
Institut für
Technische Informatik und
Kommunikationsnetze

BTnode Peripherals

Semester Thesis SA-2006-12

Summer Term 2006
July 7, 2006

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich, D-ITET

Author:
Philipp Stadelmann, philista@ee.ethz.ch

Advisors:
Matthias Dyer, dyer@tik.ee.ethz.ch
Dr. Jan Beutel, beutel@tik.ee.ethz.ch

Professor:
Prof. Lothar Thiele, thiele@tik.ee.ethz.ch

http://www.tik.ee.ethz.ch/
http://www.ethz.ch/
http://www.ee.ethz.ch/
mailto:philista@ee.ethz.ch
mailto:dyer@tik.ee.ethz.ch
mailto:beutel@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch

Abstract

Today wireless ad-hoc networks have become a growing field of research. For this purpose,
the Computer Engineering and Networks Laboratory (TIK) and the Research Group for
Distributed Systems have developed a sensor node of their own at the ETH Zurich - the
BTnode [5]. The BTnode is an autonomous wireless communication and computing plat-
form based on a Bluetooth radio and a microcontroller. It serves as a demonstration plat-
form for research in mobile and ad-hoc connected networks (MANETs) and distributed
sensor networks. The BTnode runs on its own system software which is a SourceForge
project [4]. In this work the BTnode’s ability to connect to peripheral devices is shown
considering two examples. In part one the node dispatches an SMS message via a cell
phone working as gateway. In part two the node controls a CMOS VGA camera and
receives images.

Preface

This semester thesis is part of my graduate study at the Department of Information Tech-
nology and Electrical Engineering (D-ITET) at the Swiss Federal Institute of Technology
(ETH).

I would like to address my sincere thanks to my advisor Matthias Dyer for his support
and guidance as well as for the valuable feedback and tips during this project. Many
thanks also to my co-advisor Jan Beutel for his support. Special thanks go to Mustafa
Yuecel who was always helpful and gave me important hints on the BTnut system software.

My gratitudes go to the Computer Engineering and Networks Laboratory, especially
to Prof. Lothar Thiele for giving me the opportunity to do this thesis.

Zurich, July 7, 2006

Philipp Stadelmann

1

Contents

1 Introduction 3

2 Mobile Phone 4
2.1 Introduction . 4
2.2 Theory . 4

2.2.1 RFCOMM . 4
2.2.2 AT Commands . 5
2.2.3 Application . 6

2.3 Implementation . 8
2.3.1 Approach . 8
2.3.2 RFCOMM Layer . 9
2.3.3 AT Commands Layer . 10
2.3.4 Application Layer . 10

2.4 Results . 10
2.4.1 BTnode Tutorial . 11

3 VGA Camera Module 12
3.1 Introduction . 12
3.2 Host Communication . 13

3.2.1 Camera Packet Formats . 13
3.2.2 Camera Command Set . 13
3.2.3 Receiving an Image . 16

3.3 Implementation . 16
3.3.1 Hardware . 16
3.3.2 Software . 18
3.3.3 Memory Management . 18
3.3.4 Intel Hex Format . 19

3.4 Results . 20
3.5 Application . 22

4 Conclusion 24

A Slides of Presentation 25

2

Chapter 1

Introduction

Today’s world relies more and more on electronic devices. Since the boom of the com-
puter industry many applications have been developed to support us in our everyday life.
Furthermore, with the development of the Wireless Technology completely new imple-
mentations are provided. Together with consumer electronics such as phones and PDAs
and many more also other applications make use of this technology.

For example networks of sensor nodes can be established quickly and easily. The
sensor nodes collect data at regular intervals or at specific events and send them to a
base station where they are evaluated. However some sensor nodes may not have direct
contact to the base station. Therefore they have to send their data via other nodes to
the base station. The nodes have to establish a so called mobile ad-hoc network which is
a growing field of research.

For this purpose, the Computer Engineering and Networks Laboratory (TIK) and the
Research Group for Distributed Systems have developed a sensor node of their own at the
ETH Zurich - the BTnode [5]. The BTnode is an autonomous wireless communication
and computing platform based on a Bluetooth radio and a microcontroller. It serves as a
demonstration platform for research in mobile and ad-hoc connected networks (MANETs)
and distributed sensor networks. The BTnode runs on its own system software which is
a SourceForge project [4].

In this work the BTnode’s ability to connect to external devices is shown. Therefore
two sample applications are presented. Chapter 2 explains how the BTnode can establish
a connection to a cell phone over a Bluetooth link. Chapter 3 describes how to control
a serially connected CMOS VGA camera module with the BTnode. With these two
applications the versatility of the BTnode is pointed out.

3

Chapter 2

Mobile Phone

2.1 Introduction

There are several computer programs such as floAt’s Mobile Agent [14] allowing users to
control their cell phone with the computer or vice versa on the basis of a serial connec-
tion. The whole functionality of the phone is at one’s disposal: Address books can be
synchronized, phone books exchanged, SMS messages sent, to name only a few. On the
other hand, the phone can control the computer’s mouse, adjust the speaker volume, and
much more. The connection between the phone and the computer can be established via
cable e.g. USB or via Bluetooth.

The BTnode is equipped with a Zeevo ZV4002 Bluetooth radio. Therefore it should
also be possible to connect to a phone and make use of its functions. This could for
example be useful in sensor network applications where some sensor nodes acquire data
to which specific actions have to be taken. The sensor node would then be able to send
an SMS message to inform about the event that just happened.

In this chapter a solution is presented how to make the BTnode create a connection
to a cell phone over Bluetooth and have the phone send an SMS message. In section 2.2
the necessary basics are explained. In section 2.3 the approach and implementation is
depicted. Last but not least, in section 2.4 the results are discussed.

