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1 Introduction 
 
This semester thesis consists of two independent parts. In the first part we study the 
inbuilt scheduler of  TinyOS 2.0 and discuss its advantages as well as its limitations. We 
show how the scheduler can be extended at the example of a priority-based scheduler. 
The second part however is an extension to previous work of David Landis, who wrote 
AMUHR (Another Multi-Hop Router for TinyOS). AMUHR is a multi-hop routing 
system based on the idea of Dynamic Source Routing, an algorithm which sends the 
routing information along with the payload in the same communication packet. Given 
the fact that the maximum packet size in the TinyOS system is limited to 29 bytes and a 
single path often consist of many hops, it becomes obvious that the available payload is 
very limited for the user of such AMUHR packets. We present a solution to this 
problem in the second part. 
 
 
2 Enhanced Task Scheduling in Tiny OS 2.0 
 
2.1 Tiny OS 2.0 Tasks & Scheduler 
 
Traditionally, the scheduler of TinyOS follows a non-preemptive FIFO policy. 
According to the TinyOS concurrency model, all tasks run to completion and do not 
preempt each other. Waiting tasks are executed in the order of their arrival. As basic 
tasks are directly supported by nesC (the native language of TinyOS), we will refer to 
them as nesC tasks. We first need to understand how nesC tasks and the standard 
TinyOS scheduler work together before we can define a new task concept and modify 
the scheduler. 
 
 
2.1.1 nesC Tasks 
 
A task specification in nesC essentially is the specification of a function without 
arguments or return value. Unlike a function, a task can however not be called directly. 
To execute a task, we need to pass it to the scheduler using the keyword post.  
 
A task specification in nesC: 
 

void task mytask() { 
 // CODE 
} 

 
 
and the corresponding post instruction: 
 

post mytask(); 
 
Each component in Tiny OS 2.0 containing such a nesC task specification uses the 
TaskBasic interface. This means it implements the event runTask() which holds the 
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user’s implementation of the task and can be signalled by the scheduler. The scheduler 
itself provides the TaskBasic interface and implements the command postTask(). All 
the proper wiring work is done automatically by the compiler.  
 

interface TaskBasic { 
  async command error_t postTask(); 
  event void runTask(); 
} 

 
 
2.1.2 Scheduler 
 
The scheduler of TinyOS 2.0 provides the Scheduler interface that offers three 
commands. Init() obviously initialises the scheduler during the boot sequence. 
runNextTask() executes the next task in the queue if there is one. Whether or not a task 
was found and executed, is indicated by the return value. Finally, taskLoop() can be 
called to enter in an infinite loop which continuously executes tasks as long as there are 
some waiting. Otherwise, if the task is empty, the CPU goes into a state of low power 
consumption. To enter and return from the sleep mode, the scheduler uses the interface 
McuSleep. 
 

interface Scheduler { 
   command void init(); 
  command bool runNextTask(); 
  command void taskLoop(); 
} 

 
Using the TaskBasic interface of the previous section, we can summarise the complete 
signature of the TinyOS scheduler as shown below: 
 

module SchedulerBasicP { 
 provides interface Scheduler; 
 provides interface TaskBasic[uint8_t taskID]; 
 uses interface McuSleep; 
} 

 
 
2.2 Implementing Priority Tasks 
 
The first step in implementing a new kind of task is to define its interface analogously 
to the BasicTask interface we studied earlier. For our priority tasks, the interface could 
look as follows: 
 

interface TaskPrio { 
  async command error_t postTask(uint8_t priority); 
  event void runTask(); 
} 
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The only difference to the TaskBasic interface forms the parameter priority which 
defines the priority level of the task. To make our newly defined tasks available to the 
programmer, we need to modify the standard TinyOS scheduler located in the file 
TinySchedulerC.nc in the tinyos-2.x/tos/system folder. This configuration file reveals 
that the standard scheduler’s implementation can be found in the file 
SchedulerBasicP.nc. We replace this implementation file by our own MyScheduler.nc 
file supporting priority tasks. Hence, the new configuration file looks as follows: 
 

configuration TinySchedulerC { 
  provides interface Scheduler; 
  provides interface TaskBasic[uint8_t id]; 
  provides interface TaskPrio[uint8_t id]; 
} 
implementation { 
  components MyScheduler as Sched; 
  components McuSleepC as Sleep; 
  Scheduler = Sched; 
  TaskBasic = Sched; 
  TaskPriority = Sched; 
  Sched.McuSleep -> Sleep; 
} 

