp&RVKO06]. To better utilize
the multichannel resources and reduce contention, thegoiprovides a multi-channel sender
selection algorithm. This algorithm attempts to ensure ithany neighborhood, at any time,
there is at most one sensor node transmitting on a givendrexyu Moreover, the sender se-
lection algorithm is greedy in that it tries to select thedsthat is expected to have the most
impact for each channel. The protocol also conserves ermrgutting the nodes to “sleep”
state that are unlikely to contribute or receive data sortl

2.3.6 Aqueduct

While Deluge focuses on propagating the same code image taankeof homogeneous sensor
nodes, this extension of Deluge is adapted to deal with bgégreous networks more efficiently.
The goal of Aqueduct [PhiO5] is to limit the reprogrammingftic to the nodes that are inter-
ested in the update, while still being able to bridge the degbhween regions of interested nodes
that are filled with uninterested nodes.

It introduces two roles for the nodes in a netwomigmber nodesthat are interested in
receiving updates and cache the received parts in theimatteemory for later execution and
forwarding nodes, that just forward the data packets without caching. Thevéoding nodes
are passive and do not download updates. The basic prirm@pied Aqueduct is that member
nodes exchange code through normal Deluge interactionyhoerh member nodes are separated
by more than one hop of forwarding nodes, the forwarding sadeate a bridge by acting as
proxies for member nodes on either side of the gap.

Figure 2.7 illustrates the concept. The nodes interestdttinpdates are depicted as circles,
while the squares represent the bridging nodes. Figuread.ghpws the propagation of ad-

13

2 Related Work

@,
(a)
: Q Q\D Dﬁﬁirtlsement
1 U
(b) M2 D D O M1
O
o "o/
bit vector
1 U
(c) M2C>D [] code M1
Al
© Sl

Figure 2.7: Forwarding bridge with Aqueduct in heterogersseetwork [PhiO5].

vertisements through intermediate nodes. These keepdadfdbk advertisements received and
the distance (in hops) to the source, and will reject idah@clvertisements that have a larger
“distance to base” number than already observed. Just aglugB, the interested node M2
will unicast its request, containing a bit vector with thesided pages. In Deluge, this is unicast
to an immediate neighbor, whereas in Aqueduct the requesticast to the immediate parent
closest to the advertising node. Figure 2.7 (b) shows tleatajuest traverses the shortest path
back to the member node M1. In the third phase, shown in Figuf€c), each node along
the forwarding path pulls code image updates from its passimtg the machinery of Deluge.
Eventually, the code efficiently propagates to the destind12 along this bridge, and does not
involve any of the other forwarding nodes.

2.4 Virtual Machine Approach

2.4.1 Maté / Bombilla

Maté [LCO02] is a compact virtual machine designed specifidalt wireless sensor networks
built on TinyOS. It has recently been renamed to Bombillatdad of installing applications as
binary objects on the sensor node, every node executes adnjgenterpreter. This interpreter
reads the special byte code commands from memory, and dramsfthese Maté operations
to TinyOS operations. Therefore, there does not have toihstadlation and rebooting of an
application since the program is just some input data foréMitaté also contains support for
application code distribution, which is named code infatti Although virtual machines are
promising as system software for wireless sensor netwaohles; space and energy overhead
can render them counterproductive. Also, due to the réstrimstruction set of Maté not all
semantics that are possible by specifying the program i€ was be expressed.

14

2.4 Virtual Machine Approach

2.4.2 SensorWare

In SensorWare [BHSO03], the developers set very high req@ngson the hardware. It does not
fit into the memory of popular sensor nodes and targets riglaforms to be developed in the
future. In contrast to Maté, also complex semantics can peesged. The program services are
grouped into theme related APIs with Tcl-based scripts agithe. Scripts located at various
nodes use these services and collaborate with each othehiestrate the data flow to assemble
custom networking and signal processing behavior. Apptinavolution is facilitated through
editing scripts and injecting them into the network. Both Selare and Maté are limited in
that they support application updates only, by replacimgpfievel scripts. They do not permit
the lower level binary code to be modified.

15

2 Related Work

16

Analysis

In this chapter, we will first look at the requirements for fh®ject in Section 3.1.We will
decide on the basic utilities for general network prograngmn Section 3.2. Then, we discuss
different algorithms for the encoding of the code to be tnaitted in Section 3.3 and analyze
several approaches for the recombination of the code indpeg15.

3.1 Requirements

The goal of this project is to allow the differential updatenodes in a wireless sensor network.
This process consists of several steps. First, the nodestbdemanually programmed with
the basic update software. This step requires a physicaleobion to the nodes and therefore
has to be done before the nodes are distributed over thecapph area. Then, an application
can bewirelessly installedon the nodes, which requires the complete code of that atjlic
to be sent to each node. If we want to reprogram the node, tihe abthe old and the new
application is compared and a difference file is computeti witencodingalgorithm. This
encoding step takes place on a computer, where no spedi@tieas regarding computational
power or energy usage are imposed. The focus here is on thefdilze difference file, which
should be as small as possible, to save time and energy whdimget to the nodes.

This difference file, together with information about thepbgation that should be updated
on the node, is then distributed to all nodes in the networkbeupdate disseminationstep.
The file is split into small packages that are stored in theres flash memory by the nodes.
All nodes have to be reached eventually trying to save tinteearergy. When all nodes have
received the update, no further communication betweendbdeshis necessary. We require the
nodes to send ascknowledgmentafter successful reception of the update files.

After having completely received the difference file, thele® start thelecoding process.
The difference file is processed to build the code of the ngMi@ation, involving also the code

17

3 Analysis

of the current application. An important restriction hesethe impossibility to dynamically
allocate memory in a TinyOS program. Hence, no dynamic datatsres such as hash tables
can be used. This is a severe restriction, since a lot of cessn programs require such data
structures. As soon as the application image is built, thennitiates a restart and the new
image is transferred to program memory. This step requifesoa loader that performs the
transfer on a restart before the current application si@resxecution. Finally, we would like
the reprogrammed nodes to sendampletion feedback to be informed about the successful
restart.

3.2 Wireless Dissemination

To wirelessly install an application on the sensor node, @inthe approaches discussed in
Section 2.1 has to be applied. We want to be able to send ctenpdele images from one

node to another. A data structure has to be developed to redhagode images, and to split
them up into pages and packets for transmission. The trasgmiprotocol has to be suited
for large objects and must be reliable since low bandwidith lsigh loss rates are typical in

wireless sensor networks. We choose to rely on the impleatientof Deluge and use its basic
functionality to send complete application images to agensde. Deluge also allows to store
multiple application images in the external memory, makipgssible to switch between these.

