
Semester Thesis

Traffic Monitoring in Sensor Networks

Raphael Schmid

Departments of Computer Science and Information Technology and Electrical Engineering,
ETH Zurich

Summer Term 2006

Supervisors:
Nicolas Burri and Pascal von Rickenback, Distributed Computing Group

Prof. Dr. Roger Wattenhofer, Distributed Computing Group

Table of Contents
1. Introduction and Task Description...2
2. High-level Software Architecture.. 4
3. TinyWireshark Client...6
4. TinyWireshark Server.. 9
5. Conclusion and Future Work... 12

1. Introduction and Task Description

The subject of this semester thesis was traffic monitoring in sensor networks.
Up to now, the user had to use a simple command window or a text editor for investigating
sensor network data. Furthermore, if he wanted to realize a distributed investigation using
more than one sniffing sensor node, there was no possibility to merge the gathered data.
Instead, the user had to look at several command windows or text editors. All this procedures
are not really convenient.
The goal of this semester thesis was to develop an application which gathers, merges and
displays sensor network data. The application should allow the user to work not just with byte
streams. Instead, the displaying should help to reconstruct the behavior of the sniffed sensor
network in a better way. Therefore the user interface should base on well defined sensor
network packet formats, and a possibility for the user to easily define new sensor network
packet formats and sensor node platform architecture formats is needed.
In the next sections, I will discuss my developed application, which consists of five sub-
applications. I focused my work on the complex displaying of the gathered data.

2. High-level Software Architecture

The whole application consists of the following five sub applications (see Figure 1): The
network packet listener TOSBase (running on a sensor node), the application
SerialForwarder receiving sniffed network packets from the TOSBase, the application
TinyWireshark Client receiving the sniffed sensor network packets from the SerialForwarder,
and finally the application TinyWireshark Server receiving the sniffed sensor network packets
from the TinyWireshark Client. The open source application NetTime1, which can either act as
a server or a client, is responsible for the synchronization of the system clocks of the
computers running the TinyWireshark Server and Clients.
TOSBase and SerialForwarder are freely available open source programs from the TinyOS-
Cygwin-Environment 1.02.
The TinyWireshark Client and TinyWireshark Server are custom Java applications.

When the TOSBase gathers a sensor network packet, it immediately forwards it to the
SerialForwarder using, for instance, a serial connection. The SerialForwarder then uses a
local network connection to the TinyWireshark Client for forwarding the sensor network
packet right away. When the TinyWireshark Client receives a sensor network packet, it
measures the current system time and stores this timestamp together with the received
sensor network packet in an overall packet. Afterwards, it either sends the overall packet
immediately to the TinyWireshark Server (using a network connection) or stores the overall
packet in local memory, depending on the user preferences. On receiving a packet the
TinyWireshark Server displays the new data in the graphical user interface.
NetTime runs completely independent from the TinyWireshark Server and Client. The user is
responsible for running NetTime.
In general, the application is split into one or several clients and one server. The client
notebooks or PCs are responsible for gathering the sensor network packets. The server
notebook or PC is responsible for merging, storing and showing the gathered packets of the
clients.

1 http://sourceforge.net/projects/nettime
2 http://www.tinyos.net/, http://dcg.ethz.ch/projects/tos_ide/

Figure 1: Architecture of the application

3. TinyWireshark Client

The architecture of the TinyWireshark Client is quite simple. It is divided into the two
packages gui and client. The package gui is responsible for the graphical user interface. The
package client is responsible for receiving data from the SerialForwarder, for sending data to
the TinyWireshark Server, and for storing data to hard disk.
The user can change the arguments for SerialForwarder using the GUI (see Figure 2). The
arguments determine how the SerialForwarder has to connect to the data gathering sensor
node running the TOSBase. The user can also change the network settings (i.e., the IP
address and the IP port) for the connection to the TinyWireshark Server.

