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Abstract

This thesis describes a mechanism to update large wireless sensor networks. Due to the dynamic
nature of such networks, sensor nodes occasionally have to be reprogrammed, especially for
design-implement-test iterations. Manually reprogramming every node by physically reaching
it is a very cumbersome task, and may be infeasible if nodes ofthe network are unreachable.
Therefore, a wireless update mechanism is needed. Exchanging the running application on a
node by transmitting the complete program image is not efficient for small changes in the code.
It consumes a lot of bandwidth and time. The goal of this thesis is to use an incremental network
programming approach to minimize the transmitted code size. A difference file for the new code
is computed using the Xdelta algorithm, and is then distributed over the network. The delta is
decoded on the node to build and install the new application.The proposed update protocol
has been implemented for the Tinynode sensor nodes, which run TinyOS, a component-based
operating system for highly constraint embedded platforms.
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Diploma/Master’s Thesis “Updating Wireless Sensor Networks” 

Recently, increasing research attention has been directed toward wireless sensor 
networks. Large numbers of small, inexpensive devices that integrate sensing, computation 
and communication will be monitoring environmental changes, water contamination, 
seismic activity etc. These sensor nodes exhibit multiple constraints such as limited CPU 
power, narrow bandwidth, and limited energy budget. 

There are many reasons nodes 
occasionally have to be reprogrammed. 
An important one is that applications go 
through a number of design-implement-
test iterations during the development 
cycle. It is clear that it is highly 
impractical to physically reach all 
nodes in a network, so wireless 
updating scheme is required. 

In this thesis we will develop a new update mechanism, aimed at the requirements and 
restrictions specific to wireless sensor networks. In general, such an updating procedure 
consists of three steps: encoding, dissemination and decoding of a new program code. We 
will consider all three steps in detail to come up with a tailored solution. In a second step 
the proposed update protocol will be implemented for the mica2 motes. These quasi-
standard sensor nodes run TinyOS, an operating system for highly constraint embedded 
platforms.

The goal of this thesis is to design and implement a new wireless updating scheme for 
sensor networks. The solution should take the specific characteristics of such networks 
into account. Secondly, the obtained solution should be implemented for the TinyOS 
platform. Finally, we are intressted in comparing this solution with already existing work in 
this field. 
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1
Introduction

1.1 Wireless Sensor Networks

In our everyday life, we encounter sensors of all different kinds without even taking notice of.
Motion sensors turn on lights when we walk by, the heating or air conditioning of rooms is
controlled by temperature sensors and fire detectors alert us in case of emergency.

Recently, a lot of attention has been directed toward extended, “intelligent” sensors, that
can not only conduct certain measurements, but are equippedwith computational power and
over-the-air communication. A lot of additional application areas have appeared for these new
devices, ranging from medical applications, home automation, traffic control and monitoring of
eco-systems to security and surveillance applications.

The development of these enhanced sensors is a logical consequence of the continuing tech-
nological progress. Moore’s Law states that the transistordensity of integrated circuits doubles
about every 24 months. The law still fulfills it’s predictionyear after year, leading to more pow-
erful and smaller devices. The low power and miniature embedded processors, radios, sensors
and actuators are often integrated on a single chip, and are relatively cheap. The combination
of sensor, micro controller and radio transceiver is often referred to assensor node. A picture
of a typical sensor node is shown in Figure 1.1. To take full advantage of theses new devices,
they are often used in large numbers, resulting in systems that are called wireless sensor net-
works. These networks differ considerably from current networked and embedded systems.
They combine the large scale and distributed nature of networked systems such as the Internet
with the extreme energy constraints and physically couplednature of embedded control sys-
tems. Since the CPU power, battery lifetime, memory size and radio bandwidth are inherently
constrained resources, the design of wireless sensor networks requires a proper understanding
of the interplay between network protocols, energy-aware design, signal-processing algorithms
and distributed programming.

The concept of miniaturization has been pushed to the limit with the vision of “Smart Dust”
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1 Introduction

Figure 1.1: A typical sensor node (cite).

[WLLP01], that could enable real “Smart Environments”. The sensor nodes should be scaled
down to the size of a dust particle, and manufactured in largenumbers, to be distributed over an
area like dust, and remain functionally as long as possible.

1.2 TinyOS

TinyOS [HSW+00] is an open-source embedded operating system designed for wireless sensor
networks. It features a component-based architecture thattakes into account the inherent mem-
ory constraints of sensor networks. TinyOS is programmed inNesC, a language derived from
C and specially tailored toward sensor nodes. It applies an event-driven execution model, that
flexibly integrates into the unpredictable nature of wireless communication and physical world
interfaces by enabling fine-grained power management. There is no traditional kernel, process
management or memory management. Dynamic data structures are not supported, since there is
no possibility to dynamically allocate memory. Multithreading is only possible through events.
Basic functionality as well as certain applications for the sensor nodes are contained in the com-
ponent library, including timer interfaces, sensor drivers, network protocols, distributed services
and data acquisition and storage tools. Most of the tools arecompleted with Java utilities for
cooperation with desktop computers. At compile time, the TinyOS code is statically linked with
program code, and compiled into a small binary, using a custom GNU tool chain.

The large open-source community around TinyOS has ported the system to numerous plat-
forms and sensor boards, the most popular being the Mica motefamily and Telos nodes. Most
current research projects on wireless sensor networks relyon TinyOS and keep on contributing,
making it the standard operation system for sensor nodes.

1.3 TinyNode

The sensor node platform used in this thesis is the TinyNode [DFFMM06]. It has been de-
veloped and is manufactured by Shockfish SA. The platform is based on a MSP430 micro
controller and a Xemics XE1205 radio transceiver. The design philosophy behind the node
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1.4 Motivation

architecture was to integrate the core components on a smallprinted circuit board, and place
additional functionality on extension boards. The platform fully supports TinyOS and imple-
ments an own network stack. A picture of the TinyNode can be seen in Figure 1.2.

Figure 1.2: A TinyNode sensor node [SA05].

The 8 MHz MSP430 micro controller from Texas Instruments comes with 10K bytes of
RAM, 512K bytes of external flash memory and 48K bytes of program space. 19 configurable
I/O pins offer up to 6 analog inputs, up to 2 analog outputs anda serial interface. The RS-232
interface and Jtag, that is principally used for debugging,are present on the extension board.
The Xemics XE1205 wireless transceiver offers an output power of 0 to +12 dBm and a data
rate of 1.2 - 152.3 kbps. It operates on 2 - 10 channels at 868 - 870 MHz. At 76.8 kbps, it
reaches a range of 40 m indoors and up to 200 m outdoors. The node is based on an ultra low
power 3 V design. The placement of the modules on the board is shown in Figure 1.3.

1.4 Motivation

There are many reasons sensor nodes occasionally have to be reprogrammed, for example for
updates of the running program. An additional module may have to be added to the program, or
a complete protocol implementation exchanged. Another important reason is that applications
go through a number of design-implement-test iterations during the development cycle. It is
highly impractical to physically reach all nodes in a network and manually reprogram them by
attaching the node to a laptop or PDA, especially for a large number of distributed sensors. It
may also be simply infeasible in various scenarios, if the nodes are located in areas that are
inaccessible to deployers.

Therefore, a wireless updating scheme is required to set allthe nodes up to date with the new
version of the application. Another consideration is the amount of code transferred. While it is
normal to send the whole code if the application needs to be replaced, it does not make much
sense in other cases. If we just add or exchange a part of the code, we transmit code that is
already available on the node, maybe just shifted from its original location in program memory
by a certain offset. Also if a bug has been identified and fixed in the test process, the biggest part
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Figure 1.3: The placement of the TinyNode modules on the node[SA05].

of the code remains exactly the same, probably only differing for some functions or constants.
To reduce this redundancy, it is much more efficient in terms of used bandwidth and time to
only send the changes in the code, and leave the recombination of the new code to the node
itself.

This thesis will deal with the design and implementation of such a system for wireless sen-
sor networks. In Section 2, we will give an overview of existing approaches to the problem,
ranging from single-hop reprogramming over multi-hop reprogramming to complete virtual
machine approaches. Section 3 gives a detailed analysis of the requirements and discusses vari-
ous encoding algorithms. The implementation of the system is outlined in Section 4, explaining
the architecture and design decisions taken. A discussion of the developed system can be found
in Section 5, together with test results. Finally, we draw a conclusion and give indications on
future work that could be done in Section 6. A software user manual with detailed instructions
on how to use the program is contained in the appendix A.

4



2
Related Work

In this section, we will summarize some previous work on updating wireless sensor networks
that has been presented over the last years. We will start with the first straight forward solutions,
that completely exchange the affected program images, in Section 2.1. Afterwards, we will
take a closer look at the more sophisticated differential approaches in Section 2.2, and also
outline some theoretical papers written on dissemination of data in wireless sensor networks in
Section 2.3.

2.1 Network Programming

In this context, network programming means wirelessly installing a new program image on a
sensor node. Instead of establishing a direct connection tothe node and loading the program
onto it, what is referred to asparallel programming , the binary image is sent in packets over
the radio and stored outside the program memory. With thisnetwork programming approach,
the downloaded code is then transferred to the program memory by the node itself. Figure 2.1
illustrates both parallel and network programming.