3.3 Encoding

The code patch to be disseminated in the network has to benfpuaicertain format in order
for the nodes to decode it and build the new image. Since we khe original file (source)
as well as the new version of the file (target), we should userformation during encoding.
The process of computing a “patch” of minimal size betweemnfiles is calleddelta encoding
or differential compression. There are several technifpresomputing such a delta. The basic
problem goes back to the string-to-string correction pFob]WF74], the task to find a minimal
edit script that converts a reference string into a targetgt The operations used areser t
anddel et e. However, these algorithms, also referred tareert-deletealgorithms, do not
take into account that the data common to both files may natapp the same order in the
two files. Neither does is capture substrings that are rexuseveral times.

The framework has been extended to the string-to-stringction problem with block moves
by Tichy [Tic84]. In contrast to thénsert-deleteapproach taken before, a sequence opy
andi nsert operations is used to describe the changes. Such algordhendescribed as
copy- based algorithms. The basic idea is to use pointers to substringke source file
to construct the target file. A further extension was presgntith the well knownLempel-
Ziv compression algorithm [ZL77], which compresses a stringudystituting its prefix with a
reference to already compressed data.

Delta algorithms are applied for example in software rewisiontrol systems where multiple
versions of each code file have to be stored. Changes betweseggient versions are typically
small, so substantial amounts of disk space can be saveaiwygstheir difference informa-
tion. It has also been proposed to use deltas for improvingHperformance by sending the
difference for outdated web pages.

18

3.3 Encoding

We will now compare some of these delta algorithms. A thécakoverview on differential
compression is given in [ABF00], while delta algorithms are further described and aredy
in [SM02] and [HVT96].

3.3.1 Diff

The most popular and widely used delta algorithm prograrhadite comparison utility Unix
diff [HM76]. The program finds an approximation of the longest own subsequence for
whole lines of text. By just considering changes on a perdinel, it is much faster than other
algorithms that compute differences on a byte-level. Bubwliat restriction, the size of the
produced deltas is not optimal. Furthermore, it can onlydeior text files.

3.3.2 Rsync

The Rsync algorithm [Tri99] was developed to synchronizesfidad directories from one lo-
cation to another, while minimizing data transfer usingalehcoding when appropriate. This
copy-insert algorithm divides files into blocks and decitteseach block if it has to be down-
loaded from the remote location or if it is identical. In oyppéication scenario, we do the
compression and decompression locally, so downloadindpeaeplaced by a simple insert of
a data sequence from the difference file.

The source file is partitioned into equal blocks of a cert&r.sFor each block, two check-
sums are computed: a reliable but expensive, and an urdechalb fast checksum. Now, we
iterate over all positions in the target file and considerdloek that follows after that position.
We use the same size for this block as we used for the sourc&diteevery block, we compute
the unreliable checksum. As we always only shift the blockristaries by one byte, the check-
sum can be computed very efficiently by using a 32 bit “rollafgecksum”. Its computation
can be done in constant time. We now compare the hash valhehgitvalues of the source file
blocks, and if a matching block is found, we also compute éhalle checksum. The reliable
checksum used is a MD4 128 bit hash function. If both checlesmaich, a pointer to the index
of the matching block in the source file is stored in the diff,fiand the position in the target
file is advanced by the length of the match. If no match occlige symbol at this position
is added to the diff file and the position advanced by one. Ho®ding is straightforward, as
the patch only consists of copy and insert instructionsnteos to data blocks in the source file
have to be copied, and single bytes or byte sequences haeeansdrted at the current position
in the target file that is being reconstructed.

The choice of a good block size is critical for the performaatthe algorithm. If the two files
to compare are very similar, a large block size is more efiici®n the other hand, if we have
two files with a lot of differences, a small block size allowsnm@ matching blocks to be found.
Another important role plays the distribution of the difeces. If they are equally distributed
over the whole file, Rsync may be completely inefficient, sitheze will be a difference in each
block. In practice, the block size is adapted during the dimgpwith certain heuristics.

3.3.3 Xdelta

Xdelta [Mac00] is another variant of a copy/insert delteoaitpm. Contrary to Rsync, it does
not compare single blocks with each other, which makes densemote file synchronization,

19

3 Analysis

but it compares every single byte of the two files. The diffieeefile consists of pointers to data
sequences in the source file, and also to the already decadeaf the file being reconstructed.
This further optimizes the size of the difference patch. @hta sequences to be copied can
be of arbitrary size, whereas the encoder tries to maxinieddngth of these sequences. If
no matching data blocks can be found in the source or targettfiei nsert command is
used. An additional un command is provided, that expresses a sequence of the saenaf lay
certain length.

computeDeltal(sre, tgt)

i 0
sinder < initMatch(sre) > Initialize string matching.
while(i < size(tgt)) & Loop over target offsets.
(0,1) + findMatch(sre, sinder, tgt, i) > Find longest match.
if(l < s)
outputInst({insert tgt[i] }) > Insert instruction.
else
outputInst({copyo! }) > Copy instruction.
i+—i+1
initMatch(sre)
i+ 0
sinder +— empty > Initialize outpuf array (hash table).
while(i + s < size(sre)) > Loop over source blocks.
f + adler32(sre¢,i,i + 3) > Compute fingerprint.
sindexfhash(f)] < ¢ > Enter in table.
i+ s

return(sindex)

findMatch(sre, sindex, tgt, oig)

[+ adler32(tgt, oy, 01t + 5) > Compute fingerprint.
if(sindexhash(f)] = nil)
return(—1, —1) > No match found.
04re ¢ stndex[hash([)]
[+— matchLength(tgt. otge, s7C, Ogrc) > Compute match length.

return{().w'r:: l)

Figure 3.1: Pseudo-code for the Xdelta algorithm [Mac00].

Figure 3.1 shows the pseudo-code for the Xdelta algorithme.rain function i onput eDel t a,
that takes the source and the target file as inputs. It buiktdaray matching data structure for
the source file by calling theni t Mat ch function. That function computes a hash table of
fingerprints for source blocks of a certain length. If haslisions occur, the hash for a block
that appears first in the source file will always overwrite thieer. The reason that finger-
prints for the earlier blocks are preferred is, that theyepbally lead to longer matches. The
f i ndMat ch function then performs the string matching with the tardet fi he target file is
split into fixed-size pages, that are searched for matchnggfprints in the source hash table.
When a match is found, it checks the source file with a diregtgsttomparison, and tries to
extend the match in both directions in thet chLengt h function.

20

3.3 Encoding

3.3.4 Zdelta

The Zdelta algorithm [TMS] uses the same basic ideas as &dé&lie main difference is that
Zdelta also encodes the computed delta. The zlib compreéibi@ry [Gali] is used to fur-
ther compress the produced delta with Huffman codes. Aghduproduces slightly smaller
deltas we can not use this algorithm. For the decompresdithealelta, dynamic hash tables
are required. On the sensor nodes, dynamic memory allocatioot possible, therefore this
algorithm is eliminated from our choice.