2.2 Theory

In this section the protocols needed to connect to a cell phone and send an SMS message
are described. Figure 2.1 shows the Bluetooth protocol stack. The relevant layers are
the RFCOMM layer described in subsection 2.2.1, the AT Commands layer discussed in
subsection 2.2.2 and the application layer depicted in subsection 2.2.3.

2.2.1 RFCOMM

RFCOMM stands for Radio Frequency Communication. It is a simple transport protocol
that emulates a serial interface (RS232) over an L2CAP link. Up to 60 simultaneous
connections between two Bluetooth devices are supported. If a connection is established
a simple terminal application can be opened to that interface to send data. Everything
typed into the terminal is transmitted to the other end of the RFCOMM link.

4

CHAPTER 2. MOBILE PHONE 5

Figure 2.1: Bluetooth protocol stack

When establishing a connection between two devices for the first time, a secret key
has to be exchanged. This procedure is called pairing. It is a security mechanism built
into Bluetooth to prevent unauthorized connections. At the first connection attempt,
connection keys of 128bit length are generated out of the Bluetooth addresses of the
devices and some random number. These keys are then stored for further interaction. To
safely transmit the connection keys at this very first connection set up, an initializing key
has to be generated which in turn is calculated out of some random number, one of the
Bluetooth addresses and the Bluetooth PIN-code.

If for example a connection is being established from cell phone A to B, then first user
A is asked to enter a PIN-code (can be arbitrary) to its phone. This code is then sent to
B’s phone. B is asked to enter a PIN-code as well which is sent back to A’s phone. If the
two PIN-codes match, then a trusted pair is formed.

2.2.2 AT Commands

On top of the RFCOMM layer, the AT Commands are specified. These commands can
be sent over an already established RFCOMM link. Originally, the AT Commands were
developed as a specific programming language for dial-up modems. Back in the early
days of Microprocessors when the Apple II was booming, users had to dial the phone
manually and use an acoustic coupler for modem connection. Although internal modems
did not have this shortage, they lacked the ability of being universal, since a different
hardware design was needed for every computer bus. A more modular approach was an
external modem connected to the widely available RS232 interface. It was then, when
Dale Heatherington came up with the trailblazing idea to develop an external modem

CHAPTER 2. MOBILE PHONE 6

that was able to receive commands over the RS232 data line. Hence the Hayes Command
Set or AT Commands were created.

Mobile phone manufacturers in one way or another have adopted this command set
for the built-in modems in cell phones. Those modems can be accessed via Bluetooth,
Infrared, USB cable or RS232 cable connection. Most of a cell phone’s basic functionality
AT Commands e.g. sending an SMS message are specified in [7] and standards referenced
in there. However there are also vendor specific commands. A complete command set can
usually be found in the developers guidelines of the manufacturer e.g. [9], [10] or [12].

The standard AT Command format consists of the Command itself followed by a
carriage return. However some commands such as the SMS send command require a
special line delimiter. Four different types of commands exist [13]:

The Set Format It is used to change settings of the mobile phone.

AT<command>=<parameters><CR>
where AT notifies the built-in modem that a command is being entered

<command> the name of the command being entered
<parameters> the values to be used by the command
<CR> the carriage return "\r"

The Execute Format It is similar to the Set Format but the Execute Format usually
does not require any parameters and is used to obtain information about the mobile
phone.

The Read Format It is used to read current settings.

AT<command>?<CR>

Command Help Checks whether the command is available and returns the range of
the parameters.

AT<command>=?<CR>

As already mentioned, AT Commands can be treated just like data packets that have
to be sent over an RFCOMM channel. Therefore control over the phone can be gained as
follows:

1. Open an RFCOMM link to the phone

2. Start a terminal application on that interface

3. Type in the desired AT Commands to control the phone

2.2.3 Application

As stated before, the target application is sending an SMS message. The AT Commands
needed are specified in [6]. There are two ways to ways to send SMS messages using the
AT Commands. On the one hand, there is the simple SMS text mode [11] where you can
send the message as plain text:

CHAPTER 2. MOBILE PHONE 7

1. AT+CMGF=1 Set to text mode.
2. AT+CMGS="<phone number>" Send the recipient’s phone number in

international format i.e. +41. . .
3. <message> Send the message followed by the special line

delimiter defined as 0x1A in the ASCII code.

On the other hand, there is the more complicated protocol data unit (PDU) mode. The
PDU for SMS messaging is assembled as follows.

00 25 00 0B 91 14 77 14 36 21 F6 00 00 0B 42 AA FB 4D 2E 83 A6 CD A9 0B

• length of the SMS-carrier address: 00 selects the number stored on the phone’s SIM
card.

• message flags: use 25

• message reference number: 00 lets the phone set the reference number.

• length of the destination address (number of digits in hex format): 0B

• format of the destination address: use 91 for international format i.e. +41. . .

• destination address: each digit of the phone number represents half of a Byte.
Therefore if the length of the phone number is odd, a trailing F has to be added
to complete the last Byte. The destination address is generated out of the phone
number by flipping every Byte’s lower and upper half. So the destination address
from the example represents the phone number 41774163126. The + sign is omitted.

• protocol identifier: use 00

• data coding scheme: use 00

• length of the original message: this is the number of characters (at most 160) of the
message string including spaces in hex format.

• encoded message: the original message is coded using a 7bit ASCII character set.
The stream of 7bit characters is then encoded into a Byte stream to form the encoded
message. The coding scheme is depicted in the following formalism.

