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Abstract

Live streaming is used in today’s Internet to broadcast TV channels and radio sta-
tions, usually by deploying streaming servers. Peer-to-peer applications have become
popular in recent years to overcome the limitations of centralized servers. This thesis
proposes StreamTorrent, a peer-to-peer-based live streaming protocol. In contrast to
most protocols, StreamTorrent provides robustness, efficiency, and scalability by com-
bining different strategies. StreamTorrent has the efficiency of typical tree-based and
the robustness of more random protocols. An overlay with small diameter and locality-
awareness reduces latency and network load. And because peer-to-peer computing is
about collaboration among peers, incentives are given to peers to share their resources
to ensure good playback quality.

The StreamTorrent protocol has been implemented and can be used both to perform
simulations and to stream in the real world. The simulations allow to evaluate the
protocol and to perform automated tests for a large number of peers. The StreamTorrent
Player is a real world application supporting live audio and video streaming.





Contents

1 Introduction 7

2 Related Work 9

2.1 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Distributed Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Protocol Design 13

3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Neighbour Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Pushing Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Notification Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Pull-based Request and Response Strategies . . . . . . . . . . . . . . . . 15

3.6 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 Comparison to File Sharing . . . . . . . . . . . . . . . . . . . . . 16

3.6.2 Hiding the Source . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.3 Tit-for-Tat Response Strategy . . . . . . . . . . . . . . . . . . . . 17

3.6.4 Neighbour Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.5 Dropping Neighbours . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.6 Neighbour Recommendations and Certificates . . . . . . . . . . . 18

3.6.7 Pushing to Good Neighbours . . . . . . . . . . . . . . . . . . . . 19

3.6.8 Slot Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Source and Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Protocol Implementation 21

4.1 Abstraction of the Protocol Environment . . . . . . . . . . . . . . . . . 21

4.1.1 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Additional Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Entrypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Distributed Hash Tables . . . . . . . . . . . . . . . . . . . . . . . 24

5 Simulator 25

5.1 Simulations and Simulation Suites . . . . . . . . . . . . . . . . . . . . . 25

5.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 JUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Simulation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



4 CONTENTS

6 Evaluation 29
6.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.6 Crash & Churn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.7 Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.8 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 StreamTorrent Player 41
7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Platform Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2.1 Plugin Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.2 Adapter Repository . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.3 Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Player Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3.1 Stream Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.2 Resource Repositories . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.3 NAT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.4 Build System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.5 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.4 UI Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.1 Selection Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4.3 Drag & Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4.4 Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4.5 Tooltips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4.6 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.5 Player UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5.1 Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5.2 Player Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5.3 Broadcast Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.5.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.6 Player Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7 Planet Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Conclusions 51

9 Future Work 53
9.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.1.1 On-demand Streaming . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.2 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.4 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.5 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.6 Bandwidth Management . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.7 Source Replication . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.8 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.9 Different Quality Levels . . . . . . . . . . . . . . . . . . . . . . . 54

9.2 StreamTorrent Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2.1 NAT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2.2 Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2.3 Video Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2.4 Finalizing the API . . . . . . . . . . . . . . . . . . . . . . . . . . 55



CONTENTS 5

9.2.5 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2.6 Supported Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2.7 Supported Input Types . . . . . . . . . . . . . . . . . . . . . . . 55

9.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55





Chapter 1

Introduction

Several peer-to-peer-based applications have emerged in recent years to overcome the
limitations and costs of centralized servers. Especially file-sharing has become very
popular and already accounts for most traffic on the Internet. Its main purpose is
the exchange of audio and video files. Unlike file sharing, the adoption of peer-to-peer
technologies for audio and video streaming is so far progressing very slowly, both for
on-demand and live streaming. On-demand streaming would spare users from waiting
until downloads have completed, and live streaming could be used, for example, to
broadcast TV channels, radio stations, and sporting events. Unfortunately, streaming is
inherently more complex than file sharing. Besides providing robustness and scalability,
applications have to deliver data blocks in time to ensure a good playback quality.

In this master thesis peer-to-peer live streaming is studied. Native IP multicast is
the typical and most efficient solution within local networks, but it lacks a large-scale
deployment over the boundaries of local networks to the entire Internet. This has trig-
gered studies of application-layer peer-to-peer-based protocols like the one presented
in this thesis. Many different aspects have to be taken into account when designing a
live streaming protocol, such as malicious and selfish peers, network delays and locality,
packet loss, network diameter, scalability, efficiency, overhead, and churn. There are
already numerous proposals such as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Many of these proposals
focus on giving a solution to some aspects, frequently leading to problems with other
aspects. For example, tree-like overlays are efficient but fragile, while more random
overlays are robust but inefficient. Or some of the proposed overlays are better suited
than others to provide incentives for peers to share their upload bandwidth. Aspects
such as packet loss, heterogeneous bandwidths, or network delays have frequently been
omitted, but clearly have a profound impact in the real world. What still seems to be
missing are more detailed studies about the entire problem. By introducing StreamTor-
rent, we aim at combining and improving some of the proposed solutions to overcome
their respective limitations and thereby providing a more robust and efficient protocol.

StreamTorrent uses a combination of pull-based and push-based strategies to pro-
vide, unlike most other protocols, both efficiency and robustness. Peers maintain a set
of neighbours to exchange notifications about data blocks and to request missing data
blocks. A XOR-based metric topology, frequently adopted by distributed hash tables,
is used to guarantee a logarithmic network diameter, to add locality-awareness, and
to increase efficiency by pushing data blocks (sending data blocks without a request).
Upload and download slots are allocated for neighbours according to the used band-
width and observed packet loss. To give peers incentives for sharing upload bandwidth
with neighbours, neighbour ranking, tit-for-tat, recommendations, and certificates are
adopted.

The StreamTorrent protocol has been implemented and can be used both to perform
simulations and to stream in the real world. Various simulations are used in this thesis to
evaluate StreamTorrent with thousands of peers to verify its efficiency, scalability and
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8 CHAPTER 1. INTRODUCTION

robustness. The StreamTorrent Player, a real world application, supports live audio
and video streaming over the Internet and is similar in its use to popular BitTorrent
clients. The StreamTorrent Player is based on a plugin architecture to allow future
extensions. The user interface provides an integrated browser to find streams on web
sites, an integrated media player to playback streams, and many smaller features such
as favorites, a history, time-shifted viewing, and recording support.

Chapter 2 outlines work related to this thesis. Chapter 3 presents the StreamTorrent
protocol in detail and Chapter 4 its implementation. The simulator and an evaluation
of the results are given in Chapters 5 and 6. The StreamTorrent Player is presented in
Chapter 7. And finally, Chapters 8 and 9 give a conclusion and outline future work.



Chapter 2

Related Work

2.1 Streaming

Several protocols have already been proposed for peer-to-peer streaming [1, 2, 3, 4, 5,
6, 7, 8, 9, 10]. Most of these protocols fall into two classes:

• Protocols based on a tree-like overlay. Trees are used to avoid duplicates when
packets are sent without being requested, known as pushing. In its simplest form,
the source is the root of a single tree and pushes new packets to its children, the
children in turn push packets to their children, etc. Unfortunately, the bandwidth
available to peers is limited by all their parents. And if peers leave the overlay,
trees have to be repaired or the peers’ children receive no data. Consequently,
trees are fragile under churn, i.e. when peers frequently join and leave, or when
some peers have not enough upload bandwidth.

• Protocols with an overlay of more random nature. Peers maintain a set of neigh-
bours to periodically exchange notifications about available packets and to request
missing packets. Protocols of this type are usually far more resilient against churn,
but incur a higher overhead and longer delays due to the notify-request-response
cycles. To some degree the protocols are similar to BitTorrent [11] and other file
sharing tools.

Overcast [2] and FreeCast [9] are typical protocols using a single tree. Both are
simple and work well within a stable network, but are fragile under churn. While inner
nodes have to forward the stream to all their children, leaf nodes do not have to share
anything. This is a major disadvantage since the upload bandwidth is often limited,
e.g. ADSL broadband connections, and many peers might attempt to join as leaf. This
problem is partly overcome by protocols like Zebra [10]. Zebra splits streams into two
stripes. Each stripe is distributed among the peers using a separate tree. A peer has to
be an inner node in one tree and a leaf in the other. If every inner node has two children,
then every peer has to contribute the same upload bandwidth. Besides the disadvantages
of any tree-like protocol, parts of Zebra use centralized sub protocols that limit its use
to merely a few dozen, maybe hundred peers. The concept of multiple trees is further
generalized by SplitStream, using k stripes and multiple description coding [12]. Multiple
description coding allows to split a stream into stripes so that any subset of stripes allows
to reconstruct the original stream (with reduced quality if not all stripes are available).
Unfortunately, multiple description coding is still an active research effort and not used in
practice. A similar, more centralized approach is taken by CoopNet [13]. The concept
has been further improved by protocols such as ChunkySpread [5], for example, by
introducing a “weak” tit-for-tat model, adding locality-awareness, and providing a more
efficient protocol to build and repair trees.

9
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Bullet [4] builds a mesh on top of an arbitrary tree overlay to increase robustness.
Additional links are added to reduce the dependency of peers to their parents. The
stream is split into disjoint blocks and distributed within the tree. Only as much packets
are sent to children as bandwidth is available. Missing packets are then localized and
downloaded using the mesh. Its robustness depends on the underlying tree, but it is
improved by the additional links provided by the mesh. Naturally, the mesh imposes
additional overhead which is substantial in total:

• 30 Kbps per node to maintain the mesh and locate missing blocks.

• 5% overhead if erasure codes are used ([14, 15, 16]).

• Less than 10% duplicate packets under churn.

• The overhead of the underlying tree.

Chainsaw [1], CoolStreaming/DONet [17], and GridMedia [18] belong to the second
class of protocols, i.e. they are more random in nature. Simulations of Chainsaw [1]
have shown that peers recover from 50% of all peers crashing simultaneously with minor
packet loss. While such a robustness might seem unnecessary, it is what happens when,
for example, TV channels start showing commercials or a movie ends. None of the tree-
based overlays recover from such events without severe packet loss. The overhead of such
random protocols increases with the number of neighbours, the notification frequency,
and the needed buffer size. While in Chainsaw peers have between 20 and 40 neighbours,
it is between merely two and six for CoolStreaming/DONet. However, the parameters
also influence each other. More neighbours allows a lower notification frequency. Smaller
buffers result in smaller notifications. The overhead of CoolStreaming/DONet is less
than 2% in a stable network with 6 neighbours. The drawback of few neighbours are
less robustness and larger buffer sizes (5 seconds with Chainsaw compared to 60 seconds
with CollStreaming/DONet). GridMedia additionally pushes data packets to speed up
packet distribution.

DagStream [7] and Dagster [6] use direct acyclic graphs (or DAG). Dagster maintains
the current overlay topology at the source and does therefore not scale. DagStream is a
pull-based, decentralized, and locality-aware protocol. It ensures connectivity by using
properties of the underlying DAG. Similar to CoolStreaming/DONet peers maintain a
small set of neighbours.