3.3.5 VCDIFF

VCDIFF [KMMVO02] is a general and portable data format for edity compressed data or dif-

ferencing data, so that it can be easily transported amomgugters. This format is also used in

the Xdelta3 implementation. The decoding algorithm is petelent from string matching and

windowing algorithms. This allows free choice of the enaoalkile keeping the same decoder.
The decoding time is proportional to the size of the target fihd uses space proportional to
the maximal window size.

The target file is partitioned into fixed-size blocks, calleshdows, which are processed
separately. Each target window can be compared againsteaangindow that is either part of
the provided source file or part of the already encoded téitgetVCDIFF also uses the typical
copy-insertinstructions. The instructions to encode and direct thenstuction of a target
window are called delta instructions. Besidsspy andadd (insert), there is an additional
r un instruction, that is used to repeat a certain byte sevenadi

Below, there is a simple example taken from [KMMVO02] to illcege the source and target
windows and the delta instructions.

abcdefghij k|l mnop
abcdwxyzefghefghef ghefghzzzz
COPY 4, 0

ADD 4, wXx vy z

COPY 4, 4

COPY 12, 24

RUN 4, z

The upper string represents the source window, while thelastring corresponds to the
target window. That is, the part of the target file that is ently being decoded. The two
windows are concatenated, so that the first leiter the second line is at location 16. The first
COPRY instruction tells the decoder to copy four letters from tkegibning of the source window.
Then, we insert the four lettek8 x y z at the current position (which is 20). Another four
letters are copied from the source window. Now, the follayd2 letters are not copied from the
source file, but from the currently decoded target windowdrkds 24 corresponds to position
8 in the target window. The data to copy from overlaps with diaga to be copied, what is
fine as long as the source copy address starts before theatestiaddress. That way, periodic
sequences can be encoded efficiently. TheRad instruction, that appends 4 times the letter
z, is a compact way to encode a sequence repeating the same byte

21

3 Analysis

We chose this algorithm for our implementation for seveealsons. It is a very efficient
algorithm and the size of the generated delta files is smallgm. It outperforms Rsync in
the quality of compression. Zdelta that offers even be#sults can not be used because of
the impossibility of dynamic memory allocation. An implemtation for Xdelta is available for
Linux, so we can use this program for the encoding process.

3.4 Update Dissemination and Feedback

To distribute the delta files over the network, we use the meisims already present in Deluge.
The epidemic dissemination guarantees fast distributiom,uses a lot of bandwidth due to
the large number of messages exchanged. Every node brtmadsgwsofile periodically, and
even though the number of these advertisements slows ddemsaime time with no new data
present, it causes substantial network traffic. To reduogesof this overhead, we only send
advertisements during the update or installation proc@s&e an image has been installed or
updated, the advertisements are stopped since we do nat@sslditional nodes that enter the
network and have to be reprogrammed as well.

As soon as a hode hears about an update or a new image to bamproed it stores the node
address of the first sender of such an advertisement. Theisbedomes the parent of that
node in anmplicit feedback tree. The node starts with sending request messages to its parent
When the data has been completely received from the pareaf aoseception message is sent to
the parent. To make this communication reliable, the nodeats the sending until it receives
an ACK message. Any node that receives an update messagdy, alviays comes from its
implicit child node, forwards this message to its parentenadd sends an acknowledgment to
the child node. The acknowledgment chain ends at the basensta

3.5 Code Recombination

Once the differential update file is stored at the node it bdsetrecombined to the new image
and the code that is currently running has to be overwritidrere are three general options to
do this which will be described in this section.

3.5.1 Halve Memory

For some applications, using half of the available memory besufficient. In this case, the
memory is split in an upper and lower half, and, with the cotrede running in the upper half,
the new code image is built in the lower one. Once the imageils B small piece of code is
placed in RAM, and executed to copy the bottom half to the tdpamal to reboot the node on
completion. Since the processor is running code from RAMgtigeno problem in overwriting

the old code.

3.5.2 2 Phase Approach

The previous approach can be extended to use all availabi@orge We can split the code
into two halves, and place all the critical code requireddier code distribution scheme in the
bottom half. The rest of the bottom and the whole top half camsed for application code.

22

3.5 Code Recombination

In the initialization phase the application is stopped dr@tbp memory half is cleared. The
critical code in the bottom half keeps running. Then, thd fifgoroach is used to update the
bottom half containing the critical code. Once this is ddhe,new critical code is used to build
the new top half containing the rest of the application co@aly when this is completed we
can restart the application.

This approach has a number of drawbacks. First, the apiplicadll be stopped during the
whole process instead of just during the copying of the neagien Second, we need to do the
verification step for both halves increasing the overhedtisfapproach. Finally, this approach
is only possible if the critical code is smaller than half leé tmemory.

3.5.3 Build in EEPROM

In our implementation we use the external EEPROM memory apdeal buffer. We simply
build the new code image in one of the EEPROM sectors and usaladgece of code in RAM
that tells the boot loader to load the image into the prograamory on a restart. An advantage
of this approach is that once the image is built we can havéplellmages stored in EEPROM
and load them when necessary.

23

3 Analysis

24

Design and Implementation

This chapter outlines the architecture of our implemeatatind describes the most important
modules. The extension of Deluge is described in Section¥h& encoding of the delta file is
explained in Section 4.2 and the implementation of the wpdschanism in Section 4.3. The
decoding process is described in Section 4.4.

4.1 Wireless Dissemination

For the dissemination and management of the applicatiogesiéhe Deluge application has
been adapted. Changes to the basic functionality of thenaligersion include the disabling of
periodic advertisement messages and the feedback mechafdvertisements are now only
sent during the update process and stopped when the imagedaie files have been distributed
throughout the network.

A feedback mechanism has been added, that allows statusespida every single node.
A simple implicit node hierarchy is established while thedafes are propagated. When a
node receives an advertisement for an image that it doeseidtnpw, it stores the sender
of that advertisement as its parent in the implicit tree. Asrsas the image or diff file has
been completely received, a notification message is sehatmbde. The sending is repeated,
until the node receives an acknowledgment for the messagg nédde that receives an update
notification message forwards it to its parent node and semdsknowledgment to the sender of
the notification. The process repeats until all messagesckreowledged. For the case that the
network bandwidth is too small and the update notificatiossages do not get acknowledged,
the nodes give up after a certain number of tries.

To store the application images on the node, the externl flesmory is divided into slots.
Two additional slots are added to the normal slots used byd2elone for storing the delta file,
and a second for the reconstruction of the new image. We il go into more detail and have

25

4 Design and Implementation

a look at the format of the code images, as they are storedeamatthe, in Figure 4.1.

Deluge Image Descriptor 16 Bytes
CRC for the complete image 256 Bytes
Identity information 128 Bytes
TOSBOOT_END 4 Bytes
SEC_LENGTH 4 Bytes

Deluge Image 12.'!3-\}| :;:VIBS
EQOF 8 Bytes

Padding

Figure 4.1: Memory layout of Deluge image.