 
For the implementation of the new scheduler, we can use the old implementation 
SchedulerBasicP.nc as a template. The only notable difference to the implementation 
of the TaskPrio interface is the replacement of the existing FIFO queue by a priority 
queue. Of course, we still need to support the nesC tasks by implementing the 
TaskBasic interface, as our scheduler would otherwise not work with the existing 
system. The new scheduler component looks like this (omitting the actual 
implementation): 
 

module MyScheduler{ 
  provides interface Scheduler; 
  provides interface TaskBasic[uint8_t id]; 
  provides interface TaskPrio [uint8_t id]; 
  uses interface McuSleep; 
} 
implementation 
{ … } 

 
The new priority tasks are now ready to be used by the programmer. Though, the 
specification and usage are slightly different to what we know from nesC tasks. The 
keyword task can no longer be used. Instead, we implement the event runTask() for 
every task we need in our program. 
 

module MyApp { 
uses interface TaskPrio as MyPriorityTask; 

} 
implementation { 

event void MyPriorityTask.runTask() 
} 
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Finally, we wire the used TaskPrio interface of our application to its counterpart 
provided by the scheduler. Note that if we are using more than one priority task, every 
single one of them has to be wired separately. The configuration file for our application 
looks like this: 
 

configuration MyAppConfig 
{ } 
implementation 
{ 
  { … } 
  components TinySchedulerC as Scheduler; 
  { … } 
  MyApp.MyPriorityTask -> Scheduler.TaskPrio[unique("TS.TaskPrio")]; 
} 

 
 
2.3 Analysis of the TinyOS 2.0 Concurrency Model 
 
We have seen that the scheduler of TinyOS 2.0 can be modified very easily to support 
different kinds of tasks. On the one hand, the non-preemptive TinyOS concurrency 
model simplifies the handling of race conditions, deadlocks and other concurrency-
related issues for the programmer. On the other hand, it also leads to serious problems 
in many applications as soon as long running tasks are involved. Even priority tasks 
may still be delayed, reducing the responsiveness of the system significantly. 
Another problem is the inconsistency between nesC tasks and the user-defined tasks. 
Having two different notations for quite the same thing, seems unnecessarily 
complicated. Though, this design decision is understandable considering that TinyOS 
1.1 had no support for user defined tasks at all. 
 
 
2.4 Conclusions 
 
The concurrency model of TinyOS is best suited for simple, non time critical 
applications. Programmers may even circumvent the problem of non-preemptable tasks 
by splitting large tasks into smaller pieces, thereby reducing the maximum delay for 
incoming priority tasks. However, in the future, the computational capabilities of sensor 
nodes will certainly increase and their applications will probably become more 
complex, such that a change of the restrictive concurrency model would be advisable. I 
would also recommend giving the programmer more flexibility and thereby more 
responsibility for the concurrency issues. The current system with its advantages as well 
as its drawbacks may be preserved as an option offered to those users, who want to 
benefit from “easy-to-use” concurrency and the automatic conflict analysis. 
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3 Efficient Data Transfer in AMUHR 
 
3.1 AMUHR 
 
The basic communication pattern of AMUHR consists of two subsequent phases. In the 
first phase, a node which intends to communicate with another node, broadcasts a find 
message containing his communication partner’s address. Such find packets are 
rebroadcasted by the neighbours if they received the message for the first time. This 
process continuous until the message reaches the actual recipient (Flood Search). 
Thereby, the addresses of the intermediate hops between sender and receiver 
encountered during the search process are stored  in the find packet. The receiver so gets 
all information he needs to send a returnpath message back to the sender, along the just 
discovered path. As this returnpath message contains the entire hop sequence, both 
sender and receiver can store the path which allows the bidirectional communication 
between two of them.  
Once a path between two nodes is found, DATA packets can be exchanged between 
sender and receiver in a second phase. Note that such DATA packets always need to 
contain the routing/path information besides the actual payload, because the nodes 
along the path do not have any routing information. If the user has activated explicit 
acknowledgements, the receiver of a data packet sends an ACK packet back to the 
sender. Figure 1 shows the cascade of messages triggered by node 1 which attempts to 
send a data packet to node 4.  

