
Semester Thesis

PlanetLab Tests

Stefan Weber
weberste@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Stefan Schmid and Thomas Locher

Department of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer 2006

PlanetLab Tests

Stefan Weber

October 17, 2006

Abstract

In this thesis, we present an approach to perform mea-

surements in the worldwide research network PlanetLab. We

describe a framework for developing and deploying Java ap-

plications on PlanetLab and show how it can be used to

develop data gathering applications. In particular, we im-

plement a latency and a bandwidth test of which we also

present some �ndings derived from its analyses.

1

Contents

1 Introduction 3

2 PlanetLab 3

2.1 Deploying the Application . 4
2.2 Installation of the JVM . 4

3 Testing Framework 4

3.1 Architecture . 5
3.2 Loading Tests . 7
3.3 Running Tests . 7
3.4 Implementing Tests . 7

4 Tests 9

4.1 Latency . 9
4.2 Bandwidth . 11
4.3 Working with the Results . 12

5 Analysis 12

5.1 Latency . 12
5.2 Bandwidth . 13
5.3 Symmetries . 14
5.4 Correlation of Latency and Distance 16
5.5 Correlation of Latency and Bandwidth 18

6 Conclusion 19

2

1 Introduction

When developing distributed systems, it is often di�cult to properly deploy
them because access to possibly hundreds of distributed nodes all over the
world is needed. Even though PlanetLab is providing such a network, it
might still be helpful if a local simulation of the system could be made
before the actual deployment. In order to make the simulation as realistic
as possible, it can use network information, such as bandwidth and latency,
that was measured beforehand in a real network. In addition, by analyzing
the collected data, the network can be better understood and consequently,
the simulation can be improved. It may even be possible to derive a realistic
model for networks from that data.
In this thesis, we present a framework that simpli�es the development and
deployment of Java applications in general and network information gath-
ering applications in particular. Furthermore, we also give an overview of
the measurements we performed ourselves and provide an analysis of them.
The remainder of the thesis is organized as follows:
In Section 2 we give a short overview of PlanetLab itself. Then we present
the architecture of the framework and its usage in Section 3. Section 4
contains an overview of the tests we did ourselves. The analyses of these
tests are part of Section 5. The thesis concludes in Section 6.

2 PlanetLab

PlanetLab is an open platform for developing and deploying planetary-scale
services and serves as a testbed for computer networking and distributed
systems. It was established in 2002 and is today composed of over 700 nodes
at 340 sites (October 2006). Access to the network is limited to persons
a�liated with corporations and universities that host a node themselves.
A user is assigned to a slice. A slice is a set of allocated resources distributed
across PlanetLab. To most users, this means shell access to a number of
nodes, which can be chosen over a simple web interface by the user. As
mentioned in the introduction, shell access is an important precondition in
order to use a network for testing a distributed application. To simplify the
handling of the nodes, for example to install software, PlanetLab users have
contributed many helpful tools that are freely accessible.
O�ering the above possibilities and the fact that PlanetLab itself is \part
of the Internet" it is an ideal candidate for collecting network data that can
be used in simulations and analyzed to get a better understanding of how
global networks function.
A novice PlanetLab user can �nd further information in the PlanetLab User's
Guide [8] and the PlanetLab Quick Start Manual [12].

3

2.1 Deploying the Application

When working with PlanetLab, one of the �rst barriers is the deployment of
the application. Especially if, as in our testing application, several hundred
nodes are involved, it is too cumbersome to do everything manually. But as
mentioned above, there are quite a lot of tools which simplify these tasks.
An overview of these tools can be found on the Contributed Software page
[4] of the PlanetLab wiki [9].
For our needs we found Codeploy [2] helpful. It is an e�cient, scalable
deployment service for PlanetLab that is built on top of the CoDeeN [1]
content distribution network. In most cases, multiquery and multicopy,
two nice little tools that come with Codeploy were the tools of choice.
While multiquery can be used to issue shell operations on a set of nodes,
multicopy is useful to transfer �les.

2.2 Installation of the JVM

We decided to implement the testing framework and consequently also the
actual tests in Java. On the one hand, its dynamic class loading mechanism
is very useful when deploying the application (more on that later) and, on
the other hand, the network API is very simple but still powerful enough.
Hence, we �rst had to install the JVM on all the nodes. A nice tool to
install the JVM and other applications is Stork [10], a software installation
utility for PlanetLab. Unfortunately, there were some problems with it by
the time we had to perform the installation. Therefore, we wrote a few shell
scripts that, together with multiquery and multicopy, got the job done.
The scripts can be found in the archive �le that comes with this thesis.
However, I would recommend to use Stork if possible.

