
Nicoletta De Maio

An Implementation of a Byte Fre-
quency Signature Generator Using
a Gibbs Sampler

Semester Thesis SA-2006-21
25th November 2006

Tutor: Bernhard Tellenbach
Co-Tutor: Daniela Brauckhoff
Supervisor: Prof. Dr. Bernhard Plattner

1

Abstract

Traditional pattern-based signatures to identify worms and similar attacks fail when confronted
with polymorphic code segments. Developing new types of signatures capable of recognising
malicious payload while at the same time allowing for a certain degree of variation within its
structure is therefore a large and fast-moving field of research. There are several approaches
to this problem, each tackling it from a slightly different angle, but they typically involve the use
of byte frequency distributions instead of the more established substrings as signatures. The
algorithms used to extract these byte frequency distributions from captured malicious payload
also vary depending on the priorities assigned to the various subproblems within the larger
task. This project implements one of these signature generation algorithms and tests some
of its properties, with the ultimate goal being an evaluation of its usefulness within the NoAH
project and Argos. It also proposes a subsystem that could collect and process captured worms
in the same way as the SweetBait subsystem within the Argos honeypot architecture.

Contents

1 Introduction 4

2 Motivation and Related Work 6
2.1 Z-String Signatures . 6
2.2 Position-Aware Byte Frequency Distribution . 7
2.3 Method Evaluation . 10

3 Design and Implementation 11
3.1 BowNet Overview . 11
3.2 The WormColl Component . 12
3.3 The SigGen Component . 13
3.4 The Signature Database . 13

3.4.1 Database Security Issues . 14

4 Testing and Evaluation 16
4.1 Training the Byte Frequency Distribution f0 . 16
4.2 Test Runs . 16
4.3 Results . 18

5 Summary and Conclusions 20

6 Outlook 21

A Schedule 22

B Original Problem Description 23

C Software Installation and Configuration 24
C.1 Argos Installation Guide . 24
C.2 MySQL Setup . 25
C.3 The BowNet Package . 26

C.3.1 Installation . 26
C.3.2 User Guide . 27
C.3.3 Component Overview . 27

C.4 Test Tools . 32
C.4.1 NormalDist . 32
C.4.2 DataGen . 32
C.4.3 GibbsSampler . 32

2

List of Figures

3.1 Structure of the BowNet application. 14
3.2 Structure of the message format as it is received by the WormColl component. . 14
3.3 Layout of the fields within the MySQL database table. 15
3.4 State diagrams for signal handling in each component. 15

4.1 Mean values of final scores by number of iterations in the main Gibbs sampling
loop for a string of As of length 40 and a significant region of width 10 18

4.2 Final scores depending on the width of the significant region W after 600 itera-
tions of the Gibbs sampling loop. Scores for the anomalous data set are above
zero, scores for normal traffic are below. 19

A.1 Overview of the approximate project schedule. 22

3

Chapter 1

Introduction

Honeypot systems play an important role in capturing malicious network traffic for further analy-
sis. Traditionally, this analysis is done by an expert in network security, resulting in classification
of the analysed code segments and a virus or worm signature for easy identification.

As this method is relatively slow, self-propagating worms tend to infect a multidude of
systems before a signature protecting capable of identifying a particular worm is ready to
be deployed. By this point, the worm has often caused considerable damage to the infected
systems, reducing the benefits from using the signature.

A more efficient approach - as well as an important current research topic - consists of
automatically generating the required signatures out of the captured malicious code fragments.
Argos[1], developed at the Vrije Universiteit Amsterdam in the Netherlands, is an implementa-
tion of such an approach. Its unique system of labelling memory with content from suspicious
sources allows it to separate true attacks from packets sent to the honeypot as part of legitimate
traffic, or as a result of misconfiguration. It does so in a simple and effective way. It first labels
all memory content originating from network traffic as potentially harmful and, at the same time,
keeps track of its origin. Whenever such suspicious memory content is executed, it raises an
alert. As such, it can decide with near-certainty whether a code fragment is a candidate for
further processing or whether it can safely be ignored.

In the case of a TCP connection, Argos itself reconstructs the network flow involved in
delivering the attack to the system, and derives a first signature from it. The SweetBait
subsystem collects such signatures from several systems and refines them into a fingerprint
for the given attack. As in the usual case, this fingerprint is extracted by looking for longest
common substrings within the byte strings that make up the worm instances.

Detection using longest common substrings of the byte string that makes up the code
runs into problems when it comes to polymorphic worms. If the worm instances differ enough
to make the longest common substring very short, it may no longer be possible to distinguish
between attacks and legitimate traffic that happens to contain the same substring. An unac-
ceptably large number of false positives and spurious alerts is the result, making the intrusion
detection system less useful.

An alternative to longest common substrings are byte distribution signatures. Rather than
look for identical stretches within a given byte string and a refernce value, they measure the
overall similarity between two byte strings. If the similarity score is above a certain threshold,
and the reference value was that of a known worm, the new code fragment is classified as such
and an alert is generated. Along the same lines, if the similarity is below a certain threshold
and the reference value was that of normal network traffic, the code fragment is also classified
as anomalous.

These two methods of comparison are largely identical. The main difference is that com-
paring something to an anomaly requires knowledge of said anomaly beforehand, while

4

5

comparing something to a model of normality allows a decision independent of prior knowledge
of a particular anomaly. The latter is obviously more useful when it comes to react to attacks as
they happen instead of after they have happened (to a number of others, hopefully), so it is the
approach taken in the paper that was selected as the basis for this semester project[3].

The goal of the project was to become acquainted with the topic of byte frequency distri-
bution signatures and to choose one of the presented methods of generating such a signature.
This method was then implemented to use malicious code captured by Argos to create and
store the resulting worm fingerprint in a database for redistribution. Its purpose was to extend
the existing framework to include this type of fingerprint in addition to the longest common
substring signatures already provided.

The rest of this project report is organised according to the following structure: Chapter 2
explains the theory behind the signature generation method used and presents some related
work. Chapter 3 describes the framework developed during the implementation of the algorithm,
while Chapter 4 gives an evaluation of the generated signatures. Chapter 5 gives a summary of
the project as a whole. Some ideas that might merit further thought are discussed in Chapter 6.

Chapter 2

Motivation and Related Work

In a substring-based signature, certain byte within the worm code either has a certain value or
it has not. Contrary to this, a byte frequency distribution for the same worm does not state if a
certain value is present or not, but gives an indiciation of how probable it is to find a value at a
given position within the same byte string.

One of the main advantages of signatures of this kind lies hidden in this fact. Because
they do not limit themselves to looking for substrings, they will not fail automatically if only part,
but not all, of a given substring is found. Looking at the overall picture rather than part of it
makes them far more successful at detecting polymorphic worms than the traditional approach,
as polymorphic worms tend to shift and shuffle their code around within longer stretches of
meaningless filler payload to avoid detection by string matching methods.

The higher the probability of a byte, the greater the similarity to the reference distribution
for that position, be it of regular network traffic or of an anomaly, if that byte is encountered on a
captured byte string. If the values for all or part of the byte string are taken into account in some
creative fashion, we obtain an overall score that tells us how much the code fragment deviates
from the norm.