 
Figure 1 Two-phase communication pattern of AMUHR. We assume 
that only neighbouring nodes can communicate with each other. 
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The user of AMUHR can choose from various configurations that influence the details 
of the two-phase communication process described above. There are for example 
implicit and explicit acknowledgements available. By explicit acknowledgements, we 
mean end-to-end acknowledgements, whereas implicit acknowledgements assume that 
all radio links are bidirectional and that a sender of a packet can hear the transmissions 
of its neighbours. A node checks whether or not the neighbouring node forwards a 
specific packet and initiates a resend if necessary. A more detailed introduction to 
AMUHR can be found in [1]. 
 
Depending on the length of the path (number of hops) and the configuration of implicit 
and explicit acknowledgements, the payload per data packet can be relatively small. 
Even though the system is quite useful for applications which only transfer small 
amounts of data, it was considered necessary to introduce a more efficient way of data 
transfer between nodes. By introducing communication channels, the available payload 
per packet should be substantially increased. Such channels are ideally used if large 
amounts of data have to be transferred between nodes. A possible application may be 
the transfer of entire buffers or caches to a master node for the purpose of their analysis. 
In the next section, we will look at the basic idea of Channel Leasing and the 
corresponding implementation in AMUHR. We will then have a look on how AMUHR 
could be improved in the future. Appendix A holds a number of useful information on 
how to wire AMUHR into your applications. The possible configurations of the newly 
introduced channels are also listed in the appendix. 
 
 
3.2 Channel Leasing System 
 
The basic idea of communication channels in AMUHR is to move the path information 
from the data packet to the nodes along the path. Once the routing information is locally 
stored, the available payload per packet is independent of the path’s length. One 
important goal of the implementation is the reuse of as much of the existing 
functionality as possible to avoid unnecessarily increasing the code size. Another goal 
was to make the management of the channels transparent for the user. In fact the user 
can choose between the traditional Source Routing style of communication and the new 
channel-based style, by simply setting the options parameter in the standard AMUHR 
send command.  
 

command result_t send(uint_16_t receiver, 
uint8_t msg_length, 
TOS_MsgPtr msg, 
uint8_t options); 

 
Using options = MH_USER_LOCAL_PATH activates a communication channel 
between the calling node and the receiver node. There are other flags which activate 
explicit and implicit acknowledgements. More details on AMUHR’s send command and 
valid combinations of flags can be found in Appendix A and in [1]. 
 
Since AMUHR already has the capability to find paths, we directly use the existing 
functionality to allocate a cache entry on every node along the path. This is done every 
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time a returnpath message arrives at a node (Figure 1). Once a channel has been 
established between two nodes, it can be used for efficient data transfer in both 
directions. The leasing system assures the availability of channels while they are in use. 
In the following sections, we will first have a look at how the cache is organised and 
how the leasing system works, before we focus on how data is transferred using 
channels. 
 
 
3.2.1 Local Cache 
 
The cache structure which is needed to store the route information locally on the nodes, 
is located in the file RouteCacheLocalPathM.nc. Every cache line holds the 
addresses of the start and end nodes of the channel, as well as the next and previous 
node address. An additional byte holds a time stamp, which represents the age of this 
particular cache line. The example cache line in Figure 2 is stored on node 4 of the path 
2→3→4→5→6. If a message with destination node 6 arrives, the cache line instructs us 
to forward the message to node 5. If the destination node is 2 we send the message to 
the previous hop 3. Note that this cache line holds sufficient information to operate the 
channel between nodes 2 and 6 in both directions. 
 