3 Testing Framework

As mentioned in the introduction, our primary goal was to collect network
information such as latency and bandwidth data. In order to make the data
gathering as easy as possible and to minimize the time to distribute the test
application, we decided that one of the nodes in PlanetLab has to act as a
central authority that issues the test on all nodes involved in the test and
collects the data from them once they have �nished.
As these are actions that are common to probably any kind of testing one
can imagine we built a testing framework that does this work. With the help
of the framework, the developer of a test can focus on the actual test. It
turned out that the testing framework can even be used for the development
and/or deployment of any kind of Java application|not only in PlanetLab
but basically in any kind of TCP/IP network.

4

3.1 Architecture

The testing framework has three major components. TheMaster component

which is the main authority of the test and running on only one node,
the Slave component which is the actual test and therefore is running on
every node that participates in test and the Launcher component which is
contacted by the Master component to deploy the Slave component (i.e.
the actual test). Before these components are described in more detail, the
workow of a test is explained:

Workow of a Test Similar as in JUnit [5], a test is made up of three
phases:

1. Setup Phase This is the phase where the initialization is done. Usually,
the main task of this phase is to load the classes that are needed for
the test from the Master node and the test environment is set up
automatically.

2. Start Phase This is the phase of the actual test. For example, in case
of a ping test the nodes will mutually send ping packages and measure
the time needed to receive an answer.

3. Shutdown Phase In this phase, usually some cleanup is done, for exam-
ple terminating running servers and sending results back to the Master
component.

The whole architecture is depicted in Figure 1 and is now described in more
detail:

Master component The Master component is the central point of au-
thority and is running on only one node, the Master Node. In order to tell
the Launcher what to do, the Master sends command objects which, as the
name implies, describes an action that has to take place.
In Figure 1, Master is the main logic of the component, Commands is the
command repository, and Nodes contains a list of all the nodes that are part
of the test. The ResourceService is used for transferring resources from
the Master to the Launcher and vice versa and is described in Section 3.2.

Launcher component The Launcher component runs as a service on all
the nodes that are part of the test. It listens on a prede�ned port with a
ServerSocket until the Master component of a test establishes a connection.
In Figure 1, Launcher is the main logic of the component. When a com-
mand is received from the Master, it is put into the CommandQueue. The
TestThread serves as a sandbox where the commands can be executed
without disturbing the Launcher (see Section 3.3). The ResourceClient

5

Master Component

Master

Resource
ServiceNodes

Commands

Launcher Component

Launcher

Test
Thread

Command
Queue

Resource
Client

File System

Results Classes

Slave Component

Slave

object
stream

object
stream

filesystem
API

shared memory
(reference)

Master Node Every Test Node

Figure 1: Architecture of the Test Framework

is a ClassLoader that is fetching resources from the Master's Resource

Service.

Slave component The Slave component is the actual test implementa-
tion. Therefore, it has to be loaded from the Master before the test can be
started. This is done with the ResourceClient of the Launcher component.
In Figure 1, Slave is the main logic of the component. Depending on the
actual test, there can be other entities in this component, which is indicated
by the three dots.

Commands As already mentioned, commands are used by the Master

to signal the Launcher what has to be done next. There are three main
commands in the framework and each of them signals the Launcher to start
one of the three phases of the workow. These are the SetupTestCommand,
the StartTestCommand and the ShutdownTestCommand.
If the user of the framework wants to introduce additional commands, this
is also possible. The new command simply has to extend the abstract base
class Command. The actual action is de�ned in the method handleRequest

which is a template method that is called by the TestThread whenever the
command is executed.

6

3.2 Loading Tests

As explained above, the actual code of the test is deployed during the setup
phase. This is done with the help of the ResourceService that is listening
on a prede�ned port on the Master node. It receives a ResourceRequest

object that encodes the type of resource that is needed; when loading a
component, this is most likely a Java class. Another possibility is that the
nodelist to be used in the test can be loaded that way.
All the resources that can be loaded via the ResourceService have to be
available on the Master's local �lesystem. The �lesystem is also used to store
the tests that the Slave components are sending once the test has �nished.

3.3 Running Tests

As the code of a test can be de�ned by the user of the framwork, it is most
likely that from time to time there are errors in the code. If these errors
let the Launcher quit or make it unusable, this would force restarting it,
which is not very user-friendly. Therefore, the test runs in a test environ-
ment, the TestThread, which is running independently from the main thread
and thus serves as a kind of sandbox. Every time the Launcher receives a
SetupTestCommand, a previously running TestThread is interrupted and a
new testing environment is set up for the new test. This means that if a
previous test is blocked or still running and waiting for a chance to stop, the
new test nevertheless is executed without any problems.

