
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis SA-2006-31

Summer Semester 2006

Scalable Real-time Multiplayer Game

Network Support for Orxonox

Benjamin Grauer, Patrick Bönzli
grauerb@ee.ethz.ch, boenzlip@ee.thz.ch

Tutor: Károly Farkas farkas@tik.ee.ethz.ch

Supervisor: Prof. Bernhard Plattner plattner@tik.ee.ethz.ch

1

2

Abstract

Computer games are based on many different cutting edge technologies like effi-
cient and realistic graphical simulation of a world, physically correct interaction
with the game world, network based multiplayer gaming and many more. Game
development therefore is a very complicated topic and involves the application
of knowledge from many different specialty fields like programming, linear alge-
bra, numerics, physics, signal processing, communication networks and requires
broad artistic skills. People who like to work in the game development industry
often feel overwhelmed by the huge amount of knowledge this work requires.

In this semester thesis a group of students were introduced to the art of
developing games based on a framework called Orxonox. The students got an
introduction about how the Orxonox engine works and afterwards they extended
the framework with a project of their own. In the end they presented their work
in the form of a presentation. During their work we assisted the students to get
the informations they needed, helped them solving programming, design and
logical issues and kept them motivated.

Current online games are evolving towards massive multiplayer online games
(MMO). Such games normally require multiple servers to handle the high amount
of concurrent simultaneously playing gamers. Even nowadays networked games
are still based on client-server architecture and are therefore not scalable due
to limited network and processing resources. In the second part of our semester
thesis we developed a scalable multiplayer game architecture for Orxonox. We
enhanced the Orxonox network framework by adding proxy servers, which not
only distributed the load, but also added redundancy in case of server failure.

3

Acknowledgments

No thesis is a solo venture. It’s a collaborative effort requiring the support,
guidance and advice of many. We would like to thank all of these people who
were so generous with their time, insights, inputs throughout this process.

Special thanks to our tireless semester thesis advisor, Károly Farkas. Thank
you for your inputs, great ideas and inspirations.

Thank you to our students that worked so well with us together in the Practical.
You did a very well job, we never expected so much dedication from you.

CONTENTS 4

Contents

1 Introduction 6

2 Orxonox 7
2.1 Project Orxonox . 7

2.1.1 Description . 7
2.1.2 Team . 7
2.1.3 History . 8

2.2 Game Development Model . 8
2.2.1 Complexity of Developing Games 8
2.2.2 Development in Phases 9
2.2.3 Current State . 11

2.3 Engine Overview . 11
2.3.1 Orxonox API . 11
2.3.2 Gameplay . 12
2.3.3 Installation . 13
2.3.4 Configuration . 14

3 PPS - Practical Exercise for Students 16
3.1 Introduction . 16

3.1.1 Motivation . 16
3.2 Objectives . 17

3.2.1 Teaching . 17
3.2.2 Maintenance . 17
3.2.3 Motivate the Students . 17

3.3 The Practical Exercise . 17
3.3.1 General PPS . 17
3.3.2 Orxonox Practical Exercise 18

3.4 Work Scheduling and Course Structure 19
3.5 Results . 20

3.5.1 Story Concept Paper by Benjamin Knecht 21
3.5.2 Scripting Engine by Silvan Nellen 21
3.5.3 Weather Engine by David Hasenfratz and Andreas Mächler 21
3.5.4 Water Surface Simulation by Stefan Lienhard 21
3.5.5 Binary Space Partitioning by Claudio Botta 21
3.5.6 Network by Christoph Renner 22

3.6 Conclusions . 22
3.7 Future Work . 23

CONTENTS 5

4 Proxy Server Architecture 24
4.1 Introduction . 24
4.2 Objectives . 24

4.2.1 Scalability . 24
4.2.2 Redundancy . 24
4.2.3 Modularity . 25
4.2.4 Reusability . 25

4.3 Orxonox Network API . 25
4.3.1 History . 25
4.3.2 Overview . 25
4.3.3 Synchronization Process 26
4.3.4 Packet Creation . 27
4.3.5 Start a Connection: Handshake 28
4.3.6 Sending Messages . 29
4.3.7 Modules . 29
4.3.8 Further Information . 32

4.4 Network Topologies and Scalability 32
4.4.1 Peer-To-Peer Topology . 32
4.4.2 Client-Server Topology . 33
4.4.3 Proxy Server Topology . 33

4.5 Design . 34
4.5.1 Network Topology and it’s Components 34
4.5.2 Application Scenario . 36
4.5.3 Modules . 37
4.5.4 Network Processes . 38

4.6 Implementation . 43
4.6.1 Proxy Control . 43
4.6.2 Network Monitor . 44
4.6.3 Network Settings . 45

4.7 Preliminary Measurement . 45
4.7.1 Environment . 45
4.7.2 Scenario . 46
4.7.3 Measurements . 47
4.7.4 Enhancements . 48

4.8 Conclusions . 49
4.9 Future Work . 49

Appendices 51

A Orxonox Framework Description 52
A.1 Elements . 52

A.1.1 GameWorld . 52
A.1.2 Engines . 52
A.1.3 World Entities . 52
A.1.4 Resources . 52

A.2 Coding Tips . 53
A.2.1 Network . 53

6

Chapter 1

Introduction

Computer game programming involves a variety of speciality fields reaching
from numerical analysis to mechanics. It therefore offers students a broad area
of application for what they learn in the lectures. As a part of the students edu-
cation at the Department of Information Technology and Electrical Engineering
(D-ITET) [1] at the Swiss Federal of Technology Zurich (ETH Zurich) [2], the
students have to attend to practical exercises called PPS (Chapter 3).

In the first part of our semester thesis we organized such a PPS for ten stu-
dents. The students learned how to use open source tools to develop open
source software, got a deeper introduction into the object oriented C++ lan-
guage and they were introduced to some standard open source graphics and
sound libraries. In the main part of our exercise they engaged themselves in
a project of their choice. Chapter 2 gives a more detailed introduction into
Orxonox [3], the software we ware using as a base for the student’s projects.
Chapter 3 describes the organization of the PPS and all student’s projects.

In the second part of our semester thesis we developed a scalable multiplayer
network architecture. This architecture not only meets the trend towards mas-
sive multiplayer online games (MMO) but also introduces redundancy in case
of a server failure, keeping the network more stable. Our approach distributes
server logics to proxy servers, therefore removing the bottleneck of a central
server. We implemented this architecture into Orxonox as a prove of concept.
Chapter 4 describes the implementation and goals in greater depth.

7

Chapter 2

Orxonox

In this chapter we first give an insight into how Orxonox came into existence and
how it has evolved until today. Then we provide a quick guide on installation
and configuration. At the end of the chapter we presents an overview of the
general framework and its modules and how the main parts of the engine are
built together, concluding with a section on development in Orxonox.

2.1 Project Orxonox

2.1.1 Description

Orxonox [3] is an open-source 3D action game that has been developed mostly
by students of the Department of Information Technology and Electrical Engi-
neering (D-ITET)[1] at the Swiss Federal of Technology Zurich (ETH Zurich)[2].
Orxonox serves as the application layer for the networking part (Chapter 4) of
the thesis, and was also the base application for the practical part of the thesis
(Chapter 3).

Built on top of many well known opensource libraries, like the Simple Di-
rectmedia Layer (SDL)[4], the Open Graphics Library (OpenGL)[5] and others.
Orxonox is released under the GNU Public License (GPL)[6]. As such it is an
open source project and everything created in it is free of charge and all the
audio-visual resources and code-sources can be examined and used freely by the
public.

2.1.2 Team

At the moment Orxonox has two maintainers, about fourteen developers, two
designers and three musicians.

• Maintainers: Overlook the entire program code, assure module compati-
bility, decide on what code goes in the project, and what stays out. Ad-
ditionaly write most of the engine code.

• Developers: Create and extend game engine modules. They also create
story and entities for the game and its worlds.

2.1.3 History 8

• Designers and Musicians: Patch up graphics and sounds to make the
worlds the developers generate seem realistic and authentical.

Twentyone part-time participants may sound as quite a lot of people, the
resources needed to build a game from scratch are enormous and must not be
misjudged. Section 2.2 contains more informations about this topic.

2.1.3 History

Orxonox was founded by the Patrick Bönzli and Benjamin Grauer in May 2004,
roughly two years ago. The idea came up after we had finished the second
intermediate diploma, when we had again time to fullfill old dreams.

At the beginning fighting with limited skills of C++ and some minor object
oriented programming the limiting factor was the small resources in knowledge
and manpower. In the hopes for more support and a greater insight into the
world of programming we organized a convention where all the developers, also
students from the our department and newly interested people were invited to
join and discuss the future work related to Orxonox. It was a great success.
Talking a lot about new ideas, concepts and sharing knowledge, we found new
talented developers, in an environment that provided a good social experience
burning the midnight coal, and eating what was frizzling on top of it.

As the months passed we organized a second reunion where we found new
artists for visual and audible content and again we exchanged a lot about the
game concept and further techniques involved with programming.

Since all previous meetings went so good we tought about giving a practical
exercise at the ETH for younger students so that they could learn and profit
from the project and certainly to further extend Orxonox resources.

