
Master Thesis

Controlling Wireless Sensor Networks

Otmar Caduff
caduffo@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer, 2006

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Nicolas Burri and Pascal von Rickenbach

mailto:caduffo@student.ethz.ch

Acknowledgements

After five years of studying, I am now about to complete my degree in Computer
Science. This definitely would not have been possible with the support of some
people I would like to thank.

Firstly, I would like to thank my parents for supporting me all the time and
having made it possible for me to study. A big ‘thank you’ goes to Andrea for
being appreciative of me being engaged in my studies. I also would like to thank
my brothers, my friends and everyone being a good person to me.

With respect to this thesis, I especially would like to thank my advisors
Nicolas and Pascal and Prof. Dr. Roger Wattenhofer for their support, dis-
cussions, ideas and feedback and for giving me the possibility to work on this
thesis. Thanks for this learning experience!

Contents

1 Introduction 7
1.1 Problem Description . 7
1.2 Background Information . 7

1.2.1 TinyOS, NesC . 8
1.2.2 Eclipse Platform . 9

2 Related work 11
2.1 Nucleus Network Management 11
2.2 Pytos . 11

2.2.1 Embedded RPC . 12
2.2.2 Peek and Poke . 12
2.2.3 Drip and Drain . 12
2.2.4 Pytos Installation . 13

2.3 MoteView . 13

3 Design and Implementation 15
3.1 The Big Picture . 16

3.1.1 The Client Side . 16
3.1.2 The Node Side . 19

3.2 Communication, RPC . 20
3.2.1 Serial Forwarder Plug-In 20
3.2.2 Drip and Drain . 22
3.2.3 RPC . 23
3.2.4 Bulk Data . 24

3.3 Variable Introspection . 26
3.4 Logging . 27

3.4.1 Node Side Implementation 27
3.4.2 Client Side Implementation 32

3.5 Topology Control . 35
3.5.1 Neighbours Subcomponent 35
3.5.2 NeighbourUpdater Subcomponent 35
3.5.3 LTOP Comm Subcomponent 35
3.5.4 Influencing the Topology 36

4 Outlook 37
4.1 Future Work . 37
4.2 Conclusion . 38
4.3 Personal Experience . 39

6 CONTENTS

A Installation Guide 41

B Examples 47
B.1 Logging . 47
B.2 RPC . 48
B.3 Evaluating Log Data . 49

C Extension Point Descriptions 53
C.1 Serial Forwarder Plug-In . 53

C.1.1 Platform . 53
C.1.2 Raw Message Listener . 56
C.1.3 TOS Message Listener . 57

C.2 Sensornet Manager Plug-In . 58
C.2.1 Drain Message Listener 58
C.2.2 Bulk Data Message Listener 60
C.2.3 Log Receiver . 61

C.3 Database Log Receiver Plug-In 62
C.3.1 Database Driver . 62

Chapter 1

Introduction

1.1 Problem Description

Wireless sensor networks consist of small devices (called nodes) deployed in a
geographic region to monitor the environment. The resources of these devices,
such as processing capabilities, memory size, communication range or available
power are limited. Finding out something about the state of a running appli-
cation by only staring at the device is limited; the standard equipment of a
node that allows exposing information directly to a human is often confined by
several light emitting diodes.

Software operating on such devices is typically not only responsible for gath-
ering information from its environment. More complex tasks such as managing
the communication with other devices make developing such applications a non
trivial undertaking. Therefore, developers should be given the possibility to fall
back on tools that reveal state on different levels of granularity: single variables,
a node or a whole network consisting of numerous devices. A mean to influ-
ence the devices from a single point would alleviate keeping track of the whole
network.

This work aims at helping developers of applications for wireless sensor net-
works. This is accomplished by providing a framework consisting of different
controlling components that can be added to the actual application on the node
and facilities to inspect, watch and govern these components remotely.

1.2 Background Information

This section aims at giving basic information and forward pointers on environ-
ments the framework bases on. On the one hand, there is TinyOS, an oper-
ating system for devices running inside wireless sensor networks with the nesC
programming language. On the other hand, there is the Eclipse platform, origi-
nally a development environment for Java that grew to an extensive application
framework.

8 Introduction

1.2.1 TinyOS, NesC

TinyOS is an operating system written in C and nesC, a component oriented
language based on C. Software components running on TinyOS are implemented
in nesC. NesC components consist of modules, which are wired to each other
by connecting interfaces. The wiring of these components is defined in con-
figurations. Modules can make use of interfaces or implement them, thereby
offering their functionality to other modules. Modules and interfaces define a
set of commands that can be called and a set of events that may be signaled.
The implementation of commands and event handlers is provided by modules.

The following example briefly shows how interfaces, modules and config-
urations relate to each other. It is a shortened version of the configuration
for the sample application used in appendix B. The application writes voltage
measurements on a regular basis to the local flash storage.

configuration ControllingExample {1

}2

implementation {3

components Main, VbatC, LoggerC, TimerC,4

ControllingExampleM;5

6

Main.StdControl -> VbatC.StdControl;7

Main.StdControl -> LoggerC.StdControl;8

Main.StdControl -> ControllingExampleM.StdControl;9

10

ControllingExampleM.ADC -> VbatC.ADC;11

ControllingExampleM.Logger -> LoggerC.Logger;12

ControllingExampleM.Timer -> TimerC.Timer;13

}14

The configuration comprises five components (lines 4–5):

Main serves as the application’s entry point. It initializes and starts the VbatC,
LoggerC and ControllingExampleM components by using the StdControl
interface provided by these components. Lines 7 to 9 define this wiring.

VbatC is used to measure the supplied battery power. It provides the ADC
interface which is used by the ControllingExampleM component to get
the actual voltage. This wiring is designated in line 11.

LoggerC logs data to flash memory. Line 12 indicates that the Controlling
ExampleM component uses the Logger interface to access functionality
provided by the LoggerC component.

TimerC triggers events after defined time periods. Here, these events are
handled by the ControllingExampleM component, which uses the Timer
interface provided by TimerC (line 13).

ControllingExampleM implements the missing logic: setting up the timer
as well as getting and logging a voltage measurement whenever an event
is triggered by the timer.

1.2 Background Information 9

Further information on TinyOS can be found on the TinyOS website1. [1]
and [2] introduce the nesC languge.

1.2.2 Eclipse Platform

The Eclipse platform bases on the Java language, what makes it independent
of the underlying hardware architecture. Functionality is added by a plug-in
system. Plug-ins can be made extensible by offering extension points. Essen-
tially, an extension point is a description of what an extension should look like
in order to make a contribution to the plug-in. It can be regarded as a contract
any extending plug-in has to stick to, so that the host plug-in providing the
extension point is able to make use of any extenstions. Figure 1.1 illustrates the
extensibility model.

Figure 1.1: Plug-in B contributing to plug-in A by extending an extension point
of plug-in A.

At runtime, host plug-ins offering extension points can consult the Eclipse
platform registry containing all extensions and make use of them, e.g. by ex-
ploiting information they contain or making use of functionality they provide.

Apart from plug-ins, fragments present another method to make contribu-
tions to existing plug-ins. A fragment is similiar to a plug-in in that it is used to
extend functionality, but it is not autonomous and depends on a specific plug-in.
Furthermore, it does not support a life-cycle concept like plug-ins do.

The Eclipse website2 offers tons of information. However, there are excellent
books introducing developers to programming contributions to Eclipse. [3] is a
good resource to start with.

1http://www.tinyos.net/
2http://www.eclipse.org/

http://www.tinyos.net/
http://www.eclipse.org/

Chapter 2

Related work

2.1 Nucleus Network Management

The Nucleus Network Management system was developed by Gilman Tolle at
the University of California, Berkeley. Nucleus makes it possible to expose appli-
cation information in three different ways: as RAM symbols (values residing in
memory at a known position), as Nucleus attributes (values that can be queried
by name) and as log events (not yet complete, planned for a future version).
Once the development environment is set up correctly, making use of nucleus
features is quite simple.

In order to enable RAM symbol querying (i.e. reading global variables),
adopting the node application’s makefile and calling an additional make target
does the job; except for the inclusion of an additional module, no modifications
to the application code are necessary.

In [4], the design of SNMS (Sensor Network Management System, a prelim-
inary version of Nucleus) was restricted to “depend on the application as little
as possible, to ensure that it will continue to function even when the application
fails”. Thus, Nucleus uses its own lightweight network layer operating in par-
allel with the application’s networking layer. This implies that the nodes have
to listen for new messages coming in at any time, which decreases the node’s
battery lifetime significantly. However, [4] mentions the possibility to use the
applications network stack. Whether this option is available in Nucleus is not
documented.

2.2 Pytos

Pytos ties in with the ideas of Nucleus. It is a an environment enabling the
developer to inspect and modify application state at runtime. It was developed
by various people at UC Berkeley.

As the name suggests, Pytos bases on Python. Global variables and com-
mands declared appropriately residing in applications running on nodes can be
governed through a command line interface. Pytos takes the necessary informa-
tion to access variables and perform calls on nodes from two XML (Extensible
Markup Language) files generated during the compilation process of the node

12 Related work

application: rpcSchema.xml and nescDecls.xml. Figure 2.1 shows an outline of
the building process.

Figure 2.1: The building process of a NesC application with support for calling
commands and getting/setting global variables remotely.

2.2.1 Embedded RPC

A core service Pytos makes use of is embedded RPC (Remote Procedure Call):
In contrast to traditional RPC, emphasis is placed on low server load (in this
case the node takes the position of the server) and small server code size.

The rpcSchema.xml file contains the information needed to request a remote
call on a node, e.g. their arguments and its types and the type of the return
value. Thus, the client application is able to send a message which a node is
able to interpret, execute the corresponding command and send back a message
containing the result value. The necessary logic is implemented in the RpcC.nc
and RpcM.nc files, which are added by the building system (see figure 2.1).

2.2.2 Peek and Poke

Getting (peek) and setting (poke) global variables is realized on top of RPC: The
position of a variable is retrieved by the client by inspecting the nescDecls.xml
file containing all global variables. The nescDecls.xml file is generated by a Perl
script (see figure 2.1) which in turn calls objdump, a command which displays
information about object files, and parses its output. By executing a RPC call
with a known memory address and in case of poke a new value for the variable,
it is possible to get or set a global variable on the node.

2.2.3 Drip and Drain

The communication between Pytos and the nodes is performed over Drip and
Drain. Drip, an epidemic protocol used to reliably disseminate messages through

2.3 MoteView 13

the entire network, is used to send RPC messages to the nodes. Drain, on the
other hand, is responsible for reliably sending messages from nodes back to
the base station connected to the client running Pytos. Drain relies on a tree
rooting at the base station, with every tree node representing a device. Thus, it
is necessary that every device maintains some information about this tree (e.g.
the device representing the parent node is needed in order to route a message
towards the root node—the device acting as base station delivering messages to
the client application). The drain layer has therefore to be updated periodically.

