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Abstract

We analyze the impact of Byzantine players in a game
modeling the decentralized caching of resources. In [1] such
a game was introduced as Selfish Caching Game. We extend
this game by Byzantine players and examine its efficiency by
analyzing its Price of Anarchy and its Price of Malice. For
the line and grid topology we provide tight bounds on these
ratios. In our model the selfish server nodes incur either
cost for replicating resources or cost for accessing a remote
replica.
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1 Introduction

Peer-to-peer systems offer the possibility to distribute computing power,
bandwidth or memory on its independent peers. While distributed fileshare
systems are already widely used, also web caches and peer-to-peer caches
have become popular during the last few years. New promising systems like
Kangoo provide a global, distributed storage system.

Distributed storage systems can be modeled by a game theoretic approach,
where the players are connected among each other according an underlying
topology. Chun et al. [1] introduced such a game as the Selfish Caching
Game. The selfish behavior of the players can degrade the performance
of such a system strongly. However, selfishness is not the only problem,
malicious Byzantine adversaries can have an extensive impact on the per-
formance as well.

In this thesis we examine the effects of malicious Byzantine players on the
efficiency of the Selfish Caching Game with different underlying topologies.
In our model the Byzantine players seek to lower the utility of the entire
system, independently of their own cost. The Price of Malice gives an in-
dication on the effect of Byzantine players, whereas the Price of Anarchy
shows the influence of selfish behavior on socially optimal performance of
a system. These two measurements have different reference points - the
Price of Anarchy relates the social welfare generated by players acting in
an egoistic manner to an optimal solution obtained by perfectly collaborat-
ing participants, whereas the Price of Malice’s reference point is the welfare
achieved by an entirely selfish system. We analyze these two variables for
the underlying topologies star, line and grid. Furthermore we perform first
examinations in the d-dimensional grid.

2 Related Work

We took over the Caching Game from [1]. Their examinations quantifying
the cost of lack of coordination when servers behave selfishly were of interest
for us. They give results on the Price of Anarchy for the star and line
topology. We extend the Caching Game with malicious Byzantine players
and analyze their impact on the overall performance.
Additional studies of the inherent loss of efficiency in a system caused by
the participant’s selfishness in networks were performed by Schmid et al.
[2]. They investigated the impact of selfish neighbor selection on the quality
of the resulting network topologies.
Malicious Byzantine players were introduced by Moscibroda et al. [3]. They
have performed analysis in a Virus Inoculation Game. For their exami-
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nations they quantified how much the presence of Byzantine players can
deteriorate or even improve the social welfare of the distributed system by
analyzing and comparing its Price of Malice and Price of Anarchy.

3 Model

3.1 Byzantine Caching Game

We obtained the basic model of the Selfish Caching Game from [1] and
extended it with Byzantine players. We abstracted the caching problem
as follows. There is one object which is cached at several players i ∈ N .
S denotes the set of selfish and B the set of Byzantine players. It holds
|S| + |B| = |N |. The distance between servers, or rather players, can be
represented as a distance matrix D (i.e., dij is the distance from player i to
player j) which models the underlying network topology. Each player has
two choices, he can cache the object or access a remote copy. The choices
of the players can be summarized by a strategy profile ~a ∈ {0, 1}n, where
ai = 1 signifies that player i caches the object, and ai = 0 that it does access
a copy. Therefore, the cost of a selfish player i is

costi(~a) = ai · α︸ ︷︷ ︸ + (1− ai) · dij .︸ ︷︷ ︸
caching cost accessing cost

The social cost of a strategy profile ~a is the sum of all individual costs,
Cost(~a) =

∑
i∈S costi~a, where S denotes the set of selfish players. To further

formulate this equation we define the Influence Area Ia of a caching node
a. Ia contains all nodes that access the cached copy at node a. We sum up
the costs occurring in all influence areas to get the total social cost

Cost = α · |I|︸ ︷︷ ︸ +
∑

I

(
∑

i∈Ia

di,a).

︸ ︷︷ ︸
CachingCost AccessingCost

(1)

3.2 Byzantine Game Theory

The Price of Anarchy designates the ratio of the social cost of the worst
Nash equilibrium to the social optimum, PoA = CostNE

CostOPT
. As we consider

also Byzantine players we have to comprise their effect in the analysis. From
[3] we obtain the following definitions for the Byzantine game theory. In a
Byzantine Nash equilibrium no selfish player has an incentive to change his
strategy if the strategies of all other (selfish and Byzantine) players are
fixed. The Price of Byzantine Anarchy is the ratio between the worst-
case social cost of a Byzantine Nash equilibrium divided by the optimal
social cost, PoB(b) = max CostBNE(b)

CostOPT
. To capture the ratio between the
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worst Byzantine Nash Equilibrium with b malicious players and the Nash
Equilibrium in a purely selfish system we calculate the Price of Malice,
PoM(b) = PoB(b)

PoA . For the latter we assume that in the Oblivious Model
selfish players are not aware of the existence of Byzantine players. That is,
they expect all other players in the system to be selfish as well and therefore
do not adapt their strategy to Byzantine players. In the Non-Oblivious
Model we assume that the selfish players act according a risk-averse strategy.
The number of Byzantine players is known, but not their location or strategy.
Moreover, they presume that the Byzantine players are located in worst case
situation concerning their individual cost. We designate in the following with
CostOPT the optimal social cost, with CostNE the worst case cost of a Nash
equilibrium and finally with CostBNE the worst case cost of a Byzantine
Nash equilibrium.

4 Analysis

To analyze the Price of Anarchy and the Price of Malice for different topolo-
gies we have to provide tight bounds on the Social Optimum, the Nash equi-
librium and the Byzantine Nash equilibrium. In the following sections we
begin with proofing several lemmas establishing the needed bounds without
and with Byzantine players. Furthermore we proceed analyzing the Byzan-
tine behavior in the non-oblivious and the oblivious case. Finally we analyze
the Price of Anarchy and the Price of Malice on behalf of the obtained find-
ings. In the Appendix a detailed overview of the results is given.
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(a) (b) (c) (d)

Figure 1: Star topology for 1 < α < 2. (a) Social optimum. (b) Worst case
Nash equilibrium. (c) Worst case Byzantine Nash equilibrium, Oblivious
Model. (d) Worst case Byzantine Nash equilibrium, Non-Oblivious Model.