So we launched the first approach of the practical exercise in the winter
semester of 2005/2006. The result was an amazing achievement both in the
leaps the engine went forward and the way the students seemed to appreciate
it.

We talked about giving another practical exercise, but both, our study and
the practical exercise were too much to handle together. So we decided to make
a semester thesis on the Orxonox practical exercise and through it combine the
fun and the determination with work.

The product of this second practical exercise and the involved work on Orx-
onox is presented in this thesis.

2.2 Game Development Model

This section begins with an overview on complexity of developing games, where
some of the many aspects are displayed. Then we present how to align the
development process into a phases, concluding with a description of the current
state.

2.2.1 Complexity of Developing Games

Developing games is a very complicated process, and many different aspects
have to be taken into consideration. Besides manufacturing source code there is
also need to attend to many other factors, some of them are mentioned below.

2.2.2 Development in Phases 9

Publicity in the Open Source Community

In the open source scene it is necessary to find people to help freely, so one
needs to have a good reputation, a webpage, forums, maintain a server with
easy access, provide documentation about the core concepts, attend to mailing
lists, chat with new, interested users and much, much more.

Designing Environments

A game without content and design is like a lion without teeth: Quite cute,
but not impressive. On the design level, it is a constant struggle to find people
that are willing to help. Since most programmers see the beauty in code itself
rather than in the visual representation a totally different kind of people has
to be found, that concern themselves with graphics, music and design, namely
designers. There are also many other aspects that have to be considered, like
the universe the game plays in, the characters, and many many more.

Scientific Work

Saying that developing games is not science ends when starting to develop one.
There are many modules within a game all with a high level of complexity.

For once there is a model loader, where one needs material properties, which
again need textures and shaders, to make simple entities look interesting, there
is the sound engine that gives the level the audible atmosphere, and makes vi-
sual events realistic in a three dimensional environment. A collision detection
system with an efficient intersection algorithm is required for entity interaction,
a resource manager to handle all the loaded resources, a physics engine, a net-
work module, graphical user interfaces and an extended math library, just to
take a few.

All these modules have to be interconnected by a controlling unit.

Only when all of these needs are satisfied it is possible to talk about “Devel-
oping Games”, and without the support of many, the few would never succeed.

2.2.2 Development in Phases

Orxonox has a huge framework that extends and expands in all the directions
a modern 3D game as well as many other applications need. To guarantee the
success of an ongoing development a modular framework that can be developed
in parallel at all the different building blocks is the main requirement.

But it is not only the sourcecode that must match the demands of modularity.
As depicted in Figure 2.1 there are many different layers with totally different
aspects that can be worked on.
To keep a constant overview on the state, and the development involved with
the stage, we split the work on Orxonox into three main phases, that are listed
below.

Phase One: Basis

At the beginning all the participants came together discussing the ideas and
basic concepts that would flow into the product. After gathering enough data

2.2.2 Development in Phases 10

Figure 2.1: Parallel Game Development

on what direction the game would take, the core framework development was
started, where all basic modules like positional nodes, the graphics engine, and
many more were implemented.

Due to the high level of abstraction and complexity of the code foundation it
was almost impossible to split the work into more than two parts. Also multiple
iterations over the code sometimes forced us to work alone at adaptions making
development a single threaded process.

At the end of this phase the basis of the project was founded, waiting for
input on a less general level.

Phase Two: Specialization

While phase one was mainly a work on fundamentals where a only a few people
were involved, phase two switched to a more parallelized workflow.

Making a game realistic means, that at first there has to be an environment,
that supports that kind of realism. That is why at the beginning of this phase
there was again an idea gathering, where Orxonox’ universe and its basic story
concepts were discussed.

Simultaneously the framework was extended to match the needs of the
game’s universe. On this part many more people were involved (see Chapter 3).

From the design side there was now also the need to create entities and sound
effects, that fit into the newly defined environment, so all kinds of artists were
searched and motivated to work on the project.

Following the concept development in all of these sectors, a more finegrained
specialization has to be worked out to make a real game.

Phase Three: Enter the Game

After putting together many different models, a code framework, concepts and
a complete storyline, everything that remains is to create levels on top of it,

2.2.3 Current State 11

that match the atmosphere the definition of the universe provides.
The final stage is intended to purely extend the content and make code fixes

only where bugs or a real need occur.
To represent the game this is the most important phase, because it alone is

what attracts endusers.

2.2.3 Current State

At the moment Orxonox development is situated between phase two and three,
where still some code has to be adapted and invented, but also far enough to
start developing realistic worlds and integrating parts of the story into levels.
As can be predicted, it is not always easy to draw a clear line between the phases
and sometimes it is very hard to keep track of all the different directions the
engine, graphics and concepts are aiming at. That is why it is inevitable to meet
from time to time, gather the thoughts of everyone and join them together, so
that the project may flourish from the accumulated data and not be smashed
under it.

2.3 Engine Overview

In this section an overview of the main framework modules and the game itself
is given.

2.3.1 Orxonox API

Orxonox API (Application Programming Interface) is broad, and it is beyond
the scope of this thesis to go into all the details, so here we give only an abstract
model overview of the engines main modules. On the projects wiki page [7] and
also in Appendix A the different classes and modules are described in more
detail.

When entering a gameworld - which could be either a game level or the
game menu - the desired level is loaded, all entities like enemies, ships and
environmental objects are placed into the scene and the music gets ready to be
played.

After the loading stage the level is started and set into run mode, that is
essentially an infinite loop called the ”main loop”. In the main loop, all the
modules are updated according to their updating policy as depicted in Figure
2.2. For a smooth animation it is desired, that one cycle must not be longer
than the 25th part of a second.

To illustrate the performance needed for one cycle the main modules are de-
scribed in shortly below. A more module-oriented view is presented in Appendix
A.

1. Input Handling: Grabs all user input, and input from the window man-
ager. The input is then relayed to the objects, that are registered to
receive it, and handled by them.

2. Network Synchronization: Collects all the changes since the last time and
relays the difference through the network. This is described in more detail
in Chapter 4.

2.3.2 Gameplay 12

Figure 2.2: Orxonox Main Loop

3. Tick (Timeslice Propagation): In this stage all the time dependant entities,
like spaceships, missiles and particles are propagated. To approximate the
timeslice that passes to calculate the next frame the averange of the last
ten frame calculation times is used. In this way the illusion of an even
motion is produced.

4. Collision Detection/Reaction: For interaction between entities inside of
the gameworld the intersections of each entity with all others are checked
and acted upon. For example a projectile can collide with an enemy. Thus
the projectile must explode, and the enemy should get hurt which is then
graphically represented with a particle fauntain, and audible accompanied
with the sound of an explosion from the direction the collision occurred.

5. Update Scene: After everything is handled, moved and reacted upon the
scene must be updated and made ready to be displayed. For this to work
all transformation data of all moved objects are recalculated. Also many
other things like music buffers are refilled and updated.

6. Display (Draw): Finally the most important stage for a graphical appli-
cation, the rendering is executed. All currently visible entities within the
gameworld are drawn according to their drawing disciple using OpenGL.

As seen above, there is quite a lot of processing to be done and a lot of hard
work to be invested to make all these modules as modular and optimized as
possible.

2.3.2 Gameplay

Since there are multiple game modes1 supported by Orxonox such as vertical
scrolling, free flight or first person shooting it is not possible to give a uniform
explanation on how the spaceships, persons and vehicles are operated. We are
committed to implement all the controls as intuitive as possible so that learning
how to master entities comes as easy as possible.

In general there are four different game modes and a short description on
the usage of each one is given below.

1Game mode: a way to play the game

2.3.3 Installation 13

Game Mode 1: The Game Menu

In the game main menu the user can traverse through the options with the
mouse, selecting from various levels, campaigns and other options. A screenshot
of the game menu can be seen in Figure 2.3.

Game Mode 2: Free Flight

The free flight mode of the game is activated when the user travels inside of
a spacecraft with the camera behind it. Here the user can use the configured
buttons (default Up = ’w’, Down = ’s’, Left = ’a’, Right = ’d’) to fly through
the level, look around by bringing the mouse into motion and firing the weapons
with the ’fire button’ (default = ’Left Mouse Button’). A picture of the mode
can be seen in Figure 2.4.

Figure 2.3: Game Menu Figure 2.4: Free Flight Mode

Game Mode 3: First Person Shooter (FPS)

In the first person view the user is represented as a person through whose eyes
one can see the world. The person can walk on the ground, enter vehicles and
shoot with guns in his hands. A view of such a mode is represented in Figure
2.5

Game Mode 4: Arcade

In the final game mode the camera is positioned above the spacecraft, that
carries the player. The background and enemies flow from the top of the screen
to the bottom, and one must destroy as many enemies as possible while staying
alive dodging from alien attacks. Such a ’from top’ view is depicted in Figure
2.6

2.3.3 Installation

Orxonox is portable and runs on many well known platforms like Linux, Win-
dows and Mac OSX, although we mainly support Linux as in our opinion it is
the most powerful development environment for open source software.