2.2.4 Pytos Installation

Pytos relies on a variety of tools, which makes its installation cumbersome.
One point potentially consuming a lot of time is getting the needed JPype
environment (a tool enabling access to Java classes from whithin Python) up
and running—at the time of writing this document, the Pytos project website1

still mentioned unresolved problems on Cygwin installations. In order to get
Pytos running on Linux (Fedora Core 5), changes to the code were necessary.

2.3 MoteView

MoteView is a monitoring software for wireless sensor networks. It is developed
by Crossbow Technology, a wireless network equipment supplier.

The MoteView software can be downloaded for free from the company’s
website2. The main features as presented on the Crossbow website include:

• historical and real-time charting

• topology map and network visualization

• data export capability

• print graph results

• node programming with MoteConfig

• command interface to sensor networks

• email alerts service

• Windows XP and 2000 SP4 compatible

The software works with networks consisting of nodes manufactured by
Crossbow. The setup looks as follows: all nodes are preloaded with a specific
software. Programming the nodes can be done from within the MoteView ap-
plication. Basically, the applications running on the nodes send sensor reading
data to the gateway node which posts the readings to a database. Different ap-
plications for different node configurations (sensing equipment, processor, power
modes and frequency bands) are included with the MoteView software.

1 http://nest.cs.berkeley.edu/nestfe/index.php/Pytos Installation Instructions; last ac-
cessed on August 29, 2006

2http://www.xbow.com/products/productsdetails.aspx?sid=88; last accessed on August
29, 2006

http://nest.cs.berkeley.edu/nestfe/index.php/Pytos_Installation_Instructions
http://www.xbow.com/products/productsdetails.aspx?sid=88

14 Related work

Figure 2.2: A screenshot of MoteView in action.

The graphical user interface is straightforward to use and offers appealing
views on sensor data. Figure 2.2 shows the topology presentation of MoteView.
However, no source code is available and it is not possible to use the MoteView
software with nodes running custom applications. The user is limited by the
applications delivered with MoteView. Moreover, it requires a full fledged data-
base running on the machine where the sensor data is stored. PostgreSQL is
installed automatically if necessary.

Chapter 3

Design and Implementation

The controlling framework offers four different services to developers (figure 3.1):
communication between the client workstation and the nodes in the wireless
sensor network, inquiring variables on nodes, logging data, and controlling the
network topology.

Figure 3.1: The services making up the controlling framework.

This chapter is organized as follows: first, an overview on the architecture
and the user interface is given. The subsequent chapters introduce the individual
services.

16 Design and Implementation

3.1 The Big Picture

The controlling framework can be divided in two parts in terms of architecture:
The node side with all nodes running the application to be controlled, and the
client side with the monitoring application.

There is a single node playing a special role, namely the gateway node. It
runs an application that forwards all TinyOS messages received by the radio
to the workstation attached (e.g. over a serial port or an IP network port)
and vice versa. This way, communication between the workstation running
the monitoring application and the wireless sensor network can be established.
Regarding achitecture, the gateway node will be considered as a part of the
client side. Figure 3.2 shows a sample setup with the client workstation, one
node acting as gateway node and four nodes running the application.

The next two subsections will give a brief overview of these two parts.

Figure 3.2: A sample setup visualizing the separation of client and node side.

3.1.1 The Client Side

The monitoring application running on the client workstation is written com-
pletely in Java and relies on the Eclipse platform. It is divided into several
Eclipse plug-ins: the ones implementing the main functionality include the Ser-
ial Forwarder and the Sensornet Manager Plug-Ins. The former is responsible for
sending and receiving messages, whereas the latter adds capabilities to manage
the nodes. Figure 3.3 gives an overview.

User Interface

The Sensornet Manager Plug-In is responsible for keeping a model of the con-
trolled wireless network and presenting it to the user. Figure 3.4 shows a screen-
shot of the client user interface in action1. The different views have the following
purposes:

1The TinyOS Controlling perspective can be opened by selecting ‘Window’ → ‘Open Per-
spective’ → ‘Other. . . ’ from the Eclipse main menu and then choosing ‘TinyOS Controlling’.

3.1 The Big Picture 17

Figure 3.3: The client side architecture.

1. The navigator view is used to open and manage files.

2. Deployed nodes are shown in the editor view. The nodes can be moved
so that they can be identified easier according to their actual physical
position. Arrows indicate connectivity. The view can be zoomed and
printed.

3. All available nodes are listed in the outline view with their installed mod-
ules, loggers, available variables and RPC commands.

4. Whenever information on a selected item (node, module, logger, RPC
command or variable) is available, it will be shown in the properties view.
The error log view (in the background) contains any errors or warnings.

5. The Serial Forwarder Plug-In contributes a view which permits setting up
a connection to a gateway node and shows information about incomming
and outgoing messages.

The used data model consists of objects representing nodes, their variables
and RPC commands, the installed loggers and connectivity information. The
whole data model can be stored as a file. A new data model can be created by
selecting ‘New’ → ‘Other. . . ’ from the Eclipse menu and then ‘Sensornet’ from
the ‘TinyOS Wizards’ group. The subsequent dialog asks for a rpcSchema.xml
and a nescDecls.xml file; these two files make up the installation information of
the deployed nodes (see sections 3.2.3 and 3.3 for details).

18 Design and Implementation

Figure 3.4: The client side controlling application.

3.1 The Big Picture 19

3.1.2 The Node Side

On the node side, all components2 of the architecture consist of nesC compo-
nents. In figure 3.5, all implemented components are included. In order to save
memory, components not needed for controlling a particular application may be
omitted by the developer.

Figure 3.5: The node side architecture.

2When referring to components or subcomponents, they need not conform to nesC modules.
The terms component and subcomponent are used to identify units of functionality on different
granularity. However, in most cases, the actual nesC components implementing the described
functionality resemble the structure as described in this document.

20 Design and Implementation

3.2 Communication, RPC

This section discusses communication between nodes and the client. This com-
prises several components as depicted in figure 3.6. First, an overview of the
Serial Forwarder Plug-In is given. Then, the Drip/Drain layer used to route
messages is introduced. The RPC and Bulk Data subsections will conclude this
section.

Figure 3.6: Communication between nodes and the client.

3.2.1 Serial Forwarder Plug-In

The Serial Forwarder Plug-In is responsible for the communication between
applications running on the client workstation and the gateway node. The main
functionality was ported from the existing stand-alone serial forwarder which
comes with the TinyOS environment. The classic serial forwarder transmits
packets comming in from the gateway node (connected to the workstation via a
serial or IP connection) to any clients connected to a socket listening on a well
known port and vice versa.

The Serial Forwarder Plug-In was implemented by paying special attention
to the following points:

• A multitude of hardware platforms are able to run TinyOS. It should be
easy to extend the Serial Forwarder Plug-In for new platforms.

• Other Eclipse plug-ins should be able to receive data packets by making
use of extension points offered by the Serial Forwarder Plug-In.

• The Serial Forwarder Plug-In is able to act as a classic serial forwarder in
that it forwards messages to and from any socket connected client appli-
cation.

• The user interface should be intuitive and easy to use.

Extensibility

The platform extension point gives the developer the possibility to add support
for additional platforms. Normally, communication between the connected node
and the host running the serial forwarder takes place over a serial connection or

3.2 Communication, RPC 21

over an IP network. For this, a generic implementation is provided by the plug-
in. Thus, the developer does not have to implement any Java code in order
to add support for a new platform; providing an extension with connectivity
details and a Java class describing the TOS_Msg struct (can be generated with
the TinyOS message interface generator MIG) does the job.

The ch.ethz.dcg.controlling.platforms fragment extends this extension point
in that it provides connectivity information for some known platforms such as
Tinynode, the Mica family, Telos and Tmote.

However, it might be possible that the generic implementation for the plat-
form is not appropriate, e.g. if the connection between the gateway node and
the host running the serial forwarder is established differently. In such cases, a
custom implementation can be provided.

Appendix C.1.1 gives information on the usage of the platform extension
point.

Packet handling

There are three ways to hook into the plug-in to facilitate sending or receiving
packets:

• Classic serial forwarder role: the client application connects itself through
a socket to the serial forwarder.

• Raw message listener extension point: a software component implemented
as Eclipse plug-in is able to get informed of any sent, received or failed
(e.g. with invalid checksums or not acknowledged when supposed to) data
by extending this extension point. See appendix C.1.2 for the extension
point description.

• TOS message listener extension point: plug-ins making use of this exten-
sion point will be informed of any incomming TOS messages3 addressed
to the client (i.e. the ID of the gateway node or the broadcast ID). The
header of the incomming message is processed so as to get the message
type and the length of the message payload. Depending on whether ex-
tending plug-ins subscribed for the received message type, they are notified
with a reference to the byte array of the entire message together with the
position of the byte where the payload data starts and the length of the
payload. Appendix C.1.3 describes this extension point.

Eclipse plug-ins receiving messages by making use of the latter two men-
tioned extension points send messages by calling the send method of the ch.ethz.
dcg.controlling.messaging.TOSMessageSender class.

Note: Message listeners must not change the provided buffer con-
taining the packet data. The same received buffer will be used for
all subscribed listeners in order to reduce overhead. Furthermore,
listeners which consume time when processing incomming messages
(especially when involving user interactions) should make a copy of
the message and invoke a separate worker thread.

3A TOS (TinyOS) message defines the basic structure of any message. Defined fields
include destination address, message type, length, payload, etc.

22 Design and Implementation

A plug-in extending a listener extension point has to ensure that
the implementing listener does not throw any exceptions. If it does
so, the listener will be considered as unsafe and will not be called
anymore, i.e. it will be removed from the listeners list. In such a
case, an appropriate entry is added to the Eclipse error log4.

User interface

The user interface is realized as a view in Eclipse. If not present, the view
can be made visible by choosing ‘Window’ → ‘Show View’ → ‘Other. . . ’ from
the Eclipse main menu and then selecting ‘TinyOS Controlling’ → ‘Serial For-
warder’.

Figure 3.7: The serial forwarder view in Eclipse.

Figure 3.7 shows a screenshot of the serial forwarder view. The symbols in
the upper right corner have the following functionalities:

• start/stop forwarding data

• select a platform and connectivity settings

• show/hide I/O messages

• show/hide messages rising from handling socket clients

• show/hide transmitted data

• clear output window

3.2.2 Drip and Drain

Same as in Pytos, multihop message routing between the client and deployed
nodes is established over the drip and drain protocols. On the client side, drip
and drain support is included in the separate Drip Drain Plug-In, because it
primarly consists of code ported from the TinyOS Java tools. The Drain part
of the Sensornet Manager Plug-In is only used for updating the drain tree. The
Drain tree can be manually updated by clicking the ‘Rebuild Drain Tree’ ()
button bellow the Eclipse main menu.