At the lowest memory address is tBeluge Image Descriptor a struct that stores informa-
tion about the image. Its structure is shown in Figure 4.2nTthe Cyclic Redundancy Check

t ypedef struct Del ugel ngDesc {

uint32_t uid; /1 unique id of imge

i mgvnumt vNum [l version num of inage

i mgnumt i ngNum /'l 1 mage nunber

pgnum t nunPgs; /'l num pages of conplete inmage
uintl6_t crc; /1 crc for vNum and nunPgs

uint8_t nunPgsConpl ete; // nunPgsConplete in inmge
uint 8 _t reserved,
} Del ugel ngDesc;

Figure 4.2: Deluge Image Descriptor struct.

(CRC) data follows. It ensures the integrity of the complete imadhe check is performed
by the boot loader before transferring the image into pnograemory. After that, th®el-
uge identifier block follows. This information is presented to the usergwthe investigates
a node by sending a ping message. Two addresses are pladedheeaddress in memory
where the boot loader TOSBOOT end$)SBOOT_END), and the length of the Deluge im-
age SEC_LENGTH). These two addresses are used by the boot loader to guathatehe
boot loader code does not get overwritten. The binary codéhi® completeDeluge image
follows, terminated with an End-Of-Fil&EQOF) delimiter. The space between this image and
the beginning of the next one is padded out.

26

4.2 Encoder

4.2 Encoder

The installation of the update is done in several steps. Thedliep is the computation of the
delta file. The input to the encoder is the binary code of theedpplications. We need to have
exactly the same data that is already stored on the nodes #iedayout of the reconstructed
image has to match as well. The binary code of an image carupe fa itst os_i mage. xm
file. When an image gets injected into a network with Deluge, Ereluge java tool chain
program extracts the binary code from that file and adds saide#i@nal data like the CRC
data. We do exactly the same for both the source and target#fildting in the same code
layout as presented in Figure 4.1. The only difference is Wedo not have the 16 Bytes
Deluge image descriptor at the beginning.

Now we compare these two data structures beginning with the €&€ and ending with the
image in order to generate a delta. The encoder we use is trentiXdelta implementation,
Xdelta3 [Mac]. Our executable produces deltas in the VCDI&#nhat (see Section 3.3.5),
without further compressing them. Unfortunately, the Xalglcode is only available for Linux.
According to its developer, the code is being worked on tom@aralso on Windows machines
in the future. With Linux, the encoder is integrated in thelaf@ program. As long as the
encoder is not available under Windows, the delta files haeetproduced by hand. First we
have to generate the source and target file, by calling a hielpetion with the java tool chain:

java net.tinyos.tools.DelugeD -w
-ti=build/tinynode/tos_i mage. xm -o=<source or target>

This step has to be done for the source as well as for the t@pgdéitation. The t i parameter
is the originalt os_i mage. xm file, while the- o parameter is the filename of the result.
These two generated files are the input for the encoder. Tageusf the compressor is as
follows:

xdelta3 -s <source> <target> > DELTA

4.3 Update Installation

To send a delta file to the nodes and initiate an update, anteshraent message is sent to the
base node. The advertisement contains a Deluge imageptesciihe number of the image to
be updated is given, as well as the version number of thaternmageased by one to announce
a change. The number of pages in the struct however refetetsize of the delta file. The
reserved field is used to indicate the update. The delta fiws received by the node and
stored in the delta slot of the external flash memory. The lustegrity checks are omitted
since the delta does not fit into the conventional image farrAaother information sent with
the advertisement is the slot number where the reconstructage should be stored. This
information is also added to the reserved field. When the cetmpalelta has been received
and the reception feedback has been sent the decoder edstrprocesses the delta file and
copies the needed data from the image slot where the souaggiia stored. The new image is
constructed in the update slot of the external memory. Eigu8 shows the decoding process
and the involved data. There are three image slots showrriititistration. The middle one is
the slot where the delta gets stored, and the right one isdbrestruction” slot for the update

27

4 Design and Implementation

Decoder
I;""g CRC |Ident| Deluge Image Mg | oRC |ident| Delta File M3 | oRre | 1gent| UPdated Deluge
esc Desc Desc Image
Source Image Delta File Updated Image

Figure 4.3: The data sections involved in the decoding otitie file.

image. In the left slot lies the source image. The colorgfglarhich data is involved in the
decoding process.

With the decoding process finished, the image is copied tdesdination slot. If it corre-
sponds to the currently running application, a flag is setthednode is rebooted. The boot
loader transfers the code to program memory and startsatsiénn.

4.4 Decoder

The task of the decoder is to process the VCDIFF encoded detarfd construct the target
image. The decoder is divided in two components: One for #ralling of the delta file and
another one to carry out memory accesses.

The delta decoder reads the delta instructions and exeiti#ss The processing of a delta
instruction is implemented as a nesC task which is postetddpeluge main component. That
way, other routines do not get blocked since the decodingtala/a while. It is possible that
the decoding starts on one node while another node has pesved the delta and waits for its
feedback message to be acknowledged

The execution of the delta instructions requires read aritd accesses to EEPROM memory.
A characteristic of EEPROM memory is that the number of remaycles is limited. Changing
a single byte is only possible by rewriting a whole block. Iagdice, this means a block
has to be erased completely before it can be rewritten. Titegmated write and erase cycles
eventually damage the thin insulating layer, a processaalNear out’. Typically, about 10°000
erase-write cycles are possible with an EEPROM module.

To access the EEPROM memory, thege EEPROMcomponent is used. This component is
able to read and write whole pages. As a consequence of thietieas outlined above, our
implementation of the EEPROM storage module uses a bufiezdp the page that is currently
worked on in RAM. By keeping this page granularity we try to reelthe number of read or
write accesses to the memory. Successive reads to the sgmegabe done immediately and
with only one EEPROM access as the page is already in RAM. Whescaess another page,
the current buffer is only written to memory if it is dirty, ahmeans changes were made to
it. To write, the page has first to be read into the buffer, ttiendesired bytes are written in
the buffer and before the buffer is written back to memoryphge has to be erased. This is
required because of the EEPROM write restricions desciibede. Due to the buffewri t e
commands are deferred until another page is accessed, for tieh command is invoked.

28

4.4 Decoder

i nt erface EEPROVSt or age {

conmand
comrand
comrand
conmand
conmand
conmand
comrand
comrand

result t
result t
result t
result t
result t
result t
result t
result t

i nit(startPage);

read(of fset, data, |ength);

readUi nt 32(of fset, uint32, inc);
wite(offset, data, |ength);

run(of fset, byte, length);
copy(sourceOfset, targetOffset, |ength);
sync();

flush();

Figure 4.4: The EEPROM Storage component.