2.3.4 Configuration 14

Figure 2.5: FPS Mode Figure 2.6: Arcade Mode

Since Orxonox is still not mature enough to release binary versions users have
to compile the source on their own. Assuming, that a development environment
suited for Orxonox is given the following procedure will lead to a successful
installation:

1. Download source and unpack

2. Compile

./autogen.sh && ./configure && make

3. Download system-independent data

4. Install

On our wiki page [7] all the information on and around installation and the
setup of a development environment can be found by following the Installation
link.

2.3.4 Configuration

For the configuration of Orxonox a graphical users interface (GUI) can be used
by starting Orxonox out of the console with the option ’-g’ or by starting up for
the first time.

One important option that must be set correctly is the DataDir in section
General, otherwise the application does not know where the game resources can
be loaded from.

Here we also provide a short overview on what can be found in the main
configuration sections.

• General: System independant data and debugging level (manly for devel-
opers);

• Video: Graphic options for finetuning the performance and resolution
setup;

2.3.4 Configuration 15

Figure 2.7: Orxonox GUI

• Audio: The volume of the ingame music and sound effects can be setup
here;

• Control: Configuration menu for the keyboard, mouse and joystick control.

16

Chapter 3

PPS - Practical Exercise for

Students

3.1 Introduction

The Orxonox practical exercise was a one semester course, where students
learned the basic concepts involved with “developing games”. The course was
supervised by Parick Bönzli and Benjamin Grauer (the authors of this thesis)
with the main goal to manage, maintain and supervise the work of the students.

3.1.1 Motivation

Motivation of the Supervisors

The motivation to make a practical exercise with the project Orxonox was
twofold.

Firstly in the ever growing project the need for more programmers and
designers arose. Implementing new modules takes a long time, designing, devel-
oping, testing and integrating are all very important tasks, and finetuning them
to match the desired outcome requires even for an experienced programmer a
huge endurance.
The second motivation factor was, to pass on the gathered knowledge and ex-
perience from coding the base of Orxonox to people who are also interested in
programming computer games. Many students of D-ITET are enthusiastic in
learning programming skills, but they never really get the chance in doing it.
Giving the students the possibility to teach themselves while playing around
with already existing code and taking credit(s) for it was a very good way to
start programming.

Motivation of the Students

We think, that for the students the main motivation was, that they could build
a module inside of a bigger project, learn C++, modeling, and how to work in
a team to achieve a goal greater than what they could have done by themselves.

Working on a game might also be a motivation factor, because many of
today’s programmers start with wanting to program their own game. Unfortu-

3.2 Objectives 17

nately (but not for Orxonox), nowadays it is impossible to create a game alone,
so joining a team is the best solution.

Another factor was that they received six PPS credit points for the work they
did, but we all know that this would never satisfy their hunger to go further
and work as hard as they did.

3.2 Objectives

As supervisors we had the role of teacher, maintainer and motivator. What we
did in each of these topics is described in more detail below:

3.2.1 Teaching

It was very important, that the students got a good basic insight into the project.
For this we arranged meetings where the basic concepts of game programming
and also the core modules of the Orxonox API were explained.

Besides the concepts of game programming also more general concepts like
STL (Standart Template Library) and the C++ object oriented programming
were discussed.

3.2.2 Maintenance

The second objective was to manage a team of seven students and maintain the
code and ideas they generated in a friendly but efficient manner.

People who are new in programming often do not see the need for creating
modules. It was our job to look at the design and fragment the code they
produced. Also we had to give constant feedback to questions concerning the
already existing code, and how they should integrate their own modules.
To handle the groups in an ’as simple as possible’ fashion, each of us maintained
half of the projects.

3.2.3 Motivate the Students

The third objective was to motivate the students to spend even more time on
design, code and content than what can be expected to get.

Fairly speaking, three hours a week are nothing when it comes to program-
ming and content creation. It is important to keep the students constantly
motivated and to show them, that the their efforts will be appreciated and used
inside (and maybe outside) of a bigger project.
The way we managed to motivate the students was to let them have fun. If
it was programming what they wanted or modeling new spaceships or levels,
reaching the goal made it worthwile.

3.3 The Practical Exercise

3.3.1 General PPS

The PPS (Projects, Practicals and Seminars) in general is a fix part of the
bachelor course at the department of Electrical Engineering and Information

3.3.2 Orxonox Practical Exercise 18

Technology. Each PPS takes 14 weeks and serves to achieve the following goals:

1. To enhance skills in practical work, team work, preparation and pre-
sentation of one’s work; acquiring of knowledge in learning and project
methodologies as well as enhancing motivation to look into the basics and
applications of Electrical Engineering and Information Technology.

2. Procurement of knowledge about building up systems as well as enhance-
ment of general knowledge.

3. Procurement of skills in the area of Electrical Engineering and Information
Technology that are useful for the remaining terms as well as during one’s
work life.

3.3.2 Orxonox Practical Exercise

In the Orxonox practical exercise the main idea was to give the students an
insight into the world of programming, and to teach them how to make the
most efficient use of open source utilities, used in most of today’s open source
development environments.

The students received six credit points for the three hours they had to be
present each Wednesday afternoon.

The practical exercise was split up into a theoretical and a practical part.

Theoretical Part

In the theoretical part the students learned the basic concepts of the Orxonox
framework, and of all the essential modules needed to work with Orxonox API.

Practical Part

The students should learn programming while being able to play around with
an advanced, modular and extendable framework. The work involved the im-
plementation of their own free-standing module, and the integration of their
achievements into the framework of Orxonox.

At the end they had to incorporate the module into a gameworld and present
it with slides at a final presentation.

Matching PPS Structure

To match the requirements of a PPS described in Section 3.3.1 a short interpre-
tation of each point is given here.

1. The practical exercise was a teamwork, where all the students worked to-
gether on a big project, while acquiring the insight into the basic concepts
of game and also more general programming.

2. Building up the own module, untouched by other modules, but using the
underlying structure as learned in the theoretical part.

3. Learning the skills of programming, design and presentation, that will
for sure be used in future projects and work in the area of Electrical
Engineering and Information Technology.

3.4 Work Scheduling and Course Structure 19

3.4 Work Scheduling and Course Structure

One of the most significant things in a practical exercise is to make full use of
all available time, and for this we created a time schedule what all the students
had to follow.

As depicted in Figure 3.1 the work flow was split up into three major phases,
each with a work and presentation part.

Into this form each group had to integrate its own work plan and time
scheduling.

Figure 3.1: Work Flow of the Practical Exercise

1. Discussion - Where will we go together (two hours):
In the first afternoon we discussed with the students what they expected
from the project Orxonox, in what direction they wanted it to go, and
how we all together imagined the future of Orxonox. Also all the already
available PPS-projects were presented.

2. Project Selection (one week):
During the first week the students had to decide what topic they’d like to
work on. On the wiki page of the PPS[8] under section ’Projects’ there is
a list of all the available projects. On the grounds of what was discussed
the week before, everyone selected a project, that met the constraints of
the PPS and the main goal of the Orxonox project.
The list of the modules that were chosen by the students can be found in
Section 3.5

3. Project Exploration (one week):
The following week each group had to create a timetable and adapt it

3.5 Results 20

to the scheduling explained here. Furthermore an UML-diagram (Unified
Modeling Language diagram)[9] of the chosen project had to be generated.
At the end, the concept ideas were reviewed and finalized together with
the supervisor.

4. Implementation (four to five weeks):
The next step was to implement the conceptual idea from the exploration
phase in C++. The module had to be as self-contained as possible to
avoid overlapping. In this phase the students were supposed to learn the
importance of coding clear interfaces.

5. Review Phase (one afternoon):
It is important for less experienced programmers and people new to any
project that they receive feedback. In this phase the supervisor exam-
ined the work. The code was read through, and minor design flaws were
rethought.

6. Work Refinement (two weeks):
From here on the integration into the existing framework of Orxonox
started and the fixed flaws from the review phase were reimplemented.

7. Code Freeze
In this stage the feature development was stopped meaning that nothing
new was to be implemented anymore. From this time foreward only severe
bug-fixes were to be dealt with.

8. Content Creation (three to four weeks)
To impress external gamers and interested viewers this was the most im-
portant part. Since most people will not read through the big amount of
code the students have created, they had to generate a world to demon-
strate their achievements in a visual manner.

This was done by creating a new world and integrating the new features
into the scene.

9. Presentation (one afternoon)
Finally the students used a presentation toolkit to create a presentation
about their work and had to rephrase what they wanted to say, and to-
gether with their content part demonstrate it. The final presentation took
place on the 5th July.

3.5 Results

The results of the PPS were astonishing and much more than we expected. All
the students invested at least double if not tripple the time they had to spend
on the PPS, writing code, designing new spaceships, creating levels, writing
documentation and talking about the concept of the whole game.

Every single module was a full success, and the students had (at least most
of the time) a lot of fun implementing and learning the not so trivial concepts
of programming and design.

3.5.1 Story Concept Paper by Benjamin Knecht 21

3.5.1 Story Concept Paper by Benjamin Knecht

The concept paper was an approach to implement the basics of game story and
design.

