

Semester Thesis SS06

Enhanced Task Scheduling in TinyOS 2.0
&

Channel Allocation in AMUHR

Raffael Bloch
blochra@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Pascal von Rickenbach, Nicolas Burri

 2

Contents

1 Introduction ... 3

2 Enhanced Task Scheduling in Tiny OS 2.0 ... 3

2.1 Tiny OS 2.0 Tasks & Scheduler .. 3
2.1.1 nesC Tasks.. 3
2.1.2 Scheduler .. 4

2.2 Implementing Priority Tasks... 4
2.3 Analysis of the TinyOS 2.0 Concurrency Model ... 6
2.4 Conclusions ... 6

3 Efficient Data Transfer in AMUHR .. 7

3.1 AMUHR... 7
3.2 Channel Leasing System .. 8

3.2.1 Local Cache .. 9
3.2.2 Data Transfer... 9

3.3 Future Work ... 11
3.4 Conclusions ... 11

Appendix A.. 12

A.1 Wiring and Usage of AMUHR ... 12
A.2 Configuring the Cache .. 14

References ... 14

 3

1 Introduction

This semester thesis consists of two independent parts. In the first part we study the
inbuilt scheduler of TinyOS 2.0 and discuss its advantages as well as its limitations. We
show how the scheduler can be extended at the example of a priority-based scheduler.
The second part however is an extension to previous work of David Landis, who wrote
AMUHR (Another Multi-Hop Router for TinyOS). AMUHR is a multi-hop routing
system based on the idea of Dynamic Source Routing, an algorithm which sends the
routing information along with the payload in the same communication packet. Given
the fact that the maximum packet size in the TinyOS system is limited to 29 bytes and a
single path often consist of many hops, it becomes obvious that the available payload is
very limited for the user of such AMUHR packets. We present a solution to this
problem in the second part.

2 Enhanced Task Scheduling in Tiny OS 2.0

2.1 Tiny OS 2.0 Tasks & Scheduler

Traditionally, the scheduler of TinyOS follows a non-preemptive FIFO policy.
According to the TinyOS concurrency model, all tasks run to completion and do not
preempt each other. Waiting tasks are executed in the order of their arrival. As basic
tasks are directly supported by nesC (the native language of TinyOS), we will refer to
them as nesC tasks. We first need to understand how nesC tasks and the standard
TinyOS scheduler work together before we can define a new task concept and modify
the scheduler.

2.1.1 nesC Tasks

A task specification in nesC essentially is the specification of a function without
arguments or return value. Unlike a function, a task can however not be called directly.
To execute a task, we need to pass it to the scheduler using the keyword post.

A task specification in nesC:

void task mytask() {
 // CODE
}

and the corresponding post instruction:

post mytask();

Each component in Tiny OS 2.0 containing such a nesC task specification uses the
TaskBasic interface. This means it implements the event runTask() which holds the

 4

user’s implementation of the task and can be signalled by the scheduler. The scheduler
itself provides the TaskBasic interface and implements the command postTask(). All
the proper wiring work is done automatically by the compiler.

interface TaskBasic {
 async command error_t postTask();
 event void runTask();
}

2.1.2 Scheduler

The scheduler of TinyOS 2.0 provides the Scheduler interface that offers three
commands. Init() obviously initialises the scheduler during the boot sequence.
runNextTask() executes the next task in the queue if there is one. Whether or not a task
was found and executed, is indicated by the return value. Finally, taskLoop() can be
called to enter in an infinite loop which continuously executes tasks as long as there are
some waiting. Otherwise, if the task is empty, the CPU goes into a state of low power
consumption. To enter and return from the sleep mode, the scheduler uses the interface
McuSleep.

interface Scheduler {
 command void init();
 command bool runNextTask();
 command void taskLoop();
}

Using the TaskBasic interface of the previous section, we can summarise the complete
signature of the TinyOS scheduler as shown below:

module SchedulerBasicP {
 provides interface Scheduler;
 provides interface TaskBasic[uint8_t taskID];
 uses interface McuSleep;
}

2.2 Implementing Priority Tasks

The first step in implementing a new kind of task is to define its interface analogously
to the BasicTask interface we studied earlier. For our priority tasks, the interface could
look as follows:

interface TaskPrio {
 async command error_t postTask(uint8_t priority);
 event void runTask();
}