Unfortunately, the decoder needs a more sophisticatedfaoteto the memory. It does not

only require commands toead andwr i t e single bytes or byte sequences but also a func-

tionality to copy a sequence of bytes from one address in memory to anotherepeatedly
write the same byter Un). The interface of the storage module is shown in Figure Zlde

r eadUi nt 32 instruction is a convenience function that reads and dexadeinsigned 32 bit
integer from the given memory address and stores the numbgtes used in memory for that
integer (1 — 4 Bytes).

29

4 Design and Implementation

30

Results

This chapter discusses results achieved with our impleattient In Section 5.1 we evaluate the
size of the delta patches and in Section 5.2 we analyze tieeus®ed for the update process.

5.1 Size of Code Updates

An important performance measure is the size of the deltehpatused to update the appli-
cations. There are scenarios where the new image is almastigdl to the current image,
resulting in very small delta files, and other scenarios whee replace one application with
a completely different application. In that case, the siz#he delta depends on the quality of
the compression. The number of bytes to send will be smaillany case as there are always
similar code sections in two different application imagége will look at some test examples
in Table 5.1. We applied the Xdelta encoder to several agijpdic images. The example appli-
cations without integrated Deluge support (eBfi nk or Cnt ToLeds) have a code size that
is a lot smaller than those with Deluge support (&lgi nkDel uge), but once they are loaded
into program memory, they do not support any further netwepgkogramming. So the relevant
example applications are those that integrate Deluge. d@itigi@nal code size is about 30 kB.
That is 8 kB more than the normal Deluge version, and it is mastused by the memory
access and decoding functions.

As can be seen from the examples, the encoding ensures adattalkize for the similar
applications likeBl i nkDel uge andBl i nkFast Del uge. Bl i nkFast is the same appli-
cation asBl i nk, the only difference lies in the blink frequency, so only astant has been
changed. The reason the delta is not only a few bytes in sieeislelta header overhead.
A few bytes are needed to indicate the window sizes and somiéiauhl information is in-
cluded. In most application scenarios only some lines okcctnge, so the usage of our
update tool will be similar to this case. As another examwie evaluated the delta size for an

31

5 Results

Application Initial binary | Final binary| Delta size| Compression
size [bytes] | size [bytes]| [bytes] ratio

Bl i nk to Bl | nkFast 3500 3500 79 2.3%

Bl i nk to Ont ToLeds 3500 3494 984 28.2%

BlinkDeluge to Blink- | 34/g; 34482 254 0.7%

Fast Del uge

BlinkDeluge to CntTo- | 3,85 34456 7440 21.6%

LedsDel uge

Bl inkDel uge to Gscillo- | 3485 38374 | 17789 | 46.4%

scopeDel uge

Cnt ToRf nDel uge 10 Cnt- | g4794 35012 7604 21.7%

ToLedsAndRf nDel uge

Table 5.1: The code sizes of delta patches and original isnfgealifferent update scenarios.

update of theCnt ToRf mto theCnt ToRf mAndLeds application, both with integrated Del-
uge support. We see that for applications that have diffecede, likeBl i nkDel uge and
Gsci | | oscopeDel uge, the size of the delta is still only half the size of the newlagaion
image.

5.2 Time Used for Updates

To test the performance of the update mechanism in termsef tive used two test scenarios.
The nodes have been arranged in star topology for the firsatekin line topology for the
second.

5.2.1 Star Topology

In the first scenario, the sensor nodes are placed in an envéot where every node is able to
reach all other nodes. This means that the maximum distagteeebn any of the nodes does
not exceed about 200 m, which is the maximum radio range ohgNlbde mote. This “star”
setup is shown in Figure 5.1.

The results for this star topology for an update fr8m nk to Bl i nkFast are shown in
Table 5.2. We have measured the time for the disseminatidheoflelta file first. A second
measurement indicates the total time it takes until all theées have received and decoded the
update. Finally, the total time of the process includingfdedback messages is listed together
with a comparison of the time used for the process by Delugk.ofAhe test applications
have integrated differential Deluge support. For such katelnges our solution outperforms
Deluge. The amount of time saved by sending only the smath @siceeds the additional time
we invest for the decoding on the node. With 10 nodes, tha dellisseminated to the nodes
in 23 seconds and the update is complete after 26 second® peviorm the update with the

32

5.2 Time Used for Updates

O

Figure 5.1: Test setup with the nodes arranged in the statdgp.

Blink to BlinkFast
Number | Time for Dis- | Total time| Total time | Deluge
of Nodes | semination | for Update | with Feedback| total time
3 8s 22s 24's 126 s
10 10s 23s 26s 131s

Table 5.2: Update time for a Blink to BlinkFast update in the stenario.

normal Deluge version, the application is smaller, but tleeess still takes about 5 times longer
as all the data has to be sent.

The results for an update between two different small appbaos likeBl i nk andCnt ToLeds
are shown in Table 5.3. The differential and the normal wersif Deluge take about the same
time for the process. The time saved by only sending 20 peafeghe amount of data to the
node is spent on decoding. It only takes 34 seconds to dias¢enihe update, but another 95
seconds to process the delta. The number of nodes does ndy meffuence the performance
of both update tools. A slight advantage results for theed#fitial approach. With less data to
transmit, also less retransmissions of packets have tote do

A worse scenario for the differential Deluge is shown in €bl4. AsGsci |l | oscope
andBl i nk do not have much common code sections, the patch saves dhtidaize of the
data transmission. The decoding is very time intensive, lvenech is the reason the differential
approach takes longer than just sending the complete negeima

Blink to CntToLeds
Number | Time for Dis-| Total time | Total time | Deluge
of Nodes | semination | for Update| with Feedback total time
3 34s 125s 128 s 126 s
10 34s 128 s 140 s 130 s

Table 5.3: Update time for a Blink to CntToLeds update in the stanario.

33

5 Results

Blink to Oscilloscope
Number | Time for Dis- | Total time | Total time | Deluge
of Nodes | semination | for Update| with Feedback| total time
3 67 s 224 s 228 s 165s
10 85s 240 s 246 s 172s

Table 5.4: Update time for a Blink to Oscilloscope update agtar scenario.

Blink to BlinkFast
Number | Time for Dis- | Total time| Total time
of Nodes | semination | for Update| with Feedback
3 17 s 31s 37s
10 72s 85s 112's

Table 5.5: Update time for a Blink to BlinkFast update in the lgtenario.

5.2.2 Line Topology

In the second test scenario we assume a distribution of tthesria the network that corresponds
to a “line”. Each TinyNode is placed in a line with the maximuadio range distance between
them. That way, the reprogramming process will take plagerimulti-hop fashion as the pages
of the update have to be sent from one node to the other, dahgtane hop at atime. Figure 5.2
shows the line topology. The dissemination of the updatesdénger that way, but thanks to
page pipelining the nodes do not have to wait for the compiptiate and can start forwarding
pages as soon as they have received the first page.