4The Eclipse error log can be made visible by choosing ‘Window’→ ‘Show View’→ ‘Error
Log’ from the Eclipse main menu.

3.2 Communication, RPC 23

Drain messages received from nodes are interpreted by the Sensornet Man-
ager Plug-In, because it knows the message format from the node’s installation
information. This makes it unnecessary to provide platform dependent Java
classes describing the used DrainMsg struct.

Plug-ins that want to be notified of incomming drain messages can extend
the ch.ethz.dcg.controlling.snetMgr.DrainMessageListener extension point. See
appendix C.2.1 for its usage.

In order to reach as many nodes as possible, drip and drain resend mes-
sages on a certain intervall. However, if the network is small (i.e. the gateway
node reaches all nodes directly), the user has the possibility to disable sending
messages over the drip layer by deselecting the appropriate option5.

3.2.3 RPC

The Sensornet Manager Plug-In inscpects the rpcSchema.xml file generated dur-
ing the building process of the node application (figure 2.1). It extracts the
following information:

• the name of the command

• the module it belongs to

• its return type

• the ID of the command. This ID is sent to the node in order to identify
the command that has to be executed.

• for each parameter:

– the name of the parameter

– the type name of the parameter

– whether the parameter is a pointer or not

RPC calls can be issued on any single node or on all nodes. Basically,
calls can be initiated by right-clicking on the respective command in the out-
line view and selecting either ‘execute RPC command. . . ’ or ‘broadcast RPC
command. . . ’. The parameters have to be entered in hexadecimal format, least
significant byte first, fitting the size of the referring type. For example, a para-
meter of type uint_32 given the value 010A0000 would be interpreted by the
node as 2561 in decimal.

RPC is not only used for giving the user the possibility to issue remote calls,
it is also used to trigger actions on the node that send specific information to
the Sensornet Manager Plug-In, such as logger data or information about a
node’s neighbourhood. This saves the developer from having to create specific
messages.

5Choose ‘Window’ → ‘Preferences. . . ’ → ‘TinyOS Controlling’ in Eclipse to access the
TinyOS Controlling options.

24 Design and Implementation

3.2.4 Bulk Data

Under certain circumstances, the size of data to be sent from a node to the client
is not known when developing the application and it possibly does not fit into
a single TOS message. For this purpose, larger data structures can be split up
into several bulk data messages on the node and reassembled on the receiving
client. Figure 3.8 shows the message format of a single bulk data message.

Figure 3.8: The bulk data message format.

The bulk data message fields are specified as follows:

• source – the local address of the node sending the message

• transactionID – an ID identifying messages that belong to the same data
structure; will be incremented by the node for every new transaction

• dataType – an identifier for indicating the type of the data transmitted

• seqNr – the sequence number of this packet; used to detect lost messages
and to reassemble the data structure in the right order

• hasNext – indicates whether more messages are following (1) or not (0)

• nBytes – the size (in bytes) of the data field

• data – the data portion

The Bulk Data component is kept simple and small. Therefore, it is not
possible to request retransmission of single parts, i.e. if a single message is lost,
the whole transaction failed.

Currently, this component is used to transmit neighbourhood information
and the list of installed loggers.

On the client side, the Sensornet Manager Plug-In is capable of receiving bulk
data messages and putting them back together to the original data structure.
Figure 3.9 schematically depicts the involved steps. Bulk data transactions are
identified by the address of the sending node and a transaction ID the node
assigns to the transaction. Once a transaction is closed, it is removed from the
list of open transactions.

The ch.ethz.dcg.controlling.snetMgr.BulkDataMsgListener extension point
offers the possibility to add listeners for bulk data (see appendix C.2.2 for a
description).

3.2 Communication, RPC 25

Figure 3.9: A flow chart of the bulk data message handling.

26 Design and Implementation

3.3 Variable Introspection

On the node side, this service is implemented in the RamSymbolsM module by
two RPC enabled commands: Peek (for getting a variable) and Poke (for set-
ting a variable). The original version of this module included in the TinyOS
distribution was slightly modyfied and now includes a variable holding the ID
of the node, allowing the client application to identify deployed nodes.

To get rid of available variables, the Sensornet Manager Plug-In extracts the
following information from the nescDecls.xml file (for each variable):

• the name of the variable

• the module it belongs to

• its type name

• its static address in the node’s memory

• its length (i.e. the size it occupies in memory)

• whether it is an array

• whether it is a pointer

Only global variables ascribable to modules are taken into account. Variables
introduced by TinyOS which do not belong to any module such as TOSH_queue,
TOSH_sched_full, TOSH_sched_free, LPMode_disabled, TOS_AM_GROUP or TOS
_LOCAL_ADDRESS are left out.

Getting or setting global variables remotely is as simple as calling RPC
commands. Right-click on any variable in the outline view and choose one
of ‘retrieve value’, ‘retrieve value from all motes’, ‘set value. . . ’ or ‘set value
on all motes. . . ’. In order to set a variable, the new value has to be entered
in hexadecimal format, least significant byte first. When getting or setting a
variable, the state of the underlying RPC call can be observed in the Eclipse
properties view by selecting the respective call in the RamSymbolsM module.

3.4 Logging 27

3.4 Logging

The logging service is described in two parts: first, an overview of the node side
is explained, then, focus is set to elements involved on the client side.

3.4.1 Node Side Implementation

When developing logger support for nodes, several criteria were considered:

Persistency: Log entries should be stored persistent on nodes. In case a node
crashes or reboots, as few log entries as possible should be lost.

Space efficiency: Organizing data in memory introduces a certain amount of
unavoidable overhead. However, this overhead should be kept as small as
possible.

Minimize memory accesses: The included flash storage on the node is the
only way to persistantly store larger portions of data. It bases on the
EEPROM (Electronically Erasable Programmable Read-Only Memory)
technology. The memory is not really read only how the name suggests,
but writing and erasing worsens its lifespan. EEPROM memory typically
wears out after some 10’000 erase-write cycles6. Therefore erase-write
cycles should be rare.

Multiple loggers: A developer might want to observe different characteristics
of an application. Therefore, multiple loggers should be supported.

Recovery: In case a node is rebooted, already existing log entries should not
be overwritten. New log entries should be appended to the first available
position.

Memory management: Other components might also make use of the flash
memory. Thus, it should be possible to allow the developer to partition
the storage.

Remote access: It should be possible to read logged entries remotely.

Overview

The Logging component is divided into subcomponents:

• The FlashStorage subcomponent, responsible for read/write accesses to
the flash memory.

• The Logger subcomponent, implementing the logging functionality.

• The RemoteLogReader subcomponent, enabling the client to request (pull)
log entries remotely.

• The LogSender subcomponent, which sends logged entries on a regular
basis to the client (push).

6Source: http://en.wikipedia.org/wiki/EEPROM, last accessed on September 7, 2006

http://en.wikipedia.org/wiki/EEPROM

28 Design and Implementation

While the FlashStorage and Logger subcomponents are mandatory in order
to make use of the logger mechanism, the RemoteLogReader and the LogSender
components are optional. A possible scenario could be that the developer decides
to run the nodes without the latter two components, collect the nodes after some
time and install a different application to read out the log entries.

FlashStorage Subcomponent

The FlashStorage subcomponent relies on the PageEEPROM component pro-
vided by TinyOS to access flash memory. EEPROM memory is divided into
pages. The Tinynode or Mica2 nodes both come with an Atmel AT45DB041
flash memory, which has 2048 pages of 264 bytes each.

The subcomponent has to be initialized before it can be used. The init
command of the FlashStorage interface has to be called, providing a parameter
indicating relative to which page the FlashStorage will compute the offsets.

Data that has to be written to or is read from the flash memory is buffered
in memory. Figures 3.10 and 3.11 illustrate the steps involved for a read or
write operation. A charistic of EEPROM is that in order to write a single page,
the respective page in memory has first to be erased. This is also assured by
the FlashStorage subcomponent.

Logger Subcomponent

As stated before, write operations to flash memory should be rare. On the other
side, a requirement of the Logger component is to store log entries persistently.
As a response to this trade off (persistency vs. sparing write operations), the
Logger component organizes logged data in pages: a logger consists of a certain
number of pages, each page containing a fixed number of entries, each entry
having a fixed size. Thus, persistence is guaranteed on a page granularity.
The developer is able to set the different parameters according to the above
mentioned trade off.

However, page sizes exceeding the flash memory page size are not of big use,
because once the write position of a new log entry exceeds the flash memory page
bounds, the buffer has to be flushed and written to memory anyway. The only
(for such sizes mostly neglectible) benefit is that—all in all—metainformation
found at the end of every page (currently 4 bytes) will consume less memory
for a certain amount of log entries. An example illustrating how to initialize a
logger is given in appendix B.1.

The logger subcomponent stores its information to flash memory as follows:
At the beginning, information about the installed loggers is written. For each
logger, this comprises:

• the start position: the location in memory where the first log entry can
be found

• the ID identifying the logger

• the length of a single log entry

• the number of pages to be reserved

• the number of entries per page

3.4 Logging 29

Figure 3.10: A flow chart of the FlashStorage read operation.

This information has to be updated only if a new logger is added. After this
information, log data for the respective loggers is stored.

The logger is implemented as a circular logger: once the last page in memory
was written, subsequent pages will overwrite the oldest pages. At the end of
each page, a sequence number and the number of entries contained in the page
is appended. The sequence number is needed to find the last used page of the
circular logger. The sequence number is set as follows:

actualPage.seqNr = (prevPage.seqNr + 1) % (nPages + 1);

where nPages contains the number of pages reserved for this logger. Figure 3.12
illustrates a simple example.

30 Design and Implementation

Figure 3.11: A flow chart of the FlashStorage write operation.

Figure 3.12: How sequence numbers are set. In this example, nPages is 5. Each
box represents a page and its sequence number.

The newest page can then be found as follows:

go to next page until:
(actualPage.seqNr + 1) % (nPages + 1) != nextPage.seqNr

In case the logger tries to find the newest page (e.g. after a restart of the
node) and only a part of the reserved space was used before, the logger assumes
that the remaining space is clean, more precisely that it was erased before and

3.4 Logging 31

not changed afterwards7. When a flash memory page is erased, all bits are
set to 1, because – and this is another characteristic of EEPROMs – bits can
only be switched from 1 to 0; in order to reliably switch bits from 0 to 1, the
corresponding page has to be erased. Therefore the maximal possible sequence
number is hexadecimal 0xFFFE (assuming two bytes reserved for sequence num-
bers). Thus, the number of pages must not be bigger than 0xFFFD (=65533 in
decimal).

