
Stephan Dudler

New Protocols and Applications
for the Future Internet

Master Thesis, MA-2007-39
October 2007 until March 2008

Supervisor: Prof. Dr. Bernhard Plattner
Advisors: Ariane Keller, Theus Hossmann, Dr. Martin May

Abstract

In recent years, the Internet has reached enormous popularity, but at the same time its
weaknesses become evident: Huge efforts have to be taken to manage all participating
nodes, and the infrastructure is not suitable to integrate emerging network paradigms such
as sensor networks or delay tolerant networks. Therefore several research projects try to
reinvent the Internet and provide a network architecture which is better armed for future
needs.

This Master Thesis is situated in the ANA project which builds an autonomic network
based on a clean slate approach. The ultimate goal is to develop a novel autonomic network
architecture that enables flexible, dynamic, and fully autonomic formation of networks. In
an ANA node two main components can be identified: The MINMEX and the Playground.
The Playground hosts the elements (functional blocks) providing networking functionality.
The MINMEX ties these functional blocks together and dispatches the data amongst them.

In this Master Thesis two major functional blocks in the ANA Playground have been
developed, extending the features of ANA increasingly: The Internet Protocol (IP) together
with the Routing Information Protocol (RIP), and field-based service discovery. Due to IP
as first use case for a complex network protocol, it is now possible to communicate over
disparate Ethernet segments whereas before, messages could only be exchanged within
Ethernet segments. In addition, RIP offers the leadoff opportunity to perform routing inside
an ANA network. Field-based service discovery as cutting-edge protocol is a combination
of field-based routing and publish-subscribe service discovery which provides network-wide
publishing and address-agnostic service discovery.

The decomposition of each protocol by this Master Thesis, resulting in a very modu-
lar design, exceedingly flexible, as each protocol piece can be exchanged and extended
effortlessly.

Acknowledgments

With this Master Thesis I conclude my studies in Information Technology and Electrical
Engineering at the Swiss Federal Institute of Technology (ETH) in Zurich.

Without the support of many people this Master Thesis would not have been possible and
I wish to enunciate my gratitude to them.

I would like to thank Prof. Dr. Bernhard Plattner for giving me the opportunity to write my
Master Thesis at the Communication Systems Group and for the supervision of my work.

Special thanks to my advisors: Dr. Martin May for the confidence and the chance to work in
this fascinating and challenging project, Ariane Keller and Theus Hossmann for the time and
effort put in supporting me during the last six months. Their suggestions and constructive
feedback guided me through the work on this Master Thesis. It was a pleasure collaborating
with them. In addition, the trip to Liège (Belgium) was outstanding.

I would like to thank Thomas Steingruber for providing the technical equipment.

I would like to thank Dr. Christophe Jelger and Ghazi Bouabene from the University of
Basel for the helpful discussions and explanations during the meetings and progression of
this work.

Finally, special thanks to all my friends and colleagues for refreshing my mind by playing
numerous hours of foosball and to my parents for their unconditional support and particu-
larly for the possibility to obtain this excellent education. Last but not least, I would like to
thank Fabienne Gadient for her emotional solicitousness.

Zurich, March 2008

Stephan Dudler

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 The ANA Project . 14
1.3 Goals of this Master Thesis . 15

1.3.1 Status of Development at Begin of this Thesis 15
1.4 Outline . 16

2 Background Information 17
2.1 Internet Architecture . 17

2.1.1 OSI Reference Model . 17
2.1.2 TCP/IP Protocol Stack . 19

2.2 Internet Protocol . 19
2.2.1 Datagram Delivery . 19
2.2.2 Global Addressing . 21

2.3 Routing and Forwarding . 22
2.3.1 Distance Vector Algorithms . 23
2.3.2 Link-State Algorithms . 23
2.3.3 Inter-Domain Routing . 23