In contrast to these attempts, we strive for combining the advantages of trees with
the robustness of random structures and having an overlay that provides connectivity
with small diameter, locality-awareness, and incentive-compatibility.

2.2 Distributed Hash Tables

In contrast to peer-to-peer streaming, connectivity, neighbour selection, and expected
diameter have been well-studied for distributed hash tables. Many protocols guarantee
a logarithmic diameter ([19, 20, 21, 22]). Pastry [21], for instance, assigns a unique
identifier to each peer and uses prefix routing. Each peer maintains a logarithmic number
of neighbours. In its simplest form, a peer chooses a neighbour whose identifier is
the same at the i most significant bits and differs in the subsequent bit i + 1, for
i = {0, 1, 2, 3, ...}. Objects are also addressed by identifiers and stored on the peers with
the most similar identifier. To speed up prefix routing, identifiers can be partitioned
into disjoint blocks of size b. For each block i, peers choose 2b − 1 neighbours that have
the blocks 1, . . . , i − 1 in common and differ in the current block in one of the 2b − 1
ways. This way, prefix routing fixes b bits at each hop.

Protocols like Pastry [21], eQuus [22], and Vivaldi [23] additionally provide locality
awareness. A simple heuristic for neighbour selection, also adopted by Pastry, adds
locality-awareness to Kademlia. For short common prefixes, many peers can be used as
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neighbours (about n2−i where n denotes the number of peers). By choosing the nearest
one known and by asking nearest neighbours for more neighbours, peers gradually im-
prove locality while maintaining connectivity with a logarithmic diameter. This concept
is extended in Vivaldi by introducing virtual coordinates. Each peer obtains a virtual
coordinate that is constantly updated based on other peers’ coordinates. This has the
advantage that peers can guess in advance which peers might be nearer than others
without actually having to contact these peers to measure round trip times.

Some of these concepts will be applied in StreamTorrent to also gain these properties.

2.3 Incentives

One of the hardest and most essential challenges in peer-to-peer computing is to give
peers incentives to share their resources since peer-to-peer is based on collaboration.
For example, Huberman and Adar [24] have shown that in Gnutella nearly 98% of the
responses were returned by 25% of the sharing hosts and almost 50% of the responses
where returned by merely 1% of the sharing hosts. Clearly, all hosts would greatly
benefit if there is a mechanism preventing hosts from downloading without uploading.
Updating the client software to throttle the download bandwidth for free-riders is not a
viable solution as software can be modified by a third party. Most prominent example
is Kazaa [25] and its modified version KazaaLite.

What makes the problem hard within large overlays is that peers only interact with a
small fraction of the peers. Maintaining private histories of good and bad peers does not
scale [26], especially considering the zero-cost nature of online identities in most systems,
exploited by white-washing and Sybil [27] attacks. Better systems leverage the opinion
of other peers, for example, by sharing a common history. Such solutions usually face
two challenges. First, storage and communication is needed to store, update, and query
ranking information. Implementations either use centralized servers or incur a high
communication overhead by building a distributed alternative. Second, such systems are
vulnerable to collusions of malicious peers. Malicious peers might improve their ranking
by recommending each other. Collusions can be overcome by adopting subjective shared
histories [28, 29] where peers “favor” other peers with a “similar opinion”. A related
mechanism is the use of micro-payments, e.g. in Karma [30].

A popular and simple alternative are tit-for-tat mechanisms [31]. Simply speaking, a
peer A only shares packets with peer B if peer B shares its packets with peer A. Clearly,
one of the two parties has to start sending packets to prevent deadlocks and starvation
and thereby risks supporting a free-rider. This problem can be partly overcome by only
sharing certain packets for free. Free packets are determined based on the receivers
identity. Simple approaches choose two hash functions, one for IP addresses and one for
sequence numbers, and a packet is free if the hash values match. The set of free packet
is known as allowed fast set [32] in BitTorrent. Naturally, tit-for-tat is only feasible for
protocols with bidirectional packet exchange, immediately excluding DAG-based and
most tree-based protocols. Attempts to overcome this limitation for trees usually split
streams in stripes and periodically rebuild the trees to gain more symmetry, i.e. that the
parent-child roles are periodically reversed and parents can then punish their children
if they did not share in the past (e.g. [33]). Unfortunately, like all private history
approaches, such attempts do not scale.





Chapter 3

Protocol Design

At its core, the StreamTorrent protocol is a pull-based protocol similar to Chainsaw [1]
and file sharing protocols like BitTorrent [11]. A logarithmic number of neighbours
are maintained to exchange notifications and data packets. The pull-based nature of
StreamTorrent has the advantage of high robustness against churn. However, the la-
tency is typically bad for pull-only protocols. To overcome this problem, neighbours
are chosen based on the topology proposed by Pastry [21]. This allows the source to
push new packets to speed up packet distribution. The chosen topology thereby ensures
a negligible number of duplicates. Moreover, the flexibility in choosing neighbours is
used to add locality-awareness while maintaining a logarithmic network diameter. In
contrast to trees and directed acyclic graphs, neighbourhood is symmetric. This results
in a more incentive-compatible overlay. Simple techniques like tit-for-tat and its allowed
fast set extension are adopted to give peers incentives to share upload bandwidth. To-
gether with the fact that buffers are small and there is not much time to obtain packets,
peers are forced to share packets in order to sustain a continuous delivery with neglibile
packet loss. The subsequent sections give an overview of the protocol.

3.1 Network Model

The protocol assumes that peers are connected among each other by unreliable, un-
ordered channels and that each peer has unique identifier, a maximum upload band-
width, and a maximum download bandwidth.1 Real world implementations conse-
quently use UDP instead of TCP for several reasons:

1. Packets have to be delivered in time. Chances are increased by sending retrans-
missions to different peers.

2. Peers usually have between 20 and 40 neighbours and exchange only few packets
with each. Acknowledgements would significantly increase the number of packets.
Some packets do not need to be acknowledged anyway.

3. More sophisticated protocols than the ones adopted by TCP are known to avoid
congestion and packet loss and maintain a high bandwidth (e.g. [34]).

3.2 Neighbour Selection

Chainsaw [1], CoolStreaming/DONet [17], and GridMedia [18] adopt a random neigh-
bour selection, guaranteeing neither connectivity nor locality-awareness. For a high node

1 Assuming connectivity among each other is not entirely correct since there might NAT devices
and firewalls. Techniques used to by-pass such devices and consequences for the protocol are outlined
in Chapter 7.3.3.
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degree, one might can assume good connectivity and a small diameter. However, extra
precautions have to be taken to maintain these properties if the protocols are extended
by, for example, locality-awareness and incentive mechanisms. For instance, choosing
the nearest known peers as neighbours could result in an overlay more similar to a linked
list, causing long delays and buffer underflows. Moreover, the number of neighbours has
to be adapted according to the number of peers to ensure scalability.

A better overlay might use a combination of both local and distant neighbours,
similar to the small world phenomena [35]. StreamTorrent uses the XOR-based metric
topology proposed by Kademlia. It guarantees a logarithmic diameter with a logarithmic
number of neighbours. As stated in Chapter 2.2, more neighbour candidates are available
the shorter the common identifier prefix is. StreamTorrent selects candidates based on
the observed round trip times and provided bandwidth. Peers attempt to minimize
round trip times if enough bandwidth is available and the buffers are full, and attempt
to maximize the received bandwidth otherwise. Moreover, the next section describes
how the chosen topology can be used to speed up packet distribution.

3.3 Pushing Packets

While pull-based protocols are robust, they incur longer delays and a higher overhead
compared to tree-based solutions. Waiting for a notification of a new packet, then
sending a request, and waiting for an answer (or timeout) takes time that increases
with each hop. Frequently sending notifications is essential for pull-based protocols to
reduce delays. However, notifying neighbours causes communication overhead, limiting
the notification frequency.

In an attempt to reduce both the delays and the associated notification overhead, it
is essential to observe that pull-based protocols perform well once packets are already
distributed among a fraction of the peers. Most delay is incurred in the interval between
the source has made a new packet available and it is distributed to a few peers. One
could devise more sophisticated notification strategies, taking the age of packets into
account, leading, unfortunately, only to minor improvements. This suggest that a new
approach is needed to distribute new packets.

A solution to this problem is to push new packets, i.e. sending packets without having
received corresponding requests. But a mechanism is needed to avoid duplicates. That
is where the chosen topology perfectly fits in. For each packet, a tree is dynamically
created among a subset of the peers to push new packets. The tree might differ for each
packet to balance the load and favor good neighbours. The tree does not reach all peers,
but this is not needed anyway.

Let b again denote the number of bits that the prefix routing algorithm of Kademlia
fixes at each hop (see Chapter 2.2), StreamTorrent typically uses b = 2. Given a new
packet, the source selects a peer among its neighbours to be the root of the packet’s
distribution tree and sends the packet to this peer. The peer selects 2b peers among its
neighbours based on their identifiers to forward the packet. A neighbour is chosen for
each of the 2b bit strings of length b so that the neighbour’s identifier starts with this
particular prefix. These neighbours then proceed recursively. They select neighbours for
each of the 2b bit strings of length 2b that have the first b bits in common with themselves.
This is repeated until no further neighbours are found to forward the packet.

Using this mechanism, there are still two ways how duplicates can occur:

• A notification for a pushed packet might arrive sooner than the packet itself and
triggers a request. This happens, for example, if a peer near the root knows a peer
further down the tree.

• It is possible that a child sends the packet back to one of the parent’s parents.
At each hop, 2b − 1 of the selected neighbours are known to have identifiers that
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differ from all the parent identifiers. This is not the case for the remaining one as
one can easily verify.

The first type of duplicates is negligible except for a small number of peers. The
impact of the later type is more noticeable, but there are techniques to overcome the
problem. The simplest solution is to add the identifiers of the parents to the pushed
packet and to exclude them in the neighbour selection. Unfortunately, the strategy
reveals a path to the source, rendering it more vulnerable to denial of service attacks
and malicious peers. Another solution is to only forward packets to 2b − 1 neighbours,
avoiding the problem at cost of efficiency. This approach is well suited for up to few
hundred peers. With a growing number of peers, the second type also becomes negligible.
In between, the strategies can be combined, i.e. sending to all 2b neighbours near the
source and to 2b − 1 neighbours further down the tree.

Push packets are acknowledged near the root to get better resilience against packet
loss and churn. If a timeout occurs, the packet is retransmitted to another neighbour of
the same prefix. By acknowledging, for example, up to a depth half the estimated tree
height, the number of acknowlegments is bounded by the square root of the number of
peers within the tree. The resulting overhead is negligible.

3.4 Notification Strategy

Having a push mechanism to distribute new packets allows to reduce notifications.
StreamTorrent sends a list of all available packets that have not been delivered so far.
If the system is working properly, buffers are almost full and notifications have a low
entropy. Therefore, a simple coding scheme is adopted, i.e. a notification contains:

• The sequence number of the next packet to be delivered.

• The number of packets that can be delivered in-order without packet loss.

• A bitmap of the remaining buffer showing whether packets are available or not.

