

Routing Algorithms for Safety

Critical Wireless Sensor Networks

Tunc Ikikardes
Master Thesis, SS-2006

Advisors: Professor:
Dr. Markus Hofbauer, Siemens Prof. Bernhard Plattner
Dr. August Kälin, Siemens
Dr. Martin May

2

For Elena and
My family

 3

Acknowledgement

This thesis gave me the opportunity to see the practical importance of the theoretical findings.
Our research had its motivation from the real-world fire detection problem but it was the graph
theory that helped us to solve the basic problems and to proceed further. There I was convinced
that the cooperation of the academy and industry plays an essential role for the technological
development. During this period, I also gained insight of the industry, where one has to face the
practical and real problems which can be hardly found in the textbooks. After all, I have to thank
to Siemens and ETH for providing me this precious experience.

I would like to thank deeply Dr. A. Kaelin not only for making this thesis possible for me but
also for his stimulating suggestions, encouragements and providing me the necessary freedom to
organize my work. I am very grateful to Dr. M. Hofbauer for his continuous support, his concise
comments and for all the fruitful discussions. I also give my sincere thanks to Professor B.
Plattner and Dr. M. May for their valuable comments and suggestions in our meetings.

I would like to thank my friend Musa for sharing all those experiences in the master study at D-
ITET. I am deeply indebted to my family for their endless support and making the education in
ETH possible for me. At last, I wholeheartedly thank to Elena for all the compromises and her
understanding.

4

Table of Contents

Abstract ...7
1. Introduction ...8

1.1 Wireless Sensor Networks (WSNs)...8
1.1.1 Routing in WSNs ..8

1.2 Problem Statement ...8
1.2.1 Critical Wireless Sensor Network..8
1.2.2 General Requirements..8
1.2.3 A Specific CWSN Application for Fire Detection and its Requirements...............................9
1.2.4 Requirements for the Routing Algorithm ...10

1.3 Network Model and Notations ...10
1.4 Contributions ...10
1.5 Outline...11

2. Existing Routing Algorithms for WSNs ..12
2.1 Overview ...12

2.1.1 Definitions...12
2.2 Minimum Spanning Tree (MST) Algorithms...13

2.2.1 Prim’s Algorithm ...13
2.2.2 Borůvka’s Algorithm..14
2.2.3 Kruskal’s Algorithm...15

2.3 Shortest Path Tree (SPT) Algorithms ..15
2.3.1 Dijkstra’s Algorithm...15
2.3.2 Bellman-Ford (BF) Algorithm ..17

2.4 Distributed Algorithms ...18
2.4.1 Distributed Bellman-Ford (DBF) Algorithm..18
2.4.2 Distributed MST Algorithm..19

2.5 Spanning Tree Algorithm...19
2.6 Discussion of the Algorithms ...20

3. New Routing Algorithms ..22
3.1 Pairing Algorithm: Localization of Prim’s and Dijkstra’s Algorithms ..22

3.1.1 Algorithm 5: Pairing Algorithm ..23
3.1.2 Block Diagram of the Pairing Algorithm ..25
3.1.3 Complexity..25
3.1.4 Convergence Issues ...25

3.2 N-SafeLinks Algorithm...26

 5

3.2.1 Main Idea: N-SafeLinks ..26
3.2.2 N-SafeLinks Algorithm without Pairing..26
3.2.3 N-SafeLinks-Pairing Algorithm..29
3.2.4 Block Diagram of the N-Safe-Links Algorithm ...33
3.2.5 Complexity..34
3.2.6 Convergence Issues ...34
3.2.7 Proof of Loop-Freeness ..34

3.3 An Initial Routing Procedure using 2-SafeLinks Algorithm ..35
3.3.1 Messages needed for the execution of 2-SafeLinks Algorithm ...36
3.3.2 Special messages needed for the initialization ...36
3.3.3 Timing of Local Implementation ..36
3.3.4 Description of States...38
3.3.5 State-Machine Diagram for initial routing by the 2-SafeLinks Algorithm............................40
3.3.6 Timing for the initial routing in Glomosim ..41

4. Double Tree and Local Sinks Concepts ...42
4.1 Dynamic and Static Routing ..42
4.2 Double Tree Concept ..42

4.2.1 Main Idea: MST for Monitoring and SPT for Alarms..42
4.3 Local Sinks: A Clustering and Supervising Concept..44

4.3.1 The Concept: Parallelization of the N-Safe-Links Algorithm..44
4.3.2 Block Diagram of Local Sinks Algorithm ...51
4.3.3 Convergence Issues ...52

4.4 Power Consumption..52
4.4.1 Protocol Parameter Dependencies and Constraints ...53
4.4.2 Wake-Up Interval ..53
4.4.3 Monitoring Interval ..53
4.4.4 Periodic Wake-Up...53
4.4.5 Monitoring...54
4.4.6 Link Testing ..55
4.4.7 Total Power ..55
4.4.8 Lifetime of Batteries ..56

5. Simulation and Evaluation of Algorithms...57
5.1 MATLAB Routing Graph Analyzer Tool ...57

5.1.1 Files..57
5.1.2 Tools...58
5.1.3 View Features...61

5.2 Preliminaries for Testing..62
5.2.1 Determining the Qualities..62
5.2.2 RSSI-Level Mapping...63
5.2.3 Calculation of the Weights from the RSSI-Values...63

6

5.3 Evaluation and Analysis of the New Algorithms ..64
5.3.1 MST and SPT Metrics...64
5.3.2 Convergence ..74
5.3.3 Power Consumption ...83

5.4 Summary...90
5.4.1 Overview on the Simulation Results ...90
5.4.2 Suitability of Algorithms for CWSN Application ...91

6. GloMoSim Simulation of the CWSN Application..92
6.1 The Network Simulator: GloMoSim ...92
6.2 CWSN Application...92
6.3 Network Layer ...92

6.3.1 Reading the Routing Information Tables...93
6.3.2 Routing-Information Structure in the Network Layer ...93
6.3.3 Interface with the Application Layer ..93

6.4 Application Layer...93
 Tests and Simulation..95
6.5 Results ..95

6.5.1 Bundeshaus Scenario...95
7. Conclusion ..98

Appendix A: Symbols and CWSN Parameters ...100

Appendix B: Radio Parameters ...101
List of Abbreviations ..102
References...103

 7

Abstract

In this thesis, routing algorithms and optimal topologies for the safety critical wireless sensor
networks and in particular for the fire detection application called CWSN are considered. As the
wireless sensors are battery driven, these networks are very power-sensitive. On the other hand,
because of the safety critical aspect, they require low latencies for communication. To match
these two challenging and also conflicting requirements, we focused on tree-based structures in
particular spanning tree algorithms for routing.
Most of the standard tree-based algorithms require global knowledge. Hence, a generic routing
algorithm called Pairing Algorithm was developed to localize standard global algorithms such as
Minimum Spanning Tree (MST) and Shortest Path Tree (SPT) algorithms. To be able to keep the
power within the required limits of the CWSN application (Pmax≈100 µW) we chose a static
routing algorithm that can handle link breaks without re-routing the network. A generic
algorithm termed N-SafeLinks Algorithm was devised that can construct routing trees with
different cost functions and generate lookup tables for the routes. The algorithm guarantees
connectivity and loop-freeness (a tree-structure) even in case of multiple link breaks (up to N-1
links per node). In order to evaluate the existing algorithms and to develop new algorithms, we
utilized a graph analyzer tool (GUI) that we have implemented in MATLAB.
As an optimal power-efficient topology for the CWSN application, the Double-Tree Concept
was devised, where a fast backbone tree is used for the alarms and a power- efficient monitoring
tree is used for normal operation. With this concept, the power efficiency is increased while
keeping alarm latencies under the required limits. With the introduced Local Sinks Concept,
subtrees (clusters) are generated in the monitoring tree. These subtrees are monitored with
special nodes called Local Sinks. This concept further increases the power efficiency and was
implemented in the Local Sinks Algorithm.
Extensive simulations and comprehensive analyses of the developed algorithms were carried out.
Compared to the standard algorithms, the loss in terms of the metric and the required node
connectivity are found to be limited and in practice irrelevant.
The network and application layers of the CWSN were implemented in GloMoSim. The
simulation results indicate that the required timeliness is met while achieving a power
consumption of about 100µW. At the same time the robustness against link breaks is provided.

8

1. Introduction

1.1 Wireless Sensor Networks (WSNs)
Wireless Sensor Networks (WSNs) are computer networks that are comprised of distributed
nodes using a wireless communication module. The nodes of a WSN have in particular a sensor
module to monitor their environment, e.g., temperature, sound, pressure. The wireless nodes
usually have a microcontroller to process the environmental conditions that they sampled with
their sensors and these signals are processed to detect certain events, e.g., fire, explosion, glass
crash. The nodes of the WSNs exchange information with other nodes in the network through
wireless links. Most of the WSNs have several wireless sensor nodes and all these nodes cannot
have feasible direct links to each other and hence they are mostly organized in a multi-hop
fashion where the information transfer between nodes is realized by hopping through other relay
nodes. As the nodes do not have any wired connection they are usually battery driven. Hence the
power is an essential limiting factor for the wireless sensor networks and it must be considered
for the organization of the WSN.
Wireless Sensor Networks have gained importance in recent years because of their simplicity
and growing functionality. The commercial WSN products are spread out and many researchers
are working on different levels of WSNs to add them more functionality and to make them more
efficient. The application areas of the WSNs varies from biomedical applications and seismic
detection systems to military applications and area monitoring for buildings. Today, WSNs are
replacing the old platforms in many different application areas and they are also introducing new
application possibilities which were not realizable with the old wired systems.

1.1.1 Routing in WSNs
The focus of this thesis is on the area safety applications of WSNs, e.g., fire detection systems.
These applications use several wireless sensor nodes that are spatially distributed in a building
and a sink node that gathers data from the sensors and process it. In order to provide the data
collection every sensor has to find the path to the sink in order to transmit its observations.
Finding the optimum paths to reach the sink introduces the routing problem for the WSNs. The
paths must minimize communication costs (power) but they must be robust and provide low
latencies. Moreover, a routing algorithm that determines the optimum routing paths cannot be to
complex as it must be implemented in the simple nodes on a microcontroller. To decrease the
installation efforts, it is demanded that the routing algorithm can perform in a distributed fashion
without needing global knowledge such as exact node coordinates, link qualities etc. At last the
routing algorithm must be power efficient and it should produce low communication traffic.

1.2 Problem Statement

1.2.1 Critical Wireless Sensor Network
A Critical Wireless Sensor Network (CWSN) is wireless multi-hop sensor network with several
sensor nodes and one sink node. The sensors sample the environment and inform the sink if there
is a specific event or not, e.g., fire, glass crash, etc. In case of such an event, the sink receives an
alarm and it informs the necessary units such as police and fire department.

1.2.2 General Requirements
For CWSN applications there are two main issues:

 9

• The first issue is power efficiency. It is very critical because the nodes are battery driven
and power efficiency determines directly the network’s life. For today’s networks, 3 to 5
years of network life can be demanded. It is important to note that a WSNs life is limited
by the worst-case node. Hence the power consumption should be very low and it must be
distributed uniformly over the nodes in the network.

• The second limiting factor is the timeliness. As these applications are mostly safety

critical, the alarms must arrive within a specified interval to the sink. Moreover, the sink
must be informed within a specified time, if some of the nodes crash or there are
permanent communication failures.

1.2.3 A Specific CWSN Application for Fire Detection and its Requirements
In this specific fire detection WSN application [1], the multi-hop wireless network is comprised
of fire detection nodes and a sink node. Every fire detection node notifies the sink if there is a
fire event. During normal operation, where there is no fire event, the nodes send periodic
messages over hops to the sink, indicating that they are present. This CWSN application is
comprised of two phases:

• The first phase is the initialization phase, which starts when the fire detection nodes are
turned on. In the initialization phase, the nodes have to organize themselves, i.e., they
have to decide on their next hop on the path to sink and synchronize themselves
according to some pattern.

• The second phase is called operation phase and it starts when the network is organized

and when the sink decides that the operation can start. In this phase, the normal operation
takes place.

The wireless fire network requirements are as follows

• technical node failures have to be detected within Failτ = 300s at the sink node. This
requires periodic monitoring messages.

• a fire alarm has to be reported to the sink node within Fireτ = 10s.

• the fire has to be indicated by certain nodes, controlled by the sink within Indicatorτ = 20s.

• the total power consumed in the normal operation phase should be in the order of targetP =
100 µW for the worst case node.

• the protocol should use C different frequencies and handle up to FailC channel failures.

• the routing algorithm should handle several sudden link breaks, at most 1 link per node.

Symbol Description Value

Failτ Timing constraint for the notification of a node crash 300s

Detectτ Timing constraint for the interval of sensing the
environment 2s

Fireτ Timing constraint for the notification of a fire condition 10s

Indicatorτ Timing constraint for the indication of a fire condition 20s

10

targetP Target energy consumption 100 µW
C Number of channels 16
FailC Number of maximum channel failures 4
B Bitrate 10kbps

Table 1: Requirements for the fire detection network protocol1 [1].

1.2.4 Requirements for the Routing Algorithm
The requirements of the FD-WSN application bring strict limitations on timing and power
consumption in the network. Therefore, there is a need for a very power efficient routing
protocol that must be reactive enough to provide timeliness even in case of communication
failures. The protocol should determine the routing graph, which sets the next hop, i.e., parent.
The protocol must be able to react and find an alternative parent when link breaks occur. The
routing should organize the nodes in an optimal way for low power consumption and it must not
need many message exchanges and frequent re-routing in order to keep power consumption low.
Also the network should be organized in a proper way that it fulfills the low latency requirements
given in Table 1.

1.3 Network Model and Notations
The wireless sensor network is modeled as a graph G(V,E) with the nodes or vertices V, among
which there is one sink and the edges E. There is a link { , }i j E∈ when node i and node j can
communicate with each other directly. Every edge { , }i j E∈ has a weight ijw , which is the
communication cost for that link. The communication is assumed to be symmetric2, namely

ij jiw w= . The routing algorithms described in this thesis find a subgraph T(V,ET) of G, with
nodes V and edges ET (much more sparse than E). T is a tree with a sink as the root node. The
path from the node j to the sink is denoted as Pj and is defined as the concatenation of all the
edges on the path from the node j to the sink, i.e.,

()1 1 2{ , },{ , },....,{ , }j nP j node node node node sink= .

1.4 Contributions
The contributions of this thesis can be listed as follows:

• A new routing algorithm called Pairing Algorithm is introduced and verified that
localizes the standard optimum global routing algorithms. The developed algorithm is
generic, i.e., it can be utilized with different cost functions. The performance of the
algorithm is found to be very close to the standard optimal algorithms with the respective
cost function.

1 For the complete list of the protocol parameters refer to Fehler! Verweisquelle konnte nicht gefunden
werden.
2 In reality the communication cost of links are not strictly symmetric, especially in the closed
environments, e.g., buildings, factories. However for the given problem description [1] and from the
scenarios provided from SBT we limit ourselves with symmetrically weighted graphs.

 11

• A generic routing algorithm called N-SafeLinks Algorithm is developed. The algorithm
provides robustness against link breaks and it guarantees the connectivity of the graph in
case of link breaks (up to N-1 links per node). A mathematical proof is given for the
loop-freeness of the algorithm.

• For the CWSN application, a topology concept called the Double-Tree Concept is

developed that introduces one fast alarm tree to minimize the latency of transmissions
and one monitoring tree to minimize the power consumption during the normal operation.

• For the CWSN application, a supervising concept called the Local Sinks Concept is

devised. The concept distributes the tree into clusters and realize the monitoring of
clusters separately to maximize power efficiency. An algorithm called Local Sinks
Algorithm is also introduced that utilizes this concept.

• A GUI termed Graph Analyzer Tool is developed in MATLAB. The tool is used to

develop, display, test and simulate the introduced routing algorithms and it is also used to
compare these algorithm with the standard routing algorithms.

• Extensive simulations were carried out to verify the developed algorithms to compare

their differences to the standard algorithms and their promised properties, e.g., low power
consumption.

• The network and application layers of the CWSN were implemented in GloMoSim. The

verification tests for robustness and power efficiency were carried out and the results
were analyzed.

1.5 Outline
The thesis is organized as follows:

• 2. Chapter: The existing routing algorithms are analyzed and discussed. They are
compared with each other and the algorithms that are promising for further development
were selected.

• 3. Chapter: The developed Pairing and 2-SafeLinks algorithms are introduced and

explained. The necessary theoretical analyses are presented.

• 4. Chapter: The CWSN specific topology concepts, Double-Tree Concept and Local
Sinks Concept are presented and analyzed

• 5. Chapter: The MATLAB Graph Analyzer Tool is introduced. The simulation results

for developed algorithms and the comparisons with standard algorithms are presented and
discussed.

• 6. Chapter: The implementation of the network and application layers on the GloMoSim

is given. At last the simulations results obtained from GloMoSim are summarized.

• 7. Chapter: The yields of the thesis are discussed and the conclusions are presented.

12

2. Existing Routing Algorithms for WSNs

2.1 Overview
There is an excessive literature on the routing problems in WSNs. However, because of the strict
requirements of the concerning CWSN application (see sections 1.2.2 and 1.2.3) only a few of
the existing algorithms are suitable and will be considered. The application uses only one source
and the low data rate allows accumulation of data, therefore we limit our research on the
algorithms searching for a routing tree with the sink node as root. In a WSN, the nodes should
organize themselves automatically, hence the algorithms should be locally implementable. The
application is very power sensitive, thus the algorithms, which work statically or the algorithms
which need less re-routing are favorable. Before the existing algorithms are explored in sections
2.2 - 2.4 and discussed in section 2.6 , we want to give some preliminary definitions that are
frequently used in the rest of the chapter.

2.1.1 Definitions
Definition 1: Spanning Tree
For a graph G =(V,E) where V is the set of the vertices on the graph and E is the set of the edges
a Spanning Tree is a subgraph GST=(V,EST) of the graph G. EST is a subset of E , such that the
subgraph GST is a tree that contains all the vertices. A graph G does not have to have a unique
spanning tree.
Definition 2: Minimum Spanning Tree (MST)
For a graph G =(V,E) where V is the set of the vertices on the graph and E is the set of the edges
a Minimum Spanning Tree is a subgraph GMST=(V,EMST), where EMST is a subset of E , such that
the subgraph GMST is a spanning tree that minimizes the total weight of GST, which can be
formulated as

{ , }

arg min
ST ST

MST ij
E i j E

E w
∀ ∈

=
 
 
 
∑ , (1)

where EST is a subset of E that constructs with all vertices a spanning tree, {i,j} is a single edge in
EST and wij is its weight. A Minimum Spanning Tree that fulfils equation (1), must not be unique
but for a graph there exists no other spanning tree that reduces the total weight any further than
its Minimum Spanning Tree.
Definition 3: Shortest-Path Tree (SPT)
For a graph G =(V,E) where V is the set of the vertices on the graph with a special vertex called
sink and E is the set of the edges a Shortest Path Tree is a subgraph GSPT=(V,EST), where ESPT is
a subset of E, such that the subgraph GSPT is a spanning tree that minimizes the weight of every
path from a node to the sink in GSPT , which can be formulated as

' '
{ ', '}

arg minSPT i j
P i j Pj V j j

E w
∀ ∈∀ ∈

=
  
  
  

∑∪ , (2)

where ESPT is a subset of E and ESPT constructs with all vertices a spanning tree, Pj is the path
from the node j to the sink and is comprised of the single edges. The weight of the edge {i’,j’} is
denoted by wi’j’. Any tree that fulfils equation (2) is a Shortest-Path Tree of the graph G.

 13

2.2 Minimum Spanning Tree (MST) Algorithms

2.2.1 Prim’s Algorithm
This algorithm is developed for weighted undirected graphs with a single source and is a
Minimum Spanning Tree algorithm. It is discovered by computer scientist Robert Prim in 1957
[6]. It starts from a source node or the sink which is the initial partial spanning tree. At each step
the algorithm inserts the node which has the minimum-cost link to the current partial spanning
tree via this minimum-cost link. The algorithm lets the partial spanning tree grow until all the
nodes are added and the complete spanning tree is constructed. It is a greedy algorithm, in the
sense that at each iteration one new link is added to the current tree. The algorithm also inherits
the tendency to build up trees with less branching but many hops. This situation is a result of the
minimum spanning tree property as relaying the connections over other nodes is cheaper than
direct links in terms of link weights. The algorithm is given below.

2.2.1.1 Algorithm 1: Prim’s Algorithm

Inputs:
E : Set of edges in the graph
V : Set of vertices
w : Set of edge-weights
Sink: Source node

Outputs:
EMST : Edges of minimum spanning tree

Temporary Variables:
T : Set of the vertices added to the MST
T’ : Set of the vertices not added to the MST yet
BestLink : The best link found at an iteration

 14

Initialization:
T := {Sink}
T’ := V / {Sink}
EMST := {}

Main Part:
While T ~= V

For i∀ ∈T'
For j∀ ∈T
 If Wij > BestLink
 BestLink:={i,j}
 End
End

End
: { }T T j= ∪
' : '/{ }T T j=

MST MST: { }E E BestLink= ∪
BestLink := { }

End

2.2.1.2 Complexity

The Prim algorithm finds the MST with the given basic implementation in)(mnO time,
where n is the number of nodes in the network and)(mO is the time complexity of each
iteration [8]. However using binary or Fibonacci heaps, the time complexity can be reduced to

)log(nmO or)log(nnmO + , respectively [9].