The signature generated from a number of instances of the same worm is essentially a
representative value for this deviation. There are several approaches to generating signatures
from byte distributions of the captured worm code. They differ in areas such as complexity,
computational efficiency, accuracy of the generated signature with respect to false positives and
type of parameters taken into account for signature generation. What they all have in common
is the possibility to be refined over time, as new worm instances are collected and analysed
automatically.

For this work, two of these different approaches were considered for implementation to
evaluate polymorphic worms captured by Argos. The following is an overview of the properties
and characteristics of each of these.

2.1 Z-String Signatures

Ke Wang and Salvatore Stolfo propose an intrusion detection system that organises the byte
frequency distribution of a network payload in the form of a Z-string. Ordering the byte frequency
distribution according to the number of occurrences of each byte, most common byte first, a
characteristic sequence of characters for the distribution is obtained. These Z-strings describe
the byte frequency distributions for each port and payload length in an easily recognisable way,
as they tend to have a distinctive shape depending on the service offered on a given port. This
signature is then used for comparison with observed network traffic to determine a score on a
scale between normal and anomalous[2].

Because the profile of a byte frequency histogram varies depending on the network ser-

6

2.2 Position-Aware Byte Frequency Distribution 7

vice, distributions for regular network traffic are generated separately for each service simulated
or run on a given system. Along the same lines, potentially malicious traffic is examined per
port and compared to the corresponding distribution only. Of a given network packet, only the
payload is considered while information contained in the header is discarded.

As far as intrusion detection systems (IDS) go, this one models normality. Byte frequency
distributions for each combination of port and message length, so-called centroids, are initially
computed during a training phase using attack-free test data. Once they are in active use, they
update themselves to take each incoming payload into account, as long as said payload has
been classified as normal by the IDS.

This approach obviously results in a large number of centroids, which can cause prob-
lems in two ways. First, the overhead associated with storing and maintaining such a large
data set can quickly become very large, and second, there may simply not be enough data for
a given centroid to result in a meaningful model during the training phase. Therefore, if two
centroids of a length difference of 1 are sufficiently similar, they are merged. This process is
repeated until several clusters of a certain dissimilarity have been obtained.

To compare an incoming payload to its corresponding centroid (or two centroids to each
other), a simplified form of the Mahalanobis distance is used. The distance between a centroid
y and a payload x is calculated according to d(x, y) =

∑n−1
i=0 (|xi − yi|/(σi + α)), where σi

is the standard deviation for byte i and α is the smoothing factor for this centroid. α reflects
the statistical confidence of the sampled training data: the larger the value of α, the less
the confidence that the samples accurately represent the actual distribution. Thus, the byte
distribution can be more variable.

As the standard deviations may change because of newly acquired information, it makes
sense to keep track of those values as well. Because they are the square roots of the variances,
and the variance of a distribution can be expressed as V ar(X) = E(X2) − (EX)2, the only
extra values that need to be maintained are the averages of the x2

i , in a similar vector as x.

It is apparent that with this system of distance calculation, the comparison of an incom-
ing packet to its corresponding centroid is linear in the length of the packet, i.e. in the number of
bytes it contains. So are the update procedures for x and x2, which makes the whole intrusion
detection method very efficient and suitable for application in real time.

Incoming payload can also be described using Z-strings. If the contents of the packet
are deemed to be too far away from the desired normal distribution, its Z-string may serve as
a simple worm signature that can be deployed to other IDS systems quickly as soon as the
anomaly first occurs, thus slowing or even preventing new attacks early on.

2.2 Position-Aware Byte Frequency Distribution

Yong Tang and Shigang Chen take a different approach[3]. Instead of modelling normality in
relatively fine grains, they propose the use of a single distribution for all legitimate network
traffic but a more sophisticated type of signature to distinguish anomalies.

In order to capture worms automatically, the paper proposes a double honeypot system.
Two honeypots with different configurations are set up to capture and extract malicious traffic.
The inbound honeypot simulates one or more network services and accepts connections
from the outside to attract attackers. Once it has been compromised, it will attempt to open
connections to other systems to try and infect them as well.

Because of this behaviour, the inbound honeypot is configured in a way that all outgoing
connections are rerouted to the outbound honeypot. This outbound honeypot is low-interaction.

2.2 Position-Aware Byte Frequency Distribution 8

It accepts connections but only simulates reactions without offering actual services.

Separation of normal and anomalous traffic happens in two places. One is the inbound
honeypot as described above: while incoming traffic is considered to be suspicious, the act of
attempting to connect to other systems changes the classification to ’dangerous’ and separates
it from traffic that ended up in the honeypot because of errors and misconfigurations or
unsuccessful attacks. A much larger part of the network traffic is siphoned off by the network
gateway before it ever reaches either honeypot, though.

In a typical network, only IP addresses of public servers are visible to the outside world.
The ratio of those public addresses to those potentially located within is usually in favour of the
inside systems, i.e. the number of public IP addresses is small compared to the total available
address range within the network. So when an attacker tries to connect to random addresses
within that network, his chances of picking one that has not been published to the outside are
quite high. If the router that acts as the gateway to the network is configured to redirect all of
this ’randomised’ traffic to the inbound honeypot, it is possible to distinguish between mostly
harmless connections and fairly suspicious ones in a simple and efficient way.

Once the anomalous payloads have been identified using a double honeypot or another
system, they are collected and labelled. Because the ultimate purpose is to extract a signature
from captured worms, any anomalous payload is considered a worm from now on. The label
serves as a means to identify the type of the anomaly, i.e. the worm.

The proposed signature generation method is that of a Position-Aware Distribution Signa-
ture (PADS). It has all the advantages of ordinary byte distribution signatures, namely being
able to handle limited amount of polymorphism fairly well. On the other hand, it is also designed
to work if the worm is embedded in chunks of normal traffic, an area where traditional substring
signatures tend to be better than byte distributions. This is achieved by two main techniques.

First of all, the signature generator does not look at the whole payload, as described in
Section 2.1, but only at a region of a given width W where the deviation from the norm is
largest. Second, instead of calculating the most likely byte value for each position in this region,
it creates a complete probability distribution that describes how likely it is to find each of the
possible values in this specific position. This set of W byte frequency distributions, combined
with the byte frequency distribution for normal network traffic, is what defines a Position-Aware
Distribution Signature.

If f0 contains the probabilities for each byte according to the norm (the normal signature)
and f1 to fW the probability distributions for each position of the significant region (the abnor-
mal signature, the PADS signature Θ = (f0, f1, . . . , fW) is calculated from a set of captured
worms S = S1, . . . , SW by counting, for a given position within the significant region, the
number of occurrences of each byte at that position within the captured worms, and dividing the
resutlting values by the number of worms to scale them down to probabilities. In order to avoid
zero values in those probabilities, a pseudo count of d is employed, so that the final estimation
for a byte of value x at position pos is given by fpos(x) = cpos,x+d

n+256·d , with cpos,x being the count of
bytes of value x encountered at position pos.

To compare the significant region of a worm Si to a signature Θ, the matching score of
the aforementioned region with the anomalous signature is defined as

M(Θ, Si, s_pos) =
W∏

pos=1

fpos(Si[s_pos + pos− 1])

Along the same lines, the comparison to the norm is done by computing

M(Θ, Si, s_pos) =
W∏

pos=1

f0(Si[s_pos + pos− 1])

2.2 Position-Aware Byte Frequency Distribution 9

with s_pos being the starting point of the significant region of Si in both cases.