In most cases the chosen coding is more efficient than sending a list of newly received
packets because sequence numbers are 16-bit values. This way, the protocol is alsomore
resilient against packet loss. Packets that have been delivered are dropped and are
not longer available to the neighbours. This is no problem since peers are roughly
synchronized among each other and deliver the same packet more or less at the same
time (see Chapter 3.7).

Notifications are not sent to all neighbours at once, but alternately to disjoint sub-
sets to also spread subsequent requests equally over time.2 Peers start sending more
notifications if they see that they do not share enough packets with neighbours (given
that enough bandwidth is available). This is helpful when, for example, peers join the
stream or a large number of peers crash. To avoid packet header overhead, notifications
are bundled with other packets.

3.5 Pull-based Request and Response Strategies

Peers allocate download slots for neighbours to manage their own upload bandwidth,
especially to not exceed the maximum bandwidth. The number of slots is periodically
adapted according to the used and total upload speed, the observed packet loss, and
the number of neighbours. Slot information is send to neighbours together with the
notifications.

A round-robin scheme is used to issue requests. One neighbour after another is
checked whether a new packet and a free slot are available. If several packets are

2 Round trip times are usually significantly smaller than notification intervals
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available from a neighbour, one is selected at random and depending on in its age. The
selection works as follows. Let RN denote the set of missing packets that are available
from neighbour N . A sequence number s is selected uniformly at random within the
interval between the oldest and newest sequence number of RN . Sequence number s
may or may no be in the set RN . If it is the case, s is selected itself, otherwise the
next older sequence number in RN . A request is then issued for the selected sequence
number and the next neighbour is checked for packets.

Typically, the same amount of slots is allocated for each neighbour.3 Both the
round-robin scheme and this uniform slot allocation are used to boost symmetry. The
goal of StreamTorrent is that peers uniformly exchange data with all neighbours to
speed up packet distribution and to avoid peers depending on a small set of neighbours.
Naturally, the symmetry can only be sustained as long as all peers provide enough
bandwidth. Otherwise, slow peers provide the bandwidth they have.

Because some slots may not be used, peers allocate more slots than available. It is
therefore still possible for peers to receive more requests than bandwidth is available.
In this case, peers might choose to send overload messages instead of the actual re-
sponses. The adopted strategy is expected to keep overloaded messages at a minimum
to avoid more communication and delays. In contrast, selecting neighbours and packets
at random results in a logarithmic overhead for some the neighbours. 4

3.6 Incentives

For peer-to-peer streaming it is essential to give peers incentives to share enough upload
bandwidth to quickly distribute packets. Incentive mechanisms influence virtually all
parts of the system. The implementation is still in an early stage, but already works
reasonably well in many cases. The following subsections give a brief overview.

3.6.1 Comparison to File Sharing

There are several differences between file sharing and live streaming. Live streaming uses
small buffers and packets have to be delivered in time. This gives both advantages and
disadvantages. Free-riding file-sharers might have longer download times, but there is
no further penalty. By contrast, free-riding within a streaming applications may quickly
results in packet loss and reduced playback quality. This suggests that given a reasonably
good incentives mechanism, rational free-riders have no incentive to continue free-riding.
On the negative side, free-riders and slow peers still consume some bandwidth. Given
the small buffers, this could also lead to packet loss at good peers if the total bandwidth
is scarce.

A further advantage is the notification overhead. All peers are forced to periodically
notify their neighbours or they get dropped. This limits the number of neighbours a peer
can maintain concurrently. At least it would be more reasonable to have less neighbours
and to sent a few packets instead.

For live streaming, the source represents a single point-of-failure. If it leaves the
overlay, all peers are affected. It is therefore crucial to protect the source from denial-
of-service attacks and malicious peers, for example, by disguising its role as the source
from the others.

3 Note that the subsequent incentive section describes how cope to with free-riders and slow peers
in general.

4The problem is related to the famous buckets and bins problem. It is well-known that by putting
bins randomly into buckets, some buckets are expected to a have logarithmic overhead (in the number
of buckets).
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3.6.2 Hiding the Source

The source maintains a second buffer and requests packets like any other peer. By doing
so, some precautions have to be taken when sending notifications and requests. When a
notification is sent to a neighbour, packets where the neighbour has been selected as root
of the packet’s push distribution tree have to be added to the notification. Moreover, the
neighbour should not receive request for those packets. Older packets that the source
was unable to obtain from the neighbourhood are added from the original buffer (and
maybe could be pushed a second time).

StreamTorrent does not adopt the mechanism of Chainsaw that allows the source
to reply to requests with an arbitrary packet not sent so far. Such a strategy immedi-
ately reveals its role as the source and is unnecessary because all packets are pushed.
Unfortunately, pushing packets as described in Chapter 3.3 also reveals its role to the
selected roots within its neighbourhood. A simple trick avoids this problem. Packets
are first forwarded a random number of hops before the distribution starts. At each
hop, forwarding is stopped with constant probability. By observing pushed packets
and notifications, peers might still be able to guess whether a source is located in the
neighbourhood, but it becomes harder.

To further increase security, the source can be replicated. Three problems have to
be considered when replicating the source:

• Replicas have to deliver the same content with the same sequence numbers.

• Packet timestamping has to be identical.

• The task of pushing packets has to be partitioned among the replicas to avoid
duplicates.

3.6.3 Tit-for-Tat Response Strategy

Tit-for-tat with the allowed fast set extension of BitTorrent is adopted to limit free-
riding. The IP address rather than a peer’s identifier is used to determine freely available
packets, ensuring that free-riders cannot obtain all packets by running multiple protocol
instances on different UDP ports. For non-free packets, the payback ratio, specifying
how many bits a peer is expecting in return for sending one byte, has to be fulfilled.
The ratio is periodically adapted to the current load.

3.6.4 Neighbour Ranking

Neighbours receive a ranking, for example, to decide whether to drop neighbours or to
select neighbours to forward push packets. Ranks are assigned by computing a score
and sorting neighbours by score. The score of a neighbour is determined by the number
of received packets. Other parameters, like the number of overload messages, have been
added to the equation with only minor improvements. Fortunately, the equation is
already working well. More information about the quality of the ranking is given in
the Evaluation chapter. Note that up to now, round trip times are not included in the
ranking, but handled separately.

3.6.5 Dropping Neighbours

There is no point in supporting peers that share only few packets or are far away if
there are better peers available. To be able to drop neighbours, the system first ensures
that connectivity is still fulfilled afterwards. If it is the case, peers decide based on the
experienced delay whether to improve bandwidth (based on ranking) or locality. To
prevent fast peers being dropped instead of much slower ones merely because the faster
ones are slightly farther away, or the other way around, such alternative candidates are
checked first before a neighbour is dropped.
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3.6.6 Neighbour Recommendations and Certificates

While tit-for-tat strategies limit the amount of data sent to free-riding peers, another
mechanism is needed to prevent bad neighbours in the first place. Determining the rank
of peers before exchanging packets suggests some sort of history or recommendation
mechanism. Shared histories are considered to be too expensive regarding communi-
cation cost. Private histories do not scale with the number of peers. Not having a
history implies that peers first have to prove themselves upon joining a network. Oth-
erwise a registration mechanism would be required to prevent white-washing and Sybil
attacks (see Chapter 2.3 for more information). Within StreamTorrent, peers ask their
neighbours for more neighbours.5 Neighbours in turn respond with a subset of their
own neighbourhood according to the requester’s identifier and rank. While this strategy
increases the probability of non-free-riders getting other non-free-riders as neighbours,
it can not provide any guarantees. The main limitation is that neighbours receiving
subsequent join requests do not have any information about the sender requesting a
join. This manifests itself on several occasions:

• A peer may has enough neighbours and therefore rejects the join request. He has
to compile list of alternative candidates without having any ranking information
about the receiver.

• Entrypoints currently do not have any ranking information and return random
candidates. This candidates will not know that an entrypoint provided the address.

• Free-riders could collude and exchange addresses of good peers.

A partial solution to this problem is given by adopting certificates and chains-of-trust.
A certificate is issued for each recommendation. If peer PA and peer PB have a common
neighbour PC , PA can issue a certificate to PB for PC . A certificate contains the identity
of the issuer and the issuer’s ranking of the recommended peer. However, certificates
have to be used carefully to not cause deadlocks and starvation. New neighbours do
not have any ranking and should nevertheless be able to join a stream. Free-riders
typically have a bad ranking but they could pose as new neighbours. The mechanism is
consequently used to reward highly ranked peers, for example by:

• Lowering the payback ratio enforced by the tit-for-tat strategy.

• Removing bad neighbours instead of rejecting joins.

• Allocating spare capacity in the neighbour buckets.

Certificates do not need to be based on public key cryptography. Recommended
peers receiving join requests are the only ones that need to verify certificates. Sym-
metric cryptography is sufficient for this purpose. Peers in StreamTorrent classify their
neighbours into four groups depending on their ranks. For each new neighbour, a ran-
dom key is generated for each of the four groups and sent to the new neighbour. To issue
a certificate, the neighbour computes the receiver’s group based on his rank and hashes
the corresponding random key with the receiver’s identifier. The certificate is neither
transferable to other peers nor extractable by the receiver to determine its ranking.

The mechanism can be extended in two ways. A trust value might be assigned to
neighbours depending on how good the certificates match with the own experience. And
peers rejecting other peers with good certificates might issue a new certificate for its own
neighbours when providing alternative candidates, given that the peers trust the original
certificate issuers, leading to chains-of-trust.

5 Access to entrypoints is limited to reduce their load and avoid misuse by free-riders.
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3.6.7 Pushing to Good Neighbours

Peers forward push packets to highly ranked neighbours to improve the overall distribu-
tion. By assuming that the source itself has a high ranking among its neighbours and
good neighbours, packets first get distributed among good peers and then gradually to
lower ranked ones. The good peers ensure that packets get further distributed using
pull-based requests.

3.6.8 Slot Allocation

The uniform slot allocation strategy presented in Chapter 3.5 can be adapted to favor
highly ranked peers. As every incentive strategy, it has to be used carefully. It is difficult
to distinguish newly joined peers from free-riders and consequently, both get fewer slots.

3.7 Synchronization

The delivery of packets is weakly synchronized among the peers by exchanging syn-
chronization messages. A synchronization message contains the sequence number and
the timestamp of the next to be delivered packet and the time left to its delivery. Lo-
cal delivery times are computed based on the packet timestamps, the synchronization
messages, and the measured round trip times. Future versions might improve the syn-
chronization by considering round trip time variances and by introducing an estimate
for the synchronization accuracy at peers to weight synchronization messages (similar
to the virtual coordinates of Vivaldi [23]).