The story spanned from the definition of a science-fiction universe over the
sentient races, their technology and social structures down to details on how
conflicts merge and resolve during the course of the game and how the player
experiences the whole story.

The second part of this project was a design definition on how the ships
and races should look like. It also included ideas on style of weaponary and big
technology like hypergates.

3.5.2 Scripting Engine by Silvan Nellen

The scripting engine is a powerfull extension to the Orxonox framework which
allows to write scripts that can control the behavior of all entities inside of the
Orxonox world. The backend is the Lua scripting language [10] that is highly
portable and wildly used both in games and professional applications.

3.5.3 Weather Engine by David Hasenfratz and Andreas

Mächler

The weather engine (Figure 3.2) is a graphical extension to Orxonox allowing
it to very easily bring a realistic environmental atmosphere into outdoor levels.
The many effects created in this work cover rain, snow, fog and an animated
cloudy sky.

All these effects have a default setting, and are highly configureable through
either the scripting language, or dynamic level loading.

The rain and snow engines are a perfect example, that building a new module
on top of an already existing module, namely the particle system, is possible in
one semester.

3.5.4 Water Surface Simulation by Stefan Lienhard

Water surface simulation (Figure 3.3) enables a realistic rendering of ingame
water. The surface is based on the new shader language GLSL (Open Graphics
Shading Language)[11].

The process is therefor split into two parts: One is an entity, that renders
a plane at the right position inside of a level, the other one the shader, that
renders reflections, refractions, and wave translations.

3.5.5 Binary Space Partitioning by Claudio Botta

Binary space partitioning (Figure 3.4) is an algorithm, that splits up space and
vertices inside of it into a binary tree. With this sorting it is possible to decide
efficiently if an object collides with another object or a wall. The sorting also
allows for a three dimensional culling algorithm, that automatically hides all
object, that are either fully hidden behind another object, or that are behind
the camera.

This module made it possible to create indoor levels with arbitrary size for
the first person shooter part of the game.

3.5.6 Network by Christoph Renner 22

Figure 3.2: Weather Engine Figure 3.3: Water Surface

3.5.6 Network by Christoph Renner

Every serious game has network support to enable multiplayer games over the
Internet or the local area network. We managed to build a simple network
framework for Orxonox based on the TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol) protocols. It proved to be very extensible (see
Chapter 4), easy to use and stable. For testing purposes we manufactured a
first person shooter (FPS) arena and a space simulator map. (Figure 3.5)

Figure 3.4: BSP Figure 3.5: Network

3.6 Conclusions

What we have learned from one year of instructing students is, that with good
motivation you can get a lot out of six PPS points. If it is possible, to show
students, how interesting programming can be, and that what they are doing
is important for the bigger picture, they are more than interested in working
hard, and often, to reach their final goals.

3.7 Future Work 23

Another very important aspect is to prevent students from developing inter-
dependencies between blocks. Nothing can be more frustrating, than using a
module that does not work, or that is not finished, or constantly changing. Be-
cause of this we realized, that giving the students standalone projects, that were
all modules in themselves and independant of each other is the basic building
block for time-limited work.

Last but not least, the students must be given the possibility to do what
they want. That means, choosing their own project, going earlier one day, but
staying longer another evening and so on.

We are very happy, that giving the students that kind of freedom helped
boosting their workflow, and that they did not abuse it.

Although providing a casual environment for the students, they realized that
their work was appreciated, and that through overcoming obstacles they learned
more, and finally could be proud to present their achievements.

3.7 Future Work

As future work there will be a practical exercise in the winter semester 2006/2007,
that is much more centered around content creation and less on programming.
This does not mean, that the students will never see C++ code, but much
more, that the students will learn to use the existing code to build levels and
new entities.

The next practical exercise will be supervised by students of this semester’s
Orxonox course, and the previous supervisors will only be present as advisors.

We sincerely hope, that this constellation will come to happen, and through
it the project will prevail, and the enthusiasm of the students will never vanish.

24

Chapter 4

Proxy Server Architecture

4.1 Introduction

Nowadays networks provide a fast and performance intensive infrastructure for
multiplayer computer games. The subjective game performance depends heav-
ily on the network responsiveness (network delay) and fault tolerance. The
client-server and peer-to-peer topologies are today’s commonly used game man-
agement models. Both suffer from poor scalability. This becomes increasingly
critical for fast paced games like first person shooters. The bottleneck of the
client-server topology limits current games to about 64 participating players at
most. The limiting factor at such player numbers is the network bandwith at
the server and its processing power.

4.2 Objectives

There is a number of goals in any software design. The first two topics describe
the main goals of this semester thesis part. The latter two goals are of general
nature and will not be explained in any detail but rather in terms of how design
goals can be applied to this thesis.

4.2.1 Scalability

There is need to make multiplayer games more scalable. Scalability is the abil-
ity of a distributed game architecture to maintain service when the number of
participating players increases.

Game developement is evolving towards large scale multiplayer games. The
more players are able to join a game and play together, the more fun it is. From
industry’s side of view there is much interest in making multiplayer games more
scalable.

4.2.2 Redundancy

The client-server topology has a single point of failure: in case of a server failure,
the whole network will cease operation. Such failures often are the reason for

4.2.3 Modularity 25

long and costly network downtimes.
To minimize the risk of such downtimes one should add some redundancy that
dynamicaly reorganizes the network in a way, that operatability can be assured
with a minimum of human interaction.

4.2.3 Modularity

Modularity in design means, that the design should strive to be architecture
independant, in the sense, that it should be easy to integrate in any other
(networked) game.

4.2.4 Reusability

Reusability goals are tightly coupled with the modularity goal stated above. The
implementation should not be platform dependant. Keeping the APIs clean is
an important goal that guarantees future reuse of the modules. Documentation
is another important part that guarantees easier reusability.

4.3 Orxonox Network API

In this Section we give a short description about the Orxonox network API and
the most important modules, datastructures and classes related to it.

4.3.1 History

The base network framework of Orxonox was developed during the PPS. It
was designed and implemented by Christoph Renner and Patrick Bönzli. The
development started in October 2005, in the following four months we managed
to design and implement a framework which was able to synchronize data in a
client-server environment using TCP protocol.
The framework we came up with did not yet fully satisfy our needs, so we
did a major redesign and reimplementation starting in March 2006 for another
four months. It runs on top of the UDP protocol and therefore shows better
performance than the previous implementation. This part of the semester thesis
is based on the new framework.

4.3.2 Overview

The goal of the Orxonox network framework is to synchronize an Orxonox game
state from one network node to another. A game state is made of variables
describing the actions the player is currently doing, the reactions of enemy
players and the graphics, sound and input states of the game engine. Not all of
these state variables need to be synchronized over the network in order to play
together. We categorize the state variables in three types:

1. Variables that need to be synchronized over the network, we call them
SynchronizeableVar (eg. player position and orientation). Their state is
determined directly by user inputs which are only known to the local host.

4.3.3 Synchronization Process 26

2. Variables whose states are indirectly influenced by inputs of a local user
and therefore can be deduced from the state of SynchronizeableVars (eg.
position of objects attached to the player, a gun for example).

3. Variables that don’t need to be synchronized over the network (eg. number
of frames per second).

The goal in this categorization is to obtain a minimal set of variables needed
to be sent over the network in order to minimize the required network band-
with. According to this categorization it is sufficient to only synchronize the
SynchronizeableVars.

Figure 4.1: Orxonox Network Modules

We call the C++ class that contains such variables Synchronizeable (see
Figure 4.1). It has got a list of SynchronizeableVars and an identification number
called uniqueId which serves as an identification address in an Orxonox network.
This number must be unique within one Orxonox multiplayer network session.
Once such a container is created and a uniqueId is assigned to it, this object
will automatically be created on every remote host connected to the same server
(and they all got the same uniqueId). From this moment on the content of this
Synchronizeable will be kept synchronized until it is destroyed (more about the
synchronization process in Section 4.3.3). The NetworkStream references to
a list of Synchronizeables. To get the current game state, it gets all variable
values from them and makes a game state image out of it (a binary stream
containing all variable values sequentially). This image is then passed to the
NetworkStream which constructs one or multiple UDP/TCP packet(s) out of it
and transmits the packet(s) over the network to the other hosts. The remote
hosts are identified by a hostId which is assigned by the server.
The following sections describe the network functionalities in greater detail.

4.3.3 Synchronization Process

This process synchronizes an Orxonox game state from one network node to
another, as it was already mentioned before. The main participants in this task
are SynchronizeableVars, Synchronizeables, the NetworkStream and the Net-
workSocket (see Figure 4.2).

