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Abstract

We show that, contrary to common belief, free riding is indeed possible in BitTorrent. We present a Bit-
Torrent client implementation in Java which successfully downloads shared files without ever contributing
a single byte of user data to the network. Surprisingly, this client often achieves the same download speed
as the original BitTorrent client. This client is of particular interest for people living in countries where
sharing of copyrighted material is forbidden by law but acquiring it is legal, no matter from what source.

We also present possible modifications of BitTorrent to effectively reduce free riding. The key concept is
a strict tit for tat algorithm paired with ideas from network coding. The new scheme results in a robust,
scalable and fair peer-to-peer file sharing system.
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Chapter 1

Introduction

In this thesis we take a close look at the popular peer-to-peer (P2P) networkBitTorrent1 which is nowadays
considered the most used network for file sharing. The goal is to find ways to free ride in BitTorrent, i.e.
downloading the shared files without contributing to the network. After showing that this is indeed feasible
we investigate new mechanisms to enforce collaboration and thus inhibit free riding almost entirely.

1.1 Motivation

BitTorrent has long been considered a robust P2P protocol with incentives to render cheating unattractive,
i.e. minimize free riding. Free riding, however, can be attractive because of several reasons: Upstream
bandwith for residential access is usually more limited than downstream and thus a precious resource.
But as network links are becoming faster every year, this will not be a limiting factor in the near future
anymore. Another advantage for free riders is the legal aspect of uploading: In Switzerland for example, it
is legal to download copyrighted media while uploading and sharing it is forbidden. A client that free rides
can therefore be used legitimately to download music and movies for free without the risk of being sued.
Software, on the other hand, cannot be downloaded legally using a free riding client.

Once the questions on free riding has been answered, we try to enhance the protocol and invent mechanisms
to render free riding infeasible. This includes areal tit for tat mechanism and ideas from network coding.

1.2 Contents

In the next chapter we are going to give a brief introduction to BitTorrent. We take a look at the protocol
and the mechanisms behind it as well as some important details and flaws. Following that is a chapter
about BitThief, our own BitTorrent client implementation in Java. We describe different attacks we tried
to apply and discuss their effectiveness. The last two chapters introduce extension mechanisms to enforce
collaboration which could effectively prevent free riding and an outlook on further work in the area of
BitTorrent.
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Chapter 2

The BitTorrent Protocol

BitTorrent was invented and implemented by Bram Cohen1 in 2001. The goal of BitTorrent is to distribute
rather large files in an efficient manner. Old client/server models usually impose a huge load on the servers.
With BitTorrent, some of the load is distributed among all the peers requesting a file as all peers uploads to
other peers while downloading which results in an increased overall bandwith.

Bram’s implementation, commonly referred to as themainlineclient, is written in Python and serves as the
de-facto standard for other clients. The most used client nowadays is Azureus2, which has a lot of features
and extensions not available in the original client.

2.1 Terminology

If a user wants to share some files using BitTorrent she first needs to create atorrent metafile. The metafile
contains essential information about the files being shared:

• names/paths of the files

• file lengths

• piece length

• piece hashes

• tracker announce URL

The data of all files is concatenated in the order the files are specified in the metafile and then split into
equal sizedpieces. Each piece is2N bytes long, usually between 64KB and 1MB. BitTorrent then operates
on these pieces only and the files are reconstructedafter all pieces have been fetched.

Once the metafile has been created, the user has to start a BitTorrent client toseedthe torrent. A BitTorrent
node that has already downloaded the whole torrent is commonly referred to as aseedor seeder. The client
will announce itself to the tracker URL specified in the metafile and thetrackerwill store the address and
theinfo hash(SHA1 hash of the metafile) for later retrieval. Metafiles can be published as any ordinary file:
On a website, by Email, on a CD-ROM or even a DVD and are usually only a couple of KB in size. Most
of the metafiles however end up on public torrent sites among dozens of thousands other ones where they
can be easily searched and retrieved.

A user who is interested in downloading the torrent just needs to fetch the metafile found on the web. She
then starts a BitTorrent client that contacts thetrackerfirst by sending theinfo hashof the torrent metafile.
The tracker responds with a set of addresses which the client contacts afterwards. The client’s address will
also be remembered by the tracker to tell later joining peers about the existence of it. Clients keep querying
the tracker once in a while to refresh their view of the other peers. The client has enough information now
to start downloading the files from the other peers. At this stage the client is called aleecherbecause it is

1http://bitconjurer.org/
2http://azureus.sourceforge.net/

http://bitconjurer.org/
http://azureus.sourceforge.net/
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still in progress of fetching the files. As soon as it finishes downloading all the pieces it will turn into a
seeder. It is up to the client to determine how long to stay in the network as a seeder before leaving.

A tracker, a metafile and the peers registered at that tracker for downloading the specific torrent form a so
called torrentswarm. Swarms are independent of each other and a client can be part of multiple swarms.
This is a notable difference compared to other p2p systems such as Gnutella or eMule where clients are all
part of the same network, regardless of what files they share.

2.2 On The Wire

BitTorrent was designed to work over the Internet and thus uses TCP for communication. A connection
with a remote peer is initialized by connecting to it on TCP level and then sending a handshake message.
The format of the handshake message can be seen in TableA.1.

The message is 68 bytes long and contains, among others, three important parts:

• Reserved Bytes: This is a 64 bit long bitfield which contains information about the protocol ex-
tensions supported by the client. The first version of BitTorrent had all bits set to zero, while newer
versions already use a couple of bits. An unofficial list of reserved bits can be found on the BitTorrent
specification wiki page.3

• Info Hash: The SHA1 hash of the metafile is used to signal to the remote peer for which torrent
download this connection is planned to be used.

• Peer ID: A 160 bit long bitstring which is chosen at random by each client instance.

After both peers have sent their handshake messages their connection is set up properly. What follows is
a stream of messages starting with a 4 byte length prefix each. Before sending any further messages each
peer needs to communicate its download progress. The bitfield message as seen in TableA.2 is used for
this purpose. It contains a bit for each piece, where0 is used for a piece yet to be downloaded and1 marks
a piece that has already completely been downloaded and also verified against the hash in the metafile. If
a peer does not have any pieces yet it may ommit the bitfield message. When a peer downloads a piece
later on, it informs all neighbors by sending a "have" message as listened in TableA.3. If a connection
has been idle for two minutes, a peer should send a keep-alive message in order to prevent the remote peer
from closing the link. Keep-alive messages are only 4 bytes in size, all set to zero (See TableA.4). The
remaining message types will be explained in more detail during the next section. There exists the choke
message (TableA.5), unchoke message (TableA.6), interested message (TableA.7), not-interested message
(TableA.8), request message (TableA.9), cancel message (TableA.10) and piece message (TableA.11).

2.3 Mechanisms

A BitTorrent connection is stateful and both peers act according to the rules that will be explained below.
A typical sequence of messages sent on a connection is shown in Figure2.1.

2.3.1 Interested/Not Interested

A peer is either interested or not interested in the opposite peer. A new connection starts with both peers
beingnot interested in the remote side. Once a peer discovers that the neighbor possesses a piece it is still
missing it sends an interested message (TableA.7) to the remote peer. Similarly, if a peer downloads a new
piece and discovers that the remote side does not offer any new pieces anymore, it will send a not-interested
message (TableA.8).

The interested state is important for the unchoking decisions: The remote can use the unchoke slots more
efficiently by knowing in advance which peers will start requesting pieces once unchoked.

3http://wiki.theory.org/BitTorrentSpecification#Reserved_Bytes

http://wiki.theory.org/BitTorrentSpecification#Reserved_Bytes
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Figure 2.1: Peer A connects to peer B, after which they exchange handshake and bitfield messages. B offers
pieces A does not yet have which results in A sending an interested message along the connection. Once B
decides to unchoke A it sends an unchoke message to peer A which then immediately starts sending piece
requests. The piece requests are answered and new ones sent until B chokes A again.

2.3.2 Choking/Unchoking

Because TCP congestion control is not adequate, Bram Cohen implemented a mechanism based on choking
and unchoking to manage bandwith more efficiently. Peers are either choked or unchoked by a remote peer.
A connection starts with both peers in choked mode. A choked peer is not allowed to send any piece
requests and will be banned immediately if doing so. Once a peer becomes unchoked and is interested it
will start sending piece request messages (TableA.9) which are answered by sending the part of the piece
requested (TableA.11). Choking and unchoking is performed using the messages shown in TableA.5 and
A.6 respectively.

The most important thing about BitTorrent is the algorithm for choosing which peers to choke and unchoke.
The mainline client reconsiders its choking decisions once every 10 seconds. Peers are sorted by their
recent upload rate starting with the fastest uploaders first. Then, the client unchokes peers starting with the
fastest uploader until it has unchokedk peers that are interested. Not interested peers are also unchoked, but
they are not considered for thek unchoke slots as they will not be able to request any pieces immediately
after being unchoked. If an unchoked but not interested peer becomes interested, the client recalculates the
unchoked set for this new situation. Apart from thek unchoked peers there is oneoptimistic unchoketaking
place every 30 seconds in order to give recently joined peers an opportunity to download a starting set. This
intial set enables them to exchange pieces with other peers using the regular choking mechanisms.

Often people talk about tit for tat when it comes to BitTorrent, but this is simply not appropriate. A peer
that has less thank connections into the swarm willalwaysupload to any peer that is interested, no matter
whether that neighbor contributes anything. Also, while the optimistic unchoke slot is good for fresh peers,
it violates tit for tat as well because it enables peers to download without having contributed anything.
This clearly is a weakness of the BitTorrent protocol and we will see later on how effectively this can be
exploited.