3.8 Source and Network Coding

Peers rely on their neighbours to sent notifications for needed packets. Chances that
peers benefit from each other are improved by adopting source coding. In its simplest
form the source adopts optimal erasure code to create n encoded packets out of a block
of k < n original packets and distributes the n encoded packets. A peer having received
any of the k encoded packets can reconstruct both the original k packets and the missing
n− k encoded packets. Given that peers randomly choose the packets to be requested,
source coding increases the probability that two incomplete sets of packets for the same
block do not overlap. Optimal erasure codes do not have any overhead, but are inefficient
for large block sizes. They are nevertheless a good possibility for StreamTorrent because
of its small buffers and even smaller block sizes. Examples for optimal erasure codes
are the trivial polynomial code or Reed Solomon codes [36]. For larger block sizes, near
optimal erasure codes provide better efficiency at the cost of an overhead of a few percent
(e.g. [14, 15, 16]).

Earlier versions of StreamTorrent greatly benefited from source coding, especially
under packet loss, churn, and when the upload bandwidth was close to the streaming
bitrate. However, the benefits gradually decreased with newer versions because of the
push mechanism and the improved slot allocation. More work has to done in the future
to determine whether there might be a benefit when it is used with tit-for-tat. Alter-
natively, network coding [37] might help to further increase the chances that two peers
can exchange packets. It would also help eliminating most duplicates we have in our
system. To implement network coding, the notification strategy and the allowed fast
set extension of the tit-for-tat strategy have to be adapted. The computational costs of
network coding would be negligible if the block size is small.





Chapter 4

Protocol Implementation

Most parts of the protocol proposed in the previous Chapter have been implemented in
Java. This implementation is used both by a simulator for testing and evaluation and
by the StreamTorrent Player, a media player supporting live audio and video streaming.
This chapter gives an overview over the protocol implementation itself, the simulator
and the player are described in more detail in the Chapters 5 and 7.

4.1 Abstraction of the Protocol Environment

Two abstractions have been introduced to enable the implementation to run both within
simulators and in the real world.

4.1.1 Task Scheduling

The protocol has to run tasks, either once at a given time or periodically, implying
some concept of time. Naturally, the player runs in real-time using the clock provided
by the operating system. On the other side, simulations are designed in an event-
driven manner, i.e. events occur at given instants and might trigger future events in the
progress. In the case of StreamTorrent, an event is either a task to be executed or an
arriving packet. The simulator repeatedly executes the earliest event until none are left,
implicitly yielding a simulated clock by using the timestamp of the current event.

To bring the two models together, an interface Scheduler has been defined and both
the player and the simulator provide an implementation. It has methods to register
tasks, obtain the current time, and dispatch incoming packets. To gain optimal per-
formance within simulations, the protocol implementation is single-threaded to avoid
synchronization overhead, i.e. at most one thread accesses protocol objects of a partic-
ular peer at any time. The player’s scheduler implementation is straightforward using
a single thread. The simulator’s scheduler is more complex as it still exploits multi-
threading by assigning simulated peers to threads. Each thread manages a given set
of peers and has its own clock. The clocks are weakly synchronized among each other
so that they do no differ by more than a few milliseconds. This is sufficient for round
trip times of up to several hundred milliseconds. For a large number of peers, the load
for every thread is almost identical and only periodical synchronization is needed, re-
sulting in almost linear scalability with the number of available processing cores. The
drawback of this threading model is that real world applications do not benefit from
multi-threading, at least not within the protocol. But because the implementation has
been heavily optimized to perform simulations, a single thread is sufficient.

The blocking scheduler is a third type of scheduler that suspends other threads before
executing tasks and resumes them afterwards. It is used by the statistic components to
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maintain the invariant that at most one thread is accessing protocol objects of a given
peer at any time.

4.1.2 Network

The network API provides methods to send and receive messages and an abstraction for
network addresses. There are not two, but three different implementations, one for the
real world and two to perform simulations:

• The real world UDP implementation is mostly simple to implement since Stream-
Torrent has been designed with UDP as transport protocol in mind (see Chapter
3.1). Providing support for firewalls and NAT devices is the most laborious part
and outlined in Chapter 7.3.3.

• The main implementation to perform simulations is tailored towards scalability
and efficiency. It does neither marshall packets nor simulates NAT and firewalls.
It is used for testing with thousands of simulated peers. Models for packet loss
and round trip times can be added by implementing a given interface.

• The second implementation for simulations implements the Java Datagram Socket
API, allowing the real world UDP implementation to be used within simulations.
It provides an API to design networks, i.e. to add peers, firewalls, and NAT de-
vices and to enable and disable multicast. It is primarily used by JUnit [38] for
automatic testing (see Chapter 5.3).

4.2 Architecture

As the previous chapters might have shown, many different aspects have to be considered
when designing a peer-to-peer streaming protocol. For each aspect, various strategies
might be feasible, each one typically having several parameters to further adapt its
behavior. Consequently, there is room for many future improvements. This fact is
also reflected within the architecture underlying the protocol implementation. There
are various interfaces to abstract data structures and strategies, glued together by an
implementation of IStream to provide the desired streaming functionality, for example:

• Identifiers:

Most resources, such as streams and peers, are addressed by unique identifiers,
typically 128-bit values.

• Stream descriptors:

Stream descriptors contain information needed to connect to streams such as the
bitrate, payload type, list of entrypoints, and their unique identifiers. Stream
descriptors are created and distributed by the source.

• Data packets:

The data broadcast by the source is transmitted in data packet. Each data packet
has a sequence number and a timestamp, both 16-bit values. Timestamps are used
to cope with varying bitrates and synchronization. The two main implementations
are simulated packets and RTP packets. More sophisticated packets may include
additional meta-data such as the identifier of the current audio track, movie, etc.

• Buffers:

The buffer holds data packets received within the last few seconds and delivers
them, if possible, in-order and in time according to the packet timestamps.
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Strategies define how the system selects neighbours, requests packets, responds to re-
quests, etc.

• Neighbour strategy:

The neighbour strategy is responsible for selecting and managing neighbours among
peers. There are two implementations, a random one and one based on hypercubes.

• Capacity Strategy:

The capacity strategy allocates download slots for neighbours. The number of
slots may depend, for example, on the neighbour’s ranking, experienced packet
loss, and total upload bandwidth.

• Notification Strategy:

The notification strategy determines the frequency of notifications and bundles
notifications with other packets.

• Request Strategy:

The request strategy chooses packets among neighbours according to availability,
age, etc.

• Pull Response Strategy:

Upon data requests, the pull response strategy decides whether to answer with the
requested data, to answer with an overload message, or to ignore the request.

• Push Strategy:

The push strategy is used to forward push packets to neighbours based on their
identifiers and ranking.

• Encoder and decoder:

Encoders are applied at the source to modify data packets before they are dis-
tributed within the overlay. Similarly, decoders are applied at each peer before
packets are delivered for playback. Encoders and decoders can be used to add, for
example, encryption, meta-data, or fault-tolerance (e.g. source coding).

For each of these strategies, there are two interfaces. One interface is implemented
by the strategy itself to provide the functionality, e.g. selecting a packet. The second
interface, denoted the strategy site, specifies how the strategy can access the remaining
system to send packets, read the buffer, obtain ranking information, etc. This way,
improvements are possible in two ways, either by a replacing or extending an existing
strategy and by modifying the strategy site to alter its view of the remaining system. For
example, source coding has been added by providing an encoder and a decoder. In con-
trast, tit-for-tat has been implemented by modifying the request and response strategy
sites. If, for example, the response strategy has determined that enough bandwidth is
available and invokes its site to send the response, the new tit-for-tat site further checks
whether the receiver has provided enough data itself and aborts if its not the case.

On top of all abstractions and strategies, there is a facade providing convenient
methods to initialize strategies, create and join streams, etc. Overall, the chosen design
should be generic to allow future updates and extensions.

4.3 Additional Protocols

Besides the streaming itself, other protocols are used to find peers and share information.
The following sections give a brief overview over their implementations.
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4.3.1 Entrypoints

Entrypoint servers are contacted by peers to find groups of peers, addressed by a group
identifier. Upon request with a group identifier, entrypoint servers return a few members
of the corresponding group. One example is a peer joining a stream after having obtained
the corresponding stream descriptor. Stream descriptors provide a list of entrypoints
and stream identifiers can be used as group identifiers.

4.3.2 Distributed Hash Tables

StreamTorrent adopted the concepts of the topology of Kademlia. An implementation
for a distributed hash table comes therefore almost for free. Only the put and get
operations have to be implemented.

Both put and get operations are performed by the peer that initiated the operation.
To publish a new object o with identifier k, a peer compiles a list of x neighbours most
similar to o regarding their identifiers. This list is gradually improved by concurrently
asking the the most similar y < x endpoints in the list for better peers. New peers are
added to the list, replacing the worst existing ones, if their identifiers are more similar
to k. This step is repeated until no more peers are found. Object o is then sent to the
final x endpoints. Timeout handling and maintaining a list of x endpoints ensure good
robustness against churn and packet loss.

Search operations using get are performed in a similar fashion. A list is maintained
and peers are asked to either return the desired object, if possible, or to return better
peers. The search is performed until a threshold of peers returned the same object
or no peer can provide better peers. Waiting for a threshold of answers ensures that
malicious peers can alter the result with only negligible probability. It is assumed that
the application itself takes additional precautions, e.g. by choosing the content’s hash
value as key or by adopting digital signatures. If a peer does not receive the desired
content, the number of concurrent candidate requests and the threshold of needed objects
can be increased to gain more robustness.

An alternative, faster approach is to directly forward requests to the next best hop
instead of sending list back. However, this approach is also more vulnerable to packet
loss, churn, and malicious behavior. In the future, a better implementation might com-
bine both approaches to allow faster searches while maintaining robustness.

To reduce the load on peers storing frequently accessed objects, a simple replication
mechanism is adopted. Once a peer received the desired object, he replicates it to the
best candidates in its list that not already have the object. With high probability the
chosen candidates will be useful in the future.
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Simulator

The simulator is used to evaluate the protocol implementation presented in the previous
chapter. It allows to run the protocol with tens of thousands of simulated peers. The
simulator provides both automated tests to verify the basic functionality and various
statistics to study its properties in detail. This way, the implementation can be tested
before it is deployed in the real world, saving a lot of debugging time.

5.1 Simulations and Simulation Suites

There are various strategies to cope with problems like packet loss and churn, each one
usually having various parameters. To facilitate setup and execution of simulations,
they can be defined in simple XML files (see Figure 5.1). The document structure is
similar to ANT [39], a popular Java build system. The files are usually small and easy
to understand and modify. Virtually all parameters of the protocol and the network
setup can be changed. For example, groups of peers can have their own set of strategies
(free-riding, honest, etc.). A templating mechanism allows to reuse simulation settings
within new simulations and to selectively override inherited settings with new values.