If a synchronized variable gets changed the corresponding Synchronizeabl-
eVar will detect this. Next time the NetworkStream wants to create a state
update this change will be contained in it. The NetworkStream is assembling an

4.3.4 Packet Creation 27

Figure 4.2: Orxonox Network Synchronization Process

update by iterating through all of its active Synchronizeables and sequentially
writing the SynchronizeableVar values in to an array. This array represents the
state of the game at the current time (see also Figure 4.3).
But this state image is quite big, to gain more efficiency, Orxonox extracts the
differences to the last state image. This is done by calculating the mathemati-
cal difference of the two images (as it is often done in video compression). Now
there this is a sequence of 1s and 0s (1 if the bit has changed, 0 if not). Such a
binary array can efficiently be compressed using zlib [12], since it contains long
series of 0s and 1s. After adding some state information (some state identifiers)
to this array, this data is passed on to the NetworkStream and included in a
UDP or TCP network packet. The NetworkStream sends the packet over the
network to the other host. Should the packet get lost during this transmission
the packet will be resent later. In case of TCP packets the error handling is
covered by the protocol itself. Sooner or later the remote host receives the state
image and uncompresses it. Then it creates the current state using its last state
(remember we transmitted only the state difference). This state update is then
applied to the local state.
Example: Imagine a new player connecting to the game. The server will locally
create a player character (a space ship or a creature) for the new player. Since
this player character is a Synchronizeable the object gets created on all other
network nodes automatically. If the player starts to move, the position and ori-
entation of the object will change (they are SynchronizeableVars) and therefore
be written to all other network nodes. So the player character will move on all
other hosts as well.

4.3.4 Packet Creation

If you are looking at an Orxonox network packet, it is almost impossible to
read any information out of it, since it is a compressed differential image. If you
disable compression, the images will be more readable since the overall structure
of the state image remains.

An Orxonox packet consists of a main header with length and state infor-

4.3.5 Start a Connection: Handshake 28

mation and a list of sections for each Synchronizeable. Each Section contains
a sub-header with information about the Synchronizeable itself and the list of
variable values belonging to the Synchronizeable see Figure 4.3

This synchronization process normaly runs with approximately 60Hz if the
server is fast enough. This frequency can be altered if needed to lower/increase
network delay and bandwith usage.

Figure 4.3: Orxonox Network Packet

4.3.5 Start a Connection: Handshake

Before a client can join a game, it has to accomplish a handshake with the
server. Orxonox has its own handshake, including:

• a comparison of the network framework version numbers to assure com-
patibility;

• the uniqueId of some central Synchronizeables that the client needs from
the server;

• the server assigns a hostId to the client;

• the preferred nick name for the player.

After this handshake the client is ready to receive the current game state and
then to join the game. In detail the Handshake class is a Synchronizeable and its
attributes are exchanged via SynchronizeableVars so it fits itself perfectly into
the Orxonox network framework. The game map name and objects contained
in the game world do not need to be created via the handshake since they are
all Synchronizeables and therefore will be initialized and created automatically.
Theoreticaly this handshake can initialize any information one would want to
be initialized before a network game can start.

4.3.6 Sending Messages 29

4.3.6 Sending Messages

Another way to communicate between hosts is by sending messages. The Mes-
sageManager is a special Synchronizeable that offers the possibility to send such
messages to any node in the network. This works similar to message queues in
the Unix interprocess communication. Only the receiver’s hostId needs to be
known. There are some special receiver addresses:

ALL a message sent to this id will be received by all network nodes in the whole
network.

ALL_BUT_ME this is the same as ALL except, that the local host does not get
the message.

ALL_BUT_HOST this message will be sent to all hosts in the network except a
host that can be specified as another argument.

SERVERS a message sent to this id will be received by all servers in the network.

HOST such a message is only sent to one specific host.

The message body can be of arbitrary length. Messages are used to signal
new or leaving clients, changing nick names and so on. For the proxy server
architecture this module was heavily extended.

4.3.7 Modules

In the following we give a list of the most important network modules and
data structures with each a short description of what they’re doing. The UML
diagrams of these classes do only reflect the most important functions. Appendix
A presents the modules in full detail.

All modules are described using an UML diagram that serves as a short
overview. All diagrams are used in the following way (Figure 4.4):

Figure 4.4: Legend of Symbols in the UML Diagrams

4.3.7 Modules 30

Figure 4.5: PeerInfo Class

Peer Information

The PeerInfo structure represents a remote host the local node is connected to.
This structure is managed by the NetworkStream (see Figure 4.5).

The PeerInfo contains an identifier for each host called hostId. Each net-
work node can have a special function (client, master server or proxy server),
this information is stored in the nodeType variable. The remote host can also
be identified via an IP address ip. If there is already a connection setup, it can
be referenced through socket.

Synchronizable Variables

The SynchronizeableVar class is the smallest part in the synchronization process.
It represents a variable that needs to be synchronized over the network (Figure
4.6).

Figure 4.6: SynchronizeableVar Class

A SynchronizeableVar contains a reference to the variable (ptrIn and ptrOut)
that needs to be synchronized over the network. These variables are written to
the state image using the writeToBuf(...) function. If there is a variable
update coming in, it will be read from the image by the readFromBuf(...)

function. A Synchronizeable can check if a variable changed by accessing the
interface function hasChanged() which returns true if there is a local change.
This class registers itself to a Synchronizeable, from then on it will be auto-
matically updated with the interface functions that were just described. Each
variable has a specific permission mask which specifies which other hosts are
able to over write its value. For debuging purposes each SynchronizeableVar
has an additional name indicating the function of the variable in the game.

4.3.7 Modules 31

Synchronizables Objects

The Synchronizeable class represents a container holding variables that need
to be synchronized. Most of the Orxonox classes that are drawn in the world
actually are Synchronizeables (see Figure 4.7).

Figure 4.7: Synchronizeable Class

The Synchronizeable manages a list of SynchronizeableVars (syncVarList)
and is responsable to create its part of the state image. The NetworkStream
will get its state image by calling the getStateDiff(...) function and vice
versa will write an image to it by setStateDiff(...). Only those variables
will be affected, that have the right permissions. New state variables can be
added to the Synchronizeable class using the registerVar(...) function. Once
a Synchronizeable object with a valid uniqueId is created on a host, it is auto-
matically created on all other hosts as well. They all get the same identification
number. From this moment on, the SynchronizeableVars will be synchronized
continuously until their Synchronizeable is destroyed.

Network Stream

The NetworkStream is the most central class in the Orxonox network framework
(Figure 4.8). This class also assembles the state images and passes incoming
images from the network socket to its Synchronizeables.

Figure 4.8: NetworkStream Class

It manages a list of Synchronizeables (synchronizeables) and a list con-
taining all hosts connected to this node (peers). If this node is a server it
will also listen to incoming connection via the clientSocket network socket.
State images are written and read in a local buffer called buf. The Orxonox
main-loop calls the processData() function with a certain frequency. This
function handles the down- and upstream separately in the specific functions

4.3.8 Further Information 32

handleUpstream() and handleDownstream(). They create, assemble or read
the state images.
The NetworkStream can also start a network connection to another server by
calling connectToServer(...). This function automatically creates a new
PeerInfo for this host and starts the handshake process. If the node is in server
mode it can be initialized with the function createServer(...).

Network Socket

This class represents a network socket and serves as a low level interface to
the operating system’s hardware (Figure 4.9). Network operations are executed
using the sdl-net library [13] to assure interplattform compatibility. The Net-
workSocket is an abstract base class for the UDPSocket and TCPSocket.

Figure 4.9: NetworkSocket Class

In this class the network packets are manufactured and sent over the network
(writePacket(...)) and received from the network (readPacket(...)).

4.3.8 Further Information

There is a full UML diagram of the network module on our Orxonox wiki page
[7]. Here the programmer is able see all modules and their interdependencies.
As a programming reference we suggest to use the doxygen pages [14] or to
directly dive into the source code which is documented very well.

4.4 Network Topologies and Scalability

To ensure scalability a suited network topology has to be found. Therefore we
give an overview about the different network topologies used today, their assets
and drawbacks. The following analytical analysis, partly based on ”GSM: A
Game Model for Multiplayer Real-time Games” [15].

4.4.1 Peer-To-Peer Topology

Ten years ago most games used to have a peer-to-peer topology (Figure 4.10),
because it was easy to program (every node had exactly the same information
and was could therefore execute the same algorithms) and very stable. Even
if one of the peers disappears the network is able to continue operation. The

4.4.2 Client-Server Topology 33

first versions of Doom [16] fully based on peer-to-peer networking. The com-
monly played RTS (Real Time Strategy) game was also programmed using this
topology.

Figure 4.10: Peer-to-Peer Topology

4.4.2 Client-Server Topology

This is the commonly used topology for nowadays FPS games (Figure 4.11).
Even nowadays RTS games are switching from the peer-to-peer to client-server
topology because of the huge amount of network traffic created by this game
type. This topology is well suited for games with up to some tens of players.
Such topologies are specially vulnerable to server failures.

Figure 4.11: Client-Server Topology

4.4.3 Proxy Server Topology

This topology has not yet been used by any fast paced networked game on the
market right now (Figure 4.12). It shares the required network and process-
ing power by distributing the load to multiple servers. Both the peer-to-peer
network topology and the client-server topology are combined to achieve this
goal.