3.4 Implementing Tests

Each test needs a Master and a Slave component. To implement them, the
abstract base class Master respectively Slave has to be extended.
The class Master has a few methods that do a lot of the work involved in
every test, as for example sending the commands to the Launcher. Usually,
the class that is extending Master uses several of the prede�ned methods
and also contains a main method because the Master component is the one
that has to be executed to start a test.
When implementing the Slave component there is a bit more to consider.
The code that is part of the command objects is hard-coded. But of course,
every test wants to do very speci�c things in each of the phases. Thus, the
Slave class implements three methods setup, start and shutdown accord-
ing to the phases of the workow. Hence, code that should be executed
when receiving the corresponding command has to be put in these methods
by overriding them in the subclass. By default (i.e. if you don't override
them), the methods do nothing.
Figure 2 shows how the SetupTestCommand of a test is executed. In this
example, we assume that a ping test has to be done and thus the main
logic of the Master component is called PingMaster and the main logic of

7

Master Component

Resource
ServiceNodes

Commands

Launcher Component

Launcher

Test
Thread

Command
Queue

Resource
Client

File System

Results Classes

Slave Component

filesystem
API

shared memory
(reference)

Master Node Every Test Node

Ping
Master

SetupTestCommand
test.ping.PingSlave

PingSlave

PingSlave

2

1

3

4

...

Figure 2: Issuing a SetupTestCommand

the Slave component is called PingSlave. At the beginning of the test, the
Slave component is empty and we now explain how the whole component is
loaded as part of the ping test's setup phase:

1. PingMaster gets a SetupTestCommand from the command repository
and sends it via the object stream to the Launcher. The latter puts
the command into the CommandQueue.

2. The TestThread fetches the command out of the queue and executes
it.

3. As it is a SetupTestCommand, the Slave component has to be loaded.
To do this, the RemoteClient can use the Master's RemoteService.

4. Finally, PingSlave and all the other resources part of the ping test
are loaded.

We don't go further in explaining the usage here. The inclined reader is
referred to the comments in the source code and the two example tests
(latency and bandwidth) that we implemented. By the way, to distribute
the Launcher component, the easiest way is to build a jar �le containing
the packages launcher, slave, and shared and using one of the methods

8

mentioned in Section 2. For the Master node, a jar �le containing the
packages shared, master, and the package of the actual test can be uploaded
and executed.

4 Tests

We implemented two tests using the testing framework. In this section, we
give an overview of the results. An analysis is given in Section 5.
An important issue when implementing a test is the total runtime. When
processing one node after the other, it usually takes too much time. To
speed everything up, we always had 100 nodes that were executing the same
command (i.e. the same test phase) in parallel. This reduced the total
runtime signi�cantly.
Another straightforward possibility to save time is to set a timeout when
connecting to another node. In most cases, the connection is set up within
a few seconds and if there is no connection after 10 seconds, it most likely
doesn't work at all. However, the default timeout is set to over 3 minutes.
As it happens quite regularly that two nodes cannot connect for whatever
reason, a waiting time of 3 minutes signi�cantly slows down the whole test.
We therefore recommend to set the timeout to about 30 seconds.

You can �nd all the results as CSV �les in the archive. The naming for-
mat is result ftestg fdateg at ftimeg.csv where ftestg is substituted
by the actual test (ping or bandwidth), fdateg by the date in the format
"yyyymmdd" and ftimeg by the European time when the test was running.
In case of the bandwith tests, the time is omited as each test runs for about
24 hours anyway.

4.1 Latency

An interesting parameter in a network is the latency. As usual, we test it
by sending a small packet to a node and measuring the time needed until
an answer packet is received (ping).
It is easy to implement such a test in Java. First, however, we wanted to
make sure that the JVM introduces no additional delay for whatever reason.
Therefore, we compared the results of a ping test with the results achieved
when using the ping command from the iputils package and didn't �nd
signi�cant di�erences.
Usually, the test was running on about 350 nodes|even though there is a
total of over 700 nodes of which about 550 are production nodes [7]. To save
time, it makes sense to only add the nodes to the test bench that are prob-
ably available. We propose to use CoMon [3], a monitoring infrastructure
for PlanetLab, to get a list of currently alive nodes because by far not all
production nodes are really available. For a list that can easily be copied

9

into a text �le and later serve as nodelist for the test, the URL [6] can be
used.
In every test, each node pinged every other node four or eight times in a
row and the values were measured in milliseconds. A value of -1 indicates a
problem. Most likely this is a connection problem because, when trying to
ping these nodes manually with the ping command afterwards, it usually
ended up with a 100% packet loss.
A value of 0 doesn't really mean that there is no latency, of course. The
reason for these values is that Java gives access to the system time only in
milliseconds. Hence, for two very fast nodes it is possible, that the time when
the packet is sent is equal to when the packet is received. When analyzing
or using the data, the 0 values can be a problem in certain calculations (e.g.
division by zero), thus we incremented all the values by 1, which can be
interpreted as kind of local overhead; of course, -1 values remain -1.