<s imulat ion>

<l og showUnderflows=”true”/>
<import f i l e =”. ./ d e f au l t . xml”/>

<network topology=”uniform”>
<packetLoss type=”none”/>

</network>

<peer s nPeers=”${nGood}” group=”1” upload=”150000” download=”800000”/>
<peer s nPeers=”${nNormal}” group=”2” upload=”75000” download=”800000”/>
<peer s nPeers=”${nFreeRiders }” group=”3” upload=”10000” download=”800000”/>

<streamSource extends=”defaul tStreamSource”/>

<streamEndpoints nEndpoints=”${nGood}” extends=”honestPeer”/>
<streamEndpoints nEndpoints=”${nNormal}” extends=”honestPeer”/>
<streamEndpoints nEndpoints=”${nFreeRiders }” extends=”f r e eR ide r ”/>

<event at=”21000”>
<stopStreaming group=”1” p=”${p}”/>
<stopStreaming group=”2” p=”${p}”/>
<stopStreaming group=”3” p=”${p}”/>
<snapshots id=”availableWindow , bufferImage , degree ” each=”250” f o r =”6000”/>

</event>

<import element=”run” f i l e =”. ./ d e f au l t . xml”/>

</s imulat ion>

Figure 5.1: Example XML file describing a simulation.
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Simulation suites allow to run several simulations together and to compare results.
An example suite that sets up crash simulations is given in Figure 5.2.

<s u i t e name=”Crash”>

<param name=”ra t e”>36</param>

<param name=”nGood”>300</param>
<param name=”nNormal”>1000</param>
<param name=”nFreeRider”>50</param>

<param name=”simulat ionLength”>31000</param>

<s imu la t i on name=”crash 25%” f i l e =”crash . xml”>
<param name=”p”>0.25</param>

</s imulat ion>

<s imu la t i on name=”crash 50%” f i l e =”crash . xml”>
<param name=”p”>0.5</param>

</s imulat ion>

</su i t e>

Figure 5.2: Example XML file describing a simulation suite.

5.2 Statistics

To analyze the simulations, the simulator compiles various statistics that give an overview
of what is going on within the system, for example:

• Network throughput aggregated by packet type.

• Expected round trip time to neighbours.

• Average number of neighbours in total and by group.

• Data sent and received within the last seconds.

• Packet loss

• Buffer state

• Histogram of the number of hops required for packets to reach a peer.

• Packet exchange between different groups.

• Histogram of how fast packets are distributed.

• Histogram of when peers start delivering packets.

Data can either be collected at given instants or over a period of time. Peers are
usually combined into groups to compare groups with each other. The collected data
is also stored in csv files, a simple and popular file format that ca be read by every
spreadsheet application.

5.3 JUnit

There are various tests to analyze StreamTorrent automatically without having to man-
ually inspect the statistics. The unit testing framework JUnit [38] is used for this
purpose. Example tests are:

• NAT detection tests with various network configurations.
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• Connectivity within the overlay.

• Synchronization tests verifying that peers properly resynchronize after the source
left and later rejoined.

5.4 Simulation Efficiency

Both the simulator and the StreamTorrent protocol implementation have been heavily
optimized with Java profilers [40, 41]. Within a second, the simulator is able to simulate
up to 2,000 peers for one simulated second on a decent computer. While the subsequent
chapter mostly evaluates the protocol with 10,000 peers, upto 50,000 peers have been
simulated. It is expected that this number increases to 100,000 and more in the near
future.





Chapter 6

Evaluation

The following sections give a brief overview of the simulation results that have been
performed with the simulator.

6.1 Network Model

The simulated network roughly correspond to UDP in today’s Internet. The header
consists of 28 bytes and the maximum transfer unit is 1500 bytes. The payload of data
packets has a length of 1328 bytes, corresponding to the length of RTP packets generated
by the VLC player.1 The source usually sends 36 packets per seconds, resulting in a
bitrate of roughly 50 KB per second. This corresponds to the bitrate needed to send a
video stream with reasonably good quality.

Peers are uniformly distributed within a square and round trip times are computed
using the euclidean distance. The diagonal of the square corresponds to 200 ms, leading
to a maximum round trip time of 400 ms, a typical value for today’s Internet. Each peer
has a maximum upload and download bandwidth. We focus on the upload bandwidth
in this evaluation since it is usually significantly smaller than the download bandwidth.

Currently, there are two packet loss models. One model drops packets with constant
probability, the other drops packets if the used bandwidth exceeds the maximum. The
second model has been implemented based on tests performed with a broadband con-
nection of a larger Internet service provider. For example, small bursts exceeding the
total available bandwidth are allowed, but only for a short period of time. Packet loss
is either enabled or not depending on the focus of the simulations. It will be shown that
the bandwidth used by peers rarely exceeds the available one.

6.2 Locality

Figure 6.1 compares the locality-aware neighbour selection strategy with a random one.
The simulations have been performed with 10,000 honest peers. Clearly, the expected
round trip time to neighbours is significantly smaller while connectivity is maintained.

Note that the trade-off between connectivity, locality, and incentives makes it more
difficult to reduce round trip times. Ignoring either connectivity or incentives would
naturally result in better locality, but a more fragile protocol in general. The subsequent
section about incentives gives more information on this trade-off.

1More information about payload size, codecs, and players is given in Chapter 7
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Figure 6.1: Effect of locality-awareness.

6.3 Radius

Arranging peers within a hypercube guarantees a logarithmic diameter. Packets should
therefore arrive at peers after a logarithmic number of hops. Figure 6.2 shows a his-
togram of the number of hops taken by packets to reach a particular peer for 10, 100,
1,000, and 10,000 peers.

Figure 6.2: Histogram of the number of hops taken by packets.

By computing the averages and plotting them together with the number of peers,
the linear increase of hops with exponentially more peers becomes more apparent as
depicted in Figure 6.3.

6.4 Pushing

Figure 6.4 shows how fast packets get distributed among the peers if pushing is used.
While it takes time for the pull-only strategy, e.g. Chainsaw, to reach the 10%-threshold,
it is clearly sped up by the push-based strategy. Once a given threshold of peers is
reached, pushing is not needed anymore to quickly distribute packets to the remaining
peers. The figure also reveals that the adopted strategy scales well with the number of
peers. As for the radius, delays grow logarithmically with the number of peers. The
difference between 1,000 and 10,000 peers is between merely 100 and 175 milliseconds.

Note that the pull-only strategy performs slightly worse than the one adopted by
Chainsaw. This has several reasons:

• StreamTorrent sends less notifications, stretching the initial distribution interval.
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Figure 6.3: Average number of hops for a given number of peers.

Figure 6.4: Packet distribution with and without pushing.

• Incentive mechanism such as tit-for-tat are used.

• The source behaves like a regular peer, i.e. it does not answer requests with packets
that have never been sent before. Such a strategy immediately reveals its role as
the source. On the other hand, it reduces the load on the source and speeds up
packet distribution for pull-only strategies.

• The request strategy is not entirely random because peers try to avoid exceeding
their total upload bandwidth.

On the other hand, the pull-only strategy benefits from locality-awareness.2

Figure 6.5 shows the ratio of packets received by pushing. The corresponding du-
plicate ratios are given in Figure 6.6. The simple strategy forwards a push packets to
all 2b neighbours, while the duplicate avoidance strategy only to 2b − 1 as described
in Chapter 3.3. Both the ratio of push packets and duplicates decrease logarithmically
with the number of peers. The simple strategy is about two magnitudes better in terms
of efficiency, but yields more duplicates. Future versions of StreamTorrent will switch

2 Chainsaw uses a constant delay of 50 ms.
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between the two strategies based on estimations of the number of peers and the num-
ber of hops already taken by packets. For less than 100 peers it might be beneficial
to further throttle pushing to reduce duplicates, a push ratio of more than 20% is not
needed anyway. Interesting to note is that the duplicate avoidance strategy performs
with 10,000 peers not much worse than the simple strategy, even though the push ratio
is significantly smaller. This further confirms the observation from Figure 6.4 about
scalability and suggests that 100,000 or even 1,000,000 peers does not cause any prob-
lems. The push strategy only has to provide a good initial distribution of new packets,
the pull strategy ensures that packets are quickly distributed to the remaining peers.

Figure 6.5: Push ratio for a given number of peers.

Figure 6.6: Duplicate ratio for a given number of peers.
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6.5 Overhead

The overhead imposed by StreamTorrent depends on many parameters. More peers
trigger a logarithmic increase of the number of neighbours and packet delays, leading
to both larger and more notifications. Depending on the incentive mechanism, peers
might search more aggressively for new neighbours and frequently drop neighbours. On
the other hand, the absolute overhead increases only slightly with the streaming bitrate,
i.e. StreamTorrent becomes more efficient if the source sends more packets. This holds
because there is no need to search for more neighbours or to send more notifications
at higher rates. The only difference is that notifications become larger. However, this
increase is small for reasonable packet rates because the constant-size packet header
already takes a lot of space.

Figure 6.7 shows the overhead of StreamTorrent compared to an optimal (offline),
unicast-based solution, i.e. the ratio between the number of bytes sent in data packets
(including the header) to the number of bytes sent in total. Duplicates are accounted
for as overhead. The simulations have been performed with 5,000 peers. A combination
of the duplicate avoidance and the simple strategy is used to push packets (the simple
strategy is used near the root).

Figure 6.7: Protocol overhead with 5,000 peers.

By tuning the parameters to a particular situation, the overhead can be further reduced.
For example, we were able to get 97.5% efficiency at a rate of 72 packets per seconds.
We therefore expect further improvements in the future. Especially at higher packet
rates one might better exploits packet bundling.

Overall, an overhead of 5% or less is already remarkably good. Considering that
many tree-based solutions apply some sort of rateless erasure coding, they immediately
incur the same overhead only by the coding itself. Additional overhead is created by
duplicate packets and to maintain the tree.3

To show that the protocol is efficient, it is essential to also study how close the total
upload bandwidth and the stream bitrate can get. It can not be expected that peers
send with the maximum possible bandwidth. To test this boundary, two peer groups
are used. The first group consists of 100 peers with 125 KB/s upload bandwidth. The
second group consists of 1,000 peers. All peers managed to sustain a continuous stream
with negligible packet loss if the peers in the second group have an upload bandwidth
of 60 KB/s. Figure 6.8 shows that peers rearely excceed their bandwidth limits and

3 An example using Bullet is given in the Related Work chapter.
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Figure 6.9 shows that buffers are almost full. Note that the second figure only shows
in-order packets that are ready to be delivered, usually there are more packets with some
missing in between. A second, more powerful group has been used since it is unlikely
in the real world that all peers have the same capabilities. This groups is prefered by
the incentive mechnaism to push new packets, resulting in a better packet distribution.
Without having this group of better peers, the upload bandwidth has to be between 65
KB/s and 70 KB/s.

Figure 6.8: Average upload bandwidth over 4 seconds if upload bandwidth is scarce.

Figure 6.9: Buffer if upload bandwidth is scarce.

6.6 Crash & Churn

Results about robustness like the ones of Chainsaw [1] can be confirmed. Tests have
been performed with 10,000 peers, 1,000 peers having an upload bandwidth of 125 KB/s
and 9,000 peers with 70 KB/s. Peers recover extremely fast if 25%, 50%, or even 75%
leave the overlay simultaneously. The remaining peers deliver all packets in time, no
underflows occur. By leaving is meant that peers send a final leave message to their
neighbours. An example with 75% leaving is given in Figure 6.10.
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Figure 6.10: Buffer snapshots when 75% of the peers leave simultaneously.