2.4 Publish-Subscribe Service Discovery . 24
2.5 Field-Based Routing . 25

3 The Architecture of ANA 27
3.1 Terminology . 27
3.2 Compartments . 29

3.2.1 Node Compartment . 30
3.2.2 Network Compartment . 30

3.3 ANA API . 31
3.3.1 Publish / Unpublish . 31
3.3.2 Resolve / Lookup . 32

3.4 XRP Messaging . 34
3.5 Summary . 35

4 IP and Routing in ANA 37
4.1 Design . 37

4.1.1 Protocol Overview . 37
4.1.2 Architecture and Decomposition . 38
4.1.3 Communication Interfaces . 40

4.1.3.1 Inside a Node . 40
4.1.3.2 Between Nodes . 41

4.2 Implementation . 42
4.2.1 Overview . 42
4.2.2 Configuration . 44

CONTENTS

4.2.3 Parametrization . 46
4.2.4 Communication Interfaces . 47

4.2.4.1 Inside a Node . 47
4.2.4.2 Between Nodes . 50

4.2.5 The Bricks . 52
4.2.5.1 Encapsulation Brick . 53
4.2.5.2 Checksum Brick . 63
4.2.5.3 Forwarding Table Brick . 64
4.2.5.4 RIP Brick . 66
4.2.5.5 Sample User Brick . 68

4.3 Validation . 68
4.4 Summary . 72

5 Field-Based Service Discovery for ANA 73
5.1 Design . 73

5.1.1 Protocol Overview . 73
5.1.2 Architecture and Decomposition . 75
5.1.3 Communication Interfaces . 76

5.2 Implementation . 77
5.2.1 Overview . 78
5.2.2 Parametrization . 79
5.2.3 Communication Interfaces . 80

5.2.3.1 Inside a Node . 80
5.2.3.2 Between Nodes . 84

5.2.4 The Bricks . 86
5.2.4.1 Field Computing Brick . 86
5.2.4.2 Routing Table Brick . 91
5.2.4.3 Dissemination Brick . 93
5.2.4.4 Forwarding Brick . 98
5.2.4.5 Forwarding Table Brick . 103
5.2.4.6 Sample Service Brick . 105
5.2.4.7 Sample Client Brick . 106

5.3 Validation . 106
5.3.1 Setup . 106
5.3.2 Field Assembly . 108
5.3.3 Multiple Service Instances . 111
5.3.4 Multiple Fields . 114
5.3.5 Node Failure . 117

5.4 Summary . 120

6 Summary and Further Work 121
6.1 Summary . 121
6.2 Further Work . 122

A How-to: Start IP and RIP 125
A.1 Compilation . 125
A.2 Loading the MINMEX and the Bricks . 125
A.3 Start with Shell Script . 126

B How-to: Start Field-Based Service Discovery 127
B.1 Compilation . 127
B.2 Loading the MINMEX and the Bricks . 127
B.3 Start with Shell Script . 128

6

CONTENTS

C Doxygen Code Documentation 129
C.1 IP and RIP . 129
C.2 Field-Based Service Discovery . 137

7

List of Figures

2.1 The OSI reference model . 18
2.2 The IP header . 20
2.3 Publish-subscribe service discovery . 24
2.4 Example potential field with ten destination nodes [27] 25

3.1 MINMEX and Playground building the network architecture 28
3.2 Data flow through bricks, functional blocks, IDPs and information channels . . 29
3.3 Layering of network compartments . 30
3.4 Publish example . 32
3.5 Resolve example . 33
3.6 XRP message format . 34

4.1 Node overview of the IP and RIP architecture 39
4.2 Protocol stack of IP running on top of Ethernet 42
4.3 Functional block of IP and RIP in the ANA Playground 43
4.4 Configuration process for an ANA node running IP 45
4.5 XRP messages received by the encapsulation brick 47
4.6 XRP message received by the checksum brick 48
4.7 XRP messages received by the forwarding table brick 49
4.8 XRP messages received by the RIP brick . 50
4.9 IP datagrams of resolve request (top) and resolve response (bottom) messages 50
4.10 IP datagrams of broadcast (top) and unicast (bottom) data messages 51
4.11 Data processing of the encapsulation brick receiving a PUBLISH message . 53
4.12 Data processing of the encapsulation brick receiving an UNPUBLISH message 54
4.13 Data processing of the encapsulation brick receiving a RESOLVE message . 55
4.14 Data processing of the encapsulation brick receiving a data message from a