> 200ms and <= 500ms

>500ms unreachable

<= 50ms

> 50ms and <= 100ms

> 150ms and <= 200ms

> 100ms and <= 150ms

16%

3% 4%

20%

20%

19%

18%

Figure 3: Overview of the Ping Results

Figure 3 provides an overview of the results. It shows the distribution of
the ping values from our tests. There was a total of over 5 million pings and
the distribution was more or less constant, irrelevant of time or date. So in
PlanetLab, more than 90% of the nodes are connected with an acceptable
latency (< 500ms) for most of the applications.
Unfortunately, sometimes there are extremly strange ping values ranging
from 10s up to even several minutes. As we didn't �nd a reasonable expla-
nation for this, we contacted the PlanetLab support mailing list. Vivek Pai
assumes that \a number of nodes [...] have set their per-node bandwidth
caps to such low levels that any nontrivial amount of tra�c will �nd itself
waiting on the network fair queueing" [13]. In addition, �rewalls and loaded
routers probably also lead to these problematic values. However, we don't

10

think that this is the only reason but did not have the time to get deeper
into analyzing this problem.

4.2 Bandwidth

Another interesting network parameter is the bandwidth that we also wanted
to test using the framework. While in the ping test several nodes were
working in parallel, we had to make sure that in the bandwidth test no node
is tested by two di�erent nodes at the same time. This would falsify the test
results as in such cases the bandwidth that is available for the slice is split
between the two connections.
Also, to get reasonable results, it was not enough to send such small packets
as with the ping test. But on the other hand, sending a big packet of about 1
MB size is not feasible as well because there are nodes that have a bandwidth
of a few kByte/s only. Naturally, sending 1 MB from such nodes to every
other node would take very long. Thus we decided to start with a packet
of about 100 kByte and in case it is sent fast, we simply increase this size.
The goal is that in the end, the transmission takes about 10s, which then
easily allows to calculate an estimate of the bandwidth.

> 500kB/s and <= 1000kB/s

>1000kB/s unreachable

> 10kB/s and <= 100kB/s

> 100kB/s and <= 200 kB/s

> 200kB/s and <= 500kB/s

13%

8% 4%

19%

24%

27%

<= 10kB/s

5%

Figure 4: Overview of the Bandwidth results

Nodes with the value -1 indicate that something went wrong (as in ping).
The value 0 is used whenever the remote node was the localhost. Figure
4 provides a rough overview of the results. All values are in kilobyte per
second and the distribution shown in the �gure is the result of almost 100'000
bandwidth tests. So over 90% of all the nodes were interconnected with a
bandwidth higher than 10 kByte/s. By the way, many of the very high
values occur between nodes that are located at the same site.

11

4.3 Working with the Results

The test writes the results in a simple CSV �le that can be opened in
Excel. Unfortunately, Excel doesn't support tables with more than 256
columns before version 2007 which makes it very cumbersome to work with
the �les. Therefore, we also developed a small framework that helps to
perform operations on the result �les. We will not go into detail here but
the inclined reader can �nd the source code in the package analysis.
To employ the results in a simulation, the easiest way is to use the class
DataMatrix from this package. It provides an internalization of the CSV
�le and therefore accessing the data is very easy and straightforward.

5 Analysis

After the overview of the tests and their results, we now want to have a
closer look at the data. There are a lot of possibilities to analyze them.
We do only a few simple analyses due to time schedule constraints here but
these already help to understand the whole network a little bit better.
The problem with all the analyses was that, as already mentioned, there
exist a few extreme values, for which a ping according to the test result
takes several minutes. Of course, such values are not realistic and most
probably do not come from a loaded network only. Even though there are
very few, they have a strong inuence when computing statistical values like
mean, variance etc. So we often separate the results in categories and give
the percentage of the results lying in these categories.