4.1 Star

In the star topology the Price of Anarchy is smaller equal 2 for α > 1. That
means a central planning can be twice as good as if every player is acting
selfishly. In the oblivious model the star is obviously very vulnerable to
malicious players. Byzantine players easily can cause damage by caching
objects at the central nodes. We can see this by the Byzantine Price of
Anarchy which is infinite for 1 < α < 2 and b ≥ 1. This leads to an infinite
Price of Malice, thus the Byzantine players cause maximal damage. In the
non-oblivious model the selfish nodes know about the existence of Byzantine
players and therefore are able to adapt their strategy. However, they do not
know about their exact location and therefore can not be sure to access a
valid copy. Thus they prefer to cache the object and the Price of Malice
becomes PoM < 1. That could indicate that the social cost are lowered by
the existence of Byzantine player. Though, in the star topology this effect
is mainly achieved because only the selfish players contribute to the social
cost. If we compare Figure 1(b) and 1(d) we see that the two strategies
are almost the same. The lower social cost is caused mainly because of the
Byzantine players which do not contribute to it.
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(a)

(b)
d1

d2

(c)

Figure 2: Line topology for α = 2. (a) Worst case Nash equilibrium. (b)
Byzantine Nash equilibrium for b = 4. (c) Worst case Byzantine Nash
equilibrium for b = 4. d1 = α, d2 = b·α

2 .

4.2 Line

In the following we establish tight results for the Price of Malice of the line.
For the calculations of the Social Optimum we assume the cached objects
to be located at equal distances in the optimal case. Our gained results
encourage this presumption, furthermore we give an outline for a proof of
the optimality of a regular arrangement in the grid in Lemma 4.5.

4.2.1 Social Optimum

Lemma 4.1 (Distances in Social Optimum). Under the assumption that the
objects are cached at equal distances, it holds for the distance between two
neighboring caching nodes

√
2α ≤ d < 2

√
2α in the Social Optimum.

Proof. Consider a distribution of cached objects on the line at an arbitrary
distance d. Starting from this general setting we want to decrease the social
cost, by placing or removing objects. If d is too big we can place an addi-
tional object in the middle of the interval at node a. The social cost is then
reduced in one interval by

CostReductionP (d) = AccessCosta − CachingCosta

+2
∑

(AccessCostold −AccessCostnew)

=
d

2
− α + 2

d/4∑

i=1

((
d

2
− i

)
− i

)

=
d

2
− α + 2

∑ d

2
− 2

∑
2i

=
d

2
− α +

d2

4
−

(
d

2

(
d

4
+ 1

))

=
d2

8
− α
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We only place the object if CostReductionP > 0. Thus, only if the size of
the interval is d > 2

√
2α. If we proceed placing additional objects in the

middle till CostReductionP ≤ 0 then it holds for the intervals on the line

d ≤ 2
√

2α (2)

If the intervals initially are too small then we remove every second object.
For each removed node a the social cost is then reduced by

CostReductionR(d) = CachingCosta −AccessCosta

−2
∑

(AccessCostnew −AccessCostold)

= α− d− 2
d/2∑

i=1

((d− i)− i)

= α− d2

2

Again, the reduction of social cost has to be positive, CostReductionR > 0.
It follows that we can lower the social cost if d <

√
2α. If we proceed remov-

ing objects till finally CostReductionP ≤ 0 then it holds for the intervals
on the line

d ≥
√

2α (3)

By removing or adding objects till there is no gain we construct finally a
social optimum. From (2) and (3) it follows for the size of the intervals in
the social optimum

√
2α ≤ d ≤ 2

√
2α.

Lemma 4.2 (Social Optimum). The social cost of the Social Optimum on
a line for 1 < α < n is

CostOPT ∈ Θ(
√

α · n).
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PROOF. We proof the upper and lower bound in turn.

Lower Bound. From (1) we obtain for the social cost of a Social Optimum

CostOPT (d) = CachingCost + AccessingCost

= α · |I|+ |I| · 2 ·
d/2∑

i=1

i (4)

= α · n− 1
d

+
n− 1

d
· 2 ·

d
2(d

2 + 1)
2

= α · n− 1
d

+
n− 1

d
· d

2
(d

2
+ 1

)
(5)

= α · n− 1
d

+
n− 1

2
·
(

d

2
+ 1

)
(6)

According to Lemma 4.1 it holds d ∈ [dmin, dmax]. If we look closer to (6) we
detect that the CachingCost decreases with increasing d and AccessingCost
decreases with decreasing d. Therefore it holds for the total social cost of
the Social Optimum

CostOPT (d) ≥ CachingCost(dmax) + AccessingCost(dmin)

≥ α · n− 1
dmax

+
n− 1

2
·
(

dmin

2
+ 1

)

≥ α · n− 1√
2α

+
n− 1

2
·
(

2
√

α

2
+ 1

)

≥
√

2α

2
· (n− 1) + (

√
2α + 1) · (n− 1)

∈ Ω(
√

α · n)

Upper Bound. We obtain a optimal example for the social cost of the Social
Optimum if we set the Caching Cost to the Accessing Cost in (5)

α · n−1
d =

n− 1
d

· d

2

(
d

2
+ 1

)

α =
d

2

(
d

2
+ 1

)

0 =
d2

4
+

d

2
− α
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The positive solution is d = −1 +
√

1 + 4α. Inserting this value in (4) leads
us to the social cost CostOPT = 2·α

−1+
√

1+4α
·(n−1) and establishes the upper

bound CostOPT ∈ O(
√

α · n).

4.2.2 Oblivious Model, Byzantine Nash Equilibrium

Lemma 4.3 (Byzantine Nash Equilibrium). The social cost of the worst
Byzantine Nash Equilibrium in the oblivious model for 1 < α < n, 0 ≤ b < n

2α
is

CostBNE ∈ Θ(α · s + α2 · b2).

PROOF. We proof the upper and lower bound in turn.