The Logger interface comprises three commands: init initializes a logger,
append appends a single log entry to the logger and flush forces writing the
actual page to flash memory. Each operation returns SUCCESS or FAIL, depend-
ing on whether the operation could be started. The final result of the operation
will be signalled as an event.

The LogReader interface provides commands to read entries with a given
offset, get logger metadata, get the number of installed loggers and the possi-
bility to lock or unlock the Logger subcomponent. The lock operation stops the
logger from writing new entries. This enables reading entries in different calls
without having to worry about changing offsets caused by possible appends.

RemoteLogReader Subcomponent

The RemoteLogReader subcomponent makes use of the LogReader interface.
It provides RPC commands to get logger metadata, read logger entries and
start/stop the Logger subcomponent. Basically, it exposes the LogReader in-
terface to be used remotely.

Because the size of the logger metadata depends on the number of installed
loggers, it can not be guaranteed that this metadata fits into a single message for
transmitting this information to the client. Therefore, the Bulk Data component
is used to transmit this data.

To transmit logger entries, the RemoteLogReader subcomponent uses the
message format shown in figure 3.13. Its layout is basically the same as for bulk
data, except the nEntries and loggerID fields. Opposed to the bulk data message
where the nBytes field contains the number of bytes, the logger read message
nEntries field contains the number of log entries that follow in the payload.
The loggerID is the ID of the logger which stored the delievered entries. By
checking the included message sequence number, lost messages can be identified
and the missing entries may be read in a separate transaction by giving the
correct offset.

Figure 3.13: The logger read message format.

7To get sure that the flash memory is clean, the framework distribution supplies a sim-
ple application that erases the storage. See the installation guide (appendix A) for more
information.

32 Design and Implementation

LogSender Subcomponent

The LogSender sends log entries to the client depending on a threshold value n
it is initialized with. It counts the successful log appends. If the threshold value
is reached, it sends the last n log entries to the client and resets the counter.

Limitations

The Logger component supports multiple loggers. However, using multiple log-
gers alternately will undermine the ‘write as seldom as possible’ rule, because it
is unlikely that entries of two different loggers reside on the same page in flash
memory, thus causing page writes in order to swap pages.

However, supporting multiple loggers still makes sense: different applications
might initialize different loggers, without the need to affect the loggers belonging
to previously installed applications.

3.4.2 Client Side Implementation

Logger information can be retrieved either in a push or pull manner: Depending
on the configuration, a node might transmit logger entries on a regular basis.
On the other hand, logger entries can be requested by the client8.

The client has to be configured appropriatly by adding logger listeners in
order to receive logger data residing from transmissions initiated by nodes9.

Receiving Logger Entries

Logger entries are transmitted to the client similiar to bulk data, but without
splitting single log entries among two messages, i.e. a single message contains a
number of whole log entries. The Sensornet Manager Plug-In passes null values
for lost log entries residing from lost messages. This way, the user can request
the lost log entries by giving the correct offset. Because new entries might be
appended to the log on the node once the transaction has completed, the offset
for getting the lost entries changes. Therefore, the user has the possibility to
stop the logger manually, so that the offset will not change until the user lets
the logger resume its work10.

If some messages are lost during a transaction, an entry containing the trans-
action ID and the node address is added to the Eclipse error log.

Received log entries are reported to listeners extending the ch.ethz.dcg.con-
trolling.snetMgr.LogReceiver extension point. The Sensornet Manager Plug-In
includes two extensions: one to print the received entries to a file, and one
to print the received entries to the Eclipse console view. The Database Log
Receiver Plug-In also receives log entries by extending this extension point (see
appendix C.2.3 for details).

8A list of installed loggers can be obtained by right clicking on a node and then selecting
‘Get Logger Info’. Logger entries can be retrieved by right clicking on the logger under the
desired node in the outline view and then selecting ‘Get Logger Data’.

9Logger listeners can be added by right clicking on the respective logger and then selecting
‘Add Logger Listener. . . ’.

10The two RPC commands ‘stopLogger’ and ‘resumeLogger’ and the ‘loggerStopped’ vari-
able in the ‘RemoteLogReaderM’ module allow remote control of the logger module.

3.4 Logging 33

Database Log Receiver Plug-In

This plug-in enables inserting received log entries into a specific database. This
way, any application capable of accessing an SQL (structured query language)
database can make use of stored log entries. BIRT (Business Intelligence and
Reporting Tools) is such an application. It can be used to produce reports and
is also implemented as an Eclipse plug-in. An example is given in appendix B.3.

Extensibility There is a multitude of SQL based databases, each of them
with different characteristics and ways to access it. The JDBC (Java Database
Connectivity) API provides an abstraction to access databases in a uniform
manner. In order to make use of the JDBC API, database specific drivers have
to be provided.

Currently, the Database Log Receiver Plug-In includes the MySQL connector
JDBC driver which facilitates access to MySQL databases. However, support for
additional databases can be achieved by extending the ch.ethz.dcg.controlling.db
LogReceiver.dbDriver extension point. Appendix C.3.1 describes this extension
point.

Configuring a Database Log Receiver When a log listener is added or log
data is requested from a node, the user is prompted with a window as shown in
figure 3.14 to enter specific settings: the JDBC driver to be used and connection
information needed to access the database. Furthermore, the user has to enter
SQL INSERT statements that will be used to add log entries to the specified
database. The transaction statement is executed once for each transaction,
while the entry statement will be executed once for each log entry. Table 3.1
shows a list of strings inside these statements that will be replaced with the
actual values.

substitutable substituted by SQL type
<transactionID> ID of the transaction INTEGER
<moteID> ID of the node INTEGER
<loggerID> ID of the logger INTEGER
<entriesRequested> number of entries requested INTEGER
<offset> offset given with the request INTEGER
<dateStarted> date of when the transaction

started
DATE

<timeStarted> start time of the transaction TIME
<timeStartedMs> millisecond fraction of the time

when the transaction started
INTEGER

<callDuration> duration of the transaction in
milliseconds

INTEGER

<pos> position of the log entry relative
to the given offset

INTEGER

<value> log entry value VARBINARY or
VARLONGBINARY

Table 3.1: Strings that may be used inside INSERT statements that will be
replaced by actual values.

34 Design and Implementation

Figure 3.14: A screenshot of the database log receiver settings window.

3.5 Topology Control 35

3.5 Topology Control

The topology control component is based on previous work of Severin Win-
kler [8]. It is adapted to the controlling framework and now consists of three sub-
components, namely the Neighbours, NeighbourUpdater and the LTOP Comm
(logical topology communication) subcomponents. On the client, the topology
can be influenced in the graphical editor.

3.5.1 Neighbours Subcomponent

The Neighbours subcomponent is responsible for collecting information on other
nodes in a node’s neighbourhood and exposing this information to the client.

This subcomponent periodically sends out a beacon message. It receives
beacon messages from other nodes and maintains a list of recently heared nodes.
This list can be retrieved by the client by calling a RPC command.

RPC commands to remotely control this component (i.e. start or stop send-
ing beacon messages) were added. This way, precious battery power may be
saved if topology information is not relevant over longer periods of time.

3.5.2 NeighbourUpdater Subcomponent

Whenever a new neighbour is detected or no more information about an ex-
isting neighbour is received, the Neighbours subcomponent changes its table
accordingly and signals an event. The NeighbourUpdater handles such events
and sends update messages to the client on any change.

3.5.3 LTOP Comm Subcomponent

This subcomponent gives the developer the possibility to enable or disable cer-
tain links between nodes, e.g. when testing a new routing implementation,
thereby establishing a logical topology.

Nodes whose messages should not be delievered to the application are in-
cluded in a black list. RPC commands to add or remove node addresses from
this black list and to send the black list to the client are implemented by this
subcomponent.

The TinyOS GenericComm component is the usual component for sending
and receiving messages. The same interface as the GenericComm component
provides is offered by the LTOP Comm subcomponent. This way, only mi-
nor changes to the code are needed in order to make use of the LTOP Comm
subcomponent.

The LTOP Comm subcomponent can be seen as an additional layer on top of
the GenericComm component. It includes an additional header to the TOS Msg,
therefore less space will be available for the payload data. Instead of using the
TOSH_DATA_LENGTH constant to find out the length of the payload field the
LTOP_DATA_LENGTH constant must be used.

Basically, LTOP Comm and the Neighbours subcomponents are independent
of each other. However, it makes sense to include the Neighbours subcompo-
nent when including the LTOP Comm subcomponent to determine which node
addresses should be included in the black list.

36 Design and Implementation

3.5.4 Influencing the Topology

The topology is visualized in the client by the Sensornet Manager Plug-In in the
graphical editor (figure 3.15). Black arrows indicate connectivity. A red arrow
pointing to a specific node signifies that this node actually hears the node at the
other end of the line, but messages residing from that node are not delievered
to the running node application.

Figure 3.15: Visualization of topology information on the client.

Topology information can be retrieved by calling the getNeighbourTable()
RPC command on the nodes (Neighbours module) or by clicking on the ‘Broad-
cast request for topology information’ () button bellow the Eclipse main
menu. The topology can be influenced by calling the respective RPC com-
mands (includeLink() and removeLink()) in the LTOP_CommM module or by
right clicking on the respective arrows in the editor and selecting ‘put on black
list’ or ‘remove from black list’, respectively.

Chapter 4

Outlook

4.1 Future Work

The controlling framework offers functionality to govern a wireless sensor net-
work. However, the framework is not (and will never be) exhaustive—needs of
developers evolve! Some needs arising in the near future could be:

TinyOS 2.0 support: The components included in the controlling framework
were developed against TinyOS 1.1.15. At the time of writing this thesis,
TinyOS 2.0 is emerging and a beta version is already available. If porting
the framework to TinyOS 2.0 makes sense, it has to be analyzed if and
how different components could be ported and whether new components
included in the TinyOS 2.0 environment could be leveraged.

Integration with TinyOS Plug-In: Another path for future work could be
an integration with the existing TinyOS Plug-In1 developed by Roland
Schuler. This plug-in adds TinyOS application programming support to
the Eclipse platform. Everytime an application is rebuilt, the available
RPC commands and global variables change, making it necessary to reset
the model used by the framework client side. The build features of the
TinyOS plug-in could help out here.

Visualization: The graphical visualization feature offers information on which
nodes can communicate with each other but is still in an early stage. New
features could include the possibility to visualize the network on top of a
map illustrating the environment. Furthermore, nodes not having given a
sign of life for some period could be marked specially.

The gateway node is not included in the visualization; the client could
interpret beacon messages received from neighbouring nodes and complete
the graph accordingly.