The overlay of StreamTorrent does not yield any new problems. In contrast to
distributed hash tables, no expensive replication among the remaining peers has to be
performed and it does not matter if the overlay is partly broken for a short while. It
gets slightly worse if peers crash and do not send a leave message. It takes longer until
crashed neighbours are removed and replaced by others. Acknowledgments for push
packets near the root of the tree help to maintain efficiency. 50% of the peers can fail
without any packet loss. If 75% fail, 1,700 underflows (0.54%) occurred in an interval
between 4,300 ms and 7,800 ms after the peers failed. After 8,000 ms the overlay has
stabilized and delays are smaller than before due to the smaller number of peers.

The protocol can be made even more robust, for example, by adopting source coding
and increasing the buffer size. Naturally, robustness depends on the available bandwidth.
If peers have only 60 KB/s upload bandwidth, recovery takes longer and underflows
occur more often.

Given the connectivity guaranteed by the overlay and the robustness shown in this
section, smaller churn rates are no problems either, typically not even noticeable since
peers periodically drop some of their neighbours anyway. A comparision with tree-based
protocols is given by Chainsaw in [1].

6.7 Packet Loss

Figure 6.11 shows that the protocol is also robust against packet loss. The tests have
been performed with a constant probability of packet loss, 150 peers having 125 KB/s
upload bandwidth, and 850 peers having 80 KB/s upload bandwidth. The packet loss
probability is between 1% and 20%. Note that with 20% packet loss, the usable upload
bandwidth drops to 64 KB/s.

The packet distribution speed with 10% packet loss is depicted in Figure 6.12. What
can be seen is that the push strategy is still working well. However, it takes longer
until packets are delivered to the last 20% of the peers. This is not surprising because
the probability of a request failing is 0.19 and the timeout length is about three times
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Figure 6.11: Packet loss: Ratio of packets not delivered in time.

the round trip time. If there are longer delays, e.g. more packet loss, the notification
strategy will start increasing its notification frequency. Note that such scenarios are
unlikely in the real world as packets are distributed among good peers first, which
generally experience only minor packet loss.

Figure 6.12: Packet loss: Distribution speed with 10% packet loss.

6.8 Incentives

As mentioned in Chapter 3.6, the incentive mechanism is still work in progress. This
sections gives three examples and outlines a few problems and work that still has to be
done.

When designing an incentive mechanism, there is a trade-off between efficiency and
robustness against free riders. By making the incentive mechanism more aggressive,
weaker peers are dropped more quickly, but it also becomes harder to join a network
and to find a neighbour to request a packet, especially if a peer’s upload bandwidth is
close to the stream bit rate. Consider an example where 75% are almost free-riding,
i.e. provide an upload bandwidth of 15 KB/s. Naturally, these peers consume some
bandwidth from the remaining peers since they share a few packets and the remaining
peers first have to determine that they do not share enough. The remaining peers mostly
managed to sustain a continuous stream if they have an upload bandwidth of 120 KB/s
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and by making the incentive mechanism very aggressive. Figure 6.13 shows that the
honest peers have 40% free riders as neighbours (instead of the expected 75%). This
value is low considering that connectivity is still fulfilled and that free-riders continuously
search for new neighbours.

Figure 6.13: Neighbourhood when 75% are free riding.

Figure 6.14 shows the number of in-order packets within the buffers of each group.
Free-riders receive only a fraction of the packets and none is able to sustain a continuous
delivery. In contrast, buffers are almost full in the honest group.

Figure 6.14: In-order packets within the buffers when 75% are free riding.

The given example is possible since the ranking of neighbours is working well. Figure
6.15 shows a histogram of the ranks of honest peers computed by honest peers. The
ranking is solely based on the provided bandwidth. Attempts to optimize the ranking
function resulted only in minor improvements.

The average upload bandwidth of honest peers is 85 KB/s, although 120 KB/s are
needed. Better slot allocation and tit-for-tat strategies might improve this bound in the
future.4

4Note that the slot allocation strategy has already been adapted for this example to favor good
neighbours.
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Figure 6.15: Ranking of the honest neighbours when 75% are free riding (computed
by honest peers).

Given that none of the free-riders is able to deliver the stream, there is no reason
to continue free-riding, at least for rational free-riders. It might therefore be more
reasonable to fine-tune the incentive mechanism to a small number of free riders so that
they will not be able to sustain stream delivery. The two subsequent examples are based
on four groups:

1. 250 peers with 125 KB/s upload capacity

2. 500 peers with 68 KB/s upload capacity

3. 300 peers with 40 KB/s upload capacity

4. 200 peers with 15 KB/s upload capacity

Figure 6.16 shows the result for a weak incentive mechanism. The first two groups
have no problem at all. The 40 KB/s group is also doing well, while the 15 KB/s group
clearly has problems getting all packets. Figure 6.17 reveals that the 15 KB/s group more
aggressively attempts to get high-bandwidth neighbour at the cost of locality-awareness.

Figure 6.16: Buffers with a weak incentive mechanism.

By adjusting the parameters, it is possible to further decrease the number of packets
free-riders receive at the cost of the 40 KB/s group (see Figure 6.18). Future versions
will have to better adjust parameters to the current situation. Moreover, real world
tests will be needed to get more information about peers and their upload bandwidth
to determine both the stream bit rate and a suitable incentive strategy.
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Figure 6.17: Locality-awareness with a weak incentive mechanism.

Figure 6.18: Buffers with a moderately aggressive incentive mechanism.





Chapter 7

StreamTorrent Player

The StreamTorrent Player is a media player supporting live audio and video stream-
ing based on protocol proposed in chapter 3. Similar to BitTorrent and its .torrent
files, streams are described by XML files and can be hosted on any HTTP server. An
integrated third-party player is used for playback.

7.1 Architecture

The design of the StreamTorrent Player is composed of several layers shown in Figure
7.1. The chosen architecture should provide a clean, modular design and facilitate future
extensions. The subsequent sections describe the layers in more detail.

Figure 7.1: Software Layers of the StreamTorrent Player.

7.2 Platform Core

The Platform Core layer provides a runtime environment for the player. This includes
a plugin architecture, a unified event model, an adapter repository, among others. It is
independent from the player and can be used in other projects.

7.2.1 Plugin Architecture

A plugin framework is used to support future extensions like new protocols, integrated
players, and media formats. The plugin framework of Spamato [42], a collaborative
spam filter, has been adopted for this purpose. It is extremely small but still provides
all important features.

41
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Plugins can be installed, updated, and removed at runtime without restarting the
system. A plugin consists of a descriptor, libraries, and other files such as images. Similar
to streams and stream descriptors, plugins are described by plugin descriptors. Plugins
might define dependencies to access other plugins. Dependencies are either strictly
required or optional. The plugin framework ensures that the plugins are initialized and
disposed in a correct order. Libraries are written in Java like the player itself, although
additional support for scripting languages like JavaScript [43] is in preparation.

One of most important features are extensions and extension points, a concept bor-
rowed from Eclipse [44]. By defining an extension point, a plugin can enable other
plugins to add their extensions. For example, the user interface offers a menu extension
point in order that other plugins can place their menu items by writing a correspond-
ing extension. The plugin framework itself provides extension points so that it can be
extended itself.

7.2.2 Adapter Repository

Adapters are a simple, yet powerful approach to extend the functionality of objects. For
instance, the user interface provides a copy action within the menu bar and naturally,
there are various kinds of objects that can be copied, such as stream descriptors, favorite
items, and plugins. The simplest solution would be to let each object implement an
interface. However, this leads to several problems:

• Most of the objects usually not belong the user interface. Introducing such a
dependency is not wise.

• Maybe some of the objects cannot be changed, e.g. objects from third-party li-
braries.

• Actions might be added and removed in the future. All objects would have to be
updated in the progress.

Adapters are a more convenient alternative. An adapter, a compositional adapter
to be more precise, is an object implementing type B for an object of type A. In order
to find such adapters, or a factory to create them, an adapter repository is provided. It
has just two methods, one to register new adapters and one two find an adapter given
an object and the desired interface. This way, new features can be added to an object
by contributing a new adapter and without having to change the original object. The
implementation is rather simple and based on the Java Reflection API. The adapter
repository is frequently used within all layers of the StreamTorrent Player.

7.2.3 Event Handling

A unified event handling mechanism is provided and is used within all upper layers.
Every object interested in receiving events implements the interface IListener and every
object creating events implements IEventSource. IEventSource provides methods to
register listeners and fire events. IListener has a single method called upon new events.
An event has three properties, its source, its type, and the affected object, e.g. a stream
having changed its state to buffering. Unifying event handing has proven extremely
useful. For example, most of the user interface items can automatically listen to their
underlying objects and update their appearance accordingly.

7.3 Player Core

The Player Core layer is based on Platform Core and the StreamTorrent protocol.
It implements the main functionality of the StreamTorrent Player independent from
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any user interface. This includes initialization and management of the StreamTorrent
protocol, providing access to resources, feeding an overlay with audio and video streams,
delivering streams to players, and recording streams. Both the Player UI and the Player
Console simply provide an interface for this functionality.

7.3.1 Stream Input

The player supports both audio and video streaming based on the Real-time Transport
Protocol (or RTP) defined in RFC 3550 [45]. RTP is a standardized packet format
developed by the Audio-Video Transport Working Group of the IETF [46]. It provides,
for example, sequence numbering, time stamping, and payload-type identification. RTP
is supported by many media players and streaming servers, and hence, there is a lot
of support and no dependencies to a single vendor. And since it was designed as a
multicast protocol, it fits in perfectly.

RTP supports a wide range of payload types. MPEG is one of these payload types
and supports various audio and video codecs, whereas some are better suited for stream-
ing than others. Popular video codes are H.264 [47], XviD [48], and WMV [49]. H.264
provides the best quality among these three codecs, especially at low bitrates, but also
incurs the highest computational overhead. MP4 and AC-3 are popular audio codecs
providing good quality at similar bitrates.

The Player Core layer provides the required implementations that RTP can be used
within the StreamTorrent protocol (accessing the RTP source, packet marshalling, and
delivery).

7.3.2 Resource Repositories

The player uses various kinds of resources like stream descriptors, plugins, video snap-
shots, and stream program information. Typically, there are several sources to obtain
resources. In order to facilitate resource management, access to these so-called resource
repositories has been standardized. Each kind of repository implements the same inter-
face to hide the underlying implementation and to extend and replace repositories more
easily. There are currently three implementations:

1. Local repository

The local repository is a local, file system-based repository implementation. It is
usually used as a cache for other kinds of repositories.

2. Traditional servers

There is a web application running on any Java-enabled HTTP server. It hosts its
own local repository and provides access to it using remote procedure calls. The
communication is either XML-based or binary. Automatically generated stubs are
used on the client side to hide implementation details.

The server also provides a web-based interface. It can be used by users to browse
for and download resources. The most prominent example is streamtorrent.org.
For this purpose, a browser has been integrated into the user interface and is
shown directly after startup.