2.2.2 Borůvka’s Algorithm
This is the earliest found MST algorithm, which was invented by the Czech mathematician
Otokar Borůvka in 1926. The algorithm starts with all single nodes that do not have any
connections to each other. At the first part of the algorithm, each node selects its best edge in
its neighborhood. The nodes which are joined are termed supernodes. In the further iterations
each supernode chooses their smallest weighted edge to other supernodes and with these new
edges, the supernodes unite. At the last iteration only one supernode remains which is the
MST of the initial graph [8].

2.2.2.1 Algorithm 2: Borůvka’s Algorithm

Inputs:
E : Set of edges in the graph
V : Set of nodes in the graph
w : Weights of the edges
N : Number of nodes in the graph

Outputs:
EMST : Edges of minimum spanning tree

Temporary Variables:
SNodes : List of supernodes

 15

F : The minimum weight link found between supernodes at some iteration

Initialization:
SNodes := {node1,node3, …, nodeN}
F := {}
EMST := {}

Main Part:
While number of elements in EMST < N – 1

 F := FindBestLinkBetweenSupernodes (SNodes, G(V,E))
 SNodes := Union (SNodes,F)

MST MST:E E F= ∪
 F := { }

End

Sub-Routines:
Union (SNodes,F) : it is a sub-routine that merges the supernodes of the list SNodes linked
with list of links F and return the updated supernodes list SNodes.

FindBestLinkBetweenSupernodes (SNodes, G(V,E)) : it searches the minimum weighted
edge for each supernode given in the list SNodes to the other from the information of graph
G(V,E). It returns the found edge, if there is any.

2.2.2.2 Complexity

The algorithm finds the MST in (log)O m n time, where n is the number of nodes in the
network. The while-loop is repeated at most (log)O n times as at each iteration number of
remaining edges are reduced by a factor at least 2 and)(mO is the time complexity of each
iteration [8].

2.2.3 Kruskal’s Algorithm
This algorithm was found by the mathematician Joseph Kruskal in 1956. The algorithm is a
MST algorithm that can be applied on any weighted, undirected graph G(V,E). The algorithm
starts with a subgraph of the graph G. This subgraph is initially a forest which contains all
single nodes and no edges. After sorting all the edges in the ascending order, the algorithm
goes over all these edges and add the ones, who joins two different partial trees, until all the
nodes are united and the subgraph forms a spanning tree that is a MST [8].

2.3 Shortest Path Tree (SPT) Algorithms

2.3.1 Dijkstra’s Algorithm
Dijkstra’s Algorithm was found by the computer scientist Edsger Dijkstra in 1959 [7]. It is a
single source shortest path tree algorithm. The algorithm is developed for directed or
undirected, connected and weighted graphs, where the weights are strictly non-negative. This
algorithm starts with a partial spanning tree that has initially only the source node. At each
iteration a node is added to the current partial spanning tree in a way that the path from every
node to the sink is minimized. At each iteration the current tree grows by the addition of one
node with a link. Hence this algorithm is a greedy algorithm. The idea of a growing partial

 16

spanning tree is very similar to Prim’s Algorithm, the main difference is the metric these two
algorithms try to minimize.

2.3.1.1 Algorithm 3: Dijkstra’s Algorithm

Inputs:
E : Set of edges in the graph
V : Set of vertices
w : Set of edge-weights
Sink: Source node

Outputs:
ESPT : Edges of minimum spanning tree

Temporary Variables:
T : Set of the vertices added to the SPT
T’ : Set of the vertices not added to the SPT yet
Mi : The distance of node i to Sink, i.e., total cost of the path to Sink.
BestLink : The best link found for an iteration

Initialization:
T := {Sink}
T’ := V / {Sink}
ESPT := { }
Mi := { }

Main Part:
While T ~= V

For i∀ ∈T'
For j∀ ∈T
 If Wij + Di > BestLink
 BestLink:={i,j}
 End
End

End
: { }T T j= ∪
' : '/{ }T T j=

 MST MST: { }E E BestLink= ∪
Mj := Wij + Di
BestLink := { }

End

2.3.1.2 Complexity

The Dijkstra algorithm finds the SPT with the given basic implementation in ()O mn time,
where n is the number of nodes in the network and)(mO is the time complexity of each
iteration [8]. However with modifications, the complexity can be reduced to)log(nnmO +
[9].

 17

2.3.2 Bellman-Ford (BF) Algorithm
This algorithm is found by the mathematician Richard Bellman in 1958 . It is a single-source
shortest path algorithm, which can be applied in more general cases than Dijkstra’s
Algorithm. The basic advantage of the Bellman-Ford Algorithm is that it can also work with
graphs that have negative edge weights whereas Dijkstra’s Algorithm can only find the
Shortest Path Tree when the edge-weights are strictly non-negative. The algorithm assigns to
each node a shortest-path to source value. In opposition to Dijkstra’s Algorithm, the Bellman-
Ford Algorithm updates the shortest path values for each node more than once3. The shortest
paths are determine only after all updates are finished. The algorithm finds a shortest path tree
for every case except if there exist cycles comprised of only negative edges in the graph [8].

2.3.2.1 Algorithm 4: Bellman-Ford Algorithm

Inputs:
E : Set of edges in the graph
V : Set of vertices
W : Set of edge-weights
Sink : Source node
N : Number of nodes in the graph

Outputs:
ESPT : Edges of minimum spanning tree

Temporary Variables:
Di : The distance of node i to Sink, i.e., total cost of the path to Sink.
NHopi : The next hop of the node i

Initialization:
ESP T := { }
Di := { }, i V∀ ∈
NHop i := { }, i V∀ ∈

Main Part:
For step:=1 to N-1

For i V∀ ∈
For j V∀ ∈
 If Dj > Di + wij
 NHopj := i
 Dj := Di + wij
 End
End

End
End

For \i V Sink∀ ∈
 MST MST: { , }iE E i NHop= ∪
End

3 Exactly number of nodes – 1 times

 18

2.3.2.2 Complexity

The Bellman-Ford algorithm has ()O n iterations, where n is the number of nodes in the
network. Each iteration takes ()O m time, hence the overall time complexity of the algorithm
becomes ()O mn [8].

2.4 Distributed Algorithms

2.4.1 Distributed Bellman-Ford (DBF) Algorithm
This algorithm is an asynchronous distributed version of the Bellman-Ford Algorithm and it is
found by D. Bertsekas in 1987 [10]. The algorithm models the communication network as a
weighted graph, where each link has a certain cost, which might fluctuate in time. In this
algorithm, the nodes exchange asynchronously their routing vectors. The routing vector of a
node contains several entries. Each entry is a pair: a destination node ID and the shortest path
to this node. The shortest paths are calculated by Bellman-Ford iteration, see Algorithm 4.
Each entry in the routing vector is a message and whenever a node updates its routing vector,
it sends a broadcast message to its neighbors. Every node i has an additional distance matrix

[]k
i ijD D= where each row j is a destination and each column k is a neighbor. For Di, the

{j,k}th entry is distance of node i to node j, if the next hop is the node k. During execution of
the DBF algorithm, every node fills its distance matrix. After the algorithm terminates, every
node can deduce from its distance matrix, its next hop for each destination. The neighbor, i.e.,
the column in the distance matrix, that has the minimum distance to the given destination
node is assigned as the next hop for that destination.
If the link qualities change, the nodes having this link, update their distance matrices and
exchange the updated routing vectors with their neighborhood. In case of a link break
between node i and j, these nodes delete each other from their distance matrix, i.e., node i
deletes its jth column and the node j deletes the ith column of its distance matrix. Thereafter a
re-routing, i.e., exchange of routing vectors and update of new distances in distance matrix, is
triggered. If this link becomes available again, these deleted columns are inserted and a new
re-routing is started.
The DBF algorithm converges whenever the graph is connected however it may converge
very slowly as it suffers from the bouncing effect, where a node keeps on increasing its
distance through a neighbor, which does not actually have a path to the specific destination.
This situation can occur in case of link breaks. A worse situation occurs, when the node
suffering the bouncing effect does not have any other alternative next hop for the specific
destination. In this case, both nodes select each other as next hop and they keep on increasing
their distances without any bound, which is called count-to-infinity problem. There are some
extended protocols on DBF that avoid these problems using extra messaging and keeping
more complex data structures than distance matrix of standard DBF [11].

2.4.1.1 Performance

The number of messages generated using DBF algorithm is bounded by the an exponential
function of number of nodes in the network n, a polynomial function maximum node degree
in the graph and a linear function of the number of changes in the network topology [12]. In
case there is no bouncing-effect or counting-to-infinity problem, the time complexity of the
multiple link failures/recoveries is ()O n [11].

 19

2.4.2 Distributed MST Algorithm
In the literature of distributed spanning tree algorithms, there has also been significant
research to find distributed versions of MST algorithms. A distributed MST algorithm, which
is based on the Borůvka’s Algorithm (see section 2.2.2) is found by R.G Gallager et al. [13].
In this algorithm, the nodes of the sensor network generate the MST by message exchange.
The algorithm assumes that the nodes now the IDs of the other nodes and the link qualities of
their outgoing edges are known a priori, which could also be achieved by message exchange
and using Received Signal Strength Indication (RSSI). All the nodes in the graph are initially
in the Sleeping state. When they are turned on all of them exchange message with their
neighbors to set up a single link. Every node makes a connection with the node that has the
best possible link to it. The nodes that become connected after this first phase are called
fragments. After this first step, the constructed fragments communicate with each other. Every
fragment searches for its best outgoing edge4. The fragments sharing the best outgoing edge
are merged through this edge and then they search for the new best outgoing edge. This
procedure is applied by all fragments and in this manner fragments keep on merging with
each other until there is only a single fragment left. At this point the algorithm terminates
because there is no outgoing edges. This remaining single fragment is the MST itself.

2.4.2.1 Performance

The number of messages generated using given distributed MST algorithm is bounded by
(log)O n n e+ , where n is the number of nodes in the network and e is the number of edges in

the graph. The time complexity is proved to be (log)O n n [13]. However with some
modifications, the algorithm’s time complexity can be reduced to ()O n [14], [15].

2.5 Spanning Tree Algorithm
This algorithm is discovered by the network engineer Radia Perlman in 1985 [16] and the
Spanning Tree Protocol based on this algorithm was included in the IEEE Standard 802.11d.
It is a distributed algorithm that is developed for the local are networks. The algorithm is
computed by the bridges of the LANs to generate an acyclic spanning subset of the network
which is a routing tree. For the algorithm to run, the only a priori knowledge a bridge must
have is its unique ID. Originally the algorithm constructs a shortest path spanning tree in
terms of hops however it can be easily extended to perform on the networks with weighted
communication links.

The algorithm uses periodic broadcast messages, called “Hello Messages” to generate the
spanning tree. In the original version of the algorithm, the root bridge is not unique and it is
selected dynamically. Hence at first, a root bridge is selected, which is the node with the least
ID. Then other bridges calculate their distance to this root and select the link that minimizes
their hop distance to the root. When a particular spanning tree topology is constructed, the
“Hello Message” is only sent by the root bridge and forwarded by other bridges to every one
of them applying the algorithm. With this periodical messages, the bridges can keep track if
there is a problem such as a link or bridge break. If one of the “Hello” Message cannot reach
to some of the bridges, they generate new “Hello” Messages and with the interaction of other
bridges (a bridge receiving a “Hello” Message prepares its own “Hello” Message and send it
as broadcast) they realize re-routing. Another incident that triggers the re-routing is when a
new LAN is introduced to the network with new bridges. In this case, again the new bridges

4 An outgoing edge of a fragment is an edge between two nodes, one of which is already contained in
the fragment and the other one is outside of that fragment.

 20

send “Hello” Messages that initiate a re-routing. During the spanning tree is constructed, the
bridges keep a link state data base per link. With this they can decide to forward or to backup
the data packets they receive from some source on some link to a specific destination to
prevent loops.
The Spanning Tree Algorithm preserves the spanning tree between the bridges even in case of
link and bridge breaks. Hence, it prevents data packets entering into loops and introducing
extra overhead. Another important property of the algorithm is that it is deterministic and for
a given topology always the same spanning tree is constructed. The algorithm is also for
wireless sensor network applicable where the sink has to have the smallest ID among all other
nodes and other sensor nodes replace the bridges applying the algorithm.

2.5.1.1 Performance

The algorithm has a time complexity proportional to diameter of the network5 [16]. As the
algorithm is fully distributed the required bandwidth and memory per bridge is independent of
the total number of bridges and links in the network.

2.6 Discussion of the Algorithms
In the sections 2.2 -2.4 , we introduced some of the important global and distributed
algorithms concerning spanning trees. In this section, we will discuss these algorithms
according to our problem statement and needs (see section 1.2). A candidate algorithm
should be locally implementable and if it is the case, the message exchange or communication
complexity must be as low as possible. In case of the topology changes, e.g., link failures, the
algorithm should not generate many messages and thus cause a high power consumption.
Among the introduced MST algorithms, Kruskal’s Algorithm is not suitable for local
implementation because in order to sort all the edges in terms of their costs, all the edge
weights must be known. Borůvka’s Algorithm is a MST algorithm which is more appropriate
for a distributed implementation and its main idea is already utilized in the literature for
distributed spanning tree algorithms (see section 2.4.2). However the algorithm needs re-
routing in case of link failures or topology changes. The same problem arises with Bellman-
Ford Algorithm. Although distributed versions of Bellman-Ford Algorithm exists, they all
need to re-route the graph in case of link breaks and or link recoveries. The Spanning Tree
Algorithm guarantees a shortest path spanning tree even under dynamic environment and it is
implemented in a distributed fashion. However, it needs periodic messages to keep track of
the dynamic topology hence adds extra power consumption even if there is no change in the
topology. In CWSN, the reactivity of the network is very important, hence the period of the
broadcast messages to monitor the network should be high in case of re-routings. Thus, the
larger amount of power must be reserved for monitoring.
Prim’s and Dijkstra’s Algorithms are very similar in their structure where a partial spanning
tree is growing at each iteration and become the aimed spanning tree finally. In order to apply
them, all the edge-weights of the links to the partial tree must be known by the nodes in the
partial spanning tree. Hence they are not ready for local implementation in their original form.
However, with some modifications and further processing these algorithms can be altered to
be locally implementable. The important properties that could enable a local implementation
are the followings:

5 Diameter of a network: the average number of hops between every pair of nodes in the
communication network.

 21

• For both of these algorithms, a partial spanning tree is initialized, i.e., it only contains
the sink initially and then in each iteration this partial spanning tree is let grow. Hence,
in practice only the links which are between the nodes in the partial spanning tree and
the ones closer to it matter. The quality of these links can be easily found by message
exchanges.

• An other important point is that the nodes are added to the current partial spanning tree

in an hierarchical order. First the parents are added and then children of them. Hence
the nodes do not have to organize themselves to determine the direction to the sink.

• As the nodes are attached to the current tree in an hierarchical order, the new nodes

added to the tree at an iteration step might learn their alternative links. This could help
to find alternative paths in case of link failures without re-routing.

Due to these observations we will focus on these algorithms and use their basic idea of a
growing partial spanning tree to develop new routing algorithms. An overview of the
discussion about suitability of the algorithms are given in Table 2.

Algorithm Name Local
Implementability

Static Re-Routing
Possibility

Kruskal's Algorithm - -
Borůvka’s Algorithm ++ -
Prim's Algorithm + +
Bellman-Ford Algorithm ++ -
Dijkstra's Algorithm + +
Spanning Tree Algorithm ++ -

Table 2: Comparison of the algorithms

 22

3. New Routing Algorithms

3.1 Pairing Algorithm: Localization of Prim’s and Dijkstra’s
Algorithms

We developed the so-called Pairing Algorithm to localize the Prim’s and Dijkstra’s
Algorithm. As we have seen in section 2.6 , these two algorithms are in their original forms
not suitable to be implemented locally. However with Pairing Algorithm, although the
resulting trees might be suboptimal, a localization of these algorithms is possible.
The algorithm is based on the idea of the growing partial spanning tree that is utilized by
Prim’s and Dijksta’s Algorithms (see sections 2.2.1 and 2.3.1). The given communication
network is a graph G(V,E) with nodes V and links E. There is a sink node among V and an
edge {i,j} has the weight wij. Initially, the partial spanning tree only contains the sink. During
the execution of the algorithm new links are added to the partial spanning tree and at the end a
spanning tree is constructed. At each iteration of the algorithm, the basic operations that are
executed are as follows:

1. Each node in the current partial spanning tree selects a favorite child node (if any)
from the nodes that are not added to the current tree yet.

2. Each node of the graph that is not a member of the current tree selects a favorite

parent (if any) among the nodes in the current tree.

3. The nodes in the current tree which are favorite parent of their favorite child set up a
link with these nodes.

An algorithm iteration at an intermediate step is illustrated in Figure 1. The algorithm is
locally, i.e., in the node level, implementable. In order to setup a link, the nodes in the current
partial spanning tree do not need global information. Information from their neighborhood
would be enough to decide which node is their favorite child and the same holds for other
nodes in the graph and their favorite parent. The necessary synchronization could be realized
by a flood message from the sink. A possible protocol realizing Pairing Algorithm at node
level using messages and timers is given in section 3.3 .

 23

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1: An illustrative example of a link setup. The sink node is in red and the blue nodes with
numbers 2-5 are other nodes existing in the current tree. The solid black lines are the links of the
current tree and the dotted black lines are the possible links. The nodes 7,8 and 9 are potential child
nodes, which are not added to the tree yet (on the left). The node 7 selects node 4 as its favorite
parent (green arrow), whereas the node 4 selects node 7 as favorite child (blue arrow). The same
happens with node 6 and 3 as well. Node 5 selects node 6 as its favorite child and node 8 selects
node 5 as its favorite parent. After links are constructed with one Pairing Algorithm iteration, we obtain
the partial spanning tree on the right. Node 6 and 7 are connected to the tree whereas the node 8
could not be added to the tree because it was not selected by its favorite parent.

An important property of the Pairing Algorithm is that it is generic in terms of the metrics that
it optimizes. The selection of the favorite parents and favorite children depends solely of the
metrics. For MST optimization, a parent node selects the node that has the best link to it as its
favorite child, the same holds for the child node for its favorite parent. For SPT optimization,
the parents select the node with the best possible link to them as favorite child whereas the
children select the parent that would minimize their total distance to the sink as their favorite
parent. For optimization metrics other than SPT and MST, various parameters such as number
of hops, number of node branches can be used for the selection of the favorite parents and
favorite children.
If for any optimization metrics, there are more than one possible favorite child or parent
candidate, the one with the smaller ID is selected. In this way, the uniqueness of the favorite
children and parents is guaranteed. The algorithm is also deterministic and hence
reproducible.

3.1.1 Algorithm 5: Pairing Algorithm

Inputs:
E : Set of edges in the graph
W : Set of edge-weights
V : Set of vertices
Cost(i,j) : Cost function according to some metric (Prim, Dijkstra, etc.) that outputs the cost of

 24

 the connection between parent node i and child node j.

Outputs:
ET : Edges of the current tree

Temporary Variables:
T : Set of the vertices added to the routing tree
T’ : Set of the vertices not added to the routing tree yet
FPj : Favorite Parent of node j. It is comprised of 2 entries, favorite parent ID i and
 the cost of the link between the nodes j and i, e.g., FPj(1)=i, FPj(2)=Cost(i,j).
FCi : Favorite Child of node i. It is comprised of 2 entries, favorite child ID j and the
 cost of the link between the nodes i and j, e.g., FCi(1) =j, FCi(2) = Cost(i,j)

Initialization:
T := {Sink}
T’:= V / {Sink}
ET:= {}
FPj := {Null, INF} j V∀ ∈
FCi := {Null, INF} i V∀ ∈

Main Algorithm:
While T != V

For i T∀ ∈
For 'j T∀ ∈
 If (Cost(i,j) < FCj(2))

FCi(2) := Cost(i,j)
FCi(1) := j

 End
 If (Cost(i,j) < FPj(2))

FPj(2) := Cost(i,j)
FPj(1) := i

 End
End

End
For i∀ ∈T
 j := FCi(1)
 If (i=FPj(1))

: { }T T i= ∪
' : '\{ }T T i=

: {{ , }}T TE E i j= ∪
 End
End
FPj := {Null, INF} j V∀ ∈
FCi := {Null, INF} i V∀ ∈

End

 25

3.1.2 Block Diagram of the Pairing Algorithm

Figure 2: Block diagram of the Pairing Algorithm

3.1.3 Complexity6
The Pairing Algorithm has ()O n iterations, where n is the number of nodes in the network. At
each iteration, every node considers only its neighborhood. Hence, each iteration takes ()O d
time, where d is the node degree. Hence the overall time complexity of the algorithm becomes

()O n d⋅ .

3.1.4 Convergence Issues
Definitions
G(V,E) : A Graph with vertices V and edges E.
T(VT,ET): Current tree with vertices VT and edges ET.
Cost(i,j) : Cost function according to some metric (Prim, Dijkstra, etc.) that outputs the cost of

 the connection between parent node i and child node j.
i , j : Node IDs

6 Complexity refers to time complexity for the off-line computation of the spanning tree with the Pairing
Algorithm.

Idle Create Parent and
Child Lists

Routing
Finished

Compare Lists
and Add Nodes

Route

Routing
Failed

If there are some
updates in the

parent or children
lists

If there is not any
update in the

parent or children
lists

If the tree does not
contain all the nodes.

If the tree contains all
the nodes.

For every node in the existing tree and every
node not added to tree yet, search for the not-
added nodes, who are the favorite child of
their favorite parent. If such nodes are found,
add them to the tree.

For every node in the existing tree and every node not yet added to
tree, search favorite parents (according to Prim or Dijkstra metric)
of not added nodes and favorite children of the nodes in the existing
tree. Save these favorites children and parents in the lists for every
single node. Save also the possible connections of the nodes, which
are not added to tree.