local user application . 56
4.15 Data processing of the encapsulation brick receiving a CONFIG message . . 57
4.16 Data processing of the encapsulation brick receiving a resolve request mes-

sage . 58
4.17 Data processing of the encapsulation brick receiving a resolve response

message . 60
4.18 Data processing of the encapsulation brick receiving a data message from a

neighbour node . 62
4.19 Data processing of the checksum brick receiving a DATA message 63
4.20 Data processing of the forwarding table brick receiving a CHANGE message 64
4.21 Data processing of the forwarding table brick receiving a DISCOVER message 65
4.22 Data processing of the forwarding table brick receiving a ROUTEREQmessage 66
4.23 Data processing of the RIP brick receiving a ROUTEUP message 67
4.24 IP datagram of the resolve request message 69
4.25 IP datagram of the resolve response message 71
4.26 IP datagram of the data message . 71

LIST OF FIGURES

5.1 Node overview of the field-based service discovery architecture 75
5.2 Protocol stack of field-based service discovery running on top of Ethernet . . 78
5.3 Functional block of field-based service discovery in the ANA Playground . . . 79
5.4 XRP messages PUBLISH, UNPUBLISH and PUBLISHUP 80
5.5 XRP messages FIELD and ROUTEUP . 81
5.6 XRP messages SUBSCRIBE, RESPONSE and DATA 82
5.7 XRP messages CHANGE and DISCOVER 83
5.8 XRP messages FIELD and ROUTEUP exchanged between nodes 84
5.9 XRP messages SUBSCRIBE, RESPONSE and DATA exchanged between

nodes . 85
5.10 Data processing of the field computing brick receiving a PUBLISH message . 87
5.11 Data processing of the field computing brick receiving an UNPUBLISH mes-

sage . 88
5.12 Data processing of the field computing brick receiving a PUBLISHUP message 89
5.13 Data processing of the field computing brick receiving a FIELD message . . . 90
5.14 Data processing of the routing table brick receiving a ROUTEUP message . . 92
5.15 Data processing of the dissemination brick receiving a FIELD message from

the field computing brick . 94
5.16 Data processing of the dissemination brick receiving a ROUTEUP message

from the field computing brick . 95
5.17 Data processing of the dissemination brick receiving a FIELD message from

a neighbour node . 96
5.18 Data processing of the dissemination brick receiving a ROUTEUP message

from a neighbour node . 97
5.19 Data processing of the forwarding brick receiving a SUBSCRIBE message

from a local client application . 99
5.20 Data processing of the forwarding brick receiving a SUBSCRIBE message

from a neighbour node . 100
5.21 Data processing of the forwarding brick receiving a RESPONSE message

from a local service instance . 101
5.22 Data processing of the forwarding brick receiving a RESPONSE message

from a neighbour node . 102
5.23 Data processing of the forwarding brick receiving a DATA message 103
5.24 Data processing of the forwarding table brick receiving a CHANGE message 104
5.25 Data processing of the forwarding table brick receiving a DISCOVER message105
5.26 Network topology for validating the field-based service discovery implemen-

tation for ANA . 107
5.27 Network overview for field assembly validation 110
5.28 Network overview for multiple service instances validation 113
5.29 Network overview for multiple fields validation 116
5.30 Network overview for node failure validation 119

10

List of Tables

2.1 TCP/IP architecture compared to the OSI reference model [12] 19
2.2 IP address classes A, B and C . 21

4.1 Differences between IP in ANA and the standard IP 38

5.1 Computed field potentials after publishing one service instance 108
5.2 Computed field potentials after publishing two service instances 111
5.3 Computed field potentials after publishing two different service types 114
5.4 Computed field potentials after killing one node 117

Chapter 1

Introduction

The ANA (Autonomic Network Architecture) Project [1] aims at exploring novel ways of
organizing and using networks beyond legacy Internet technology. The ultimate goal is to
design and develop a novel autonomic network architecture that enables flexible, dynamic,
and fully autonomous formation of network nodes as well as whole networks. Universities
and research institutes from Europe and Northern America are participating in this project.