3. Distributed hash tables

A peer-to-peer-based implementation is given based on the distributed hash table
presented in Chapter 4.3.2. Using the described replication and locality techniques,
it is a scalable and efficient alternative to centralized web-based repositories. How-
ever, for performance reasons, resources can only be addressed by their identifiers,
meaning that no full-text search is provided. Its main use is to update already
obtained resources to reduce the load on the centralized servers.
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Depending on type of resource, repositories provide additional services. Stream
descriptors are usually indexed and can be queried using a simple query language (see
Figure 7.2). The query language supports both boolean and full-text expressions. Repos-
itories translate queries into corresponding native queries when they are executed.

• mediaType == ’ video ’ ORDER BY name

• mediaType == ’ audio ’ && keywords CONTAINS ’ soccer ’ ORDER BY name

• name l i k e ’ Soccer Fina ls ’ and mediaType == ’ video ’ LIMIT 10

Figure 7.2: Examples queries to search for stream descriptors.

7.3.3 NAT Support

NAT devices and firewalls are one of the main obstacles when deploying peer-to-peer
applications. Several strategies are adopted to both detect and (partly) by-pass NAT
devices and firewalls.

To detect the presence of a NAT device, one of the freely available IP checker services
is queried to obtain the external IP address. If a NAT device is present, then the
external address does not match the local address. If this is the case, ping messages are
exchanged with non-local entrypoints or peers to determine the NAT type. An overview
over the different NAT types is given in the appendix. Entrypoint and peer addresses
are obtained either from a previous session, i.e. a list of the latest peers is saved to disk
on shutdown, or from predefined http servers. Users might also provide some addresses
by themselves using the preference dialog. Once some addresses are available, a ping
message is sent to one of the peers. The peer, given that it is still alive, responds with
a pong containing the observed sender address and port. Moreover, it also forwards the
ping to another, third peer that also responds to the original sender. This is repeated
several times. If no pongs have been received, either a firewall is present or the peer list
is invalid. If no majority of peers reported the same address, it is assumed that the NAT
device is symmetric. Otherwise, if there is a majority, it is either full cone or restricted
cone depending on whether a forwarded ping response has been received. Note that
we do not distinguish between restricted cone and port restricted cone since only one
port and multiplexing is used. Besides the majority vote, each ping message contains a
unique identifier that has to be included in the answer of the regular and the forward
ping. Naturally, only one answer is accepted per ping identifier and answer type.

If either none or a full cone NAT device has been detected, everything is ok. Oth-
erwise, Universal Plug and Play [50] (or UPnP) is used to attempt to open a port on
the NAT device matching the external address. If the attempt succeeds, the local NAT
type becomes full cone, otherwise a warning message is shown.

Symmetric NAT is currently not supported since peer identifiers are computed by
computing the hash value of the external address and port. In the future, another
approach has to be taken to create an identifier for such peers. We also strive to support
automatic relaying over peers in the local network if they do have a better connection,
e.g. manually configured within the router. The implementation is however not finished
at the time of writing.

The steps are repeated until the NAT type has been determined. If all strategies fail,
the user can still manually open a port within the NAT device’s configuration and it will
be detected by StreamTorrent. Once the NAT type has been determined, ingoing and
outgoing packets are observed and, if necessary, some of the steps repeated to ensure
that the network configuration has not been changed. The local NAT type is added to
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the packet header to inform other peers. They will then take extra precautions, e.g.
when providing recommendations.

Moreover, NAT devices also complicate the communication inside a local network.
It is usually not possible to address a peer by its external address. To discover each
other within a local network, peers join the same multicast group and periodically send
notifications, e.g. containing the external address. The network layer of StreamTorrent
uses this notifications to transparently map local and external address. The external
address is also added to local packets (in case that multicast is disabled).

7.3.4 Build System

StreamTorrent uses its own, small build system. There are builds for both plugins and
the player itself. Builds are stored within build repositories. The repository allows
to more easily publish and to find new builds. Concepts of Mozilla and Eclipse have
been adopted to manage versioning. There are four types of builds, i.e. continuous,
integration, milestone, and release builds. While release builds should be the most
stable ones, continuous builds are created on a daily basis. Users can specify within the
preferences which kind of builds they are interested in. Moreover, it is possible to create
builds for each platform and language independently, if needed.

7.3.5 Recordings

There is an initial implementation to record streams. It is used in two ways, for regular
recordings and for time-shifted viewing. Regular recordings are stored on the local hard
disk and can be watched later at any time. Time-shifted viewing allows to pause playback
and to later resume playback at the same position, packets are stored temporarily until
they get delivered.

Recordings are based on a simple, proprietary file format that cannot be read by
other players. Future extensions might adopt the standardized MPEG file format. We
also strive to support programmed recordings in the future.

7.4 UI Framework

Implementing a user interface is usually time-consuming and requires a large amount
of code. Consistency within the entire application and similar design and behavior as
popular applications are essential to guarantee a good user experience. This includes
many smaller details like tooltips, drag & drop, alerts for important messages, default
actions like copy and paste, and drop-down menus.

To simplify its design, the player user interface is composed of two layers. a frame-
work1 providing the most basic features and the player-specific components. Looking at
web application, a field where Java has become popular in recent years, many frameworks
emerged simplifying the development. By contrast, Java was considered to be unsuited
for desktop applications by many developers for years (for example [51]) due to its mem-
ory footprint, lack of responsiveness, problems with native look & feel, among others.
There has been a lot of progress, but it still lacks the diversity of available frameworks
that simplify development.

The most popular framework is the Eclipse Rich Client Platform [52] that evolved
from the Eclipse development environment. It incorporates many useful features, espe-
cially its flexible plugin architecture, but it imposes a high overhead for smaller appli-
cation, such as the StreamTorrent Player itself, and frequent tasks are sometimes still
to time-consuming. Eclipse uses the Standard Widget Library2 to implement its user

1 Usually referred to as a rich client platform within Java community
2In contrast to its name, it is a non-standard solution (or SWT ). Swing is the standard library

distributed with every Java runtime environment.
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interface. StreamTorrent Player also uses SWT because of its small memory footprint,
native look-and-feel, responsiveness, and integrated browser,

The NetBeans Platform [53] and Spring Rich Client Project are two other, Swing-
based frameworks slowly emerging as alternatives for Eclipse RCP. Another approach is
taken by the XML user interface language [54] (or XUL). XUL is basically a combination
of XML to describe a user interface and a scripting language to implement the behavior.
It has been introduced by the Mozilla Foundation and is used among others by the
popular browser Firefox. It has also been ported to Java. Unfortuneately, scripting
languages tend to become unreadable and hard to debug when a project grows.

To keep the StreamTorrent Player small and to avoid any overhead, it uses an own,
very small framework. It is about 200 KB in size and focuses on providing the most
important features with the least amount of code. It is based on the Platform Core
layer and makes heavy use of the adapter registry and the unified event handling. The
following subsections give a brief overview.

7.4.1 Selection Handling

Selection is an important aspect within any user interface. Determining the currently
selected object is vital for many parts of the user interface such as menu items, tooltips,
and drag & drop. The concept itself is important, the implementation is straightfor-
ward. Objects providing selection implement ISelectionProvider. The event framework
of Platform Core has been adopted to fire events upon changed selection.

7.4.2 Actions

Actions represent commands that are associated with menu items, toolbar items, drop
down menus, etc. User trigger actions by clicking on these user interface elements. Each
action obtains its action site during initialization to enable the action to modify its
behavior and appearance within the user interface, for example, by changing its text and
image or by disabling itself. Development is simplified by providing various convenient
methods, e.g. regular, disabled, and hover images are found automatically by specifying
a common key and following some simple naming conventions. Actions are managed
by an action repository. Actions can be associated with objects to automatically create
drop down menus.

7.4.3 Drag & Drop

Providing drag & drop is usually time-consuming to implement. The implementation
has to consider both drag & drop within the application and with the operation system
and other applications. In the second case, dragged objects have to be transformed into
an appropriate format. Within StreamTorrent, drag & drop is handled automatically
once actions like cut, copy, and paste are implemented.

7.4.4 Viewers

Viewers simplify the use of widgets like tables, tree, combo boxes, and lists by provid-
ing a flexible default implementations hiding most of the details. A content provider
specifies which objects to display and a label provider specifies their appearance (font,
text, images, etc.). Instantiating a viewer with a content and a label providers yields the
corresponding view widget, for example, a table for the table viewer or a list for the list
viewer. Selection, drag & drop, tooltips, and drop down menus are managed automat-
ically once corresponding adapters are registered. A default content provider exploits
the event framework to detect updates, which reduces the task to merely implementing
a label provider.
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There are a few more advanced content and label providers. The filter content
provider wraps another content providers and only displays objects that satisfy a given
predicate. The compositional content provider takes several content providers and builds
trees. Each content provider represents a root and its items are the children. There is
also a corresponding compositional label providers. They are used, for example, by the
overview sidebar of the StreamTorrent Player to show different kinds of objects within
a single sidebar to give an overview over the system. The aggregating content provider
takes a content provider and an aggregation function as input, evaluates the function
for each item, and puts items with the same function value under a common root. The
aggregating content provider is used by the history sidebar to group history items by
date. Comparators can be used to sort items.

7.4.5 Tooltips

Unfortunately, native tooltips provided by SWT are rather limited. For example, neither
text formatting nor custom tooltips for table items are supported. StreamTorrent uses
an alternative, non-native approach based on the Browser widget. Any object can
contribute a tooltip by either implementing or providing an adapter for IToolTipSupport.
IToolTipSupport has methods to generate the required HTML code.

7.4.6 Updates

A simple user interface is provided to search for updates of both the main application
itself and installed plugins. The integrated browser has been extended to enable the user
to just click on plugins on a web-site to trigger their installation, giving a convenient
way to distribute and install new plugins.

7.5 Player UI

The Player UI layer provides a user interface to the features of the Player Core layer
based on Platform UI . In its use it is similar to popular BitTorrent clients and browsers.
There is an integrated browser to access web-based repositories and an integrated player
to playback streams.

7.5.1 Browser

The integrated browser is shown right after the start and uses the main repository as the
welcome page. The browser of the underlying operating system is used for this purpose.
The behavior is slightly modified to enable users to directly click on stream descriptors
and plugins to trigger playback, respectively the installation. A screenshot is given in
Figure 7.3.

7.5.2 Player Integration

Third-party media players can be integrated into the StreamTorrent Player to playback
streams. Unfortunately, media players are inherently platform-dependent and differ in
the number of supported features. This is further complicated by the fact that the
integration into Java differs for each player and operation system.

Two popular open source video players are the VLC player [55] and the MPlayer [56].
Both MPlayer and VLC have the same licensing terms, i.e. GPL[57]. This prohibits
the distribution with our own player, unless it is also GPL licensed. It can, however, be
included as an optional, GPL-licensed plug-in.

The Java integration of MPlayer is simple. MPlayer is started in its own process
and the video output is redirected to the Java window, addressed by a window handle.
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Figure 7.3: Screenshot: StreamTorrent Player showing a browser after startup.

SWT allows access to window handles by simply invoking a method.3 MPlayer is
then remotely controlled via its console using the process input and output streams.
Unfortuneately, streaming support is not as mature as in other players.