Figure 4.12: Proxy Server Topology

According to GSM a measure for the traffic load on a server is given by the
following formula:

Din
proxy(l, n, m) =

n

l
dcin

︸ ︷︷ ︸

actions of locals

+ (n −
n

l
)dcin

︸ ︷︷ ︸

updates of remotes

+ (m −
m

l
)drsu

︸ ︷︷ ︸

remote game entities

,

4.5 Design 34

Dout
proxy(l, n, m) =

n

l
dcout(n, m)

︸ ︷︷ ︸

updatesoflocals

+ (
n

l
+

m

l
)drsu

︸ ︷︷ ︸

alllocalentities

,

where

m ∈ N number of entities in the game world;
n ∈ N number of clients ;
l ∈ N number of proxies ;
dcin ∈ R incoming message size from directly connected clients;
drsu ∈ R incoming message size from clients connected via proxies ;
dcout ∈ R outgoing message size.

We have changed the formula slightly since there is no traffic multicasting
available for the semester thesis.
As we can see, with increasing n the network traffic is only increasing with the
speed proportional to n

l
. To gain scalability, we have to add more proxy servers

to keep the n
l

low, this suffices our scalability requirement. By adding proxy
servers we do also increase the inter-server traffic (n −

n
l
)dcin which becomes

dominant as soon as n
l

gets small.

4.5 Design

This section describes the design of our proxy server architecture. First we
describe the network topology and its components, then we show how these
components are used by describing a usage scenario. Afterwards the main mod-
ules used in the usage scenario are identified and described. As a last point we
present the most important communication scenarios in depth.

4.5.1 Network Topology and it’s Components

The proxy server topology is a mix between the client-server and the peer-to-
peer topology. It introduces scalability by distributing game logic to several
servers. One server is selected to manage the network, it is called the master
server. The other servers are referred to as proxy servers and will only handle
the inputs of the locally connected clients. All servers are interconnected in a
peer-to-peer topology, this assures, that information is spread in the fastest way
possible.
This topology introduces a lot of advantages: On one hand it certainly is more
scalable. On the other hand it implicitly introduces the redundancy we need.
In case of a server failure the client would only need to be reconnected to one
of the other servers. Even if the master server fails, another proxy server can
take its role over.
However this indirection also has a disadvantage: By introducing more servers,
we also introduce a new level of indirection. The client-to-client communication
delay is therefore increased by the communication delay between the servers.
However experiments in gaming communities show, that with a communication
delay of about 100-120 ms a FPS game is playable, anything beneath it is not
actively felt as delay anymore by the human mind (see A Traffic Analysis of a
Busy Counter Strike Server [17]). It seems that games are still playable if the

4.5.1 Network Topology and it’s Components 35

delay is not higher than 180 ms.
The most important components in the proxy server topology are:

Master Server

The master server is the server in command. It is responsable for network
organization. Its common tasks are:

1. Handling new clients: New clients connect to the master server. If the
master server has no free slots available anymore, the client is redirected
to a proxy server with free resources.

2. Handling leaving clients: Clients that left the game will have to be removed
from the network plan and their game states will need to be removed from
the game.

3. Dynamical client redirection: Clients can be dynamicaly reassigned to
another server during the game.

4. Network growth: When the number of clients is increasing the master
server will elect proxy servers to handle new clients.

5. Network shrinkage: The master server can decide to remove proxy servers
from the network to shrink the network.

6. Server failure: If a server fails another server takes its place over.

Since game state information is not uniformly distributed in the network (be-
cause of link delays) game decisions based on a local game state will not have the
same result on all hosts. Therefore important game decisions should be by only
one node in the network, the master server. Some of its special responsabilities
are:

• Game goals: The game mission is controlled by the master server ;

• Damage: Collisions are handled by every node locally but the damage
resulting from a collision is evaluated by the master server only. Also
player deaths are handled here;

• Creating players: new clients will each be assigned a new player. The
player is created and initialized by the master server only;

• Removing Synchronizeables : Objects in the game world can be removed
by the master server only.

Proxy Server

The proxy servers manage their local client pools. They can be suspended and
activated. If they are not yet elected by the master server to accept clients
they are in passive mode. A proxy server chosen to handle clients will switch
to the active mode and start the synchronization process (more details about
this process in Section 4.5.4). Such as the master server, the proxy servers
need to keep track about the network plan. They will listen to all joining and
leaving messages and update their local network plan accordingly. This is very
important, since a proxy server needs to be able to switch to master server mode
in case of a server failure.

4.5.2 Application Scenario 36

Client

The client just forwards the player inputs to the next server, which evaluates
them and sends a state update back to the client and the other servers.

4.5.2 Application Scenario

Setup of the Scenario

An administrator sets up a dedicated Orxonox server, the so called master server
(MS). During the setup process he will specify a pool of other dedicated servers,
which will function as proxy servers (PS s) in case, the number of players on the
master server exceeds the local maximum number of players. The MS and the
PS s are started, while the MS loads the game world and starts processing client
inputs the PS will just wait in an inactive state for an activation command from
the MS.
The players will connect to the master server as one would expect until the
master server reaches the maximum number of players. Up to this point, our
network framework doesn’t work differently from a normal client-server network
except that in a normal client-server network new clients would be rejected from
this moment on.

Proxy Server Election

In our multiserver network the MS elects one of the PS from its server pool and
activates it. This election is based on individual network bandwith and delay
properties of the servers. Then the main server forwards the current world state
to the new PS so that it knows which level and objects to load and where the
players are positioned at the moment.
The MS requests the client to reconnect by giving it a list of alternative PS s.
The client decides on its own which PS is suited best. Since there is only one
PS up in this scenario the client chooses this one. From now on the network
consists of one MS and one PS each with their clients. Should the number of
players still grow, the MS elects another proxy server and suggests new clients
to connect to it. For performance reasons the next PS is woken up when the
(n − 1)th client connects to the MS. So the PS got some time to load and
synchronize and the connection delay for the next client can be kept as low as
possible.

Inter-Server Synchronization

There are two network topologies working together now: the client-server star
topology and the peer-to-peer topology of the servers. Each server handles two
different synchronization traffics: The input based traffic from the clients and
the world state updates from the proxy servers. Both traffic have to be merged
to one new coherent world state and will be distributed again over the network
to the clients. Only the world state changes from the local clients of each server
will be sent to the other servers.

4.5.3 Modules 37

Network Shrinkage

When the clients leave the game and the number of clients drops below a certain
threshold, the clients have to be reorganized: one PS will give its clients to the
other servers and switch back to inactive mode. From there, the MS can reac-
tivate it as soon as there are more clients available again. The threshold value
depends on statistical properties like the mean time to next client connection.
Since switching clients and turning up/down proxy servers are a very costly
operation in terms of time, its always better not to restructure the network too
fast.

4.5.3 Modules

Overview

According to the application scenario there are some core functionalities in-
volved with this proxy server architecture:

• the master server controls the proxy servers;

• the master server assigns clients to servers;

• all servers keep track about the current network topology (the network
plan);

• network configurations need to be centrally accessible.

From these requirements we can now derive the modules we need for the
implementation. The first two tasks are both about controling the network,
so we put them together in one module called ProxyControl. To keep track of
joining and leaving network nodes there is another class, the NetworkMonitor.
To centrally access the network configurations the NetworkSettings class can be
created (see Figure 4.13

Figure 4.13: Proxy Server Modules

4.5.4 Network Processes 38

Proxy Control

The ProxyControl module is responsable for all inter-server communication.
Messages are all created, sent and received in this module. Furthermore the
ProxyControl decides about when and how network reorganizations take place.
Therefore it always needs to know the current state of the network, which can
be via the NetworkMonitor module.
This module can run in two different modes: it only will work actively if the
server is a master server. Otherwise the module won’t do anything.

Network Monitor

This module monitors the network and keeps a prevailing network plan. It
interfaces directly with the ProxyControl and the NetworkStream, which notify
this module about changes in the network. The network plan is represented in
the form of a network graph.

Network Settings

This module serves as an interface to the network configuration files. These files
specify the player limit and the proxy server pool. The NetworkSettings only
interface with the ProxyControl module.

4.5.4 Network Processes

After knowing the main modules, we describe how these modules interact to
accomplish their work.

Handling new Clients

A new client wants to join the game. As usual it first starts the handshake pro-
cess with the master server. We extended the old handshake, with additionaly
synchronizing a list of active proxy servers and a redirection flag (indicating if
this client must reconnect to another PS). As long as the master server has
enough capacity to handle new clients, it will accept them. But as soon as the
MS has no more free slots, the client will be indicated to reconnect to another
PS. Clients can decide on their own which PS to take. Reasons for one or
another PS are:

Delay The clients measures the link delay to the server. As we stated in Section
4.5.1 the link delay in general gets worse in a proxy server network (because
of the additional hop). Therefore this attribute needs to be minimized
before all others. This attribute depends on the type and size of network
between the hosts, the local and remote network buffer and the network
polling frequency in Orxonox.

Bandwith The link bandwith needs to be maximized so that state images are
transfered faster.

To evaluate these attributes a connection is created to the server to measure its
delay and bandwith. With this information we can assign a quality value to the
link with the following formula:

4.5.4 Network Processes 39

quality = c1 ∗
1

delay
+ c2 ∗ bandwith,

where

c1 ∈ R constant indicating the importance of the network delay;
c2 ∈ R constant indicating the importance of the network bandwith;
delay ∈ R the network link delay;
bandwith ∈ R the network link bandwith;
quality ∈ R the network quality.