1.1 Motivation

Nowadays, the Internet has reached enormous popularity. Mostly due to the enormous
amount of applications provided and the ease of use for the end-user. But as the num-
ber and diversity of network capable devices increase and the applications make higher
demands on the underlying network, some drawbacks get apparent [2].

• For small devices (e.g. in sensor networks) it is not feasible to provide the whole
TCP/IP protocol stack, since it consumes a lot of resources. Therefore, it is desirable
to let them communicate using a simpler protocol. But unfortunately the Internet
requires the IP protocol for every participating node [2, 21].

• With the number of participants in the Internet the management overhead increases.
If one system administrator is assumed per 100 nodes, 10 million system adminis-
trators are needed for 1 billion nodes. The introduction of ubiquitous computing and
sensor networks may increase the number of nodes beyond 1 billion. Therefore sys-
tem administrators as well as users may be swamped with the increasing system
complexity [10].

• The success of the Internet made it a valuable goal for attackers: Viruses, worms and
Denial-of-Service attacks are well known problems. The Internet was not designed
with security in mind, but as an open system with distributed control and mutual trust
[6]. Therefore it is not possible to protect the network against malicious users without
changing the architecture of the Internet significantly [7].

Introduction 1.2 The ANA Project

• Firewalls as well as NAT1 enabled routers pose difficulties for some legitimate ap-
plications like VoIP2. They block incoming connections, either because the specified
destination port is blocked, or because the specified port is not yet known by the NAT
device. Firewalls may have to be reconfigured, in order to allow incoming traffic to
some applications. And nodes behind a NAT device have to initiate all connections.
This is difficult in case of VoIP because the caller is never known in advance [2].

• Many applications have some quality of service (QoS) requirements. But the Internet
does not provide any help for QoS. In order to provide optimal performance some
applications (e.g. video conferencing) need to estimate the available bandwidth, la-
tency etc. If many applications perform these measurements actively (e.g. by sending
probe packets), the network load increases unnecessarily [8]. It would be preferable
that the network itself provides some QoS mechanisms as well as information about
the network status.

To eliminate these drawbacks the core network infrastructure needs to be changed funda-
mentally. Unfortunately, the infrastructure of the Internet is not likely to change as several
examples (RSVP, IPv6 etc.) have shown in the past. One major problem are the Internet
Service Providers (ISP) which are very conservative in deploying anything that does not
lead to a financial benefit [9]. Reducing the enormous management overhead would be
a motivation for ISPs to introduce a new networking architecture. Such a future network
architecture should resolve all drawbacks from the current Internet, and it should be flexible
enough to integrate new solutions instead of putting new functionality on top of the network
architecture [2].

1.2 The ANA Project

The ANA project tries to build an autonomic network based on a clean slate approach. It is
a European Union funded project in “Situated and Autonomic Communications” [11]. The
ANA project has started in January 2006 and will last until the end of 2009. Universities,
research institutes and industry partners from Europe are participating in this project.

The ultimate goal is to develop a novel autonomic network architecture that enables
flexible, dynamic and full autonomic formation of network nodes as well as whole networks.
It should exhibit a maximum degree of flexibility and provide support for functional scaling.
Functional scaling means that the network is able to completely integrate new functional-
ity. This is accomplished by abandoning the one-size-fits-all network architecture of the
Internet and by providing an architectural framework which enables the coexistence of dif-
ferent network architectures. As a result, a main abstraction of ANA is the compartment.
Each compartment can be individually managed and may use a completely different set of
communication protocols [2, 3].

In ANA, the network stack is not fixed as in the Internet but it is dynamically built depend-
ing on the networks needs. This flexibility is achieved by defining a Minimal INfrastructure
for Maximal EXtensibility (MINMEX) which has to be provided by any ANA node. The
MINMEX provides the functionality which is required to run ANA. The actual networking
functionality is implemented in the ANA Playground. The Playground is an accumulation
of functional blocks, each of them provides a certain networking service (e.g. encryption,
compression, reliable packet transport etc.). The MINMEX coordinates the packet flow from
one functional block to another. For this reason there is no direct communication between
different functional blocks but all communication is routed over the MINMEX [2]. For more
information about the ANA architecture, refer to chapter 3 or the ANA Blueprint [3].