 26

Theorem
For a single-source, undirected graph G(V,E) with the set of nodes V, edges E, the Pairing
Algorithm always converges and finds a routing tree provided the graph G(V,E) is connected.

Proof
Proving that at least one new link is added to the current tree at each algorithm iteration is
enough to guarantee that the algorithm converges in case the graph is connected. We consider
the cost minimizing link {i*,j*} at some iteration step of the algorithm, i.e., VT being the set
of the vertices in the existing tree and ' \T TV V V= the set of the vertices that are not added to
the existing tree, ()

, '
{ *. *} arg min Cost(,)

T Ti V j V
i j i j

∀ ∈ ∀ ∈
= . Such a pair can be definitely found because

the graph is connected. Nevertheless, the cost minimizing pairs might not be unique. In this
case, as the algorithm always chooses the link with minimum node ID and the node IDs are
unique, a unique cost minimizing pair {i*,j*} can be found. The fact that the algorithm
allows parallel link additions to the current tree, does not violate this situation as at least the
best possible link for that current tree is definitely added. Hence we can conclude that for
connected graphs the current tree grows at each step until the last node is added, which
guarantees convergence of the Pairing Algorithm.

3.2 N-SafeLinks Algorithm

3.2.1 Main Idea: N-SafeLinks
The N-SafeLinks algorithm is based on the assumption that every node in a graph has N
possible links to other nodes to reach the sink node and at most N-1 of these link can break at
the same time. For this algorithm, we utilize again the growing partial spanning tree concept
as we did for the Pairing Algorithm (see section 2.2.1). In the N-SafeLinks algorithm, a node
is only eligible to be added to the current tree if it has at least N possible links to the current
tree. The ineligible nodes are ignored until they have N possible links to the current tree. The
N-SafeLinks Algorithm is generic like the Pairing Algorithm as the links to be added to the
current tree can be selected with any arbitrary metric. However, there are two different
variants for selecting the best possible link:

1. Only the best link of the eligible node is considered.

2. The average of the best possible N links of a node is considered.

We carried out all the tests with the second variant because for a varying environment where
alternative links are frequently needed, the overall performance is more important than the
best case. In the next two sections we introduce two versions of the N-SafeLinks Algorithm
and examine them in detail.

3.2.2 N-SafeLinks Algorithm without Pairing
In its simple version, the N-SafeLinks Algorithm follows the given steps at each iteration in
the intermediate phase

 27

1. The list of the eligible nodes, i.e., the nodes having at least N possible links to the
current tree is updated

2. The best possible link7 from the current tree to the eligible nodes is found and added to

the current partial spanning tree

There are two other phases of the algorithm that differ from the intermediate phase. The first
one is termed as initial phase and is carried out at the beginning of the algorithm. In this
phase, an initial tree is constructed with the sink and N nodes, where all of these nodes have
possible connections to each other. The latter phase is the final phase, where every node lists
their best N possible links and the belonging parents. Every node saves its list on a table that
is termed Parent Table. These tables are used in case of link breaks to switch to alternative
parents in the normal operation. The algorithm for this simple version of the N-SafeLinks
Algorithm is given in section 3.2.2.1 . The simple version of the N-SafeLinks Algorithm has
the problem that it cannot be implemented locally. The reason is that for each algorithm
iteration the weights of the all outgoing links from the current tree have to be known.
At this point, we utilized the fact that both N-SafeLinks and Pairing Algorithm use the same
concept of the growing partial spanning tree. So we merged the N-SafeLinks and Pairing
Algorithms, which is introduced in section 3.2.3

3.2.2.1 Algorithm 6: N-SafeLinks Algorithm without Pairing (for N=2)

Inputs:
E : Set of edges in the graph
W : Set of edge-weights
V : Set of vertices
M : Number of vertices
Cost(i,j) : Cost function according some metric (Prim, Dijkstra, etc.) that outputs the cost of
 the connection between node i and j.

Outputs:
ET : Edges of the current tree
ParentTable : It is a matrix { 2}MxParentTable . Every node ID refers to a row number. First
 and second entries in a row denote the main and alternative parents,
 respectively.

Temporary Variables:
T : Set of the vertices added to the routing tree
T’ : Set of the vertices not added to the routing tree yet
Parent(i) : Parent node or predecessor of node i
PPLi : Possible links list of the node i. It is comprised of concatenated node and cost
 pairs, e.g., PPLi=({Nodem,Cost(i,m)},{Noden,Cost(i,n)}, …)

Initialization:
T := {Sink}
T’:= V / {Sink}

7 Best possible link is not the link with the minimum edge weight but it is the optimum link for the given
optimization metric, e.g., MST,SPT etc. The best link might be selected as the single best link of the
node (variant 1) or the average best link of the node (variant 2).

 28

ET:= {}
FirstNode := {}
SecondNode := {}
BestLink :={}
BestCost := INF
PLLi := {} i V∀ ∈

Main Algorithm:

Part – 1 (Initial Phase: Adding first node):

For i T∀ ∈
 If (Cost(Sink,i) < BestCost)
 FirstNode:=i
 BestCost := Cost(Sink,i)
 End
End
BestCost := INF
PLLi:= ({Sink, Cost(Sink,i)})

: { }, ' : '/{ }T T i T T i= ∪ =
: {{ , }}T TE E Sink i= ∪

Part – 2 (Initial Phase: Adding second node):

For i T∀ ∈
 If (Cost(Sink,i) < BestCost And { , }i FirstNode E∈)
 SecondNode:=i
 BestCost := Cost(Sink,i)
 End
End
BestCost := INF
PLLi:= ({Sink, Cost(Sink,i)})

: { }, ' : '/{ }T T i T T i= ∪ =
: {{ , }}T TE E Sink i= ∪

Part – 3 (Intermediate Phase: Adding remaining nodes):

While T != V
For i T∀ ∈

For 'j T∀ ∈
 If { , }i j E∈
 : {{ ,Cost(,)}}i iPLL PLL j i j= ∪

End
 If (Cost(i,j) < BestCost And iPLL N≥)

BestCost := Cost(i,j)
BestLink := {i,j}

 End
 End
End

: { (2)}T T BestLink= ∪

 29

' : '\{ (2)}T T BestLink=
: { }T TE E BestLink= ∪

Parent(BestLink(2)) :=BestLink(1)
BestCost := INF
BestLink := {}

End

Part – 4 (Final Phase: Generate the parent tables):

For i∀ ∈T \{Sink,FirstNode,SecondNode}
 PLLi := SortInAscendingOrder (PLLi)
 If PLLi(1,1) = Parent(i)

 ParentTable(i) := {Parent(i),PLLi(2,1)}
 Else
 ParentTable(i) := {Parent(i),PLLi(1,1)}
 End

End

Sub-Routines:
SortInAscendingOrder(ListOfPairs V) : It is a sub-routine that sorts the pairs in the list of
pairs according to second entry in ascending order, e.g., given V={{1,2},{3,6},{5,1}},
SortInAscendingOrder(V) �{{5,1},{1,2},{3,6}}

3.2.3 N-SafeLinks-Pairing Algorithm
The N-SafeLinks-Pairing Algorithm uses the same neighborhood selection procedure of the
Pairing Algorithm. It applies at the same time the eligibility principal of N-SafeLinks
Algorithm, i.e., the nodes with less than N possible links to the current tree are not eligible to
be added. The basic steps of the algorithm at some intermediate iteration are as follows

1. The list of the eligible nodes, i.e., the nodes having at least N possible links to the

current tree is updated (from N-SafeLinks Algorithm).

2. Each node in the current partial spanning tree selects a favorite child node (if any)

from the eligible nodes that are not added to the current tree yet (from Pairing
Algorithm).

3. Each node existing in the graph but not a member of the current tree selects a favorite

parent (if any) among the nodes in the current tree (from Pairing Algorithm).

4. The nodes in the current tree, which are favorite parent of their favorite child, set up a
link with these nodes (from Pairing Algorithm).

An illustrative example of an algorithm step is shown in Figure 3. As only this version of the
N-SafeLinks Algorithm is of concern for a local implementation, in the rest of the report, the
term N-SafeLinks Algorithm will denote the N-SafeLinks-Pairing Algorithm. A possible local
implementation of the N-SafeLinks Algorithm is given in section 3.3 .

 30

Figure 3: An example of an iteration using the 2-SafeLinks-Pairing Algorithm for the same current tree
from Figure 1. The sink node is in red and the blue nodes with numbers 2-5 are other nodes existing in
the current tree. The solid-black lines are the links of the current tree and dotted lines are possible
links. The nodes 7,8 and 9 are potential child nodes, which are not added to tree yet (on the left). The
node 7 selects node 4 as its favorite parent (green arrow), however node 7 is not eligible as it has only
one link to the current tree, hence the node 4 selects another node as favorite child (node 8 with blue
line) . The node 6 is eligible as it has 2 possible connections to 3 and 5. Node 3 and node 5 selects
node 6 as its favorite child and node 8 selects node 5 as its favorite parent. After links are constructed
with one algorithm iteration, we obtain the partial spanning tree on the right. Only 6 is connected to the
current tree whereas the nodes 7 and 8 could not be added to the tree because they were not
selected by their favorite parents.

3.2.3.1 Algorithm 7: N-Safe-Links Algorithm with Pairing (N=2)

Inputs:
E : Set of edges in the graph
W : Set of edge-weights
V : Set of vertices
M : Number of vertices
Cost(i,j) : Cost function that outputs the cost of the connection between node i and j.

Outputs:
ET : Edges of the current tree
ParentTable : It is a matrix { 2}MxParentTable . Every node ID refers to a row number. First
 and second entries in a row denote the main and alternative parents,
 respectively.

Temporary Variables:

 31

T : Set of the vertices added to the routing tree
T’ : Set of the vertices not added to the routing tree yet
Parent(i) : Parent node or predecessor of node i
FPj : Favorite Parent of node j. It is comprised of 2 entries, favorite parent ID i and
 the cost of the link between the nodes j and i, e.g., FPj(1)=i, FPj(2)=Cost(i,j).
FCi : Favorite Child of node i. It is comprised of 2 entries, favorite child ID j and the
 cost of the link between the nodes i and j, e.g., FCi(1) =j, FCi(2) = Cost(i,j)
PPLi : Possible links list of the node i. It is comprised of concatenated node and cost
 pairs, e.g., PPLi=({Nodem,Cost(i,m)},{Noden,Cost(i,n)}, …)

Initialization:
T := {Sink}
T’:= V / {Sink}
ET:= {}
FirstNode := {}
SecondNode := {}
BestCost := INF
FPj := {Null, INF} j V∀ ∈
FCi := {Null, INF} i V∀ ∈
PLLi := {} i V∀ ∈

Main Algorithm:

Part – 1 (Initial Phase: Adding first node):

For i T∀ ∈
 If (Cost(Sink,i) < BestCost)
 FirstNode:=i
 BestCost := Cost(Sink,i)
 End
End
BestCost := INF
PLLi:= ({Sink, Cost(Sink,i)})

: { }, ' : '/{ }T T i T T i= ∪ =
: {{ , }}T TE E Sink i= ∪

Part – 2 (Initial Phase: Adding second node):

For i T∀ ∈
 If (Cost(Sink,i) < BestCost And { , }i FirstNode E∈)
 SecondNode:=i
 BestCost := Cost(Sink,i)
 End
End
BestCost := INF
PLLi:= ({Sink, Cost(Sink,i)})

: { }, ' : '/{ }T T i T T i= ∪ =
: {{ , }}T TE E Sink i= ∪

ParenTable(FirstNode) := {Sink,SecondNode}
ParenTable(SecondNode) := {Sink, FirstNode}

 32

Part – 3 (Intermediate Phase: Adding remaining nodes):
While T != V

For i T∀ ∈
For 'j T∀ ∈

 If { , }i j E∈
 : {{ ,Cost(,)}}i iPLL PLL j i j= ∪

 End
 If (Cost(i,j) < FCi(2))

FCi(2) := Cost(i,j)
FCi(1) := j

 End
 If (Cost(i,j) < FPj(2))

FPj(2) := Cost(i,j)
FPj(1) := i

 End
 End
End

For i∀ ∈T
 j := FCi(1)
 If (i=FPj(1) And iPLL N≥)

: { }T T i= ∪
 ' : '\{ }T T i=

: {{ , }}T TE E i j= ∪
Parent(j) :=i

 End
End
FPj := {Null, INF} j V∀ ∈
FCi := {Null, INF} i V∀ ∈

End

Part – 4 (Final Phase: Generate the parent tables):

For i∀ ∈T \{Sink,FirstNode,SecondNode}
 PLLi := SortInAscendingOrder (PLLi)
 If PLLi(1,1) = Parent(i)
 ParentTable(i) := {Parent(i),PLLi(2,1)}
 Else
 ParentTable(i) := {Parent(i),PLLi(1,1)}
 End
End

Sub-Routines:
SortInAscendingOrder(ListOfPairs V) : It is a sub-routine that sorts the pairs in the list of
pairs according to second entry in ascending order , e.g., given V={{1,2},{3,6},{5,1}},
SortInAscendingOrder(V) �{{5,1},{1,2},{3,6}}.

 33

3.2.4 Block Diagram of the N-Safe-Links Algorithm

Figure 4: Block Diagram of the N-Safe-Links Algorithm

Idle Initialize Routing and
Create Initial Tree

Create Parent and
Child Lists

Routing
Finished

Compare Lists
and Add Nodes

Route

Create Parent Tables

Done

If an initial cannot be
constructed

Routing
Failed

At start only the Sink is in the tree. Add
the N first node, which have the best
possible link to Sink and possible links
to each other.

If an initial tree
with N+1 nodes is

constructed

If there are some
updates in the

parent or children
lists If there is not any

update in the
parent or children

lists

If the tree does not
contain all the nodes

If the tree contains all
the nodes

For every node in the constructed
tree assign its parent and the
substitute parent from the subtitute
link to the parent table of that node.

For every node in the existing tree and every
node not added to tree yet, search for the not-
added nodes with at least N links to the
existing tree, who are the favorite child of their
favorite parent. If such nodes are found, add
them to the tree.

For every node in the existing tree and every node not
yet added to the current tree, search favorite parents
(for the given metric) of not added nodes and favorite
children of the nodes in the existing tree. Save these
favorites children and parents in the lists for every
single node. Save also the possible connections of the
nodes, which are not added to tree.

3.2.5 Complexity9
The N-SafeLinks Algorithm has ()O n iterations, where n is the number of nodes in the network.
Each iteration to construct the spanning tree takes ()O d time, where d is the node degree and
when the tree is constructed, for every node to create its parent table needs ()O m time. Hence
the overall time complexity of the algorithm becomes () ()O n d O m d⋅ + ⋅ .

3.2.6 Convergence Issues

3.2.6.1 Definitions

G(V,E) : A Graph with vertices V and edges E.
T(VT,ET) : Current tree with vertices VT and edges ET.
 j : Node IDs

3.2.6.2 Convergence Condition

For a single-source, undirected graph G(V,E) with the set of nodes V, edges E, the following
condition must hold to guarantee the convergence of the N-SafeLinks Algorithm:
At any algorithm step s, there must be at least one node \ Tj V V∈ , that has at least N possible
links to the nodes VT of the current tree T. If for each algorithm step such a node can be found the
algorithm adds this node to the current tree and the current tree grows at every iteration until the
last node j V∈ is added. Otherwise, at some iteration, the algorithm enters into a dead-lock and
no new node can be attached, hence no spanning tree can be constructed.

3.2.7 Proof of Loop-Freeness

3.2.7.1 Definitions

 Ti : Set of nodes in the current tree just before node i is added
 Li : Set of the nodes appearing in the parent table of node i
 Si : Set of nodes appearing in the subtree10 of node i

sN : Set of nodes added to the tree after the step s
 i,j,k : Node indices

3.2.7.2 Lemmas

Lemma 1: The set Li containing the nodes appearing in the parent table of node i is a subset of
the nodes in the current tree just before node i is added, meaning

i iT L⊃ .

9 Complexity refers to time complexity of the off-line computation of the spanning tree with the N-
SafeLinks Algorithm.
10 The subtree of a node i, is the partial tree with the root node i. The subtree of node i is regarded only
then when the routing is finalized and the complete tree is generated.

 35

This is true because the nodes in Li are selected among the nodes from the current tree.

Lemma 2: If a node i appears in the current tree just before another node j is added and node j is
in the current tree just before the node k is added then the node i must be in the current tree just
before node k is added. This can be stated rigorously as

,j k ki T j T i T∀ ∈ ∈ ⇒ ∈ .
This is due to the fact that the algorithm lets the tree grow at every step. A node added to the
current tree at any step remains permanently there.

Lemma 3: Any node i appearing in the current tree of node j cannot appear in this node’s subtree
at the same time, i.e.,

j ji T i S∀ ∈ ⇒ ∉ .
This is obvious as a node can be added to the tree only once. A node i which is added to the tree
before the node j cannot be in the set of nodes that are added after j.

3.2.7.3 Theorem : Loop Freeness of N-SafeLinks Algorithm

For a tree constructed by the N-SafeLinks Algorithm, irrespective of the link, i.e., primary link or
alternative link, that a node uses, the routing graph remains as a tree, i.e., no loops can occur.
The loop-freeness (acyclic) property can be stated formally as follows: At algorithm step s,
for si N∀ ∈ , jk L∀ ∈ and ij L∀ ∈ the following always holds ik S∉ . The proof is as follows

From Lemma 1, we know that if the node k is in the parent table of node j, then it must exist also
in the current tree just before node j is added and because of the same reason the node j must be
in the current tree just before node i is added, i.e.,
 j jk L k T∀ ∈ ⇒ ∈ and i ij L j T∀ ∈ ⇒ ∈ .
From Lemma 2, we conclude if the node k is in the current tree of node j and node j is in the
current tree of node i, then node k must be in the current tree of node i. This can be stated
mathematically as follows

,j i ik T j T k T∀ ∈ ∈ ⇒ ∈ .
At last, directly from Lemma 3, we deduce that the node k cannot be in the subtree of the node i
as it is present in the current tree before node k is added.

i ik T k S∈ ⇒ ∉ .
Thus we have proven that for any selection of the links of the nodes (link to main or alternative
parent), the resulting graph does not have cycles and the tree structure is preserved.

3.3 An Initial Routing Procedure using 2-SafeLinks Algorithm
In this section, we describe a possible procedure that can be utilized to implement the 2-
SafeLinks Algorithm in the node level. This routing procedure implements the algorithm in the
initial phase of the WSN application. After the routing tree is generated and the nodes acquire
their parent tables the normal operation starts. The procedure is based on message exchange
between the nodes and timers to trigger necessary events. We will first explain the necessary
messages and the timing blocks of the routing procedure. Afterwards the states of the
implemented algorithm is given. At last the state diagram and timing scheme will be presented.

 36

3.3.1 Messages needed for the execution of 2-SafeLinks Algorithm
- M1 : This message is sent from the nodes in the existing tree to search new children.

Payload: {Message Type, Source Address}

- M2: This message is generated by the nodes, which are not added to the tree, yet.
 It indicates the favorite parent.
 Payload: {Message Type, Source Address, Favorite Parent Address, Link Quality}

- M3: This message is generated by the nodes in the existing tree to inform the nodes

searching a parent, which is selected by this parent.
Payload: {Message Type, Source Address, Favorite Child Address}

- M4: This message is an acknowledge message generated by the node who found his favorite

parent and agreed to setup a connection.
Payload: {Message Type, Source Address, Favorite Child Address}

- M5: These messages are the unicast messages from children to parents until Sink to

inform the Sink about the newly added child.
Payload: {Message Type, Source Address, Parent Address}

- M6 (reserved): Message that is first generated by the sink, sent from parent to children,
declaring that the routing is finished and the network is ready for operation.
Payload: {Message Type, Source Address, Parent Address}

3.3.2 Special messages needed for the initialization
- M1

* : Message from the sink indicating that FirstNode is searched after sink to be added to
the tree.
Payload: {Message Type, Source Address}

- M2
* : Message from the nodes getting the M1

* from the sink. It is a message for
other neighbors.
Payload: {Message Type, Source Address}

- M3
* : Message from the nodes competing to be part of the initial tree to the Sink. It contains

the link quality to sink and the list of neighbors, to which a link above a certain threshold
exists.
Payload: {Message Type, Source Address, Link Quality, {neighbor1,neighbor2,…}}

- MSINK
* : Message from the Sink to a certain node to indicate that this node is

selected as FirstNode and its substitute parent is SecondNode.
Payload: {Message Type, Sink Address, FirstNode Address, SecondNode Address}

- MSINK

** : Message from the Sink to a certain node to indicate that this node is
selected as SecondNode and its substitute parent is FirstNode.
Payload: {Message Type, Sink Address, SecondNode Address, FirstNode Address}

3.3.3 Timing of Local Implementation
The communication during the routing starts with a flood from Sink. With this flood the nodes
set their clock to the global clock of the sink. Afterwards during a time-block, the initial tree is
constructed.

 37

3.3.3.1 Initialization time-block

The Initialization Time-Block starts with the message M1
* from the sink. The nodes getting this

message, generate the message M2
* and send it while listening also to the medium (Phase1). This

phase finishes when First-Phase-Timeout occurs. In the next phase of Initialization Block, the
nodes, which got M1

* and M2
* send a status message about their neighbors and link quality level

to sink (Phase2). After processing these messages the sink sends back two different messages
MSINK

* and MSINK
**, which tells to the receiving nodes who are the first and second nodes in the

initial tree (Phase3). In an optional fourth phase these nodes might send back acknowledge
messages. The Initialization Time-Block stops with Communication-Block-Timeout, which also
make Communication-Time-Block and hence the 2-SafeLinks Algorithm to start.