5.1 Latency

The mean of each of the ping tests is showed in the table below. Remark
that the timezone is the Central European Summer Time (CEST).

date and time mean

02.10.2006 at 11am 179ms
03.10.2006 at 10am 164ms
03.10.2006 at 07pm 191ms
04.10.2006 at 01am 177ms
04.10.2006 at 07am 204ms
04.10.2006 at 14pm 192ms
04.10.2006 at 18pm 255ms

We want to see if there is a variance of the global latency over the day. Our
hypothesis is that the latency tends to be higher during american working
hours. We assume that between six in the morning and noon (CEST) most
people in the USA are not working. When computing the overall mean in
this time frame, we get 183ms. For the mean of measurements outside of

12

this frame, we get 202ms. So there seems to be a tendency for higher latency
during the US working hours.
However, with respect to the fact that there are some extremly high ping
values that possibly inuence the mean very strong, we are not convinced
with that. Thus, for every test, we build a mean for the pings which were
less 5000ms and one for the pings that were higher. The results are listed
in the following table:

date and time < 5000ms > 5000ms

02.10.2006 at 11am 157ms 17440ms
03.10.2006 at 10am 144ms 17962ms
03.10.2006 at 19pm 165ms 16126ms
04.10.2006 at 01am 163ms 13072ms
04.10.2006 at 07am 169ms 18692ms
04.10.2006 at 14pm 167ms 16255ms
04.10.2006 at 18pm 187ms 16036ms

Of course, the �rst thing that comes up is that the unrealistic pings obviously
have a very strong inuence on the overall mean. So we build the mean for
the two time frames as already done above, but this time, we only take into
account the nodes from the group with pings less than 5000ms. For the time
frame between six in the morning and noon (CEST) the overall mean now is
157ms and for the rest of the time it is 169ms. So the di�erence is not as big
as before, but still, there seems to be a tendency to higher latency during
US working hours. However, to ensure that this assumption is correct, a lot
more data and more sophisticated analyzation techniques would be needed.
Unfortunatley, we did not have any time left to go furhter into that.

5.2 Bandwidth

The global mean of all our bandwidth measurments is 442kB/s. Our main
interest, however, is not the mean value. We want to know if the bandwidth
is node- or link-dependent. We do this by calculating the standard deviation
for every node. A low standard deviation indicates node-dependence and a
high standard deviation indicates link-dependence.
Figure 5a shows the distribution of this calculation but obviously, there is
no clear indication what the dependence is. So we additionally calculate the
bandwidth mean for each of the groups, which is depicted in Figure 5b. This
diagram shows a corellation of the variance groups and the corresponding
mean bandwidth.
This is not not very surprising as this is the behavior one encounters all
the time: High bandwidth nodes work very well with other high bandwidth
nodes, but when they need to connect with a low bandwidth node, the
latter is the lower bound for the resulting bandwidth. Low bandwidth nodes

13

0%

100%

11%
22%

13% 14%

<
 2

00
kB

/s

>
=

 2
00

kB
/s

 a
n

d
<

 4
00

kB
/s

>
=

 4
00

kB
/s

 a
n

d
<

 6
00

kB
/s

>
=

 6
00

kB
/s

 a
n

d
<

 8
00

kB
/s

>
=

 1
00

0k
B

/s

10%

standard
deviation:

>
=

 8
00

kB
/s

 a
n

d
<

 1
00

0k
B

/s

30%

(a) per node standard deviation

0kB/s

800kB/s

93kB/s

260kB/s
331kB/s

587kB/s

<
 2

00
kB

/s

>
=

 2
00

kB
/s

 a
n

d
<

 4
00

kB
/s

>
=

 4
00

kB
/s

 a
n

d
<

 6
00

kB
/s

>
=

 6
00

kB
/s

 a
n

d
<

 8
00

kB
/s

>
=

 1
00

0k
B

/s

421kB/s

standard
deviation:

>
=

 8
00

kB
/s

 a
n

d
<

 1
00

0k
B

/s

688kB/s

500kB/s

(b) mean bandwidths within the groups

Figure 5: Dependency of the Bandwidth

however, have about the same bandwidth no matter what kind of node they
are connected with.

5.3 Symmetries

Another interesting analysis is to see if the measured values are symmetric.
That is if for example a ping from node x to node y takes as long as one
from node y to node x.

Latency A simple approach to analyze the symmetry of the latency is to
calculate the mean of the pings from node x to node y, then calculate the
mean of the pings from node y to node x and �nally calculate the deviation
of these two means.
Figure 6a depicts the distribution resulting from this calculation. Obviously,
the links seem to be very symmetric. However, the problem when using
absolut tolerances is, that for example a link with a ping value of 400ms
in one direction and 405ms in the other is correctly considered to be very
symmetric. But for a link with a ping value of 8ms, a deviation of 5ms is
not good anymore. Therefore, in Figure 6b, we also show the distribution
when using a relative tolerance with respect to the mean of the link's ping
values. The symmetry is a little bit lower than with the absolute tolerance,
but still, it is clear that most links are symmetric.