 5

The only difference to the TaskBasic interface forms the parameter priority which
defines the priority level of the task. To make our newly defined tasks available to the
programmer, we need to modify the standard TinyOS scheduler located in the file
TinySchedulerC.nc in the tinyos-2.x/tos/system folder. This configuration file reveals
that the standard scheduler’s implementation can be found in the file
SchedulerBasicP.nc. We replace this implementation file by our own MyScheduler.nc
file supporting priority tasks. Hence, the new configuration file looks as follows:

configuration TinySchedulerC {
 provides interface Scheduler;
 provides interface TaskBasic[uint8_t id];
 provides interface TaskPrio[uint8_t id];
}
implementation {
 components MyScheduler as Sched;
 components McuSleepC as Sleep;
 Scheduler = Sched;
 TaskBasic = Sched;
 TaskPriority = Sched;
 Sched.McuSleep -> Sleep;
}

For the implementation of the new scheduler, we can use the old implementation
SchedulerBasicP.nc as a template. The only notable difference to the implementation
of the TaskPrio interface is the replacement of the existing FIFO queue by a priority
queue. Of course, we still need to support the nesC tasks by implementing the
TaskBasic interface, as our scheduler would otherwise not work with the existing
system. The new scheduler component looks like this (omitting the actual
implementation):

module MyScheduler{
 provides interface Scheduler;
 provides interface TaskBasic[uint8_t id];
 provides interface TaskPrio [uint8_t id];
 uses interface McuSleep;
}
implementation
{ … }

The new priority tasks are now ready to be used by the programmer. Though, the
specification and usage are slightly different to what we know from nesC tasks. The
keyword task can no longer be used. Instead, we implement the event runTask() for
every task we need in our program.

module MyApp {
uses interface TaskPrio as MyPriorityTask;

}
implementation {

event void MyPriorityTask.runTask()
}

 6

Finally, we wire the used TaskPrio interface of our application to its counterpart
provided by the scheduler. Note that if we are using more than one priority task, every
single one of them has to be wired separately. The configuration file for our application
looks like this:

configuration MyAppConfig
{ }
implementation
{
 { … }
 components TinySchedulerC as Scheduler;
 { … }
 MyApp.MyPriorityTask -> Scheduler.TaskPrio[unique("TS.TaskPrio")];
}

2.3 Analysis of the TinyOS 2.0 Concurrency Model

We have seen that the scheduler of TinyOS 2.0 can be modified very easily to support
different kinds of tasks. On the one hand, the non-preemptive TinyOS concurrency
model simplifies the handling of race conditions, deadlocks and other concurrency-
related issues for the programmer. On the other hand, it also leads to serious problems
in many applications as soon as long running tasks are involved. Even priority tasks
may still be delayed, reducing the responsiveness of the system significantly.
Another problem is the inconsistency between nesC tasks and the user-defined tasks.
Having two different notations for quite the same thing, seems unnecessarily
complicated. Though, this design decision is understandable considering that TinyOS
1.1 had no support for user defined tasks at all.

2.4 Conclusions

The concurrency model of TinyOS is best suited for simple, non time critical
applications. Programmers may even circumvent the problem of non-preemptable tasks
by splitting large tasks into smaller pieces, thereby reducing the maximum delay for
incoming priority tasks. However, in the future, the computational capabilities of sensor
nodes will certainly increase and their applications will probably become more
complex, such that a change of the restrictive concurrency model would be advisable. I
would also recommend giving the programmer more flexibility and thereby more
responsibility for the concurrency issues. The current system with its advantages as well
as its drawbacks may be preserved as an option offered to those users, who want to
benefit from “easy-to-use” concurrency and the automatic conflict analysis.