3.3.3.2 Communication time-block

Communication takes place in blocks, where each time, a group of nodes are added to the
existing tree (one algorithm iteration). These blocks start with a sub-block, where newly added
nodes send M1 (Block 1), in the second sub-block the potential children who chose a favorite
parent generate M2 (Block 2),. In the third sub-block, the parents, who have chosen a best child,
that demands a communication with them, send messages M3 (Block 3). In the next block, the
children who got M3, sends an acknowledge to the parent and become a member of the tree
(Block 4). Afterwards parents, who acquired a new child send this child’s address to their
parents. These addresses are transmitted from children to parents all the way until the sink
(Block 5),. In the reserved last block, if the routing is over, sink sends a message M6 that is
transmitted from the parents to the children. This message indicates that the routing is
accomplished (Block 6). During the routing process, the communication block repeats whenever
a Communication-Block-Timeout comes.

3.3.3.3 Important notes about timing

There are two types of timeout:
1- Initial Phase Timeout: This timeout is used in the Initialization Time-Block. It means the

exchange of the messages M2
* should be finished. After this timeout, the nodes, who are

competing to become the first and second of initial tree send M3
* to the sink.

2- Communication Block Timeout: This timeout is used to indicate that one iteration of 2-
SafeLinks Algorithm is finished. After this timeout either a new block starts or a normal
operation should start if the algorithm is terminated and the tree is constructed.

The timeouts are triggered locally at every node. The sub-block lengths should be defined
appropriately long to allow all nodes to find time to send their messages but in the same time, not
too long, which might cause the clock drifts impossible to be tracked the whole routing process
long.

3.3.4 Description of States
Idle: The initial state of the nodes after installation or a start of the network. The nodes leave this
state, if they receive either the message M1

* from the sink or M1 from a node in the tree.

Woken Up for Initial Tree: The nodes, after receiving M1

* from the sink transit to this state. It
is the first state of the process, where the initial tree comprised of 3 nodes including sink is
constructed. The nodes entering this state create a message (M2

*) and send it to their
neighborhood. Meanwhile, they listen to the medium and try to receive M2

* from other nodes in
their neighborhoods. If they receive any M2

* from an external node in the neighborhood, they
change their state to the Neighbors Found.

Neighbors Found: In this state, the nodes try to catch other M2

* messages from the
neighborhood. The owners of message, that come over a certain threshold are saved to a buffer to
be used later. No message is generated by the node during this state.

Inform Sink about Status: The transition to this stage is triggered by a special timeout, namely
Initial-Phase-Timeout. The nodes in this state generate a message M3

* , which contains their
neighborhood nodes (with a certain link quality above a predefined threshold) and the link
quality to the sink, which they measure from M1

*. A node exits from this state in the case of
getting the message MSINK

* or MSINK
** . If no message is received, the node exits this state when

the Communication-Block-Timeout occurs.

Become FirstNode: This state can be transited, if a node get a message MSINK

* while it was in
the Inform Sink about Status state. This message from the sink means that the sink made a
processing among M3

* messages and selected this node as the first node to be added to tree,
because it had the best possible link to the sink and a link above a threshold to the SecondNode
of the initial tree. When the node gets a Communication-Block-Timeout, it switches over the
Connected state.

Become SecondNode: This state is very similar to the state Become FirstNode and it can be
entered, if a node gets a message MSINK

** while it was in the Inform Sink about Status state.
When the node in this state gets a Communication-Block-Timeout, it switches over the
Connected state.

One Possible Connection: The nodes, who were in the neighborhood of sink but node selected
neither as first nor as second node, transits to this state, when they got the first Communication
Block Timeout, which indicates that the initialization block is over and the Local Modified Prim
algorithm starts. Another option to enter this state is for the nodes, who gets an M1 message for
the first time. In One Possible Connection state, nodes do not generate messages but they wake
up in the first sub-block of Communication-Time-Block and they try to catch other M1 messages

Qualified To Connect: A node enters to this state if it was in the One Possible Connection state
and received a new M1

 message. The nodes in this state search for parents to set up connection,
hence they send M2 messages in the second sub-block of the Communication-Time-Block. M2
contains the favorite parent and the link quality to it. If a parent gets this message and decides
that this node is its favorite node, he sends a message M3 declaring its wish for connection to this
node in the 3rd sub-block of Communication-Time-Block. With this arriving message M3 , a state
transition occurs and the node enters the state Connected.

 39

Connected: One node can enter to this state from initialization phase if it is the first or second
node of the tree. In this case the transition occurs after the first Communication-Time-Block. The
other option to enter this state is the case when the node was in Qualified to Connect state and
receives the message M3 from its favorite parent. From this state on, the node is a member of
the tree. In this state, the first thing the node does is to send an acknowledge to its parent (M4) in
the 4th sub-block. After that it waits for the first sub-block to send M1 for the nodes not yet added
to tree and searching for a parent. For the transition from this state, a node waits for the message
M2 or M6. With the first M2 message that arrives, it enters to Search Nodes state. In case of M6
the Normal Operation sate is entered.

Search Nodes: In this state, the node is in the tree and it searches for new children. In sub-block
2, if it receives M2 messages from the nodes wanting to connect to it, these messages are
processed and if the node’s favorite child has chosen this node as its favorite parent, a connection
should be established. Hence, the node in this present state, sends the message M3 informing the
child node during the sub-block 3, a connection is established and this new node becomes a new
member of the tree. The node exits this state either if it gets an acknowledgement (M4) from the
child or an algorithm-termination message (M6) is acquired.

Child Found: A node enters into this state, when it was in Search Nodes state and it catches the
message M4. The mission for the node in this state is to send its parent the information that a new
node is added to the tree and the address of this new node (M5). The message is sent during the
5th sub-block. In this sub-block the node should also listen to its other children (if any) that might
also be sending M5 and if one of this messages is caught, the node sends it to its parent. . In this
way, this information should go until the sink. The node exits from this state, if either a
Communication-Block-Timeout occurs or an algorithm-termination message (M6) is received.

Normal Operation: It is the final state, to which all nodes enter in the same interval (within the
6th sub-block of the last Communication Block). This state is entered when a message M6 is
received from the parent, while the node is in Search Nodes, Child Found or Connected state. In
this state, the node sends M6 to its children, which will put them to this Normal Operation state.
After delivering the M6 to its children, the node is done with routing and it is ready for the
normal operation

 40

3.3.5 State-Machine Diagram for initial routing by the 2-SafeLinks Algorithm

Figure 5: State-Machine Diagram of the initial routing procedure implementing the 2-SafeLinks Algorithm.

Idle

One Possible
Connection

Qualified to
Connect

Neighbors
Found

M1

Child
Found

M1

Connected

M3

Search
Nodes

M2

M4

Normal
Operation

M6

M6

M1
*

M2
*

Inform Sink
about Status

Initial Phase Timeout (End
of Phase 1)

Woken up for
initial tree

M2
*

Become
FirstNodee

Become
SecondNode

MSINK
**

MSINK
*

Communication
Block Timeout

M2

Communication Block
Timeout

Communication Block
Timeout

Communication Block
Timeout

Communication Block
Timeout

Action:Node sends
the message M2

* in
1st phase

Action:Node sends
the message M3 in
3rd sub-block

Action: Node sends
the message M2

 in

2nd sub-block

Action:Node
processes
messages M2

*

Action: Node sends
message M3

*
 in 2nd

phase

Action:Node sends
the message M4

*
 in

3rd phase

Action:Node does not
send any message.

Action: Node sends first the
message M4 in 4th sub-block and
then the message M1 in 1st one.

Action: Node
waits for the
next M1

Action: Node sends
message M5 in the
5th sub-block

Action: Node is waiting
messages M1

* or M1
 in

1st phase or 1st sub-block

M6

Action: Node sends
message M6 to its
children.

 41

3.3.6 Timing for the initial routing in Glomosim

Figure 6: Organization of timing of the initial routing in Glomosim.

Block 2 Block 6
(reserved) Block 5 Block 4 Block 1 Block 3

Flood From
Sink

First Message from
Sink

Initialization Time-block 1st Communication Time Block nth Communication Time
Block

 . . .

Phase 1 Phase 2

Routing Finished Message (M6)
from Sink

Normal Operation

Phase 3

Start Operation Message
from Sink

 42

4. Double Tree and Local Sinks Concepts
CWSN Application is developed for the fire-detection wireless sensor networks. In these
multi-hop networks, the sensors send periodic monitoring messages towards the sink. This
messages are accumulated at every hop and forwarded to the next hop. In case of a fire event
the sensor detecting this event sends an alarm message to the sink over the hops. The latency
of the fire alarm cannot exceed Fireτ specified in [1]. The network must also be able to inform
the sink in case of node crashes within a certain latency Failτ . The network is most of the time
in the normal operation, where only monitoring message are sent and received. Hence the
network should be organized to minimize the power consumption in the normal operation.
However, the network must also be reactive enough in case of fire events or node crashes.
The latencies and power consumption must be kept low even if the environment is varying,
where some links may fail.

4.1 Dynamic and Static Routing
We term a routing algorithm dynamic if in case of link breaks re-routing and routing traffic is
required. A static algorithm on the other hand uses fix routing tables generated during the
initialization phase to react on link breaks.
Dynamic routing has the advantage to re-generate optimal routing trees, when some links
break permanently. However, as it needs message exchange, whenever re-routing is needed, it
can lead to significant extra power consumption. Also it might lead to instable states: the
quality of wireless links may fluctuate over time which may cause permanent re-routing
activity and traffic.
Static routing on the other hand, needs an initial phase where the routing tables are generated.
All message exchange takes place during this phase. For the given initial link qualities an
optimal routing tree can be determined (If during normal operation updates of the link
qualities are received the routing tables might be resorted though).
Due to the low power requirements of the CWSN application it was decided to concentrate on
static routing algorithms. However to utilize static routing, a new way to create the routing
tables was needed, which guarantees that any link breaks that might occur in the net would
not break the connection to the sink. Assuming that up to N-1 links per node may break, the
algorithm termed N-SafeLinks Algorithm was developed (see section 3.2) that still guarantees
connectivity and preserved tree structure.

4.2 Double Tree Concept

4.2.1 Main Idea: MST for Monitoring and SPT for Alarms
Since for the given radio the power consumed by sampling or listening R̂P is almost as large
as the power consumed by sending data T̂P it was essential to increase the sampling period wT .
As discussed in section 4.4 the wakeup period wT is constrained by the maximal number of
hops in the tree for the fire alarms. Hence for the alarms it is required to have a tree with a
minimal hop count. On the other hand for the cost of monitoring it is required to have a tree
with only few children per parent (see section 4.4.5). The double tree concept uses
simultaneously two different trees to meet both requirements:

 43

• A SPT11 for alarms: . The SPT algorithms have the tendency to generate graphs with
numerous branches but small number of hops. Minimizing hop count maximizes wT
for the given allowed latency Fireτ . Since alarm messages are not considered in the
power balance the many branches per node are irrelevant.

• A MST12 for monitoring: MST algorithms tend to produce routing trees with less
number of brunches but a large number of hops. Moreover optimal link qualities avoid
retransmissions. A minimal number of children per node minimize the power
consumption.

For the SPT and MST, 2-SafeLinks Algorithms is utilized. Using the 2-SafeLinks Algorithm
every node has a total of four potential links, two for the alarms and two for monitoring.
In Figure 7 and Figure 8 the alarm and monitoring trees of a randomly generated network
with 81 nodes are shown.

Figure 7: Alarm tree of a randomly generated network with 81 nodes generated by the 2-SafeLinks
Dijkstra Algorithm. The maximum number of branches in the tree is max 8K = whereas the maximum

number hops is only max 6alarmh = .

11 SPT is found using 2-SafeLinks Algorithm using Dijkstra’s Algorithm and hence it is not an optimal
shortest path tree but a sub-optimal one. To see the difference of the SPT metrics with Dijkstra’s
Algorithm and 2-SafeLinks Algorithm using Dijkstra’s Algorithm refer to section 5.3.1
12 MST is found using 2-SafeLinks Algorithm using Prim’s Algorithm and hence it is not an optimal
shortest path tree but a sub-optimal one. To see the difference of the MST metrics with Prim’s
Algorithm and 2-SafeLinks Algorithm using Prim’s Algorithm refer to section 5.3.1

 44

Figure 8: Monitoring tree of the same network with 81 nodes generated by the 2-SafeLinks Prim
Algorithm. The maximum number of branches is only max 2K = whereas the maximum number of

hops is max 24monh = .

4.3 Local Sinks: A Clustering and Supervising Concept
From the analysis discussed in section 4.4 it is obvious that the power consumption depends
on the monitoring interval M∆ . It must be selected as large as possible for low power
consumption. However because of the maximum allowed latency for node failures Failτ must
not be exceeded in order to increase M∆ , the hopcount or the maximum number of hops in
the monitoring tree should be reduced. Since this is not possible without increasing the
number of children per node and hence a higher power consumption, a Local Sinks Concept
was developed. This concept is based on partitioning the routing tree into clusters which are
monitored by Local Sinks. At the moment a local sink detects a node failure in its cluster or
subtree, it generates a Technical Alarm Massage. This message is sent over the alarm tree
with low latency. Thus the maximum number of hops in the monitoring tree max

monh does not
limit monitoring interval M∆ and the power consumption can be reduced compared to using
the standard monitoring tree that is generated using Prim Based 2-SafeLinks Algorithm. The
Local Sinks Concept, which will be explained in section 4.3.1 , is an extension of the N-
SafeLinks Algorithm.

4.3.1 The Concept: Parallelization of the N-Safe-Links Algorithm
In the standard N-SafeLinks Algorithm all nodes except the sink are treated commonly
whereas with the Local Sink Concept it is allowed that some nodes act like a sink and they
construct their own clusters or subtrees, i.e., the tree that has the local sink as its root node.
Nevertheless it should be guaranteed that the alternative links of the nodes in a subtree will
always remain in the subtree and the nodes in the subtree of a specific local sink cannot make
any connection with nodes from other subtrees. This is achieved by reformulating the
definition of eligibility in the N-SafeLinks Algorithm. In the new formulation, a node j that is
not added to the current tree is eligible to make a connection with the node i, which is already
in the current tree if node j has at least N possible links to the subtree holding node i.

 45

 Figure 9: An iteration of the 2-SafeLinks Algorithm with Local Sinks Concept. This example illustrates
the new eligibility definition for a node to be added to the current tree. Nodes 1 and 2 are the local
sinks shown in pink, which are connected to the current tree with the thick dotted lines. The blue
nodes with numbers 3-8 are other nodes existing in the current tree. The nodes 9 and 10 are potential
child nodes, which are not added to tree yet (on the left). The solid black lines are the links of the
current tree and light dotted lines are the possible links of the nodes. On the left the node 9 selects
node 6 as its favorite parent (green arrow), whereas the node 6 selects node 9 as favorite child (blue
arrow). The node 10 selects the node 7 as its favorite parent, whereas the node 8 selects node 9 as
favorite child. The node 9 has two possible connections to the subtree of node 2 and hence it is an
eligible node and is selected by node 6 and a link is setup between node 6 and 9. The node 10 selects
node 7 as its favorite child but it has only one link to the subtree of the local sink 1 and therefore it is
not an eligible node and is neglected and not selected by node 7.

The Local-Sinks Concept can also be seen as a parallelization of the 2-SafeLinks Algorithm as
the different local sinks appearing in different places of the graph can construct their subtrees
in parallel. The maximal allowed hopcount in a subtree is max

subtreeh . A node at hop max
subtreeh from

its subtree becomes a local sink if it is possible and builds its own subtree. Every local sink is
also a normal node in another subtree. However being max

subtreeh away from its local sink is not
enough for a node to become a local sink. If this node can finalize the initial phase13 of the N-
SafeLinks Algorithm then the node is declared as a local sink. If the topology does not permit
this initial phase, the node will be declared as a leaf node and it does not have the permission
to make any further links with other nodes. The iteration steps of the Local Sinks Concept
with N-SafeLinks Algorithm are given as

1. The list of the eligible nodes for each subtree of the current tree is updated

13 The initial phase of the N-SafeLinks Algorithm is generating an initial tree with N nodes. See section
3.2.2.1 for details.

 46

2. Each node in the current partial spanning tree selects a favorite child node (if any)
from the eligible nodes for its subtree.

3. Each node existing in the graph but not a member of the current tree selects a favorite

parent (if any) among the nodes in the current tree.

4. The nodes in the current tree, which are favorite parent of their favorite child, set up a
link with these nodes.

5. Among the nodes that are newly added to the current tree, the ones max

subtreeh hops away
from their local sink, try to generate their initial tree. The ones achieving this become
new local sinks. The ones, which fail to generate an initial tree, become leaf nodes.

An example of an algorithm iteration is illustrated in Figure 10. As the Local Sinks Concept is
an extension of the N-SafeLinks Algorithm, the metric to be optimized can be selected freely.
The Local Sinks Concept can be easily applied to Prim-Based or Dijkstra-Based N-SafeLinks
Algorithm. The selection of the favorite parents and children is generic and it is carried out
according to the given metrics, i.e., MST or SPT. It is important to mention that like the N-
SafeLinks Algorithm, the Local Sinks Concept with N-SafeLinks Algorithm does not find the
optimal MST and SPT but a suboptimal variant of them because of the restrictions during the
construction of the spanning tree. The tests and simulation results for the difference from the
optimal MST and SPT when using Local Sinks Concept is given in section 5.3.1 .

Figure 10: An iteration of 2-SafeLinks Algorithm with the Local Sinks Concept at an intermediate
step. For this example max

subtreeh =3. The sink node is in red and the blue nodes with numbers 2-6 are
other nodes existing in the current tree. The solid black lines are the links of the current tree and

 47

dotted lines are the possible links of the nodes. The nodes 7, 8, 9 and 10 are potential child nodes,
which are not added to tree yet (on the left). The node 9 selects node 6 as its favorite parent (green
arrow), whereas the node 6 selects node 9 as favorite child (blue arrow). The same happens with
node 7 and 4 as well. Node 5 selects node 9 as its favorite child and node 8 selects node 4 as its
favorite parent (on the left). In this way, node 8 and 6 are connected to their favorite parents. However,
both node 6 and 8 are 3 hops away from the sink and they should become local sinks. Node 7 has 2
possible connections to node 8 and 10, which also have a possible connection between them. Thus,
node 7 becomes a local sink (shown in pink) and with nodes 8 and 10 it constructs its initial tree. The
other added node 10 does not have 2 possible connections to other nodes and it cannot setup an
initial tree. Because of that it becomes a leaf node (shown in grey), which is not eligible to setup new
connections.

The differences in the resulting topology from the standard Prim Based Two-SafeLinks
Algorithm and from its Local-Sinks extension are illustrated in Figure 11 and Figure 12.

Figure 11: Routing tree for the Bundeshaus scenario using the 2-SafeLinks Algorithm with Prim’s
metric.

Figure 12: Routing tree for the Bundeshaus scenario using the 2-SafeLinks Algorithm and the Local-
Sinks Concept with Prim’s metric. Local sinks in blue.

 48

For simplicity, in the rest of the thesis we term the Prim-Based 2-SafeLinks Algorithm with
Local Sinks as Local Sinks Algorithm. The next section presents the detailed algorithm.

4.3.1.1 Algorithm 8: Local Sinks Algorithm

Inputs:
E : Set of edges in the graph
W : Set of edge-weights
V : Set of vertices
Cost(i,j) : Cost function that outputs the cost of the connection between node i and j.

max
subtreeh : Maximum number of allowed hops in subtree

Outputs:
ET : Edges of the current tree
LocalSinks : List of the local sinks
ParentTable :The matrix with size, “number of V’s elements” X “2”. The node ID refers to

row number. First and second entries in a row refer to the main and alternative
parents.

Temporary Variables:
T : Set of the vertices added to the routing tree
T’ : Set of the vertices not added to the routing tree yet
Parent(i) : Parent node or predecessor of node i
Leafs : The list holding the leaf nodes
NodesSinki : The address of the local or global sink of node i
FPj : Favorite Parent of node j. It is comprised of 2 entries, favorite parent ID i

and the cost of the link between the nodes j and i, e.g., FPj={j,Cost(j,i)}
FCi : Favorite Child of node i. It is comprised of 2 entries, favorite child ID j and

the cost of the link between the nodes i and j, e.g., FCi={i,Cost(i,j)}
PPLi,k : Possible links list of the node i to the nodes with the local sink k. It is

comprised of concatenated node IDs and costs of the link to these nodes
 pairs, e.g., PPLik=({Nodem,Cost(i,m)},{Noden,Cost(i,n)}, …)
FirstNode : The first node of a subtree after the global or local sink
SecondNode : The second node of a subtree after the global or local sink
BestCost : At some iteration step the the link with best cost, not necessarily the least

weight.