Definitions
length of message string n
element of message string k, 0 ≤ k ≤ n− 1
character k X = X6 . . . X0

character k + 1 Y = Y6 . . . Y0

Encoding
if (k + 1) mod 8 6= 0 Yk mod 8 . . . Y0︸ ︷︷ ︸

k mod 8+1[bit]

X6 . . . Xk mod 8︸ ︷︷ ︸
7−k mod 8[bit]︸ ︷︷ ︸

1Byte
else NULL

CHAPTER 2. MOBILE PHONE 8

Using this coding scheme on the message “BTnode SMS.” should result in the Byte
stream shown in the example.

The PDU is of type string i.e. address lengths for example have to be converted to hex
strings. The message is sent in PDU mode using the following commands:

1. AT+CMGF=0 Set to PDU mode (set by default).
2. AT+CMGS=<PDU length> Number of Bytes of the PDU minus one since the

leading 0x00 does not count. In the example it were
AT+CMGS=23.

3. <PDU> Send the PDU followed by the special line delimiter
defined as 0x1A in the ASCII code.

2.3 Implementation

2.3.1 Approach

To find out how the different Bluetooth layers interact they were tested on a computer
running Debian Linux. A state of the art USB Bluetooth dongle was used as interface
together with BlueZ, the official Linux Bluetooth protocol stack. Useful commands are:

hcitool Provides the Host Controller Interface. With the command hcitool scan

users can inquire for active Bluetooth devices and find out their names and Bluetooth
addresses.

hcidump Creates debugging output. Use hcidump -X to display every packet’s data in
hex and ASCII.

rfcomm Provides the functionality of the RFCOMM layer. With the command rfcomm

connect [Bluetooth Address] [Channel] a connection to the device specified with the
Bluetooth Address can be opened on channel Channel. It is closed with CTRL-C.

After successfully creating an RFCOMM connection to the cell phone the terminal
application minicom was linked to this interface (minicom /dev/rfcomm0). It was then
possible to control the phone by means of the AT Commands. They can simply be typed
into the terminal concluded with a carriage return (Enter).

Results

During tests it was discovered that only RFCOMM channel 1 can be used to control the
phone via the AT Commands.

As specified in [6], the SMS message in text mode or the PDU in PDU mode is
concluded with a special line delimiter CTRL-Z. To find out the corresponding ASCII
character, the packets generated during an SMS sending process were dumped using
hcidump. The following is a short extract which shows the end of the sending process.

CHAPTER 2. MOBILE PHONE 9

< ACL data: handle 40 flags 0x02 dlen 9
L2CAP(d): cid 0x0044 len 5 [psm 3]

RFCOMM(d): UIH: cr 1 dlci 2 pf 0 ilen 1 fcs 0x9a
0000: 74 t

> HCI Event: Number of Completed Packets (0x13) plen 5
0000: 01 28 00 01 00 .(...

> ACL data: handle 40 flags 0x02 dlen 10
L2CAP(d): cid 0x0040 len 6 [psm 3]

RFCOMM(d): UIH: cr 0 dlci 2 pf 1 ilen 1 fcs 0x5c credits 1
0000: 74 t

< ACL data: handle 40 flags 0x02 dlen 9
L2CAP(d): cid 0x0044 len 5 [psm 3]

RFCOMM(d): UIH: cr 1 dlci 2 pf 0 ilen 1 fcs 0x9a
0000: 1a .

> HCI Event: Number of Completed Packets (0x13) plen 5
0000: 01 28 00 01 00 .(...

> ACL data: handle 40 flags 0x02 dlen 10
L2CAP(d): cid 0x0040 len 6 [psm 3]

RFCOMM(d): UIH: cr 0 dlci 2 pf 1 ilen 1 fcs 0x5c credits 1
0000: 1a .

> ACL data: handle 40 flags 0x02 dlen 12
L2CAP(d): cid 0x0040 len 8 [psm 3]

RFCOMM(s): MSC CMD: cr 0 dlci 0 pf 0 ilen 4 fcs 0xaa mcc_len 2
dlci 2 fc 0 rtc 1 rtr 1 ic 0 dv 0 b1 0 b2 0 b3 0 len 0

< ACL data: handle 40 flags 0x02 dlen 12
L2CAP(d): cid 0x0044 len 8 [psm 3]

RFCOMM(s): MSC RSP: cr 1 dlci 0 pf 0 ilen 4 fcs 0x70 mcc_len 2
dlci 2 fc 0 rtc 1 rtr 1 ic 0 dv 0 b1 0 b2 0 b3 0 len 0

> HCI Event: Number of Completed Packets (0x13) plen 5
0000: 01 28 00 01 00 .(...

> ACL data: handle 40 flags 0x02 dlen 26
L2CAP(d): cid 0x0040 len 22 [psm 3]

RFCOMM(d): UIH: cr 0 dlci 2 pf 0 ilen 18 fcs 0x40
0000: 0d 0a 2b 43 4d 47 53 3a 20 34 0d 0a 0d 0a 4f 4b ..+CMGS: 4....OK
0010: 0d 0a

Note that each character sent is echoed. The first character sent is a t which is the last
character of the message. The second character transmitted is the special line delimiter
we were looking for. Now we know its hex value 0x1A. At the end an OK message is is
received from the phone, which notifies the success of the message sending process.

As the connection and message sending process has been fully analyzed and understood
it can now be implemented in c-code.

2.3.2 RFCOMM Layer

The RFCOMM layer is already implemented in the BTnut system software (BTnut API
[5]). However the current version 1.6 produces a bug while trying to create a connection
between the BTnode and the cell phone. Therefore a patch has to be applied to the
sources:

CHAPTER 2. MOBILE PHONE 10

1. Open the file bt_rfcomm.c located in the folder btnut/btnode/bt/

2. Search for case BT_RFCOMM_MSC_CMD and insert the instruction NutSleep(500);

on the following line.