Lower Bound. We consider an example for a Byzantine Nash equilibrium
which causes high social cost. The objects are cached regularly every 2α. A
Byzantine node b defines the influence area Ib, which contains all nodes that
would normally access the copy at b. The Byzantine players are situated
successively at distances 2α, so that they form one big Byzantine influence
area IBmax = |B| · Ib as shown in Figure 2(c). The selfish nodes lying in
IBmax have to access the nearest copy outside the interval. Consequently, the
Byzantine nodes cause the additional cost AddCostBmax. In the following
calculations of AddCostBmax we have to subtract the access cost of the
Byzantine nodes, because they do not contribute to the social cost.

AddCostBmax =
∑

i∈IBmax

AccessCosti −
∑

bi∈IBmax

AccessCostbi

= 2 ·
b·2α/2∑

i=1

(
α + i

)− 2 ·
b/2∑

i=1

(
2α + i · 2α

)

= 2α2 · b + α2b2 + α · b− 2α · b− α · b2

2
− α · b

= α2b2 + 2α2 · b− α · b2

2
− 2α · b (7)

∈ Ω(α2b2)

Therefore this example of a Byzantine Nash equilibrium causes the total
social cost

CostBNE = CachingCost + AccessingCost + AddCostBmax

= α · |IS |+ |IS | ·
∑

i∈Is

di,s + AddCostBmax

= α · s− 1
2α

+ 2
α(α + 1)

2
s− 1
2α

+ Ω(α2b2)
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Thus we obtain for the lower bound CostBNE ∈ Ω(s · α + α2b2).

Upper Bound. We designate the area which is influenced by ki Byzantine
players as a Byzantine interval IBki

. These Byzantine players cause the cost
AddCostBki

. Let z ∈ Z be a possible distributions of Byzantine Players
among all caching players. The total caused social cost in all Byzantine
intervals is AddCostB(z) =

∑
i AddCostBki

with the condition
∑

k ki = b.

According to (7) we obtain for the caused cost in a Byzantine interval at
least AddCostBki

= α2k2
i +2α2 ·ki− α·k2

i
2 −2α ·ki. Therefore the total caused

cost of all Byzantine intervals is

AddCostB =
∑

i

AddCostBki
= α2

∑
k2

i +2α2 ·
∑

ki− α

2

∑
k2

i −2α
∑

ki

(8)
The first summand is dominant and needs further analysis. We show that
AddCostB is maximized if all Byzantine players compose one big Byzantine
interval IBmax (see Figure 2(c)), that is max

z∈Z
{AddCostB(z)} = AddCostBmax.

Proof by Contradiction. We assume that ∃z ∈ Z,
∑

i AddCostBki
(z) >

AddCostBmax. Then we obtain from (7) and (8)

m∑

i

k2
i > b2

Inserting our constraint
∑m

i ki = b results in

∑m
i k2

i >

( m∑

i

ki

)2

m(m+1)(2m+1)
6 >

(
m(m + 1)

2

)2

1
6(2m3 + 3m2 + m) >

1
4
(m4 + 2m3 + m2)

That is a contradiction, thus our assumption is wrong. The caused cost of an
arbitrary Byzantine Nash equilibrium can not exceed the caused cost of the
Byzantine Nash equilibrium where the Byzantine player compose one big
interval, max

z∈Z
{AddCostB(z)} = AddCostBmax. Therefore the upper bound

equals our result of the lower bound, CostBNE ∈ O(s · α + α2b2).
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4.2.3 Non-Oblivious Model, Byzantine Nash Equilibrium

Lemma 4.4 (Byzantine Nash Equilibrium). The social cost of the Byzantine
Nash Equilibrium in the non-oblivious model for 1 < α < n, 0 ≤ b < n

2α is

CostBNE ∈ Ω
(
b · s +

α · s
b

+ α2
)
.

Lower Bound. We give an example for a bad Byzantine Nash equilibrium in
the non-oblivious model causing high social cost. Each player is risk-averse
and supposes all b Byzantine players to be located in his neighborhood. By
caching the objects at distances d = 4α/b, the individual player can be sure
to meet a valid copy at least after distance 2α. The Byzantine players form
again one big interval IBmax and cause the additional cost

AddCostBNE =
∑

i∈IBmax

AccessCosti −
∑

bi∈IBmax

AccessCostbi

= 2 ·
b/2·4α/b∑

i=1

(
α + i

)− 2 ·
b/2∑

i=1

(
α + i · 4α

b
· 1
2

)

= 2 ·
2α∑

i=1

(
α + i

)− 2 ·
b/2∑

i=1

(
α + i · 2α

b

)

= 8α2 + α− 3
2
α · b

Because we set the distance to 4α/b we assume b < 2α. Therefore we can
neglect the influence of the last term and get for the additional caused cost

AddCostBNE ∈ Ω(α2)

The exact value of the number of selfish intervals is |IS | = |I| − |IB| =
|I| − b(2α− 1). We neglect the impact of the number of Byzantine intervals
and assume in our calculations for the social cost b < s. Thus we can set
|IS | = |I| − |IB| = |I|. The social cost of this Byzantine Nash equilibrium is

CostBNE = CachingCost + AccessingCost + AddCostBNE

= α · |IS |+ |IS | ·
∑

i∈Is

di,s + AddCostBNE

= α · s− 1
4α
b

+ 2 ·
4α
2b (4α

2b + 1)
2

· s− 1
4α
b

+ Ω(α2)

=
1
4
b · (s− 1) +

α

b
· (s− 1) +

1
2
(s− 1) + Ω(α2)

Thus we obtain for the lower bound in the non-oblivious model CostBNE ∈
Ω(b · s + α·s

b + α2).
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The following discusses a selection of interesting results, furthermore the
Appendix contains an overview of all findings. We took over the bounds for
the Price of Anarchy from [1]. It holds PoA ∈ Θ(

√
α) for 1 < α < n. In the

oblivious model for 1 < α < n, 1 ≤ b < n
2α we obtain for the Price of Malice

PoM ∈ Θ(1 + αb2

n ). It is interesting to compare this with the non-oblivious
case where the Price of Malice is PoM = Ω( b

α + 1
b + α

n ). Here, it is possible to
render the PoM < 1 under certain conditions. If b > 2, b < α/2 and n À α
then the Byzantine players can help to lower the total social cost compared
to a purely selfish system. For α = 20, b = 5, n > 1000 we obtain a smaller
social cost for the Byzantine Nash equilibrium CostBNE = 5.75 · n + 3080
than for the Nash equilibrium CostNE = 10.5·n. In the non-oblivious model
the selfish players act risk-aversely, consequently the caching intervals shrink
and the social cost decreases. This effect is diminished by the additional cost
caused by the Byzantine players, however only for small n.
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(a) (b)

Figure 3: Grid topology. (a) Social Optimum. (b) Non-optimal, irregu-
lar arrangement. Green nodes have lower costs, orange nodes higher costs
compared to the regular arrangement.