2.1.1 XNP

One of the very first approaches used to reprogram sensor nodes was included in TinyOS ver-
sion 1.1. WithXNP [CT03], mica2 and mica2dot nodes can be reprogrammed over theair.
Only complete images can be transferred to the node, since XNP does not consider identical
code parts. There is no forwarding mechanism in the program,so only the nodes in the imme-
diate neighborhood of the basis station can be reprogrammed. This is also calledsingle-hop
reprogramming.

In order for the process to work, like in all other approaches, the reprogramming module has

5



2 Related Work

(a) Parallel programming (b) Network programming

Figure 2.1: Network programming

to be part of the application running on the node. Furthermore, a boot loader must be residing
in the sensor node’s boot loader section. It is usually installed on the node together with the
application itself. A Java program splits up the new programcode in packets and sends them
to the node over the radio. The received packets are stored inthe external flash memory by the
sensor nodes, because it is not possible to write them directly into the program memory with
the application still running. Another reason to write themto the external memory is the size of
the image, because it does probably not fit into RAM. When all thepackets have been sent, the
node has the possibility to request missing or corrupted packets, until the complete image has
been received. Then the program image is verified and the bootloader is called, which transfers
the program code to the program memory. The system is then restarted, hopefully running the
new application.

2.1.2 Deluge

Currently the “standard” application for wireless node reprogramming isDeluge [HC04]. It
is integrated into the TinyOS system, and in contrast to XNP able to disseminate whole code
images from one or more nodes to all the other nodes of a wirelessmulti-hop network. On
each node, multiple application images can be stored in designated slots on the external flash
memory, and it is possible to switch between these images. The data is represented as a set
of fixed-sized pages that provide a manageable unit of buffermanagement and transmission.
Every code image is tagged with a version number and the number of pages it consists of.
Additionally, the node keeps a vector with the version numbers of each page of the current
image, describing when it was updated the last time. This information builds a profile of the
sensor node.

For the dissemination, an epidemic approach comes to use, asthe network topology is chang-
ing constantly, with nodes entering or leaving unpredictably. To maintain a consistent state for
the network, an adaption of the Trickle [LPCS04] algorithm isapplied that is also referred to as
“polite gossiping”. Every node broadcasts “advertisements” periodically, announcing the ver-
sion number of the images stored on it. Upon reception of an advertisement, the sensor node

6



2.1 Network Programming

checks if this image is already contained in its profile. If not, the new image is set up and a
request message broadcasted. Every time a node realizes it is missing some or all pages of a
newer version of an image, it requests the missing pages fromthe other nodes. While an image
gets updated, only one page, split into packets, is sent and received at a time, to simplify the
mapping of the data messages. As soon as a page has been received completely, the page is
inserted into the profile of the node, increasing the number of potential senders of that particu-
lar page. This “spatial multiplexing” speeds up the distribution of the pages in the network by
allowing pipelining of the transmission. The mechanism is illustrated in Figure 2.2.

(a) Phase 1 (b) Phase 2 (c) Phase 3

(d) Legend

Figure 2.2: Spatial multiplexing in Deluge.

The blue node in Figure 2.2(a), node A, is the source node. This node gets the image injected
from a computer or PDA, here depicted as PC. Node A initiates the data transfer by broadcasting
the first page to the other nodes in its neighborhood. All nodes that have completely received
the first page turn blue. After having sent page 1 to the nodes in its neighborhood, node A starts
receiving the second page from the attached PC in phase 2, shown in Figure 2.2(b).

Having completely received page 1, node B immediately advertises its newly received page
to notify the nodes in its neighborhood of the new data. Theses node make a request then, to
which node B responds by broadcasting the data. Node A delaysits next advertisement to node
B since it is currently receiving page 2 from the PC.

In phase 3, shown in Figure 2.2(c), node B is now ready to receive the next page from node
A, page 2. At the same time, node C can propagate its newly received page 1.

Once a new image has been received, the system checks if it corresponds to the currently
running image and initiates a reboot immediately. Otherwise, a reboot command can be sent
to the node at any time, switching to a new application image.In order for the reboot to work,
a boot loader has to be installed on the node. After every reset or reprogramming of a node,
the boot loader is executed first, checking the external memory if a new image has to be loaded
into program memory. Without the presence of such data, the boot loader does not take any
action and just begins the execution of the current image. Otherwise, the selected image is
copied from external memory into program memory and the new application is executed. Since
TinyOS 1.14 [Web05], the TOSBoot boot loader is now installedby default when installing any
TinyOS application.

7
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2.2 Differential Network Programming

The drawback of the approaches presented above is the large amount of time they take to update
large networks. Small bug fixes or updates for software maintenance do not really need all the
code to be exchanged, often they affect only single lines of code. This holds even more for test
cycles, when some new lines of code are inserted into a program an the developer would like to
test it on a network where all the nodes have the previous testversion of that program installed.
Here, the differential idea comes into play.

2.2.1 Reijers and Langendoen

The first paper to discuss the advantages of differential updates was written by Reijers and
Langendoen [RL03], presenting the idea only to distribute the changes to the currently running
code. The differences between the old and the new code are summarized in an edit script of
commands, that is to be processed by the nodes to rebuild the new code image. This diff script
uses two basic commands:insert that appends a specified array of bytes to the code at the
given position, andcopy, that takes the sequence of bytes to be inserted at the current position
from the given address. That way, the fact that sequences of code repeat or are similar in
both codes is exploited. An additional command has been added, since there could be some
sequences of bytes that only differ in very few positions. Instead of specifying a chain ofcopy
andinsert commands, arepair command can be used. This one corresponds tocopy, but
additionally corrects single bytes at specified offsets.

When inserting or deleting code at a certain position in memory, the following code is ac-
cordingly shifted up or down. This code shift changes the addresses of functions and variables
which pose a problem. All the references in the code that follow after the inserted code have to
be checked and possibly corrected. An example illustratingthe problem is given in Figure 2.3.
A group of functions has been moved from addressk to addressm, because new code was in-
serted. This means that each call tof will be a call instruction to addressm instead of addressk
in the new binary, and the corresponding instruction will have to be repaired in the edit script.
Reijers and Langendoen conducted some experimental data to find the percentage of instruc-
tions that are affected by address shifts. Figure 2.4 shows that about every sixth instruction
would have to be arepair instruction.

Figure 2.3: Address shifts due to inserted code [RL03].

8
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Figure 2.4: Number of instructions affected by address shifts [RL03].

This inevitably leads to a long edit script, even for minor changes. A specialpatch list
command has been designed to adapt all addresses in a certainrange with a specified offset. It
is used for example after aCALL reference to correct the addresses to jump to. Even with this
approach, some data has to be reset withrepair commands if it was wrongly taken for an
address.

2.2.2 Multi-hop Over-The-Air-Programming (MOAP)

Stathopoulos et al. [SHE03] extend and refine the ideas of Reijers and Langendoen. Their
Multi-hop Over-The-Air-Programming (MOAP ) application uses the same basic set of com-
mands for an edit script, but add some specialcopy commands. The script is computed sepa-
rately for both the code and the data part of the object file, and merged afterwards. Somecopy
commands can be optimized that way.

For dissemination, an algorithm calledRipple is used, that distributes the code packets to a
selective number of nodes, not flooding the network. Corrupted or missing packets are retrans-
mitted using a sliding window protocol, that allows the nodeto process or forward received
packets while waiting for the retransmission of the missingpacket.

2.2.3 Jeong and Culler

Another version of an update algorithm is presented from Jeong and Culler [Jeo05] with their
Incremental Network Programming protocol. It relies on the Rsync algorithm [Tri99] for
computing the difference files. This algorithm was originally developed to synchronize remote
files over a network. It chops the data into smaller parts and computes their checksums to find
variable-sized blocks that exist in both code images. Only blocks with different checksums
are transmitted. In contrast to the original algorithm, thecomparing is performed on the cen-
tral computer, not requiring the node to do hardware intensive computation. A more detailed
explanation of fixed-size block comparison and Rsync can be found in Section 3.3.2.

The complexrepair command used by other algorithms is completely removed. While
this command helps to minimize the size of the transmitted code, it also slows down the de-
coding process by requiring more time-intensive accesses to the external flash memory. The
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characteristics of the Rsync algorithm lead to a big dependency of the performance on the type
of difference of the codes. The Rsync algorithm works well forminor changes, but there are
only very few identical blocks that can be copied in the code after major changes.

2.2.4 Koshy and Pandey

Koshy and Pandey [KP05] also use the incremental network programming scheme and try to
cope with the code shift problem by using another concept they call Remote Incremental
Linking . They realized that even for small changes, the code shift results in large difference
protocols for the following code. Their approach starts at the linking stage, trying to take into
account the possible consequences of a code shift. They developed a special version of the
linker, that tries to keep the original memory layout of the code after changes. The linker places
so calledslop spacesin between the functions, allowing them to grow or shrink up to a certain
extent, without having to shift the following functions. The determination of the size of these
buffer spaces is everything else than trivial, a balance between wasting to much memory by
choosing spaces too big, and having to adapt too much functions after a change for too small
slop spaces has to be found.