Figure 5.2: Test setup with the nodes arranged in line tapgolo

In Table 5.5, we show the results for the line topology for Bie nk andBl i nkFast
applications. Compared to the star topology, the time fodiesemination does not depend so
much on the number of pages to be sent, but on the number of modee line. The time for
the decoding remains the same, while the feedback takesrong

We also conducted the measurements forBhenk andCnt ToLeds applications, which
are presented in Table 5.6. Once again, the update takestimar¢o reach all nodes in the
network. However, as the amount of data to send is biggerithére previous example, the
delay caused through this topology becomes less impoathé overall performance.

34

5.2 Time Used for Updates

Blink to CntToLeds
Number | Time for Dis- | Total time| Total time
of Nodes | semination | for Update| with Feedback
3 71s 164 s 169 s
10 124 s 218s 237 s

Table 5.6: Update time for a Blink to CntToLeds update in the Boenario.

35

5 Results

36

Conclusions and Future Work

In this chapter, we draw a conclusion and list some posskinsions to the existing system.

6.1 Summary

In this master thesis, an application to update wirelessmaretworks with differential patches
was designed and implemented for TinyOS on the TinyNoddgutat The Xdelta algorithm
was chosen for the differential compression. The deltahestto be disseminated in the network
are generated in the VCDIFF format by the Xdelta3 encoder.eTmtormed about the update
process, the Deluge application was extended with feediackionality. The system has been
tested in several scenarios, showing a good performanagftates with applications that are
similar.

6.2 Evaluation and Discussion

Chapter 5 shows good results for updates with similar codg@saOur solution is targeted to
facilitate debugging and testing. Normally, the develop&s to test an application, fix some
bugs or add a certain functionality and test it again. Dutingge test cycles, the amount of code
changed in the application is usually small, so our solus@uited to speed up the development
process. As soon as we have larger sections of differentiodtie two versions, the time used
for the decoding of the delta patch grows bigger. The adgentd having less data packets to
send is degraded. If we completely replace an applicatiadh svdifferent one, the results of
our solution are similar to the Deluge implementation, cegreworse. For better results, the
EEPROM access would have to be optimized for the decodingpoasmt.

37

6 Conclusions and Future Work

6.3 Future Work

There are a few things which could improve the performancéefcurrent solution. The
encoder should be completely integrated into the tool alsdNindows environments. This
can be achieved as soon as the Xdelta3 project is also aeailabler Windows. Through
personal communication with the developers of the Xdeltaipt, they are currently working
on porting the code. The integration is then straightfodias only one additional call of the
executable by Java’s runtime environment is sufficient.

The feedback could be improved to support a visual repragentof the sensor nodes in
the network. The update application could be integratetiencontrolling tool which has also
been developed at the Distributed Computing Group [CadO6hdnthesis, a framework was
designed, that allows to watch and inspect components edyndtn Eclipse plugin was devel-
oped to keep an overview of the network.

38

Software Manual

The following tutorial on the differential Deluge implentation is based on the Deluge tutorial
[Ber05]. Only the new functions and the differences to theuDeltutorial are described below.

A.1 Installing the Boot Loader

DelugeDiff requires a boot loader, TOSBoot, to reprogramnibge. To ensure that TOSBoot
installs correctly when installing a TinyOS application e building and installing Blink on
a TinyOS node by going tbi nyos- 1. x/ apps/ Bl i nk and typing the following:

% make tinynode bsl.<x> install.1l TINYOS_NP=BNP

where thex in thebsl . x parameter is the number of the COM port we use to connect to the
node. If we work with TinyNode we have to decrease the COM pomntler by one. So if we
connect a node over port COM 3, we have to proigé . 2 as parameter.

The most important parameterlis NYOS_NP=BNP. For other environments, TOSBoot is in-
stalled with every application by default since TinyOS vansl.1.15 [Web05]. Unfortunately,
this is not true for the TinyNode environment. This is why wavé to add thd'l NYOS_NP
parameter to install the boot loader manually. A problem arése if the boot loader has not yet
been compiled or if its path can not be resolved. We have tokctieet i nynode. t ar get
file, which can be found in the shockfish contribution foldedert i nyos- 1. x\ cont ri b\
shockfi sh\t ool s\ make\ti nynode. t ar get. Here, we may have to change the fol-
lowing line:

BOOTLOADER : = $(shell cygpath -m $(BOOTLOADER))
by adding quotes to the path name as follows:
BOOTLOADER : = "$(shell cygpath -m $(BOOTLQADER))"

39

A Software Manual

After having programmed the node with the Blink applicatiae, can try to verify the success-
ful installation of the boot loader.

Once installed, we reset our node by turning it off then on. SMeuld notice TOSBoot’s
execution by displaying a count-down sequence on the LEB the red LED turning off last.
Once all the LEDs have turned off, the Blink application sliathrt blinking the red LED. The
successful completion of this step is crucial for the repaiogming to work.

A.2 Installing DelugeDiff

To format the flash storage, we proceed as described in trgatiutNext, we compile and install
theDel ugeDi f f Basi ¢ application. We add the DelugeDiff library to the makefileelthis:

PFLAGS += -I1/opt/tinyos-1.x/tos/lib/DelugeD ff

The install process will install both the basic DelugeDgpéication and TOSBoot. We should
make sure to set the node ID appropriately when installiegaibplication. For the feedback to
work properly, every node should be assigned a unique IDekample:

% make tinynode bsl.<x> install.9 TI NYOS_NP=BNP

will set the node ID to 9 when installing the application. DgDiff will save the node ID so
that it remains persistent across reboots between differegram images.

A.3 Reprogramming with a New Program Image

We continue with the tutorial by pinging the node and instglDel ugeDi f f Basi c as the
golden image. To prepare tiBt i nk code for network reprogramming, we add el uge-

Di f f Ccomponent and wire it tvai n. St dCont r ol . Now we install this application in the
network as in the tutorial. We choose image number 2 for tiptiggiion. The output for 10
nodes should look something like this:

$ java net.tinyos.tools.DelugeD -i -ti=build/tinynode/
tos_image. xm -in=2 -f -n=10
Pi ngi ng node ...
Connected to Del uge node.
Getting data for image [3] -----------"----"--------
| hex read conpl et e:
Total bytes = 34280
Sections = 2
Repl ace enpty imge wth:
| mge: 2
Prog Nane: Bl i nk
Compi l ed On: Thu Nov 23 15:04:26 CET 2006
Pl atform ti nynode
User | D andr eas

40

A.4 Updating with a New Program Image

Host nane: et h-0c224a10dfd
User Hash: 0x79eb35f 1
I nj ecting page [32] of [32]

Node 102: | mage 2 updated
Node 108: | mage 2 updated
Node 106: | mage 2 updated
Node 104: |nage 2 updated
Node 100: I|nage 2 updated
Node 103: | mage 2 updated
Node 105: | mage 2 updated
Node 109: | mage 2 updated
Node 107: | mage 2 updated
Node 101: Inmge 2 updated

updat e done!