4.3 Grid

4.3.1 Social Optimum

Lemma 4.5 (Optimal Arrangement). The social cost of an arrangement of
caching nodes is minimized if the objects are placed at a regular distance d.

In the following we outline a proof of Lemma 4.5. In Figure 3 nodes are col-
ored which experience a change in their social cost compared to an regular
arrangement. The set Ng contains the green nodes, which have a lower social
cost than in a regular distribution,

∑
i∈Ng

irregularCosti <
∑

i∈Ng
costi.

Accordingly, the set of orange and dark-orange nodes No experience a higher
social cost

∑
i∈No

irregularCosti >
∑

i∈No
costi. The five dark-orange

nodes account for the increase in the social cost due to the irregularity.
It remains to be shown that this local increase can be generalized to the
whole grid. In the following we conduct our calculations with a regular
distribution of objects.

Lemma 4.6 (Social Optimum). The social cost of the Social Optimum in
the grid for 1 < α < n is

CostOPT ∈ Θ(α1/3 · n).

PROOF. We prove the upper and lower bound in turn.

Lower Bound. Consider an arbitrary placement of objects at equal distances
d in both dimensions (see Figure 3(a)). We assume d À dopt at the beginning

14



d/2-1

d
/4

d/2-1

(a) (b)

Figure 4: Calculation of social cost. (a) Social Optimum. The red nodes
cause CostNEW , the grey ones cause CostOLD. (b) Grey is shown the in-
fluence areas of the caching nodes. The red rectangles connect nodes with
equal distances to the central caching node.

and try to lower the social cost by placing additional objects in the middle.
The cost reduction has to be at least α, otherwise we can not further improve
the social cost. Compare Figure 4(a) for the calculation.

CostReduction = CostOLD−CostNEW = 2
d/4∑

i=0

((d/4+i)d/2)−4
d/4∑

i=0

(i(i+1))

If we resolve this equation we obtain: CostReduction = 7
96d3− 1

6d. It holds,
distReduction ∈ Ω(d3). Thus the distance between cached copies in the
Social Optimum is d ∈ Ω(α1/3). To calculate the total social cost of the
Social Optimum we sum up the costs occurring in all influence areas. The
fringe effect of nodes in between influence areas, see Figure 4(b), can be
neglected for α not too small, α > 3.

CostOPT (d) = α · |I|︸ ︷︷ ︸ +
∑

I

(
∑

i∈Ia

di,a)

︸ ︷︷ ︸
caching cost accessing cost

(9)

In Figure 4(b) nodes which have same distances to the cached copy are
connected by rectangles. Therefore we can calculate the social cost

15



CostOPT (d) = α · n

d2/2
+

n

d2/2
· 4

d/2−1∑

i=1

i2 (10)

= α · n

d2/2
+

n

d2/2
·
(

d3

6
− d2

2
+

d

3

)
(11)

= α · n

d2/2
+ n ·

(
d

3
− 1− 2

3d

)

= α · n

d2/2
+

1
3
· n · d (12)

If we insert the lower bound for the distance d = α1/3 in (12) we obtain:

CostOPT = 2α1/3 · n +
1
3
α1/3 · n ∈ Ω(α1/3 · n)

Therefore the social cost of the Social Optimum is lower bounded by CostOPT ∈
Ω(α1/3 · n).

Upper Bound. We obtain a example for the social optimum if we oppose
the Caching Cost to the Accessing Cost in (9). From (11) we obtain α =
d3/6− d2/2 + d/3. An approach to the exact solution obtained with Maple
is d = 2 · α1/3. Inserting this value in (3) leads us to the social cost and
establishes the upper bound of the Social Optimum.

CostOPT (d) =
1
2
α1/3n +

1
3
α1/3n− 2α2/3 +

2
3
α1/3

∈ O(α1/3 · n)

4.3.2 Nash Equilibrium

Lemma 4.7 (Nash Equilibrium). For the distances between two neighboring
caching nodes i, j it holds α < di,j ≤ 2 · α in a Nash equilibrium.

Proof. If the distance di,j between the cached copies at nodes i, j is smaller
or equal α, then either node i or node j changes its strategy and accesses
a remote copy to lower its individual cost. If di,j is bigger than 2α then a
caching node would again change its strategy to lower its individual cost.
Therefore a Nash equilibrium only exists, if all distances between two neigh-
boring caching nodes i, j lie in α < di,j ≤ 2α.
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d1

d2

(a) (b)

Figure 5: Grid topology for α = 3. (a) Nash equilibrium causing high social
cost. (b) Worst case arrangement of Byzantine nodes in the oblivious model
for b = 9. Grey is shown the influence area of one Byzantine node, red is
shown the influence area of all 9 Byzantine nodes. d1 = α, d2 =

√
bα.

Lemma 4.8 (Social Cost of the Nash Equilibrium). The social cost of the
worst case Nash equilibrium for 1 < α < n is

CostNE ∈ Θ(α · n).

PROOF. We prove the upper and lower bound in turn.

Upper Bound. The social cost of a Nash equilibrium is CostNE =Caching
Cost+Accessing Cost. Trivially, it holds that the Caching Cost cannot ex-
ceed α ·n. The worst case is reached if all nodes cache a copy. According to
Lemma 4.4 the distances in a Nash equilibrium cannot exceed 2α. Therefore
the Accessing Cost cannot exceed 2α · n, even if all nodes access a cached
copy at maximum distance. Thus the social cost of the worst case Nash
equilibrium is upper bounded by CostNE ∈ O(α · n).