In Figure 2.5, three functionsf, g andh are laid out in memory. Ifg is updated and its size
shrinks or grows, all the code below it is shifted. Functionh remains the same, but still needs
to be shifted, and all the pages indicated with tabs need to berewritten.

Figure 2.5: Memory layout for diff-based approach. Tabs indicate which pages are rewritten
[KP05].

Figure 2.6 shows the approach taken by Koshy and Pandey. Functions are provided with a
slop region to grow without running into other functions. Ascan be seen, the number of pages
that has to be rewritten for the two scenarios where the function shrinks or grows has been
reduced substantially. On the other hand, unused gaps in thememory layout are introduced. Of
course this method only works if the slop space allocated is large enough, otherwise the same
relocation as in Figure 2.5 takes place.

A special memory manager is added to the original linker, that tries to position the functions
optimally in memory. The base station maintains hash tablesfor symbol resolution and linking
related activities. Besides the large memory overhead, another problem arises after several
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Figure 2.6: Memory layout for slop space approach. Slop space is hatched, and tabs indicate
which pages are rewritten [KP05].

update processes, as the memory gets fragmented every time,what may require a complete
reinstallation of the image.

A new algorithm has been chosen for the comparison and encoding of the differences. Xdelta
[Mac00] is a binary diff algorithm, that produces difference files, also referred to as deltas. This
algorithm is further described in Section 3.3.3. Unfortunately, an implementation of this paper
is not available.

2.2.5 FlexCup

FlexCup [MGL+06] is another application used for differential reprogramming. Before the
installation, FlexCup extracts the binary code for the TinyOS program and generates single
components, that can be compiled independently, and are combined through clearly defined
interfaces. The linking process takes place on the node itself. With these binary components, a
global optimization of the code is no longer possible, it is restricted to the single components.

To be able to perform the linking on the node, some additionaldata is required. When an
application is installed, the following meta-data is generated: some generic program informa-
tion that describes the wiring of the components, a program-wide symbol table as well as a
relocation table for each binary component in the program. It is also stored on the sensor node,
using the external flash memory.

The exchange of a component works as follows: the binary codeof the object files is extracted
from the component to be exchanged on the central computer, including symbol and relocation
table. Then the program code of the new component is transmitted to the node, as well as the
new meta data. The nodes store the update information in the external memory. When the
complete component has been received, it has to be linked on the node.

The linking at runtime requires several steps. First, the symbol table has to be merged with
the newly received symbol data. After this task, for which a buffer of 3kB in RAM is needed, the
symbol table is written back to the external memory. Then therelocation table has to be replaced
with the new one. All the references in the relocation table have to be checked, whether they
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need to be updated. Updates are required for references fromthe new component code and
for references that changed their destination address. In the final step, the code of the new
component has to be loaded into program memory by the FlexCup boot loader.

2.2.6 Dressler and Truchat

Dressler and Truchat [FTD06] present a method for distributed software management in wire-
less sensor networks using profiling techniques. They propose mobile robots, that perform man-
agement and configuration tasks in stationary networks. Software architectures can be main-
tained and applied for task allocation, sensor calibration, and general-purpose reconfiguration
of surrounding sensor nodes, all based on the available resources at the robot systems. No new
concepts for the network programming are presented, the exchange of software modules is built
upon an extended version of Deluge.

2.3 Dissemination in Wireless Sensor Networks

Besides the discussed approaches dealing with the aspects ofthe update process, there is also
some work that takes a closer look at the dissemination step.

A naive scheme of single retransmission of packets results in the broadcast storm problem
[TNCS02]. This problem occurs when each broadcasted messageprompts a receiving node to
respond by broadcasting its own messages. These message in turn prompt further responses,
and so on. The collisions and contention affects the reliability of the communication and also
the energy efficiency. The following references focus on distribution of data in a wireless sensor
network.

2.3.1 Trickle

Trickle [LPCS04] is the epidemic algorithm used by Deluge forpropagating and maintaining
code updates in wireless sensor networks. A “polite gossip”policy is applied, where nodes
periodically broadcast a code summary to the local neighbors, but stay quiet if they have recently
heard a summary identical to theirs. A node that hears an older summary than its own broadcasts
an update. Instead of flooding the network with packets, the algorithm controls the send rate so
each node hears a small trickle of packets, just enough to stay up to date. An implementation
of Trickle is contained in TinyOS 2.x.

2.3.2 Sprinkler

Another algorithm for reliable data dissemination is Sprinkler [NASZ05]. It embeds a virtual
grid over the network, whereby it can locally compute a connected dominating set of the nodes.
Redundant transmissions can be avoided and a transmission schedule helps to avoid collisions.

2.3.3 Infuse

Infuse [Aru04] uses TDMA based scheduling to avoid collisions. Although TDMA guaran-
tees collision-freedom during message communication, messages can be lost due to unexpected
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channel errors (e.g., message corruption, environmental effects on signal strengths). To over-
come such errors, implicit acknowledgments are used to recover from lost messages.

2.3.4 MNP

Multihop Network Reprogramming (MNP) [Wan04] is another reprogramming service for sen-
sor networks. A Ripple-like propagation mechanism distributes the new image to the entire
network. At each ripple, a subset of nodes is acting as sourcenodes, and all the other neighbor-
ing nodes are receivers. A publish-subscribe mechanism is used to prevent multiple nodes from
becoming source nodes in the same neighborhood. Source nodes publish their newest version
and all interested nodes subscribe. MNP suppresses the number of senders by selecting a few
senders in a local manner. However, it does not pipeline packet forwarding and requires the en-
tire image to be reliably received before the next ripple canbegin. This results in larger latency.
To optimize energy efficiency, the active radio time of a sensor node is reduced by putting the
node into “sleep” state when its neighbors are transmittinga segment that is not of interest.

2.3.5 Gappa

To reprogram a sensor network, one can either communicate the entire new program to one (or a
few) node in the field, or communicate parts of the code to a subset of sensor nodes on multiple
channels at once. In the latter approach, the nodes need to communicate with each other to
receive the remaining segments.

A protocol for such gossip between nodes is presented with Gappa [WK06]. To better utilize
the multichannel resources and reduce contention, the protocol provides a multi-channel sender
selection algorithm. This algorithm attempts to ensure that in any neighborhood, at any time,
there is at most one sensor node transmitting on a given frequency. Moreover, the sender se-
lection algorithm is greedy in that it tries to select the sender that is expected to have the most
impact for each channel. The protocol also conserves energyby putting the nodes to “sleep”
state that are unlikely to contribute or receive data shortly.

2.3.6 Aqueduct

While Deluge focuses on propagating the same code image to a network of homogeneous sensor
nodes, this extension of Deluge is adapted to deal with heterogeneous networks more efficiently.
The goal of Aqueduct [Phi05] is to limit the reprogramming traffic to the nodes that are inter-
ested in the update, while still being able to bridge the gapsbetween regions of interested nodes
that are filled with uninterested nodes.

It introduces two roles for the nodes in a network,member nodesthat are interested in
receiving updates and cache the received parts in their external memory for later execution and
forwarding nodes, that just forward the data packets without caching. The forwarding nodes
are passive and do not download updates. The basic principlebehind Aqueduct is that member
nodes exchange code through normal Deluge interaction, butwhen member nodes are separated
by more than one hop of forwarding nodes, the forwarding nodes create a bridge by acting as
proxies for member nodes on either side of the gap.

Figure 2.7 illustrates the concept. The nodes interested inthe updates are depicted as circles,
while the squares represent the bridging nodes. Figure 2.7 (a) shows the propagation of ad-
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Figure 2.7: Forwarding bridge with Aqueduct in heterogeneous network [Phi05].

vertisements through intermediate nodes. These keep trackof the advertisements received and
the distance (in hops) to the source, and will reject identical advertisements that have a larger
“distance to base” number than already observed. Just as in Deluge, the interested node M2
will unicast its request, containing a bit vector with the desired pages. In Deluge, this is unicast
to an immediate neighbor, whereas in Aqueduct the request isunicast to the immediate parent
closest to the advertising node. Figure 2.7 (b) shows that the request traverses the shortest path
back to the member node M1. In the third phase, shown in Figure2.7 (c), each node along
the forwarding path pulls code image updates from its parentusing the machinery of Deluge.
Eventually, the code efficiently propagates to the destination M2 along this bridge, and does not
involve any of the other forwarding nodes.

2.4 Virtual Machine Approach

2.4.1 Maté / Bombilla

Maté [LC02] is a compact virtual machine designed specifically for wireless sensor networks
built on TinyOS. It has recently been renamed to Bombilla. Instead of installing applications as
binary objects on the sensor node, every node executes a bytecode interpreter. This interpreter
reads the special byte code commands from memory, and transforms these Maté operations
to TinyOS operations. Therefore, there does not have to be reinstallation and rebooting of an
application since the program is just some input data for Maté. Maté also contains support for
application code distribution, which is named code infection. Although virtual machines are
promising as system software for wireless sensor networks,their space and energy overhead
can render them counterproductive. Also, due to the restricted instruction set of Maté not all
semantics that are possible by specifying the program in nesC can be expressed.
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2.4.2 SensorWare

In SensorWare [BHS03], the developers set very high requirements on the hardware. It does not
fit into the memory of popular sensor nodes and targets richerplatforms to be developed in the
future. In contrast to Maté, also complex semantics can be expressed. The program services are
grouped into theme related APIs with Tcl-based scripts as the glue. Scripts located at various
nodes use these services and collaborate with each other to orchestrate the data flow to assemble
custom networking and signal processing behavior. Application evolution is facilitated through
editing scripts and injecting them into the network. Both SensorWare and Maté are limited in
that they support application updates only, by replacing high-level scripts. They do not permit
the lower level binary code to be modified.
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3
Analysis

In this chapter, we will first look at the requirements for theproject in Section 3.1.We will
decide on the basic utilities for general network programming in Section 3.2. Then, we discuss
different algorithms for the encoding of the code to be transmitted in Section 3.3 and analyze
several approaches for the recombination of the code in Section 3.5.