To measure the quality of the combination of M and M , which should maximise M but
minimise M , the ratio between the two values is defined as the matching score of the significant
region of Si with the complete PADS signature Θ is defined as

Λ(Θ, Si, s_pos) =
M(Θ, Si, s_pos)
M(Θ, Si, s_pos)

=
W∏

pos=1

fpos(Si[s_pos + pos− 1])
f0(Si[s_pos + pos− 1])

with starting position s_pos that maximises Λ.

Using the logarithm of this score makes it easier to plot the results. Therefore, the final
matching score is defined as

Ω(Θ, Si) =
length(Si)−W+1

max
s_pos=1

1
W

log(Λ(Θ, Si, s_pos))

The major remaining problem lies in finding out where exactly the significant region that
maximises the final score is located. The paper suggests and tests two algorithms for this task:
Expectation Maximisation and Gibbs Sampling.

The Expectation Maximisation algorithm takes a set S of byte sequences (i.e. captured
worms) as input. Both the optimal starting positions s_pos1 to s_posn and the signature Θ are
unknown.

For a large initial value of W , the algorithm initialises the starting positions for each worm
variant Si randomly and uses this initial guess to computes a first estimate of Θ. Taking this
signature as a starting point, it recalculates the starting positions as those that maximise the
score when compared to Θ. In other words, the starting position s_posi that yields a maximal
value for Λ(Θ, Si, s_posi) is selected for each worm.

Next, the algorithm goes back to the signature and computes a new estimate for Θ based
on the new starting positions. It will continue to go back and forth between the two sets of
unknowns until convergence. The whole process can now be repeated for smaller values of W
until the best combination of Θ, W and the s_posi has been found.

One of the main problems of Expectation Maximisation is that once it has reached a lo-
cal maximum, it will never leave the region again and the truly optimal solution will not be found.
Gibbs Sampling offers a solution to this problem: because of a random element when selecting
parameters later in the process, it has a small chance of jumping out of a local maximum by
moving in a direction that at first glance seems to be worse than what has been achieved so far.

In this particular case, the sampler is also initialised by assigning random starting posi-
tions to the worm instances. One of the worms Sx is then chosen at random, while the
estimate for the signature Θ is calculated based on the remaining S − Sx worms in the set. An
average matching score Ω can now be determined by comparing every possible starting posi-
tion s_posx ∈ [1..length(Sx)−W +1] to the current value of Θ as described in the definition of Ω.

Before adding Sx back to the pool and selecting another worm to repeat the process, its
starting position is updated by selecting a random value according to the probability

Pr(s_posx) =
Λ(Θ, Sx, s_posx)∑length(Sx)−W+1

s_posx=1 Λ(Θ, Sx, s_posx)

which is proportional to Λ and will in all likelyhood move s_posx further towards the optimal
starting position.

This process of selecting a worm to be excluded, generating a signature from the rest,
and updating the starting position of the odd one out is repeated until the scores computed

2.3 Method Evaluation 10

during two consecutive steps of the algorithm meet the convergence criteria of being no more
than ε apart from each other, or a pre-specified maximum number of iterations is reached. The
signature Θ associated with the last computed score is then taken to be the optimal value.

The evaluation of the authors of the paper showed consistently better results for the
Gibbs Sampler than for Expectation Maximisation. Not only does the achieved score tend to be
higher, but the scores also fluctuate a lot less for different values of W and varying lengths of
instances of the same worm. It therefore seems to be the more reliable signature generation
method of the two.

2.3 Method Evaluation

Each of the methods described in the previous two sections has its advantages and disad-
vantages. Z-strings are simple, fast to compute and surprisingly effective. The approach of
separating traffic by port automatically sorts any potential attacks into a kind of category,
where they can be compared to a centroid representing that specific category. This allows
quite fine-grained distinctions based on the type of service that is being targeted: what may
be normal for one, may raise an alarm for another. On the other hand, the simplicity of the
Z-strings is also responsible for more than a few false positives. The administration and memory
overhead associated with creating and maintaining the centroids that model normal traffic can
become quite cumbersome as well.

PADS signatures are more difficult to compute and their generation is more time-consuming,
but they tend to be more accurate at distinguishing anomalous traffic from the background.
Particularly those obtained with the Gibbs sampling algorithm. By looking at a characteristic
region instead of the whole worm, they tend to be able to handle embedded malicious code
containing some polymorphism. The administrative overhead, aside from the signature gener-
ation itself, is small. The reason for this is that it consists of training and maintaining a single
probability distribution that models all normal, attack-free network traffic. A major drawback of
the paper that proposes this method is that it suggests that the captured worms should be as-
signed a type of some sort, but never gives any indications on how this should be accomplished.

Because this work is primarily concerned with signature generation, the PADS signature
calculated by the Gibbs sampling algorithm, seems to be the most promising. It can be safely
assumed that assigning a type to worm instances will happen elsewhere, if at all. Gibbs
sampling in combination with position-aware distributions seem to be a flexible and reliable,
if somewhat slow, solution that produces results of a better quality than those obtained with
Z-strings. The overhead not concerned with the actual signature generation, i.e. the modelling
of ’normality’ is also drastically reduced. So the method of choice to be tested to see if the
results published in the paper can be reproduced under slightly different circumstances will be
Position-Aware Distribution Signatures.

Chapter 3

Design and Implementation

The SweetBait subsystem described in [1] receives pattern-based preliminary signatures from
several systems running Argos. It then attempts to combine those signatures into a single
more refined one that is saved for redistribution. It makes sense that a new subsystem dealing
with the same kind of input but producing a different type of signature should operate along
the same lines: recieve the relevant data from somewhere else, generate a signature from it,
and use it to refine an existing signature for the given type of attack if one can be found in the
database. This is the idea implemented in the BowNet package.

BowNet consists, at its core, of three files: the programs WormColl and SigGen, and the
input file NormalTraffic.dist containing the byte frequency distribution f0 to compare the
significant worm regions to. In order to compile properly, SigGen requires the MySQL client as
well as the developer package for that client. For BowNet to be able to operate, the MySQL
server must be running.

3.1 BowNet Overview

In order to generate signatures like those described in Chapter 2.2, an application consisting
of two main parts and a MySQL database was developed. As shown in Figure 3.1, the two
components WormColl and SigGen communicate using a private message queue. Worm
instances sent to WormColl from the honeypot or an intermediate source have their length
checked to avoid overflowing the message buffer. Each worm instance has an associated ID;
if two worm instances have identical IDs, they are considered variations of the same worm or
exploit of a vulnerability. The whole structure is buffered and added to the message queue.

At the other end, SigGen waits for new messages from WormColl. Whenever one ar-
rives, its contents are further disassembled and stored within the individual fields of a worm
struct for easy access. This worm structure is then sorted into a buffer according to the worm
ID, where it awaits further processing.

The actual signature generation is carried out in a separate procedure called by SigGen
if enough instances of the same worm have been recieved. This procedure implements
the Gibbs sampling algorithm proposed in [3] and stores the result along with some other
parameters in a MySQL database. If an entry for this particular worm already exists, it is refined
using the newly generated byte frequency distribution signature.