Lower Bound. We give an example for a Nash equilibrium causing high so-
cial cost to establish the lower bound. If we assume that the objects are
cached at regular distances d then the social cost is
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CostNE(d) = α · n

d2/2
+

n

d2/2
· 4

d/2−1∑

i=1

i2 (13)

= α · n

d2/2
+

n

d2/2
·
(

d3

6
− d2

2
+

d

3

)
(14)

= α · n

d2/2
+ n ·

(
d

3
− 1− 2

3d

)

= α · n

d2/2
+

1
3
· n · d (15)

By increasing distance d we increase (15) for α ≥ 3. According to Lemma 4.7
d is bounded to the interval [α, 2α]. Thus we get an cost-intensive example
for a Nash equilibrium by setting d = 2α. The invoked social cost then is
CostNE = n

2α + 2
3 · n · α and establishes the lower bound of the worst case

Nash equilibrium, CostNE ∈ Ω(α · n).

4.3.3 Oblivious Model, Byzantine Nash Equilibrium

Lemma 4.9 (Byzantine Nash Equilibrium). The social cost of the Byzantine
Nash Equilibrium in the grid for 1 < α < n, 0 ≤ b < n

2α2 is

CostBNE ∈ Θ(α · s + α3 · b ·
√

b).

PROOF. We prove the upper and lower bound in turn.

Lower Bound. As we have already used before the objects are cached regu-
larly every 2α in both dimensions for a Nash equilibrium causing high social
cost. In Figure 5(b) you can see a possible worst case arrangement for the
Byzantine nodes. The nodes inside this Byzantine area have to access a
cached copy outlying, which causes the additional cost

AddCostIbmax
= 4 ·∑α

√
b−1

i=1

(
(α + α

√
b︸ ︷︷ ︸ −i) · i

)

offset to
midpoint
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To facilitate calculation we substitute z = α
√

b

AddCostIbmax
= 4

(
(α + z)

z−1∑

1

i−
z−1∑

1

i2
)

= 4
(

(α + z) · (z − 1)z
2

− (z − 1)z(2z − 1)
6

)

= 2
(
(α + z)(z − 1)z

)− 2
3
(
(z2 − z)(2z − 1)

)

=
2
3
z3 + 2αz2 − 2αz − 2

3
z (16)

=
2
3
α3b

√
b + 2α3b− 2α2

√
b− 2

3
α
√

b

AddCostIbmax
∈ Ω(α3b

√
b) (17)

We obtain the total social cost for the Byzantine Nash equilibrium by build-
ing the sum of the caching and accessing cost of the selfish nodes s and
the caused cost by the Byzantine nodes, CostBNE = Caching Cost +
Accessing Cost + AddCostIbmax

. The number of selfish nodes lying in the
Byzantine area is b·α2

4 − b. To be accurate this nodes have to be subtracted
from the selfish nodes s contributing to the caching and accessing cost. We
neglect this effect in the following and assume s > b·α2

4 − b.

CostBNE(d) = α · s

d2/2
+

s

d2/2
· 4

d/2−1∑

i=1

i2 + AddCostIbmax
(18)

Inserting the results from (15) and (17) in (18) we get

=
s

α
+

4
3
α · s− 2s− 2s

3α
+

2
3
α3b

√
b + 2α3b− 2α2

√
b− 2

3
α
√

b

Therefore the Byzantine Nash equilibrium is lower bounded by CostBNE(d) ∈
Ω(α · s + α3 · b ·

√
b)

Upper Bound. First of all we examine two basic arrangements of Byzantine
nodes. We designate the combined Byzantine area of bi Byzantine nodes
as Ibi

. In the first arrangement a Byzantine node is surrounded by selfish
caching nodes. Here, the selfish nodes in the Byzantine influence area Ib1

experience the additional cost AddCostIb1
=

∑
i∈Ib1

di,a, where the selfish
caching node a lies outside of Ib1 . This results in the total social cost
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∑
IB

AddCostIb1
=

∑

IB

∑

i∈Ib1

di,a

= b ·
d/2−1∑

i=1

(
(α + α− i) · i

)

= b ·
( ∑

2αi−
∑

i2
)

= b ·
(

(α− 1)α
2

− (α− 1)α(2α− 1)
6

)

= b ·
(

α3 − α2 − 1
6
(2α3 − 3α2 + α)

)

=
2
3
α3b− 3

2
α2b− 1

6
αb

∈ Ω(α3 · b)

In the second arrangement the Byzantine nodes form a biggest possible
Byzantine area Ibmax , compare Figure 5(b). We already calculated the ad-
ditionally caused cost in (17). We obtain higher cost if we arrange the
Byzantine players to one maximal interval Ibmax

AddCostIbmax
>

∑

IB

AddCostIb1

Ω(α3b
√

b) > Ω(α3b)

Now it remains to show that the social cost of any other arrangement∑
AddCostIbi

does not cause higher cost than AddCostIbmax
by consid-

ering the constraint
∑

bi = bmax. However, it is enough to look at the
preceding two cases, because any other arrangement of Byzantine nodes
can be classified as one of these two cases. E.g. a line arrangement causes
the same cost as the sum of single Byzantine influence areas and the sum
of several rectangle arrangement can not exceed the cost of AddCostIbmax

taking into consideration the constraint. Furthermore any divided Byzan-
tine areas affect fewer nodes than Ibmax due to fringe effects at the bor-
ders of neighboring Byzantine influence areas. Therefore we conclude the
cost for a Byzantine Nash equilibrium is maximized if we form on big in-
terval. The arrangement visible in Figure 5(b) maximizes the Byzantine
area and gives us the upper bound for the social cost. The calculation was
conducted already in (18) and therefore the lower bound equals the upper
bound, CostBNE ∈ O(α · s + α3 · b ·

√
b).
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4.3.4 Non-Oblivious Model, Byzantine Nash Equilibrium

Lemma 4.10 (Byzantine Nash Equilibrium). The social cost of the Byzan-
tine Nash Equilibrium in the grid for 1 < α < n, 0 ≤ b < n

2α2 is

CostBNE ∈ Ω
(

b · s
α

+
s

2
+

α3

b

)
.