3.1 Requirements

The goal of this project is to allow the differential update of nodes in a wireless sensor network.
This process consists of several steps. First, the nodes have to bemanually programmed with
the basic update software. This step requires a physical connection to the nodes and therefore
has to be done before the nodes are distributed over the application area. Then, an application
can bewirelessly installedon the nodes, which requires the complete code of that application
to be sent to each node. If we want to reprogram the node, the code of the old and the new
application is compared and a difference file is computed with anencodingalgorithm. This
encoding step takes place on a computer, where no special restrictions regarding computational
power or energy usage are imposed. The focus here is on the size of the difference file, which
should be as small as possible, to save time and energy when sending it to the nodes.

This difference file, together with information about the application that should be updated
on the node, is then distributed to all nodes in the networks in theupdate disseminationstep.
The file is split into small packages that are stored in the external flash memory by the nodes.
All nodes have to be reached eventually trying to save time and energy. When all nodes have
received the update, no further communication between the nodes is necessary. We require the
nodes to send anacknowledgmentafter successful reception of the update files.

After having completely received the difference file, the nodes start thedecodingprocess.
The difference file is processed to build the code of the new application, involving also the code
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of the current application. An important restriction here is the impossibility to dynamically
allocate memory in a TinyOS program. Hence, no dynamic data structures such as hash tables
can be used. This is a severe restriction, since a lot of compression programs require such data
structures. As soon as the application image is built, the node initiates a restart and the new
image is transferred to program memory. This step requires aboot loader that performs the
transfer on a restart before the current application startsits execution. Finally, we would like
the reprogrammed nodes to send acompletion feedback, to be informed about the successful
restart.

3.2 Wireless Dissemination

To wirelessly install an application on the sensor node, oneof the approaches discussed in
Section 2.1 has to be applied. We want to be able to send complete code images from one
node to another. A data structure has to be developed to manage the code images, and to split
them up into pages and packets for transmission. The transmission protocol has to be suited
for large objects and must be reliable since low bandwidth and high loss rates are typical in
wireless sensor networks. We choose to rely on the implementation of Deluge and use its basic
functionality to send complete application images to a sensor node. Deluge also allows to store
multiple application images in the external memory, makingit possible to switch between these.

3.3 Encoding

The code patch to be disseminated in the network has to be put into a certain format in order
for the nodes to decode it and build the new image. Since we know the original file (source)
as well as the new version of the file (target), we should use this information during encoding.
The process of computing a “patch” of minimal size between two files is calleddelta encoding
or differential compression. There are several techniquesfor computing such a delta. The basic
problem goes back to the string-to-string correction problem [WF74], the task to find a minimal
edit script that converts a reference string into a target string. The operations used areinsert
anddelete. However, these algorithms, also referred to asinsert-deletealgorithms, do not
take into account that the data common to both files may not appear in the same order in the
two files. Neither does is capture substrings that are recurring several times.

The framework has been extended to the string-to-string correction problem with block moves
by Tichy [Tic84]. In contrast to theinsert-deleteapproach taken before, a sequence ofcopy
andinsert operations is used to describe the changes. Such algorithmsare described as
copy-based algorithms. The basic idea is to use pointers to substrings in the source file
to construct the target file. A further extension was presented with the well knownLempel-
Ziv compression algorithm [ZL77], which compresses a string bysubstituting its prefix with a
reference to already compressed data.

Delta algorithms are applied for example in software revision control systems where multiple
versions of each code file have to be stored. Changes between subsequent versions are typically
small, so substantial amounts of disk space can be saved by storing their difference informa-
tion. It has also been proposed to use deltas for improving HTTP performance by sending the
difference for outdated web pages.
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We will now compare some of these delta algorithms. A theoretical overview on differential
compression is given in [ABF+00], while delta algorithms are further described and analyzed
in [SM02] and [HVT96].

3.3.1 Diff

The most popular and widely used delta algorithm program is the file comparison utility Unix
diff [HM76]. The program finds an approximation of the longest common subsequence for
whole lines of text. By just considering changes on a per-linelevel, it is much faster than other
algorithms that compute differences on a byte-level. But with that restriction, the size of the
produced deltas is not optimal. Furthermore, it can only be used for text files.

3.3.2 Rsync

The Rsync algorithm [Tri99] was developed to synchronize files and directories from one lo-
cation to another, while minimizing data transfer using delta encoding when appropriate. This
copy-insert algorithm divides files into blocks and decidesfor each block if it has to be down-
loaded from the remote location or if it is identical. In our application scenario, we do the
compression and decompression locally, so downloading canbe replaced by a simple insert of
a data sequence from the difference file.

The source file is partitioned into equal blocks of a certain size. For each block, two check-
sums are computed: a reliable but expensive, and an unreliable but fast checksum. Now, we
iterate over all positions in the target file and consider theblock that follows after that position.
We use the same size for this block as we used for the source file. For every block, we compute
the unreliable checksum. As we always only shift the block boundaries by one byte, the check-
sum can be computed very efficiently by using a 32 bit “rollingchecksum”. Its computation
can be done in constant time. We now compare the hash value with the values of the source file
blocks, and if a matching block is found, we also compute the reliable checksum. The reliable
checksum used is a MD4 128 bit hash function. If both checksums match, a pointer to the index
of the matching block in the source file is stored in the diff file, and the position in the target
file is advanced by the length of the match. If no match occurred, the symbol at this position
is added to the diff file and the position advanced by one. The decoding is straightforward, as
the patch only consists of copy and insert instructions. Pointers to data blocks in the source file
have to be copied, and single bytes or byte sequences have to be inserted at the current position
in the target file that is being reconstructed.

The choice of a good block size is critical for the performance of the algorithm. If the two files
to compare are very similar, a large block size is more efficient. On the other hand, if we have
two files with a lot of differences, a small block size allows more matching blocks to be found.
Another important role plays the distribution of the differences. If they are equally distributed
over the whole file, Rsync may be completely inefficient, sincethere will be a difference in each
block. In practice, the block size is adapted during the encoding with certain heuristics.

3.3.3 Xdelta

Xdelta [Mac00] is another variant of a copy/insert delta algorithm. Contrary to Rsync, it does
not compare single blocks with each other, which makes sensefor remote file synchronization,
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but it compares every single byte of the two files. The difference file consists of pointers to data
sequences in the source file, and also to the already decoded part of the file being reconstructed.
This further optimizes the size of the difference patch. Thedata sequences to be copied can
be of arbitrary size, whereas the encoder tries to maximize the length of these sequences. If
no matching data blocks can be found in the source or target file, theinsert command is
used. An additionalrun command is provided, that expresses a sequence of the same byte of a
certain length.

Figure 3.1: Pseudo-code for the Xdelta algorithm [Mac00].

Figure 3.1 shows the pseudo-code for the Xdelta algorithm. The main function iscomputeDelta,
that takes the source and the target file as inputs. It builds astring matching data structure for
the source file by calling theinitMatch function. That function computes a hash table of
fingerprints for source blocks of a certain length. If hash collisions occur, the hash for a block
that appears first in the source file will always overwrite theother. The reason that finger-
prints for the earlier blocks are preferred is, that they potentially lead to longer matches. The
findMatch function then performs the string matching with the target file. The target file is
split into fixed-size pages, that are searched for matching fingerprints in the source hash table.
When a match is found, it checks the source file with a direct string comparison, and tries to
extend the match in both directions in thematchLength function.
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3.3.4 Zdelta

The Zdelta algorithm [TMS] uses the same basic ideas as Xdelta. The main difference is that
Zdelta also encodes the computed delta. The zlib compression library [Gai] is used to fur-
ther compress the produced delta with Huffman codes. Although it produces slightly smaller
deltas we can not use this algorithm. For the decompression of the delta, dynamic hash tables
are required. On the sensor nodes, dynamic memory allocation is not possible, therefore this
algorithm is eliminated from our choice.

3.3.5 VCDIFF

VCDIFF [KMMV02] is a general and portable data format for encoding compressed data or dif-
ferencing data, so that it can be easily transported among computers. This format is also used in
the Xdelta3 implementation. The decoding algorithm is independent from string matching and
windowing algorithms. This allows free choice of the encoder while keeping the same decoder.
The decoding time is proportional to the size of the target file, and uses space proportional to
the maximal window size.