2.3.3 Endgame

Implementations usually refrain from requesting the same sub-piece from multiple peers simultaneously
in order not to download data twice. This mechanism is preventing a client to reach fast download rates
when most of the pieces have already been downloaded. Once every remaining sub-piece is pending as a
request and there are no more left to request, the mainline client switches intoendgamemode. It now starts
requesting sub-pieces from multiple neighbors at the same time which increases overall throughput at the
risk of redundant data being downloaded. To reduce this risk Bram introduced a cancel message (Table
A.10) used to cancel sub-piece requests as soon as they are downloaded from a different peer. The client
ends up downloading only a couple of sub-pieces twice which is a good compromise.
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2.4 Extensions

Over the years, the original BitTorrent protocol has been extended in various ways. The people behind the
Azureus client are one of the driving forces that push the protocol forward. Naturally, the Azureus client
already supports most of the extensions mentioned below.

2.4.1 Distributed Tracker Protocol (DHT)4

The tracker represents a single point of failure in the original BitTorrent protocol. Popular torrents often
attract thousands of peers and thus impose a heavy load on the tracker resulting in complete denial of service
at worst. In order to circumvent the problems of a centralized instance they developed a distributed tracker
protocol based on a distributed hash table. The specification draft can be found on bittorrent.org. Both
Azureus and the mainline client have implemented a DHT but unfortunately not the same one: Azureus
was first in implementing it in a very general way but then Bram decided to create a slightly different (read:
incompatible) version for the mainline client.

2.4.2 Peer Exchange (PEX)5

Another extension allows the clients to gossip about their known peers and thus exchange active peer infor-
mation rapidly. Azureus among others has implemented this extension but the mainline client has not. The
usefulness can be questioned as this does not help new peers find any neighbors and they still need a tracker
of some sort for bootstrapping.

2.4.3 Fast Extension6

This extension is officially supported by the mainline client and introduces a couple of modifications to the
original BitTorrent protocol:

• Have All/Have None Messages: Instead of sending a bitfield filled with all ones it is simpler to send a
have all message. Similarly, instead of sending an all empty field one can send a have none message.
The bandwith saved by this mechanism can be questioned though. We do not think it matters a lot.

• Suggest Piece Message: Peers, especially seeders, can send this message to improve overall network
efficiency by distributing the sent pieces uniformly among all neighbors and to avoid a piece being
downloaded several times while another one is not downloaded at all.

• Reject Request Message: If a request message is known not to be handled, peers now reply with a
reject request message. This can happen if a choke message is sent to a remote peer and in the mean-
time another (valid) request message arrives. The peer should then respond with a reject message in
order to inform the remote peer that the request will not be processed.

The fast extension has one more interesting feature: It specifies an algorithm to calculate a piece subset
based on the Class C IP-Network the remote peer is in. The pieces in that set can be downloaded by the
remote peer “free of charge”, i.e. piece requests will be fulfilled regardless whether the peer is currently
choked. This can improve bootstrapping of newly arriving peers by giving them a pseudo-random piece set
to start with. The number of pieces available for free is by default set to 10.

2.4.4 Connection Encryption7

More and more Internet service providers (ISPs) are starting to throttle or even block BitTorrent traffic. In
order to circument these measures Azureus started implementing connection encryption. The encryption
key is negotiated using a diffie-hellmann key exchange at the beginning of the connection. There exists a

4http://bittorrent.org/Draft_DHT_protocol.html
5http://en.wikipedia.org/wiki/Peer_exchange
6http://bittorrent.org/fast_extensions.html
7http://www.azureuswiki.com/index.php/Message_Stream_Encryption

http://bittorrent.org/Draft_DHT_protocol.html
http://en.wikipedia.org/wiki/Peer_exchange
http://bittorrent.org/fast_extensions.html
http://www.azureuswiki.com/index.php/Message_Stream_Encryption
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less useful but more compatible version where the diffie-hellmann key exchange happensafter the inital
handshake sending. The drawback of this solution is that a packet sniffer can still easily detect BitTorrent
handshake messages and then throttle or block the corresponding TCP connection.

2.4.5 Cache Discovery Protocol

This official extension has been announced by BitTorrent, Inc. and CacheLogic on August 7 2006.8 There
exist estimates that BitTorrent might account for up to 35% of total Internet traffic9 and clearly ISPs have
an interest in curbing this. With the connection encryption extension this task got more difficult if not
impossible. The idea of the cache discovery protocol seems smart: ISPs install special cache machines
(similar to proxy servers probably) in their network which will capture and store BitTorrent traffic running
through the network. BitTorrent clients will then query the cache servers for pieces before downloading
them from remote clients. This keeps (potentially) a lot of traffic within the ISPs local network which is
cheap.

Unfortunately, as of this writing, there is not a single bit of documentation or source code available that
would explain the details of this protocol. We are very interested in learning more about it, as this could
be agreatopportunity for free riders! Our guess is that BitTorrent, Inc. was not able to find enough ISPs
interested in this solution and so the whole thing will probably remain vaporware.

2.5 Quirks

During development of our client we discovered a couple of annoyances in the BitTorrent protocol:

• Length Prefixed Messages: Having a four byte length prefix for each message is a very good strategy,
but why is there no length prefix for the handshake message? Implementations could be written much
more elegantly if there was one.

• Tracker NAT (Network Address Translation) Check: Some trackers perform NAT checks to verify
if a newly joined node can actually be connected to from the outside. The NAT Check is performed
by sending a handshake messagewithout the peer id partand then waiting for a handshake message
from the peer. The problem with this is that peers receiving the first 48 bytes of a handshake message
cannot decide whether this is a NAT check or a regular peer connection and the missing 20 bytes will
be delivered in an instant. The mainline client "fixes" this by replying with a handshake message
already after the first 48 bytes. This just feels wrong. Instead, they should have chosen a NULL peer
id for NAT checks in our opinion, which would improve the consistency. Alternatively, the handshake
message could start with a length prefix as mentioned above which would make this NAT check more
elegant.

8http://www.cachelogic.com/home/pages/news/pr070806.php
9http://in.tech.yahoo.com/041103/137/2ho4i.html

http://www.cachelogic.com/home/pages/news/pr070806.php
http://in.tech.yahoo.com/041103/137/2ho4i.html




Chapter 3

BitThief: A Free Riding Client

In this chapter we introduce our own BitTorrent clientBitThief and the key concepts and ideas. We also
analyze the effectiveness of our client and give an overview on the concrete implementation in Java. Our
client can be downloaded fromhttp://dcg.ethz.ch/projects/bitthief/ .

3.1 Concepts and Results

We came up with a list of different attacks, mostly inspired by [7]. The authors of the paper sketch a couple
of individual attacks but fail to use them concurrently. Also, their interest lies in the stability and robustness
of the bittorrent swarm under the influence of free riders: While this can be an interesting question, we are
not at all concerned with the stability of the swarm but we only care about our individual, selfish client’s
performance.

What follows is a short summary of the different attacks and results obtained. For a more detailed discussion
we would like to refer to our paper “Free Riding in BitTorrent is Cheap” [8]. The paper can also be found
in AppendixB.

3.1.1 Agressive Connection Opening

The mainline client has a default limit of 100 open connections which can be extended using command line
arguments. Our client does not impose a limit on the number of active connections; in fact, it tries very
agressively to open as many connections as possible. This is achieved by querying the tracker more often
for peer addresses. A tracker normally reports no more than 50 peer addresses per query which is only a
fraction in a huge swarm with thousands of peers. Our frequent tracker queries improve our knowledge
about the swarm rapidly. The distributed tracker protocol (DHT) could also be used for this task but we
found ordinary tracker queries to be efficient enough.

Figure3.1 shows a comparison between BitThief and the mainline client regarding their number of open
connections. After just 6 minutes BitThief was able to open almost three times as many connections as the
mainline client. The advantage becomes less as time continues but remains notable until the end.

3.1.2 Downloading from Seeders

The seeders are the greatest weakness of BitTorrent: They have already downloaded the complete file
and are therefore not interested in downloading anything from their peer neighbors. Thus, they have no
better algorithm than round-robin to decide to which neighbor they send data to next. This results in all its
neighbors receiving the same share of its upload bandwith, regardless of whether they upload data to other
leechers.

A torrent swarm starts with a single seeder and a lot of leechers which will then gradually convert into
seeders. These seeders stay online for an unpredictable amount of time: It is basically up to the user to
decide when to stop “seeding” a torrent. This results in a torrent swarm consisting of mostly seeders after a
while and only a handful of leechers. Our client profits a lot in these situations as trading with other leechers

http://dcg.ethz.ch/projects/bitthief/
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Figure 3.1: Number of open connections over time: In comparison to the official client, BitThief opens
connections much faster.

does not boost performance that much. The effect of this surplus of seeders can especially be observed in
closed BitTorrent communities with sharing ratio enforcements: Users are very eager to get a high sharing
ratio and remain in a torrent swarm as seeders for a very long time.

3.1.3 Uploading Garbage

Piece sizes in BitTorrent are usually between 64KB and 1MB, depending on the choice of the user who cre-
ated the torrent metafile. The metafile contains SHA1 hashes for each piece, so that a piece can be verified
as soon as it has been downloaded completely. In order to more effectively and successfully exchange data
between peers, these pieces are broken up into sub-pieces of 16KB in size each, as uploading a 1MB piece
would take too long for slow peers. The sub-piece granularity has one big flaw: A peer which receives a
sub-piece cannot verify the integrity of it, as the torrent metafile contains only the hashes for whole pieces.
The peer therefore has to fetch the whole piece first and can then decide whether the piece is valid or not.
In the later case it usually cannot determine which peer it received bad data from. This makes the protocol
very unstable when there are peers uploading random garbage.