 7

3 Efficient Data Transfer in AMUHR

3.1 AMUHR

The basic communication pattern of AMUHR consists of two subsequent phases. In the
first phase, a node which intends to communicate with another node, broadcasts a find
message containing his communication partner’s address. Such find packets are
rebroadcasted by the neighbours if they received the message for the first time. This
process continuous until the message reaches the actual recipient (Flood Search).
Thereby, the addresses of the intermediate hops between sender and receiver
encountered during the search process are stored in the find packet. The receiver so gets
all information he needs to send a returnpath message back to the sender, along the just
discovered path. As this returnpath message contains the entire hop sequence, both
sender and receiver can store the path which allows the bidirectional communication
between two of them.
Once a path between two nodes is found, DATA packets can be exchanged between
sender and receiver in a second phase. Note that such DATA packets always need to
contain the routing/path information besides the actual payload, because the nodes
along the path do not have any routing information. If the user has activated explicit
acknowledgements, the receiver of a data packet sends an ACK packet back to the
sender. Figure 1 shows the cascade of messages triggered by node 1 which attempts to
send a data packet to node 4.

Figure 1 Two-phase communication pattern of AMUHR. We assume
that only neighbouring nodes can communicate with each other.

node 1 node 2 node 3 node 4

find {4|1}
find {4|1,2}

find {4|1,2,3}
find {4|1,2}

find {4|1,2,3}

returnpath {1,2,3,4}
feturnpath {1,2,3,4}

returnpath {1,2,3,4}

DATA
DATA

ACK

ACK

DATA

ACK

find {4|1}

 8

The user of AMUHR can choose from various configurations that influence the details
of the two-phase communication process described above. There are for example
implicit and explicit acknowledgements available. By explicit acknowledgements, we
mean end-to-end acknowledgements, whereas implicit acknowledgements assume that
all radio links are bidirectional and that a sender of a packet can hear the transmissions
of its neighbours. A node checks whether or not the neighbouring node forwards a
specific packet and initiates a resend if necessary. A more detailed introduction to
AMUHR can be found in [1].

Depending on the length of the path (number of hops) and the configuration of implicit
and explicit acknowledgements, the payload per data packet can be relatively small.
Even though the system is quite useful for applications which only transfer small
amounts of data, it was considered necessary to introduce a more efficient way of data
transfer between nodes. By introducing communication channels, the available payload
per packet should be substantially increased. Such channels are ideally used if large
amounts of data have to be transferred between nodes. A possible application may be
the transfer of entire buffers or caches to a master node for the purpose of their analysis.
In the next section, we will look at the basic idea of Channel Leasing and the
corresponding implementation in AMUHR. We will then have a look on how AMUHR
could be improved in the future. Appendix A holds a number of useful information on
how to wire AMUHR into your applications. The possible configurations of the newly
introduced channels are also listed in the appendix.

3.2 Channel Leasing System

The basic idea of communication channels in AMUHR is to move the path information
from the data packet to the nodes along the path. Once the routing information is locally
stored, the available payload per packet is independent of the path’s length. One
important goal of the implementation is the reuse of as much of the existing
functionality as possible to avoid unnecessarily increasing the code size. Another goal
was to make the management of the channels transparent for the user. In fact the user
can choose between the traditional Source Routing style of communication and the new
channel-based style, by simply setting the options parameter in the standard AMUHR
send command.

command result_t send(uint_16_t receiver,
uint8_t msg_length,
TOS_MsgPtr msg,
uint8_t options);

Using options = MH_USER_LOCAL_PATH activates a communication channel
between the calling node and the receiver node. There are other flags which activate
explicit and implicit acknowledgements. More details on AMUHR’s send command and
valid combinations of flags can be found in Appendix A and in [1].

Since AMUHR already has the capability to find paths, we directly use the existing
functionality to allocate a cache entry on every node along the path. This is done every

 9

time a returnpath message arrives at a node (Figure 1). Once a channel has been
established between two nodes, it can be used for efficient data transfer in both
directions. The leasing system assures the availability of channels while they are in use.
In the following sections, we will first have a look at how the cache is organised and
how the leasing system works, before we focus on how data is transferred using
channels.