14

0%

100%
84%

3% 4% 2% 4%

<
 1

0m
s

>
=

 1
0m

s
an

d
<

 2
0m

s

>
=

 2
0m

s
an

d
<

 5
0m

s

>
=

 5
0m

s
an

d
<

 1
00

m
s

>
=

 1
00

m
s

an
d

<
 2

00
m

s

>
=

 2
00

m
s

3%

(a) absolute tolerance

0%

100%

80%

6% 4% 6%

<
 0

.1

>
=

 0
.1

 a
n

d
<

 0
.2

>
=

 0
.2

 a
n

d
<

 0
.3

>
=

 0
.3

 a
n

d
<

 0
.5

>
=

 0
.5

4%

deviation:

(b) relative tolerance

Figure 6: Symmetry of Latency

Bandwidth To analyze the symmetry of the bandwidth, we use the same
approach again. That is, the deviation of the bandwith from node x to
node y to the bandwith from node y to node x is calculated. Figure 7a
shows the result of this calculation when using an absolute tolerance. This
is obviously not very helpful, so we use a relative tolerance again. The
distribution resulting from this correction is shown in Figure 7b, which is
much more meaningful. There is a clear tendency that one group of links is
symmetric while another group is extremly asymmetric.

0%

100%

30%

10%
17% 13% 15%

<
 1

0k
B

/s

>
=

 1
0k

B
/s

 a
n

d
<

 2
0k

B
/s

>
=

 2
0k

B
/s

 a
n

d
<

 5
0k

B
/s

>
=

 5
0k

B
/s

 a
n

d
<

 1
00

kB
/s

>
=

 1
00

kB
/s

 a
n

d
<

 2
00

kB
/s

>
=

 2
00

kB
/s

15%

(a) absolute tolerance

0%

100%

41%

21% 7%

33%

<
 0

.1

>
=

 0
.1

 a
n

d
<

 0
.2

>
=

 0
.2

 a
n

d
<

 0
.3

>
=

 0
.3

 a
n

d
<

 0
.5

>
=

 0
.5

8%

deviation:

(b) relative tolerance

Figure 7: Symmetry of Bandwidth

A possible interpretation is that links between nodes with about the same
bandwidth limitations are within the symmetric group, while on the other
hand, links between nodes with very di�erent bandwidths are within the
asymmetric group because when transferring from a fast node to a slow one

15

the bandwidth is higher than the other way round as the upload bandwidth
is usually lower than the download bandwidth.

5.4 Correlation of Latency and Distance

An interesting analysis is to check if the latency is correlated in some way
with the geographic distance between two nodes. Correlation is not used
strictly mathematically here because the distance between two nodes is not
a random variable. Anyway, we want to know if there is some kind of
dependency between the distance and the latency.

<
 2

00
0k

m

>
=

 2
00

0k
m

 a
n

d
<

 4
00

0k
m

0ms

700ms

1400ms

>
=

 4
00

0k
m

 a
n

d
<

 6
00

0k
m

>
=

 6
00

0k
m

 a
n

d
<

 8
00

0k
m

>
=

 8
00

0k
m

 a
n

d
<

 1
00

00
km

>
=

 1
40

00
km

57ms
115ms

198ms
189ms

286ms

381ms

611ms

1179ms

>
=

 1
00

00
km

 a
n

d
<

 1
20

00
km

>
=

 1
20

00
km

 a
n

d
<

 1
40

00
km

(a) grouped by distance

<
 5

0m
s

>
=

 5
0m

s
an

d
<

 1
00

m
s0km

10000km

>
=

 1
00

m
s

an
d

<
 1

50
m

s

>
=

 1
50

m
s

an
d

<
 2

00
m

s

>
=

 2
00

m
s

an
d

<
 5

00
m

s

>
=

 5
00

m
s

916km

3045km

6354km

8450km

9554km 9342km

(b) grouped by latency

Figure 8: Correlation of Latency and Distance

The �rst step we do is to group the node pairs by their distance and then
calculating the mean of all ping values within each of the groups. Similarly,
we do it the other way round by grouping by ping value and calculating
the mean of the distances. The result, as shown in the Figures 8a and
8b, indicates a strong correlation between distance and latency. The small
discrepancies between 4000km and 8000km and with ping values higher than
500ms are due to the already mentioned very high ping values. There are
very few of them but they have a strong inuence on the mean value.
It would be nice to be able to estimate the latency when the distance is
known. To check if this works, we calculate the mean of the quotient distance

ping
,

which is 41. Thus, the estimation of the ping value is distance
41

. Figure 9a
shows the quality of this estimation where the tolerance is the maximum
error the estimate is allowed to have from the value actually measured.
This shows that the estimate starts to make sense with a tolerance of about
100ms. This is good for pings that are in the region of 1000ms, but very
bad for pings in the region of 50ms.
To avoid this problem, we use a tolerance relative to the mean of all nodes
forming a group of speci�c distances. For example, with a relative tolerance

16

of 10%, a node whose ping target is 500km away lies in the group with a
mean of 57ms as Figure 8a shows. Thus, the estimate is good enough if the
error is not bigger than 5.7ms. Figures 9b, 9c and 9d show the results when
using relative tolerances of 10%, 20% and 30% respectively. The diagrams
show that with a relative tolerance of 30%, most of the estimates are within
the allowed clearance.