This serves as an idea for an attack: Instead of pure free riding without uploading any data we consider
a more relaxed form of free riding without uploading anyvalid data. By uploading random garbage we
can cheat the remote peer into thinking that we are a good neighbor who uploads data quickly and are thus
unchoked more frequently which enables us to download at a high speed in return. Unfortunately, a lot of
BitTorrent clients try to download all sub-pieces of a piece from the same peer and hence discover quickly
that we are cheating. This usually results in a block of our IP address for a couple of hours or even days,
depending on the implementation.

In trying to improve this idea we implemented a mechanism which prevents us from uploading a whole
piece to a remote peer. That way, the peer needs to fetch the remaining sub-piece from another node and
will in the end not be able to detect which peer sent the corrupted data. Unfortunately, this did not work out
either, as the peer connection stalled because we did not answer certain sub-piece requests. We conclude
that uploading garbage is not an interesting option anymore as most client implementations are good at
handling this exploit.

Nevertheless, a hash tree (Merkle Tree) for torrent content verification could be a helpful extension to be
able to verify the content at a 16KB block level. That way a malicious peer could be identified and blocked
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on the spot. There has been a proposed protocol extension1 but it also acts on piece level which does not
make a lot of sense.

3.2 Implementation

We chose to implement our client in Java based on the official protocol definition and various other resources
on the Internet. The official (mainline) client implementation2 (Python) and Azureus3 (Java as well) were
used as a reference once the documentation was too imprecise or simply outdated. We started implementing
everything from scratch which turned out to be a great lesson in terms of software engineering. Two
screenshots of BitThief in action can be seen in Figure3.2and3.3.

Figure 3.2: The main window of BitThief showing two concurrent torrent downloads.

Figure 3.3: A detailed view of one of the torrent downloads. The graph displayed shows the actual download
rates in KB/s (blue) as well as the average over a 5 minute window (red).

Technologies that were used include:

• Log4j: For all things related to logging as it offers very flexible configuration options.

• JUnit: For unit testing. The state of the art testing framework for the Java platform. We have written
well over 350 test methods which cover the most important aspects of BitThief.

• JFreeChart:This library was used for all graphs visible in the UI and for some internal monitoring
and statistics tools.

• EasyMock:A library which enormously faciliates writing mock and stub objects for test cases. It
also causes a lot of dependency injection to be coded into the application for making tests easier to
write.

• Jakarta Commons:Some method from this package were used to take over various little tasks: Com-
mand line parsing and string conversions for example are being used from this package.

1http://tribler.org/developers/?layer0=101
2http://www.bittorrent.com/
3http://azureus.sourceforge.net/

http://tribler.org/developers/?layer0=101
http://www.bittorrent.com/
http://azureus.sourceforge.net/
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• Java NIO:The “New I/O API” was used for everything network related. The usual network handling
paradigm of one thread per connection does not scale to hundreds of connections. Thanks to this
API BitThief can handle more than 500 concurrent connections without using a noticeable amount of
CPU power.

• Subversion:A source version control system that offers many advantages over CVS and helps orga-
nizing the project.

• Apache Ant:A Java-based build tool used for quick deployment of the application.

• IntelliJ IDEA: The Java IDE of choice!

• MATLAB and Maple:Used for various simulations and calculations.



Chapter 4

Mechanisms Inhibiting Free Riding

4.1 Introduction

When it comes to peer-to-peer file sharing, BitTorrent is one of the most used protocols nowadays: It scales
well to thousands of peers and performance is almost optimal, especially for large files. However, in [8] we
have shown that BitTorrent is not as robust and fair as often assumed. In fact, free riding without uploading
any user data often yields the same performance as when contributing regularly to the network, especially
in large torrent swarms.

We have been thinking about how to make BitTorrent more robust, i.e. ways to prevent free riding while
keeping the simplicity of BitTorrent and its small overhead. Tit for tat [1] seems to be the best strategy
for iterated games where nobody can be trusted. BitTorrent is often considered an example for tit for tat,
but this is clearly not the case: BitTorrent doesnot implement real tit for tat, it uses a similar but weaker
algorithm. In our proposed modifications of BitTorrent we use the real tit for tat algorithm, which renders
free riding much more difficult.

First, we introduce the core concepts of our modifications and explain some basic terms used in the later
sections. We then discuss the optimal set of parameters for our algorithms and look at simulation results.

4.2 Related Work

Bram Cohen wrote a paper about BitTorrent talking about incentives building robustness in BitTorrent [2]
where he claims that BitTorrent “uses tit-for-tat as a method of seeking pareto efficiency”. He explains
how efficient BitTorrent is using the available resources and that it scales well. However, he does not look
into the problem of free riders. There exist other papers which look at BitTorrent and its robustness against
free riding. [7] considers different approaches to exploit BitTorrent, but their focus lies on the stability and
efficiency of the whole torrent swarm and not on the achievements of the free riding node. Also, they fail
to use their proposed attacks in combination to gain better performance. [6] tries to solve the free riding
problem by introducing a real tit for tat mechanism in BitTorrent and they show that it is fairer. Interestingly,
they also note that lack of diversity in available pieces in the network reduces overall tit for tat efficiency;
an issue we try to solve using network coding where the space of available pieces is much larger than in
classic BitTorrent. Tit for tat was dealt with in [1] where the authors examine different strategies for the
iterated prisoner’s dilemma and come to the conclusion that tit for tat seems to be the best strategy if an
entity can trust nobody else.

4.3 Core Concepts

Our first idea for an improvement was quite appealing: A seeder sends a piece to a peer for free and then
asks for some sort ofproof that the peer has uploaded the piece to at least one other node. Only then the
seeder uploads another piece to that peer. This way, we ensure that the node is actively taking part in the
network. However, thisproof is not an easy thing to realize: In a network where nobody else can be trusted,
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it is impossible to proof anything. Using a Sybil Attack [3] a malicious peer could generate proofs for
non-existent nodes. Or, someone could develop a special client that acts in collusion with its own instances
to cheat alien peers.

Another idea was for a seeder to send out data to peersA andB in a way that the dataA andB receive is
useless by itself but can be “decoded” ifA sends all its data toB and vice versa. This, however, suffers
from the non-existence of afair exchangealgorithm without a trusted third party: As soon asA has sent all
its data toB, that peer could refuse to send any data back toA andA would thus gain nothing from this
scheme. Tit for tat after all seemed to be the easiest and most effective strategy to implement. To ensure
that the network would not run dry we used ideas from network coding to enlarge the space of trading
candidates massively.

In order to simplify the explanations below we assume that the “file” being shared forms one big chunk
of data that can be split inton piecespi of size2b bytes.2b will be the size of our negotiation units. For
comparison, in BitTorrent the pieces are created exactly the same way, but the unit of negotation is only
a part of such a piece, a so called block of 16KB (fixed) in size. BitTorrent distributes thesen pieces
directly, e.g. a peer can request a certain part of a piece from another peer which then sends the data. In
our proposed scheme however, we don not exchange these pieces itself. Instead, we use a form of network
coding as proposed in [4].

4.3.1 Network Coding

Each piece of the data block is mapped to an integer number inGF (q):

pi ∈ GF (q)

with q prime andq > 28b. The shared data can now be represented as a column vectorP :

P =


p0

p1

...

pn−1


The piecespi are never sent directly on the wire, instead we form linear combinationsC of these pieces in
GF (q) and then transmit them:

Cci
= ciP with row vectorci = {{0, 1}n|#1 = k,#0 = (n− k)}

The transmission unitu is defined as

ui := (ci, Cci
)

ci is the coefficient vector for the linear combinationCci
. [4] uses entirely random coefficient vectors out

of GF (q)n while we use vectors consisting of exactlyn− k zeroes andk ones at random locations.

As in BitTorrent, we use the concept of “have” messages to inform neighbors about available linear combi-
nations. Instead of a single integer number for the piece index, as used in BitTorrent, we need to use another
approach for enumerating available linear combinations. We chose to use ak-tuple consisting of the posi-
tions of the1s in the coefficient vectorci. These tuples are of constant sizek and will be communicated
to the neighbors as part of “have” messages. Also the “bit field” message used by BitTorrent needs to be
enhanced into a list ofk-tuples.

Peers will not be able to reconstruct the original dataP without downloading a set ofm ≥ n distinct linear
combinationsU := {u0, u1, . . . , um−1}. Peers can then form a matrixM ∈ GF (q)mn built out of row
vectors as follows:

M =


c0

c1

...

cm−1
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The clients then need to solve a linear equation system of the following form:

MP =


c0

c1

...

cm−1




p0

p1

...

pn−1

 =


Cc0

Cc1

...

Ccm−1


The original dataP can be reconstructed from this linear system if and only if the rank ofM is n.

The transmission units are exchanged between peers according to strict tit for tat rules: Every peer uploads
at most one transmission unit more than it has downloaded from a remote peer. The only exception to this
rule are the seeders, peers which have obtained the whole file. In BitTorrent, the seeders upload data to any
peer in a round-robin way which is perfect for free riders. We tend to use a slightly different approach in
our proposal explained in one of the next sections.