The lenghty process of generating a signature and comparing it to the contents of the
database, as well as the fact that it is impossible to predict at what interval this process will take
place, are the main reasons to divide the application into components WormColl and SigGen.
Structured in this way, one half will continually be able to receive outside input and there is no
danger of any of the captured worm instances being lost in transit because the receiver is not

11

3.2 The WormColl Component 12

ready. On the other hand, the second half is guaranteed to have enough time to complete the
Gibbs sampling and store the signature in the database, as incoming messages will simply
be buffered in the message queue until they are picked up. To ensure that all of this works as
intended, the capacity of the message queue must be large enough to buffer the amount of
data that will arrive, in the worst case, during the time that SigGen is busy running the signature
generation algorithm and cannot remove new items from the queue.

3.2 The WormColl Component

The ears of BowNet, so to speak, is the WormColl application. It is implemented as an endless
loop that accepts connection after connection from an external component providing the
collected and labelled instances of attacks captured with Argos.

Specifically, the program creates a socket and binds it to port 4224, where it listens for
clients to connect to it. The clients send their captured and labelled worms to this port using
the message format as depicted in Figure 3.2. WormColl expects exactly one message per
connection.

Besides the worm code, a message consists of the following fields:

1. length: denotes the total length of the message, including the length field itself.

2. worm ID: labels the worm for later identification of its type; assigned by the client during
evaluation of the attack.

3. port number : records the port on which the attack occurred.

4. protocol : stands for the contents of the protocol field in the IP header in the packets that
delivered the payload, namely TCP, UDP or ICMP.

In addition, WormColl creates and maintains the message queue used to send the worms from
one program to the other. Because it is a private message queue with a dynamically generated
identification number, the only way for both processes to know this number is to have one of
them be a descendant of the other. This is accomplished by a call to fork() within WormColl to
create a child process. A call to exec() then replaces the second instance of WormColl by the
code and memory segment for SigGen. In doing that, the ID of the shared message queue can
be passed on to SigGen as an argument of the exec call.

Because the two processes share a message queue with a dynamically assigned ID that
both of them have to know, it does not make sense to have one component running without
the other. Restarting the missing component after a crash or manual termination would result
in an orphaned message queue unless special precautions are taken. It was therefore decided
to implement signal handling in such a way that, whenever one component is shut down in a
halfway ordely fashion, the other component terminates itself as well.

If it is WormColl that recieves a termination signal, it checks for a child process and, if it
finds one, sends it a termination signal in turn. It then waits for confirmation that the child has
terminated before completing its own cleanup procedures. If the signal handler was called
into action due to a SIGCHLD signal (meaning that the parent has survived its child), the
proceedings are exactly the same. The only difference lies in the result when checking for a
child, which makes it unnecessary to send any kill signals and wait for their outcome.

If, on the other hand, SigGen is terminated first, the parent process automatically re-
cieves a signal and handles it according to the description above, while the child only has to
take care of its own memory management. Figure 3.4 illustrates the signal handling behaviour
for both components.

3.3 The SigGen Component 13

3.3 The SigGen Component

The SigGen component can be found at the other end of the message queue linking the
application together. It assembles the messages read from the queue and stores their individual
components in a worm data structure. This structure consists of the same four fields as the
original message in Figure 3.2 and a character array for the worm code. This worm structure
is then lined up with others of the same worm ID in a buffer structure, consisting of a counter
for the number of elements, a field for the worm ID for easy identification, a pointer to the next
buffer, and enough room to hold a pre-determined number of N worm instances.

The buffers are collected in a linked list, as there is no way of predicting how many dif-
ferent worms will be captured and the actions of adding or removing a buffer are simple and
straightforward. An array design, which would be faster in terms of access because it can be
sorted according to the buffer ID, has been discarded in favour of the flexibility of having no
restrictions on ID ranges and list size.

Once a buffer has accumulated N copies of a given worm, it is disconnected from the
list and passed to the actual signature generation procedure PADS. There, a byte frequency
distribution signature of pre-determined width W is generated using a Gibbs sampling algorithm
as suggested in the relevant paper[3].

If a signature of width W does not exist in the database for a worm of a given ID, a new
entry is added to the database table signatures.PADS. If a signature of a different width W
is found in the database, this signature is replaced completely by the one that has just been
computed. If both the ID and the width W match, the new signature is mixed in with the old one
by taking into account the number of previous updates nupdt and scaling the result back down
to result in a probability distribution. The purpose of mixing the old and the new signature in this
way is to refine it by incorporating new information without discarding old results completely.

3.4 The Signature Database

The worm signatures and various other parameters are stored in a MySQL database. MySQL
was chosen because it is freely available, of small size, and easy to set up and use. It contains
one database called signatures, which is made up of a single table PADS that keeps track of
the signatures.

In addition to the actual signature, PADS consists of the following fields:

1. worm ID: type of vulnerability.

2. created and last updated : timestamps.

3. nupdt : number of updates (starting with 1 for the time that a signature is first stored in the
database).

4. port : the port that was attacked.

5. protocol : contents of the protocol field in the IP header.

6. W : signature width, i.e. the length of the significant region of the worm instances.

Of these, port and protocol are not currently used as sorting criteria, but they may be in the
future, which explains their inclusion in the parameter list here. Figure 3.3 shows the fields in
PADS in more detail.

3.4 The Signature Database 14

Figure 3.1: Structure of the BowNet application.

Figure 3.2: Structure of the message format as it is received by the WormColl component.

3.4.1 Database Security Issues

The user SigGen has selection, insertion and update privileges on the database signatures,
but only when connecting from the local host. He is not allowed to change the database itself,
though. Only the root user of the database can modify the layout of the tables or add and
delete tables in the database. This restriction grants an ordinary user exactly the privileges
he needs, but not more, and serves as a measure against accidental or deliberate modifica-
tions that could affect BowNet’s ability to safely and reliably store the information it has extracted.

3.4 The Signature Database 15

Figure 3.3: Layout of the fields within the MySQL database table.

Figure 3.4: State diagrams for signal handling in each component.

Chapter 4

Testing and Evaluation

4.1 Training the Byte Frequency Distribution f0

For the most part, the signatures generated by SigGen consist of a number of byte frequency
distributions for the significant region of a polymorphic worm. But the distribution for benign
network traffic f0 is included as well, since it is required to calculate the score of a code
segment as described in Section 2.2. Within BowNet, this distribution is read from a file, and is
the same for all signatures.

As the byte frequency distribution of normal network traffic across all ports and protocols
is not uniform, it needed to be determined from a training set. Instead of capturing live traffic,
the training was carried out using weeks one and three of the Darpa IDS evaluation data set
from 1999[4]. There are two main reasons for this choice. First of all, the files contain ten days’
worth of network trace that can be read an processed within a few minutes. More importantly,
though, weeks one and three of the data set are guaranteed to contain no attacks whatsoever.
This made sure that f0 was not accidentally trained to take into account anomalies that it should
not have.

Because the Darpa data sets are stored in tcpdump format, NormalDist, the program
that trained the byte frequency distribution for normal network traffic makes use of the pcap
library to access packet after packet with relatively little fuss. The content of the payload is then
examined byte after byte and the occurrence of each possible value is counted. These sums
are divided by the total number of bytes that were read to scale them to values that will sum up
to one. To avoid zero values in the distribution fields, a pseudo count of 1 is used and taken into
account during scaling, resulting in a division by total_count + 256.