VLC features excellent streaming support, but the Java integration is more com-
plicated. On Windows platforms, OLE automation [58] can be used. 4 JVLC [59]
provides an alternative approach based native libraries and the Java Native Interface
(or JNI ). By bundling the native library with StreamTorrent, no further VLC instal-
lation is required.5 Regrettably, JVLC is still in an early beta-stage at the time of
writing.

Similar to VLC, windows media player can be controlled using OLE automation.
However, current versions lack the most codecs unless they are installed manually or
only Microsoft’s codecs are used. And finally, QuickTime is available for Windows and
Mac, supports streaming and H.264, and features a Java library.

The Windows version of StreamTorrent currently uses VLC (see Figure 7.4. Imple-
mentations for other players and operation systems will follow in the future.

7.5.3 Broadcast Dialog

The broadcast dialog is used to create and publish new streams (see Figure 7.5). Prop-
erties like the bitrate and the content type are determined automatically by observing
the input stream. Streams can be published to any kind of repository. Once a stream
is stopped, it is removed from the repository as well.

3Integrating MPlayer into a Swing application seems considerably harder.
4A minor disadvantage is that the user has to explicitly enable OLE support during the VLC

installation.
5Given that the licensing issues are resolved
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Figure 7.4: Screenshot: StreamTorrent Player with VLC for playback.

Figure 7.5: Screenshot: Dialog to broadcast new streams.

7.5.4 Installation

Installation files are generated using Install4J [60] and Exe4J [61]. They provide all
the desired features like file associations, licence dialog, menu icons, and automatic
installation of the Java Runtime Environment. Some screenshots are given in Figure
7.6.

Figure 7.6: Screenshot: Setup dialogs.
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7.6 Player Console

Instead of using the Player UI layer, the player can also run within a console using
the Player Console. The console provides almost the same functionality. It is possible
to broadcast and join streams. Instead of local playback within an integrated player,
streams can be broadcast into the local network. Presumably the console will be ex-
tended by a remote control feature using a UI-based player as guest. Currently. it is
used to perform tests on the PlanetLab [62] testbed. A screenshot is given in Figure 7.7.

Figure 7.7: Screenshot: Player Console.

7.7 Planet Lab

Initial tests have been performed in the local network for several weeks to determine
whether StreamTorrent is working properly. . The tests worked flawlessly, mainly
because of the number of tests that have been performed with the simulator. We also
deployed StreamTorrent on 150 PlanetLab nodes. We chose a random set of nodes and
it worked on most of them. The ones that did not work seem to be overloaded and
experienced unusual high delays. More tests will be performed in the future to confirm
the simulation results and to further optimize the protocol.



Chapter 8

Conclusions

Given the growing number of radio stations and TV channels available online, peer-to-
peer live streaming has the potential to overcome the limitations of traditional, cen-
tralized approaches towards streaming and enables content providers to both increase
playback quality and to reduce costs. Especially for smaller organizations, not having
the resources to afford traditional servers or to get a permission for the regular cable
network, peer-to-peer streaming is a viable alternative.

StreamTorrent is a peer-to-peer live streaming protocol combining pull-based and
push-based techniques to achieve both efficiency and robustness. The chosen overlay
is locality-aware and incentive-compatible, has a guaranteed logarithmic diameter, and
enables the source to push new packets to speed up packet distribution. Having a push
mechanism allowed to reduce the notification frequency, which led, together with packet
bundling, to a smaller overhead.

Simulations have shown that StreamTorrent scales well with the number of peers.
For example, having 10,000 instead of 1,000 peers incurs an additional delay of less than
200 ms. The protocol is also robust against packet loss and churn. 75% of the peers
can leave the network simultaneously without underflows at the remaining peers. The
communication overhead is between 3% and 6%, a remarkably good value once duplicate
ratios, coding overhead, and churn are accounted for in other protocols.

The StreamTorrent Player, a peer-to-peer media player supporting live audio and
video streaming, shows that the StreamTorrent protocol can be used in the real world.
Besides enabling users to broadcast own streams, the user interface provides many small
features that improve the user experience, like an integrated player for playback, au-
tomatic update support, a plugin infrastructure, NAT detection, favorites, a history,
recording support, time-shifted viewing, a browser to find streams, among many others.

There are still interesting directions for future work in peer-to-peer. streaming. The
subsequent chapter gives a brief overview.
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Future Work

While most parts of the protocol have been implemented and the StreamTorrent Player
is already working well, much more work can be done. The following sections outline
possible future work.

9.1 Protocol

9.1.1 On-demand Streaming

StreamTorrent in its current form is a multicast protocol supporting live streaming.
Some of the main application scenarios are broadcasting radio stations, TV channels, and
live events like soccer matches. It would be interesting to further extend StreamTorrent
to support on-demand streaming. This would enable users to select and immediately
playback movies or audio tracks without having to download them first. There would
be no need to store hundreds of gigabytes of movies on local hard disks, the system itself
could ensure that files are sufficiently replicated.

9.1.2 Incentives

More work has to be done to provide incentives for peers to share their upload bandwidth.
While the basic mechanisms have been implemented, their parameters have to be better
adjusted to the current situation to achieve an optimal efficiency. Source and network
coding could increase chances that neighbours are able to exchange data.

9.1.3 Overhead

The communication overhead in StreamTorrent has been reduced by the adoption of
pushing, the reduced notification frequency, and the bundling of packets. For smaller
packets the UDP and IP headers impose a significant overhead. Especially at higher
bitrates, it might be possible to better exploit packet bundling to attach most additional
information to the actual data packets.

9.1.4 Pushing

The adopted push mechanism reduces the communication overhead and speeds up packet
distribution. The Evaluation chapter has shown that StreamTorrent scales well with the
number of peers. However, the fraction of push packets decreases with the number of
peers and more requests have to be sent. Maybe it could proof useful to have a second
push mechanism to distribute packets within a peer’s neighbourhood, not triggered by
the source. GridMedia [18] synchronizes peers to partition time into intervals. Rules
are then applied to specify which peers can push packets in which intervals. Another
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solution might partition the overlay into two or more layers. For example, the overlay
of eQuus [22], a locality-aware distributed hash table, has two layers. The first layer
arranges all peers into disjoint cliques of a few dozen peers. Nearby peer typically join
the same clique. A second layer connects all cliques among each other by assigning an
identifier to each clique and building a hypercube. The regular StreamTorrent protocol
could be used to distribute and exchange data among cliques, and a more efficient,
specialized one could be adopted within cliques. This could lead to a protocol scaling
10 to 100 times better with a smaller overhead while maintaining robustness and small
delays.

9.1.5 Locality

Recommendations and certificates give a hint about the rank of a peer sending a join
message. The protocol lacks a similar mechanism for locality. Peers can only assume
that recommended peers are in the local neighbourhood because peers frequently drop
distant neighbours. Maybe a protocol like Vivaldi, assigning virtual coordinates to peers,
or mapping IP addresses to countries could further improve locality-awareness.

9.1.6 Bandwidth Management

The maximum upload and download bandwidths are manually configured. In real world
applications it would be convenient if these bandwidths are adapted depending on the
experienced packet loss. The current protocols already ensures that the maximum band-
widths are not exceeded, extending this functionality should not be difficult.

9.1.7 Source Replication

The source is a single point-of-failure within the overlay and should be replicated. Repli-
cas have to agree on the payload, sequence numbering, and timestamping. Moreover,
the task of pushing packets has to be partitioned among the replicas. If the source’s
input is an external stream, it might also be necessary to replicate the input.

9.1.8 Data Integrity

Before deploying StreamTorrent in the real world, a mechanism is needed to maintain
the integrity of packets. Malicious peers should not be able to inject, drop, or modify
packets. Public key cryptography, the simplest solution to this problem, is too inefficient
in terms of both computational and communication complexity.

9.1.9 Different Quality Levels

It might be beneficial to offer streams at different bitrates to enable weaker peers to
join streams as well. Peers can then automatically switch between the levels. An imple-
mentation would be mostly straightforward since multiplexing is already implemented.
Peers simply need to join the new level to fill buffers and gradually leave the old one.
However, it is essential to have a good incentive mechanism and to carefully select the
number of levels and their respective bitrates.

9.2 StreamTorrent Player

9.2.1 NAT Support

There are several ways to improve the current NAT implementation to simplify the
setup and improve connectivity. Hole-punching would allow connections between peers
behind restricted cone NAT, the most typical device type. Relaying could help in cases



9.3. OUTLOOK 55

where peers are unable to connect, e.g. because of firewalls, but another connected peer
is available in the local network. Symmetric NAT is currently not supported at all since
peers need a unique identifier, created by hashing the external address and port (which
differ depending on the destination for peers behind symmetric NAT devices).

9.2.2 Recording

Program schedules of streams would allow, for example, programmed recordings of fa-
vorite shows and more detailed information about currently played streams. Moreover,
it would be convenient if recordings are stored as standard MPEG files instead of Stream-
Torrent ’s proprietary format.

9.2.3 Video Snapshots

Sources should periodically generate snapshots of video streams. These snapshots could
be shown in several places, for example:

• On the associated web pages.

• As image for favorite video channels.

• When opening a stream descriptor.

9.2.4 Finalizing the API

The API and extension points should be finalized to allow contributions by others. Work
in progress can be moved into internal packages.

9.2.5 User Interface

There are many smaller improvements for the user interface. It would be nice to have
better icons. Tooltip and drag & drop support is not completed, for example, it is
not possible to drag favorite menu items to the desktop. Alerts, shown at the bottom
right on the screen, could show important messages, e.g. NAT errors. There should be
periodical checks for updates. Moreover, it would be convenient to bundle a third-party
player with the StreamTorrent Player or to support more players besides VLC.

9.2.6 Supported Platforms

At the moment, there is only a Windows version of the StreamTorrent Player because
the player integration is platform-dependent. Other platforms should follow soon.

9.2.7 Supported Input Types

RTP streams are used as input to create StreamTorrent streams. This requires the
user to not only setup StreamTorrent, but also an external streaming server. Especially
setting up codecs and bitrates takes time and is error-prone due to codec incompatibili-
ties. There should be a more convenient way to broadcast streams, for example, by just
providing a set of files.

9.3 Outlook

More PlanetLab [62] tests have to be performed to verify the simulation results. We
also aim at streaming the upcoming International Workshop on Peer-to-Peer Systems
to test StreamTorrent in the real world.
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Appendix

NAT Types

There are four types of NAT devices as proposed by STUN [63]:

• Full cone NAT maps internal addresses and ports one-to-one to external addresses
and ports. Every external host can sent packet to internal hosts using the external
addresses and ports.

• Restricted cone NAT is similar to full cone NAT, but an external host can only
send to an internal host if the internal host has previously sent a packet to the
external host.

• Port restricted cone NAT is slightly more restrictive than restricted cone NAT,
i.e. external hosts cannot reply with a local port that never received a packet from
the internal destination.

• Symmetric NAT uses a different mapping for each destination. Different destina-
tions observe different external address port pairs and only the destination can
reply.
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