Routing, power consumption: The RPC component relies on the Drip and
Drain components to send and receive messages. The wiring of these
components is hard coded into the generateRpc.pl script found in the
tools/scripts/codeGeneration directory of the TinyOS environment.

1http://www.dcg.ethz.ch/∼rschuler/

http://www.dcg.ethz.ch/~rschuler/

38 Outlook

Thus, the developer has no way to influence this wiring except by editing
this script. However, he may want to include other routing algorithms, e.g.
to decrease power consumption. This could be acomplished by providing
an other script that acts similiar to the generateRpc.pl script, but relying
on components the developer includes by himself to the application.

Different applications in a single network: Currently, the framework re-
quires all nodes to run the same application. Supporting multiple appli-
cations requires some effort; for instance, broadcasting RPC calls would
no longer be possible this way, because nodes with different applications
offer different RPC commands.

Variables hodling big structures: In the current version, variable values are
sent to the client as the return value of an RPC call. Thus, bigger variables
have to be read manually in multiple subsequent calls. The Bulk Data
component could tie in here.

4.2 Conclusion

The wireless sensor controlling framework provides means to govern an applica-
tion running on nodes deployed in a wireless sensor network. It was developed
with focus on extensibility, usability and platform independence.

On the node side, this is achieved by different TinyOS components that can
be included beside the actual application as the need arises. The functionalities
these components feature include:

• calling commands on nodes remotely with remote procedure calls (RPC)

• inspecting and influencing application state by retrieving and setting glo-
bal variables

• sending large data structures to a connected client

• logging any kind of data persistently to local storage and retrieve logged
data remotely

• keeping track of the neighbourhood of every single node by sending and
receiving beacon messages to or from neighbours, with the possibility to
remotely inspect this information

• influencing the connectivity in that the actual application is only able to
receive messages from a subset of hearable neighbours

The client side of the framework is implemented as Eclipse plug-ins. This
way, the framework can be extended by implementing Eclipse extensions. Func-
tionalities offered by the provided plug-ins include:

• communication with nodes in the network over a serial or IP connection

• utilize information generated at compile time in order to access application
state on nodes

• remotely control nodes by making use of RPC

4.3 Personal Experience 39

• receive large data structures from single nodes

• retrieve log data from nodes and store this data in files or insert it into a
database

• graphically visualize a sensor network, including its topology

4.3 Personal Experience

To me, working on this master thesis was

instructive: I learned a lot during the six months of this thesis: on the topic
of wireless sensor networks, how specific problems in this field are solved.
I gained insight into the nesC programming language, was able to capture
new programming techniques employed in the Eclipse framework, gained
some insight into the Python programming language, learned a lot about
user interface programming using SWT (the Standard Widget Toolkit)
and GEF (the Graphical Editing Framework).

fun: Making progress, getting things working, the relief after having found
solutions to peculiar problems.

frustrating: Because it sometimes took a lot of time finding a solution to such
peculiar problems—or even the problem itself!

opened new horizons: Although I can claim to have some knowledge on pro-
gramming, I constantly find new ways to solve problems. It’s enlighting
to see how different people solve different problems.

challenging: The field of wireless sensor networks was new to me and my C
programming skills were basic. I had the chance to dive into new waters
and gain more experience.

Appendix A

Installation Guide

Java

The controlling framework client runs inside the Java runtime environment,
version 1.5 or above. Java can be downloaded from http://java.sun.com/javase/
downloads/index.jsp. Please follow the installation instructions provided there.

Eclipse

The client side plug-ins base on the Eclipse platform, which can be downloaded
from http://www.eclipse.org/downloads/. The plug-ins were developed against
version 3.1, but they also run on the latest version 3.2. Eclipse is available on
different platforms; the website offers more information on how to install it.

The Sensornet Manager Plug-In relies on the GEF (Graphical Editing Frame-
work). Download and install the version of GEF corresponding to your Eclipse
version from http://www.eclipse.org/gef/. The GEF runtime download will
suffice, you don’t have to download the whole SDK.

After the successful installation of Eclipse, copy the contents of the /bin
/eclipse directory of the framework distribution to your Eclipse installation
directory.

The installation can be checked by clicking ‘Help’ → ‘About Eclipse SDK’
from the Eclipse main menu and then clicking on ‘Plug-in Details’. The fol-
lowing plug-ins should appear in the list: RXTXcomm, TinyOS Controlling
Database Log Receiver, TinyOS Controlling Drip/Drain, TinyOS Controlling
Platforms, TinyOS Controlling Sensornet Manager and TinyOS Controlling Se-
rial Forwarder.

In Eclipse, the TinyOS Controlling perspective can be made visible by se-
lecting ‘Window’ → ‘Open Perspective’ → ‘Other. . . ’ from the main menu and
then choosing ‘TinyOS Controlling’.

TinyOS 1.x

The components running on the nodes were developed against TinyOS version
1.1.15. An installation distribution for version 1.1.0 exists, which you can down-

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/gef/

42 Installation Guide

load from http://www.tinyos.net/download.html and install. This will prevent
you from having to set up the toolchain manually. If you are using Microsoft
Windows, you first have to update the Cygwin environment installed by the
above distribution. See http://www.tinyos.net/scoop/special/howto upgrade
cygwin for more information.

To get the most recent version of TinyOS, check out the tinyos-1.x module
from the TinyOS Sourceforge website. If you used the installer, your TinyOS in-
stallation will be found in the /opt/ directory inside your Cygwin environment.
It is best to check out the TinyOS module to this directory. More information on
how to check out the module can be found on http://sourceforge.net/cvs/?group
id=28656.

It is a good idea to keep the TinyOS installation up to date by checking
for updates regularly. Depending on your platform, additional steps might be
necessary in order to get the environment running. Check the manufacturer’s
installation notes!

In order to use the client side plug-ins, it is not necessary to compile the
TinyOS Java tools.

NesC Compiler

To compile applications including provided components, the nesC compiler, ver-
sion 1.2 or above is needed. The compiler can be downloaded from http://
sourceforge.net/projects/nescc. After downloading the tar file, unpack it to a
reasonable directory such as /opt, change to the /opt/nesc-1.2.x directory
and run ./configure, make and then make install.

The compiler version can be checked by calling nescc --version.

Additional Components

XML file generation

The XML file generation during the building process relies on Perl. Therefore, be
sure that Perl is installed, including the XML::Simple module. Under Cygwin,
this module can be installed by running cpan install XML::Simple, accepting
default values.

Gateway Node

To enable communication between the client and the nodes deployed in the
network, a single node has to play the special role of the gateway. This node is
connected to the client workstation, normally through a serial connection or an
IP connection. The node has to be installed with the DrainBase component by
typing make <platform> install in the beta/Drain/DrainBase directory of
the TinyOS environment.

DrainBase is a modified version of the better known TOSBase and sup-
ports message acknowledgement needed by the Drain layer. This feature is
enabled in the radio module, so if you use another radio module than the
one wired into the provided DrainBase, be sure that acknowledgements are
enabled. For the Tinynode platform, a specific version can be found in the

http://www.tinyos.net/download.html
http://www.tinyos.net/scoop/special/howto_upgrade_cygwin
http://www.tinyos.net/scoop/special/howto_upgrade_cygwin
http://sourceforge.net/cvs/?group_id=28656
http://sourceforge.net/cvs/?group_id=28656
http://sourceforge.net/projects/nescc
http://sourceforge.net/projects/nescc

43

src/tinyos/Controlling/DrainBaseTinynode/ directory of the framework dis-
tribution.

Cleaning Flash Storage

The src/tinyos/Controlling/EraseFlash/ directory of the framework dis-
tribution contains a simple application that deletes all data in flash memory.
Once installed (by typing make <platform> install in this directory), the yel-
low led will light during the erase process, following by a green light indicating
that the flash storage was successfully deleted.

Building TinyOS Components

The TinyOS components provided by the framework can be found in the src/
tinyos/ directory of the framework distribution. It is recommended to copy the
contents of this directory to the apps/ directory of your TinyOS environment.

Before building an application containing RPC commands and including
the RamSymbolsM module that enbles getting and setting global variables, the
following lines have to be added to the application’s Makefile:

TOSMAKE_PATH += $(TOSDIR)/../contrib/nucleus/scripts
CFLAGS += -I$(TOSDIR)/../tos/lib/Rpc
CFLAGS += -I$(TOSDIR)/../tos/lib/Drip
CFLAGS += -I$(TOSDIR)/../tos/lib/Drain
CFLAGS += -I$(TOSDIR)/../contrib/nucleus/tos/lib/Nucleus/

To make use of the different components provided by the framework, add
the following lines to your application’s Makefile (assuming you copied the di-
rectories containing the implementations to the TinyOS apps directory before):

PFLAGS += -I$(TOSDIR)/../apps/Controlling/RamSymbols
PFLAGS += -I$(TOSDIR)/../apps/Controlling/TopologyControl
PFLAGS += -I$(TOSDIR)/../apps/Controlling/BulkDataSender
PFLAGS += -I$(TOSDIR)/../apps/Controlling/Logger

In order to enable the generation of the nescDecls.xml and rpcSchema.xml
files during the building process of a TinyOS application, start the building
process with the usual make command, but including the nescDecls and rpc
parameters. An example for the Tinynode platform would look as follows (the
application would be installed on the node attached to serial port 4 and the
node would be given the address 32):

make tinynode nescDecls rpc bsl,3 install,32

If the building process completed successfully, the nescDecls.xml and rpc
Schema.xml can be found in the build/<platform> directory of your applica-
tion.

44 Installation Guide

Enabling RPC support

To add RPC support to your TinyOS application, include and wire the RpcC
component by completing your top level application configuration file as follows:

components Main, RpcC;

Main.StdControl -> RpcC;

More information on the usage of RPC can be found in appendix B.2 and
on http://nest.cs.berkeley.edu/nestfe/index.php/Rpc.

Enabling getting/setting Global Variables

To be able to get and set global variables remotely, RPC support has to be
enabled. Additionally, include and wire the RamSymbolsM module as follows (in
your top level application configuration):

components Main, RpcC, RamSymbolsM;

Main.StdControl -> RpcC;
Main.StdControl -> RamSymbolsM;

Making use of Loggers

The Makefile of your application has to be completed by the following lines:

CFLAGS += -DMAX_LOGGERS=10
CFLAGS += -DLOGGER_STARTPAGE=0
CFLAGS += -DLOGGER_BASE_ADDR=0

The first line determines how many loggers may be installed at most on a node.
This value influences memory consumption both in RAM and in flash memory.
The second line indicates the starting page in flash memory where the logger
component will store its information. The last line has only to be included if
the LogSenderC component is included. It specifies the address where to send
log entries, which normally is the address of the gateway node.