PROOF. We prove the lower bound in the following.

Lower Bound. We take a similar approach as already for the line topology.
Every player is acting risk-averse and assumes its location to be just at the
center of the Byzantine interval IBmax. This results in objects being cached
in smaller intervals d = 4α/

√
b, so that the selfish players can be sure to

access a valid copy distant at most 2α. We can calculate the additional
caused cost by inserting z = 4α/

√
b in (16)

AddCostBNE =
2
3

(
4α√

b

)3

+ 2α

(
4α√

b

)2

− 2α

(
4α√

b

)
− 2

3

(
4α√

b

)

=
128
3
· α3

b2
√

b
+ 8

α3

b
− 8

α2

√
b
− 8

3
· α√

b

AddCostBNE ∈ Ω
(

α3

b

)

According to (18) we get for the social cost for this Byzantine Nash equilib-
rium

CostBNE(d) = α · s

8α2/b
+

s

8α2/b
· 4

2α/
√

b−1∑

i=1

i2 + AddCostBNE

=
b · s
8α

+
b · s
4α2

·
( 2α√

b
− 1) 2α√

b

2
+ Ω

(
α3

b

)

=
b · s
8α

+
s

2
−
√

b · s
4α

+ Ω
(

α3

b

)

∈ Ω
(

b · s
α

+
s

2
+

α3

b

)

We discuss in the following the Price of Anarchy and the Price of Malice for
the grid. The Nash equilibrium has not changed asymptotically with the
increased dimension, whereas the cost of the Social Optimum has decreased.
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That leads to a higher Price of Anarchy, PoA = α2/3. Thus in the grid selfish
behavior causes higher damage than in the line topology. In the oblivious
model the Price of Malice is increased for α >

√
b

PoMOBL−LINE ∈ Θ
(

1 +
α · b2

n

)

PoMOBL−GRID ∈ Θ
(

1 +
α2 · b

√
b

n

)

We can se the effect of the increased Byzantine influence area IBmax by the
factor α2. However, we need quadratic Byzantine players to generate IBmax,
that is why the second factor is decreased in the higher dimension.
The Price of Malice in the non-oblivious model is

PoMNON−OBL−LINE ∈ Ω
(

b

α
+

1
b

+
α

n

)

PoMNON−OBL−GRID ∈ Ω
(

b

α2
+

1
α

+
α2

b · n
)

As we have mentioned already in the discussion of the Price of Malice for the
line, it is possible to render PoM < 1. In the grid we can construct a similar
example with α = 20, b = 9, n > 1000. We obtain smaller social cost for
the Byzantine Nash equilibirum CostBNE = 0.5 · n + 890 than for the Nash
equilibrium CostNE = 13.5 · n. Similar to the line topology, the presence
of Byzantine players causes a change in the selfish player’s strategy, which
results in shrunken caching intervals in the worst case and a PoM < 1.
Thus the social cost can be lowered under certain conditions.
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(a) (b)

Figure 6: Calculation of Social Cost in 3-Dimensional Grid. (a) 3-dim grid
topology. (b) Nodes with equal distances to the center are located on the
edges of a octahedron. The edges of the underlying 3-dim grid topology are
not shown.

4.4 D-Dimensional Grid

In this chapter we change our notation, here d designates the dimension
while we use c for the distance parameter. In Figure 6 a 3-dimensional grid
is shown. Nodes with equal distances c to a central node lie on the edges
of an octahedron with radius = c. The number of vertices |Voct| of such
an octahedron is 6 and the number of edges |Eoct| is 12. We obtain in a
3-dimensional grid for the number of nodes with equal distances c to a node

nodes(c) = |Eoct| · (c(c− 1)) + |Voct| · c
= 12 · (c(c− 1)) + 6 · c

We can easily verify this with Figure 6(b). In the 2-dimensional case we
obtain nodes(c) = 4 · (c(c − 1)) + 4 · c what corresponds to our findings in
the grid. The number of vertices and edges of the polyhedrons connect-
ing equal distant nodes is upper bounded by the values of the underlying
grid-topology. In the 3-dimensional grid new edges are introduced for the
octahedron, though old ones are skipped and the degree of the nodes does
not change. Thus |Eoct| and |Voct| is upper bounded to the corresponding
numbers of the cube. In higher dimensions we assume that nodes with equal
distances again are located on a d-dimensional polyhedron, furthermore its
number of edges and vertices is upper bounded the underlying d-dimensional
hypercube. These assumptions leads us to the following lemma
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Lemma 4.11. In a d-dimensional grid the number of nodes i with distance
cia = c to node a is

nodes(c) ∈ O(e · (c(c− 1)) + v · c) (19)

whereas e ∈ O(2d−1 · d) denotes the number of edges and v ∈ O(2d) the
number of vertices in the d-dimensional hypercube.

Lemma 4.11 and our results obtained for the line and 2-dimensional grid let
us formulate a further Lemma without proving it in this thesis.

Lemma 4.12 (Social Cost). In a d-dimensional grid where objects are
cached at equal distances c the social cost is

Cost(d, c) = α · |I|+ |I| ·
c/2−1∑

i=0

nodes(i)

= α · n

cd/d
+

n

cd/d
·

c/2−1∑

i=0

nodes(i)

∈ O

(
α · n

cd/d
+

n

cd/d
·

c/2−1∑

i=0

(2d−1d · (i2 − i) + 2d · i)
)

(20)

If we compute (20) for the 1-dimensional and 2-dimensional case we obtain

Cost(d = 1, c) = α · n

c/2
+

n

c/2
·

c/2−1∑

i=0

2i (21)

Cost(d = 2, c) = α · n

c2/2
+

n

c2/2
·

c/2−1∑

i=0

(4 · (i2 − i) + 4i)

= α · n

c2/2
+

n

c2/2
·

c/2−1∑

i=0

4i2 (22)