The result was saved in the file NormalTraffic.dist, which is read by SigGen on startup
and passed to its central procedure PADS for score calculation.

The training phase needs to be run through only once. After that, the file NormalTraf-
fic.dist simply needs to be included with the files that make up BowNet as it is.

4.2 Test Runs

The Gibbs sampler forms the core of the application, so testing focussed on its ability to create
signatures that would produce high matching scores when compared to anomalies of the same
type.

To this end, two different data sets were created by the program DataGen. Each of these con-
sists of 100 entries in the message format defined in Section 3.2, representing 100 worms of the
same type. The payload of each message contains a sequence made up entirely of a predefined

16

4.3 Results 17

number of As starting at a random position that stands for the malicious code segment. The rest
of the space is filled with random bytes according to the distribution read from the file Normal-
Traffic.dist to simulate the garbage payload of normal traffic that the worm code is embedded in.

The length of the anomaly is different for each data set. One has no specifically inserted
As at all; any that may occur within the data do so naturally, i.e. they are there as a result
of the distribution read from f0. The other contains a sequence of 40 As per somewhere in
each entry’s 2000 byte of payload data. The set with length zero is used as a control group,
as it models attack-free network traffic and the scores the Gibbs sampler produces should be
uniformly low, no matter what the width of the significant region may be.

The paper forming the motivation for this work tests various properties of both the Gibbs
sampler and the Expectation Maximisation algorithm. As this work focusses on the Gibbs
sampler, an attempt was made to replicate some of the results, to see, amongst other things,
whether they could be reproduced under slightly different circumstances.

Two different evaluations of the original paper were chosen for this task. Figure 3 in [3]
illustrates the final score Ω with respect to the number of iterations for each signature genera-
tion method. Because Expectation Maximisation does an update on the starting point of each
worm variant in every iteration but the Gibbs sampler only changes one of them, the authors
define the scale to be the number of per sequence iterations. This means to say that for each
iteration of the Expectation Maximisation algorithm, a hundred iterations of the Gibbs sampler’s
main loop need to be performed in order to, on average, select each worm once for com-
parison to Θ. So if the scale goes up to 40, 4000 iterations are necessary for a set of 100 worms.

The sort of behaviour seen in this figure was to be reproduced for the Gibbs sampler.
Instead of running the algorithm three times and plotting the individual results, however,
it was to be executed 100 times to be able to compute a reliable mean value of the final
scores, as well as a few selected individual curves. This was done to give an indication of the
variety within the runs, and to take a look at how far a selected run may deviate from the average.

On top of that, the algorithm does not record the current score Ω for the selected worm,
but the average of the score of each worm given the current configuration. This is done for both
the normal and the anomalous data set.

The right half of figure 4 in [3] plots the matching scores of anomalous and normal traffic
against the width of the signature W for both Expectation Maximisation and Gibbs sampling.
This plot essentially shows two things. One, even for widths that are many times smaller than
the malicious code segment, both algorithms clearly distinguish between good and bad, the
only differences being the average quality and the variance of the respective scores. And two,
the final matching score Ω for the data sets containing malicious payload actually begins to
decrease after a certain signature length, because more and more and more of the garbage
payload is being taken into account.

The shortest signature width that was tested was 10, however. Since the anomalous set
created by DataGen contains a sequence of interest that is much shorter than the Blaster worm
used in the paper, it made sense to start with a minimal width of 1 and go no further than 50.
The assumption was that little or no information could be extracted for very small widths and it
seemed interesting to find out from when on the signature would become consistently reliable.
On the other hand, a maximum of 50 was deemed to be wide enough to observe the effect of
score decrease as normally distributed bytes begin to influence the result.

4.3 Results 18

Figure 4.1: Mean values of final scores by number of iterations in the main Gibbs sampling loop
for a string of As of length 40 and a significant region of width 10

4.3 Results

It became clear during testing that convergence using a pre-set ε to decide whether two
consecutive scores are close enough to each other to stop does not yield the desired results
in practice. The reason for this is that, because of the random element when choosing an
improved starting position for the worm, the new score may improve as well, but it may improve
by a large step, or hardly at all. It is not possible to predict which case will occur, and both cases
may occur well before a value close to the global maximum has been reached. If the algorithm
is implemented to stop when a new value is within a certain small range of the old one, it will
usually do so too early.

For practical purposes, it is therefore better to determine the number of iterations until
the score begins to oscillate around a value close to the optimum, making further computations
unnecessary. This was the point of the test runs that form the basis for Figure 3 in [3] and in
the recreation of these that was attempted here under slightly differnet circumstances. The
reproduced results can be seen in Figure 4.3. Overall, they match the paper well: on average,
the score converges to a reasonably stable value after about 600 iterations of the main loop,
which corresponds to the six iterations per sequence as seen in the original article.

The selected runs also show another reason why it would be unwise to break out of the
loop too soon. In some cases, the algorithm gets stuck in a local maximum early on and it
takes quite a while before it manages to jump out of it, at which point the score rises sharply
and quickly approaches the global maximum. If an unsufficient number of iterations had been
run through, the global maximum may never have been reached and the returned score would
have been fairly inaccurate.

Since a total of 600 iterations was established as a value producing reliable results in
the first batch of tests, it was kept as the number of iterations, now constant for every run, for
the second one, which was an explorations of the behaviour of the average score depending

4.3 Results 19

Figure 4.2: Final scores depending on the width of the significant region W after 600 iterations of
the Gibbs sampling loop. Scores for the anomalous data set are above zero, scores for normal
traffic are below.

on the width of the significant region W . Again, the results match the paper.

The comparison of Figure 4.3 looks equally promising. Up to a width of about five, the
scores exhibit little consistence, implying that the corresponding signature is not particularly
reliable. Not only do the scores for the anomalous set vary a more than usual, but the fact that,
at those lengths, two of the scores for the normal set are to be found well above zero illustrates
this point even better. Zero sets the threshold for a score outside the norm; anything from the
random data set that ends up above that must be on the wrong side and the result can therefore
not be trusted.

Once past the five character mark, however, the score values, especially those for the
simulated worm, remain remarkably stable until around a width W of 40. After this value, they
begin to decrease as predicted, and again in accordance with the original plot in the paper.
Both results imply that the detector will have similar reactions to any kind of anomaly. They also
imply that the anomaly does not have to be very long to be picked up.

There is a drawback to all of this, though, and it lies in the time needed to compute the
scores and the corresponding signatures. Even a run of 600 iterations, the minimum require-
ment to getting reliable values with a high probability, takes several minutes to complete. While
the longer ones with 4000 iterations were executed only once to establish the lower value, the
time requirement for 600 iterations needs to be reckoned with if the algorithm is to be used in
practice. An effort could (and probably should) be made to optimise the code for perfomance,
but even then, incoming data must be buffered until it can be processed while the signature
generator is running. The expected volume that is received during this time will have an impact
on the size of the buffer (the message queue in this concrete case), which must be calculated
beforehand to avoid data loss.