src_addr dest_addr nxt_hop prv_hop age 

2 6 5 3 10 

 
Figure 2: Example cache line on node 4 

 
On every node, a task is executed periodically to reduce the value of the age counter. 
Once the value of the counter reaches 0, the entry is treated to be out of date and may be 
overwritten if a new cache line has to be allocated by the system. Consequently every 
access to a cache entry resets the counter to its maximum value, which can be 
configured along with the number of cache lines by the user. This procedure ensures 
that no entry that has recently been used will be overwritten. Therefore, established 
channels stay available as long as they are frequently used. A longer traffic-free period 
on the channel disposes the occupied cache line. Appendix A gives more information on 
how to configure the cache. 
This channel leasing system automatically manages its resources and therefore prevents 
the user from manual task allocation and de-allocation, which often lead to problems 
due to resource mismanagement. 
 
 
3.2.2 Data Transfer 
 
Once a channel is established the user can send and receive data packets (Figure 3) of a 
fixed size efficiently. The maximum payload is 23 bytes per packet. In addition to the 
data, a packet holds a header consisting of the sender and receiver addresses as well as 
of a type field which identifies the packet’s type (AMUHR supports many different 
packet types which are all described in [1]). Finally the packet ID field is used to 
identify resends of the same packet as well as acknowledgements.  
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Figure 3: Data packet layout. 
 
Received data packets are always stored in a packet history to avoid delivering a packet 
twice. This mechanism assures that even if a packet is sent multiple times, it is delivered 
only once. Such a situation may occur if an acknowledgement message gets lost due to 
transmission errors. An acknowledgement packet only consists of the addresses of the 
sender and receiver of the packet as well as the type field and of course the packet’s ID 
to identify the acknowledged data packet. Details are shown in Figure 4. Note that the 
data packet and the acknowledgement packet described in this section are new packet 
types which have been introduced to work with channels. They significantly differ to 
the data and acknowledgement packets used in Source Routing communication. 
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3.3 Future Work 
 
To further improve the functionality and usability of AMUHR I would suggest 
addressing the following problems: 
 

• AMUHR offers a large variety of configurations. Such flexibility comes at the 
cost of an increasing code size. This problem is particularly bad since AMUHR 
is currently designed as one monolithic component. The system always has to be 
entirely loaded, even if only a fraction of its functionality is actually used. I 
therefore recommend a complete redesign of AMUHR by focussing on 
modularisation of the code. This would not only simplify future extensions of 
AMUHR but would also address the increasing memory usage problem. 

• Extensive testing of AMUHR’s various configurations under real world 
conditions is necessary to detect and fix bugs. For this purpose, AMUHR should 
offer an interface to the serial port of a sensor node. 

• A lot of the program code is heavily compiler-dependant. The extensive use of 
pointer arithmetics for memory addressing should be replaced by normal 
accesses to proper data types. 

• For real world applications, aspects of security and reliability are very important. 
Perhaps, the communication protocols could be improved to match higher 
expectations. 

• Implicit acknowledgements can currently not be combined with channels. This 
is mainly to avoid a further increase of the code size. During a redesign of the 
system this restriction could be easily removed to enable full functionality.  

 
 
3.4 Conclusions 
 
In its current version, AMUHR is a multi-hop router which is easy to deploy. The 
system offers a large variety of configurations making AMUHR easily adaptable to 
different application scenarios and network environments. The new channel-based 
communication scheme fits well in the existing system without requiring changes to its 
user interface. The complexity of channel management is thereby completely hidden 
from the user. Without any modifications, all applications working with the old version 
of AMUHR should also run with the extended version. 
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Appendix A 
 
In a first part, this appendix gives a short introduction on how to wire AMUHR in your 
application as well as how to use its features. The second part then explains how to 
configure the cache in a way that serves your application best.  
 