3. Compile the sources (make install).

After that, connection establishment should work just fine. However pairing has to be
carried out at every connection attempt. This is due to the BTnode starting the pairing
procedure every time. The BTnode uses the default PIN code 1234 therefore this code
has to be entered on the phone as well.

2.3.3 AT Commands Layer

On the AT Commands layer a protocol is implemented that allows opening and closing
RFCOMM connections to cell phones as well as sending AT Commands. The available
functions are declared in at phone.h and defined in at phone.c.

2.3.4 Application Layer

Since the SMS text mode is not supported by every phone, the more complicated PDU
mode has to be implemented. An SMS sending interface is provided at this layer. The
available functions are declared in at sms.h and defined in at sms.c.

2.4 Results

To test the protocol and interface the demo application sms.c was written. It reads the
Bluetooth address or the name of the sending phone, the phone number of the receiver
and the message to be transmitted. If all goes well, the output on the terminal should
look similar to the following.

Enter the Bluetooth address or the name of the sending phone: philista

Enter the phone number of the recipient: 41774163126

Enter the message: Greetings from the BTnode!

connecting to phone... RFCOMM connect to 00:0a:28:ee:61:3d Channel 1
RFCOMM Connect on dlci 2...
rfsession: success

a t + c m g f = 0
O K

a t + c m g s = 3 6

CHAPTER 2. MOBILE PHONE 11

>

0 0 2 5 0 0 0 b 9 1 1 4 7 7 1 4 3 6 2 1 f 6 0 0 0 0 1 a 4 7 7 9 b 9 4 c 4
f b b c f 7 3 9 0 5 9 f e 6 e 8 3 e 8 e 8 3 2 4 8 4 8 7 5 b f c 9 e 5 1 0

+ C M G S : 8 1
O K

RFCOMM Disconnect on dlci 2...

2.4.1 BTnode Tutorial

From this work, the new chapter Interfacing to Handheld Devices evolved for the BTnode
tutorial [2]. It was successfully held in the last practical exercise of the lecture Embedded
Systems as can be seen in figure 2.2.

Figure 2.2: picture taken during the BTnode practical exercise

Chapter 3

VGA Camera Module

3.1 Introduction

With the further development of the CMOS technology more and more complex cir-
cuits can be manufactured on the same chip area. Single transistors become smaller and
smaller, which results in a higher transistor density. For this reason cheap CMOS imaging
sensors have become more attractive. With the smaller technology they do not have the
disadvantage in photosensitivity any more compared to the more expensive CCD sensors.

Moreover, because of the lower price CMOS imaging sensors have out-scored CCD
sensors in consumer electronics. They are included in many applications even if there is
no need just as a toy. For instance it is hardly possible to buy a new cell phone that
does not have a CMOS camera included. However the quality of those cell phone cameras
varies a lot.

Since these CMOS cameras are popular, it is desired to create an implementation for
the BTnode. The VGA camera module used here is provided by COMedia Ltd. This
type, C328-7640 is especially intended to be used with PDAs. It basically consists of
the OmniVision CMOS image sensor OV7640 the OmniVision JPEG compression chip
OV528 and a program memory.

The image sensor provides frames of size 640x480 pixels at a rate of 30 frames per
second. In addition it does some preprocessing of the image such as canceling Fixed
Pattern Noise (FPN), eliminating smearing, and reducing blooming.

The image is then passed on to the JPEG compression chip which preprocesses the
image to the desired pixel format and compresses the data. It has a built in 8051 micro-
controller to control the program. Furthermore the OV528 is equipped with an integrated
memory buffer for temporary storage of compressed images. The chip provides a four pin
RS232 interface for the communication with the host.

The program memory provides the command set for communicating with the host.
This chapter explains how the camera is controlled by the BTnode. It is only a proof

of concept, hence just basic functionality is implemented. In section 3.2 communication
between the BTnode (host) and the camera is explained. Section 3.3 describes how this
communication is realized. Some results are presented in section 3.4. Last but not least
section 3.5 discusses the intended use of the camera module with the BTnode.

12

CHAPTER 3. VGA CAMERA MODULE 13

3.2 Host Communication

3.2.1 Camera Packet Formats

The following explanation about the packet formats is based on [3].

Command Packet

A command packet is 6 Bytes long. It is either sent by the host i.e. the BTnode or the
camera module.

0 5

Flag Command Parameter1 Parameter2 Parameter3 Parameter4

• Flag is always 0xAA.

• Command specifies the command sent or received.

• Parameter1 . . . Parameter4 are individually defined for each command

Data Packet

The default size of data packets is 64 Bytes, the maximum is 512 Bytes. Data packets
are solely sent by the camera module. However only compressed images are transmitted
in packets. Uncompressed images are sent as stream.

0 N-1

Number DataSize ImageData Checksum
(2 Bytes) (2 Bytes) (N − 6 Bytes) (2 Bytes)

• Number is the packet number starting from 0. Byte 0 of the data packet is the lower
Number Byte, Byte 1 the higher one.

• DataSize is the size in Bytes of ImageData. DataSize is N − 6 Bytes for all packets
except for the last one. Byte 2 of the data packet is the lower DataSize Byte, Byte
3 the higher one.

• ImageData is the actual payload of the packet. Byte 4 of the data packet is the first
ImageData Byte, Byte N − 3 the last one.

• Checksum is equal to the sum of all Bytes of the data packet except the Checksum.
Only the lower Byte of the Checksum (Byte N − 2 of the data packet) is valid. The
higher Byte (Byte N − 1 of the data packet) is always 0x00.