Chapter 5

Summary and Conclusions

The goal of this work was to look at the class of byte frequency distribution signatures, choose
one, and implement it for possible use within the Argos honeypot system.

Two methods were considered. The first one involves splitting network connections by
port and length, modelling normal behaviour for each combination, and comparing incoming
traffic to these centroids to decide whether an alarm should be raised. The byte distribution of
such a payload is reordered into a Z-string by the number of occurrence of each individual byte
value. This distribution can then be used as a simple signature for redistribution.

The second method only looks at network traffic in general, and compares new informa-
tion to the model using PADS (Position-Aware Distribution Signatures). Those are more
complex to calculate but on the whole seem to be much more accurate. On the other hand,
administration overhead and potential memory consumption for the single byte frequency
distribution are much smaller and more manageable. Because of this, and because the first
method is primarily an intrusion detection system rather than a signature generator, PADS,
specifically the variant that uses Gibbs sampling, was chosen for implementation.

The BowNet package was designed as a framework for collecting labelled worms, extracting
a signature from them, and storing this signature in a database for eventual redistribution. It
consists of three components that fill these roles: WormColl, which listens on a predefined port
for incoming worm instances, SigGen, which creates the signatures and stores or updates
them in the database, and a MySQL database that serves as the repository. Testing the whole
setup without a working client that labels and delivers the worms proved difficult, though, and
so only individual parts of it are known to work.

The Gibbs sampler at the core of the application was tested with the results of the origi-
nal paper in mind. Two of these results were replicated successfully under slightly different
circumstances, which implies that Gibbs sampling used for signature generation is as reliable a
method as initially expected.

The one major drawback of the method is the computation time needed to acquire the
desired results. However, it should be possible to deal with this issue by buffering incoming
new data until it can be processed. This means that the chosen method is suitable for use in
practical applications in spite of the computational effort it requires.

Further work is needed to accomplish this. The next section, Section 6, offers a few sug-
gestions and possibilities on how to take the work done in this semester thesis a few steps
further.

20

Chapter 6

Outlook

There are plenty of areas where the current setup could be improved upon. The following list
gives a few pointers, but as the whole topic is one of active research a comprehensive overview
would be far beyond the scope of this report.

• Due to the lack of a proper client application feeding it information, the BowNet package as
a whole has not been tested. Individual parts, such as the message queue communication
mechanism, signal handling, database access and the signature generator at the core all
work individually when run outside the main application. If the whole package is ever to be
used for anything, further testing and debugging will be necessary.

• There is a definite tradeoff between the accuracy of a signature and the time required to
compute it. These two aspects need to be balanced so as to give the best possible results
without leaving the system unable to receive new input for too long a time period. Further
experiments are required to find out the best combination under the given circumstances.

• If Gibbs sampling as a signature generation algorithm is to be used in practice, the issue
of classifying captured worm instances before they are fed to the signature generation
routine. The Gibbs sampler needs to work under the initial assumption that its input is of a
somehow similar type to produce meaningful results. If this is not the case, it will inevitably
end up comparing apples and oranges, so to speak; the outcome will be unusable or even
harmful to the systems that employ it.

• As the chosen signature generator does not use them, the port and protocol fields in the
messages containing the captured worms are ignored. Specifically, sorting of the worms
into their buffers happens based on the worm ID only. When storing the signature in the
database, the port and protocol values are simply copied from the first worm instance
without checking if they are the same in all cases. It would be good if the sorting process
during buffering took into account parameters besides the ID as well.

• The Gibbs sampler used will, in principle, also work if the significant regions used to com-
pute the score are non-contiguous. It would require extension of the starting point selection
method to handle multiple points. It would also require fine-tuning of the new parameters
such as number of blocks and length of an individual block. The sampling algorithm itself
does not need to be altered, however, and the extended method may produce even more
accurate signatures.

21

Appendix A

Schedule

Figure A.1: Overview of the approximate project schedule.

Needless to say, this schedule was not met...

22

Appendix B

Original Problem Description

The tasks as defined in the original problem sheet were the following:

1. Set up an appropriate test and development environment for Argos:
The test environment should be designed with security in mind. This is necessary because
we plan to attack Argos with real-world exploits. The code and some documentation can
be found at: http://www.few.vu.nl/porto/argos/.

2. Study the class of byte frequency distribution signatures:
Study publications about byte frequency distribution signatures and select or even improve
a specific type and/or calculation method.

3. Extend the system so that it generates byte frequency distribution signatures:
Adapt the selected type/method for use with the Argos system and do a proof-of-concept
implementation.

4. Evaluation:
Evaluate the implementation by launching different attacks against Argos and by check-
ing the quality of the generated signatures (false positives/false negatives, handling of
polymorphic attacks).

There were five deliverables tied to those tasks:

1. A test and development environment for Argos along with an installation/configuration and
user guide.

2. A brief analysis of the concept and its implementation of at least two existing approaches
generating and using byte frequency distributions signatures.

3. A detailed description of the concept applied in this thesis along with a brief overview
about its implementation.

4. A running prototype of the implemented software together with appropriate documentation
(code/installation, e.g. using e.g. doxygen) and the source code.

5. Documentation presenting the evaluation setup, methodology and the corresponding re-
sults.

23

Appendix C

Software Installation and
Configuration

C.1 Argos Installation Guide

The following is a guide to install and run Argos on a Debian system as provided by the Nep-
tun group at ETH Zurich, so specifics may vary, particularly when it comes to installed packages.

Most of the information was collected form the official Argos website[5]. Instructions to
set up the network on Debian in an elegant fashion came from a different website[6], also
accessible from the official one.

First of all, make sure the necessary libraries and packages, particularly bridge-utils and
the SDL binaries and developer package are installed. If the TUN/TAP device is not enabled,
switch it on. (When running the Neptun-provided version of Debian, the interface will already be
on.)

Download the Argos tarball from the official website and unpack it. Switch to the direc-
tory containing the files and run the included configuration script:

$./configure

This is the point where you find out if you are missing any packages because the configuration
script will tell you. If that is the case, install the necessary parts and run the script again.

As root, build and install Argos by typing

make
make install

This will install Argos into the directory /usr/local/bin.

To create an image for the guest operating system, use qemu-img. The following com-
mand will create the image file ’Apfel.img’ of maximum size 3GB, using the emulator’s
copy-on-write file format:

$ qemu-img create -f qcow Apfel.img 3G

It is now possible to install the guest operating system on this image. The command is the same
both for installation from a CD or DVD and from an ISO image:

$ argos -cdrom <device> -hda Apfel.img -boot d -m <RAM>

where <device> denotes either the cdrom drive or the path to an image file, while <RAM>
stands for the amount of virtual RAM in MB that Argos should run with.

24

C.2 MySQL Setup 25

In order to capture attacks, Argos will need network access. The Nepenthes website[6]
offers a very elegant solution to setting up the network interface in Debian. Essentially, it
involves creating a bridge br0 to your network interface (presumably eth0), assigning this
bridge an IP and network mask, and setting it the default route to your gateway. All this can be
done by changing the settings in the network configuration file /etc/network/interfaces: if your
initial configuration looks something like this

auto eth0
iface eth0 inet dhcp

you need to change it to

auto eth0
iface eth0 inet dhcp

auto br0
iface br0 inet static

address <your IP>
network <your network IP>
netmask <the network mask to go with your network>
broadcast <the broadcast address for your network>
gateway <your default gateway>
bridge_ports eth0
bridge_fd 1
bridge_hello 1
bridge_stp off

filling in the appropriate values for IP, network, broadcast address, netmask and default gateway
as necessary.