0% 20% 40% 60% 80% 100%

94% 150 ms

91%

84%

80%

73%

59%

35%

100 ms

50 ms

40 ms

30 ms

20 ms

10 ms

95% 200 ms

96% 250 ms

tolerance

(a) absolute tolerance

0%

100%

30%

57%

72%
64%

52% 49%

<
 2

00
0k

m

>
=

 2
00

0k
m

 a
n

d
<

 4
00

0k
m

>
=

 4
00

0k
m

 a
n

d
<

 6
00

0k
m

>
=

 6
00

0k
m

 a
n

d
<

 8
00

0k
m

>
=

 8
00

0k
m

 a
n

d
<

 1
00

00
km

>
=

 1
40

00
km

>
=

 1
00

00
km

 a
n

d
<

 1
20

00
km

>
=

 1
20

00
km

 a
n

d
<

 1
40

00
km

54%

17%

(b) 10% relative tolerance

0%

100%

50%

84%
89%

76% 82% 79%

<
 2

00
0k

m

>
=

 2
00

0k
m

 a
n

d
<

 4
00

0k
m

>
=

 4
00

0k
m

 a
n

d
<

 6
00

0k
m

>
=

 6
00

0k
m

 a
n

d
<

 8
00

0k
m

>
=

 8
00

0k
m

 a
n

d
<

 1
00

00
km

>
=

 1
40

00
km

>
=

 1
00

00
km

 a
n

d
<

 1
20

00
km

>
=

 1
20

00
km

 a
n

d
<

 1
40

00
km

85%

44%

(c) 20% relative tolerance

100%

0%

66%

91% 92%

80%
86%

81%

<
 2

00
0k

m

>
=

 2
00

0k
m

 a
n

d
<

 4
00

0k
m

>
=

 4
00

0k
m

 a
n

d
<

 6
00

0k
m

>
=

 6
00

0k
m

 a
n

d
<

 8
00

0k
m

>
=

 8
00

0k
m

 a
n

d
<

 1
00

00
km

>
=

 1
40

00
km

>
=

 1
00

00
km

 a
n

d
<

 1
20

00
km

>
=

 1
20

00
km

 a
n

d
<

 1
40

00
km

90%

61%

(d) 30% relative tolerance

Figure 9: Matching of Estimations

17

5.5 Correlation of Latency and Bandwidth

We also want to know if latency and bandwidth are correlated. To do so,
we use the same approach as in the previous section. At �rst, we group
the node pairs by their bandwidth and then calculate the mean of all ping
values within each of the groups. Again, we also do it the other way round
by grouping by ping value and calculating the mean of the bandwidths. The
result is shown in Figures 10a and 10b and indicates a correlation between
bandwidth and latency.

<
 1

0k
B

/s

>
=

 1
0k

B
/s

 a
n

d
<

 1
00

kB
/s

0ms

600ms

1200ms

>
=

 1
00

kB
/s

 a
n

d
<

 2
00

kB
/s

>
=

 2
00

kB
/s

 a
n

d
<

 5
00

kB
/s

>
=

 5
00

kB
/s

 a
n

d
<

 1
00

0k
B

/s

>
=

 1
00

0k
B

/s

1129ms

264ms
189ms

107ms
47ms 20ms

(a) grouped by bandwidth

<
 5

0m
s

>
=

 5
0m

s
an

d
<

 1
00

m
s

0kB/s

1000kB/s

1400kB/s

>
=

 1
00

m
s

an
d

<
 1

50
m

s

>
=

 1
50

m
s

an
d

<
 2

00
m

s

>
=

 2
00

m
s

an
d

<
 5

00
m

s

>
=

 5
00

m
s

1317kB/s

370kB/s

205kB/s
137kB/s 91kB/s

33kB/s

(b) grouped by latency

Figure 10: Correlation of Latency and Bandwidth

It would also be nice to be able to estimate the bandwidth when knowing
the ping value. To check if this works, we calculate the mean of the product
bandwidth � ping, which is 25418. Thus, the estimation of the bandwidth
value is 25418

ping
. Figure 11a shows the accuracy of the estimation. The tol-

erance is the maximum error that the estimate is allowed to have. The
estimates start to make sense with a tolerance of about 200kB/s. Of course,
an estimation error that high is acceptable for bandwidths over 1000kB/s
but not at all for lower bandwidths.
To better understand the quality of the estimation, we use a tolerance rela-
tive to the mean bandwidth of all nodes forming a group of speci�c latencies.
For example with a relative tolerance of 10%, a link with a ping value of
70ms allows an estimation error of 37kB/s. Figures 11b, 11c and 11d show
the results when using relative tolerances of 10%, 20% and 30% respectively.
Not surprisingly, the estimation of the bandwidth is harder than estimating
the bandwidth as presented in Section 5.4.