1Network Address Translation [42]
2Voice over IP, for example realized by the Session Initiation Protocol (SIP) [43]

14

1.3 Goals of this Master Thesis Introduction

1.3 Goals of this Master Thesis

This Master Thesis is situated in the ANA project, more exactly in the ANA Playground.
The task of this Master Thesis is to develop new ideas for the Playground part. Hence, new
applications and protocols need to be designed, implemented and tested in the existing
ANA prototype. Ultimately, this Master Thesis aims at interconnecting all network nodes
which calls for addressing and routing. Thus, it covers mainly the following areas:

1. The design, thus the analysis and decomposition as well as the implementation of
the Internet Protocol (IP) for ANA as first use case for a complex network protocol.
This area also serves as appliance to get familiar with the ANA code and acts as
a reference to today’s Internet architecture. Additionally, the implementation of the
Routing Information Protocol (RIP) as first opportunity to perform routing inside an
ANA network is realized.

2. The design and implementation of field-based service discovery for ANA. Field-based
service discovery is a combination of field-based routing and publish-subscribe ser-
vice discovery as exploring novel and cutting-edge protocol in the ANA Playground.

For maximum profit, routing is realized by RIP primarily for wired networks as well as field-
based routing predestined for Mobile Ad Hoc Networks (MANET).

Besides these main topics, a large variety of other tasks were performed, reaching from
debugging of code in different ANA areas and changing APIs, to participate in meetings
and giving a presentation on an ANA coding workshop in Liège, Belgium.

1.3.1 Status of Development at Begin of this Thesis

When this Master Thesis started in October 2007 the development of the ANA core soft-
ware had already reached a prototype status [2]. Therefore, this Master Thesis can fall
back on an implemented ANA prototype containing a full functioning MINMEX, an API (de-
scribed in detail in section 3.3) and a bootstrapping mechanism allowing different nodes to
start to communicate together.

Furthermore, the ANA Playground was already charged with two important functionali-
ties building a very useful groundwork for this Master Thesis:

• The virtual link [4] functionality provides the opportunity to connect multiple ANA
nodes. In order to achieve this, one has to explicate two tasks:

1. Connect the hardware physically.

2. Configure an identical virtual link ID on two nodes desired to communicate with
each other over ANA.

Every virtual link running in an ANA node is able to receive data sent by another
virtual link configured with the same virtual link ID. Thus, the virtual link functionality
gives the opportunity to install an arbitrary topology of nodes connected physically.

• The Ethernet functionality offers data exchange between nodes connected by a virtual
link. The data is encapsulated with an Ethernet header. Additionally, the Ethernet
functionality is able to discover other nodes in the same Ethernet segment. Because
the protocol stack is built dynamically in the ANA world, the Ethernet functionality
further is able to discover which applications and protocols on the other node want
to be reachable through Ethernet. The Ethernet functionality corresponds to the data
link layer of the OSI reference model.

15

Introduction 1.4 Outline

1.4 Outline

The documentation of this Master Thesis is structured as follows:

• Chapter 2 provides background information regarding today’s Internet architecture
in order to introduce terminologies used in this Master Thesis. Moreover, it gives
an insight to concepts concerning field-based routing and publish-subscribe service
discovery.

• Chapter 3 introduces the concepts underlying the ANA architecture, how these con-
cepts are mapped in the ANA prototype and describes the ANA terminology.

• Chapter 4 explains the design, implementation and validation of IP and RIP in ANA,
e.g. documents the first main topic of this Master Thesis.

• Chapter 5 deals with the second main topic of this Master Thesis, respectively. It
describes the design, implementation and validation of field-based service discovery
for ANA.

• Chapter 6 summarizes the contributions of this Master Thesis and gives an outlook
over next steps possible in the ANA development process.

16

Chapter 2

Background Information

The first main topic of this Master Thesis is concerning about the design and implemen-
tation of the Internet Protocol (IP) as well as the Routing Information Protocol (RIP) in the
ANA world. Therefore, the first part of this chapter presents background information re-
garding today’s Internet architecture. Foremost, the OSI reference model is explained and
recovered in the TCP/IP protocol stack. Then, the specifications of IP as network protocol
are described. Section 2.3 finally tops off the information and terminologies of today’s In-
ternet by illustrating routing and highlighting the difference between routing and forwarding.