The LoggerC component has to be wired and included as follows:

components Main, LoggerC, YourApp;

Main.StdControl -> LoggerC;
YourApp.Logger -> LoggerC.Logger[YOUR_APP_LOGGER_ID];

And in order to enable remote access to the logger, complete your top level
application configuration as follows:

components Main, LoggerC, RpcC, RemoteLogReaderC, YourApp;

Main.StdControl -> LoggerC;
Main.StdControl -> RpcC;
RemoteLogReaderC.LogReader -> LoggerC.LogReader;
YourApp.Logger -> LoggerC.Logger[YOUR_APP_LOGGER_ID];

http://nest.cs.berkeley.edu/nestfe/index.php/Rpc

45

To periodically send new log entries to the client include the LogSenderC
component as follows (the RemoteLogReaderC component will be included by
the LogSenderC component):

components Main, LoggerC, RpcC, LogSenderC, YourApp;

Main.StdControl -> LoggerC;
Main.StdControl -> RpcC;
LogSenderC.LogReader -> LoggerC.LogReader;
YourApp.Logger -> LoggerC.Logger[YOUR_APP_LOGGER_ID];
// if you want to initialize the LogSenderC
// on the node instead of remotely:
YourApp.LogSender -> LogSenderC.LogSender[YOUR_APP_LOGGER_ID];

Using the Topology Components

To be able to retrieve information about the topology, the NeighboursC com-
ponent has to be included as follows to your top level application configuration:

components Main, RpcC, NeighboursC;

Main.StdControl -> RpcC;
Main.StdControl -> NeighboursC;

To notify the client workstation about any topology changes, the Neighbour
UpdaterC component is added (NeighboursC will be included automatically).
Additionally, the Makefile has to be extended by the line

CFLAGS += -DBASE_ADDR=0

which indicates where the update messages have to be sent (typically the gate-
way node address).

components Main, RpcC, NeighbourUpdaterC;

Main.StdControl -> RpcC;
Main.StdControl -> NeighbourUpdaterC;

And to make use of the LTOP_CommC component:

components Main, RpcC, LTOP_CommC, YourApp;

Main.StdControl -> RpcC;
Main.StdControl -> LTOP_CommC;
YourApp.SendMsg -> LTOP_CommC.SendMsg[AM_TYPE];
YourApp.ReceiveMsg -> LTOP_CommC.ReceiveMsg[AM_TYPE];

Possible Pitfalls

It will not take you long to find out that it’s not that easy to get all things
running quickly. Therefore, some problems and their solution are discribed
here. Of course, and unfortunately, the list is far from being complete.

46 Installation Guide

Initializing Components

Make sure to actually wire components providing the StdControl interface to
Main or another component using this interface.

Keep in mind that the order of how you wire single components may matter.
For example, the LoggerC component has to be initialized before setting up
individual loggers.

Generation of nescDecls.xml

Generation of the nescDecls.xml file is performed by the generateNescDecls.
pl Perl script located in the tools/scripts/codeGeneration/ directory. The
current version on the TinyOS CVS of this file includes a call to the avr-objdump
command. This works fine with AVR based platforms. However, if you use
another platform, this command may have to be changed. E.g. for Tinynode,
replace this command by the objdump command.

Using the Tinynode Platform

If you arranged your TinyOS environment to the Tinynode platform, it may
be possible that the rpc and nescDecls targets for make are not found. This
may be due to the fact that Tinynode uses its adapted build mechanism which
is located in contrib/shockfish/tools/make of the TinyOS distribution. A
possible solution to this issue is to copy the nescDecls.extra and rpc.extra
files from the tools/make/ directory to the contrib/shockfish/tools/make
directory.

Appendix B

Examples

The prupose of this chapter is to give examples on how to use services provided
by the framework. We therefore consider a sample application that makes use
of these functionalities.

The sample application logs the battery voltage every 5 minutes. By using
RPC, two nodes running the application are set up with different settings: One
node sends log entries to the client on a regular basis. The other node operates
with the Neighbour component deactivated. The application logs the voltage
for two days. Afterwards, the logged measurments are read out and visualized
on the client.

Because the used VbatC and XE1205RadioC components are specific to the
Tinynode platform, the example is not compilable for other platforms, unless
these components are exchanged.

The sample application consists of two files: the ControllingExample.nc
file defines the configuration, the ControllingExampleM.nc file the necessary
logic. The sources of the sample application can be found in the src/tinyos/
Controlling\ControllingExample directory of the framework distribution.
To compile the example, copy the contents of the src/tinyos/ directory to
the apps/ directory of your TinyOS environment and run

make tinynode nescDecls rpc install,<nodeID>

in the apps/Controlling/ControllingExample/ directory.

B.1 Logging

To store voltage measurments permanently, we need to set up the logger ac-
cordingly. This requires four steps:

• Providing constants used by the Logger component: the first page in flash
memory that will be used for storing logger data and the maximal number
of loggers installed on a node. Furthermore, if the LogSender component
is used, the address of the gateway node connected to the client must be
specified, so that the node knows where to send recent log entries. These
constants are set up in the application’s Makefile.

• Initializing the Logger component by wiring its provided StdControl in-
terface.

48 Examples

• Giving the logger to be used an ID: this is done in the application’s config-
uration file where the Logger is wired to the ControllingExampleM module
with a parameterized interface. In the example application, the value 121
is used.

• Initialize the logger to be used with appropriate parameters. This is ex-
plained in the next subsection.

Initializing a Single Logger

Before any log entries can be appended to a logger, the logger itself has first to
be initialized. This is performed by the Logger.initLogger(uint8_t entry
Length, uint16_t nPages, uint16_t nEntriesPerPage) command. For the
sample application, the three parameters were chosen as follows:

• entryLength: voltage measurements are of type uint16_t, therefore this
parameter is set to sizeof(uint16_t), which evaluates to 2.

• nEntriesPerPage: it is likely that the last started page before the node
runs out of battery is not stored to flash memory, therefore nEntriesPer
Page is set to 10. This way, not more than the last 9 log entries are lost.

• nPages: this parameter is set to 433, which allows reading voltage mea-
surements for the last 15 days (if the batteries don’t abandon earlier).

If no other loggers were initialized before, the flash memory occupied by the
Logger component can be computed as follows:

sizeoccupied = sizeloggerIndex + nPageslogger121 ·
(nEntriesPerPagelogger121 · entryLenghlogger121 + sizeloggerPageTrailer)

sizeloggerIndex and sizeloggerPageTrailer can be derived from the Logger.h
header file yielding the values 106 (by keeping in mind the 2 byte alignement of
the Tinynode platform and assuming the MAX_LOGGERS constant set to 10) and
4, respectively. The above equation then evaluates to 10’498 bytes. These bytes
are stored on the first 40 flash memory pages.

B.2 RPC

Additionally to the RPC commands declared by included components such as
RemoteLogReader or Neighbour, the ControllingExampleM module provides
four RPC commands:

• result_t startLogging(uint32_t timeIntervalMs);

• result_t stopLogging();

• uint8_t getRFPower();

• result_t setRFPower(uint8_t value);

B.3 Evaluating Log Data 49

The first command initializes a timer that is fired periodically with the given
time interval, whereas the second command stops the timer. The latter two
commands were added to control the sending power of the radio module.

These commands are declared at the beginning of the ControllingExample.nc
file in the module block, each of them followed by the @rpc() tag. Note the
includes Rpc; line at the beginning of the file!

includes Rpc;
module ControllingExampleM {
provides {
command result_t startLogging(uint32_t timeIntervalMs) @rpc();
command result_t stopLogging() @rpc();
command uint8_t getRFPower() @rpc();
command result_t setRFPower(uint8_t value) @rpc();

}
...

The commands are then implemented in the subsequent implementation
block of the file.

After having installed the application on the nodes, imported the nescDe-
cls.xml and rpcSchema.xml files into the client and looked up the running nodes,
the RPC calls can be executed from the client.

• First, the sending power is increased on both nodes, so that the batter-
ies will discharge faster. This is achieved by calling the setRFPower()
command with the parameter 3, which indicates maximum power: a right
click on the respective command (module ControllingExampleM) in the
Eclipse outline view and selecting ‘execute RPC command. . . ’ opens a
dialog asking for the parameter. The parameter of size one byte has to be
entered in hexadecimal format, so the value 03 has to be typed.

• Second, the LogSender is activated on one node by executing init() in
the LogSender component with parameters 79 (decimal 121, the logger
ID) and 0800, indicating that after every 8th entry, a log message with
the last 8 entries will be sent to the client.

• Third, the Neighbour component is deactivated on the other node by
calling the stop() command in the Neighbours module.

• Finally, the nodes can start measuring the voltage. This is initiated by
calling the startLogging() command (in module ControllingExampleM)
on both nodes with the parameter E0930400, which is 300’000 ms or 5 min
in decimal.

B.3 Evaluating Log Data

This section describes how to download log data from nodes to the client, in-
sert the data into a MySQL database1 and visualize the data with the BIRT2

(Business Intelligence and Reporting Tools) framework, which allows building
reports for various output formats such as HTML or PDF.

1The MySQL database can be downloaded for free on http://www.mysql.org/
2The BIRT system is available on http://www.eclipse.org/birt/

http://www.mysql.org/
http://www.eclipse.org/birt/

50 Examples

Getting Log Entries

We can proceed by reading out the logged voltage measurments. The measur-
ments are inserted into a previously set up MySQL database (the src/scripts/
directory of the framework distribution contains a dbsetup.sql script that can
be used to create a database as used in this example).

To actually get the entries, right click on the ‘Logger 121’ below the first
node in the Eclipse outline view3 and select ‘Get Log Data’. In the opened
dialog, select the ‘Console Log Receiver’ and the ‘Database Log Receiver’ (it is
a good idea to select the console log receiver so that the retrieved entries can
be seen immediately). For the ‘number of entries’ field, entering a high value
(e.g. 4’500) will cause the node to send all available entries. The ‘offset’ field
has to be specified, so 0 is entered here.

After having completed the dialog by clicking ‘OK’, another dialog (fig-
ure 3.14) for setting up the database is shown. The following INSERT statements
are used:

INSERT INTO LOGGER_TRANSACTIONS VALUES (
<transactionID>,
<moteID>,
<loggerID>,
<entriesRequested>,
<offset>,
<dateStarted>,
<timeStarted>,
<timeStartedMs>,
<callDuration>,
nextval("ID")

)

INSERT INTO LOGGER_ENTRIES VALUES (
actval("ID"),
<pos>,
<value>

)

The values are inserted into the database as soon as all entries were received
successfully or a timeout as defined in the preferences4 occurred. Check the
console view for lost entries; they are indicated by ---LOST---. Lost entries
can be requested from the node by giving the respective offset; keep in mind to
update the database accordingly (i.e. replacing logger entries with null values
by the entries retrieved with a subsequent transaction).