3.2.2 Camera Command Set

The following explanation about the command set is based on [3].

CHAPTER 3. VGA CAMERA MODULE 14

Command Initial 0x01 Initializes the color depth, the preview resolution and the JPEG
resolution. An ACK command is issued by the camera if initialization was successful,
otherwise a NACK will be sent back.

Parameter1 Parameter2 Parameter3 Parameter4
color depth preview resolution JPEG resolution

0x00 2-bit Gray Scale 0x01 80x60 0x01 80x64 0x01

4-bit Gray Scale 0x02 160x120 0x03 160x128 0x03

8-bit Gray Scale 0x03 320x240 0x05

12-bit Color 0x05 640x480 0x07

16-bit Color 0x06

JPEG 0x07

Command Get Picture 0x04 Signals the camera to send a snapshot or video frame.
The command is acknowledged with an ACK command if successful, otherwise a NACK is
sent. If the command was acknowledged, a Data command is transmitted to inform the
host about the image length i.e. the number of Bytes to be transmitted. If a compressed
image is issued i.e. data packets are transmitted, then each data packet has to be requested
separately with an ACK command. Else the camera starts sending the image stream.

Parameter1 Parameter2 Parameter3 Parameter4
Picture Type

Snapshot Picture 0x01 0x00 0x00 0x00

Preview Picture 0x02

JPEG Preview Picture 0x05

Command Snapshot 0x05 Makes the camera store a JPEG snapshot in the local buffer.
An ACK command is issued by the camera if taking the snapshot was successful, otherwise
a NACK will be sent back. The number of frames to be dropped before the snapshot is
taken can be specified in the two Bytes Parameter2 and Parameter3. Therefore values from
0 to 65535 are allowed.

Parameter1 Parameter2 Parameter3 Parameter4
Snapshot Type Skip Frame Skip Frame

Low Byte High Byte
Compressed Picture 0x00 0xXX 0xXX 0x00

Uncompressed Picture 0x01

Command Set Package Size 0x06 Sets the data packet size for transmission of com-
pressed images. Uncompressed images are not sent in packet format but as data stream.
This command has to be issued by the host before a Snapshot or Get Picture command
is sent. The command is acknowledged with an ACK command if successful, otherwise a
NACK is sent.

Parameter1 Parameter2 Parameter3 Parameter4
0x08 Packet Size Packet Size 0x00

Low Byte High Byte

CHAPTER 3. VGA CAMERA MODULE 15

Command Set Baudrate 0x07 Changes the baud rate. The camera answers with an
ACK command if the change was successful, otherwise with a NACK command. After
receiving ACK from the camera, the host has to continue transmission with the new baud
rate.

Baudrate Parameter1 Parameter2 Parameter3 Parameter4
7200 bps 0xFF 0x01 0x00 0x00

9600 bps 0xBF 0x01 0x00 0x00

14400 bps 0x7F 0x01 0x00 0x00

19200 bps 0x5F 0x01 0x00 0x00

28800 bps 0x3F 0x01 0x00 0x00

38400 bps 0x2F 0x01 0x00 0x00

57600 bps 0x1F 0x01 0x00 0x00

115200 bps 0x0F 0x01 0x00 0x00

Command Reset 0x08 Resets the camera module. An ACK command signals the suc-
cess, a NACK command the failure of the reset.

Parameter1 Parameter2 Parameter3 Parameter4
Reset Type

complete reset 0x00 0x00 0x00 0x00

reset FSMs only 0x01

Command Power Off 0x09 Sets the camera into sleep mode. An ACK command signals
the success, a NACK command the failure of the command. To wake up the camera again,
SYNC command has to be sent for a certain period until receiving an ACK from the camera.

Parameter1 Parameter2 Parameter3 Parameter4
0x00 0x00 0x00 0x00

Command Data 0x0A The camera issues this command after the host has initiated a
Get Picture to tell the host the type and length (number of Bytes) of the image data that
is ready for transmission to the host. If the image data is compressed, the host has to
send an ACK command for each data packet to be received. However, if the image data is
uncompressed, the image data stream transmission starts right after the Data command.

Parameter1 Parameter2 Parameter3 Parameter4
Data Type Length Byte 0 Length Byte 1 Length Byte 2

Snapshot Picture 0x01 0xXX 0xXX 0xXX

Preview Picture 0x02

JPEG Preview Picture 0x05

Command SYNC 0x0D Creates a connection to the camera. The command can be
issued at an arbitrary baud rate. However, it has to be sent for a certain period, at
most 60 times until receiving an ACK from the camera. This usually happens after 25
SYNC commands. The camera then in turn sends a SYNC command which has to be
acknowledged by the host.

CHAPTER 3. VGA CAMERA MODULE 16

Parameter1 Parameter2 Parameter3 Parameter4
0x00 0x00 0x00 0x00

Command ACK 0x0E This command is used in two different situations. On the one
hand, it indicates the success of the operation specified by Command in Parameter1. For
each successful operation the ACK counter is incremented by one. On the other hand, the
host has to issue this command to request the image data packet with the desired packet
number after receiving Data command from the camera. To end the packet transfer, the
host should issue the ACK command with packet number 0xF0F0.

Parameter1 Parameter2 Parameter3 Parameter4
Command ACK counter 0x00 0x00

Parameter1 Parameter2 Parameter3 Parameter4
0x00 0x00 Packet Number Byte 0 Packet Number Byte 1

Command NACK 0x0F Indicates corrupt transmission or unsupported features.