(21) corresponds to the social cost for the line topology which we already
have found in (4). Furthermore (22) is equal to the social cost in the grid
(10). Thus we have established already the correctness of Lemma 4.12 for
d = 1, d = 2, however to ensure it holds for higher dimensions further
analysis is needed.
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5 Conclusion

We have presented the Byzantine Caching Game and analyzed its behavior
for different underlying topologies. Therefore we proved tight bounds for the
Price of Anarchy and the Price of Malice for the line and the grid topology
in the oblivious and non-oblivious model. We have found examples for the
non-oblivious model where the presence of Byzantine players improves the
worst case social cost.
Furthermore our findings in one and two dimensions have given us indication
how they could develop in further dimensions. We formulated two lemmas
for the social cost function in d-dimensional grids. A next step would be to
prove these and to generalize other findings to d dimensions. The results we
obtained in 1-dim and 2-dim for the Price of Malice let us guess that in higher
dimensions it develops similarly, PoMOBL = (1 + αd·b(d+1)/d

n ). However, the
proof of this presumption is beyond the scope of this thesis.
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6 Appendix

6.1 Collection of Formulas

Price of Anarchy PoA = CostNE
CostOPT

Price of Byzantine Anarchy PoBA(b) = CostBNE(b)
CostOPT

Price of Malice PoM(b) = PoB(b)
PoB(0) = PoB(b)

PoA = CostBNE
CostNE

6.2 Star

SOCIAL OPTIMUM

α < 1 CostOPT = α · n
1 < α < 2 CostOPT = α + (n− 1) See figure 1(a).
α > 2 CostOPT = α + (n− 1)

WORST NASH EQUILIBRIUM

α < 1 CostNE = n · α Object is cached at every
node.

1 < α < 2 CostNE = (n− 1)α + 1 Object is cached at every leaf
node. See figure 1(b).

α > 2 CostNE = α + 1 + 2(n− 2) One replica is placed at a leaf
node.

PRICE OF ANARCHY

α < 1 PoA = 1
1 < α < 2 PoA = (n−1)α+1

α+(n−1) ≤
(n−1)2+1
2+(n−1) ≤ 2

α > 2 PoA = α+1+2(n−2)
α+(n−1) ≤ 2
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BYZANTINE NASH EQUILIBRIUM, OBLIVIOUS MODEL

α < 1 1 ≤ b < n CostBNE = (n− b) · α
Worst BNE caches object at every server.

b = n CostBNE = 0
Every Player is byzantine. Nobody has object
cached.

1 < α < 2 1 ≤ b < n CostBNE = ∞
Worst BNE caches just at byzantine center
node. See figure 1(c).

b = n CostBNE = 0

α > 2 1 ≤ b ≤ n CostBNE = ∞
Worst BNE places just one replica at byzan-
tine leaf node.

b = n CostBNE = 0

PRICE OF BYZANTINE ANARCHY, OBLIVIOUS MODEL

α < 1 1 ≤ b < n PoBA = (n−b)·α
α+n−1

b = n PoBA = 0
1 < α < 2 1 ≤ b < n PoBA = ∞

b = n PoBA = 0
α > 2 1 ≤ b ≤ n PoBA = ∞

PRICE OF MALICE, OBLIVIOUS MODEL

α < 1 1 ≤ b < n PoM = n−b
n

b = n PoM = 0
1 < α < 2 1 ≤ b ≤ n PoM = ∞

b = n PoM = 0
α > 2 1 ≤ b ≤ n PoM = ∞
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BYZANTINE NASH EQUILIBRIUM, NON-OBLIVIOUS MODEL

α < 1 1 ≤ b < n costBNE = s · α
Worst BNE caches object at every server.

b = n costBNE = 0
Every Player is byzantine.

1 < α < 2 1 ≤ b < n− 1 costBNE = s · α
The worst BNE caches replicas at all nodes.

b = n costBNE = 0

α > 2 1 ≤ b < n costBNE = s · α

b = n costBNE = 0

PRICE OF BYZANTINE ANARCHY, NON-OBLIVIOUS MODEL

α < 1 1 ≤ b < n PoBA = s·α
(n−1)+α

b = n PoBA = 0
1 < α < 2 1 ≤ b < n− 1 PoBA = s·α

(n−1)+α

b = n PoBA = 0
α > 2 1 ≤ b < n PoBA = s·α

(n−1)+α

b = n PoBA = 0

PRICE OF MALICE, NON-OBLIVIOUS MODEL

α < 1 1 ≤ b < n PoM = s·α
n·α < 1

b = n PoM = 0
1 < α < 2 1 ≤ b ≤ n PoM = s·α

(n−1)α+1 < 1
b = n PoM = 0

α > 2 1 ≤ b < n PoM = s·α
α+2(n−2)+1

b = n PoM = 0
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6.3 Line

SOCIAL OPTIMUM

α < 1 CostNE = α · n Social optimum caches object at ev-
ery server.

1 < α < n CostOPT ∈ Θ(
√

α · n) Social optimum places objects every√
2α.

α > n− 1 CostNE = α + (n−1)n
2 Social optimum still places replicas

every
√

2α.

WORST NASH EQUILIBRIUM

α < 1 CostNE = n · α Worst NE caches object at every
server.

1 < α < n CostNE ∈ Θ(α · n) Worst NE places replicas every 2α, see
figure 2(a).

α > n− 1 costNE = α + (n−1)n
2 Worst NE places one replica at leaf

node.

PRICE OF ANARCHY

α < 1 PoA = 1
1 < α < n PoA ∈ Θ(

√
α)
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BYZANTINE NASH EQUILIBRIUM, OBLIVIOUS MODEL

α < 1 0 ≤ b < n costBNE = s · α
Worst BNE caches object at every server.

b = n costBNE = 0
Every Player is byzantine. Nobody has object
cached.

1 < α < n 0 ≤ b < n
2α costBNE = Θ(α · s + α2b2)

Worst BNE places replicas every 2α, the Byzan-
tine Players are successively located every 2α.
See figure 2(c).

b = n
2α costBNE = ∞

Every player who pretends to cache is byzantine.
Nobody has object cached.