BitTorrent uses a rarest first piece selection strategy: A peer determines which pieces of the remote end
are interesting and then fetches the one that is found least often in its neighbor set. For network coding
this strategy does not necessarily make sense, as there is no finite well defined set of linear combinations
needed. Instead we chose a greedy algorithm: We keep a column vectorr ∈ 0, 1n at each node which
counts how many times a piecepi is occuring within our linear combinations. Upon receiving a new linear
combinationci we update the vectorr by addingci component wise. If a component inr becomes1, we
add a constant threshold value ofkn to the component. When deciding which linear combinationcj from
a remote peer we should fetch we calculate the following score for each combination available at the other
peer:

sj = cjr

We then choose the combinationcj with the lowest scoresj . That way we ensure that the linear combina-
tions we fetch cover as many pieces as possible and that the matrixM contains only non-zero columns.

4.3.2 Homomorphic Hash Function

Ensuring data integrity is becoming more difficult when using network coding: The torrent metafile cannot
just contain SHA1 hashes for each piece as there is no way to combine these into a hash for a linear
combination of pieces. Storing the SHA1 hashes of all possible

(
n
k

)
linear combinations would be another

option but simply not feasible for anyk > 1 because of the huge amount of storage space needed.

A better solution to this problem has been presented in [5] with the use of ahomomorphichash function.
The torrent metafile still contains special hashes for each piece which can then be recombined to derive
the hash of a linear combination. Once a peer receives a linear combination it can immediately check the
validity and malicious peers uploading random garbage can effectively be banned. This is important as oth-
erwise corrupted linear combinations would be spread all over the network and would make reconstruction
impossible.

4.3.3 Fast Extension

As part of the BitTorrent fast extension1 the inventors introduced a mechanism for creating a set of piece
indices based on the IP address that peers can request for free. We are using a very similar approach in
our extension: Once a peer connects to a seeder, the seeder uses the IP address2 of the remote peer to
seed a pseudo random number generator which will compute a set ofξ ≤ n linear combinations, wheren
denotes the numer of pieces the file is divided in. These linear combinations will then be announced to the
connecting peer. This mechanism offers two advantages:

• Peers with different IP addresses obtain entirely different linear combinations from a seeder. This
helps in keeping the available number of distinct linear combinations in the network high, which is
an important property as we will see in the next chapter.

1http://bittorrent.org/fast_extensions.html
2To make this more robust against peers that switch IPs often one might want to use the class C or even class B network address.

That way, a client would probably need to change the ISP in order to get an IP from an entirely different B or C network.

http://bittorrent.org/fast_extensions.html
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• By makingξ depend on the size of the swarm it is possible to successfully eliminate free riding. For
example in a swarm with> 50 peers a seeder does not need to upload more than, say,n

10 linear
combinations to a peer, as the peer itself can easily retrieve more linear combinations by trading with
neighbors. The combinations it receives from the seeder form an important starting set for the peer.
As a matter of fact, the chances that any other peer already possesses one of the linear combinations in
this starting set are very small and thus trading these combinations will be easy. Because the random
linear combination set will be based on a peer’s IP, it will not be able to get new combinations by
trying another seeder or by reconnecting to the same one.

Estimating the total network size can be hard but we think that this is not necessary: Seeders should choose
their ξ based on the number ofopen connectionsthey have, which is, more or less, proportional to the
overall network size.

4.4 Optimal Parameter Choice

Our proposed enhancements of BitTorrent are subject to a number of parameters. The most important
ones beingn, the number of pieces data is split into, andk, the number of pieces combined in a linear
combination. In the following sections we provide upper and lower bounds for these two parameters.

4.4.1 Linear Combination Size

The choice ofk is crucial: if k is too small, for example1, the whole advantage of using network coding
is gone. On the other hand, ifk is very large, for examplek = n

2 , computation of the linear combinations
is becoming very expensive: To combinek data pieces, the seeder needs to readk2b bytes from disk. With
k = n

2 this is half the total data amount for every single linear combination. With torrents often being larger
than 1GB this is not feasible nowadays. For performance reasonsk should be as small as possible. On the
other hand, in terms of stability, it should be large.

k is important for the rank of matrixM . Clearly,M cannot have a rank ofn if there is an all zero column.
We now present a lower bound on the probability that every original data piece is part of at least one linear
combination in a randomly drawn set ofn combinations ofk pieces each. Or, simpler: The probability that
M has non-zero columns only.

P (piecei is chosen in a random linear combination) =

(
n−1
k−1

)(
n
k

) =
k

n

P (piecei is chosen in at least one of then combinations) = 1− (1− k

n
)n

Unfortunately, the later probability cannot be extended to the probabilityP (all pieces are chosen in at least
one of then combinations) because the individual probabilities arenot independent. We therefore adjust
the process of drawing random combinations to prove a lower bound: Instead of choosing the combination
among all possible

(
n
k

)
combinations, we pickk random pieces independently with probability1

n . If we
happen to pick a piece more than once, we only add it once to the linear combination. The resulting
combination will therefore have a lower or equal number of components than one from

(
n
k

)
and thus the

probability that a given piecei is part of a combination will be less or equal tok
n :

P (piecei is chosen in a random linear combination) = 1− (1− 1
n

)k ≤ k

n

P (piecei is chosen in at least one of then combinations) = 1−
(

(1− 1
n

)k

)n

= 1− (1− 1
n

)kn

P (all pieces are chosen in at least one of then combinations) =
(

1− (1− 1
n

)kn

)n

A plot of this probability function can be seen in Figure4.1. To determine the bestk, we need to reformulate
the equation above into a function returningk based on the desired probabilityp and the number of pieces
n.
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Figure 4.1: This graph shows the probabilities that every piece is chosen at least once in a set ofn linear
combinations ofk components.

(1− 1
n

)kn ≈ e−k for largen

p =
(

1− (1− 1
n

)kn

)n

≈ (1− e−k)n

k ≈ − log(1− n
√

p)

Plotting this function yields the graph visible in Figure4.2. The number of pieces that need to be combined
in linear combinations grows logarithmically with the error probability that there exists a piece which is not
part ofn randomly selected linear combinations. For all practical purposes, ak ≤ 32 seems to be sufficient,
asn > 232 is not feasible and an error of10−6 is acceptable.

While having each data piece in at least one linear combination is a prerequisite for the matrixM to be of
rankn it is in no waysufficient: We need a formula to calculate the probability that a matrixM built by n
random linear combinations of sizek has a rank ofn. We tried solving this problem but did not come to
an end. Our simulations in MATLAB always calculated a rank ofn if every piece was part of at least one
linear combination and we thus believe that the resulting system of linear equations will be solvable with
high probability.

In [4] the authors use purely random linear combinations: The coefficient vectorsci are drawn fromGF (q)n

in their case. This certainly improves the chances thatM is of rankn but on the other hand it also makes
computing the combinations very expensive. A seeder would need to read the whole shared file for every
single linear combination it generates. This is not practical for files larger than a couple of MB. With our
scheme of onlyk ones in a coefficient vector we can build the combinations much more efficiently: In a
sharing scenario withk = 32 and2b = 64KB a seeder needs to readk2b = 2MB from disk for each linear
combination calculated. Common hard disks support read operations at up to 50MB. The seeder therefore
needs at least125 seconds to generate a combination. This results in at most25 linear combinations that can
be uploaded by a seed, which is a rate of about13Mbit/s. This should be sufficient for most applications.
The rate could further be improved by caching some of the file content in RAM although probably with a
limited effect: The pieces that need to be read are distributed completely random over the file and thus a
cache will not be able to reduce disk IO that much.
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Figure 4.2: Optimal choice ofk based on the error probability1− p that a piece is not part of any of then
linear combinations of sizek.

4.4.2 Choice ofn

Given a fixed size data chunk to be shared,n directly influences the transfer unit size. If the transfer unit size
is chosen too small the protocol will introduce a significant overhead. A size2b ≥ 4KB seems reasonable.
On the other hand, choosingb too large will have two disadvantages:

• The transfer unit size is atomic, i.e. a unit is either transferred completely or not at all. Partial transmits
will not be possible. Ideally, it would take even slow peers only a couple of seconds to upload such
a unit to a remote peer. Assuming that rather slow connections can upload about 16KB a second and
that they are uploading to multiple peers in parallel, a unit size of2b ≤ 64KB makes sense.

• Because of the tit for tat algorithm used a malicious peer can get one transfer unit worth of datafree
from every peer. If the unit size is too large it might be possible to download the whole shared file in a
torrent with lots of peers by only profiting from the one-linear-combination-for-free offer at each peer.
The transfer unit size should therefore be less than 1

total number of peers downloading a torrent over time
of the total data chunk size.

A typical file that might be shared over our network is a 5GB DVD Rip of some movie with a Creative
Commons3 license. To achieve a transfer unit size of 64KB we will need to setn according to:

n ≥ 5GB
64KB

= 81920

4.4.3 Advantages

Trading Unit Diversity

Network coding offers a big advantage over the usual piece-by-piece sharing methods: The space of existing
trading candidates grows much bigger and this helps keeping tit for tat running. The following example
should clarify this a bit:

Consider two peers,A andB. Both have already downloadedn2 transfer units from distinct sources and
we thus assume they have downloaded a random subset of the possible units each. If we would share

3http://creativecommons.org/

http://creativecommons.org/
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the BitTorrent way, both peers would have already completed half the shared data chunk. PeerA is, by
expectation, interested in about half of the units peerB has got and vice versa. They will thus play tit for
tat until they both aquire3n

4 units after which they will need new peers to share with.

On the other hand, if we use network coding, the situation looks entirely different: The space of pos-
sible units is massively bigger,

(
n
k

)
to be precise. A is therefore, by expectation, interested in about

n
2

(
1− n

2(n
k)

)
units thatB possesses and they will thus be able to almost finish their download by playing

fair tit for tat between each other.