Parameter1 Parameter2 Parameter3 Parameter4
0x00 NACK counter Error Number 0x00

3.2.3 Receiving an Image

Table 3.1 shows the commands and data exchanged between host and camera when an
image is received. It is based on [3]. A JPEG compressed snapshot of resolution 640x480
pixels is requested.

3.3 Implementation

3.3.1 Hardware

As already mentioned, the camera module provides a four pin RS232 interface. Therefore,
the BTnode can simply be connected to the camera via the UART interface. Since the
camera produces quite a lot of data it is best to connect it to the application UART
because this interface supports higher data rates than the software UART. The debug
connector J2 on the BTnode is used in order to keep the extension connector J1 free for
other applications. The following pins are needed:

GND Pin 1 Ground
UART0 TXD Pin 4 Transmit Exchange Data
UART0 RXD Pin 5 Receive Exchange Data

VCC Pin 14 Supply Voltage

Figure 3.1 shows a picture of the BTnode - camera setup.

CHAPTER 3. VGA CAMERA MODULE 17

Host Transfer Camera

SYNC AA 0D 00 00 00 00
max. 60 times

SYNC AA 0D 00 00 00 00

SYNC AA 0D 00 00 00 00
...

SYNC AA 0D 00 00 00 00

AA 0E 0D 00 00 00 ACK
AA 0D 00 00 00 00 SYNC

ACK AA 0E 0D 01 00 00

Initial AA 01 00 07 00 07

JPEG Preview, 640x480
AA 0E 01 01 00 00 ACK

Snapshot AA 05 00 00 00 00

compressed image
AA 0E 05 02 00 00 ACK

Get Picture AA 04 01 00 00 00

snapshot image
AA 0E 04 03 00 00 ACK
AA 0A 01 XX XX XX Data

snapshot image
ACK AA 0E 00 00 00 00

packet number 0
64 Bytes Data Packet

packet number 0
ACK AA 0E 00 00 01 00

packet number 1
64 Bytes Data Packet

... packet number 1

...
7-64 Bytes Data Packet

last data packet
ACK AA 0E 00 00 F0 F0

end packet transfer
Power Off AA 09 00 00 00 00

AA 0E 09 04 00 00 ACK

Table 3.1: receiving an image

CHAPTER 3. VGA CAMERA MODULE 18

Figure 3.1: connecting the camera to the BTnode

3.3.2 Software

The basic functionality to communicate with the camera as described in section 3.2 is
implemented as a device driver in software. The necessary functions are declared in the
file btnode cam.h and defined in the file btnode cam.c.

Also an API is written that provides the terminal commands needed to receive an
image from the camera module and to print it out on the terminal. The command
registering functions are declared in the file btnode cam cmds.h and defined in the file
btnode cam cmds.c.

A sample application is implemented in the file cam.c. The application initializes the
terminal and registers the necessary terminal commands for receiving an image with the
BTnode and printing it out to the terminal. The special terminal output format of the
image is described in subsection 3.3.4.

3.3.3 Memory Management

To test the camera, the necessary functions to receive a snapshot image are executed on
the BTnode. This snapshot image is buffered in the memory on the BTnode. For future
applications this step may not be necessary, as the received packets from the camera can
be directly forwarded to the intended destination.

Tests have shown that the JPEG compressed camera images normally take about 20-
30 KBytes of memory. This figure varies because of the JPEG compression efficiency. To
be on the safe side, 40 KBytes of memory are reserved for the image.

To comply with these memory requirements, the additional RAM banks of the BTnode

CHAPTER 3. VGA CAMERA MODULE 19

have to be used. The first 129 KBytes of the additional RAM banks are reserved for the
program. Additional 10 KBytes are taken by the event logger. Consequently, the following
address space is reserved for the camera image:

Starting Address 139 KB
Size 40 KB

This address space can be accessed using the functions declared in the BTnut system file
btnut/btnode/include/hardware/ram banks.h.

3.3.4 Intel Hex Format

In a first step, the BTnode controlling the camera is directly connected to a computer. For
debugging purposes the received image is transmitted to the terminal on the computer.
Because of handling reasons the image data is printed out in the Intel Hex Format. This
allows easy logging in the terminal. The monitored data can then be inserted in a .hex

file. With simple command line tools such as the KEIL HEX2BIN converter, the .hex

file can be transformed to a binary file. This file finally contains the original JPEG data.
It can be displayed in a simple JPEG viewer.

Configuration

This explanation of the Intel Hex Format is based on [8] and [1].

Records All data lines are called records and each record contains the following fields:

: ll aaaa tt [dd...] cc

: Every line starts with a colon. This is actually the only non-hexadecimal
character in a record.

ll record-length field (1 Byte). Represents the number of data Bytes dd in the
record.

aaaa address field (2 Bytes). Represents the first address to be used by this record.

tt record type (1 Byte).

00 data record

01 end-of-file record

[dd...] data field that represents one Byte of data. A record may have multiple data
Bytes. The number of data Bytes in the record must match the number spec-
ified by the ll field.

cc Checksum (1 Byte). The checksum is calculated by summing up the values
of all hexadecimal digit pairs in the record modulo 256 and taking the two’s
complement.

Data Records An Intel HEX file consists of an arbitrary number of Data Records. In
the implementation used in this work, continuous data is formated in Intel Hex Format.
Hence, the address field always has to point to the next free memory space. For example
if each record contains 16 Bytes of data, then the first address field has to point to address
0, the second to address 16, the third to address 32 and so on.