The second part of this chapter gives an introduction into the second main topic of this
Master Thesis dealing with field-based service discovery for ANA. First of all, in section
2.5, field-based routing is described and after, in section 2.4, publish-subscribe service
discovery is illustrated.

Important for this Master Thesis is first and foremost IP (2.2) used for datagram delivery
and addressing issues, RIP (2.3) used for routing inside an IP network (with CIDR) as well
as field-based routing (2.5) used for service discovery.

2.1 Internet Architecture

Today’s Internet architecture can be described with the TCP/IP architecture as a statical
protocol stack. The protocol stack is closely aligned to the OSI reference model. Therefore,
this section first introduces the OSI reference model, before specifying the TCP/IP protocol
stack.

2.1.1 OSI Reference Model

The OSI (Open Systems Interconnection) reference model [15] is a formal definition by ISO1

of connecting computers. It specifies the split-up of network functionality in seven individual
layers, whereas one or multiple protocols implement the functionality of one specific OSI
layer. The OSI model, shown in figure 2.1, is not really a protocol stack, but serves as a
reference model for real protocol stacks in network nodes [12].

1International Organization for Standardization (ISO) [16]

Background Information 2.1 Internet Architecture

Application Layer (7)

Presentation Layer (6)

Session Layer (5)

Transport Layer (4)

Network Layer (3)

Data Link Layer (2)

Physical Layer (1)

Node

Figure 2.1: The OSI reference model

Hence, it is an abstract description of a communication design. From bottom to top, the
seven individual layers of the OSI model may be shortly described as follows:

• Physical layer (1): Represents the transmission of individual bits over an intercon-
nection.

• Data link layer (2): Arranges the stream of bits into logical sequences.

• Network layer (3): Deals with routing between nodes of a packet-switching network,
supports fragmentation of packets and reports delivery errors.

• Transport layer (4): Controls the reliability of a given link. State and connection
oriented transport protocols can demand a retransmission of failed messages.

• Session layer (5): Offers the combination of potential different transport streams
belonging to one application.

• Presentation layer (6): Maps different contexts between application layer entities.

• Application layer (7): Provides services to user-defined application processes.

18

2.2 Internet Protocol Background Information

2.1.2 TCP/IP Protocol Stack

Now, the Internet architecture, also called TCP/IP architecture [13], can be considered as
a protocol stack related to the OSI reference model. Nevertheless, table 2.1 shows a few
variances.

In the TCP/IP architecture, OSI layer 1 and 2 are combined to a network access layer,
for example Ethernet2. The Ethernet protocol serves as data link protocol arranging bits
to Ethernet frames. Additionally, it also defines the physical specifications for devices (e.g.
Fast Ethernet or Gigabit Ethernet). The OSI network layer is renamed as Internet layer,
because of the Internet Protocol (IP) implementing the network layer functionality. The
transport layer remains unaltered and is implemented either by the reliable Transport Con-
trol Protocol (TCP) [19] or the unreliable User Datagram Protocol (UDP) [20]. Finally, the
session and presentation layer are merged into the application layer acting on top of the
TCP/IP architecture.

TCP/IP Architecture OSI Layers Examples

Application 5 – 7 HTTP, FTP, DNS

Transport 4 TCP, UDP

Internet 3 IPv4, IPv6

Network Access 1 – 2 Ethernet, Token Ring

Table 2.1: TCP/IP architecture compared to the OSI reference model [12]

Note that all nodes in today’s Internet have to provide the full and statical TCP/IP protocol
stack in order to communicate and participate in the Internet [21].

2.2 Internet Protocol

The Internet Protocol (IP) [17] implements the network functionality of the TCP/IP protocol
stack. The purpose of IP is to connect different and heterogeneous networks regardless of
the lower layers (e.g. Ethernet, Wi-Fi, Token Ring). Therefore, the service model of IP is
composed of datagram delivery on the one hand and of unique global addressing amongst
network nodes on the other hand [12].