α > n− 1 b ≥ 1 costBNE = ∞
Worst BNE places one replica at leaf node. Be-
cause b ≥ 1 nobody caches a copie.

b = n costBNE = ∞

PRICE OF BYZANTINE ANARCHY, OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoBA = s
n

b = n PoBA = 0
1 < α < n 0 ≤ b < n

2α PoBA = Θ(α·s+α2b2)
Θ(
√

α·n)
= Θ(

√
α + α3/2b2

n )
b = n

2α PoBA = ∞

α > n− 1 b ≥ 1 PoBA = ∞
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PRICE OF MALICE, OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoM = s
n

b = n PoM = 0

1 < α < n 0 ≤ b < n
2α PoM =

Θ(α·s+α2b2)

Θ(
√

α·n)
Θ(α·n)

Θ(
√

α·n)

= Θ(1 + α·b2
n )

b = n
2α PoM = ∞

α > n− 1 b ≥ 1 PoM = ∞

BYZANTINE NASH EQUILIBRIUM, NON-OBLIVIOUS MODEL

α < 1 0 ≤ b < n costBNE = s · α
Worst BNE caches object at every server.

b = n costBNE = 0
Every Player is byzantine. Nobody has object
cached.

1 < α < n 0 ≤ b < n
4α
b

CostBNE ∈ Ω(b · s + α·s
b + α2)

The intervals between two cached copies are
of size 4α

b . If a player supposes b players are
byzantine around him, he experiences again a
size of 2α.

PRICE OF BYZANTINE ANARCHY, NON-OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoBA = s
n

b = n PoBA = 0

1 < α < n 0 ≤ b < n
4α
b

PoBA = Ω(b·s+α·s
b

+α2)

Θ(
√

α·n)

PRICE OF MALICE, NON-OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoM = s
n

b = n PoM = 0

1 < α < n 0 ≤ b < n
4α
b

PoM = Ω(b·s+α·s
b

+α2)

Θ(α·n) = Ω( b
α + 1

b + α
n )
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6.4 Grid

SOCIAL OPTIMUM

α < 1 CostOPT = α · n
1 < α < n CostOPT ∈ Θ(α1/3 · n)

WORST NASH EQUILIBRIUM

α < 1 CostNE = α · n Worst NE caches object at every server.
Social optimum as well.

1 < α < n CostNE = Θ(α · n) Worst NE places objects in both dimen-
sions every 2α .

PRICE OF ANARCHY

α < 1 PoA = 1
1 < α < n PoA = Θ(α·n)

Θ(α1/3·n)
= α2/3
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BYZANTINE NASH EQUILIBRIUM, OBLIVIOUS MODEL

α < 1 0 ≤ b < n costBNE = s · α
Worst BNE caches object at every server. Social
optimum as well.

b = n costBNE = 0

Every Player is byzantine. Nobody has object
cached.

1 < α < n 0 ≤ b < n
2α2 costBNE = Θ(α · s + α3 · b ·

√
b)

Worst BNE places replicas every 2α in both di-
mensions. The Byzantine Players form a largest
possible ”byzantine” area (compare drawings).

b ≥ n
2α2 costBNE = ∞

Every player who pretends to cache is byzantine.
Nobody has object cached.

α > n− 1 b ≥ 1 costBNE = ∞
Worst BNE places one replica at leaf node. Be-
cause b ≥ 1 nobody caches a copie.

PRICE OF BYZANTINE ANARCHY, OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoBA = s
n

b = n PoBA = 0

1 < α < n 0 ≤ b < n
2α2 PoBA = Θ(α·s+α3·b·

√
b)

Θ(α
1
3 ·n)

∈ Θ(α2/3 + α8/3b
√

b
n )

To compare: PoBALINE ∈ Θ(
√

α + α3/2b2

n )
b ≥ n

2α2 PoBA = ∞

α > n− 1 b ≥ 1 PoBA = ∞
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PRICE OF MALICE, OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoM = s
n

b = n PoM = 0

1 < α < n 0 ≤ b < n
2α2 PoM = Θ(α·s+α3·b·

√
b)

Θ(α·n) ∈ Θ(1 + α2·b
√

b
n )

To compare:PoMLINE ∈ Θ(1 + α·b2
n )

b ≥ n
2α2 PoM = ∞

α > n− 1 b ≥ 1 PoM = ∞

BYZANTINE NASH EQUILIBRIUM, NON-OBLIVIOUS MODEL

α < 1 0 ≤ b < n costBNE = s · α
Worst BNE caches object at every server. Social
optimum as well.

b = n costBNE = 0

Every Player is byzantine. Nobody has object
cached.

1 < α < n 0 ≤ b < n
2α2 CostBNE ∈ Ω

(
b·s
α + s

2 + α3

b

)
d = 4α√

b

b ≥ n
2α2 costBNE = ∞

Every player who pretends to cache is Byzantine.
Nobody has object cached.

α > n− 1 b ≥ 1 costBNE = ∞
Worst BNE places one replica at leaf node. Be-
cause b ≥ 1 nobody caches a copie. Social opti-
mum still places replicas every

√
2α.

b = n costBNE = ∞
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PRICE OF BYZANTINE ANARCHY, NON-OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoBA = s
n

b = n PoBA = 0

1 < α < n 0 ≤ b < n
2α2 PoBA = Ω( b·s

α
+ s

2
+α3

b
)

Θ(α1/3·n)
∈ Ω( b

α4/3 + α8/3

b·n )

To compare: PoBALINE ∈ Ω(
√

α + α3/2b2

n )
b ≥ n

2α2 PoBA = ∞

α > n− 1 b ≥ 1 PoBA = ∞

PRICE OF MALICE, NON-OBLIVIOUS MODEL

α < 1 0 ≤ b < n PoM = s
n

b = n PoM = 0

1 < α < n 0 ≤ b < n
2α2 PoM = Ω( b·s

α
+ s

2
+α3

b
)

Θ(α·n) ∈ Ω( b
α2 + 1

α + α2

b·n)
PoMLINE−NON−OBL ∈ Ω( b

α + 1
b + α

n )
PoMGRID−OBL ∈ Θ(1 + α2·b

√
b

n )
b ≥ n

2α2 PoM = ∞

α > n− 1 b ≥ 1 PoM = ∞
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