Initialization:
T := {Sink}
T’:= V / {Sink}
ET:= {}
FirstNode := {}
SecondNode := {}
BestCost := INF
FPj := {Null, INF} j V∀ ∈
FCi := {Null, INF} i V∀ ∈
PLLi,j := {} ,i j V∀ ∈
NodesSinksi := {} i V∀ ∈

 49

Leafs := {}
LocalSinks := {}

Main Algorithm:
AddFirstNode(Sink)
AddSecondNode(Sink,FirstNode)
While T != V

For i T∀ ∈ \Leafs
For 'j T∀ ∈

 If { , }i j E∈
 , ,: {{ ,Cost(,)}}

i ij NodesSink j NodesSinkPLL PLL j i j= ∪

 If (Cost(i,j) < FCi(2))
FCi(2) := Cost(i,j)
FCi(1) := j

 End
 If (Cost(i,j) < FPj(2))

FPj(2) := Cost(i,j)
FPj(1) := i

 End
 End
End

End

For i∀ ∈T
 j := FCi(1)
 If (i=FPj(1) And , 2

ij NodesSinkPLL ≥)

: { }T T i= ∪
 ' : '\{ }T T i=

 : {{ , }}T TE E i j= ∪
 Parent(j) :=i
 If FindHopsToLocalSink (j) == max

subtreeh
 AddFirstNode(j)
 AddSecondNode(j,FirstNode)
 If SecondNode != {}

: { }LocalSinks LocalSinks j= ∪
 Else
 : { }Leafs Leafs j= ∪

 End
 End

 End
End
FPj := {Null, INF} j V∀ ∈
FCi := {Null, INF} i V∀ ∈

End

Sub-Routines:

 50

AddFirstNode(SinkAddress i):
For j∀ ∈T
 If (Cost(i,j) < BestCost)
 FirstNode:=j
 BestCost := Cost(i,j)
 End
End
BestCost := INF
PLLFirstNode,i:= ({i, Cost(i,FirstNode)})

AddSecondNode(SinkAddress i, FirstNodeAddress k):

For j∀ ∈T
 If (Cost(i,j) < BestCost)
 FirstNode:=j
 BestCost := Cost(i,j)
 End
End
BestCost := INF
PLLSecondNode,i:= ({i, Cost(i, SecondNode)})
NodesSink(FirstNode) := i
NodesSink(SecondNode) := i

: { , }, ' : '/{ , }T T FirstNode SecondNode T T FirstNode SecondNode= ∪ =
: {{ , },{ , }}T TE E i FirstNode i SecondNode= ∪

ParenTable(FirstNode) := {Sink, SecondNode}
ParenTable(SecondNode) := {Sink, FirstNode}

GeneratedTables:

For i∀ ∈T \{Sink}
 If ParentTable{i} == {}

PLLi := SortInAscendingOrder (PLLi)
 If PLLi(1,1) = Parent(i)
 ParentTable(i) := {Parent(i),PLLi(2,1)}

Else
 ParentTable(i) := {Parent(i),PLLi(1,1)}

End
 End
End

FindHopsToLocalSink(node i): It is a subroutine that finds the number of hops of the input node i to
its local or global sink.

 51

4.3.2 Block Diagram of Local Sinks Algorithm

Figure 13: Block Diagram of the Local Sinks Algorithm, i.e., 2-Safe-Links Algorithm with the Local Sinks Concept

Idle Initialize Routing and
Create Initial Tree

Create Parent and
Child Lists

Routing
Finished

Compare Lists
and Add Nodes

Route

Create Parent Tables

Done

If FirstNode or
SecondNode is not found

Routing
Failed

At start only Sink is in the tree. Add the
FirstNode with the best link quality to
Sink. Then add the SecondNode with the
second best link to Sink and an
acceptable link quality to FirstNode.

If an initial tree
with three nodes is

constructed

If there are some
updates in the parent

or children lists

If there is not any
update in the

parent or children
lists

If the tree does not
contain all the nodes.

If the tree contains all
the nodes.

For every node in the constructed tree
assign its parent and the substitute parent
to the parent table. The substitute parent is
the one withthe best link among the links
to the subtree of the node’s local sink.

For every node in the existing tree and every node
not added to tree yet, search for the not-added
nodes with at least 2-SafeLinks to the subtree of
the local sink of their favorite parent. If the found
nodes are also favorite child of their favorite
parent, add them to the tree.

For every node in the existing tree find according to the algorithm
metric the best child which is not added to the tree yet and every
node not yet added to tree. For every node not added to the tree,
search favorite parents (for the given metric) in the existing tree.
Save these favourites children and parents in the lists for every
single node. Save also the possible connections of the nodes to be
added in different lists, i.e., one list for every local sink, where the
possible connections to nodes that have this local sink as root node.

Initialize Local
Sink

Try to find the FirstNode and
SecondNode among the nodes that are
not added to the existing tree.. These
nodes should be chosen with the best
possibble link to the local sink. If such
nodes are found, make their
connection to local sink. If such nodes
cannot be found, declare the local sink
as a leaf node and prohibit it to make
connections for the rest of the
algorithm

If the node has

max

subtreeh to its local sink

Done

 52

4.3.2.1 Complexity14

The N-SafeLinks Algorithm with Local Sinks Concept has ()O n iterations, where n is the
number of nodes in the network. Each iteration to construct the spanning tree takes ()O d
time, where d is the node degree and when the tree is constructed, for every node to create its
parent table needs ()O m iterations. Hence the overall time complexity of the algorithm
becomes (())O n d m⋅ + .

4.3.3 Convergence Issues
As the Local Sinks Concept is an extension of the N-SafeLinks algorithm, the limitations for
the convergence of the N-SafeLinks (see section 3.2.6) also holds for Local Sinks Concept
extension. However for this new version the eligibility of the nodes are not determined by the
number of the possible links they have to the current tree but it is determined by the number
of possible links to each subtree in current tree. Because of this, it is expected that for the
convergence the Local Sink extension needs a higher node degree15 than the standard N-
SafeLinks Algorithm. An other important factor for the convergence is the maximum allowed
subtree hops max

subtreeh . The less this number is the more subtrees the generated graph has and the
more links a node should have to be eligible. In the extreme case when max

subtreeh is not bounded
the algorithm becomes the standard N-SafeLinks algorithm. Hence it is presumable that for a
larger max

subtreeh a smaller node degree is sufficient. The simulation results for the convergence
are illustrated in section 5.3.2.0 .

4.4 Power Consumption

In this section, the power consumption of the relevant periodic protocol functions are
analyzed (expressions are derived in [3]). For the calculations, it is assumed that double tree
concept is utilized, i.e., one tree with less hops and numerous branches is used for the alarm
and one tree with more hops but less branches is used for monitoring. The alarm tree has the
number of maximum hops max

alarmh and the maximum number of branches AlarmK . The monitoring
tree is constructed with Local Sinks Concept and has the maximum number of subtree hops

max
subtreeh and maximum number of branches MonK . Before starting with the power calculations,

we should introduce the relations between different protocol parameters and their posed
constraints.

14Complexity refers to the time complexity of the off-line computation of the spanning tree with local
sinks.
15Node degree of a graph is the mean connectivity of the nodes existing in that graph.

 53

4.4.1 Protocol Parameter Dependencies and Constraints

4.4.2 Wake-Up Interval
The maximal allowed wake-up period is constrained by the latencies Failτ and Fireτ where at the
point of operation Fireτ is the actual limiting factor. A worst case analysis gives
(approximately, neglecting PT , DAT , TT and ST ; see [3] for the exact term):

max()
Fire

w alarm alarm
retries

T
h N

=
+
τ . (3)

Worst case, the time for next wakeup and hence the waiting time is wT for every hop. In
addition we add alarm

retriesN to consider late messages.

If Fireτ has to be met only with a certain probability, wT can be larger. In average the waiting
time per hop is / 2wT . Thus, if wT is chosen as

max

2
()

Fire
w alarm alarm

retries

T
h N

=
+
τ . (4)

The average transmission time will be approximately Failτ (see [3] for exact term).

4.4.3 Monitoring Interval
If a node failure has to be detected with the maximum latency of Failτ and with a hop interval
of h∆ the maximal allowed monitoring interval is

max()subtree mon
M Fail retries hh Nτ∆ = − + ∆ - Fireτ , (5)

where max
subtreeh is the number of hops to the local sink that supervises the node. In case some

retransmissions are needed the hop count is increased by a margin of mon
retriesN . A technical alarm

propagates to the local sink within Fireτ .

4.4.4 Periodic Wake-Up
The power consumed by the periodic wake-up is inversely proportional to the wake-up
interval wT [3]:

ˆ ˆ
S S R I

Sampling
w

P T P TP
T
+

= (6)

For the given radio SamplingP it is the largest portion in the overall power. Thus a maximization
of wT is crucial. The maximum of wT is constrained by the allowed alarm latency Failτ (3).
Typical values of SamplingP are given in Table 3.

 54

wT [s] SamplingP [µW]

0.5

0.95
1

1.2
1.5
2
4

184

100
92
80
62
46
23

Table 3: Power consumed by periodic wakeup.

4.4.5 Monitoring
The power MonP consumed by the monitoring activity is mainly determined by the monitoring
interval M∆ , the number of children K of a node and the preamble length PT

ˆ ˆ ˆ ˆ ˆ ˆ
2
p ACK ACKDATA DATA

S S R T T S S T p R T

Mon
M

T L LL LK P T P T P P T P T P T
B B B B

P

       + + + + + + + + +               =
∆

, (7)

where

max()subtree mon
M Fail retries hh Nτ∆ = − + ∆ , (8)

h S wN T∆ = , (9)

and

4P MT θ= ∆ . (10)

Typical values of MonP are given in Table 4.

K max
subtreeh M∆ [s] wT [s] MonP [µW] θ [ppm]

2
3
4
5

5
5
5
5

220
220
220
220

1.5
1.5
1.5
1.5

23
31
38
45

5
5
5
5

3
3
3
3
3
3

5
6
7
10
15
20

218
206
194
154
98
38

1.5
1.5
1.5
1.5
1.5
1.5

31
32
34
41
64
161

5
5
5
5
5
5

3
3

5
15

218
98

1.5
1.5

47
81

30
30

Table 4: Power consumed by periodic monitoring traffic using the OK-BIT, i.e., only one bit is used to
indicate the presence of the source node instead of the all status-array. Parameters: 1mon

retriesN = and
12h s∆ = .

 55

4.4.6 Link Testing
With the given frequency schema [19], every node must be synchronized with the nodes to
which it sends messages. This requires a node to periodically synchronize with its potential
parents (two for monitoring 1M and 2M , and two for alarms 1A and 2A). Since only 1M is
used periodically for monitoring, a node has to send empty link testing packages to three
nodes and receive the acknowledge messages. In addition if a node is a tested parent from

MonK children on the 2M monitoring tree and 2 AlarmK children on the alarm trees respectively
the power consumed for link testing amounts to:

ˆ ˆ ˆ ˆ ˆ(2) 3
2

p Link ACK Link ACK
Mon Alarm S S R T T T p R T

Link
L

T L L L LK K P T P T P P T P T
B B B B

P

         + + + + + + + + +                  =
∆

 (11)

Here L∆ is the link testing interval and LinkL is the empty link testing packet length. The used
preamble is now 4P LT θ= ∆
Typical values of LinkP are given in Table 5. The interval L∆ has to be small enough to
guarantee local synchronization, i.e., 4P L wT Tθ= ∆ < . Local synchronization is kept with

30θ = ppm if 3.5L∆ < h. It is obvious that good clock drift estimation below θ = 5 ppm is
required to keep LinkP low. The clock drift estimation process itself also poses an upper bound
on L∆ .

L∆ [h] LinkP
[µW]

θ
[ppm]

4P LT θ= ∆
[ms]

1
2
3
10

20
17
16
14

5
5
5
5

72
144
216
720

1
2
3
10

88
84
83
not possible

30
30
30
30

432
864
1296
4320

Table 5: Power consumed by the testing of alternative links. Parameters: MonK = 3, 6AlarmK = and

1.5wT = s.

4.4.7 Total Power
The total power amounts to

tot Z Sampling Mon LinkP P P P P= + + + . (12)

Typical values of totP are given in Table 6.
K max

subtreeh max
alarmh M∆ [s] L∆ [h] wT [s] θ [ppm] totP [µW]

without/with
link testing

3
3

5
5

6
6

220
220

1
1

1.5
1.5

5
30

91/112
109/197

Table 6: Total power consumed in the protocol normal operation phase using the OK-BIT.

 56

4.4.8 Lifetime of Batteries
As we pointed out before, the aimed power consumption for the communication module is
Ptarget ~100µW. In this section, the typical batteries and their lifetime statistics are presented in
Table 7 [2].

Maximum Average Power [µW] Lifetime [years]
4* AA-Alkaline 1.5V(+20°C) 4* AA-Alkaline 1.5V(-10°C) 4* AA-Lithium 1.5V

3 350 150 340
4 240 90 230
5 170 60 170
6 120 - 120
7 - - 90

Table 7: Operational lifetimes versus maximum average power at the transceiver for different battery
types. The two columns for the AA-Alkaline battery refer to different temperatures (+20 and -10 °C) of
the environment. The AA-Lithium batteries have almost the same lifetime statistics temperatures
between -10 and +50°C . The cost of AA Alkaline battery set (four batteries) is 0.84€ whereas the AA-
Lithium set costs 3.08€.

From the given table, we see that with 100 µW maximum transceiver power, lifetimes over 5
or even 6 (for lithium battery) can be reached. One should keep in mind though that the
lithium battery costs almost four times more than alkaline batteries. On the other hand, the
lifetime statistics of the alkaline battery (at +20°C) seem to be very close to the lithium but it
drops drastically for low temperature. The nodes are planned to be installed inside the
buildings and hence low temperatures are not expected in these environments. However,
fluctuations in the temperature are expected also for indoor usage and hence the practical
performance of alkaline batteries should be estimated worse than the performance at 20°C.
Although, it is not declared which battery will be used for the CWSN application, because of
cost advantages, AA-Alkaline batteries are the strongest candidate. From the given table and
our observations, we can conclude that the power should be kept under 150µW (possibly close
to 100µW) for an operation time of 5 years or more.

 57

5. Simulation and Evaluation of Algorithms

5.1 MATLAB Routing Graph Analyzer Tool
A routing graph analyzer was implemented to develop and test new routing algorithms, obtain
statistics and to visualize the sensor networks and the routing graphs. The tool can also create
Routing Information Tables for a given scenario which are then used by the GloMoSim
implementation of the protocol. MATLAB was selected as the development environment
because of its flexible and useful built-in functions and easily programmable GUI tool. The
MATLAB routing graph analyzer looks as in Figure 14 when it is started.

Figure 14: Start screen of the MATLAB Routing Graph Analyzer

During the progress of this work, the analyzer tool has been continuously developed. New
features are added and the ones which became irrelevant to the project were removed. In its
final version, there are three main menus: File, Tools and View.

5.1.1 Files
From the File Menu, the user can open different type of files. Randomly generated network
files (with *.rnd extension) and obtain only the node positions. For this type of files the edge
weights are calculated by the analyzer tool (see sections 5.2). The other option is to open one
of the scenarios, which are provided by SBT16. To analyze the scenarios, two files must be
opened, which have *.in extensions. One of them (nodes.in) holds the node positions whereas
the other one (pathloss.in) contains the matrix, whose entries are the path losses between
nodes in dBm. The analyzer tool again maps these values into RSSI values (see section 5.2.2
). When a file is opened, the graph is displayed on the screen of the analyzer tool as in Figure
15.

16 SBT: Siemens Building Technologies, Siemens Schweiz.

 58

Figure 15: Display of routing graph comprised of 81 nodes with their physical links. The fire detection
nodes in the first floor are displayed in black, the ones in the second or higher floors (if any) are
displayed in green. The sink is displayed in blue if it is on the first floor, otherwise it is displayed in
violet.

5.1.2 Tools

5.1.2.1 Routing the graphs

From the Tools Menu, the user can select the operation to be applied with the current graph.
The most essential operation is routing the graph. In the final version of the tool, the list of the
implemented SPT or SPT-based algorithms are

• Dijkstra’s Algorithm
• Bellman-Ford Algorithm
• Dijkstra Based Pairing Algorithm
• Dijkstra Based N-SafeLinks Algorithm

whereas the list of the MST or MST-based algorithms are the followings

• Prim’s Algorithm
• Borůvka’s Algorithm
• Prim based Pairing algorithm
• Prim based N-SafeLinks algorithm
• Prim-Based N-SafeLinks algorithm with Local Sinks Concept

In Figure 16, generated routing trees with different routing algorithms are illustrated.

 59

Figure 16: 4 different spanning tree generated from the same weighted graph comprised of 64 nodes.
The utilized routing algorithms are Dijkstra’s Algorithm (upper left), Dijkstra Based 2-SafeLinks
Algorithm (upper right), Prim’s Algorithm (lower left) and Prim Based 2-SafeLinks Algorithm with Local
Sinks Concept (lower right).

5.1.2.2 Simulation of Link Breaks

From the Tools Menu, one can select the option Simulate Link Breaks. In this mode, if a link
on the graph is clicked, the link is broken. If the algorithm is a parent table driven one, where
the alternative parents are saved in lists, the algorithm directly changes to the alternative
parent. If it is not case, the algorithm re-routes the graph without using the broken link (see
Figure 17). If the Simulate Link Breaks option is not selected, for the algorithms that generate
parent tables, these tables can be displayed by clicking on the nodes.

 60

Figure 17: Simulation of link breaks. The link of node 12 towards the root node is broken. With
Dijkstra Based Pairing Algorithm, a re-routing takes place and many nodes change their active links
shown in red (on the left). On the other hand, as 2-SafeLinks Algorithm is an algorithm that creates
parent tables, only the node loosing the link (node 12) changes its active link, the rest of the links (in
black) remain the same (on the right).

5.1.2.3 Extraction of the Routing Information Tables

The Routing Information Table is a text file that is designed to be read from the GloMoSim
network simulator. The table has necessary routing information for every node. There are four
lines for each node specifying the standard monitoring, alternative monitoring, standard alarm
and alternative alarm parents.
A line specifies the node address, type of the node (0 for ordinary nodes, 1 for global sink and
2 for local sinks), parent address, address of the local sink, number of hops to the global sink,
number of hops to the local sink and RSSI17 of the link to this parent. An example of the
routing information table is illustrated in Figure 18.

Figure 18: A part of the Routing Information Table.

17 For the RSSI mapping refer to section 5.2.2 .

 61

The Routing Information Tables can be generated by selecting Extract Routing File from the
Tools Menu after a scenario is opened properly. The user is prompted to save the produced
file with an ‘.in’ extension. After that, the file is ready to be used in the GloMoSim without
any further processing or formatting.

5.1.2.4 Other Tools Menu Options

The statistics of the routed graph can be displayed by selecting the Show Statistics option in
the Tools Menu. The statistics contain distributions for the number of branches, number of
hops, and link qualities of the graph as well as the power consumption per node based on the
given parameters and constraints of the CWSN (see section 4.4). At last, the Step by Step
Routing option in Tools Menu can be selected to illustrate the construction steps of the routing
tree.

5.1.3 View Features
This menu is thought for the display preferences of the user. Objects such as grids, link
qualities, available links and node IDs can be hidden or displayed (see Figure 19). Note that
for scenarios, transmission range is not defined since link qualities are given by a pathloss
matrix (in pathloss.in file). However, the transmission range can be displayed for randomly
generated graphs (files with *.rnd extension). In the calculation of these ranges a log-distance
model is used with a decay-index of 3.5 along with other transceiver and propagation
parameters (see section 5.2.1). An other feature termed View Menu opens the current graph
separately, which is helpful for comparing different routing algorithms. This action is
triggered by selecting Open Graph Separately option.

 62

Figure 19: Graph only with grids (upper-left), with node numbers and grids (upper right), link qualities also
attached to that (lower left), available links added to them (lower right).

5.2 Preliminaries for Testing

5.2.1 Determining the Qualities
We analyzed two different sources for testing, which are

1. The generated scenarios provided by SBT
2. Randomly generated graphs

For the first test source, we were given a Path-Loss Matrix that contains the simulated
received signal strength for every link in the graph. For the second case, we calculated the
received signal strengths according to the following parameters.

Radio TX-Power 8.5 dBm
Radio RX-Threshold -81 dBm
Loss on Receiver 2 dBm
Loss on Transmitter 2 dBm

Table 8: The radio parameters used for the the simulation of link qualities

 63

We used a free-space propagation model until 1 meter and log-distance propagation model
with a decay index 3.5α = , in order to simulate the indoor conditions. Using the radio
parameters with this propagation model, a transmission radius of approximately 35m is
obtained.

5.2.2 RSSI-Level Mapping
The routing algorithms use discrete RSSI (Received Signal Strength Indication) as an
indicator for the link quality. Table 9 shows how RSSI levels are mapped from the received
signal strength. We used 10 RSSI levels for our tests.

RSSI Level Signal Strength PR [dBm]
0 PR < -113
1 -113 < PR < -108
2 -108 < PR < -103
3 -103 < PR < -98
4 -98 < PR < -93
5 -93 < PR < -88
6 -88 < PR < -83
7 -83 < PR < -78
8 -78 < PR < -73
9 -73 < PR < -68
10 -68 < PR

Table 9: Mapping of the received signal strength to the RSSI Levels.

5.2.3 Calculation of the Weights from the RSSI-Values

5.2.3.1 Weights for the MST Metric

From section 2.1.1 , we have seen that the objective function of MST is the sum of the link
costs of the spanning tree (see equation (1)). MST algorithms minimize this objective
function. However, as we use the RSSI mapping for the link weights, we obtain link qualities
instead of costs for each link. For that reason we used the following mapping to find the cost
of some link {i,j} from its RSSI value as

MST maxCost (,) RSSI RSSI 1iji j = − + , (13)
where RSSImax is the maximum of the RSSI levels, RSSIij is the RSSI level of link {i,j}. A
constant c (here c=1) is added to make every link cost positive. It could be shown that for
any c the MST algorithms converge to the same results. The reason is that the MST
algorithms select the subset of the links that is a spanning tree and the minimum in total cost.
The number of the links in a spanning tree are fixed, which is one less from the number of
nodes in the graph. Hence, the selection of c cannot make any difference between the
objective function values of different spanning trees. We selected c=1 because of practical
purposes for all the simulations and comparisons.