Run Argos using the command

argos -hda Apfel.img -m <RAM> -snapshot -cleanvm -<OS>

<OS> can be one of the following: linux, win2k or winxp. The snapshot option is not mandatory,
but it prevents changes from being written directly to the image. Note that Argos must be run
as root because it needs access to /dev/net/tun.

C.2 MySQL Setup

To install and set up the MySQL server needed to store the signatures, start by adding a user
and a group mysql that the server will run as to your system. Pick any password you like for this
user; on the test system, the password for user mysql is m!$Q1.

Next, install both the MySQL server and the MySQL client. The most recent version for
Debian’s stable release is 4.1, so that was the version that was used on the test system.

Switch to user mysql, as there is no need to do the rest of the setup as root. Using the
mysqladmin, set the root password for access to the MySQL databases:

$ mysqladmin -u root password ’your_password’

where ’your_password’ is replaced by the root password chosen for the server. On the test
system, it is set to T0o2+6Q#.

The server is now accessible for furhter configuration by typing

$ mysql -u root -p

C.3 The BowNet Package 26

which will get the system to ask for the root password that has just been set.

The remaining configuration steps are the following:

mysql> use mysql
mysql> insert into host(Host,Db) values(’localhost’,’signatures’);
mysql> insert into user(Host,User,Password)

values(’localhost’,’SigGen’,’$i9g3nn);
mysql> insert into db(Host,Db,User,Select_priv,Insert_priv,Update_priv)

values(’localhost’,’signatures’,’SigGen’,’Y’,’Y’,’Y’);
mysql> create database signatures;
mysql> use signatures
mysql> create table PADS(ID int,created timestamp,updated timestamp,

nupdt int,port int,protocol char,W int,S mediumblob);
mysql> quit;

This allows the host localhost to connect to the database signatures as dbuser SigGen with
password $i9g3nn and grants him select, insert and update privileges for the tables within. Note
that the user and password for access to signatures must be SigGen and $i9g3nn respectively,
as they are hardcoded into the SigGen component for communication with the database.

The actual database signatures and the table PADS have also been created; reload the
new configuration with

$ mysqladmin -u root -p reload

Needless to say, the server has to be running while all of this happens. On Debian, it will be
started automatically after installation. By default, it will also start when the system is booted
and stop when it is shut down.

C.3 The BowNet Package

Besides the MySQL database, BowNet consists of two components that make up the tarball of
the same name. The following are instructions on how to install and run the application and a
more detailed overview of the procedures and functions contained in it.

C.3.1 Installation

Copy the BowNet tarball to the directory that you want the application to be in and unpack it.
Change to the newly created directory BowNet/src.

Compile the two components WormColl.c and SigGen.c. Technically, the output for WormColl.c
can be given any name (although it is probably easiest to simply call it WormColl. SigGen,
however, needs to be compiled using the following command

$ gcc -lmysqlclient -o SigGen SigGen.c

because the name ’SigGen’ for the second component is a constant in the first, which uses it
for the exec call to start it. The option -lmysqlclient links the external functions for database
interaction used within SigGen.

Once the two components have been compiled, they can be run from the directory they
are in, or they (along with the file NormalTraffic.dist) can be copied to a location of your choice
if you don’t want them to be in the same place as the source files. At any rate, they are now
ready for use.

C.3 The BowNet Package 27

C.3.2 User Guide

BowNet as a whole is started by starting WormColl (or whatever name the component was
given during compilation) on the command line. The second component SigGen will be started
automatically within WormColl. Note that it does not make sense for SigGen to ever be started
manually by the user, as that program requires the dynamically assigned ID of a message
queue initialised in WormColl.

To stop the application (by Ctrl-C or one of the various kill commands), it is sufficient to
stop WormColl only. The signal handlers will see to it that SigGen is terminated as well. In
other words, any interaction with the application should happen with WormColl alone, while
everything else is designed to run in the background.

C.3.3 Component Overview

The following gives a more detailed overview of the functions contained in each of the two
components and of their input and output values.

WormColl

Application Constants

• INT_SIZE : the size of an integer in bytes to make the code more readable.

• STRT_TXT : the starting point of the worm information (after the length and type fields)
within a message recieved on the port WormColl listens on.

• DEFAULT : tells the socket() call to use the default protocol for data streams.

• PORT : the port that WormColl binds to to listen for messages.

• MAXCONN: the maximum number of connections accepted by WormColl on port 4224.

• S_PERM: the access permissions of the message queue used to communicate with
SigGen.

• MAXLENGTH: the maximum size of a message that WormColl will receive via TCP, and
that it will pass on to SigGen through the message queue.

Specialised Data Structures

1. message: the message format used to send the collected worm instances to the signature
generator for further processing. Each of these messages is filled with the information
received over the TCP connection and appended to the message queue. It consists of the
following fields:

• mtype: integer field to denote the message type; set to the worm ID.

• mtext : character array of size MAXLENGTH that contains the auxiliary fields as de-
scribed in Section 3.2 as well as the actual worm code.

main
Contains all of the code needed to run WormColl as long as no signals are received. Calling
sequence:

./WormColl

1. Called by:

• user, on the command line.

C.3 The BowNet Package 28

2. Calls:

• SigGen, via an exec call.

3. Input Parameters:

• none

4. Return Value:

• −1, in case of failure.

• child exit status, in case of success.

sig_handler
Handles the signals that terminate or abort the application, as well as the case of unexpected
child termination. Calling sequence:

sig_handler(signal);

Note that this procedure is never called by the application itself, but by the system when an
asynchronous event occurs.

1. Called by:

• system, in case of an external event.

2. Calls:

• none

3. Input Parameters:

• signal, an integer value that stands for the type of signal that was raised; not used.

4. Return Value:

• none

SigGen

Application Constants

• N: the number of worm instances needed to compute a signature.

• W : the width of the computed signature, i.e. the length of the significant region.

• INT_SIZE : see Section C.3.3.

• FLOAT_SIZE : the size of a floating point number in bytes to make the code more readable.

• DIST_ELEMS: the number of elements in the byte frequency distribution for one position,
i.e. the maximum number of different bytes.

• HEADER: the length of the header of the message format as specified in Section 3.2, i.e.
the number of bytes to be read from the dequeued message before the actual worm code
begins.

• NEXT_MSG: tells the msgrcv() call to read the next message in the queue, intependent of
its type.

C.3 The BowNet Package 29

• MAXLENGTH: see Section C.3.3.

Specialised Data Structures

1. message: see Section C.3.3.

2. worm: stores information about a captured worm, as well as the worm itself; analogous to
the message format described in Section 3.2. It consists of the following fields:

• size: the total size of the data in bytes.

• ID: a unique identification number that labels the captured type of attack to classify
the individual worm instances.

• port : the number of the port that was attacked.

• protocol : the protocol under which the attack occurred; copied from the TCP header
that originally delivered the malicious payload.

3. buffer : the buffer structure used to sort the received worms into until N instances of a
given type have been collected. It consists of the following fields:

• elements: the number of worms currently contained in the buffer.