CHAPTER 3. VGA CAMERA MODULE 20

Figure 3.2: image taken with the camera

End-of-File (EOF) Records An Intel HEX file must end with an end-of-file (EOF)
record. This record must have the value 01 in the record type field. An EOF record
always appears as follows:

: 00 0000 01 FF

Example

: 10 0000 00 FFD8FFE000114A464946000102030405 FB

: 10 0010 00 060708090AFFDB004300100C0C0E0C0A 4F

: 10 0020 00 100E0E0E1212101418281A1816161832 66

: 10 0030 00 24261E283A343E3C3A34383840485C4E 38

: 00 0000 01 FF

3.4 Results

The following output is produced at the terminal when an image is requested as depicted
in section 3.2.3. With the cam terminal command, a snapshot is stored in the RAM. The
pic terminal command then produces the image in Intel Hex Format to the terminal.
The result can be seen in figure 3.2 which shows an image taken with the camera.

--
Welcome to BTnut (c) 2006 ETH Zurich
btnode_cam program version: 20060627-2012
debug READTIMEOUT: 100
debug READBUFFERSIZE: 256
[philista]$cam
debug: connecting to camera
debug: ACK received: aa:e:d:0:0:0
debug: SYNC received: aa:d:0:0:0:0
debug: camera set up: successful

debug: changing the baud rate

CHAPTER 3. VGA CAMERA MODULE 21

debug: ACK received: aa:e:7:1:0:0
debug: baud rate change: successful

debug: initial
debug: Command sent: aa:1:0:7:3:7
debug: ACK received: aa:e:1:2:0:0
debug: initial: successful

debug: snapshot
debug: Command sent: aa:5:0:0:0:0
debug: ACK received: aa:e:5:3:0:0
debug: snapshot: successful

debug: get_picture
debug: Command sent: aa:4:1:0:0:0
debug: ACK received: aa:e:4:4:0:0
debug: data: aa:a:1:c:69:0
debug: img_size: 26892
debug: request packet: aa:e:0:0:0:0
debug: receive packet (header[data]checksum): 0:0:58:0:...:16:0
debug: request packet: aa:e:0:0:1:0
debug: receive packet (header[data]checksum): 1:0:58:0:...:41:0
debug: request packet: aa:e:0:0:2:0
debug: receive packet (header[data]checksum): 2:0:58:0:...:246:0
debug: request packet: aa:e:0:0:3:0
debug: receive packet (header[data]checksum): 3:0:58:0:...:231:0

...

debug: request packet: aa:e:0:0:cd:1
debug: receive packet (header[data]checksum): cd:1:58:0:...:254:0
debug: request packet: aa:e:0:0:ce:1
debug: receive packet (header[data]checksum): ce:1:58:0:...:247:0
debug: request packet: aa:e:0:0:cf:1
debug: receive packet (header[data]checksum): cf:1:38:0:...:14:0
debug: terminate transfer aa:e:0:0:f0:f0
get_picture: successful

debug: power off
debug: Command sent: aa:9:0:0:0:0
debug: ACK received: aa:e:9:5:0:0
power_off: successful
[philista]$pic

:10000000FFD8FFE000114A464946000102030405FB
:10001000060708090AFFDB004300100C0C0E0C0A4F
:10002000100E0E0E1212101418281A181616183266
:1000300024261E283A343E3C3A34383840485C4E38

CHAPTER 3. VGA CAMERA MODULE 22

...

:100890005794632531FEEE3FAD64EE99A277443F55
:1008A00067279DB4D7B6F97938AB5E69EF8A63C81C
:0808B00008E9FAD3D40FFFD9C7
:00000001FF

[philista]$

3.5 Application

The sample application used in this work is sufficient for concept demonstration. However
as a real application it does not make much sense to connect the camera to a BTnode
which in turn is connected to a computer. The camera would rather be connected directly
to the computer.

The idea though is to integrate the camera connected BTnode in a network of BTnodes.
In this setup other nodes should be able to communicate with the camera node over
Bluetooth. They should be able to access the camera node directly or via other nodes
(multihop). In order to realize this integration, two protocols are needed:

• A routing protocol has to run on the nodes of the network to setup the forwarding
paths for image request packets and image data packets. Furthermore each node
has to keep a routing table in the local memory where these forwarding rules are
stored.

• A higher layer protocol has to define the packets that are sent over Bluetooth from
remote nodes to control the camera and from the camera node to send data.

Possible applications for the camera in the ETZ building are monitoring the cafeteria
entry to see if there is a line or the foosball table to see if it is occupied. Figure 3.3 shows
some devices such as PDAs, computers and other BTnodes that could connect to the
camera controlling BTnode.

Implementation and testing of the described protocols could be an excellent assignment
for a new Semester or Master Thesis. Moreover, a java applet would be nice for viewing
the image.

CHAPTER 3. VGA CAMERA MODULE 23

BTnode Network

Figure 3.3: devices to interact with the BTnode controlling the camera

Chapter 4

Conclusion

In this assignment two demonstration applications were implemented for the BTnode.
In a first part the BTnode connected to a cell phone to make the phone send an SMS
message. In a second part the BTnode was able to control a CMOS VGA camera module.

As can be seen from the two applications, the BTnode is very versatile. It has been
shown that the BTnode can easily connect to external devices that are equipped with the
necessary interface. It is imaginable to use the BTnode with even other devices.

The BTnode could for example also be used in conjunction with the LEGO Mindstorms
since they have a Bluetooth module integrated in their controller. Among many others a
remote control would be an obvious application.

To sum up also external devices can interact with a network of sensor nodes. This
makes the opportunities of sensor networks even more numerous.

24

Appendix A

Slides of Presentation

July 5, 2006

BTnode Peripherals

Philipp Stadelmann

Advisor: Matthias Dyer Prof. Dr. Lothar Thiele
Co-Advisor: Dr. Jan Beutel

25

APPENDIX A. SLIDES OF PRESENTATION 26

2/14

Task

Write demo applications to show the BTnode‘s ability to
connect to external devices.