Figure 2: The TinyWireshark Client graphical user interface

The button start data gathering is used to enable the TinyWireshark Client to receive
incoming data from the SerialForwarder. Each arriving sensor network packet is time stamped
with the current system time and stored in main memory. Note that the accuracy depends on
the underlying operating system and hardware clock, but in general the error should not be
worse than a few milliseconds. If higher precision is required, native system calls become
necessary, for example using the Java Native Interface3. Further inaccuracies are added
while the packet is transmitted from the data gathering sensor node to the TinyWireshark
Client. If the sensor node is connected to the TinyWireshark Client using wireless LAN, an
error of several milliseconds may be added!

3 http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html

The button stop data gathering is used to prevent the TinyWireshark Client from receiving
incoming sensor network packets from the SerialForwarder.

If the button send gathered data is clicked, the TinyWireshark Client tries to send the locally
stored data to TinyWireshark Server according the specified IP parameters. If no
TinyWireshark Server is available or if the network connection is interrupted, the user can
save the locally stored data to hard disk. This can be done either in a text file (raw data
format) or as serialized Java objects.

Pressing the button delete gathered data, the TinyWireshark Client leads to the deletion of all
stored data.

If the live mode check box is activated, the TinyWireshark Client immediately sends every
sensor network packet received from the SerialForwarder to the TinyWireshark Server
(together with the timestamp) and does not store the data locally.

Figure 3: The TinyWireshark Server graphical user interface

4. TinyWireshark Server

The TinyWireshark Server displays the gathered sensor network packets in a user-friendly
way. The source code is divided into the four packages server, gui, filtersetLoading and
packetFormatloading.

The package server is the main package. It is responsible for the data model, for receiving
data from the TinyWireshark Clients, for loading and storing data from and to hard disk, and
for the coordination of all other packages. The data model is a vector of packets. Each packet
consists of a timestamp and the actual network data packet.
There are two possibilities how data may be added to the TinyWireshark Server. The first way
is to receive data directly from the TinyWireshark Clients. The user can start the server using
the Server menu (see Figure 3). The port the server will listen to can be specified in the
Preferences window (see Figure 4). For each incoming data packet, the TinyWireshark
Server will create a new thread for handling the packet. The second way is to load data from
hard disk. Data packets from hard disk are either stored as serialized Java objects or as raw
data. Raw data means each byte is stored as a hexadecimal number consisting of two digits.
Raw data files are readable by every text editor. They were stored either by a TinyWireshark
Server or by a SerialForwarder, for example if the user just used the SerialForwarder for
gathering sensor network data. Serialized Java objects were stored from the TinyWireshark
Client or TinyWireshark Server.
There is also a possibility to save data to hard disk, either as serialized Java objects or as raw
data.

Figure 4: The Preferences window of the TinyWireshark Server

The package gui is responsible for the whole graphical user interface, including the visible
data representation (see Figure 3). Data is presented in two ways.
In the upper part of the GUI, data packets are represented in a table as byte streams together

with the timestamp (if available) in the first column. Byte values are displayed either as
hexadecimal or decimal strings. The user can choose the format using the view menu.
Further, it is possible to color table rows according to a specified column. The column can be
set in the Preferences window (see Figure 4). And last but not least, there exists a filter
mechanism where the user can define a filter set (see Figure 5). Data packets have to pass
the filter set before they are displayed in the table. It was a requirement to allow loading and
displaying hundreds of thousands of packets. If the program always rendered all packets in
the visible table, the memory usage would be several hundreds of mega bytes, which of
course does not make any sense. I got two ideas to solve the problem: either to reduce the
memory usage of the actual cells of the table or to render the table dynamically. I decided to
implement the dynamic rendering. Therefore, the table renders and displays only the
necessary rows, which are currently visible to the user. If the user scrolls up or down,
unneeded rows are deleted and new necessary rows are added.
In the lower part of the GUI, the current selected data packet (a row) of the table is displayed
as a tree according to a corresponding sensor network packet format. If no fitting sensor
network packet format is found an empty tree is displayed. XML-defined sensor network
packet formats can be loaded using the File menu. The Preferences window (see Figure 4)
allows specifying whether the actual data of the sensor network packets (which is nothing
more than a byte stream) is two byte aligned or not. This possibility is provided because some
sensor node architectures require that each address of all two and four byte values is two
byte aligned.