The same procedure has yet to be done for the second node.

Visualizing Data

This subsection will not give a step by step guide to creating a report in
BIRT. A brief tutorial that walks through building simple reports is available

3If no loggers appear below a node in the outline view, right click on the node and select
‘Get Logger Info’.

4The timeout for log data can be set in the Eclipse preferences by choosing ‘Window’ →
‘Preferences. . . ’ and then ‘TinyOS Controlling’ on the left side of the preferences dialog.

B.3 Evaluating Log Data 51

on http://www.eclipse.org/birt/phoenix/tutorial/basic/.

Interpreting Binary Data

The following SQL query was used to import the data into the report:

SELECT logger_transactions.moteID
logger_entries.pos,
logger_entries.value

FROM logger_entries, logger_transactions
WHERE logger_entries.ID = logger_transactions.ID

Log entries are stored in the database as VARBINARY or VARLONGBINARY and
need to be converted so that they can be used for the report. In the case
of the sample application, voltage measurments are logged as uint16_t, least
significant byte first. A new ‘Computed Column’ is created with the following
expression:

var voltage = row["value"][0] + row["value"][1]*256;
if (voltage > 2000 || voltage < 1000)
null;

else
voltage*(1.5/4096)/0.239;

The conversion is performed in the first line. In the if/else statement, any bursts
are removed and the measurment is scaled appropriately.

The final result of the experiment is shown as a BIRT diagram in figure B.1.
Battery power lowered faster on node 102, although it ran with the Neighbour
component deactivated and without sending log entries regularly to the client.

Figure B.1: Voltage measurments on nodes 4 and 102.

http://www.eclipse.org/birt/phoenix/tutorial/basic/

Appendix C

Extension Point
Descriptions

C.1 Serial Forwarder Plug-In

C.1.1 Platform

Identifier: ch.ethz.dcg.controlling.sf.platform

Since: 1.0.0

Description: This extension point offers the possibility to extend the Serial
Forwarder Plug-In with proprietary platforms running TinyOS. There are
two possibilities to add platforms: by providing parameters in order to
make use of the generic implementation that is included in this plug-in or
by providing a proprietary implementation. The generic implementation
offers the possibility to connect to the gateway node either over IP or over
a serial connection.

Configuration Markup:

<!ELEMENT extension (platform+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point

• id – an optional identifier of the extension instance

• name – an optional name of the extension instance

<!ELEMENT platform (implementation , connectivity+)>
<!ATTLIST platform
name CDATA #IMPLIED
description CDATA #IMPLIED
image CDATA #IMPLIED>

54 Extension Point Descriptions

• name – the name of the platform

• description – a short description of the platform - will be displayed
in the platform selection wizard

• image – the location of an image (preferably in GIF format) rela-
tive to the extending plug-in’s/fragment’s root directory. The image
should represent the platform - it will be shown in the platform se-
lection wizard.

<!ELEMENT connectivity (serial | networkIP |
customConnectivity)>

<!ELEMENT customConnectivity EMPTY>
<!ATTLIST customConnectivity
description CDATA #REQUIRED>

• description – a string describing the format of the parameters the
user has to enter for using customConnectivity

<!ELEMENT networkIP EMPTY>
<!ATTLIST networkIP
portnumber CDATA #IMPLIED>

• portnumber – if the portnumber of the IP connected gateway is always
the same, specify it here

<!ELEMENT serial EMPTY>
<!ATTLIST serial
baudrate (110|300|1200|2400|4800|9600|19200|38400|57600|
115200|230400|460800|921600) >

• baudrate – the baudrate to be used when communicating over the
serial port

<!ELEMENT implementation (generic | custom)>

<!ELEMENT generic EMPTY>
<!ATTLIST generic
TOSMsgClass CDATA #REQUIRED
platformID CDATA #REQUIRED>

The generic element indicates that the generic implementation from the
Serial Forwarder Plug-In will be used.

• TOSMsgClass – a fully qualified name of the class that extends
net.tinyos.message.TOSMsg. This class is needed to find out offsets
in order to communicate with the gateway node.

• platformID – the platform ID as found in the classic serial forwarder.
This ID is needed to communicate with the gateway node.

C.1 Serial Forwarder Plug-In 55

<!ELEMENT custom EMPTY>
<!ATTLIST custom
PlatformClass CDATA #REQUIRED>

The custom element indicates that the class given in the attribute Plat-
formClass will be used instead of the generic implementation.

• PlatformClass – PlatformClass - a fully qualified name of the class
that implements ch.ethz.dcg.conrolling.moteIF.IPlatform. This class
has to be implemented if you decide to provide custom connectivity.

Examples: The following is an example extension for this extension point:

<extension
point="ch.ethz.dcg.controlling.sf.platform">

<platform
description="The Tinynode Platform by Shockfish"
image="icons/tinynode.gif"
name="Tinynode">

<connectivity>
<serial baudrate="57600"/>

</connectivity>
<implementation>

<generic
TOSMsgClass="net.tinyos.message.tinynode.

TOSMsg"
platformID="5"/>

</implementation>
</platform>
<platform

description="The Mica 2 Platform"
image="icons/mica2.gif"
name="Mica 2">

<connectivity>
<networkIP portnumber="10002"/>

</connectivity>
<connectivity>

<serial baudrate="57600"/>
</connectivity>
<implementation>

<generic
TOSMsgClass="net.tinyos.message.avrmote.

TOSMsg"
platformID="1"/>

</implementation>
</platform>

</extension>

API Information: If a custom platform class is given, it has to implement the
ch.ethz.dcg.conrolling.moteIF.IPlatform interface. The interface provides
information on how the interface will be used.

56 Extension Point Descriptions

Supplied Implementation: The ch.ethz.dcg.controlling.platforms fragment
provides support for some existing platforms.

C.1.2 Raw Message Listener

Identifier: ch.ethz.dcg.controlling.sf.RawMessageListener

Since: 1.0.0

Description: This extension point is used to add a listener for raw messages
sent to or from the wireless sensor network by the Serial Forwarder Plug-
In.

Configuration Markup:

<!ELEMENT extension (RawMessageListener+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point

• id – an optional identifier of the extension instance

• name – an optional name of the extension instance

<!ELEMENT RawMessageListener EMPTY>
<!ATTLIST RawMessageListener
listenerClass CDATA #REQUIRED
packetKind (inPacket|outPacket|badPacket) >

• listenerClass – a fully qualified name of the class that implements the
ch.ethz.dcg.controlling.messaging.IPacketListener interface. Upon
the first processing of a message, the class will be instantiated. For
every message to be processed, the receivePacket method will be
called with the message data as a parameter.

• packetKind – one of inPacket, outPacket or badPacket, depending on
the kind of packets the listener wants to receive

Examples: The following is an example extension for this extension point:

<extension
id="SerialForwarder"
name="Serial Forwarder listener"
point="ch.ethz.dcg.controlling.sf.RawMessageListener">

<RawMessageListener
listenerClass="ch.ethz.dcg.controlling.utils.

SerialForwarder$PacketListener"
packetKind="inPacket">

</RawMessageListener>
<RawMessageListener

listenerClass="ch.ethz.dcg.controlling.sf.views.

C.1 Serial Forwarder Plug-In 57

MessageReceiverImpl$InPacketListener"
packetKind="inPacket">

</RawMessageListener>
<RawMessageListener

listenerClass="ch.ethz.dcg.controlling.sf.views.
MessageReceiverImpl$OutPacketListener"

packetKind="outPacket">
</RawMessageListener>
<RawMessageListener

listenerClass="ch.ethz.dcg.controlling.sf.views.
MessageReceiverImpl$BadPacketListener"

packetKind="badPacket">
</RawMessageListener>
<RawMessageListener

listenerClass="ch.ethz.dcg.controlling.messaging.
TOSMessageDispatcher$PacketListener"

packetKind="inPacket"/>
</extension>

API Information: It is common practice to declare the class implementing
the ch.ethz.dcg.controlling.messaging.IPacketListener interface as an inner
class which calls a method of a singleton instance of the outer class in order
to process a packet.

Supplied Implementation: The ch.ethz.dcg.controlling.sf.RawMessageListe-
ner extension inside this plug-in extends this extension point.

C.1.3 TOS Message Listener

Identifier: ch.ethz.dcg.controlling.sf.TOSMessageListener

Since: 1.0.0

Description: This extension point is used to add a listener for TOS messages
received from the wireless sensor network by the Serial Forwarder Plug-In.

Configuration Markup:

<!ELEMENT extension (TOSMessageListener+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point

• id – an optional identifier of the extension instance

• name – an optional name of the extension instance

<!ELEMENT TOSMessageListener (messageType)>
<!ATTLIST TOSMessageListener
listenerClass CDATA #REQUIRED>

58 Extension Point Descriptions

• listenerClass – a fully qualified name of the class that implements
the ch.ethz.dcg.controlling.messaging.IPacketListener interface

<!ELEMENT messageType EMPTY>
<!ATTLIST messageType
AMtypename CDATA #IMPLIED
AMtype CDATA #REQUIRED>

• AMtypename – the name of the active message type the listener will
be registered for

• AMtype – an integer indicating the active message type of the TOS
messages the listener wants to be notified upon receipt. Insert a * if
the listener has to be notified of all incomming TOS messages.

Examples: The following is an example extension for this extension point:

<extension
point="ch.ethz.dcg.controlling.sf.TOSMessageListener">

<TOSMessageListener
listenerClass="ch.ethz.dcg.controlling.rpc.

RPCTransport$PacketListener">
<messageType

AMtypename="AM_RPCRESPONSEMSG"
AMtype="212"/>

</TOSMessageListener>
</extension>

API Information: It is common practice to declare the class implementing
the ch.ethz.dcg.controlling.messaging.IPacketListener interface as an inner
class which calls a method of a singleton instance of the outer class in order
to process a packet.

The dataOffset parameter provided when the receivePacket method of the
ch.ethz.dcg.controlling.messaging.IPacketListener interface is called will
point to the first byte of the data field of the TOS Msg struct inside
the received data byte array.

Supplied Implementation: The Sensornet Manager Plug-In (ch.ethz.dcg.con-
trolling.snetMgr) makes use of this extension point in order to receive
different types of messages such as RPC responses or Drain messages.

C.2 Sensornet Manager Plug-In

C.2.1 Drain Message Listener

Identifier: ch.ethz.dcg.controlling.snetMgr.DrainMessageListener

Since: 1.0.0

Description: This extension point is used to add a listener for messages com-
ming in over the Drain routing layer. Its usage is identical to the ch.ethz.
dcg.controlling.sf.TOSMessageListener extension point.