 64

5.2.3.2 Weights for the SPT Metric

From section 2.1.1 , we have seen that the function to be minimized for SPT is the sum of the
node distances to the sink in the spanning tree (see equation (2)). The distance of a node to the
sink is given as

{ ', '}
SPTDist() Cost (', ')

ji j P

j i j
∈

= ∑ , (14)

where Pj is the path from sink to node j. As it was for MST we needed to map the link
qualities in RSSI to link costs. For SPT algorithms we used the following mapping for an
arbitrary link {i,j}

SPT maxCost (,) RSSI RSSI 3iji j = − + , (15)

where RSSImax is the maximum of the RSSI levels, RSSIij is the RSSI level of link {i,j}. A
constant c (in the case c=3) is added. The selection of this constant is made heuristically and
it must be noted that in opposition to the MST, the selection of this constant change the
behavior of the SPT algorithm. The reason is that the constant is added as many times as the
number of total hops in the spanning tree, which can differ from one spanning tree to another.
Apparently, the larger the constant c is selected the more hops cost. Because of this reason we
selected a constant higher than 1 to reduce the number of the hops in the graph. From the
simulations we carried out, we deduced that selecting higher constants do not reduce the
number of hops significantly but just degrades the selected link qualities. Hence we carried
out further experiments for c=3.

5.3 Evaluation and Analysis of the New Algorithms

5.3.1 MST and SPT Metrics
In this section, we examined the distance of the developed routing algorithms to the optimal
MST and SPT algorithms in terms of the given MST and SPT metrics (see section 5.2.3). The
effect of the factors such as node degree, link breaks, network size and terrain geometry on
these distances are analyzed.

5.3.1.1 Dependence on Node Degree

In this section, the correlation of the SPT and MST metrics with node degree18 is analyzed
and evaluated for different developed algorithms. The algorithms are repeatedly run on
random graphs with varying node degrees. For each network, we considered a square terrain.
The terrains are divided into equal square regions. Within every region, one node is located
randomly. The considered network had 64 nodes and by varying the size of the terrain
dimensions (preserving the square geometry) we obtained graphs with different node degrees.
The simulation results are shown in Figure 20 and summarized in Table 10.

18 The node degree is the average number of potential links per node in a graph.

 65

Figure 20: Resulting MST metric for the Prim’s, Prim-Based Pairing, Prim-Based 2-SafeLinks, Prim-
Based 3-SafeLinks and Prim-Based Local Sinks algorithms on numerous graphs with 64 nodes and
varying node degrees.

Nominal MST metric [%] Absolute MST metric

Node
Degree Prim

Algorithm
Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

10 100 109.9 106.8 108.3 114.3 93.3 102.5 99.6 101 106.6

15 100 111.4 106.0 107.4 116.3 71.3 79.4 75.6 76.6 82.9

20 100 106.6 102.8 103.9 111.9 64 68.2 65.8 66.5 71.6

Table 10: The comparison of the absolute and nominal MST metric for the developed algorithms. On
the right, the absolute values of the MST metric are given. The numbers are obtained by averaging
over 1000 simulation results. On the left, the nominal values of the MST metrics are given. Prim’s
Algorithm is an optimum algorithm for MST, therefore its nominal value is assigned as 100%.

From the simulation results that are illustrated in Figure 20 and summarized in Table 10, we
can make the following observations:

• There is a negative correlation between node degree and MST metric. The reason is
that with increasing node degree, more links with higher link qualities become
available.

• With increasing node degree, the resulting metrics of the developed algorithms get

closer to the MST (see Table 10). Again the reason is that more possible high quality
links become available with increasing node degree in the graph.

 66

• The Prim-Based 2-SafeLinks and 3-SafeLinks algorithms are the closest algorithms to

the optimum Prim’s Algorithm, which finds the MST. 2-SafeLinks Algorithm
functions slightly better than the 3-SafeLinks as it has less limitations.

• The Prim-Based Pairing Algorithms generates worse results than the limited N-

SafeLinks algorithms. A possible reason is that Pairing Algorithm is a greedy
algorithm, which attaches nodes in parallel to the current tree. Hence there is the
possibility that the nodes make links, which are not optimal, because they do not have
other options. With the introduced limitations of N-SafeLinks, the nodes must have at
least N possible links to be added, hence the probability of having a better link is
higher. We see that for N=2 this limitation improves the MST metric, yet increasing N
further to 3 does not bring further improvement. It even deteriorates the performance
slightly, because the limitation factor dominates. The nodes having high quality links
cannot make connections because they do not have enough possible links.

• The Prim-Based Local Sinks Algorithm has the worst performance. The reason is that

the limitations for creating new links are stronger than in the other considered
algorithms. A node can only make connections when it has at least 2 possible links to
the certain subtree. Apart from that, when a node becomes a local sink it has to create
its initial tree, where two other nodes are connected to the local sink. These limitations
prevent the algorithm to select the links with the highest link quality.

Figure 21 illustrates the dependence of the SPT metric on the node degree and the Table 11
summarizes these results.

Figure 21: Resulting SPT metric for the Dijkstra’s, Dijkstra-Based 2-SafeLinks and Dijkstra-Based
Pairing algorithms on the graph with 64 nodes.

 67

Nominal SPT metric [%] Nominal SPT metric [%]

Node Degree
Dijkstra

Algorithm
Dijkstra with

Pairing
Dijkstra with 2-

SafeLinks
Dijkstra

Algorithm
Dijkstra with

Pairing
Dijkstra with
2-SafeLinks

10 100 101.8 101.8 1175.7 1197 1197.4

15 100 100.2 100.2 934 935.6 935.7

20 100 100.8 100.8 775.3 781.2 781.3

Table 11: The comparison of the absolute and nominal SPT metric for the developed algorithms. On
the right, the absolute values of the SPT metric are given. On the left, the nominal values of the SPT
metrics are given. Dijkstra’s Algorithm is an optimum algorithm for the SPT, therefore its nominal value
is assigned as 100% .

The observations we obtained from Figure 22 and Table 11 are as follows:

• There is a negative correlation between node degree and SPT metric. The reason is
that with increasing node degree, more links with higher link qualities become
available.

• In opposition to the MST metric, the Dijkstra-Based Pairing and N-SafeLinks

Algorithms behave very similar to the optimum Dijkstra’s Algorithm in terms of the
SPT metric. It is an interesting result as irrespective of the introduced limitation of N-
SafeLinks Algorithm or greedy Pairing Algorithm, the algorithms generate very
similar (with a maximum of 2% difference in SPT metric) graphs. An important factor
is the selection of weights for the SPT metric (see section 5.2.3). As the effect of the
hops are amplified with that selection, for each Dijkstra-Based algorithm there is the
tendency to construct links that are not having minimum costs, i.e., best qualities in
order to keep the number of hops low. In the case of the Prim-Based algorithms, a
node with an optimum link can be neglected because it does not have enough possible
links to the current tree. On the other hand, for Dijkstra-Based algorithms, there is a
higher possibility that the preferred link does not have a minimum cost. As evident
from the results, these tendencies dominates the introduced limitation for Dijkstra-
Based Algorithms and the generated trees are very close to the optimal.

5.3.1.2 Effect of Network Size

To see the effect of the network size, we considered 3 networks with 36, 64 and 100 nodes
respectively. The Figure 22 illustrates a network with 36 nodes.

 68

Figure 22: A network with 36 nodes. The sink is located in the lower left corner, whereas all other
nodes are distributed in the ramaining square regions. Every region has exactly one node. The grey
lines show the physical links between the nodes.

For each node number, we created numerous random networks of different sizes, on which
we applied different routing algorithms, e.g., Prim’s Algorithm, Prim-Based Pairing
Algorithm, Prim-Based 2-SafeLinks Algorithm etc. In order to examine the difference in the
MST and SPT metrics, we generated for each node number, networks of different node
degree. It was realized by changing the edge lengths of the terrains, where the square
geometry of the terrain is preserved. We considered the MST and SPT metrics that are
defined in section 5.2.3 The results of the tests with different algorithms are summarized in
Table 12 and Table 13.

Nominal MST metric [%] Absolute MST metric Number of
Nodes in the

Network Prim
Algorithm

Prim with
Pairing

Prim with
2-

SafeLinks

Prim with
3-

SafeLinks

Prim with
Local
Sinks

Prim
Algorithm

Prim with
Pairing

Prim with
2-

SafeLinks

Prim with
3-

SafeLinks

Prim with
Local
Sinks

36 100 105.8 107.5 108.8 115.0 45.98 48.66 49.45 50.01 52.88

64 100 105.9 107.3 110.5 116.1 75.26 79.7 80.74 83.13 87.36

100 100 107.1 106.9 115.3 117.1 126.65 135.68 135.33 145.98 148.34

Table 12: The nominal and absolute MST metric for networks with 36, 64 and 100 nodes.

Nominal SPT metric [%] Nominal SPT metric [%] Number of
Nodes in the

Network Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with 2-
SafeLinks

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with 2-
SafeLinks

36 100 100.0 100.0 363.87 363.87 363.87

64 100 100.1 100.2 881.07 882.37 882.41

100 100 100.0 100.0 2203.1 2203.2 2203.3

Table 13: The nominal and absolute SPT metric for networks with 36, 64 and 100 nodes.

 69

We observe from these tables that although there is a slight increase in the nominal MST
metrics for the proposed algorithms, the network size does not have a significant effect on the
MST and SPT metrics.

5.3.1.3 Effect of Terrain Geometry

To analyze the effect of the terrain geometry on the MST and SPT metrics for different
algorithms, we considered networks with 64 nodes. For these networks, two types of terrain
were studied. The first one was a square terrain, which is divided to 8x8 squares. In every
square one node was located randomly. The sinks is placed in the lower left square (see
Figure 23).

Figure 23: The square terrain that is comprised of 64 equal square regions.

The second terrain was a node chain with a width of 2 and length of 32 nodes. Again the
nodes are located randomly on each of the 64 equally large squares (see Figure 24).

Figure 24: The terrain in the chain form that is comprised of 64 (2 x 32) equal square sub-terrains.

The simulation results are summarized in Table 14 and Table 15

Nominal MST metric [%] Absolute MST metric
Node

Degree Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

10 100 109.9 106.8 108.3 114.3 93.3 102.5 99.6 101 106.6

15 100 111.4 106.0 107.4 116.3 71.3 79.4 75.6 76.6 82.9

20 100 106.6 102.8 103.9 111.9 64 68.2 65.8 66.5 71.6

Table 14: The nominal and absolute MST metrics for the networks with a square terrain.

Nominal MST metric [%] Absolute MST metric

Node Degree
Prim

Algorithm
Prim with
Pairing

Prim with 2-
SafeLinks

Prim with
Local Sinks

Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with
Local Sinks

9 100 106.8 102.6 109.8 76.6 81.8 78.6 84.1

12 100 103.1 101.6 106.1 64.3 66.3 65.3 68.2

15 100 100.3 100.2 102.4 63 63.2 63.1 64.5

Table 15: The nominal and absolute MST metric for the networks with a 2x32 chain terrain.

 70

From the comparison of the tables we can draw the following observations:

• The network with 2x32 chain-terrain has better MST metric values than the square
terrain for every considered algorithm. The reason is that there are less possible paths
to the sink in a network with a chain geometry than the network with square geometry.
If the node degrees are the same, links on the possible paths must have better qualities
for the chain geometry than the square geometry. This is also the reason, why the
absolute minimum spanning tree, i.e. the tree with all links having the minimum cost
of 1 is achieved with a node degree of 15 for the chain geometry whereas a node
degree over 20 is needed for the square geometry.

• The absolute and nominal differences between the MST metrics of different

algorithms are smaller for the chain geometry than the metrics for the square
geometry. They are also closer to the optimal Prim’s Algorithm. The reason is again
that the selection of the possible paths are much more limited for the chain geometry
than the square geometry and the possibility that all algorithms select similar paths is
larger.

The differences between SPT metrics for the chain and square geometry are summarized in
Table 16 and Table 17.

Nominal SPT metric [%] Nominal SPT metric [%]
Node Degree

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with 2-
SafeLinks

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with
2-SafeLinks

10 100 101.8 101.8 1175.7 1197 1197.4

15 100 100.2 100.2 934 935.6 935.7

20 100 100.8 100.8 775.3 781.2 781.3

Table 16: The nominal and absolute SPT metrics for the networks with a square terrain.

Nominal SPT metric [%] Absolute SPT metric
Node Degree

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with 2-
SafeLinks

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with
2-SafeLinks

9 100 100.0 100.0 2496 2496.1 2496.1

12 100 100.0 100.0 1866.2 1866.2 1866.2

15 100 100.0 100.0 1479.8 1479.8 1479.8

Table 17: The nominal and absolute SPT metric for the networks with a 2x32 chain terrain.

We can make the following observations from these tables:

• The SPT metric values are much higher for the chain geometry than the values for the
square geometry. The reason is that a spanning tree needs much more hops for the
chain geometry rather than the square geometry for a specified node degree. The hops
are very expensive for the SPT metric (see section 5.2.3) and hence the results are
very high for the chain geometry.

 71

• There is almost no difference between different algorithms for the chain geometry,
whereas the developed algorithms are slightly worse (within 2% difference) for the
square geometry. The reason is that there is a limited number of paths in the chain
geometry.

5.3.1.4 Tests with Link Failures

The last factor that we analyzed was the link failures. To observe the effect of them, we broke
20 percent of the all possible links in the graphs, that we considered for the analysis with the
node degree. The effect of the link failures on MST metric is illustrated in Figure 25 and
Figure 26.

Figure 25: The MST metric versus node degree curves for different algorithms. The plot on the right
belongs to the graphs without link breaks whereas the plot on the left belongs to the graphs with 20 %
link break. The considered networks have 64 nodes and a square terrain geometry.

 72

Figure 26: The effect of 20% link breaks on Prim’s Algorithm and Prim’s 2-SafeLinks Algorithm, on the
networks with 64 nodes and a square terrain geometry.

From the previous 2 figures and the summary given in Table 18 and Table 19, we can
conclude the following:

• Breaking 20% of the links in the graph deteriorates the performance of the algorithms
about 10%.

• From the tables and the Figure 25 the nominal and absolute difference to the optimal

MST metric is higher in case of link breaks. This effect is similar for every developed
algorithm, however the impact is slightly larger for the Prim-Based Local Sinks
Algorithm.

Nominal MST metric [%] Absolute MST metric

Node
Degree Prim

Algorithm
Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

10 100 109.9 106.8 108.3 114.3 93.3 102.5 99.6 101 106.6

15 100 111.4 106.0 107.4 116.3 71.3 79.4 75.6 76.6 82.9

20 100 106.6 102.8 103.9 111.9 64 68.2 65.8 66.5 71.6

Table 18: The comparison of the absolute and nominal MST metric for the developed algorithms in
case there is no link break.

Nominal MST metric [%] Absolute MST metric
Node

Degree Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with 3-
SafeLinks

Prim with
Local Sinks

Prim
Algorithm

Prim with
Pairing

Prim with 2-
SafeLinks

Prim with
3-

SafeLinks
Prim with

Local Sinks

10 100 113.7 109.9 - 115.1 103.3 117.5 113.5 - 118.9

15 100 114.7 107.9 111.1 123.1 78.4 89.9 84.6 87.1 96.5

20 100 114.7 106.6 110.2 122.9 66.8 76.6 71.2 73.6 82.1

Table 19: The comparison of the absolute and nominal MST metric for the developed algorithms in
case there is 20% link break. As node degree, the value without link break is used to illustrate the
deterioration in the value of the metric.

 73

The effect of the link failures on SPT metric is illustrated in Figure 27 and Figure 28.

Figure 27: The MST metric versus node degree curves for different algorithms. The plot on the right
belongs to the graphs without link breaks whereas the plot on the left belongs to the graphs with 20 %
link break. The considered networks have 64 nodes and a square terrain geometry.

Figure 28: The effect of 20% link break on Dijkstra’s Algorithm and Dijkstra’s 2-SafeLinks Algorithm
on the networks with 64 nodes and a square terrain geometry.

We observe from the previous 2 figures and the following tables, that the SPT metric
deteriorates less than 2% and the difference between developed Dijkstra-Based algorithms
and the optimum Dijkstra’s Algorithm remains almost the same.

Nominal SPT metric [%] Nominal SPT metric [%]
Node Degree

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with 2-
SafeLinks

Dijkstra
Algorithm

Dijkstra with
Pairing

Dijkstra with
2-SafeLinks

10 100 101.8 101.8 1175.7 1197 1197.4

 74

15 100 100.2 100.2 934 935.6 935.7

20 100 100.8 100.8 775.3 781.2 781.3

Table 20: The comparison of the absolute and nominal MST metric for the developed algorithms in
case there is no link break. The analyized networks has 64 nodes.

Nominal SPT metric [%] Nominal SPT metric [%]

Node Degree
Dijkstra

Algorithm
Dijkstra with

Pairing
Dijkstra with 2-

SafeLinks
Dijkstra

Algorithm
Dijkstra with

Pairing
Dijkstra with
2-SafeLinks

10 100 100.3 101.4 1204.9 1208.9 1222.1

15 100 100.8 101.1 949.1 956.5 959.2

20 100 100.5 100.1 793.4 797.4 794.2

Table 21: The comparison of the absolute and nominal MST metric for the developed algorithms in
case there is 20% link break. As node degree, the value without link break is used to illustrate the
deterioration in metric. The analyized networks has 64 nodes.

5.3.2 Convergence
The second measure that we examined to compare the developed algorithms with the
optimum algorithms was convergence. A routing algorithm converges, if for a given network
the algorithm terminates and finds a routing graph. We analyzed the convergence behaviors
of different algorithms for given node degree and specific geometry. Doing this we showed
how strong are the effects of the limitations with developed algorithms on the convergence.

5.3.2.1 Effect of Node Degree

Node degree, i.e., the average link per node is a crucial factor for the convergence behavior as
it is a very good indicator of the connectivity of the nodes in a graph. The higher the node
degree of a graph is, the more options the routing algorithms have and the higher the
probability of the convergence will be.
To analyze the effect of the node degree on the convergence behaviors, different algorithms
are repeatedly run on random graphs with varying node degrees. For each network, we
considered a square terrain. The terrains are divided into equal square regions. Within every
region, one node is located randomly. The considered network had 64 nodes and by varying
the size of the terrain dimensions (preserving the square geometry) we obtained graphs with
different node degrees. We discretized the node degree in levels (with 0.25 steps) and
measured the probability of convergence for different algorithms based on the simulation
results, e.g., if for node degree = 7.5 the algorithm A finds a routing tree in 930 of 1000 total
cases we say the probability of the convergence for the algorithm A at node degree 7.5 is
930/1000 = 93%.
To compare the standard Dijkstra’s and Prim’s Algorithms with the developed 2-SafeLinks
and Local Sinks Algorithms, the standard algorithms were run twice for the same network. If
the algorithm converges in the first trial, then one link per node is broken and the algorithm
re-routes the network again. If it terminates again, then the test is considered successful
otherwise the algorithm fails the test. The motive for this test is fairness with other algorithms
as the 2-SafeLinks and Local Sinks algorithm handle one link break per node.
The results of the simulations are illustrated below.

 75

Figure 29: Convergence behavior of the Prim’s and Dijkstra’s Algorithms at different node degree
levels. The considered networks have 64 nodes and a square terrain geometry. The Dijkstra’s
Algorithm overlaps with the Prim’s Algorithm because both algorithms need the same condition for
convergence: the given graph must be connected.

Figure 30: Convergence behavior of the Prim’s Algorithm, Prim-Based 2-SafeLinks Algorithms and
Prim-Based Local Sinks Algorithm at different node degree levels. The considered networks have 64
nodes and a square terrain geometry. Prim-Based Local Sinks and 2-SafeLinks Algorithms have one
alternative parent in case of a link break. To make the comparison between these algorithms and
Prim’s Algorithm fair, one link per node is broken for Prim’s Algorithm and if the algorithm can
converge again in spite of link breaks, we regarded the test as successful otherwise the test is
regarded as unsuccessful.

 76

Figure 31: Convergence behavior of the Prim’s Algorithm, Prim-Based 3-SafeLinks Algorithms at
different node degree levels. The considered networks have 64 nodes and a square terrain geometry.
Prim-Based 3-SafeLinks Algorithms have 2 alternative parents in case of link breaks. To make the
comparison between the algorithms fair, two links per node are broken for Prim’s Algorithm and if the
algorithm can converge again after re-routing, we regarded the test as successful otherwise the test is
regarded as unsuccessful.

Figure 32: Convergence behavior of the Dijkstra’s Algorithm, Dijkstra-Based 2-SafeLinks Algorithms
at different node degree levels. The considered networks have 64 nodes and a square terrain
geometry. Prim-Based 2-SafeLinks Algorithms have one alternative parent in case of link break. To
make the comparison between the algorithms fair, one link per node is broken for Dijkstra’s Algorithm

 77

and if the algorithm can converge again after re-routing, we regarded the test as successful otherwise
the test is regarded as unsuccessful.

Prim
Algorithm Prim with 2-SafeLinks Algorithm Prim with Local Sinks Algorithm Convergence

Probability
[%]

Necessary
Node Degree

Necessary
Node

Degree

Absolute Node
Degree

Difference to
Prim

Nominal Node
Degree

Difference to
Prim [%]

Necessary
Node

Degree

Absolute Node
Degree Difference

to Prim

Nominal Node
Degree Difference

to Prim [%]

10 4.1 4.9 0.8 19.5 5.9 1.8 43.9

30 4.6 5.2 0.6 13.0 6.5 1.9 41.3

50 5.1 5.6 0.5 9.8 7.1 2 39.2

70 5.5 6 0.5 9.1 7.9 2.4 43.6

90 6.3 6.7 0.4 6.3 9.1 2.8 44.4

100 7.9 8 0.1 1.3 12 4.1 51.9

Table 22: Convergence probability versus the necessary node degree for different algorithms. The
absolute and nominal node degree differences of the developed algorithms to the Prim’s Algorithm are
illustrated. To make the comparison between the algorithms fair, one link per node is broken for Prim’s
Algorithm.