The target file is partitioned into fixed-size blocks, calledwindows, which are processed
separately. Each target window can be compared against another window that is either part of
the provided source file or part of the already encoded targetfile. VCDIFF also uses the typical
copy-insertinstructions. The instructions to encode and direct the reconstruction of a target
window are called delta instructions. Besidescopy andadd (insert), there is an additional
run instruction, that is used to repeat a certain byte several times.

Below, there is a simple example taken from [KMMV02] to illustrate the source and target
windows and the delta instructions.

a b c d e f g h i j k l m n o p
a b c d w x y z e f g h e f g h e f g h e f g h z z z z

COPY 4, 0
ADD 4, w x y z
COPY 4, 4
COPY 12, 24
RUN 4, z

The upper string represents the source window, while the lower string corresponds to the
target window. That is, the part of the target file that is currently being decoded. The two
windows are concatenated, so that the first lettera in the second line is at location 16. The first
COPY instruction tells the decoder to copy four letters from the beginning of the source window.
Then, we insert the four lettersw x y z at the current position (which is 20). Another four
letters are copied from the source window. Now, the following 12 letters are not copied from the
source file, but from the currently decoded target window. Address 24 corresponds to position
8 in the target window. The data to copy from overlaps with thedata to be copied, what is
fine as long as the source copy address starts before the destination address. That way, periodic
sequences can be encoded efficiently. The lastRUN instruction, that appends 4 times the letter
z, is a compact way to encode a sequence repeating the same byte.

21



3 Analysis

We chose this algorithm for our implementation for several reasons. It is a very efficient
algorithm and the size of the generated delta files is small enough. It outperforms Rsync in
the quality of compression. Zdelta that offers even better results can not be used because of
the impossibility of dynamic memory allocation. An implementation for Xdelta is available for
Linux, so we can use this program for the encoding process.

3.4 Update Dissemination and Feedback

To distribute the delta files over the network, we use the mechanisms already present in Deluge.
The epidemic dissemination guarantees fast distribution,but uses a lot of bandwidth due to
the large number of messages exchanged. Every node broadcasts its profile periodically, and
even though the number of these advertisements slows down after some time with no new data
present, it causes substantial network traffic. To reduce some of this overhead, we only send
advertisements during the update or installation process.Once an image has been installed or
updated, the advertisements are stopped since we do not assume additional nodes that enter the
network and have to be reprogrammed as well.

As soon as a node hears about an update or a new image to be programmed it stores the node
address of the first sender of such an advertisement. The sender becomes the parent of that
node in animplicit feedback tree. The node starts with sending request messages to its parent.
When the data has been completely received from the parent node, a reception message is sent to
the parent. To make this communication reliable, the node repeats the sending until it receives
an ACK message. Any node that receives an update message, which always comes from its
implicit child node, forwards this message to its parent node and sends an acknowledgment to
the child node. The acknowledgment chain ends at the base station.

3.5 Code Recombination

Once the differential update file is stored at the node it has to be recombined to the new image
and the code that is currently running has to be overwritten.There are three general options to
do this which will be described in this section.

3.5.1 Halve Memory

For some applications, using half of the available memory may be sufficient. In this case, the
memory is split in an upper and lower half, and, with the current code running in the upper half,
the new code image is built in the lower one. Once the image is built, a small piece of code is
placed in RAM, and executed to copy the bottom half to the top half and to reboot the node on
completion. Since the processor is running code from RAM, there is no problem in overwriting
the old code.

3.5.2 2 Phase Approach

The previous approach can be extended to use all available memory. We can split the code
into two halves, and place all the critical code required forour code distribution scheme in the
bottom half. The rest of the bottom and the whole top half can be used for application code.
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In the initialization phase the application is stopped and the top memory half is cleared. The
critical code in the bottom half keeps running. Then, the first approach is used to update the
bottom half containing the critical code. Once this is done,the new critical code is used to build
the new top half containing the rest of the application code.Only when this is completed we
can restart the application.

This approach has a number of drawbacks. First, the application will be stopped during the
whole process instead of just during the copying of the new image. Second, we need to do the
verification step for both halves increasing the overhead ofthis approach. Finally, this approach
is only possible if the critical code is smaller than half of the memory.

3.5.3 Build in EEPROM

In our implementation we use the external EEPROM memory as temporal buffer. We simply
build the new code image in one of the EEPROM sectors and use a small piece of code in RAM
that tells the boot loader to load the image into the program memory on a restart. An advantage
of this approach is that once the image is built we can have multiple images stored in EEPROM
and load them when necessary.
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Design and Implementation

This chapter outlines the architecture of our implementation and describes the most important
modules. The extension of Deluge is described in Section 4.1. The encoding of the delta file is
explained in Section 4.2 and the implementation of the update mechanism in Section 4.3. The
decoding process is described in Section 4.4.

4.1 Wireless Dissemination

For the dissemination and management of the application images the Deluge application has
been adapted. Changes to the basic functionality of the original version include the disabling of
periodic advertisement messages and the feedback mechanism. Advertisements are now only
sent during the update process and stopped when the images orupdate files have been distributed
throughout the network.

A feedback mechanism has been added, that allows status updates for every single node.
A simple implicit node hierarchy is established while the updates are propagated. When a
node receives an advertisement for an image that it does not yet know, it stores the sender
of that advertisement as its parent in the implicit tree. As soon as the image or diff file has
been completely received, a notification message is sent to that node. The sending is repeated,
until the node receives an acknowledgment for the message. Any node that receives an update
notification message forwards it to its parent node and sendsan acknowledgment to the sender of
the notification. The process repeats until all messages areacknowledged. For the case that the
network bandwidth is too small and the update notification messages do not get acknowledged,
the nodes give up after a certain number of tries.

To store the application images on the node, the external flash memory is divided into slots.
Two additional slots are added to the normal slots used by Deluge, one for storing the delta file,
and a second for the reconstruction of the new image. We will now go into more detail and have
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a look at the format of the code images, as they are stored on the node, in Figure 4.1.

Figure 4.1: Memory layout of Deluge image.

At the lowest memory address is theDeluge Image Descriptor, a struct that stores informa-
tion about the image. Its structure is shown in Figure 4.2. Then the Cyclic Redundancy Check

typedef struct DelugeImgDesc {
uint32_t uid; // unique id of image
imgvnum_t vNum; // version num of image
imgnum_t imgNum; // image number
pgnum_t numPgs; // num pages of complete image
uint16_t crc; // crc for vNum and numPgs
uint8_t numPgsComplete; // numPgsComplete in image
uint8_t reserved;

} DelugeImgDesc;

Figure 4.2: Deluge Image Descriptor struct.

(CRC) data follows. It ensures the integrity of the complete image. The check is performed
by the boot loader before transferring the image into program memory. After that, theDel-
uge identifier block follows. This information is presented to the user, when he investigates
a node by sending a ping message. Two addresses are placed next, the address in memory
where the boot loader TOSBOOT ends (TOSBOOT_END), and the length of the Deluge im-
age (SEC_LENGTH). These two addresses are used by the boot loader to guarantee that the
boot loader code does not get overwritten. The binary code for the completeDeluge image
follows, terminated with an End-Of-File (EOF) delimiter. The space between this image and
the beginning of the next one is padded out.
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4.2 Encoder

The installation of the update is done in several steps. The first step is the computation of the
delta file. The input to the encoder is the binary code of the two applications. We need to have
exactly the same data that is already stored on the node, since the layout of the reconstructed
image has to match as well. The binary code of an image can be found in itstos_image.xml
file. When an image gets injected into a network with Deluge, the Deluge java tool chain
program extracts the binary code from that file and adds some additional data like the CRC
data. We do exactly the same for both the source and target fileresulting in the same code
layout as presented in Figure 4.1. The only difference is that we do not have the 16 Bytes
Deluge image descriptor at the beginning.

Now we compare these two data structures beginning with the CRCcode and ending with the
image in order to generate a delta. The encoder we use is the current Xdelta implementation,
Xdelta3 [Mac]. Our executable produces deltas in the VCDIFF format (see Section 3.3.5),
without further compressing them. Unfortunately, the Xdelta3 code is only available for Linux.
According to its developer, the code is being worked on to compile also on Windows machines
in the future. With Linux, the encoder is integrated in the update program. As long as the
encoder is not available under Windows, the delta files have to be produced by hand. First we
have to generate the source and target file, by calling a helper function with the java tool chain:

java net.tinyos.tools.DelugeD -w
-ti=build/tinynode/tos_image.xml -o=<source or target>

This step has to be done for the source as well as for the targetapplication. The-ti parameter
is the originaltos_image.xml file, while the-o parameter is the filename of the result.
These two generated files are the input for the encoder. The usage of the compressor is as
follows:

xdelta3 -s <source> <target> > DELTA

4.3 Update Installation

To send a delta file to the nodes and initiate an update, an advertisement message is sent to the
base node. The advertisement contains a Deluge image descriptor. The number of the image to
be updated is given, as well as the version number of that image increased by one to announce
a change. The number of pages in the struct however refers to the size of the delta file. The
reserved field is used to indicate the update. The delta file isnow received by the node and
stored in the delta slot of the external flash memory. The usual integrity checks are omitted
since the delta does not fit into the conventional image format. Another information sent with
the advertisement is the slot number where the reconstructed image should be stored. This
information is also added to the reserved field. When the complete delta has been received
and the reception feedback has been sent the decoder is started. It processes the delta file and
copies the needed data from the image slot where the source image is stored. The new image is
constructed in the update slot of the external memory. Figure 4.3 shows the decoding process
and the involved data. There are three image slots shown in the illustration. The middle one is
the slot where the delta gets stored, and the right one is the “construction” slot for the update
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Figure 4.3: The data sections involved in the decoding of thedelta file.

image. In the left slot lies the source image. The colors clarify which data is involved in the
decoding process.