3.2.1 Local Cache

The cache structure which is needed to store the route information locally on the nodes,
is located in the file RouteCacheLocalPathM.nc. Every cache line holds the
addresses of the start and end nodes of the channel, as well as the next and previous
node address. An additional byte holds a time stamp, which represents the age of this
particular cache line. The example cache line in Figure 2 is stored on node 4 of the path
2→3→4→5→6. If a message with destination node 6 arrives, the cache line instructs us
to forward the message to node 5. If the destination node is 2 we send the message to
the previous hop 3. Note that this cache line holds sufficient information to operate the
channel between nodes 2 and 6 in both directions.

src_addr dest_addr nxt_hop prv_hop age

2 6 5 3 10

Figure 2: Example cache line on node 4

On every node, a task is executed periodically to reduce the value of the age counter.
Once the value of the counter reaches 0, the entry is treated to be out of date and may be
overwritten if a new cache line has to be allocated by the system. Consequently every
access to a cache entry resets the counter to its maximum value, which can be
configured along with the number of cache lines by the user. This procedure ensures
that no entry that has recently been used will be overwritten. Therefore, established
channels stay available as long as they are frequently used. A longer traffic-free period
on the channel disposes the occupied cache line. Appendix A gives more information on
how to configure the cache.
This channel leasing system automatically manages its resources and therefore prevents
the user from manual task allocation and de-allocation, which often lead to problems
due to resource mismanagement.

3.2.2 Data Transfer

Once a channel is established the user can send and receive data packets (Figure 3) of a
fixed size efficiently. The maximum payload is 23 bytes per packet. In addition to the
data, a packet holds a header consisting of the sender and receiver addresses as well as
of a type field which identifies the packet’s type (AMUHR supports many different
packet types which are all described in [1]). Finally the packet ID field is used to
identify resends of the same packet as well as acknowledgements.

 10

0 1 2 3 4 5 6 7 8 9 10 27 28

sr
c_

ad
dr

 ds
t_

ad
dr

ty
pe

pk
t_

id

da
ta

[0
]

da
ta

[1
]

...

...

da
ta

[2
2]

Figure 3: Data packet layout.

Received data packets are always stored in a packet history to avoid delivering a packet
twice. This mechanism assures that even if a packet is sent multiple times, it is delivered
only once. Such a situation may occur if an acknowledgement message gets lost due to
transmission errors. An acknowledgement packet only consists of the addresses of the
sender and receiver of the packet as well as the type field and of course the packet’s ID
to identify the acknowledged data packet. Details are shown in Figure 4. Note that the
data packet and the acknowledgement packet described in this section are new packet
types which have been introduced to work with channels. They significantly differ to
the data and acknowledgement packets used in Source Routing communication.

0 1 2 3 4 5

sr
c_

ad
dr

 ds
t_

ad
dr

ty
pe

pk
t_

id

Figure 4: Acknowledgement packet layout.

 11

3.3 Future Work

To further improve the functionality and usability of AMUHR I would suggest
addressing the following problems:

• AMUHR offers a large variety of configurations. Such flexibility comes at the
cost of an increasing code size. This problem is particularly bad since AMUHR
is currently designed as one monolithic component. The system always has to be
entirely loaded, even if only a fraction of its functionality is actually used. I
therefore recommend a complete redesign of AMUHR by focussing on
modularisation of the code. This would not only simplify future extensions of
AMUHR but would also address the increasing memory usage problem.

• Extensive testing of AMUHR’s various configurations under real world
conditions is necessary to detect and fix bugs. For this purpose, AMUHR should
offer an interface to the serial port of a sensor node.

• A lot of the program code is heavily compiler-dependant. The extensive use of
pointer arithmetics for memory addressing should be replaced by normal
accesses to proper data types.

• For real world applications, aspects of security and reliability are very important.
Perhaps, the communication protocols could be improved to match higher
expectations.

• Implicit acknowledgements can currently not be combined with channels. This
is mainly to avoid a further increase of the code size. During a redesign of the
system this restriction could be easily removed to enable full functionality.

3.4 Conclusions

In its current version, AMUHR is a multi-hop router which is easy to deploy. The
system offers a large variety of configurations making AMUHR easily adaptable to
different application scenarios and network environments. The new channel-based
communication scheme fits well in the existing system without requiring changes to its
user interface. The complexity of channel management is thereby completely hidden
from the user. Without any modifications, all applications working with the old version
of AMUHR should also run with the extended version.

 12

Appendix A

In a first part, this appendix gives a short introduction on how to wire AMUHR in your
application as well as how to use its features. The second part then explains how to
configure the cache in a way that serves your application best.