Prim Algorithm Prim with 3-SafeLinks Algorithm
Convvergence
Probability [%]

Necessary Node Degree
Necessary Node

Degree
Absolute Node Degree

Difference to Prim
Nominal Node Degree
Difference to Prim [%]

10 5.4 7.2 1.8 33.3

30 5.9 7.7 1.8 30.5

50 6.4 8.2 1.8 28.1

70 7.1 8.8 1.7 23.9

90 8.2 9.9 1.7 20.7

100 11 12.5 1.5 13.6

Table 23: Convergence probability versus the necessary node degree. The absolute and nominal
node degree differences of the developed algorithms to the Prim’s Algorithm are illustrated. To make
the comparison between the algorithms fair, two links per node is broken for Prim’s Algorithm as 3-
SafeLinks has 2 other alternative links per node.

We can make the following observations from the simulation results given in figures 29-32
and summarized in tables 22-23:

• The optimal Prim’s and Dijkstra’s Algorithms show the same convergence behavior
and they need a node degree higher than 8 for guaranteed (100%) convergence.

• The Prim’s and Dijkstra’s Algorithms need the least node degree compared to the

developed algorithms for a certain convergence probability. This is an expected result
as Prim’s and Dijkstra’s Algorithms need a re-routing while N-SafeLinks and Local
Sinks Algorithms simply change to their alternative parents in case of link breaks.

 78

• The absolute and nominal difference between the node degrees for Prim’s and Prim-

Based 2-SafeLinks Algorithms decreases continuously for increasing desired
convergence probability, e.g., the nominal node degree difference is approximately
20% for a desired convergence probability PConvergence=10% where it decreases to less
than 2% for guaranteed convergence (PConvergence=100%).

• The absolute and nominal difference between the node degrees for Prim’s and Prim-

Based 3-SafeLinks Algorithms are larger than the Prim’s and Prim-Based 2-Safe Links
algorithms. Here we see that as N gets larger in the N-SafeLinks Algorithm, the
convergence behavior gets worse because of the extra limitations because a node has
to have N possible links to setup a connection.

• Although there are differences in the convergence behavior between the developed

algorithms and the standard algorithms (up to 0.5-1 node degree for 2-SafeLinks and
2-2.5 node degree for the Local Sinks Algorithm), these differences are in a certain
node degree region. From the previous figures, this region is between node degree=5
and node degree=9. However, for networks that have a higher node degree, all
algorithms performs equally well. The Table 24 shows that for the practical examples,
the node degree is beyond the critical region and for practical examples, the developed
algorithms do not bring any limitations

Scenerio Max Connectivity Min Connectivity Node Degree
Bundeshaus 13 3 9.17

Bundeshaus2Floor 17 4 11.83
GartenStadt 23 7 16.72

GartenStadt2Floor 34 8 20.89
10x10 Walls 12 5 10.06

Table 24: The connectivity statistics of the scenarios provided by SBT. The threshold for the receive
power is set to -113 dBm.

5.3.2.2 Effect of Terrain Geometry

To analyze the effect of the terrain geometry on the convergence behavior of different
algorithms, we considered networks with 64 nodes. For these networks, two types of terrains
were studied. The first one was a square terrain, which is divided 8x8 squares. In each of
these squares, one node was located randomly. The sinks is in the lower left region (see
Figure 23). The other terrain was a node chain with a width of 2 and length of 32 nodes.
Again the nodes are located randomly on each of the 64 equally large squares (see Figure 24).
The following figures compares the convergence results of the networks with square terrain
geometry and chain terrain geometry.

 79

Figure 33: Convergence behavior of the Dijkstra’s and Prim’s Algorithms with different node degree
levels. On the left, the simulation results for the terrain with chain geometry and on the right there are
the results for the square geometry. The tests are made with randomly generated graph with 64
nodes.

Figure 34: Convergence behavior of the Prim’s Algorithm, Prim-Based 2-SafeLinks Algorithm and
Prim-Based Local Sinks Algorithm with different node degree levels. On the left, there are the
simulation results for the terrain with chain geometry and on the right there are the results for the
square terrain geometry. The tests are made with randomly generated graphs with 64 nodes.

 80

Figure 35: Convergence behavior of the Prim’s Algorithms and Prim-Based 3-SafeLinks Algorithm
with different node degree levels. On the left, there are the simulation results for the terrain with the
2x32 chain geometry and on the right there are the results for the square terrain geometry. The tests
are made with randomly generated graphs with 64 nodes.

From the figure 32-35 and following tables, we can draw the following observations:

• The most significant difference between two results is following: The Prim-Based

Local Sinks Algorithm that needed 20-25% higher node degree than 2-SafeLinks for a
given convergence probability in the square terrain, performs almost the same as 2-
SafeLinks Algorithm for the chain geometry. The main reason is that the Local Sinks
Algorithm a node must have at least 2 links to the subtree it is supposed to be added.
Other possible links are not counted. In a chain-geometry, subtrees are added
successively on a line and hence Local Sinks Algorithm does not introduce extra
limitations compared to 2-SafeLinks Algorithm. However for the square geometry, the
subtrees grow in a parallel fashion and because the possible links of a node are shared
by different subtrees, the convergence behavior deteriorates.

• For the chain geometry, the graphs for convergence behavior have a steeper transition

from zero probability to 100% convergence probability. This result can be expected as
in a chain geometry, there are less possibility for the node distribution and hence there
is a more precise convergence threshold in terms of node degree (this threshold is
around 4.5 for Prim’s Algorithm, 5.5 for Prim Based 2-SafeLinks and Local Sinks, 7.5
for Prim-Based 3-SafeLinks Algorithm).

• The last observation is that the difference between Prim’s Algorithm and Prim-Based

2-Safe Links and 3-SafeLinks Algorithms increases with chain geometry. A reason for
this situation is that in the intermediate steps of the N-SafeLinks Algorithms there are
not many choices for possible links to the current partial spanning tree for the chain
geometry. On the other hand Prim’s Algorithm can find other possible ways with re-
routing.

 81

Prim Algorithm Prim with 2-SafeLinks Algorithm Prim with Local Sinks Algorithm

Convergence
Probability

[%] Necessary Node
Degree

Necessary
Node

Degree

Absolute Node
Degree

Difference to
Prim

Percentage Node
Degree

Difference to Prim
[%]

Necessary
Node

Degree

Absolute Node
Degree

Difference to
Prim

Percentage
Node Degree
Difference to

Prim

10 4.1 5.1 1 24.4 5.2 1.1 26.8

30 4.4 5.3 0.9 20.5 5.4 1 22.7

50 4.6 5.5 0.9 19.6 5.5 0.9 19.6

70 4.9 5.7 0.8 16.3 5.8 0.9 18.4

90 5.2 6 0.8 15.4 6.5 1.3 25.0

100 6.3 7.2 0.9 14.3 7.5 1.2 19.0

Table 25: Convergence probability versus the necessary node degree for Prim’s and Prim-Based 2-
SafeLinks Algorithm and Prim-Based Local Sinks Algorithm. For the Prim’s Algorithm , one link per
node is broken. For the simulations the network with 64 nodes and a terrain with chain geometry is
used

Prim Algorithm Prim with 3-SafeLinks Algorithm

Conververgence
Probability [%]

Necessary Node Degree
Necessary Node

Degree
Absolute Node Degree

Difference to Prim
Percentage Node Degree

Difference to Prim [%]

10 4.8 7.2 2.4 50.0

30 5.1 7.5 2.4 47.1

50 5.2 7.8 2.6 50.0

70 5.6 8 2.4 42.9

90 6.3 8.5 2.2 34.9

100 7 9.4 2.4 34.3

Table 26: Convergence probability versus the necessary node degree for Prim’s and Prim-Based 3-
SafeLinks Algorithm. For the Prim’s Algorithm, two links per node is broken as the Prim-Based 3-Safe
Links Algorithm has 2 alternative links. For the simulations the network with 64 nodes and a terrain
with chain geometry is use

5.3.2.3 Maximum Subtree-Hopcount

Another factor that we analyzed is the maximum subtree hopcount max
subtreeh , i.e., the maximum

allowed hops of a subtree for the Prim-Based Local Sinks Algorithm. The simulation results
are illustrated in Figure 36.

 82

Figure 36: Convergence behaviors of the Prim-Based Local Sinks Algorithm with different max

subtreeh .
The tests are made with randomly generated graph with 64 nodes in a square terrain.

Prim
Algorithm max

subtreeh = 3 max
subtreeh = 5 max

subtreeh = 7 max
subtreeh = 10

Convergence
Probability

[%] Necessary
Node

Degree

Absolute
Node

Degree
Difference

to Prim

Percentage
Node

Degree
Difference
to Prim [%]

Absolute
Node

Degree
Difference

to Prim

Percentage
Node

Degree
Difference
to Prim [%]

Absolute
Node

Degree
Difference

to Prim

Percentage
Node

Degree
Difference
to Prim [%]

Absolute
Node

Degree
Difference

to Prim

Percentage
Node

Degree
Difference
to Prim [%]

10 4.1 2.1 51.2 1.6 39.0 1.5 36.6 1.4 34.1

30 4.6 2.5 54.3 2.1 45.7 1.5 32.6 1.4 30.4

50 5.1 2.5 49.0 2.1 41.2 1.5 29.4 1.4 27.5

70 5.5 2.9 52.7 2.6 47.3 1.7 30.9 1.9 34.5

90 6.3 3.7 58.7 3 47.6 2.3 36.5 2.4 38.1

Table 27: Convergence probability versus the necessary node degree, for Prim-Based Local Sinks
Algorithm with various maximum subtree hopcounts. The results are expressed based on the
necessary node degree for the Prim’s Algorithm, i.e., the nominal and absolute additional node degree
over the needed node degree for Prim’s Algorithm.

From Figure 36 and Table 27, we can draw following conclusions:

• With decreasing number of the maximum allowed subtree hops, the convergence
behavior of the Local Sinks Algorithm gets worse, e.g., the needed node degree for

 83

90% convergence is 10 for max
subtreeh =3 while it is 8.7 for max

subtreeh = 10. The reason is that
for lower maximum subtree hopcounts, more local sinks and subtrees must be
generated. Hence the possible links of a node can be shared by different subtrees and
this can prevent the nodes to make links because a node must have at least 2 possible
connections to the subtree it will be attached (see section 4.3 for the details of the
Local Sinks Algorithm)

• The difference between convergence behaviors diminishes for maximum allowed

subtree hopcount over 7, whereas the convergence performance obviously deteriorates
if max

subtreeh is selected less than 5.

5.3.3 Power Consumption
In this section, we analyze the power consumption of the CWSN application for different
algorithms. We assume that we utilize the double tree concept, i.e., one tree that is generated
by Prim’s Algorithm or a Prim-Based Algorithm will be used for monitoring and another tree
that is generated by Dijkstra’s Algorithm or a Dijkstra-Based Algorithm will be used for the
alarm messages. The parameter dependencies and constraints are given in section 4.4 .
However in that section, all the calculations are based on the assumption that local
supervising (Local Sinks) concept is utilized for monitoring tree. For the algorithms that do
not use the Local Sinks Concept, the equation (5) becomes

max()mon mon
M Fail retries hh N∆ = − + ∆τ , (16)

because a node crash can only be detected by the sink node. Due to this reason, we simulated
the power consumptions for sampling and monitoring events with different wake-up intervals

wT and determined the value wT that minimize the total power. (see Figure 37).

 84

Figure 37: The consumed sampling power SamplingP , monitoring power MonP and total power totP for

different wake-up intervals wT . The power for sampling is inversely proportional with the wT (on upper

left), whereas the power needed for monitoring increases with larger wT . The total power, which is a

sum of these two parts, have a minima in terms of wT . With the simulations we found the total power
minimizing wake-up interval numerically.

The calculations are made for the normal operation where there is the periodic traffic of the
monitoring messages. We assume that there are no fire events and no link failures. The
considered networks are the following:

1. Randomly generated network with 64 nodes in a square terrain with edge length =
140m. The node degree of the graph is 9.5.

2. Randomly generated network with 100 nodes in a square terrain with edge length =

180m. The node degree of the graph is 9.4.

3. “Bundeshaus Scenario” provided by SBT. The network has 41 nodes and a node
degree of 9.2.

4. “Bundeshaus with 2 Floors Scenario” provided by SBT. The network has 81 nodes

and a node degree of 11.7.

For each network we consider the following algorithm pairs for monitoring and alarm trees:

1. Prim’s Algorithm for the monitoring tree and Dijkstra’s Algorithm for the alarm tree.
The local supervising concept cannot be used for this pair.

2. Prim-Based 2-SafeLinks Algorithm is used for the monitoring tree and Dijkstra-Based

2-SafeLinks Algorithm is used for the alarm tree. The local supervising concept
cannot be used for this pair.

3. Prim-Based Local Sinks Algorithm is used for the monitoring tree and Dijkstra-Based

2-SafeLinks Algorithm is used for the alarm tree. The maximum allowed subtree
hopcount for the Local Sinks Algorithm is 10.

4. Prim-Based Local Sinks Algorithm is used for the monitoring tree and Dijkstra-Based

2-SafeLinks Algorithm is used for the alarm tree. The maximum allowed subtree
hopcount for the Local Sinks Algorithm is 5.

For the power calculations, we assume that the clock drift is θ =30ppm and messages are
sent only with OK-BIT, i.e., the data packet only contains one bit for the present messages
and its size is 13 bytes. The total power is the sum of the power for sampling PSampling , power
for monitoring PMon and link testing PLink. As the link testing part is very sensitive to clock
drift and it depends strongly on the frequency scheme as well as the MAC layer parameters,
we analyze only the total power that is the sum of PSampling and PMon, i.e.,

Ptot= PSampling + PMon .

 85

Next, we illustrate the simulation results for the power consumption on the four considered
networks. For every network, the four algorithm pairs for monitoring and alarm tree are
simulated.

5.3.3.1 Random Graph with 64 Nodes

Figure 38: The randomly generated network with 64 nodes and 140m x140m square terrain. The
grey lines are the possible links. The minimum connectivity for the network is 3 while the maximum
connectivity is 14 and the node degree is 9.5

 MonP [µW] totP [µW]

MonK AlarmK

max

monh max

alarmh max

subtreeh h∆ [s]
M∆ [s] wT [s] SamplingP

[µW] max min mean max min mean

1 3 5 19 6 - 9.2 116.0 1.15 80.4 69.5 21.6 37.2 149.9 101.9 117.6

2 3 5 17 6 - 10.1 118.6 1.26 73.3 68.4 21.3 37.0 141.8 94.6 110.3

3 2 5 18 6 10 11.4 164.3 1.43 64.7 42.6 17.9 30.2 107.2 82.6 94.9

4 2 5 17 6 5 11.4 221.4 1.43 64.7 35.8 15.6 25.7 100.4 80.3 90.4

Table 28: The CWSN parameters (M∆ , h∆ and wT), parameters of the graphs (MonK , AlarmK , max

monh ,

max

alarmh and max

subtreeh) and the resulting monitoring, sampling as well as the total power consumption per
node for 4 different algorithm pairs. The first row refers to a monitoring tree with Prim’s Algorithm and
an alarm tree with Dijkstra’s Algorithm. The second row refers to Prim-Based 2-SafeLinks Algorithm
and Dijkstra-Based 2-SafeLinks Algorithm pair. The third and fourth rows refer to Prim-Based Local
Sinks Algorithm and Dijkstra-Based 2-SafeLinks Algorithm pair with different max

subtreeh .

 86

5.3.3.2 Random Graph with 100 Nodes

Figure 39: The randomly generated network with 100 nodes and 180m x180m square terrain. The
grey lines are the possible links. The minimum connectivity for the network is 3 while maximum
connectivity is 14 and the node degree is 9.4

 MonP [µW] totP [µW]

MonK AlarmK

max

monh max

alarmh max

subtreeh h∆ [s]
M∆ [s] wT [s] SamplingP

[µW] max min mean max min mean

1 4 5 33 8 - 5.0 128.6 0.63 146.7 79.4 20.3 35.1 226.1 167.0 181.8

2 3 6 25 8 - 7.4 106.6 0.93 99.4 73.9 22.7 39.7 173.3 122.0 139.1

3 2 6 22 8 10 8.9 192.2 1.11 83.2 38.7 16.6 27.7 121.9 99.8 110.8

4 2 6 22 8 5 8.9 236.7 1.11 83.2 34.5 15.2 24.8 117.7 98.3 108.0

Table 29: The CWSN parameters (M∆ , h∆ and wT), parameters of the graphs (MonK , AlarmK , max

monh ,

max

alarmh and max

subtreeh) and the resulting monitoring, sampling as well as the total power consumption per
node for 4 different algorithm pairs (see section 5.3.3 for the description of these algorithm pairs). The
simulations are carried out for the network with 100 nodes (see Figure 39).

 87

5.3.3.3 Bundeshaus Scenario from SBT

Figure 40: The network of Bundeshaus scenario provided from SBT. The network has 41 nodes
including one sink node. The grey lines are the possible links. The minimum connectivity for the
network is 3 while maximum connectivity is 14 and the node degree is 9.4.

 MonP [µW] totP [µW]

MonK AlarmK

max

monh max

alarmh max

subtreeh h∆ [s]
M∆ [s] wT [s] SamplingP

[µW] max min mean max min mean

1 3 5 15 5 - 11.0 123.4 1.38 67.0 66.5 20.8 36.0 133.5 87.8 103.0

2 2 5 16 5 - 11.1 111.0 1.39 66.5 55.2 22.1 38.7 121.7 88.6 105.1

3 2 5 16 5 10 13.3 143.3 1.67 55.5 46.4 19.2 32.8 101.9 74.6 88.2

4 2 5 15 5 5 13.3 210.0 1.67 55.5 36.8 16.0 26.4 92.3 71.4 81.8

Table 30: The CWSN parameters (M∆ , h∆ and wT), parameters of the graphs (MonK , AlarmK , max

monh ,

max

alarmh and max

subtreeh) and the resulting monitoring, sampling as well as the total power consumption per
node for 4 different algorithm pairs (see section 5.3.3 for the description of these algorithm pairs). The
simulations are carried out for the Bundeshaus scenario that has 41 nodes.

 88

5.3.3.4 Bundeshaus with 2 Floors Scenario from SBT

Figure 41: The network of Bundeshaus with 2 floors scenario provided from SBT. The network has
81 nodes including one sink node. The nodes in the second floor are in green. The minimum
connectivity for the network is 3 while maximum connectivity is 14 and the node degree is 9.4

 MonP [µW] totP [µW]

MonK AlarmK

max

monh max

alarmh max

subtreeh h∆ [s]
M∆ [s] wT [s] SamplingP

[µW] max min mean max min mean

1 4 7 29 6 - 6.3 110.4 0.79 117.0 88.6 22.2 38.8 205.6 139.2 155.8

2 2 6 16 6 - 11.1 111.0 1.39 66.5 55.2 22.1 38.7 121.7 88.6 105.1

3 3 6 18 6 10 11.4 164.3 1.43 64.7 54.9 17.9 30.2 119.6 82.6 94.9

4 2 6 17 6 5 11.4 221.4 1.43 64.7 35.8 15.6 25.7 100.4 80.3 90.4

Table 31: The CWSN parameters (M∆ , h∆ and wT), parameters of the graphs (MonK , AlarmK , max

monh ,

max

alarmh and max

subtreeh) and the resulting monitoring, sampling as well as the total power consumption per
node for 4 different algorithm pairs (see section 5.3.3 for the description of these algorithm pairs). The
simulations are carried out for the Bundeshaus with 2 floors scenario that has 81 nodes.

5.3.3.5 Discussion

In the sections 5.3.3.1 -5.3.3.4 , we considered four different networks and applied four
different algorithm pairs to generate monitoring and alarm trees. We presented the total power
optimizing CWSN parameters, graph parameters and consumed power results for the
analyzed algorithm pairs. For a fixed wT the sampling power SamplingP is constant for every
node. However, the monitoring power MonP depends on the number of the branches as for a
node, the number of acknowledges per monitoring interval is equal to the number of its
children. Hence the nodes having the most number children have the maximum MonP whereas
the leaf nodes consume the least monitoring power. This is why we indicated a minimum,
maximum and average MonP and hence totP in the tables 27-30 where we summarized our
findings. From these results , we can draw the following conclusions:

 89

• The first algorithm pair, i.e., Prim’s Algorithm for the monitoring tree and Dijkstra’s
Algorithm for the alarm tree has the least power efficiency. The most important reason
for this weak power efficiency is that this algorithm pair does not utilize the local
supervising concept. Therefore, the number of hops in the monitoring tree becomes
the limiting factor for the monitoring interval to fulfill the maximum allowed latency
for node crashes Failτ . The decrease in the monitoring interval increases the
monitoring power immensely and hence wT must be selected less than the maximum
limit of max/()alarm mon

Fire retriesh N+τ as it was demonstrated in Figure 37. As the original
Prim’s Algorithm has the tendency to make more hops than any other considered
algorithm, the explained limitation on the monitoring and wake-up interval are highest
and the power efficiency is the worst for the first algorithm pair.

• The second algorithm pair, i.e., Prim-Based 2-SafeLink Algorithm for the monitoring

tree and Dijkstra-Based 2-SafeLink Algorithm for the alarm tree has a slightly better
performance than the first algorithm pair but it is clearly inferior to the last algorithm
pair, namely Prim-Based Local Sinks Algorithm for the monitoring tree and Dijkstra-
Based 2-SafeLinks Algorithm for the alarm tree. The reason that the second algorithm
pair works better than the first one is that Dijkstra-Based 2-SafeLinks Algorithm does
not make more hops than the original Dijkstra’s Algorithm and the Prim-Based 2-
SafeLinks Algorithm has the tendency to make less hops and introduce less limitations
on M∆ and wT compared to the standard Prim’s Algorithm. However, the fact that
also this algorithm pair does not use the Local Sinks Concept, the explained limitations
on M∆ and wT still exist and the power efficiency is significantly lower than the one
of the last algorithm pair.