Two parts:
1. Cell Phone
2. CMOS VGA Camera

3/14

Bluetooth Peripherals – Cell Phone

Goal: Establish a connection from a BTnode to a cell
phone and make the phone send an SMS message.

APPENDIX A. SLIDES OF PRESENTATION 27

4/14

Bluetooth Stack – RFCOMM

• Simple transport protocol
• Emulates a serial

interface over an L2CAP
link

Bluetooth Radio

Baseband

Link Manager ProtocolAudio

L2CAP

HCI

RFCOMM TCS SDP

AT
Commands

Application

TCP/IP

PPP

O
B
E
X

Already implemented in the
BTnut system software

5/14

Bluetooth Stack – AT Commands

• Programming language
for dialup modems

• Allows configuration over
data line

Bluetooth Radio

Baseband

Link Manager ProtocolAudio

L2CAP

HCI

RFCOMM TCS SDP

AT
Commands

Application

TCP/IP

PPP

O
B
E
X

OriginallyOriginally

ETSI Technical Specification
100 916: AT Command Set
for GSM Mobile Equipment

Cell PhonesCell Phones

APPENDIX A. SLIDES OF PRESENTATION 28

6/14

Bluetooth Stack – Application Layer

• SMS text mode
Number and message
in plain text
Coding done by phone

• SMS protocol data unit
(PDU) mode

Number and message
encoded
Coding done by user

• Not every phone supports
text mode

Bluetooth Radio

Baseband

Link Manager ProtocolAudio

L2CAP

HCI

RFCOMM TCS SDP

AT
Commands

Application

TCP/IP

PPP

O
B
E
X

7/14

Approach

1. Testing on a Linux computer
Bluetooth dongle
„BlueZ“ official Linux Bluetooth protocol stack
• hcitool HCI interface
• hcidump debug output
• rfcomm rfcomm layer
Terminal application: minicom

2. Implementation on the BTnode

APPENDIX A. SLIDES OF PRESENTATION 29

8/14

Implementation

1. AT Commands Layer
Protocol
• at_phone.h, at_phone.c

2. Application Layer
SMS sending interface
• at_sms.h, at_sms.c
Demo Application
• sms.c

9/14

Chapter for Btnode Tutorial

APPENDIX A. SLIDES OF PRESENTATION 30

10/14

Camera OperationCamera Operation

Serial Peripherals – CMOS Camera

Goal: Control the chip of a CMOS camera from the
BTnode and receive an image.

• JPEG compression chip

• RS232 interface

11/14

Implementation

1. Camera device driver
btnode_cam.h, btnode_cam.c

2. API for receiving an image
btnode_cam_cmds.h, btnode_cam_cmds.c

3. Demo application
cam.c

APPENDIX A. SLIDES OF PRESENTATION 31

12/14

Application

BTnode Network

13/14

Demonstration

1. Get picture from camera
2. Output image data in intel HEX format to the terminal
3. Convert data from HEX format to binary

BTnode

S
W

 U
A

R
T

H
W

 U
A

R
Tterminal>

CamRAM

fastslow

APPENDIX A. SLIDES OF PRESENTATION 32

14/14

Questions?

Bibliography

[1] San Bergmans. Intel HEX Format. Knowledge Base, www.sbprojects.com, August
2005.

[2] J. Beutel, Ph. Blum, M. Dyer, C. Moser, and Ph. Stadelmann. BTnode Program-
ming - An Introduction to BTnut Applications. Computer Engineering and Networks
Laboratory, ETH Zurich, 8092 Zurich, Switzerland, 1.3 edition, June 2006.

[3] COMedia Ltd. C328-7640 User Manual for CMOS VGA Camera Module, Version
3, August 2005.

[4] Computer Engineering and Networks Laboratory, ETH Zurich,
http://sourceforge.net/projects/btnode. BTnode System Software.

[5] Computer Engineering and Networks Laboratory, ETH Zurich, www.btnode.ethz.ch.
BTnodes - A Distributed Environment for Prototyping Ad Hoc Networks.

[6] ETSI. Technical Specification 100 585 - Equipment (DTE - DCE) interface for Short
Message Service (SMS) and Cell Broadcast Service (CBS), Version 7.0.1, July 1999.

[7] ETSI. Technical Specification 100 916 - AT command set for GSM Mobile Equipment,
Version 7.7.0, December 2001.

[8] Keil - An ARM Company, www.keil.com. Intel Hex File Format, June 2004. Technical
Support.

[9] Motorola, http://developer.motorola.com. The Hayes AT Command Set With Mo-
torola Handsets.

[10] Nokia, www.forum.nokia.com. AT Command Set For Nokia GSM And WCDMA
Products.

[11] Nokia. Support Guide for the Nokia Phones and AT Commands, May 2002.

[12] Sony Ericsson, http://developer.sonyericsson.com. Developers Guidelines - AT Com-
mands.

[13] Sony Ericsson. Developers Guidelines - AT Commands, August 2005.

[14] SourceForge.net, http://fma.sourceforge.net/. floAt’s Mobile Agent.

33

	Introduction
	Mobile Phone
	Introduction
	Theory
	RFCOMM
	AT Commands
	Application

	Implementation
	Approach
	RFCOMM Layer
	AT Commands Layer
	Application Layer

	Results
	BTnode Tutorial

	VGA Camera Module
	Introduction
	Host Communication
	Camera Packet Formats
	Camera Command Set
	Receiving an Image

	Implementation
	Hardware
	Software
	Memory Management
	Intel Hex Format

	Results
	Application

	Conclusion
	Slides of Presentation