This case is idealistic, however. In a real system they will not hold entirely distinct units, as they probably
received their units from common peers. Here comes the diversity we mentioned earlier into play: The
system as a whole should have as many distinct linear combinations around as possible in order to maximize
the probability that two peers are interested in each other. Our algorithm for seeders is a good step into that
direction by seeding random linear combinations to different peers.

Endgame

An endgame as in BitTorrent will not be necessary when using network coding because the linear combina-
tions that need to be fetched towards the end are in no way different to the ones earlier: They are completely
random. As long as the linear combination diversity in the network is much larger thann we do not need to
do any special handling of the endphase which further simplifies the protocol.

4.4.4 Implications

With a choice ofk = 26, n = 217 we reach a high probability of getting a matrixM with rank n. The
resulting system is a stable, fair peer-to-peer network. There is only one catch left: Solving the linear
equation system. This is a trivial step for, say, up to212 equations on today’s computers. However, for
n = 217 the solving process would take ages to complete using a Gaussian elimination scheme, as the time
complexity is inO(n3). We therefore need a faster way of solving these systems. After all, the matrix
M is very sparse, with onlyk entries in a row of lengthn. In our proposed example the “load factor” is
k/n = 26

217 ≈ 0.0001984 and we assume that there has to be a more efficient way to solve this kind of
systems. Unfortunately we were not able to come up with any nor did we find a promising approach.

If the system cannot be solved on a sparse matrix even memory usage becomes an issue: A16384× 16384
matrix barely fits into 1GB of RAM. A simple benchmark using MATLAB’srank function to determine
the rank of matrices for64 ≤ n ≤ 4096 yields the running times visible in Figure4.3. If we extrapolate
these values to the case ofn = 217 we reach a running time of approximately 61 days, provided the whole
matrix still fits into memory! This clearly illustrates how impractical this scheme without better suited
solving algorithms is.

4.5 Evaluation

We have performed several simulations of our proposed protocol in different scenarios. We always used
a file consisting ofn = 4096 pieces with a piece size of2b = 64KB. Linear combinations were formed
out of k = 8 pieces and the simulated peers had uniformly distributed upload bandwiths and downstream
bandwiths slightly larger. We also experimented with different NAT peer percentages, that is peers that
cannot receive incoming connections. The two main scenarios simulated are characterized below:

• One seeder which remains active the whole time and up to two thousand peers arriving in random
exponentially distributed intervals. The nodes leave the network as soon as they have downloadedn
linear combinations

• The same as above, but the seeder leaves the network immediately after it has pushed4n linear
combinations into the network.

The first scenario works very well and all peers are able to finish their downloads. This is due to the fact
that the seeder is staying online all the time and can help the peers out if they should ever be stuck with pure
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Figure 4.3: Rank calculation times in MATLAB on a 3GHz Pentium 4 computer with 1GB of RAM. The
rank ofn × n matrices withk = 32 ones in each row was calculated in the real number space,not on a
finite field.

tit for tat. Surprisingly, the second scenario works very reliably as well. The seeder stays online for only a
fraction of the time the network is online. After that, the network is all on its own and all the peers exchange
data using strict tit for tat. In Figure4.4 we compare the diversity of all available linear combinations in
the network for these two scenarios. It comes with no suprise that the scenario with the constant seeder
features a more stable diversity. However, the diversity of the second scenario is deteriorating very slowly
and remains mostly stable. Only towards the end, when no new peers are joining, the quality suffers rapidly.

We can back up the discoveries made in [6] concerning the correlation between download duration and
upload speed: In BitTorrent, peers with fast upstreams do not necessarily get the same high downstream
they deserve. When using real tit for tat, the upload and download rates correlate strongly as can be seen
in Figure4.5. The relation between upstream and download duration is almost ideal, except for the case
with many firewalled peers: Those peers fail to open a sufficient number of connections and therefore need
significantly more time.

The calculated network overhead (the total amount of bytes sent by all peers divided by the size of the
shared file times the number of peers) was usually between1.1 and1.15. This does not include TCP/IP
overhead but it does include all user data that was transmitted such as handshake messages, having mes-
sages, requests, etc.

To demonstrate the effectiveness of network coding we implemented a BitTorrent like file sharing system
using strict tit for tat for comparison. As a piece selection algorithm we tried both, rarest first and random
piece. The random piece selection performed much worse than rarest first and is thus not considered any-
more in the following discussion. We compared a network with 300 nodes joining according to a poisson
distribution with the following expectationsλi:

λi = 10h/(300− i)

This results in a rush period at the beginning and then steadily decreasing peer arrivals. In both scenarios
we added one seeder at the beginning which leaves the network after having uploaded4n units and all the
other nodes leave the network as soon as they have downloaded the whole file.

The challenge in such a network lies in keeping the unit diversity as large as possible despite the slow peer
arrival rate. Figure4.6clearly shows the difference between the two schemes: In the network coding case
270 peers finish their download while the BitTorrent simulation ends successfully for a mere 16 nodes. The
seeder left the network after 1:40h in the network coding case and after 1:20h in the BitTorrent simulation.
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Figure 4.5: Download duration vs. upstream speed for each individual peer. The graph on the left was
simulated with 10% firewalled peers, while the second one used 60% firewalled peers. The peers in the
“cloud” on the top right in the right graph are the firewalled peers: They do not get the performance they
could if they were directly connectable from the outside. The reason for this is clear: It is more difficult for
these peers to build up a decent number of connections as they can only connect to non-firewalled peers.
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Figure 4.6: Both graphs show the number of active peers and the number of distinct exchange units over
time. On the left is the simulation run with network coding (k = 8) and on the right the BitTorrent run
(k = 1) with rarest first strategy.

Already 3 minutes after the seeder left the network degraded and was in a situation it could not recover
from. In contrast, the network coding scheme continued to work for 30 more hours before it broke down.

We repeated these runs but the outcome was always the same: Network coding effectively helps in keeping
a network diverse. The parameter for the poisson arrival process (expectation of node inter-arrival intervals)
is the key factor which determines whether a network will survive or not. If the nodes arrive close enough,
both networks do not have a problem working until the end. But if the time between node arrivals grows
larger it becomes more difficult as there are nodes leaving the system which take a lot of “knowledge” with
them that cannot be replaced.

4.6 Conclusion

Most existing peer-to-peer file sharing systems have been of relatively primitive nature: They focus on
speed and ease of implementation. Network coding is in our opinion a step into a new direction: The
protocol makes use of sophisticated mathematical constructs which indeed improve the overall quality of
the network. This added value comes with a downside, the complexity of the numerical operations involved.
Solving a linear equation system with more than216 unknowns is not an easy task on an ordinary personal
computer. Further, some of our assumptions about the rank of the matrixM might be too optimistic, we
certainly need to spend more time investigating the exact mathematical problems. Nevertheless, network
coding looks like a good addition to existing peer to peer systems and we are confident that there lies great
potential that can be utilized to build more robust and fair systems.



Chapter 5

Further Work

5.1 BitThief

Suggestions for improving our free riding BitTorrent client.

5.1.1 Distributed Tracker Protocol

The distributed tracker maintenance code is already in place and working, though it is never enabled at
runtime. Still missing is the code to “resolve” a key into a value in the distributed hash table (DHT) and we
are thus unable at the moment to get any peer information out of the system. This is a relatively easy task
and should be combined with others from below.

5.1.2 Resuming Download Functionality

If BitTorrent should crash or you want to actively pause a currently running download there is no automatic
way to resume the download later on. Instead, you need to load the exact same torrent metainfo file again
and point BitThief to the same download location you used previously to continue the download. It would be
nice if BitThief could actually remember the currently running downloads and resume them automatically.

Part of this work could also be an improved file validation algorithm: Instead of checking every piece on
disc against the hash in the metafile on startup we could somewhere store the pieces already downloaded
correctly and thus speed up resume operations significantly, especially on large torrents.

5.1.3 Improving GUI

A lot of parameters can only be set on the command line of BitThief. As most people tend not to like
command lines it would be helpful if some of the options could be adjusted in the graphical UI. Another
helpful UI display would be an estimated time of completion, which is straightforward to implement.

5.1.4 Connection Encryption

More and more BitTorrent clients are using encrypted connections to bypass ISP throttling mechanisms.
Implementing connection encryption for BitThief would enable BitThief to connect to those peers also that
allow only encrypted connections.

5.1.5 Partial Piece Storage

BitThief keeps the partially downloaded pieces in memory at the moment. This has several disadvantages:

• If pieces are big (> 1MB) and a lot of them only partially available BitThief might run out of memory.
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• If BitThief should crash, all the partially downloaded pieces are lost. This can be a couple of MB
wasted.

A simple solution is to store the partially downloaded pieces on disk and to implement a mechanism for
restoring the partial pieces after a crash.

5.2 BitTorrent

A couple of possible further research and implementation projects based on BitTorrent.

5.2.1 Hash Tree Extension

As mentioned earlier, BitTorrent’s integrity checking mechanisms are not that sophisticated. The existing
algorithms can only verify data on a piece level which is up to a few MB in size, while the exchange unit
size is a mere 16KB. A possible solution is storing hashes of every 16KB sub-piece in the torrent metafile.
Assuming a hash size of 128 bits this would blow a metafile for a 4GB shared file up to 4MB.