18

0% 20% 40% 60% 80% 100%

77.2% 150 kB/s

66.1%

45.3%

87.7%

26.7%

15.04%

6.64%

100 kB/s

50 kB/s

40 kB/s

30 kB/s

20 kB/s

10 kB/s

82.6% 200 kB/s

86% 250 kB/s

tolerance

(a) absolute tolerance

0%

100%

19% 19%
12% 9% 8% 5%

<
 5

0m
s

>
=

 5
0m

s
an

d
<

 1
00

m
s

>
=

 1
00

m
s

an
d

<
 1

50
m

s

>
=

 1
50

m
s

an
d

<
 2

00
m

s

>
=

 2
00

m
s

an
d

<
 5

00
m

s

>
=

 5
00

m
s

(b) 10% relative tolerance

0%

100%

48% 51%

38%

19% 17%
9%

<
 5

0m
s

>
=

 5
0m

s
an

d
<

 1
00

m
s

>
=

 1
00

m
s

an
d

<
 1

50
m

s

>
=

 1
50

m
s

an
d

<
 2

00
m

s

>
=

 2
00

m
s

an
d

<
 5

00
m

s

>
=

 5
00

m
s

(c) 20% relative tolerance

0%

100%

61%
69% 72%

52%

38%

14%

<
 5

0m
s

>
=

 5
0m

s
an

d
<

 1
00

m
s

>
=

 1
00

m
s

an
d

<
 1

50
m

s

>
=

 1
50

m
s

an
d

<
 2

00
m

s

>
=

 2
00

m
s

an
d

<
 5

00
m

s

>
=

 5
00

m
s

(d) 30% relative tolerance

Figure 11: Matching of Estimations

6 Conclusion

We present a framework that can be used to develop and deploy network
tests in the PlanetLab environment. The framework is very exible and can
even be used for other kinds of applications unlike network tests. With the
help of this framework it is very easy to collect large amounts of network
information such as latency and bandwith. Analyzing this data helps to un-
derstand the characteristics of the underlying network. Moreover, the data
can be used to run realistic simulations. It has for example been used to
study the DHT eQuus [11] for stretch and load balancing.

There is also a lot of open work that can be done in this direction: The
testing framework can be enhanced and made more exible. For example
the Launcher should be con�gurable and updateable without the need of re-
deploying and restarting, a caching mechanism for Slave components could

19

be added or the resource service and its usage could be generalized. Addi-
tionally, the problems with the tests (i.e. the extremly high values for pings)
should be taken care of.
Much more time has also to be invested in collecting data and analyzing it in
more detail and with more sophisticated techniques. For example, the ping
values and the bandwidths can be analyzed node-speci�c and link-speci�c
or the analysis about the variance of the ping over the time, as started
in Section 5.1, can be deepened. Furthermore, it would be nice to have a
visualization tool that allows to load the result CSV �les and display the
statistics or analyses of choice.

20

References

[1] CoDeen. http://codeen.cs.princeton.edu.

[2] Codeploy. http://codeen.cs.princeton.edu/codeploy.

[3] CoMon. http://comon.cs.princeton.edu.

[4] Contributed Sofware. https://wiki.planet-lab.org/twiki/bin/

view/Planetlab/ContributedSoftware.

[5] JUnit. http://www.junit.org.

[6] List of currently alive PlanetLab nodes. http://summer.cs.

princeton.edu/status/tabulator.cgi?format=nameonly&table=

table_nodeviewshort&select='resptime%20%3E%200'.

[7] PlanetLab Node Lists. https://www.planet-lab.org/db/nodes/

nodelists.php.

[8] PlanetLab User's Guide. http://www.planet-lab.org/doc/

UsersGuide.php.

[9] PlanetLab Wiki. https://wiki.planet-lab.org/twiki/bin/view/

Planetlab/WebHome.

[10] Stork. http://www.cs.arizona.edu/stork.

[11] Thomas Locher, Stefan Schmid, and Roger Wattenhofer. eQuus: A
Provably Robust and Locality-Aware Peer-to-Peer System. In 6th IEEE
International Conference on Peer-to-Peer Computing (P2P), Cam-

bridge, United Kingdom, September 2006.

[12] Luzius Meisser. PlanetLab Quick Start Manual.

[13] Vivek Pai. Private Conversation.

21