• ID: the type of worm contained in the buffer.

• data: a worm array of size N to temporarily store the worm instances.

• next : a pointer to the next buffer in the list.

lambda
Calculates the matching score of a worm by comparing a potential significant region of width W
to a given signature. Calling sequence:

score = lambda(theta, Sx, s_pos);

1. Called by:

• PADS

2. Calls:

• none

3. Input Parameters:

• theta, a float array of size W+1 by DIST_ELEMS that contains a signature generated
by PADS.

• Sx, the worm instance that the signature theta is being compared to.

• s_pos, the starting position of the potential significant region for worm Sx.

4. Return Value:

• score, the matching score resulting from the comparison of worm and signature.

loglambda
Calculates the matching score of a worm and a signature in the same way as lambda(), but
returns the base 10 logarithm of the result. Calling sequence:

log_score = loglambda(theta, Sx, s_pos);

1. Called by:

C.3 The BowNet Package 30

• omega

2. Calls:

• none

3. Input Parameters:

• theta, a float array of size W+1 by DIST_ELEMS that contains a signature generated
by PADS.

• Sx, the worm instance that the signature theta is being compared to.

• s_pos, the starting position of the potential significant region for worm Sx.

4. Return Value:

• log_lambda, the logarithm of the matching score.

main
Calling sequence:

./SigGen <message queue ID>

1. Called by:

• WormColl, via an exec call.

2. Calls:

• PADS

3. Input Parameters:

• <message queue ID>, to communicate with WormColl.

4. Return Value:

• 0, upon completion of memory cleanup. This is independent of whether the termina-
tion signal was the result of an internal error or an external event.

omega
Calculates a final score by finding the starting position of the significant region in a worm in-
stance that maximises the logarithmic score when comparing the region to a given signature.
Calling sequence:

final = omega(theta, Sx);

1. Called by:

• PADS

2. Calls:

• loglambda

3. Input Parameters:

C.3 The BowNet Package 31

• theta, a float array of size W+1 by DIST_ELEMS that contains a signature generated
by PADS.

• Sx, the worm instance that the signature theta is being compared to.

4. Return Value:

• final, the maximum logarithmic score, weighted by the signature width W, that can be
achieved when comparing worm Sx to signature theta

PADS
Implements two different but equally important parts of the application: the Gibbs sampler that
computes the optimal signature for a buffer full of worms, and the communication with the
database to store this signature. Calling sequence:

PADS(current_buffer, f0);

1. Called by:

• main

2. Calls:

• lambda, omega

3. Input Parameters:

• current_buffer, a buffer with N accumulated instances of the same type of worm.

• f0, a float array containing the byte frequency distribution for normal network traffic
as read from the file NormalTraffic.dist.

4. Return Value:

• none

sig_handler
Handles the signals that terminate or abort the application. Calling sequence:

sig_handler(signal);

Note that this procedure is never called by the application itself, but by the system when an
asynchronous event occurs. In most cases, the signal in question will have been sent by the
parent process, i.e. WormColl.

1. Called by:

• system, in case of an external event.

2. Calls:

• none

3. Input Parameters:

• signal, an integer value that stands for the type of signal that was raised; not used.

4. Return Value:

• none

C.4 Test Tools 32

C.4 Test Tools

C.4.1 NormalDist

The byte frequency distribution for normal network traffic f0 that is contained in the file Normal-
Traffic.dist was trained from the Darpa IDS evaluation data set using this tool. It reads files in
tcpdump format and counts the occurrence of each possible byte. As it uses the pcap library, it
must be compiled with the -lpcap option:

$ gcc -lpcap -o NormalDist NormalDist.c

This will link the needed library functions.

NormalDist takes one or more files as input. The calling sequence is therefore:

$./NormalDist <tcpdump file 0> <tcpdump file 1> ... <tcpdump file n>

which will result in the file NormalTraffic.dist. Note that this file is already included in the BowNet
package and does not need to be retrained. The instructions given here are purely for complete-
ness’ sake, or for the case that one might want to test a different data set of normal network
traffic.

C.4.2 DataGen

DataGen is used to generate files of test data to feed to the signature generator or directly to
the Gibbs Sampler. As it stores the generated byte strings in the same format as the message
described in Section 3.2, it requires several additional input parameters apart from the name of
the output file. It is called in the following way:

$./DataGen <outfile> <keyword> <ID> <f0>

where <keyword> stands for the anomalous string that is to be hidden among the random
bytes, <ID> denotes the worm type and can be assigned an arbitrary value, and <f0> is the file
containing the previously computed byte frequency distribution for normal traffic. The program
will create 100 byte strings of length 2000 characters and write them to <outfile>.

C.4.3 GibbsSampler

This application implements the Gibbs sampler that forms the core of the SigGen component,
but the focus lies on the calculated matching scores instead of the signature. The goal here is to
test the behaviour given an anomalous string within the random test data in relation to various
lengths W for the significant region. Because it uses a couple of functions from the math library,
it needs to be compiled with the option -lm. It is then called with the command

$./GibbsSampler <datafile> <random datafile> <width> <iterations>
<final scorefile> <average scorefile> <average random scorefile>

<datafile> contains the test data generated with DataGen that is to be read. The size of the
significant region W is given by <width>, while the results are stored in <scorefile> and
<iterfile> for the scores and the number of iterations, respectively. Note that the application
appends to these files whenever it is run rather than overwriting anything.

The functions contained within are analogues to those in SigGen, but the number of in-
put parameters may differ. They are the following:

double lambda(int W, float theta[W+1][DIST_ELEMS], worm Sx, int s_pos);
double loglambda(int W, float theta[W+1][DIST_ELEMS], worm Sx, int s_pos);
double omega(int W, float theta[W+1][DIST_ELEMS], worm Sx);
double gibbs(b_ptr current_buffer, float f0[], int W,

int iters, FILE* worms, FILE* sc, FILE* rsc);

C.4 Test Tools 33

where theta, Sx, s_pos, current_buffer and f0 are the same as in SigGen. W is, again, the
width of the significant region (now no longer an internal constant), while iter gives the number
of iterations that the main loop has to complete before returning. worms,sc and rsc point to the
file descriptors of the random data set, the output file for the anomalous matching scores and
that for the normal ones, respectively. The function gibbs takes the role of the procedure PADS
in SigGen, but it returns the matching score right away and does not have to interact with a
database.

Bibliography

[1] Georgios Portokalidis, Asia Slowinska, Herbert Bos: Argos: an x86 emulator for fingerprint-
ing zero-day attacks by means of dynamic data flow analysis. Technical Report IR-CS-017,
October 2005

[2] Ke Wang, Salvatore J. Stolfo: Anomalous Payload-based Network Intrusion Detection. In
7th International Symposium on Recent Advances in Intrusion Detection, Sophia Antipolis,
France, September 2004

[3] Yong Tang, Shigang Chen: Defending Against Internet Worms: A Signature-Based Ap-
proach. In Proceedings of IEEE INFOCOM, March 2005

[4] http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html

[5] https://gforge.cs.vu.nl/projects/argos/

[6] http://nepenthes.mwcollect.org/howto:setting_up_argos_the_0day_shellcode_catcher/

34