Figure 5: The Filter window of the TinyWireshark Server

The package packetFormatLoading provides the functionality for loading XML-defined sensor
network packet formats (see XML schema Figure 8). It was desirable to implement a
possibility to define and load such packet formats in an easy way even after the application
was compiled and rolled out. I decided to implement this interface using XML. With XML, the
user can define a new format in a few minutes and he does not need programming skills.
Figure 9 shows an example of an XML defined sensor network packet format. Another
argument is the availability of fast and easy-to-use XML parsers in J2EE4. If the user has
loaded one or several sensor network packet formats and clicks a row in the packet table, the
TinyWireshark Server searches for a fitting format. If a definition is found, the packet is parsed
according to the corresponding sensor network packet format and is displayed as a tree in the
lower part of the GUI.

Figure 6: A Progress window of the TinyWireshark Server

The package filtersetLoading provides the functionality for defining and applying a set of filters
(see Figure 5) and for loading and storing XML-defined filter rules to and from hard disk. The
rule set is stored in an XML format (see Figure 7). I chose XML again because of the
availability of the fast and easy-to-use XML parsers in J2EE5. An additional advantage is the
possibility to modify a stored rule set in an easy way. Therefore, also an XML file written by a
text editor can be loaded. Of course, the file has to be valid according to the defined XML
schema (see Figure 7).

4 http://java.sun.com/webservices/docs/1.5/api/index.html
5 http://java.sun.com/webservices/docs/1.5/api/index.html

5. Conclusion and Future Work

The biggest challenges were performance issues, for example the updating of the table and
the GUI updating procedure in general (especially if there are several TinyWireshark Clients
running in live mode). It is now still possible that the GUI updating procedure is too slow, if the
arrival rate of data packets is too high. But nevertheless the actual functionality of the
TinyWireshark Server should work properly unless there are not enough resources for
handling all incoming data packets.
Another challenge was handling the variety of sensor node platform architectures and sensor
network packet formats. Some parts of the TinyWireshark Server had to be rewritten and new
code had to be added to some Java classes used by the SerialForwarder to support
additional sensor node platform architectures. A detailed description of how to add a new
architecture is available in the readme.txt file, in the package Semester Thesis Traffic
Monitoring in Sensor Networks.

As this is the first released version of TinyWireshark, there is a lot of potential for
improvements and additional features. Some ideas are:

a) at the TinyWireshark Server

- Recognition of duplicated packets (if a single sensor network packet is gathered by two
TinyWireshark Clients)

- Allow filter rules according to loaded packet formats

- Allow sorting of loaded sensor network packets according to a selectable column

- Allow importing of sensor network packet formats given as data structures in C header files

- Make the TinyWireshark Server scalable according to incoming network load

- Improve the data model to reduce memory usage

- Reduce the memory usage during the conversion of raw data to the internal data model

- Improve the performance of the GUI updating procedures

b) at the TinyWireshark Client

- Improve the data model to reduce memory usage

- Improve the accuracy of the timestamp added to gathered data packets

- Improve the performance of the GUI updating procedures

Although the project traffic monitoring in sensor networks was quite labor intensive (135 KB
Java Bytecode without imports), I enjoyed working on it. I learned a lot about software
designing, working with embedded platforms and improved my knowledge in many other
parts of computer science.

Figure 7: XML schema for the XML rule sets

Figure 8: XSD schema for the XML defined packet formats

Figure 9: An XML defined packet format

	1. Introduction and Task Description
	2. High-level Software Architecture
	3. TinyWireshark Client
	4. TinyWireshark Server

	5. Conclusion and Future Work