Another method is the idea of hash trees or merkle trees: In the torrent metafile we store only a 128 bit hash
tree root. We then could introduce a new piece message format which does not only contain the 16KB piece
data but also the required hashes from the hash tree in order to verify the integrity of the piece. Assuming
a binary hash tree such a piece message would need to contain 18 additional hashes in the case of a 4GB
torrent. At 128 bits per hash this is 288 bytes per 16KB sub-piece; a 2% overhead. A 2% overhead per
sub-piece exchanged results in a total overhead of about 80MB which might seem like a lot. However,
this would make the protocol entirely secure against peers sending corrupted data while even shrinking the
metafile size.

Using this scheme a lot of redundant data would be transferred. Instead of adding the hashes needed for
verification to the piece message we could introduce a new set of messages for requesting hashes of specific
tree nodes which would reduce the overhead for the price of a more complicated design.

The extension could be implemented for Azureus as well as the mainline client in a totally backwards
compatible way.

5.2.2 Proof of Concept Implementation of Network Coding

Simulations are a good tool to get a first idea on how things might work. Modelling the Internet is a difficult
task however and tends to be oversimplified. According to Bram Cohen strict tit for tat does not work in a
real world of peer-to-peer file sharing. We therefore suggest implementing a small test application which
uses the ideas from network coding we presented for sharing small files, in order not to run into memory or
processing capacity issues.

The application could be implemented on top of BitThief or as a separate stand-alone system and then be
deployed among friends and families. We suggest implementing the system without integrity checks first
and see how it works. After all there should not be too many malicious peers among your friends and
families...

5.2.3 Algorithms for Efficient Solving of Sparse Linear Equation Systems

The problem with network coding schemes clearly is scalability in terms of file size. For efficient sharing
of large files we need to be able to work with giant sparse matrices efficiently. A time complexity ofO(n3)
is not practical whileO(kn2), the complexity for solving linear equation systems with band matrices, could
work out. This task is of pure mathematical nature and independent of any other work.

5.2.4 Proof for Matrix Rank

Another interesting mathematical question is the expectation of the rank of random matrices. Specifically:
What is the probability that am× n matrixM in GF (q)m×n with [non-zero columns and] exactlyk ones
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on each row has rankn? The answer to this question is very important for the network coding scheme to
work: If this probability is too small the peers would need to fetch more thann linear combinations in order
to solve the linear equation system at the end. This reduces overall protocol efficiency by quite a bit.





Appendix A

BitTorrent Protocol Message Formats

Table A.1: Format of the Handshake Message

Offset 0 1 20 28 48

Length 1 19 8 20 20

Content 19 "BitTorrent protocol" 0x00..00 0x00..00 0x00..00

Description Protocol Length Protocol Name Reserved Bytes Info Hash Peer ID

Table A.2: Format of the Bitfield Message

Offset 0 4 5

Length 4 1 N

Content N + 1 5 0x00..00

Description Length Type BitField

Table A.3: Format of the Have Message

Offset 0 4 5

Length 4 1 4

Content 5 4 0x00..00

Description Length Type Piece Index
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Table A.4: Format of the Keep-Alive Message

Offset 0

Length 4

Content 0

Description Length

Table A.5: Format of the Choke Message

Offset 0 4

Length 4 1

Content 1 0

Description Length Type

Table A.6: Format of the Unchoke Message

Offset 0 4

Length 4 1

Content 1 1

Description Length Type

Table A.7: Format of the Interested Message

Offset 0 4

Length 4 1

Content 1 2

Description Length Type

Table A.8: Format of the Not-Interested Message

Offset 0 4

Length 4 1

Content 1 3

Description Length Type

Table A.9: Format of the Request Message

Offset 0 4 5 9 13

Length 4 1 4 4 4

Content 13 6 0x00..00 0x00..00 214

Description Length Type Piece Index Offset Length



Table A.10: Format of the Cancel Message

Offset 0 4 5 9 13

Length 4 1 4 4 4

Content 13 8 0x00..00 0x00..00 214

Description Length Type Piece Index Offset Length

Table A.11: Format of the Piece Message

Offset 0 4 5 9 13

Length 4 1 4 4 N

Content N + 9 7 0x00..00 0x00..00 0x00..00

Description Length Type Piece Index Offset Data





Appendix B

Paper: Free Riding in BitTorrent is
Cheap

On the following 6 pages we present our paper about free riding in BitTorrent. The paper was submitted on
August 11 for the “Fifth Workshop on Hot Topics in Networks” (HotNets-V)1 in Irvine, California.

1http://www.acm.org/sigs/sigcomm/HotNets-V/

http://www.acm.org/sigs/sigcomm/HotNets-V/
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ABSTRACT
We address the question whether it is possible to down-
load entire files without reciprocating in BitTorrent. To this
end, we developed BitThief, a free riding client that never
contributes any real data. Our findings suggest that down-
loading without sharing is indeed feasible and that simple
tricks suffice in order to achieve high download rates, even
in the absence of seeders. Moreover, we show that sharing
communities provide many incentives to cheat. Finally, we
illustrate how peers in a swarm react to various sophisti-
cated attacks.

1 INTRODUCTION
As pure peer-to-peer (p2p) systems are completely decen-
tralized and resources are shared directly between partic-
ipating peers, all p2p systems potentially suffer from free
riders, i.e. peers that eagerly consume resources without
reciprocating in any way. Not only do free riders diminish
the quality of service for other peers, but they also threaten
the existence of the entire system.

For that reason, it is crucial for any system without a cen-
tralized control to incorporate a rigorous incentive mecha-
nism that renders freeloading evidently unattractive to self-
ish peers. Unfortunately, however, many solutions so far
either could easily be fooled or were unrealistically com-
plex. Bram Cohen’s BitTorrent protocol heralded a para-
digm shift as it demonstrated that cooperation can easily
be fostered among peers interested in the same file and that
concentrating on one file is often enough in practice. The
fair sharing mechanism of BitTorrent is widely believed to
successfully undermine freeloading behavior.

Contrary to such belief, we show that BitTorrent in fact
does not provide sufficient incentives to rule out free rid-
ing. The large degree of cooperation observed in BitTorrent
swarms is mainly due to the widespread use of obedient
clients which willingly serve all requests from other peers.
We have developed our own BitTorrent client BitThief 1 that
never serves any content to other peers. With the aid of this
client, we demonstrate that a peer can download content
fast without uploading any data. Surprisingly, BitThief al-
ways achieves a high download rate, and in some experi-
ments has even outperformed the official client. Moreover,
while seeders (“altruistic peers”) clearly offer the oppor-
tunity to freeload, we are even able to download content
quickly if we ignore seeders and download solely from

1Available at http://dcg.ethz.ch/projects/bitthief/.

other peers that do not possess all pieces of the desired con-
tent (leechers). This implies that the basic piece exchange
mechanism does not effectively restrain peers from free-
loading.

Sharing communities are also investigated in this paper.
By banning users with constantly low sharing ratios or by
denying them access to the newest torrents available, such
communities encourage users to upload more than they
download, that is, to keep their sharing ratio above 1. We
will show that sharing communities are particularly appeal-
ing for free riders, and that cheating is easy.

We believe that the possibility to freeload which does not
come at the cost of reduced quality of service (e.g., down-
load rate) is attractive for users: Not only because wast-
ing more expensive upload bandwidth is avoided, but also
because media contents such as music or video shared in
p2p networks may be subject to copyrights. However, as
more and more users decide to free ride, the usefulness of
a p2p system will decline quickly. Thus, spreading such
freeloading clients might prove to be an efficient attack for
corporations fighting the uncontrolled distribution of their
copyrighted material.

2 BITTORRENT
The main mechanisms applied by BitTorrent are described
in [4]; for additional resources including a detailed tech-
nical protocol, the reader is referred to www.bittorrent.org.
Basically, BitTorrent is a p2p application for sharing files
or collections of those. In order to participate in a tor-
rent download, a peer has to obtain a torrent metafile
which contains information about the content of the tor-
rent, e.g. file names, size, tracker addresses, etc. A tracker
is a centralized entity that keeps track of all the peers
(TCP endpoints) that are downloading in a specific torrent
swarm.2 Peers obtain contact information of other partici-
pating peers by announcing themselves to the tracker on a
regular basis. The data to be shared is divided into pieces
whose size is specified in the metafile (usually a couple
of thousand pieces per torrent). A hash of each piece is
also stored in the metafile, so that the downloaded data can
be verified piece by piece. Peers participating in a torrent
download are subdivided into seeders which have already
downloaded the whole file and which (altruistically) pro-
vide other peers with any piece they request, and leech-
ers which are still in progress of downloading the torrent.

2Recently, a distributed tracker protocol has been proposed and imple-
mented by most modern clients.
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While seeders upload to all peers (in a round robin fash-
ion), leechers upload only to those peers from which they
also get some pieces in return. The peer selection for up-
loading is done by unchoking a fixed number of peers every
ten seconds and thus enabling them to send requests. If a
peer does not contribute for a while it is choked again and
another peer is unchoked instead.

The purpose of this mechanism is to enforce contribu-
tions of all peers. However, each leecher periodically un-
chokes some neighboring leecher, transferring some data to
this neighboring peer for free. This is done in order to al-
low newly joined peers without any pieces of the torrent to
bootstrap. Clearly, this unchoking mechanism is one weak-
ness that can be exploited by BitThief.