Clients will choose the link with the best (meaning the highest) quality. All
attributes of this equation can change frequently. It would be better to not only
measure the quality at one point in time, but to also measure it over a longer
period of time (see Section 4.9 for more information). As soon as the client has
decided which proxy server to prefer, it will connect to it by going through a
full handshake. In the moment the handshake is finished the PS will send a
broadcast message to all other servers indicating that a new client has joined
the game. The MS will then create a Playable (a playable avatar) and assign it
to the new client (see Figure 4.14).

Figure 4.14: Connection Process

All servers receiving the broadcast message will update their network plan
via the NetworkMonitor to reflect the new state.
A proxy server can also reject a client (for example because it just used the last
slot for another client), in this case the client will connect to the proxy server
with the second best link quality. The client will keep on doing this until it
either finds a free slot or runs out of proxy servers. In the latter case the client
will reconnect to the master server to get a new list of proxy servers.

Client Leaving

There are three ways a client can leave a game (Figure 4.15):

1. By signaling: The client sends a goodbye message.

2. By timeout: The client does not send any traffic for a specific amount of
time and therefore times out.

4.5.4 Network Processes 40

3. By banning: The game administrator can kick a player off from the game.

The first way is how clients normaly disconnect from a network game. If the
user decides to leave, he will click on the exit button, which will send a goodbye
message to all servers. But what happens if a client computer crashes or a user
decides to just kill the Orxonox application? In this case there is no signal sent
and therefore the server will not recognize that the client has left the game.
After a timeout the server will automatically assume, that the client has left
the game without signaling it.

Figure 4.15: Disconnection Process

As soon as the server detects the client disconnection, it immediately removes
its Synchronizeables and broadcasts a message to all nodes in the network to
do the same. All servers will also remove the client from their locally managed
network plan to reflect the change.

Dynamic Client Redirection

Once clients are connected to the multiplayer game they can be redirected to
other servers if need should arise (for example if the network has to be reor-
ganized). Only the master server can send such a reconnection command (see
Figure 4.16). There are two different reconnection commands possible:

Hard Reconnection The client disconnects from the old server and recon-
nects to the new server by initializing a handshake. The old game state is
lost and the player will join the game again as a new player (memoryless).

Soft Reconnection The client does not really disconnect from the game. It
initializes the connection to the new server without handshake by just
changing the synchronization server.

Figure 4.16: Reconnection Process

In both cases, the master server broadcasts a reconnection command to
servers and the client to be reconnected. When the other servers receive the

4.5.4 Network Processes 41

reconnection command they remove the player from their network plan and add
it again as soon as the client reconnects to the new server. Let’s take a look at
the first type of reconnection, the hard reconnection. In this case, the client will
disconnect from the server and reinitialize a connection to the new destination
server. The client will join the game again at this server as a new player, his
old game state is therefore lost.
In the second case the client will not disconnect until it has a new connection
setup with the new server. This new connection is handled without handshake.
As soon as the new connection is working, the old link is closed. The player is
never leaving the game and except for a short re-synchronization time will not
see anything of this reconnection process. When the client is reconnected to the
new server, the server will broadcast a message to all servers indicating, that a
new client has connected to it.

Network Growth

The master server manages a pool of proxy servers, defined in the network
configuration file. At the beginning all proxy server are in passive state, which
means, that the servers are up and running but are not yet connected to any
other server. If need arises to extend the network the master server will elect
one of the servers from its pool to be activated (Figure 4.17).

Figure 4.17: Network Growth Process

The master server decides when time is ready to select a new proxy server
for activation. At the moment the server does this decision in a very simple
way. More advanced algorithms would be preferable (see Section 4.9).

(l + 1) ∗ nmax − n
︸ ︷︷ ︸

number of free slots

> nmax,

where

n ∈ N number of clients ;
nmax ∈ N player maximum per server ;
l ∈ N number of proxies .

The equation just states, that the minimal number of free slots in a game should
be bigger than the maximum amount of players one server can handle. This

4.5.4 Network Processes 42

means, that as soon as the master server starts it will activate a proxy server.
This is for redundancy reasons, if this inequality holds there will always be
enough free slots to compensate one server loss.

The activation process is very simple: it’s just a normal connection estab-
lishment in reverse order. So the master server initializes a connection to the
proxy server and starts the handshake (in all other cases the client starts the
connection). After the handshake finishes the proxy server has a complete game
state and is ready to accept new clients. The master server sends a signal to all
other servers, indicating that a new proxy server was activated. As soon as the
other servers receive this signal, they update their network plan and initialize
a connection to the new proxy server. At this moment the network plan of the
new server contains all other servers. To complete the plan the master server
sends a list with all clients connected to the servers. Now the master server adds
the proxy server to the proxy list that is automatically synchronized during the
handshake process. Once this is done the network is stable again.

Network Shrinking

If clients leave the game, not all servers in the network will be fully occupied
anymore. The network will start to fragment, if there are no new connections
to fill the free slots. The network will reach a state, that all clients could also
be handled by less servers if they would be rearranged.

Figure 4.18 shows a client connected to a PS that is been selected for sus-
pension.

Figure 4.18: Network Shrinkage Process

The master server waits with any reorganization of the network until the
number of clients in the game is beneath a certain threshold (normaly a multiple
of the server’s player limits). Then the master server will shrink the network
by selecting a proxy server to be put in sleep mode again. It removes the server
from the internal server list so no new clients will be able to connect to the
server anymore. The master server will force clients from this proxy server to
reconnect to other servers, by sending a reconnection command (Section 4.5.4).
As soon as all clients reconnected to the other servers the master server will
broadcast the new network state to all servers. The proxy servers will then
terminate all network connections and switch to passive mode again.

The shrinkage threshold definitely is something that should be handled in a
more sophisticated way, since there is much overhead involved with a network

4.6 Implementation 43

reorganization. We discuss more ideas about a better algorithm in Section 4.9.

Server Failure

There are two scenarios our proxy server architecture can deal with:

• Master server failure;

• Proxy server failure.

In both cases the reaction of the network is well defined and will remain stable.
The clients will just reconnect to another server. This will happen after the
connection timeout. In case of a master server failure the proxy server with the
highest hostId will be chosen to replace it. The new master server will then
send a message to all hosts indicating this change, all servers will then update
their network plan (see Figure 4.19).
After this the network is stable again, the master server will activate a new
proxy server from its pool according to the algorithm stated in Section 4.5.4.
According to the network growth algorithm there should always be enough place
to reconnect all clients from one server.

Figure 4.19: Network Failure Process

A server that looses connection to the network because of a failure will not
be able to reconnect at the moment (see Section 4.9). Clients involved with the
server failure will lose their game state since they will do hard reconnection to
another server, in the future this could also be handled in a better way (see
Section 4.9).

4.6 Implementation

Here we give some insight about the implementation of the modules described
in Section 4.5.

4.6.1 Proxy Control

This module controls the whole proxy server network (see also Section 4.5.3).
ProxyControl is a singleton class meaning, that there is only one instance

of this class (Figure 4.20). The static getInstance() function takes care of
this requirement and returns the instance. Because of this singleton model the
constructor is also private. The rest of its member functions are used for the

4.6.2 Network Monitor 44

Figure 4.20: ProxyControl Class

communication scenarios stated in Section 4.5.4. signalNewClient(...) is
called when a new client connects locally, it sends a signal to all ProxyControl
modules on every server node in the network. When this signal arrives at the
other nodes the handleNewClient() function is called. This function updates
the network plan managed by the NetworkMonitor. When a client closes connec-
tion to a server signalLeaveClient(...) is called on this node. This function
also sends a signal to all server nodes in the network to let them know about
this change. The other servers receive this message which will automaticaly
trigger the handleLeaveClient() function. This function will again update
the network plan to reflect this change.
The last function is for client redirection. Recall that there are two reconnection
modes: hard reconnection and soft reconnection (see Section 4.5.4). The recon-
nection type can be specified as an argument in the forceReconneciton(...)

function. This function reconnects a client from one server to another (identified
by the userId of the node). Only the master server can call this function for
security reasons. This function is called automaticaly if the network has to be
resized. Evaluating if the network needs reorganization, can be done using the
evaluateNetReorg(), which will return true in case that there is need. The
doNetReorg() will then reorganize the network using the functions to force the
clients reconnecting to other servers. The other nodes receive this signal and
automatically call the handleReconnection function. The target will therefore
be reconnected to the new server and the new server will reserve enough re-
sources to accept the new client.
All these signals are sent via the MessageManager (described in Section 4.3.6).

4.6.2 Network Monitor

The NetworkMonitor is responsable for keeping the network plan up to date
(Figure 4.21). This plan includes all network nodes, their types (master server,
proxy server or client), and connections to other hosts. Each node is represented
by a class called NetworkNode which includes all attributes stated above. An
alternative representation of the described information is the PeerInfo, it can
also be accessed via the NetworkNode interface.