With the decoding process finished, the image is copied to itsdestination slot. If it corre-
sponds to the currently running application, a flag is set andthe node is rebooted. The boot
loader transfers the code to program memory and starts its execution.

4.4 Decoder

The task of the decoder is to process the VCDIFF encoded delta file and construct the target
image. The decoder is divided in two components: One for the handling of the delta file and
another one to carry out memory accesses.

The delta decoder reads the delta instructions and executesthem. The processing of a delta
instruction is implemented as a nesC task which is posted by the Deluge main component. That
way, other routines do not get blocked since the decoding maytake a while. It is possible that
the decoding starts on one node while another node has just received the delta and waits for its
feedback message to be acknowledged

The execution of the delta instructions requires read and write accesses to EEPROM memory.
A characteristic of EEPROM memory is that the number of rewrite cycles is limited. Changing
a single byte is only possible by rewriting a whole block. In practice, this means a block
has to be erased completely before it can be rewritten. Theserepeated write and erase cycles
eventually damage the thin insulating layer, a process called ’wear out’. Typically, about 10’000
erase-write cycles are possible with an EEPROM module.

To access the EEPROM memory, thePageEEPROM component is used. This component is
able to read and write whole pages. As a consequence of the restrictions outlined above, our
implementation of the EEPROM storage module uses a buffer tokeep the page that is currently
worked on in RAM. By keeping this page granularity we try to reduce the number of read or
write accesses to the memory. Successive reads to the same page can be done immediately and
with only one EEPROM access as the page is already in RAM. When weaccess another page,
the current buffer is only written to memory if it is dirty, that means changes were made to
it. To write, the page has first to be read into the buffer, thenthe desired bytes are written in
the buffer and before the buffer is written back to memory thepage has to be erased. This is
required because of the EEPROM write restricions describedabove. Due to the buffer,write
commands are deferred until another page is accessed, or theflush command is invoked.
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interface EEPROMStorage {
command result_t init(startPage);
command result_t read(offset, data, length);
command result_t readUint32(offset, uint32, inc);
command result_t write(offset, data, length);
command result_t run(offset, byte, length);
command result_t copy(sourceOffset, targetOffset, length);
command result_t sync();
command result_t flush();

}

Figure 4.4: The EEPROM Storage component.

Unfortunately, the decoder needs a more sophisticated interface to the memory. It does not
only require commands toread andwrite single bytes or byte sequences but also a func-
tionality tocopy a sequence of bytes from one address in memory to another or torepeatedly
write the same byte (run). The interface of the storage module is shown in Figure 4.4.The
readUint32 instruction is a convenience function that reads and decodes an unsigned 32 bit
integer from the given memory address and stores the number of bytes used in memory for that
integer (1 – 4 Bytes).
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5
Results

This chapter discusses results achieved with our implementation. In Section 5.1 we evaluate the
size of the delta patches and in Section 5.2 we analyze the time used for the update process.

5.1 Size of Code Updates

An important performance measure is the size of the delta patches used to update the appli-
cations. There are scenarios where the new image is almost identical to the current image,
resulting in very small delta files, and other scenarios where we replace one application with
a completely different application. In that case, the size of the delta depends on the quality of
the compression. The number of bytes to send will be smaller in any case as there are always
similar code sections in two different application images.We will look at some test examples
in Table 5.1. We applied the Xdelta encoder to several application images. The example appli-
cations without integrated Deluge support (e.g.Blink or CntToLeds) have a code size that
is a lot smaller than those with Deluge support (e.g.BlinkDeluge), but once they are loaded
into program memory, they do not support any further networkreprogramming. So the relevant
example applications are those that integrate Deluge. The additional code size is about 30 kB.
That is 8 kB more than the normal Deluge version, and it is mostly caused by the memory
access and decoding functions.

As can be seen from the examples, the encoding ensures a smalldelta size for the similar
applications likeBlinkDeluge andBlinkFastDeluge. BlinkFast is the same appli-
cation asBlink, the only difference lies in the blink frequency, so only a constant has been
changed. The reason the delta is not only a few bytes in size isthe delta header overhead.
A few bytes are needed to indicate the window sizes and some additional information is in-
cluded. In most application scenarios only some lines of code change, so the usage of our
update tool will be similar to this case. As another example,we evaluated the delta size for an
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Application Initial binary Final binary Delta size Compression

size [bytes] size [bytes] [bytes] ratio

Blink to BlinkFast 3500 3500 79 2.3%

Blink to CntToLeds 3500 3494 984 28.2%

BlinkDeluge to Blink-
FastDeluge

34482 34482 254 0.7%

BlinkDeluge to CntTo-
LedsDeluge

34482 34456 7440 21.6%

BlinkDeluge to Oscillo-
scopeDeluge

34482 38374 17789 46.4%

CntToRfmDeluge to Cnt-
ToLedsAndRfmDeluge

34714 35012 7604 21.7%

Table 5.1: The code sizes of delta patches and original images for different update scenarios.

update of theCntToRfm to theCntToRfmAndLeds application, both with integrated Del-
uge support. We see that for applications that have different code, likeBlinkDeluge and
OscilloscopeDeluge, the size of the delta is still only half the size of the new application
image.

5.2 Time Used for Updates

To test the performance of the update mechanism in terms of time, we used two test scenarios.
The nodes have been arranged in star topology for the first test and in line topology for the
second.

5.2.1 Star Topology

In the first scenario, the sensor nodes are placed in an environment where every node is able to
reach all other nodes. This means that the maximum distance between any of the nodes does
not exceed about 200 m, which is the maximum radio range of a TinyNode mote. This “star”
setup is shown in Figure 5.1.

The results for this star topology for an update fromBlink to BlinkFast are shown in
Table 5.2. We have measured the time for the dissemination ofthe delta file first. A second
measurement indicates the total time it takes until all the nodes have received and decoded the
update. Finally, the total time of the process including thefeedback messages is listed together
with a comparison of the time used for the process by Deluge. All of the test applications
have integrated differential Deluge support. For such small changes our solution outperforms
Deluge. The amount of time saved by sending only the small delta exceeds the additional time
we invest for the decoding on the node. With 10 nodes, the delta is disseminated to the nodes
in 23 seconds and the update is complete after 26 seconds. If we perform the update with the
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Figure 5.1: Test setup with the nodes arranged in the star topology.

Blink to BlinkFast

Number
of Nodes

Time for Dis-
semination

Total time
for Update

Total time
with Feedback

Deluge
total time

3 8 s 22 s 24 s 126 s

10 10 s 23 s 26 s 131 s

Table 5.2: Update time for a Blink to BlinkFast update in the star scenario.

normal Deluge version, the application is smaller, but the process still takes about 5 times longer
as all the data has to be sent.

The results for an update between two different small applications likeBlink andCntToLeds
are shown in Table 5.3. The differential and the normal version of Deluge take about the same
time for the process. The time saved by only sending 20 percent of the amount of data to the
node is spent on decoding. It only takes 34 seconds to disseminate the update, but another 95
seconds to process the delta. The number of nodes does not heavily influence the performance
of both update tools. A slight advantage results for the differential approach. With less data to
transmit, also less retransmissions of packets have to be done.

A worse scenario for the differential Deluge is shown in Table 5.4. AsOscilloscope
andBlink do not have much common code sections, the patch saves only half the size of the
data transmission. The decoding is very time intensive here, which is the reason the differential
approach takes longer than just sending the complete new image.

Blink to CntToLeds

Number
of Nodes

Time for Dis-
semination

Total time
for Update

Total time
with Feedback

Deluge
total time

3 34 s 125 s 128 s 126 s

10 34 s 128 s 140 s 130 s

Table 5.3: Update time for a Blink to CntToLeds update in the star scenario.
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Blink to Oscilloscope

Number
of Nodes

Time for Dis-
semination

Total time
for Update

Total time
with Feedback

Deluge
total time

3 67 s 224 s 228 s 165 s

10 85 s 240 s 246 s 172 s

Table 5.4: Update time for a Blink to Oscilloscope update in the star scenario.

Blink to BlinkFast

Number
of Nodes

Time for Dis-
semination

Total time
for Update

Total time
with Feedback

3 17 s 31 s 37 s

10 72 s 85 s 112 s

Table 5.5: Update time for a Blink to BlinkFast update in the line scenario.

5.2.2 Line Topology

In the second test scenario we assume a distribution of the nodes in the network that corresponds
to a “line”. Each TinyNode is placed in a line with the maximumradio range distance between
them. That way, the reprogramming process will take place ina multi-hop fashion as the pages
of the update have to be sent from one node to the other, only taking one hop at a time. Figure 5.2
shows the line topology. The dissemination of the update takes longer that way, but thanks to
page pipelining the nodes do not have to wait for the completeupdate and can start forwarding
pages as soon as they have received the first page.