A.4 Updating with a New Program Image

In this section, we will update our network with a new apgiima. TheBl i nk application
has already been installed on the node in image slot numb#/e2choose th€&€nt ToLeds
application for the reprogramming. We prepare it as desdrédbove by adding thgel uge-
Di f f Ccomponent and compile it like this:

% make tinynode TI NYOS_ NP=BNP

Now, we have to create the delta file for this update procdss. las to be done manually under
Windows. We start by extracting the binary code:

% java net.tinyos.tools.DelugeD -w -ti=build/tinynode/
tos_i mage. xm -o0=Cnt ToLedsDel ugeDi ff. bin

The binary code of the application is output@mt ToLedsDel ugeDi f f. bi n, specified
with the- o parameter. We repeat the same procedure for our Blink apipicaesulting in the
Bl i nkDel ugeDi ff. bi nfile. To generate the delta, we call the Xdelta compressor:

% xdel ta3 -s BlinkDelugeDiff.bin CntToLedsDel ugebDiff.bin
Bl i nk2Cnt ToLeds. del t a

We pass the binary source and target files to the encoder andhgefinal delta file,
Bl i nk2Cnt ToLeds. del t a.

To start the update process, we change tdaieToLedsDel ugeDi f f folder and call the
java tool chain:

% java net.tinyos.tools.DelugeD -u -ti=build/tinynode/
tos_image. xm -de=Blink2Cnt ToLeds. delta
-i n=<i mage_nunber > - n=<nunber of nodes>

41

A Software Manual

We start the update with theu parameter, indicate the target image file withi and provide
the delta file to use with thede parameter. To pass the image number where we want the
update installed we use thien parameter and the number of nodes in the network is specified
with - n.

Under Linux it works much easiersi refers to the original image, the source image.

% java net.tinyos.tools.Deluge -u -si=<source_tos_inage.xn >
-ti=<target _tos_inage.xm > -in=<i mage_nunber >
- n=<nunber _of nodes>

If we do the reprogramming with 10 nodes, we receive a feddfvam each node when it has
completely received the delta and when it has finished thategarocess. Again for ten nodes,
the output could look as follows:

$ java net.tinyos.tools.DelugeD -u -ti=build/tinynode/
tos_image. xm -de=Blink2Cnt ToLeds.delta -in=2 -f -n=10
Pi ngi ng node ...
Connected to Del uge node.
Getting data for imge [3] -----------------------
| hex read conpl ete:
Total bytes = 34456
Sections = 2
Updat e i nage:
| mage: 2
Prog Narne: Bl i nk
Conpil ed On: Thu Nov 23 15:04: 26 CET 2006

Pl atform ti nynode
User |D: andr eas
Host name: et h- 0c224al10dfd
User Hash: 0x79eb35f 1
Wth inmge:
| mge: 2

Prog Nane: Cnt ToLeds
Conpil ed On: Thu Nov 23 15:05:18 CET 2006

Pl atform ti nynode
User | D: andr eas
Host nane: et h- 0c224a10dfd

User Hash: 0x79eb35f 1
I njecting page [7] of [7]

Node 102: Update received
Node 103: Update received
Node 102: |nmge 2 updated
Node 106: Update received
Node 108: Update received
Node 104: Update received

42

A.5 Frequently Asked Questions

Node 109: Update received
Node 101: Update received
Node 100: Update received
Node 108: |nmage 3 updated
Node 107: Update received
Node 103: | mage 2 updated
Node 105: Update received

Node 106: |nage 2 updated
Node 104: |nage 2 updated
Node 109: | mage 2 updated
Node 101: | mage 2 updated
Node 107: | mage 2 updated
Node 100: | mage 2 updated
Node 105: |Inage 2 updated

updat e done!

We can now resume and execute the reboot command as follows:
% java net.tinyos.tools.DelugeD -r -in=2

We specify the image slot number of the application we woiklel io program the node with
by setting-i n to 2. After a few moments, the node will begin counting quycttirough the
LEDs, signaling the programming process. Once complegentide displays the count-down
sequence and executést ToLedsDel ugeDi f f . This application simply flashes the LEDs
counting from 1 to 7. We can check it is running applicatiorpinyging the node again.

We have just successfully reprogrammed a network over thda@aidemonstrate the useful-
ness of the Golden Image slot, we reset our node repeatesiligaession. After repeated resets,
TOSBoot will flash all three LEDs simultaneously and reprogseur node. Connect this node
to your computer and ping it using the Deluge Java tool. Yawkhsee that its executing image
is nowDel ugeDi f f Basi ¢ again.

A.5 Frequently Asked Questions

This section lists a set of common mistakes that users slavoid:

1. I injected the reboot command, my node reboots, but does noteprogram itself to
the new image.

Look carefully at the LEDs displayed by TOSBoot. If TOSBootksk the red LED three
times before counting down, the system voltage is too lovatelg reprogram the node.
Replace your batteries and try again.

If no LEDs blink at all after the reboot command has been egcmaybe TOSBoot is
not or incorrectly installed. Test this as described in Arilcase this fails, something is
wrong with your boot loader.

43

A Software Manual

2. If I install DelugeDiff on a node where it has been installed a previously, the old
images are still present on the node.

This happens sometimes because DelugeDiff loads the migtatdaed in flash memory.
You should always be aware of the fact that even the forntatipplication does not
totally erase or rewrite flash memory.

3. TOS_LOCAL_ADDRESS and TOS_GROUP_I D are not restored appropriately.

Important node state includingOS_LOCAL_ADDRESS and TOS_GROUP_I D are re-
stored whenNet Prog.init() is called. It is important to remember thhket -
Prog.init() should be called before using any of these values. To enbigdé¢-
havior, wireDel ugeC. St dCont r ol or Net ProgC. St dCont r ol to Mai n. St d-
Cont r ol and never referencECS_LOCAL _ADDRESS andTOS_GROUP_| Din St d-
Control.init() ofany module.

44

Bibliography

[ABF+00]

[Aru04]

[Ber05]

[BHS03]

[Cad06]

[CTO3]

[DFFMMO06]

M. Ajtai, R. Burns, R. Fagin, D. Long, and L. Stockmeyer. Coutlyeencoding
unstructured input with differential compression, 2000.

M. (Umamaheswaran) Arumugam. Infuse: a tdma basptbgramming service
for sensor networks. 16enSys '04: Proceedings of the 2nd international con-
ference on Embedded networked sensor sysigages 281-282, New York, NY,
USA, 2004. ACM Press.

U.C. Berkeley. Deluge 2.0 - tinyos network programmimgnual, 2005.
Retrieved: November 16, 2006 from U.C. Berkeleyitt p:// ww. cs.
ber kel ey. edu/ ~j whui / r esear ch/ del uge/ del uge- manual . pdf .