3 BITTHIEF: A FREE RIDING CLIENT

In this section we provide evidence that, with some simple
tricks, uploading can be avoided in BitTorrent while main-
taining a high download rate. In particular, our own client
BitThief is described and evaluated. BitThief is written in
Java and is based on the official implementation3 (writ-
ten in Python, also referred to as official client or main-
line client), and the Azureus4 implementation. We kept the
implementation as simple as possible and added a lot of in-
strumentational code to analyze our client’s performance.
BitThief does not perform any chokes or unchokes of re-
mote peers, and it never announces any pieces. In other
words, a remote peer always assumes that it interacts with
a newly arrived peer that has just started downloading.
Compared to the official client, BitThief is more aggres-
sive during the startup period, as it re-announces itself to
the tracker in order to get many remote peer addresses as
quickly as possible. The tracker typically responds with 50
peer addresses per announcement. This parameter can be
increased to at most 200 in the announce request, but most
trackers will trim the list to a limit of 50. Tracker announce-
ments are repeated at an interval received in the first an-
nounce response, usually in the order of once every 1800
seconds. Our client ignores this number and queries the
tracker more frequently, starting with a configurable inter-
val and then exponentially backing off to once every half an
hour. Interestingly, during all our tests, our client was not
banned by any of the trackers and could thus gather a lot
of peers. The effect of our aggressive behavior is depicted
in Figure 1. Finally, note that it would also be possible to
make use of the distributed tracker protocol.5 This proto-
col is useful if the main tracker is not operational. Thus far,
we have not incorporated this functionality into our client
however.

Having a large number of open connections improves
the download rate twofold: First, connecting to more seed-
ers allows our client to benefit more often from their round

3See http://bittorrent.com/.
4See http://azureus.sourceforge.net/.
5See http://www.bittorrent.org/Draft DHT protocol.html.
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Figure 1: Number of open connections over time: In comparison to the
official client, BitThief opens connections much faster.

robin unchoking periods. Second, there will be more leech-
ers in our neighborhood that include BitThief in their peri-
odical optimistic unchoke slot. Opening more connections
increases download speed linearly, as remote peers act in-
dependently of the number of our open connections. How-
ever, note that opening two connections to the same peer
does not help, as the official client, Azureus, and presum-
ably all other clients as well immediately close a second
connection originating from the same IP address.

The piece selection algorithm is simple: We fetch what-
ever we can get. If our client is unchoked by a remote
peer, it picks a random missing piece. Further, we strive
to complete the pieces we downloaded partially as soon as
possible in order to check them against the hash from the
metafile and write them to the harddisk immediately. Our
algorithm ensures that we never leave an unchoke period
unused.

3.1 Seeders
We first tested the client on several torrents obtained from
Mininova6 and compared it to the official client.7 By de-
fault, the official client does not allow more than 80 con-
nections. In order to ensure a fair comparison, we removed
this limitation and permitted the client to open up to 500
connections. In a first experiment, we did not impose any
restrictions on our client, in particular, BitThief was also
permitted to download from seeders. The tests were run
on a PC with a public IP address and an open TCP port,
so that remote peers could connect to our client. We fur-
ther blocked all network traffic to or from our university
network, as this could bias the measurements. The prop-
erties of the different torrents used in this experiment are
depicted in Table 1. Note that the tracker information is not
very accurate in general and its peer count should only be
considered a hint on the actual number of peers in the tor-
rent.

6See http://www.mininova.org/.
7Official client vers. 4.20.2 (linux source). Obtained from

bittorrent.com, used with parameters: --min peers 500
--max initiate 500 --max allow in 500.
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Size Seeders Leechers µ σ

A 170MB 10518 (303) 7301 (98) 13 4
B 175MB 923 (96) 257 (65) 14 8
C 175MB 709 (234) 283 (42) 19 8
D 349MB 465 (156) 189 (137) 25 6
E 551MB 880 (121) 884 (353) 47 17
F 31MB N/A (29) N/A (152) 52 13
G 798MB 195 (145) 432 (311) 88 5

Table 1: Characteristics of our test torrents. The numbers in parentheses
represent the maximum number of connections BitThief maintained con-
currently to the respective peer class and is usually significantly lower
than the peer count the tracker provided. µ and σ are the average and
standard deviation of the official client’s download times in minutes. The
tracker of Torrent F did not provide any peer count information. Based on
the number of different IP addresses our client exchanged data with, we
estimate the total number of peers in this torrent to be more than 340.
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Figure 2: Relative download times for six torrents. The download time
of the official client is normalized to 1.0. Every torrent was downloaded
three times with both clients. The plot shows relative download times with
the fastest run at the lower end of the bar, the average running time at the
level of the horizontal tick mark, and the slowest run at the upper end of
the bar.

The results are summarized in Figure 2. As a first obser-
vation, note that in every experiment, BitThief succeeded
eventually to download the entire file. More interestingly,
the time required to do so is often not much longer than
with uploading! Exceptions are Torrents E and G, where
there are relatively few seeders but plenty of leechers. In
that case, it takes roughly four times longer with our client.
However, the download came at a large cost for the official
client as it had to upload over 3.5GB of data. Torrents A,
B and F also offer valuable insights: In those torrents, Bit-
Thief was, on average, slightly faster than the official client,
which uploaded 232MB in a run of torrent A and 129MB
in a run of Torrent B. As far as relatively small torrents are
concerned, BitThief seems to have an advantage over the
official client, probably due to the aggressive connection
opening.

3.2 Leechers
In this section, we further constrain BitThief to only down-
load from other leechers. Interestingly, as we will see, even
in such a scenario, free riding is possible.

Seeders are identified by the bitmask the client gets when
the connection to the remote peer is established, and the
having-message received every time the remote peer has
successfully acquired a new piece. As soon as the remote
peer has accumulated all pieces, we immediately close the
connection. We conducted the tests at the same time as in
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Figure 3: Relative download times of BitThief for six torrents without
downloading from any seeders. The download time of the official client
is normalized to 1.0. As in the first experiment, the torrents were down-
loaded three times with the official client and three times using BitThief
restricted to download from leechers only. The bars again represent the
same minimum, average and maximum running times.

Section 3.1 and also used the same torrents. The running
times are depicted in Figure 3. It does not come as a sur-
prise that the average download time has increased. Never-
theless, we can again see that all downloads finished even-
tually. Moreover, note that the test is slightly unfair for Bit-
Thief, as the official client was allowed to download not
only from the leechers, but also from all seeders! In fact,
in some swarms only a relatively small fraction of all peers
are leechers. For example in Torrent C, merely 15% are
leechers, and BitThief can thus download from less than
a sixth of all available peers; nevertheless, BitThief only
requires roughly 5 times longer than the official client.

We conclude that even without downloading from seed-
ers, BitThief can download the whole torrent from leechers
exclusively. Therefore, it is not only the seeders which pro-
vide opportunities to free ride, as well the leechers can be
exploited.

3.3 Further Experiments
The measurements presented so far have all been obtained
through experiments on the Internet and hence were subject
to various external effects. For example, in case BitThief
was allowed to download from seeders, it sometimes down-
loaded at a high rate, but then—a few minutes later—the
download rate declined abruptly due to a powerful seeder
having left the network. In order to get reproducible results,
we set up a pet network environment on a host, consist-
ing of a private tracker, a configurable number of official
clients as seeders and leechers and one instance of our own
client. We evaluated different scenarios. In the following,
our main findings will be summarized briefly.

3
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In scenarios with many seeders and only very few leech-
ers, our client will download most data from seeders. As
the leechers often do not fill up all their upload slots with
other leechers, we are being unchoked all the time, yielding
a constant download rate.

More interesting are scenarios with a small number of
seeders. A fast seeder is able to push data into the swarm
at a high rate and all the leechers can reciprocate by shar-
ing the data quickly with their upstreams fully saturated.
In this situation, it is difficult for our client to achieve a
good downstream: We only get a small share of the seeders’
upstream and all the other leechers are busy exchanging
pieces between them. Hence, we only profit from the opti-
mistic unchoke slots, which results in a poor performance.
However, note that many leechers will turn into seeders rel-
atively soon and therefore our download rate will increase
steadily.

A slow seeder is not able to push data fast enough into
the swarm, and the leechers reciprocate the newly arrived
pieces much faster without filling all their upload slots. Al-
though BitThief can not profit from the seeders, it can make
use of the leechers’ free upload slots. The attainable down-
load rate is similar to the one where there are many seed-
ers. The download rate will go down only when BitThief
has collected all pieces available in the swarm. When a
new piece arrives, the leechers will quickly exchange it,
enabling BitThief to download it as well with almost no
delay. An experiment illustrating this behavior is given in
Figure 4. Note that the execution shown in the figure is
quite idealistic, as there are no other leechers joining the
torrent over time.
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Figure 4: Download times for three official clients and one BitThief client
in the presence of a slow seeder. BitThief starts downloading 9 minutes
later than the other clients, but catches up quickly. Ultimately, all clients
finish the download roughly at the same time.

In summary, the results obtained from experiments on
the Internet have been confirmed in the experiments con-
ducted in our pet network.

3.4 Exploiting Sharing Communities
Finding the right torrent metafile is not always an easy task.
There exist many sites listing thousands of torrents (e.g.,
Mininova), but often the torrents’ files are not the ones

mentioned in the title or are of poor quality. Therefore, a lot
of sharing communities have emerged around BitTorrent.
These communities usually require registration on an invi-
tation basis or with a limit on the number of active users.
Finding good quality torrents in these communities is much
more convenient than on public torrent repositories. Shar-
ing communities usually encourage their users to upload at
least as much data as they download, i.e., to keep their shar-
ing ratio above 1.0. This is achieved by banning users with
constantly low sharing ratios or by denying them access to
the newest torrents available.

Andrade et al. [2] studied these communities and an-
alyzed how sharing ratio enforcement influences seeding
behavior. The authors find that seeders are staying in a tor-
rent for longer periods of time, i.e., typically the majority
of peers are seeders. These communities thus exhibit ideal
conditions for BitThief, provided that we can find ways to
access and stay in this communities without uploading.