2.2.1 Datagram Delivery

Datagram delivery is an unreliable service, also known as best effort delivery. To achieve
this, the IP datagrams are encapsulated with an IP header containing all the information
in order that the network is able to forward the datagram. Thus, IP is a data-oriented and
connectionless protocol for communicating across a packet-switched internetwork [12]. An
IP datagram with an IP header in front looks as depicted in figure 2.2:

2IEEE 802.3 Standard

19

Background Information 2.2 Internet Protocol

Data

Version Header
Length ToS Total Length

Identification Fragment OffsetFlags

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options

0 4 8 16 19 31 Bits

Figure 2.2: The IP header

The IP header consists of 13 fields:

• Version: The IP version (e.g. IPv4, IPv6).

• Header length: The length of the header telling the number of 32-bit words.

• ToS: The Type of Service field can specify a preference for how the datagram should
be handled, but this feature is not implemented widely and has been redefined for
specific applications (e.g. VoIP).

• Total length: Declares the entire datagram size including header and data.

• Identification: Identifies IP fragments of an original IP datagram upon fragmentation.

• Flags: Used to control fragments. The second out of these three bits is known as the
”Do not fragment” flag and the third one is the ”More fragments” flag (the first bit is
reserved and must be zero).

• Fragment offset: Specifies the offset of a particular IP fragment relative to the origi-
nal IP datagram.

• Time to Live (TTL): The TTL is a hop count field which will be decremented on each
hop. If it reaches zero, the datagram will be discarded.

• Protocol: Defines the next protocol in the protocol stack or next header (for example
TCP, UDP).

• Header checksum: The checksum is used to check delivery errors in the header.

• Source address: The IP address of the sender node.

• Destination address: The IP address of the receiver node.

• Options: This field is for additional information and is the only field which is optional.

The algorithm for checksum computation is declared in RFC 791 [17]: The checksum field
is the 16-bit one’s complement of the one’s complement sum of all 16-bit words in the
header. For purposes of computing the checksum, the value of the checksum field is zero.

20

2.2 Internet Protocol Background Information

As one can see in the header, IP allows the fragmentation of datagrams. This is neces-
sary when the Maximum Transmission Unit (MTU) of a specific device is smaller than the
datagram size. While dividing the datagram into smaller pieces, the needed information
for reassembly will be added in the header of each IP fragment. The identification field is
needed for the recognition of fragments belonging together, whereas the fragment offset
field is used to reassemble in the correct order.

Furthermore, an IP datagram can carry ICMP messages. The Internet Control Message
Protocol (ICMP) [23] sits on top of IP in the Internet layer. Its purpose is typically reporting
errors in the processing of datagrams. For example, if the TTL of an IP datagram is decre-
mented to zero at a certain router, an ICMP ”Time to live exceeded in transit” message will
be generated.

2.2.2 Global Addressing

Providing a unique global addressing amongst network nodes is the second part of the IP
service model introduced which is achieved by a well-defined addressing scheme. It should
be able to send a datagram to an arbitrary node in a arbitrary network.

Ethernet addresses are globally unique, but they are flat without any structure or lo-
calization information for routing processes. Therefore, they can not be used for internet-
working [12]. In contrast, IP addresses are hierarchical corresponding to a hierarchy of
networks. IPv4 uses 32-bit addresses and the IP address is divided into two parts:

• Network ID

• Host ID

All nodes in the same network contain an identical network ID, whereas the host ID defi-
nitely identifies the node in the network. The division of the IP addresses is not identical for
each address and obtained by two different schemes:

• Classful

• Classless

Classful networking groups IP addresses in five different classes (A, B, C, D, E) which
divide the addresses regarding the length of network and host ID. Table 2.2 pictures out the
differences of class A, B and C:

Class Network ID Host ID

A 8-bit 24-bit

B 16-bit 16-bit

C 24-bit 8-bit

Table 2.2: IP address classes A, B and C

This means for example that there exist only 128 different networks of class A or that there
are only 1283 different nodes possible in a class C network. Class D addresses are for
multicast purposes and class E is reserved.