A. Boulis, Ch.-Ch. Han, and M. B. Srivastava. Design angdl@mentation of
a framework for efficient and programmable sensor netwohkdVobiSys '03:

Proceedings of the 1st international conference on Molyitesns, applications
and servicespages 187-200, New York, NY, USA, 2003. ACM Press.

O. Caduff. Controlling wireless sensor networks. Mesthesis, Department of
Computer Science, ETH Zurich, 2006.

Inc. Crossbow Technology. Mote in-network programgniaser reference,
2003. Retrieved: November 16, 2006 from Crossbow Technolbgy,:
http://webs. cs. berkel ey. edu/tos/tinyos-1. x/ doc/ Xnp. pdf .

H. Dubois-Ferriere, L. Fabre, R. Meier, and P. Mdter. Tinynode: a com-
prehensive platform for wireless sensor network appheet InIPSN '06: Pro-
ceedings of the fifth international conference on Inform@processing in sensor
networks pages 358—-365, New York, NY, USA, 2006. ACM Press.

Bibliography

[FTDO6] G. Fuchs, S. Truchat, and F. Dressler. Distributdthgare management in sensor
networks using profiling techniques. st IEEE/ACM International Conference
on Communication System Software and Middleware (IEEE COMS\XAGE:
1st International Workshop on Software for Sensor Networkss@®Vare 2006)
pages 1-6, jan 2006.

[Gai] J. Galilly. zlib compression library. Available atit t p: / / www. gzi p. or g/
zlib/.
[HCO4] J. W. Hui and D. Culler. The dynamic behavior of a dataelsination proto-

col for network programming at scale. Rroceedings of the 2nd international
conference on Embedded networked sensor sysfmges 81-94. ACM Press,
2004.

[HM76] J. W. Hunt and M. D. Mcllroy. An algorithm for differdral file comparison.
Technical Report CSTR 41, Bell Laboratories, Murray Hill, N97&.

[HSW*00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. B Pister. Sys-
tem architecture directions for networked sensorsAdchitectural Support for
Programming Languages and Operating Systgmages 93—-104, 2000.

[HVTI6] J. J. Hunt, K.-Ph. Vo, and W. F. Tichy. An empiricauidly of delta algorithms. In
lan Sommerville, editorSoftware configuration management: ICSE 96 SCM-6
Workshoppages 49-66. Springer, 1996.

[Jeo05] J. Jeong. Incremental network programming forlesgsensors. Master’s thesis,
EECS Department, University of California, Berkeley, NovemE 2005.

[KMMVO02] D.Korn, J. MacDonald, J. Mogul, and K. Vo. The VCDIREeneric Differencing
and Compression Data Format. RFC 3284 (Proposed Standand)2002.

[KPO5] J. Koshy and R. Pandey. Remote incremental linking hargy-efficient repro-
gramming of sensor networks, 2005.

[LCO2] P. Levis and D. Culler. Mate: A tiny virtual machine foerssor networks. In
International Conference on Architectural Support for Pragming Languages
and Operating Systems, San Jose, CA, U32&. 2002. To appear.

[LPCS04] P. Levis, N. Patel, D. Culler, and S. Shenker. Trichlself-regulating algorithm
for code propagation and maintenance in wireless sensaonet, 2004.

[Mac] J. MacDonald. xdelta compression tool. Availabletatt p: / / wwv. xdel t a.
org/.

[Mac00] J. MacDonald. File system support for delta comgimag 2000.

[MGL*06] P.J. Marron, M. Gauger, A. Lachenmann, D. Minder, O. $aakd K. Rother-
mel. Flexcup: A flexible and efficient code update mechanisnsénsor net-
works. InProceedings of the Third European Workshop on Wirelessob @te-
works (EWSN 2006pages 212-227, February 2006.

46

[NASZ05]

[Phi05]

[RLO3]

[SAO5]

[SHEO3]

[SMO02]

[Tic84]

[TMS]

[TNCS02]

[Tri99]

[WanO04]

[WebO05]

[WF74]

[WKO6]

Bibliography

V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinklek reliable and energy
efficient data dissemination service for wireless embedi®dces. INRTSS
'05: Proceedings of the 26th IEEE International Real-Tinyst8ms Symposiym
pages 277-286, Washington, DC, USA, 2005. IEEE Computer §ocie

L. A. Phillips. Aqueduct: Robust and efficient codejpagation in heterogeneous
wireless sensor networks. Master’s thesis, University dbfaalo at Boulder,
2005.

N. Reijers and K. Langendoen. Efficient code distribntin wireless sensor net-
works. INWSNA '03: Proceedings of the 2nd ACM international confegenrt
Wireless sensor networks and applicatioppages 60—67, New York, NY, USA,
2003. ACM Press.

Shockfish SA. Tinynode 584 / standard extension basel’'s manual, rev
1.1, 2005. Retrieved: November 16, 2006 from Shockfish I8A:p: / / www.
ti nynode. conf upl oads/ medi a/ Ti nyNode/ User s_Manual _rev1l. pdf.

T. Stathopoulos, J. Heidemann, and D. Estrin. A teraode update mechanism
for wireless sensor networks, 2003.

T. Suel and N. Memon. Algorithms for delta compressamd remote file syn-
chronization, 2002.

W. F. Tichy. The string-to-string correction preiph with block moves.ACM
Trans. Comput. Sys(4):309-321, 1984.

D. Trendafilov, N. Memon, and T. Suel. zdelta: An effiti@lelta compression
tool.

Y.-Ch. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. @rbadcast storm problem
in a mobile ad hoc networRNirel. Netw, 8(2/3):153-167, 2002.

A. Tridgell. Efficient Algorithms for Sorting and SynchronizatioRhD thesis,
Australian National University, 1999.

L. Wang. Mnp: multihop network reprogramming seevior sensor networks.
In SenSys '04: Proceedings of the 2nd international conferemt Embedded
networked sensor systenmages 285-286, New York, NY, USA, 2004. ACM
Press.

TinyOS Website. Significant changes in tinyos befwel.1.13 and 1.1.14, 2005.
Retrieved: November 16, 2006 from TinyOS Webshet p: / / ww. t i nyos.
net/tinyos- 1. x/ doc/ changes-ni nor-rel eases. ht m #1. 1. 14.

R. A. Wagner and M. J. Fischer. The string-to-stringection problemJ. ACM
21(1):168-173, 1974.

L. Wang and S. S. Kulkarni. Gappa: Gossip based miigrmel reprogramming
for sensor networks. Technical Report MSU-CSE-06-8, Depantrof Computer
Science, Michigan State University, East Lansing, Michigeebruary 2006.

47

Bibliography

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pistem&t dust: Communi-

[WLLPO1]
cating with a cubic-millimeter compute€omputey 34(1):44-51, 2001.

J. Ziv and A. Lempel. A universal algorithm for sequi@hdata compression.

[ZL77]
IEEE Transactions on Information Theqi33(3):337-343, 1977.

48