A.1 Wiring and Usage of AMUHR

The communication between your application and the AMUHR component takes place
through the interfaces SendMsgEx and ReceiveMsg. Both of these interfaces are
provided by AMUHR and your application should therefore use both of these
interfaces.

interface SendMsgEx {
 command result_t send(uint16_t address,

uint8_t length,
TOS_MsgPtr msg,
uint8_t options);

 event result_t sendDone(TOS_MsgPtr msg, result_t success);
}

interface ReceiveMsg {
 event TOS_MsgPtr receive(TOS_MsgPtr msg);
}

Using SendMsgEx and ReceiveMsg interfaces in your application requires you to
implement the two events sendDone and receive. The skeleton of your application
then looks as follows:

module MyApp {
 uses {
 interface SendMsgEx;
 interface ReceiveMsg;

}
provides {…}

}
implementation {
 event result_t SendMsgEx.sendDone(TOS_MsgPtr msg, result_t success) {…}
 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr msg) {…}
}

The last step involves the actual wiring of both interfaces to AMUHR which is done in
a separate configuration file shown below.

configuration MyAppConfig {}
implementation {
 components AMUHR;
 MyApp.SendMsgEx -> AMUHR.SendMsgEx[MSG_TYPE];
 MyApp.ReceiveMsg -> AMUHR.ReceiveMsg[MSG_TYPE]; }

 13

Note that both interfaces have to be parameterised by the message type intended to be
sent and received. A detailed explanation of parameterised interfaces and the wiring
mechanism of nesC in general can be found in [2].

Now that we have properly wired our application to AMUHR, we may start sending
messages through the send command provided by the SendMsgEx interface. A typical
call goes as follows:

call SendMsgEx.send(receiver,msg_length,msg,options);

Parameters:

• uint16_t receiver the address of the receiver
• uint8_t msg_length the length of the message in bytes
• TOS_MsgPtr msg pointer to the message
• uint8_t options options

Options: (AMUHR/MHConstans.h)
 MH_USER_WANT_ACK Activates end-to-end acknowledgements
 MH_USER_IMP_DATA_ACK Activates implicit ack’s for data packets
 MH_USER_FIND_IMP_ACK Activates implicit ack’s for find packets
 MH_USER_LOCAL_PATH Activates a communication channel

IMPORTANT:

The combination of channels and implicit acknowledgements is currently
not supported.

The send command just delivers the message to the send queue of AMUHR. In case
you activated acknowledgements the sendDone event is signalled after successful
reception of the acknowledgement. Otherwise the sendDone event is signalled as soon
as the message has actually been sent over the radio.

 14

A.2 Configuring the Cache

There are three important settings that influence the behaviour of the route cache. All of
them can be found in the file AMUHR/MHSettings.h.

• ROUTE_CACHE_LOCAL_PATH_CHECK_INTERVAL = 5000; This
constant determines the interval in which the age counter will be
decremented in milliseconds. The standard value is 5000.

• ROUTE_CACHE_LOCAL_PATH_NUM_ENTRIES = 10; The number of
entries the cache can hold. This value directly influences the memory
consumption. Each cache line occupies 9 bytes of memory. The standard
value of 10 cache lines therefore uses 90 bytes of RAM on each sensor
node.

• ROUTE_CACHE_LOCAL_PATH_MAX_AGE = 20; The maximum
value the age counter can have. When the counter reaches 0, the cache
line can be overwritten and the corresponding channel becomes invalid.
The product of the check interval and the maximum age counter define
the longest idle time a channel is guaranteed to stay available.

The correct configuration of the cache is crucial for the successful usage of channels in
your application. You need to know the usage pattern of your application to make good
decisions. If your application is engaging only a small number of channels between key
nodes, it may be effective to have long living channels even if they are only seldomly
used. In such a case you might want to increase the check interval to avoid unnecessary
computations. If your application needs your sensor nodes to establish a lot of channels
to changing destinations, you should increase the size of the cache and decrease both the
check interval and the age counter’s maximum size.

References

[1] D. Landis. Multi-Hop Routing for Wireless Sensor Networks. Semester Thesis,

Distributed Computing Group, Department of Information Technology and
Electrical Engineering, ETH Zurich, March 2006.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D.Culler. The nesC

Language: A Holistic Approach to Networked Embedded Systems. In
Proceedings of Programming Language Design and Implementation (PLDI)
2003, June 2003.