• The last algorithm pair, i.e., the Prim-Based Local Sinks Algorithm for the monitoring

tree and the Dijkstra-Based 2-SafeLinks Algorithm for the alarm tree has the best
power performance compared to all the other algorithm pairs. The reason for this high
power efficiency is that the hops of the monitoring tree do not limit the application
parameters. The node crashes can be detected by the local sinks and their respective
technical alarms can be sent to the global sink over the alarm tree within Fireτ .
Therefore the power calculations in section 4.4 applies here. The limiting factor for
this last algorithm pair is max

subtreeh and its effect can be noticed by comparing the last 2
rows in the tables. The algorithm using max

subtreeh =5 provides up to 10-15% better power
efficiency than the algorithm with max

subtreeh =10 as with less max
subtreeh , M∆ can be selected

higher for a lower monitoring power.

• Using the Prim-Based Local Sinks Algorithm for the monitoring tree and the Dijkstra-
Based 2-SafeLinks Algorithm for the alarm tree, the sum of the sampling and
maximum monitoring power can be reduced to 100 µW or even further (see Table 30
and Table 31).

• The limiting factor is the number of maximum branches MonK and the maximum
number of hops in the alarm tree max

alarmh . While an increment in the number of branches
raises MonP linearly, every additional hop in the alarm tree lowers the sampling

 90

interval wT further and increases SamplingP . The effect of the maximum branches can be

seen from the last two rows of the Table 31 whereas the effect of max
alarmh is exemplified

by Table 28 and Table 29. Assuming that alarm
retriesN =1, for a worst-case total power of

approximately totP =100 µW, max
alarmh must not exceed 6 and MonK cannot be larger than

3. If the topology does not allow the maximum alarm hops max
alarmh to be less than 9 or

10, the sampling power is alone above 100 µW and the aimed limit is already
exceeded. Hence a topology cannot have too many nodes and it should provide the
connectivity to keep the max

alarmh low.

• For the given battery models in section 4.4.8 , a network lifetime over 5 years can be

estimated if the fourth algorithm pair is used as the power consumption did not exceed
120 µW in any test. For networks with small number of nodes, the first and second
algorithm pairs can be expected to have a lifetime over 3 years. However for the
scenarios having more nodes (network with 100 nodes, Bundeshaus with 2 floors),
these algorithm can have pick power consumption values over 200 µW, which
introduce the risk that a network lifetime over 3 years cannot be reached, especially if
the environment is exposed to temperature fluctuations (see Table 7).

• The number of nodes and the topology set the values max

alarmh and MonK . From the tests
with random nodes, we conclude that with one sink that is located in the corner of the
network, 80 or up to 100 nodes can be covered where a total power consumption near
100 µW can be reached. Placing the nodes intelligently and locating the sink in the
middle of the terrain, more nodes can be covered without exceeding the power limits.

5.4 Summary

5.4.1 Overview on the Simulation Results
From the simulation results and their respective observations, we can reach the following
important points:

• With the link weights, calculated from the RSSI-mappings (13) and (15) , the
proposed algorithm performs very close to the optimal MST and SPT algorithms in
terms of the metric value. (For MST the proposed algorithms do not exceed 20%,
where for SPT the deviation from the optimum is limited to 2%). The link breaks,
network size and terrain geometry do not significantly change or deteriorate the
relative performance of these algorithms.

• The proposed algorithms do not bring significant limitations on the topology for the

convergence. As we have seen in section 5.3.2 , in the critical region the Local Sinks
Algorithm needs up to 2.5 and the 2-SafeLinks Algorithm needs up to 1 possible link
more than the standard algorithms. However, these differences shrink for linear
geometries (which are more common geometries inside the buildings, e.g., corridors).
Moreover, the node degree of the practical examples are beyond the critical region,
i.e., node degrees between 5 and 9 (see Table 24).

 91

• At last, using the new developed algorithms, power consumption can be reduced
greatly. The Prim-Based 2-SafeLinks Algorithm has the tendency to make less
brunches MonK and less hops max

monh than the standard Prim’s Algorithm. Hence it is
more power efficient. The tendency is inherited also by the Local Sinks Algorithm as it
is derived from the Prim-Based 2-SafeLinks Algorithm. The Local Sinks Algorithm
reduces the power consumption further due to local supervising concept.

5.4.2 Suitability of Algorithms for CWSN Application
From the previous sections we have seen that the developed algorithms do not introduce
significant limitations, e.g., on convergence or MST and SPT metrics. On the other hand, for
the CWSN application they are proved to be more power-efficient than the standard
algorithms. The power analysis in section 4.4 and the simulation results from section 5.3.3
showed that using the Prim-Based Local Sinks Algorithm for the monitoring tree and the
Dijkstra-Based 2-SafeLinks Algorithm for the alarm tree provides significant reduction (up to
40%) in the power consumption. At last, they can handle up to one link break per node
without the need of any re-routing. Hence we have verified that this combination is the most
suitable selection in the CWSN implementation.

 92

6. GloMoSim Simulation of the CWSN Application

6.1 The Network Simulator: GloMoSim
GloMoSim (Global Mobile System Simulator) was used as the simulation platform for the
CWSN application because of the structured protocol layers and easy developing facilities
[17] . The data flow between the layers are illustrated in Figure 42.

Figure 42: The block diagram of the layers in the implementation. The routing tables are initially read
by the CWSN application from Network/Routing Layer and during the normal operation, CWSN
application exchanges information with MAC Layer, which provides the connection from the
application layer to the radio layer.

6.2 CWSN Application
The CWSN application is a fire detection wireless network (FD-WSN) application whose
requirements and functions are explained in section 1.2 and [1]. We have implemented the
CWSN application in GloMoSim on two different levels, network and application layers. The
MAC and Radio layers were provided by CSEM19 [4], [5]. In the next two section, we will
explain these developed layers in short. For the details of the implementation, the reader can
refer to [18].

6.3 Network Layer
The routing information is provided by the network layer to the CWSN application. The
routing information of a node contains the main and alternative parents (A1, A2) as well as the
main and alternative monitoring parents (M1, M2). It also has additional information about the
number of hops and the quality of links of a node to these parents. The routing information is
generated off-line by the MATLAB Graph Analyzer Tool (see Section 5.1) and written to the
file called, Routing Information Table.

19 CSEM: Centre Suisse d'Electronique et de Microtechnique.

MAC Layer:
WiseMac

Application Layer:
CWSN

Network/Routing Layer:
Routing Information

Tables

Radio Layer:
RadioAccnoise3

 93

6.3.1 Reading the Routing Information Tables
In order to facilitate our static routing protocol in GloMoSim, the ROUTING-PROTOCOL in
the configuration file should be selected as STATIC. The name of the file keeping the Routing
Information Table, e.g. RoutingInfo.in, should be given in STATIC-ROUTING-
INFORMATION-FILE. When a simulation is started, the Routing Information Table is read
by the respective functions and the necessary routing information is saved into the data
structure of every node.

6.3.2 Routing-Information Structure in the Network Layer
The routing information of each node is saved in its NetworkRoutingInformationTable
structure. Every node has a NetworkRoutingInformationTable which is comprised of four
rows for each parent (main alarm parent A1, alternative alarm parent A2, main monitoring
parent M1 and alternative monitoring parent M2). The rows are saved in the data structure
called NetworkRoutingInformationTableRow that contains the node address, the parent
address, hop count to the sink, hop count to the local sink, the node type and the RSSI level.
Definitions of these two structures are illustrated in Figure 43.

Figure 43: Definitions of the NetworkRoutingInformationTable and
NetworkRoutingInformationTableRow data structures

6.3.3 Interface with the Application Layer
The information in these structures are read by the application layer in the initialization phase.
During the normal operation of CWSN application, these structures can be changed, updated
or emptied by the application layer, in case the routing tables need to be altered20.

6.4 Application Layer
The application layer is responsible for the following functions:

• Periodic monitoring messaging: All nodes except the sink send periodic monitoring
messages. For each subtree the messages are collected in the local sink of that subtree.
The local sinks and the global sink check for the presence of the nodes in their
subtrees.

20 This feature is not used in the current version of the CWSN implementation and the routing tables
are fixed during the entire simulation.

 94

• Technical alarms: In case of node crashes or communication failures, the nodes that
cannot inform the local sink about their presence are reported by the local sink. The
local sink initiates in this case a technical alarm that is reported over the fast alarm
tree to the global sink within the required time Fireτ .

• Fire alarms: The nodes detecting a fire event send a fire alarm message over the fast
alarm tree to the global sink within the required time Fireτ .

• Multi-frequency operation: The application can assign a set of frequencies to each
node. Currently this is done once during initialization.

• Links testing: If multi-frequency option is selected, the possible links are tested for
the synchronization that is needed for the given frequency scheme [19].

The application promises also the following features other than its main functions

• Robustness: the described functionality is also provided in case of technical failures
such as link and channel failures specified in [1]. The protocol handles one link break
per node (can be generalized to more than one failing link).

• False alarm rate: For the normal operation, i.e., only monitoring operation without
fire events, no false alarms occurred during a simulation time of 10 days.

• Power optimization: The developed double-tree topology with local sinks and
monitoring message aggregation minimizes the power consumption (see section 5.3.3
for details).

• Power consumption: The total power consumption (including all layers, link testing
and clock drift estimation) amounts to as low as 100totP Wµ≈ (for example in the
Bundhaus scenario of SBT).

The application uses routing information and a double-tree topology with local sinks, where
the following items apply.

• Every node has two monitoring and two alarm parents (M1, M2 , A1 and A2)

• The two alarm trees (the first tree holds the main links whereas the second tree
contains the alternative links) are generated with a Dijkstra-Based 2-SafeLinks
Algorithm. This is a tree with the minimal maximal hop count max

alarmh (low latency).
This is important to maximize the wake up interval wT and thus to minimize the power
needed for sampling.

• The two monitoring trees are generated with a Prim-Based 2-SafeLinks Algorithm to
obtain a monitoring tree with optimal link qualities and a small number of children
per parent monK . Nodes are monitored in subtrees of depth max

subtreeh by a local sink.
Missing nodes are reported to the global sink sending a technical alarm on the fast
alarm tree.

• All required information is read from the Routing Information Tables during
initialization. During operation routing is static, which means no re-routing takes
place. The alternative parents and the 2-SafeLinks Algorithm guarantee connectivity to
the sink in case of link breaks.

The application layer exchanges information with the network layer to access the routing
tables and with MAC layer to receive and send messages.

 95

6.5 Tests and Simulation Results
Tests are carried out for the scenarios provided by SBT. For the tests and their evaluations,
the given steps were followed:

1. Generation of the Routing Information Tables using MATLAB Graph Analyzer Tool
2. Simulations were run with these tables and other inputs, e.g., pathloss matrix, node

positions etc.
3. The output files were processed with scripts to determine the power consumption,

timeliness and correctness of the alarms.

In the following section, we consider Bundeshaus scenario as a test example.

6.5.1 Bundeshaus Scenario

Figure 44: Bundeshaus scenario with 40 fire detection nodes (black) and a sink node (blue). The
physical links, i.e. with minimum -113dBm signal strength, are also displayed.

 96

6.5.1.1 Generated Monitoring and Alarm Trees

Figure 45: Generated Alarm-Tree for the Bundeshaus scenario (top). It has a maximum number of
branches of 4AlarmK = whereas the maximum number of hops is max 5alarmh = . The generated
Monitoring-Tree (buttom) has 4 local sinks and 1 global sink (all in blue). The routing tree has a
maximum number of branches of 2MonK = whereas the maximum number of hops is max 15monh = .

 97

6.5.1.2 Animation of the Simulations using NAM

The reception and transmission of the messages as well as the state of the nodes could be
displayed by the network animator NAM. A NAM-snapshot of the Bundeshaus scenario is
illustrated in Figure 46.

Figure 46: The NAM-snapshot of the simulation for the Bundeshaus scenario. The lines denote the
transmission of messages. Different colors of the lines differentiate the frequency with which the
messages are sent. The sleeping nodes are displayed in black, whereas the nodes on transmission
are colored in red, the reception in reception are in yellow. The violet nodes are listening the medium
if it is idle or not.

6.5.1.3 Power Consumption Results

The results we obtained for 10 days normal operation are summarized in Table 32. All tests
are carried out with typical CWSN parameters, 220M s∆ = , 12h s∆ = , 1L h∆ = , 1.5wT s= .

 max

subtreeh MonK AlarmK max
Monh max

Alarmh mean [uW]P min [uW]P max [uW]P [ppm]θ Ok-Bit

5 2 4 15 5 23 23 134.33 5 No
5 2 4 15 5 93.44 79.8 107.07 5 Yes
5 2 4 15 5 111.9 90.27 187.76 30 No
5 2 4 15 5 129.62 95.42 154.55 30 Yes

Table 32: Normal operation, without link breaks and fire alarm. The simulation time was 10 days. The
results show that total power consumption of 100µW can be achieved utilizing Ok-Bit messages
instead of full status arrays and providing small clock drifts (green number).

 98

7. Conclusion
Fire detection – wireless sensor network (FD-WSN) applications are safety critical
applications, where the sensor nodes monitor the environment and notify the sink the with
alarms, when fire events are detected. The latencies in a FD-WSN cannot exceed some limits
due to the safety considerations and the power consumption for the communication must be
kept very low because the wireless nodes are battery-driven, usually simple AA-Alkaline
batteries for low cost.
The goal of this thesis was to devise and develop routing algorithms and concepts to be used
for the specific CWSN application, which is a FD-WSN application with strict timeliness and
power requirements (see section 1.2.3). The developed algorithms had to be locally
implementable and they had to guarantee the connectivity of the routing tree in case of
communication failures, specified in [1]. Therefore, we first developed a routing algorithm
called Pairing Algorithm that enables the local implementation of the standard MST and SPT
algorithms without large deviations from the optimal algorithms. As the second step, a N-
SafeLinks Algorithm was introduced and merged with the Pairing Algorithm. The N-SafeLinks
Algorithm provides static re-routing, where we proved, that the connectivity to the sink (loop-
freeness) is guaranteed even in the case of link breaks21.
To minimize the power consumption by keeping the timing requirements, we developed a
Double-Tree Concept for the CWSN application. In this concept, the alarms were sent over a
SPT based fast alarm tree and the monitoring operation uses a MST based monitoring tree. A
further concept that we introduced for power optimization was the Local Sinks Concept,
where special nodes called Local Sinks monitors their own subtrees. We merged this concept
with the N-SafeLinks Algorithm and obtained Local Sinks Algorithm that is specifically
adapted for the CWSN Application.
For the simulations we developed a MATLAB Graph Analyzer Tool. The simulations that we
carried out to compare our algorithms with the standard algorithms showed that the newly
developed algorithms perform very close to optimum MST and SPT algorithms in terms of
these metrics. With the tests on convergence, we showed that the new routing algorithms do
not introduce significant limitations on the topology and at last we have seen that the new
routing algorithms are much more energy efficient than the standard MST and SPT
algorithms.
Finally, we implemented the CWSN application (network and application layers) in
GloMoSim, where the routing information is generated off-line by the MATLAB Tool and
saved in the network layer. The simulations results indicated that a minimum total power of
about 100µW can be reached. The routing algorithm with the CWSN application is also
proved to be robust against link breaks and suitable to provide the required timeliness.

Although the main goals and requirements are achieved, there are the following open issues
and future work:

• Implementation of the routing algorithm in the GloMoSim. A preliminary protocol
concept is given in section 3.3 but the protocol must be refined for the
implementation.

• In case of permanent environment changes the static tables may not be enough. A

protocol must be devised first to detect the permanent topology changes. The protocol

21 The N-SafeLinks Algorithm can handles up to N-1 link breaks per node.

 99

should realize re-routing where it updates the routing tables without violating the
connectivity.

• More GloMoSim tests must be carried out with several scenarios to find the optimal

cost functions to use in the present routing algorithms (until now only Prim’s and
Dijkstra’s metrics have been used). Tests are also needed to find the optimal RSSI
mapping for the link weights.

 100

Appendix A: Symbols and CWSN Parameters

Symbol Value
(typical) Description

M∆ 220 s interval of monitoring messages

h∆ 12 s hop interval during monitoring wave

L∆ 1h link testing interval

waveτ 60 s
propagation time of monitoring wave within subtree to
local sink

max
subtree

wave hhτ = ∆

maxh 20 maximal number of allowed hops

max
subtreeh 5 maximal number of allowed hops in monitoring subtree

max
alarmh 6 maximal number of hops in alarm tree

max
monh maximal number of hops in monitoring tree

mon
retriesN 1 number of late wave considered by the local sink
alarm
retriesN 1 number of considered retries of alarm messages
SN number of slots per hop interval

maxK 3 maximal number of children per parent in monitoring
tree

MonK 3 maximal number of children that selected same parent as
alternative monitoring route

AlarmK 6 maximal number of children that selected same parent as
alternative alarm route

θ 1ppm – 100ppm quartz drift tolerance
DATAL 45/13 bytes size in bits of a data packet without/with OK-BIT
ACKL 13 bytes size in bits of an ack packet
LinkL 13 bytes size in bits of an empty link testing packet

wT 1.5 s WiseMac wakeup interval
PT WiseMac preamble duration
DAT duration of data and ack package transmission
totP total power consumed
SamplingP power consumed by sampling
MonP power consumed by alarm
LinkP power consumed by link testing

Table 33: Parameters and symbols used in the CWSN application.

 101

Appendix B: Radio Parameters

Symbol Description Value

ZP Power consumption in RADIO_SLEEP state 0.0006 mW

R̂P Power consumption increment in RADIO_READY_RX,
RADIO_RECEIVING, RADIO_SWITCH_RX and
RADIO_SWITCH_TX states

59.7 mW

T̂P Power consumption increment in
RADIO_TRANSMITTING state

75.3 (+5 dBm)

ŜP Average power consumption increment in
RADIO_SETUP_RX and RADIO_SETUP_TX states.

14.7 mW

ST Setup time 3.85 ms

TT Turn-around time and frequency change time 0.64 ms

IT RSSI integration time (5 symbols at 10 kbps) 0.6 ms

Table 34: Parameters of the given radio model (table taken from [3]).

 102

List of Abbreviations

CSEM Centre Suisse d'Electronique et de Microtechnique
CWSN Critical Wireless Sensor Network
MST Minimum Spanning Tree
SBT Siemens Building Technologies, Siemens Schweiz
SPT Shortest Path Tree
WSN Wireless Sensor Network

 103

References

[1] P. Blum, Syrah WL – SyrahNet, Problem Specification, January 2006.

[2] P. Blum, CTI Status Meeting – Status Presentation, September 2006.

[3] A. El-Hoiydi, Medium Access Control Protocol for Wireless Fire Detection -

Analysis and Specification, CSEM Technical Report, June 2006

[4] A. El-Hoiydi, WiseMAC Glomosim Model, CSEM Technical Report, Juli 2006

[5] A. El-Hoiydi, Radio Models, CSEM Technical Report, March 2006

[6] R. C. Prim, Shortest connection networks and some generalizations, Bell

System Technical Journal, Vol. 36, pp. 1389-1401, 1957.

[7] E. V. Dijkstra, A note on two problems in connection with graphs. Numerische

Mathematik 1, pp. 269-271, 1959.

[8] B. Y. Wu, K.-M. Chao, Spanning Trees and Optimization Problems,

Chapmann & Hall/CRC, 2004.

[9] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in the

improved network optimization algorithms, J. ACM, volume 34, pp. 596-615,
1987.

[10] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, Inc., 1987.

[11] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves, A loop-free

extended Bellman-Ford routing protocol without bouncing effect, in
Symposium proceedings on Communications architectures & protocols. ACM
Press, pp. 224-236, 1989.

[12] W. D. Tajibnapis, A correctness proof of a topology information maintenance

protocol for a distributed computer network, Communications of the ACM,
no. 20, pp. 477-485, 1977.

[13] R. G. Gallager, P. A. Humblet and P. M. Spira, A distributed algorithm for

minimum weight spanning trees, ACM Transactions on Programming
Languages and Systems, volume 5-1, pp. 66-77, 1983.

[14] B. Awerbuch. Optimal Distributed Algorithms for Minimum Weight Spanning

Tree, Counting, Leader Election, and Related Problems. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing (STOC), New York
City, New York, May 1987.

 104

[15] M. Faloutsos and M. Molle, Optimal distributed algorithm for minimum
spanning trees revisited, Symposium on Principles of Distributed Computing,
pp. 231-237, 1995.

[16] R. Perlman, An Algorithm for Distributed Computation of a Spanning Tree in

an Extended LAN. In Proc. of the Ninth Symposium on Data Communications,
pp. 44-53, 1985.

[17] X. Zeng, R. Bagrodia and M. Gerla, GloMoSim: A Library for Parallel

 Simulation of Large-scale Wireless Networks, In Proceedings of the 12th
Workshop on Parallel and Distributed Simulations (PADS ’98), Banff, Alberta,
Canada, May 1998.

[18] T. Ikikardes and M. Hofbauer, Protocol Development, Analysis, Concepts and

Glomosim Implementation, Siemens Schweiz AG / BIC-ET, Technical Report,
July 2006.

[19] M. Hofbauer, Time-synchronization of hops (global) and children (local) and

parent-frequency distribution scheme, Siemens Schweiz AG / BIC-ET
Protocol Concept, February 2006.