 
A.1 Wiring and Usage of AMUHR 
 
The communication between your application and the AMUHR component takes place 
through the interfaces SendMsgEx and ReceiveMsg. Both of these interfaces are 
provided by AMUHR and your application should therefore use both of these 
interfaces. 
 

interface SendMsgEx { 
 command result_t send( uint16_t address,  

uint8_t length,  
TOS_MsgPtr msg,  
uint8_t options); 

 event result_t sendDone(TOS_MsgPtr msg, result_t success); 
} 

 
interface ReceiveMsg { 
 event TOS_MsgPtr receive(TOS_MsgPtr msg); 
} 

 
Using SendMsgEx and ReceiveMsg interfaces in your application requires you to 
implement the two events sendDone and receive. The skeleton of your application 
then looks as follows: 
 

module MyApp { 
 uses { 
  interface SendMsgEx; 
  interface ReceiveMsg; 

} 
provides {…} 

} 
implementation { 
 event result_t SendMsgEx.sendDone(TOS_MsgPtr msg, result_t success) {…} 
 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr msg) {…} 
} 

 
The last step involves the actual wiring of both interfaces to AMUHR which is done in 
a separate configuration file shown below. 
 

configuration MyAppConfig {} 
implementation { 
 components AMUHR; 
 MyApp.SendMsgEx -> AMUHR.SendMsgEx[MSG_TYPE]; 
 MyApp.ReceiveMsg -> AMUHR.ReceiveMsg[MSG_TYPE]; } 
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Note that both interfaces have to be parameterised by the message type intended to be 
sent and received. A detailed explanation of parameterised interfaces and the wiring 
mechanism of nesC in general can be found in [2].  
 
Now that we have properly wired our application to AMUHR, we may start sending 
messages through the send command provided by the SendMsgEx interface. A typical 
call goes as follows: 
 

call SendMsgEx.send(receiver,msg_length,msg,options); 
 
Parameters: 

• uint16_t receiver  the address of the receiver 
• uint8_t msg_length the length of the message in bytes 
• TOS_MsgPtr msg pointer to the message 
• uint8_t options  options 

 
Options: (AMUHR/MHConstans.h) 
 MH_USER_WANT_ACK  Activates end-to-end acknowledgements 
 MH_USER_IMP_DATA_ACK Activates implicit ack’s for data packets  
 MH_USER_FIND_IMP_ACK  Activates implicit ack’s for find packets 
 MH_USER_LOCAL_PATH  Activates a communication channel 
 
IMPORTANT: 

The combination of channels and implicit acknowledgements is currently 
not supported. 

 
The send command just delivers the message to the send queue of AMUHR. In case 
you activated acknowledgements the sendDone event is signalled after successful 
reception of the acknowledgement. Otherwise the sendDone event is signalled as soon 
as the message has actually been sent over the radio. 
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A.2 Configuring the Cache 
 
There are three important settings that influence the behaviour of the route cache. All of 
them can be found in the file AMUHR/MHSettings.h. 
 

• ROUTE_CACHE_LOCAL_PATH_CHECK_INTERVAL = 5000; This 
constant determines the interval in which the age counter will be 
decremented in milliseconds. The standard value is 5000. 

• ROUTE_CACHE_LOCAL_PATH_NUM_ENTRIES = 10; The number of 
entries the cache can hold. This value directly influences the memory 
consumption. Each cache line occupies 9 bytes of memory. The standard 
value of 10 cache lines therefore uses 90 bytes of RAM on each sensor 
node. 

• ROUTE_CACHE_LOCAL_PATH_MAX_AGE = 20; The maximum 
value the age counter can have. When the counter reaches 0, the cache 
line can be overwritten and the corresponding channel becomes invalid. 
The product of the check interval and the maximum age counter define 
the longest idle time a channel is guaranteed to stay available. 

 
The correct configuration of the cache is crucial for the successful usage of channels in 
your application. You need to know the usage pattern of your application to make good 
decisions. If your application is engaging only a small number of channels between key 
nodes, it may be effective to have long living channels even if they are only seldomly 
used. In such a case you might want to increase the check interval to avoid unnecessary 
computations. If your application needs your sensor nodes to establish a lot of channels 
to changing destinations, you should increase the size of the cache and decrease both the 
check interval and the age counter’s maximum size. 
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