C.2 Sensornet Manager Plug-In 59

Configuration Markup:

<!ELEMENT extension (DrainMessageListener+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point
• id – an optional identifier of the extension instance
• name – an optional name of the extension instance

<!ELEMENT DrainMessageListener (messageType)>
<!ATTLIST DrainMessageListener
listenerClass CDATA #REQUIRED>

• listenerClass – a fully qualified name of the class that implements
the ch.ethz.dcg.controlling.messaging.IPacketListener interface

<!ELEMENT messageType EMPTY>
<!ATTLIST messageType
AMtypename CDATA #IMPLIED
AMtype CDATA #REQUIRED>

• AMtypename – the name of the active message type the listener will
be registered for

• AMtype – an integer indicating the active message type of the Drain
messages the listener wants to be notified upon receipt. Insert a * if
the listener has to be notified of all incomming Drain messages.

Examples: The following is an example extension for this extension point:

<extension
point="ch.ethz.dcg.controlling.snetMgr.

DrainMessageListener">
<DrainMessageListener listenerClass="ch.ethz.dcg.

controlling.rpc.RPCTransport$PacketListener">
<messageType

AMtypename="AM_RPCRESPONSEMSG"
AMtype="212"/>

</DrainMessageListener>
</extension>

API Information: It is common practice to declare the class implementing
the ch.ethz.dcg.controlling.messaging.IPacketListener interface as an inner
class which calls a method of a singleton instance of the outer class in order
to process a packet.

The dataOffset parameter provided when the receivePacket method of the
ch.ethz.dcg.controlling.messaging.IPacketListener interface is called will
point to the first byte of the data field of the DrainMsg struct inside
the received data byte array.

60 Extension Point Descriptions

Supplied Implementation: The Sensornet Manager Plug-In (ch.ethz.dcg.con-
trolling.snetMgr) makes use of this extension point in order to receive dif-
ferent types of messages such as RPC responses or log messages comming
in over the Drain layer.

C.2.2 Bulk Data Message Listener

Identifier: ch.ethz.dcg.controlling.snetMgr.BulkDataMsgListener

Since: 1.0.0

Description: This extension point is used to add a listener for bulk data com-
ming in. Bulk data is data that potentially doesn’t fit into one single TOS
message and needs to be split up into several messages by the node and
put back together when received.

Configuration Markup:

<!ELEMENT extension (BulkDataMessageListener+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point

• id – an optional identifier of the extension instance

• name – an optional name of the extension instance

<!ELEMENT BulkDataMessageListener (messageType)>
<!ATTLIST BulkDataMessageListener
listenerClass CDATA #REQUIRED>

• listenerClass – a fully qualified name of the class that implements
the ch.ethz.controlling.bulkData.IBulkDataListener interface

<!ELEMENT messageType EMPTY>
<!ATTLIST messageType
dataTypename CDATA #IMPLIED
dataType CDATA #REQUIRED>

• dataTypename – the name of the bulk data type the listener will be
registered for

• dataType – an integer indicating the bulk data type of the bulk data
messages the listener wants to be notified upon receipt. Insert a * if
the listener has to be notified of all incomming bulk data.

Examples: The following is an example extension for this extension point:

C.2 Sensornet Manager Plug-In 61

<extension
point="ch.ethz.dcg.controlling.snetMgr.

BulkDataMsgListener">
<BulkDataMessageListener

listenerClass="ch.ethz.dcg.controlling.snetMgr.
model.Sensornet$NeighbourhoodDataListener">

<messageType
dataType="25"
dataTypename="BULK_NEIGHBOURTABLE"/>

</BulkDataMessageListener>
</extension>

API Information: It is common practice to declare the class implementing
the ch.ethz.controlling.bulkData.IBulkDataListener interface as an inner
class which calls a method of a singleton instance of the outer class in
order to process a packet.

Supplied Implementation: The Sensornet Manager Plug-In (ch.ethz.dcg.con-
trolling.snetMgr) makes use of this extension point in order to receive data
about a node’s neighbourhood, its filter or its installed loggers.

C.2.3 Log Receiver

Identifier: ch.ethz.dcg.controlling.snetMgr.LogReceiver

Since: 1.0.0

Description: This extension point is used to add listeners for log entries re-
ceived from nodes.

Configuration Markup:

<!ELEMENT extension (logReceiver+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point

• id – an optional identifier of the extension instance

• name – an optional name of the extension instance

<!ELEMENT logReceiver EMPTY>
<!ATTLIST logReceiver
receiverClass CDATA #REQUIRED
receiverName CDATA #REQUIRED
receiverDescription CDATA #IMPLIED>

• receiverClass – a fully qualified name of the class that implements
the ch.ethz.controlling.logging.ILogReceiver interface

62 Extension Point Descriptions

• receiverName – the name of the logReceiver. Is used in the UI for
the user to identify the logReceiver.

• receiverDescription – a short description of the logReceiver

Examples: The following is an example extension for this extension point:

<extension
point="ch.ethz.dcg.controlling.snetMgr.LogReceiver">

<logReceiver
receiverClass="ch.ethz.dcg.controlling.logging.

FileLogReceiver"
receiverDescription=

"Prints the received entries to a file"
receiverName="File Log Receiver"/>

</extension>

API Information: The ch.ethz.controlling.logging.ILogReceiver interface con-
tains comments on how the interface is used by the framework.

Supplied Implementation: The sensornet manager plug-in (ch.ethz.dcg.con-
trolling.snetMgr) extends this extension point by supplying log readers
that print received logger entries to System.out or to a file.

The database logReceiver plug-in (ch.ethz.dcg.controlling.dbLogReceiver)
extends this extenstion point by supplying a log reader that inserts re-
ceived logger entries into a specified database.

C.3 Database Log Receiver Plug-In

C.3.1 Database Driver

Identifier: ch.ethz.dcg.controlling.dbLogReceiver.dbDriver

Since: 1.0.0

Description: This extension point is used to extend the database log receiver
plug-in with proprietary JDBC drivers.

Configuration Markup:

<!ELEMENT extension (databaseDriver+)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point – a fully qualified identifier of the target extension point

• id – an optional identifier of the extension instance

• name – an optional name of the extension instance

C.3 Database Log Receiver Plug-In 63

<!ELEMENT databaseDriver (library+)>
<!ATTLIST databaseDriver
driverClass CDATA #REQUIRED
name CDATA #REQUIRED
sampleConnectionURL CDATA #IMPLIED>

• driverClass – a fully qualified name of the class that implements the
java.sql.Driver interface

• name – the name of the driver. Will be shown in the UI.

• sampleConnectionURL – a sample URL as a help for the user on how
to enter the connect URL

<!ELEMENT library EMPTY>
<!ATTLIST library
jarFile CDATA #REQUIRED>

• jarFile – the location of the jar file needed in order to load the driver
relative to the extending plug-in’s/fragment’s root

Examples: The following is an example extension for this extension point:

<extension
point="ch.ethz.dcg.controlling.dbLogReceiver.

dbDriver">
<databaseDriver

driverClass="com.mysql.jdbc.Driver"
name="MySQL Connector/J Version 3.1.13"
sampleConnectionURL="jdbc:mysql://<server>

:<port>/<dbName>">
<library jarFile=

"lib/mysql-connector-java-3.1.13-bin.jar"/>
</databaseDriver>

</extension>

Supplied Implementation: The Database Log Receiver Plug-In (ch.ethz.dcg.
controlling.dbLogReceiver) extends this extension point by supplying a
JDBC driver for MySQL databases.

Bibliography

[1] David Gay, Philip Levis, David Culler, Eric Brewer: nesC 1.1 Language
Reference Manual. Available at: http://nescc.sourceforge.net/papers/nesc-
ref.pdf (last accessed on September 13, 2006)

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer and D. Culler:
The nesC language: A Holistic Approach to Networked Embedded Systems.
Available at: http://nescc.sourceforge.net/papers/nesc-pldi-2003.pdf (last
accessed on September 13, 2006)

[3] Erich Gamma, Kent Beck: Contributing to Eclipse: Principles, Patterns,
and Plug-Ins. Addison-Wesley, Boston, 2003, ISBN: 0-321-20575-8

[4] Gilman Tolle, David Culler: Design of an Application-Cooperative Manage-
ment System for Wireless Sensor Networks. Second European Workshop on
Wireless Sensor Networks (EWSN), Istanbul, Turkey, January 31 - Febru-
ary 2 2005.

[5] Gilman Tolle: Nucleus Network Management. Available at: http://www.
cs.berkeley.edu/∼get/nucleus/nucleus-manual.pdf (last accessed on August
29, 2006)

[6] Crossbow Technology, Inc.: MOTE-VIEW 1.2 Users Manual; Revision
B, January 2006. Available at: http://www.xbow.com/Support/Support
pdf files/MoteView Users Manual.pdf (last accessed on April 25, 2006)

[7] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P.
Dutta, and D. Culler: Marionette: Using RPC for Interactive Development
and Debugging of Wireless Embedded Networks. IPSN’06, April 19 – 21,
2006, Nashville, Tennessee, USA.

[8] Severin Winkler: Kontrolle und Visualisierung eines Sensornetzwerks.
Semester thesis at ETH Zurich, Distributed Computing Group.

http://nescc.sourceforge.net/papers/nesc-ref.pdf
http://nescc.sourceforge.net/papers/nesc-ref.pdf
http://nescc.sourceforge.net/papers/nesc-pldi-2003.pdf
http://www.cs.berkeley.edu/~get/nucleus/nucleus-manual.pdf
http://www.cs.berkeley.edu/~get/nucleus/nucleus-manual.pdf
http://www.xbow.com/Support/Support_pdf_files/MoteView_Users_Manual.pdf
http://www.xbow.com/Support/Support_pdf_files/MoteView_Users_Manual.pdf

	Introduction
	Problem Description
	Background Information
	TinyOS, NesC
	Eclipse Platform

	Related work
	Nucleus Network Management
	Pytos
	Embedded RPC
	Peek and Poke
	Drip and Drain
	Pytos Installation

	MoteView

	Design and Implementation
	The Big Picture
	The Client Side
	The Node Side

	Communication, RPC
	Serial Forwarder Plug-In
	Drip and Drain
	RPC
	Bulk Data

	Variable Introspection
	Logging
	Node Side Implementation
	Client Side Implementation

	Topology Control
	Neighbours Subcomponent
	NeighbourUpdater Subcomponent
	LTOP_Comm Subcomponent
	Influencing the Topology

	Outlook
	Future Work
	Conclusion
	Personal Experience

	Installation Guide
	Examples
	Logging
	RPC
	Evaluating Log Data

	Extension Point Descriptions
	Serial Forwarder Plug-In
	Platform
	Raw Message Listener
	TOS Message Listener

	Sensornet Manager Plug-In
	Drain Message Listener
	Bulk Data Message Listener
	Log Receiver

	Database Log Receiver Plug-In
	Database Driver