Figure 5.2: Test setup with the nodes arranged in line topology.

In Table 5.5, we show the results for the line topology for theBlink andBlinkFast
applications. Compared to the star topology, the time for thedissemination does not depend so
much on the number of pages to be sent, but on the number of nodes in the line. The time for
the decoding remains the same, while the feedback takes longer.

We also conducted the measurements for theBlink andCntToLeds applications, which
are presented in Table 5.6. Once again, the update takes moretime to reach all nodes in the
network. However, as the amount of data to send is bigger thanin the previous example, the
delay caused through this topology becomes less important for the overall performance.
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Blink to CntToLeds

Number
of Nodes

Time for Dis-
semination

Total time
for Update

Total time
with Feedback

3 71 s 164 s 169 s

10 124 s 218 s 237 s

Table 5.6: Update time for a Blink to CntToLeds update in the line scenario.
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6
Conclusions and Future Work

In this chapter, we draw a conclusion and list some possible extensions to the existing system.

6.1 Summary

In this master thesis, an application to update wireless sensor networks with differential patches
was designed and implemented for TinyOS on the TinyNode platform. The Xdelta algorithm
was chosen for the differential compression. The delta patches to be disseminated in the network
are generated in the VCDIFF format by the Xdelta3 encoder. To be informed about the update
process, the Deluge application was extended with feedbackfunctionality. The system has been
tested in several scenarios, showing a good performance forupdates with applications that are
similar.

6.2 Evaluation and Discussion

Chapter 5 shows good results for updates with similar code images. Our solution is targeted to
facilitate debugging and testing. Normally, the developerhas to test an application, fix some
bugs or add a certain functionality and test it again. Duringthese test cycles, the amount of code
changed in the application is usually small, so our solutionis suited to speed up the development
process. As soon as we have larger sections of different codein the two versions, the time used
for the decoding of the delta patch grows bigger. The advantage of having less data packets to
send is degraded. If we completely replace an application with a different one, the results of
our solution are similar to the Deluge implementation, or even worse. For better results, the
EEPROM access would have to be optimized for the decoding component.
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6.3 Future Work

There are a few things which could improve the performance ofthe current solution. The
encoder should be completely integrated into the tool also for Windows environments. This
can be achieved as soon as the Xdelta3 project is also available under Windows. Through
personal communication with the developers of the Xdelta3 project, they are currently working
on porting the code. The integration is then straightforward as only one additional call of the
executable by Java’s runtime environment is sufficient.

The feedback could be improved to support a visual representation of the sensor nodes in
the network. The update application could be integrated in the controlling tool which has also
been developed at the Distributed Computing Group [Cad06]. Inthat thesis, a framework was
designed, that allows to watch and inspect components remotely. An Eclipse plugin was devel-
oped to keep an overview of the network.
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The following tutorial on the differential Deluge implementation is based on the Deluge tutorial
[Ber05]. Only the new functions and the differences to the Deluge tutorial are described below.

A.1 Installing the Boot Loader

DelugeDiff requires a boot loader, TOSBoot, to reprogram thenode. To ensure that TOSBoot
installs correctly when installing a TinyOS application wetry building and installing Blink on
a TinyOS node by going totinyos-1.x/apps/Blink and typing the following:

% make tinynode bsl.<x> install.1 TINYOS_NP=BNP

where thex in thebsl.x parameter is the number of the COM port we use to connect to the
node. If we work with TinyNode we have to decrease the COM port number by one. So if we
connect a node over port COM 3, we have to providebsl.2 as parameter.

The most important parameter isTINYOS_NP=BNP. For other environments, TOSBoot is in-
stalled with every application by default since TinyOS version 1.1.15 [Web05]. Unfortunately,
this is not true for the TinyNode environment. This is why we have to add theTINYOS_NP
parameter to install the boot loader manually. A problem mayarise if the boot loader has not yet
been compiled or if its path can not be resolved. We have to check thetinynode.target
file, which can be found in the shockfish contribution folder undertinyos-1.x\contrib\
shockfish\tools\make\tinynode.target. Here, we may have to change the fol-
lowing line:

BOOTLOADER := $(shell cygpath -m $(BOOTLOADER))

by adding quotes to the path name as follows:

BOOTLOADER := "$(shell cygpath -m $(BOOTLOADER))"
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After having programmed the node with the Blink application,we can try to verify the success-
ful installation of the boot loader.

Once installed, we reset our node by turning it off then on. Weshould notice TOSBoot’s
execution by displaying a count-down sequence on the LEDs, with the red LED turning off last.
Once all the LEDs have turned off, the Blink application should start blinking the red LED. The
successful completion of this step is crucial for the reprogramming to work.

A.2 Installing DelugeDiff

To format the flash storage, we proceed as described in the tutorial. Next, we compile and install
theDelugeDiffBasic application. We add the DelugeDiff library to the makefile like this:

PFLAGS += -I/opt/tinyos-1.x/tos/lib/DelugeDiff

The install process will install both the basic DelugeDiff application and TOSBoot. We should
make sure to set the node ID appropriately when installing the application. For the feedback to
work properly, every node should be assigned a unique ID. Forexample:

% make tinynode bsl.<x> install.9 TINYOS_NP=BNP

will set the node ID to 9 when installing the application. DelugeDiff will save the node ID so
that it remains persistent across reboots between different program images.

A.3 Reprogramming with a New Program Image

We continue with the tutorial by pinging the node and installing DelugeDiffBasic as the
golden image. To prepare theBlink code for network reprogramming, we add theDeluge-
DiffC component and wire it toMain.StdControl. Now we install this application in the
network as in the tutorial. We choose image number 2 for the application. The output for 10
nodes should look something like this:

$ java net.tinyos.tools.DelugeD -i -ti=build/tinynode/
tos_image.xml -in=2 -f -n=10

Pinging node ...
Connected to Deluge node.
Getting data for image [3] -----------------------
Ihex read complete:
Total bytes = 34280
Sections = 2

--------------------------------------------------
Replace empty image with:
Image: 2

Prog Name: Blink
Compiled On: Thu Nov 23 15:04:26 CET 2006
Platform: tinynode
User ID: andreas
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Hostname: eth-0c224a10dfd
User Hash: 0x79eb35f1

Injecting page [32] of [32] ...

Node 102: Image 2 updated
Node 108: Image 2 updated
Node 106: Image 2 updated
Node 104: Image 2 updated
Node 100: Image 2 updated
Node 103: Image 2 updated
Node 105: Image 2 updated
Node 109: Image 2 updated
Node 107: Image 2 updated
Node 101: Image 2 updated
update done!

--------------------------------------------------
DONE!

A.4 Updating with a New Program Image

In this section, we will update our network with a new application. TheBlink application
has already been installed on the node in image slot number 2.We choose theCntToLeds
application for the reprogramming. We prepare it as described above by adding theDeluge-
DiffC component and compile it like this:

% make tinynode TINYOS_NP=BNP

Now, we have to create the delta file for this update process. This has to be done manually under
Windows. We start by extracting the binary code:

% java net.tinyos.tools.DelugeD -w -ti=build/tinynode/
tos_image.xml -o=CntToLedsDelugeDiff.bin

The binary code of the application is output inCntToLedsDelugeDiff.bin, specified
with the-o parameter. We repeat the same procedure for our Blink application, resulting in the
BlinkDelugeDiff.bin file. To generate the delta, we call the Xdelta compressor:

% xdelta3 -s BlinkDelugeDiff.bin CntToLedsDelugeDiff.bin
Blink2CntToLeds.delta

We pass the binary source and target files to the encoder and get the final delta file,
Blink2CntToLeds.delta.

To start the update process, we change to theCntToLedsDelugeDiff folder and call the
java tool chain:

% java net.tinyos.tools.DelugeD -u -ti=build/tinynode/
tos_image.xml -de=Blink2CntToLeds.delta
-in=<image_number> -n=<number_of_nodes>
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We start the update with the-u parameter, indicate the target image file with-ti and provide
the delta file to use with the-de parameter. To pass the image number where we want the
update installed we use the -in parameter and the number of nodes in the network is specified
with -n.

Under Linux it works much easier,-si refers to the original image, the source image.

% java net.tinyos.tools.Deluge -u -si=<source_tos_image.xml>
-ti=<target_tos_image.xml> -in=<image_number>
-n=<number_of_nodes>

If we do the reprogramming with 10 nodes, we receive a feedback from each node when it has
completely received the delta and when it has finished the update process. Again for ten nodes,
the output could look as follows:

$ java net.tinyos.tools.DelugeD -u -ti=build/tinynode/
tos_image.xml -de=Blink2CntToLeds.delta -in=2 -f -n=10

Pinging node ...
Connected to Deluge node.
Getting data for image [3] -----------------------
Ihex read complete:
Total bytes = 34456
Sections = 2

--------------------------------------------------
Update image:
Image: 2

Prog Name: Blink
Compiled On: Thu Nov 23 15:04:26 CET 2006
Platform: tinynode
User ID: andreas
Hostname: eth-0c224a10dfd
User Hash: 0x79eb35f1

With image:
Image: 2

Prog Name: CntToLeds
Compiled On: Thu Nov 23 15:05:18 CET 2006
Platform: tinynode
User ID: andreas
Hostname: eth-0c224a10dfd
User Hash: 0x79eb35f1

Injecting page [7] of [7] ...