NetworkNodes can be added or removed using the addNode(...) and the
removeNode(...) interface functions. This call does only create a new node in
the network plan, if this node does not already exist. In the latter case there will

4.6.3 Network Settings 45

Figure 4.21: NetworkMonitor Class

be only a connection added to this node. Any other module can get the current
player number by the function getPlayerNumber(), which will return the player
number in the whole network. If one needs to know the players connected to the
local host one would have to use the getLocalPlayerNumber() function. Any
node information can be accessed by the generic functions getPeerByUserId(...)
and the getNodeByUserId(...). Both return a reference to the nodes regis-
tered under the given userId.
To get a list of all proxy servers in the network the getProxyList() function
can be used. This is usually done during the handshake process from the master
server.

4.6.3 Network Settings

This module represents the settings of the network (Figure 4.22). It contains a
proxy server list, the player limitations for each server. Also the master server ’s
address can be specified, which is not necessary for the network to work.

Figure 4.22: NetworkSettings Class

It just parses the network configuration file and offers this information to
the Orxonox framework. The NetworkMonitor of the master server is initialized
with this information.

4.7 Preliminary Measurement

4.7.1 Environment

To test the performance of the previous and the new network implementations
the infrastructure of the ETH computer support group ISG [18] was used. Al-
though they have very good machines both in graphics and networking perfor-
mance, two major problems had to be faced:

4.7.2 Scenario 46

First, since the network at the ETH is 100Mbit and not at all saturated by
other traffic, it was almost impossible to measure a real-world example as it
would be over real internet-connections.

Second, to measure network traffic, a root access is required, leading to
measurements only on notebooks with limited graphical performance. Even
worse for scanning was the fact that the measurements were taken on a switched
network, making it impossible to sniff out packets.

4.7.2 Scenario

To compare the performance of the new proxy server topology against the old
single client-server architecture, the following setup was used.

Client-Server based Scenario:

As depicted in Figure 4.23 the old setup is as expected one server, and multiple
clients joining the session during startup.

Figure 4.23: Client-Server Scenario

The traffic in this scenario was measured viewing out of one of the clients,
and also as seen from the server.

Proxy-Server based Scenario:

The process of connecting 5 clients to the network is depicted in Figure 4.24.
The first three clients get connected to the Main Server. Afterwards, newly
connected clients get redirected to the Proxy Server.

Figure 4.24: Proxy Server Scenario

4.7.3 Measurements 47

4.7.3 Measurements

For the following measurements the software Wireshark [19] was used. With
this software it was possible to split up the traffic as seen from one node from
and to all the other nodes connected to it. In the following graphs the total
traffic is in black, the upload from the node is in red and the download is in
green.

Old Client-Server Architecture

Laid out here is the measurement of the client server topology as seen from the
first client in Figure 4.25, and as seen from the server node in Figure 4.26.

As can easily be seen, the packets on the server side increase linearely with
each joining client.

Figure 4.25: Traffic at a Normal Client

Figure 4.26: Traffic at a Normal Server

New Proxy Server Architecture

In the new proxy server topology the measurements were taken from three
different angles. The first is the client’s measurement depicted in Figure 4.27,
the second from one of the servers (here the master server) in Figure 4.28 and the
third shows the interserver communication, filtered out from one of the servers
shown in Figure 4.29.

Interesting here is, that the packet throughput does not increase once the
client limit on one server is reached and traffic is relayed over one of the proxy
servers.

4.7.4 Enhancements 48

The clients throughput is approximately the same, as only the handshake
phase is different, afterwards it talks to the server as if it was a normal client
server network.

Figure 4.27: Traffic at a Proxy Client

Figure 4.28: Traffic at a Proxy Server

Figure 4.29: Traffic between Proxy Servers

4.7.4 Enhancements

The measurements presented above were not taken completely without prob-
lems. For once to take the measurements only two people could move the
players, which could have been simulated using an artificial intelligence using
the scripting engine.

Also it would have been interesting to measure the traffic in a more saturated
network to measure network bandwidth and delay, maybe by using a network
simulator. For this to work a network connected by hubs instead of switches
would have been more appropriate.

4.8 Conclusions 49

4.8 Conclusions

We have reached the goals, stated in Section 3.2. According to the preliminary
tests the implementation proved to work the way we expected. Orxonox now is
the first open source game that implements a proxy server architecture based
network.
There is still much to do in terms of efficient bandwith usage and more stable
network organization.

4.9 Future Work

Evaluation The whole architecture needs to be evaluated correctly.

Better Server Selection Algorithm It would be better to monitor the link
quality for a longer time period to be able to choose the best server on a
better decision base. The link quality could even be monitored during the
game itself and in case of a better alternative should be switched to the
another server.

Better Network Shrinkage Threshold Currently the network is reorganized
if the client number is beneath a certain threshold. Since there is much
overhead involved with a network reorganization it would be better to an-
alyze a network topology and to find out the best moment for a network
shrinkage.

Better Network Growth Threshold The master server decides when to ac-
tivate a new proxy server. This decision is very critical because if a decision
is made wrong, it’s possible that a client needs to wait until a proxy server
is activated. Another reason is that the network always needs to have
enough free slots to compensate one server error.

Individual Player Limits Each server should have the ability to specify its
own player limit according to its link properties.

Modifying the Proxy Server List during Runtime It should be possible
to modify the list of passive proxy servers during runtime.

BIBLIOGRAPHY 50

Bibliography

[1] D-ITET, “Department of information technology and electrical engeneer-
ing.” http://www.ee.ethz.ch.

[2] ETHZ, “Swiss federal institute of technology zurich.” http://www.ethz.ch.

[3] Orxonox, “Orxonox - an open source 3d action game.”
http://www.orxonox.net.

[4] SDL, “Simple directmedia layer.” http://www.libsdl.org.

[5] OpenGL, “Open graphics library.” http://www.opengl.org.

[6] GPL, “The gnu general public license.”
http://www.gnu.org/licenses/licenses.html.

[7] Orxonox-Wiki, “Orxonox sevelopment page.” https://dev.orxonox.net.

[8] Orxonox-PPS, “Orxonox pps main page.”
https://dev.orxonox.net/wiki/PPS main.

[9] UML, “Unified modeling language.” http://www.uml.org.

[10] LUA, “A powerful light-weight script programming language.”
http://www.lua.org.

[11] GLSL, “Open graphics shading language.” http://www.opengl.org.

[12] Zlib, “Massively spiffy yet delicately unobtrusive compression library.”
http://www.zlib.net/.

[13] SDL-NET, “Sdl network library.” http://www.libsdl.org/projects/SDL net.

[14] Doxygen, “A documentation system for c++.” http://www.stack.nl/ dim-
itri/doxygen/.

[15] Jens Müller, Sergei Gorlatch, “GSM: A Game Scalability model from Mul-
tiplayer Real-time Games,”

[16] Doom, “One of the first first person shooters from id-software.”
http://www.idsoftware.com/.

[17] Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole, “Provis-
ing online-games: A traffic analysis of a busy counter-strike server,” tech.
rep., OGI School of Science and Engineering at OHSU.

BIBLIOGRAPHY 51

[18] ISG, “Internet support group.” http://www.isg.ee.ethz.ch.

[19] Wireshark, “Wireshark network analyzer.” http://www.wireshark.org.

52

Appendix A

Orxonox Framework

Description

Figure A.1.4 gives a general overview over the modules of Orxonox.
In chapter 2 most modules are described in a timedependant fashion. Here

the modules are listed as they are logically connected.

A.1 Elements

A.1.1 GameWorld

The GameWorld is the main binding block of the API, it connects all the engines
together, and as depicted in figure 2.2 handled accordingly.

GameWorlds are StoryElements. StoryElements can be loaded, and the
loading process, can be different for each element. If it is a Campaign, a sequen-
tial order of GameWorlds is loaded, if it is a GameWorld, WorldEntities are
created and loaded according to their loading disciple.

Every GameWorld holds a list of its allocated entities in its ObjectManager.
The ObjectManager is used by many engines (eg. GraphicsEngine, Collision-
Detector, etc.) to perform the actions described in section 2.3.1.

A.1.2 Engines

The engines are the driving blocks of the Framework. They all have an interface
partner (eg. EventHandler has EventListeners etc.), that any object can Extend
to interface easily with the Engines.

A.1.3 World Entities

WorldEntities are Obejects that can move, interact and draw themselves into
the scene. All entities are registered with the GameWorlds ObjectManager.

A.1.4 Resources

Resources are objects, that are loaded from a storage media. The Resource-
Manger keeps track of allocated resources, to save memory and loading time.

A.2 Coding Tips 53

A.2 Coding Tips

A.2.1 Network

Host Identifiers

It’s very dangerous to mess around with hostIds, since there are some very
special reserved numbers that you will never be able to use. Before working
on this make sure to read and fully understand the network stream.cc source
file and especialy how handshakes are handled in the handleUpstream() and
handleDownstream() function (handshakes fake a different hostId on startup).

Configuration Files

It is very important, that the configuration files on all network servers are
synchronized and especially do have the same network player maximum. This
is very important because the hostId can’t be set correctly if the player limit is
not synchronized.

A.2.1 Network 54

Figure A.1: Orxonox Framework Overview