We have found that this can often be done by simply
pretending to be uploading a lot. The community sites
make use of the tracker announcements which every client
performs regularly. In these announcements the client re-
ports the current amount of data downloaded and uploaded.
These numbers are stored in a database and used later on
to calculate the sharing ratios. The tracker typically does
not verify these numbers, although it would be possible to
determine bad peers in our opinion.8

The tracker can also be cheated easily: Clients can
announce bogus information and fake peers so that the
tracker’s peer list fills up with dozens of clients which do
not exist. The seeder and leecher counts reported by the
tracker can therefore be misleading as there are usually
not that many real peers downloading a given torrent. Even
worse, peers asking a tracker for other peers can get a lot
of invalid or stale information, which makes torrent starts
slow.

An alternative is used by recent BitTorrent clients: A dis-
tributed tracker protocol which manages the torrent swarm.
The technique of faking tracker announcements has been
used in a couple of torrents in our tests and we now have a
sharing ratio of 1.4 on TorrentLeech9 without ever upload-
ing a single bit.

An example which emphasizes how dramatic the dif-
ference between a community internal and an external
download can be, is given in Figure 5. We used a tor-
rent that was published on TorrentLeech approximately
12 hours before conducting this experiment and looked
for the same one on Mininova, where it had appeared
4 hours earlier. The torrent was 359MB in size on Tor-
rentLeech and slightly smaller (350MB) on Mininova. We
first downloaded the torrent three times from Mininova,

8For instance, in a torrent with 100 seeders and just one leecher, it
looks suspicious if the leecher is constantly announcing large amounts of
uploaded data. Alternatively, the sum of all reported download and upload
amounts could be analyzed over different torrents and time periods, in
order to detect and ban dishonest peers.

9See http://torrentleech.org/.
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Figure 5: Download speed comparison between a community version of
a torrent and one found on Mininova.

then three times from TorrentLeech. The Mininova runs
took 32/32/37 minutes, while on TorrentLeech the runs
completed in 7:25/7:08/7:08 minutes, respectively. This is
more than four times faster. Considering that there were
only 25 (24 seeders, one leecher) peers in the TorrentLeech
swarm and more than 834 (531 seeders, 303 leechers) peers
in the other swarm, this is surprising.

4 SOPHISTICATED ATTACKS
The previous section has shown that simple tricks can be
applied to increase download rates without uploading, and
one can think of many more sophisticated exploits to im-
prove the situation further. In this section, some of these
potential enhancements are discussed. We will see that Bit-
Torrent is sometimes quite robust to attacks.

First, we have investigated an exploit proposed in [10],
which truly violates the BitTorrent protocol: The selfish
client announces pieces as being available even if it does
not possess them. If such an unavailable piece is requested
by a remote peer, the client simply sends random data
(garbage). The remote peer has no possibility to verify the
subpiece’s correctness, as only the integrity of whole pieces
can be checked. Although this behavior cannot be consid-
ered free riding in the pure sense, it is a strategy that does
not require to upload any valid user data, thus making it at-
tractive in certain countries where only the distribution of
copyrighted material is unlawful.

In a first implementation, all requests are answered
by uploading entire garbage pieces. As has already been
pointed out in [10], this approach is harmful: Both the offi-
cial client and Azureus store information from whom they
have received subpieces and will thus immediately ban our
IP address once the hash verification fails.10 Consequently,
we have tried to answer all requests for a piece except for
one subpiece, which would force the remote peer to get that
subpiece from a different peer. The idea is that the remote
peer cannot tell which peer uploaded the fake data, as it

10Note that an appealing solution would be to fake entire pieces by
using contents yielding the same hash values. Unfortunately, however, the
computation of such SHA-1 hash collisions is expensive and would yield
huge tables which cannot be stored in today’s databases.

might as well be the other peer which only supplied one
subpiece. Indeed, the official client can be fooled this way
and will just discard the piece and fetch it again, without
any consequences for our client. Azureus is smarter and
uses an interesting approach: Once it has determined that
the piece is not valid, it looks up from which peer it re-
ceived most subpieces. The piece is then reserved for that
peer, and Azureus aims at fetching all remaining subpieces
from the same peer. There are now two choices for Bit-
Thief: Either we upload the subpieces requested, but this
results in the peer having received the whole piece from us
and hence our IP address would be banned, or, we refuse to
answer the requests. In the latter case, however, the connec-
tion will stall because Azureus will not request any other
subpieces before it receives the denied ones. Even worse,
if we fail to provide Azureus with the missing pieces within
a reasonable amount of time, it will ban our IP address as
well. We have also tried to not only deny one subpiece per
piece, but more than half of them, so that the chances that
we become the peer which provided most subpieces gets
smaller. Finally, we closed connections to remote peers that
had only forbidden subpiece requests in the queue, in order
to circumvent the banning algorithm of Azureus. The con-
nection to that peer might be reopened later on, but then
again, after uploading a couple of subpieces the connection
stalls again, because there are only refused requests pend-
ing from the remote peer. In conclusion, our various tests
showed that uploading random garbage, in any way, does
not improve performance. In every test our client config-
ured for not uploading any data finished the torrents faster
than the one that sent garbage.

BitTorrent peers inform each other at the beginning of
a connection about their download status by sending a list
of pieces that they have already successfully downloaded.
While the connection is active, peers send messages to each
other for each new piece they downloaded. Peers therefore
always know the progress of their neighbors. We sought
to measure the influence that this information has on a re-
mote peer. Currently, BitThief sends an empty list of avail-
able pieces during connection setup and it does not inform
the remote peer about any new pieces it acquires. We tried
different settings, such as announcing 0%, 50%, 99% or
100% of all the pieces at the beginning of the connection.
The experiments showed that it does not matter what per-
centage of pieces are announced, as long as BitThief did
not announce all pieces to be available. By doing so, a re-
mote peer considers BitThief a seeder and therefore does
not respond to any piece requests and will even close the
connection once it becomes a seeder itself. Thus, the per-
formance was noticeably worse when announcing 100% of
the pieces.

BitThief profits from the optimistic unchoke slots of
leechers and from the round robin unchoke scheme of seed-
ers. Thus, a client could possibly increase the chance of be-
ing unchoked by being present in the remote peer’s neigh-
borhood more than once. This is known as Sybil attack [5].
However, this attack involves opening two or more connec-
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tions to a remote peer. Both the official client and Azureus
prevent such a behavior. If multiple IP addresses are avail-
able, it would be an easy task to extend the client in a way to
fake two entities and trick remote peers. The peers would
gladly open a connection to both external addresses and
thus our download rate might increase up to twofold.

5 RELATED WORK
In 2000, Adar and Huberman [1] noticed the existence of
a large fraction of free riders in the file sharing network
Gnutella. The problem of selfish behavior in peer-to-peer
systems has been a hot topic in p2p research ever since, e.g.
[8, 12], and many mechanisms to encourage cooperation
have been proposed, for example in [6, 7, 11, 13, 14].

BitTorrent [4] has incorporated a fairness mechanism
from the beginning. Although this mechanism has similar-
ities to the well known tit-for-tat mechanism [3], the mech-
anism employed in BitTorrent distinguishes itself from the
classic tit-for-tat mechanism in many respects [9]. This
fairness mechanism has also been the subject of active
research recently. Based on PlanetLab tests, [9] has ar-
gued that BitTorrent lacks appropriate rewards and punish-
ments and therefore peers might be tempted to freeload.
The authors further propose a tit-for-tat-oriented mecha-
nism based on the iterated prisoner’s dilemma [3] in order
to deter peers from freeloading. However, in their work, a
peer is already considered a free rider if it contributes con-
siderably less than other peers. We, on the other hand, aim
at attaining fast downloads strictly without uploading any
data. This is often desirable, since in many countries down-
loading certain media content is legal whereas uploading is
not.

The paper closest to our work is by Liogkas et al. [10].
The authors implement three selfish BitTorrent exploits and
evaluate their effectiveness. They come to the conclusion
that while peers can sometimes benefit slightly from being
selfish, BitTorrent is fairly robust. Our work extends [10]
in that, rather than concentrating on individual attacks, we
have implemented a client that combines several attacks
(an open question in [10]). In contrast to our work, the au-
thors examine the effect of free riders on the overall system
and argue that the quality of service is not severely affected
by the presence of some peers that contribute only mar-
ginally. We focus strictly on maximizing the download rate
of a single, selfish peer, regardless of what effect this peer
has on the system.

Finally, [2] has studied the cooperation in BitTorrent
communities. It has been shown that community-specific
policies can boost cooperation. In our work, we have
demonstrated that cheating is often easy in communities
and selfish behavior even more rewarding.

6 CONCLUSION AND OUTLOOK
The advent of free riders which do not upload anything at
all, and the lack of punishment, raises concerns about the
future of peer-to-peer file sharing systems. In a first thread
of future research, we aim at incorporating further selfish

attacks such as collusion into BitThief. Moreover, current
trends such as ISP caching11 could also introduce new po-
tential exploits.

In a second thread of research, we extend our BitThief
client such that it truly enforces cooperation among peers.
For this purpose, the Fast Extension12 might serve as a
promising starting point. A challenging problem which has
to be addressed is to find a mechanism that applies some
kind of tit-for-tat algorithm for older peers in the system,
while at the same time solving the bootstrap problem of
newly joining peers efficiently: As these new peers inher-
ently do not have any data to share, they must be provided
with some “venture capital”.
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