Node 102: Update received
Node 103: Update received
Node 102: Image 2 updated
Node 106: Update received
Node 108: Update received
Node 104: Update received
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Node 109: Update received
Node 101: Update received
Node 100: Update received
Node 108: Image 3 updated
Node 107: Update received
Node 103: Image 2 updated
Node 105: Update received
Node 106: Image 2 updated
Node 104: Image 2 updated
Node 109: Image 2 updated
Node 101: Image 2 updated
Node 107: Image 2 updated
Node 100: Image 2 updated
Node 105: Image 2 updated
update done!

--------------------------------------------------
DONE!

We can now resume and execute the reboot command as follows:

% java net.tinyos.tools.DelugeD -r -in=2

We specify the image slot number of the application we would like to program the node with
by setting-in to 2. After a few moments, the node will begin counting quickly through the
LEDs, signaling the programming process. Once complete, the node displays the count-down
sequence and executesCntToLedsDelugeDiff. This application simply flashes the LEDs
counting from 1 to 7. We can check it is running application bypinging the node again.

We have just successfully reprogrammed a network over the air. To demonstrate the useful-
ness of the Golden Image slot, we reset our node repeatedly insuccession. After repeated resets,
TOSBoot will flash all three LEDs simultaneously and reprogram your node. Connect this node
to your computer and ping it using the Deluge Java tool. You should see that its executing image
is nowDelugeDiffBasic again.

A.5 Frequently Asked Questions

This section lists a set of common mistakes that users shouldavoid:

1. I injected the reboot command, my node reboots, but does not reprogram itself to
the new image.

Look carefully at the LEDs displayed by TOSBoot. If TOSBoot blinks the red LED three
times before counting down, the system voltage is too low to safely reprogram the node.
Replace your batteries and try again.
If no LEDs blink at all after the reboot command has been injected, maybe TOSBoot is
not or incorrectly installed. Test this as described in A.1.In case this fails, something is
wrong with your boot loader.
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2. If I install DelugeDiff on a node where it has been installed on previously, the old
images are still present on the node.

This happens sometimes because DelugeDiff loads the meta data stored in flash memory.
You should always be aware of the fact that even the formatting application does not
totally erase or rewrite flash memory.

3. TOS_LOCAL_ADDRESS and TOS_GROUP_ID are not restored appropriately.

Important node state includingTOS_LOCAL_ADDRESS andTOS_GROUP_ID are re-
stored whenNetProg.init() is called. It is important to remember thatNet-
Prog.init() should be called before using any of these values. To ensure this be-
havior, wireDelugeC.StdControl or NetProgC.StdControl to Main.Std-
Control and never referenceTOS_LOCAL_ADDRESS andTOS_GROUP_ID in Std-
Control.init() of any module.

44



Bibliography

[ABF+00] M. Ajtai, R. Burns, R. Fagin, D. Long, and L. Stockmeyer. Compactly encoding
unstructured input with differential compression, 2000.

[Aru04] M. (Umamaheswaran) Arumugam. Infuse: a tdma based reprogramming service
for sensor networks. InSenSys ’04: Proceedings of the 2nd international con-
ference on Embedded networked sensor systems, pages 281–282, New York, NY,
USA, 2004. ACM Press.

[Ber05] U.C. Berkeley. Deluge 2.0 - tinyos network programmingmanual, 2005.
Retrieved: November 16, 2006 from U.C. Berkeley:http://www.cs.
berkeley.edu/~jwhui/research/deluge/deluge-manual.pdf.

[BHS03] A. Boulis, Ch.-Ch. Han, and M. B. Srivastava. Design and implementation of
a framework for efficient and programmable sensor networks.In MobiSys ’03:
Proceedings of the 1st international conference on Mobile systems, applications
and services, pages 187–200, New York, NY, USA, 2003. ACM Press.

[Cad06] O. Caduff. Controlling wireless sensor networks. Master’s thesis, Department of
Computer Science, ETH Zurich, 2006.

[CT03] Inc. Crossbow Technology. Mote in-network programming user reference,
2003. Retrieved: November 16, 2006 from Crossbow Technology,Inc.:
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf.

[DFFMM06] H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler. Tinynode: a com-
prehensive platform for wireless sensor network applications. InIPSN ’06: Pro-
ceedings of the fifth international conference on Information processing in sensor
networks, pages 358–365, New York, NY, USA, 2006. ACM Press.



Bibliography

[FTD06] G. Fuchs, S. Truchat, and F. Dressler. Distributed software management in sensor
networks using profiling techniques. In1st IEEE/ACM International Conference
on Communication System Software and Middleware (IEEE COMSWARE2006):
1st International Workshop on Software for Sensor Networks (SensorWare 2006),
pages 1–6, jan 2006.

[Gai] J. Gailly. zlib compression library. Available at:http://www.gzip.org/
zlib/.

[HC04] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination proto-
col for network programming at scale. InProceedings of the 2nd international
conference on Embedded networked sensor systems, pages 81–94. ACM Press,
2004.

[HM76] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison.
Technical Report CSTR 41, Bell Laboratories, Murray Hill, NJ, 1976.

[HSW+00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. Sys-
tem architecture directions for networked sensors. InArchitectural Support for
Programming Languages and Operating Systems, pages 93–104, 2000.

[HVT96] J. J. Hunt, K.-Ph. Vo, and W. F. Tichy. An empirical study of delta algorithms. In
Ian Sommerville, editor,Software configuration management: ICSE 96 SCM-6
Workshop, pages 49–66. Springer, 1996.

[Jeo05] J. Jeong. Incremental network programming for wireless sensors. Master’s thesis,
EECS Department, University of California, Berkeley, November 21 2005.

[KMMV02] D. Korn, J. MacDonald, J. Mogul, and K. Vo. The VCDIFFGeneric Differencing
and Compression Data Format. RFC 3284 (Proposed Standard), June 2002.

[KP05] J. Koshy and R. Pandey. Remote incremental linking for energy-efficient repro-
gramming of sensor networks, 2005.

[LC02] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, USA, Oct. 2002. To appear.

[LPCS04] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks, 2004.

[Mac] J. MacDonald. xdelta compression tool. Available at:http://www.xdelta.

org/.

[Mac00] J. MacDonald. File system support for delta compression, 2000.

[MGL+06] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rother-
mel. Flexcup: A flexible and efficient code update mechanism for sensor net-
works. InProceedings of the Third European Workshop on Wireless Sensor Net-
works (EWSN 2006), pages 212–227, February 2006.

46



Bibliography

[NASZ05] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and energy
efficient data dissemination service for wireless embeddeddevices. InRTSS
’05: Proceedings of the 26th IEEE International Real-Time Systems Symposium,
pages 277–286, Washington, DC, USA, 2005. IEEE Computer Society.

[Phi05] L. A. Phillips. Aqueduct: Robust and efficient code propagation in heterogeneous
wireless sensor networks. Master’s thesis, University of Colorado at Boulder,
2005.

[RL03] N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor net-
works. InWSNA ’03: Proceedings of the 2nd ACM international conference on
Wireless sensor networks and applications, pages 60–67, New York, NY, USA,
2003. ACM Press.

[SA05] Shockfish SA. Tinynode 584 / standard extension boarduser’s manual, rev
1.1, 2005. Retrieved: November 16, 2006 from Shockfish SA:http://www.

tinynode.com/uploads/media/TinyNode/Users_Manual_rev11.pdf.

[SHE03] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism
for wireless sensor networks, 2003.

[SM02] T. Suel and N. Memon. Algorithms for delta compression and remote file syn-
chronization, 2002.

[Tic84] W. F. Tichy. The string-to-string correction problem with block moves.ACM
Trans. Comput. Syst., 2(4):309–321, 1984.

[TMS] D. Trendafilov, N. Memon, and T. Suel. zdelta: An efficient delta compression
tool.

[TNCS02] Y.-Ch. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. Thebroadcast storm problem
in a mobile ad hoc network.Wirel. Netw., 8(2/3):153–167, 2002.

[Tri99] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis,
Australian National University, 1999.

[Wan04] L. Wang. Mnp: multihop network reprogramming service for sensor networks.
In SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 285–286, New York, NY, USA, 2004. ACM
Press.

[Web05] TinyOS Website. Significant changes in tinyos between v1.1.13 and 1.1.14, 2005.
Retrieved: November 16, 2006 from TinyOS Website:http://www.tinyos.

net/tinyos-1.x/doc/changes-minor-releases.html#1.1.14.

[WF74] R. A. Wagner and M. J. Fischer. The string-to-string correction problem.J. ACM,
21(1):168–173, 1974.

[WK06] L. Wang and S. S. Kulkarni. Gappa: Gossip based multi-channel reprogramming
for sensor networks. Technical Report MSU-CSE-06-8, Department of Computer
Science, Michigan State University, East Lansing, Michigan, February 2006.

47



Bibliography

[WLLP01] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communi-
cating with a cubic-millimeter computer.Computer, 34(1):44–51, 2001.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977.

48