3including reserved addresses such as broadcast and network address

21

Background Information 2.3 Routing and Forwarding

More important is the second, classless addressing scheme which actually replaces the
classful scheme and allows to redivide class A, B and C networks. The amount of IP
addresses is delimited and therefore they have to be carefully allocated. With the classful
networking only three different classes are possible, but there are a lot of cases imaginable
where none of them is suitable. Hence, classless addressing allocates IP addresses more
efficiently. This is achieved with subnetting. By means of subnetting, different networks
are considered as subnets characterized by a network address on the one hand and a
subnet mask on the other hand. A subnet mask is a 32-bit address as well, but consists
of a bit string of ”1” with an arbitrary length. Thus, subnet masks divide IP addresses in a
much more variable way. For one node this means that it is configured with an IP address
and with a subnet mask. In order to retrieve its network address, one has to add up both
addresses bit by bit.

The amount of nodes possible in a subnet is defined by the length of the subnet mask.
The part for the host ID is the one beyond the bit string of ”1”. However, the last possible IP
address is reserved as broadcast address in order to reach all nodes in a subnet and the
first possible IP address is reserved as network address, e.g. network ID. Both addresses
can not be allocated to nodes.

To overcome the limitation of the number of IP addresses as well, IPv6 [18] as successor
of IPv4 redefines the addressing scheme again. In IPv6, 128-bit addresses are used.
Based on pessimistic estimates for the efficiency of allocating IPv6 addresses [12], the
IPv6 address space features 15’000 addresses for each square meter of earth’s surface
which should be really enough for the future.

2.3 Routing and Forwarding

In order to discover desired paths through an internetwork, routing and forwarding are ab-
solutely essential. Routing describes the process of building forwarding tables, whereas
forwarding describes the process of looking up a specific destination address in these
node local forwarding tables and delivering the data packet to the accurate direction given.
Therefore, one has to strongly distinguish between these procedures [12].

As already introduced, the goal of routing is to select paths through an internetwork in
order to build a forwarding table for the forwarding process. The routing process can be
described as gathering information about the existence of different networks in an inter-
network and the corresponding next hops in order to reach them. Thus, routing itself also
keeps a table up to date. Actually, the dispartment of the routing table and the forwarding
table is a decision of a particular implementation. However, it is recommended to make
this difference, because of performance optimization issues and the diversity of interpreta-
tion [12, 14]. As mentioned before, routing tables contain in general a mapping of network
addresses to next hops, whereas forwarding tables need to contain entries of particular
interfaces, thus accurate information about how to forward a data packet to the next hops.

Routing is basically a graph-theoretic problem [12]. One can imagine a graph with
nodes representing networks and edges representing interconnections. So, the shortest or
the most optimal path between two nodes regarding some kind of metrics for the intercon-
nection has to be selected. Therefore, routing is mostly implemented by routing protocols
between nodes as a distributed and dynamical process. In IP, hierarchical network ad-
dresses and classless addressing schemes facilitate routing, because blocks of addresses
can be grouped together into single routing table entries, also known as Classless Inter-
Domain Routing (CIDR). Moreover, there are mainly two well-known classes of routing
algorithms:

• Distance vector algorithms

• Link-state algorithms

22

2.3 Routing and Forwarding Background Information

2.3.1 Distance Vector Algorithms

Distance vector algorithms are based on the concept that each node builds a one-dimensional
array or vector containing the distance to all other nodes in the network. The distance is
represented by the total cost which is the sum of all metrics values of all interconnections
inside a path to another node. Finally, the goal is to select the path to another node with
the lowest total cost.

The algorithm4 operates in a simple manner. Each node sends to its neighbour nodes
all vectors containing the destinations, corresponding costs and next hops it knows. Upon
reception of such an advertisement, the node compares the received information to what it
already knows and updates its routing table with any improvements. Over time, all nodes in
the network will discover the next hop for all destinations and the corresponding best total
cost.

A famous example for a distance vector routing protocol is the Routing Information Pro-
tocol (RIP) [24]. Here, the destinations of desired paths are not nodes, but networks and
the metrics is hop count. The advertisements are sent periodically every 30 seconds on the
one hand and triggered as soon as the routing table was updated on the other hand. The
maximum number of hops allowed with RIP is 15. Furthermore, RIP allows the support of
different address families and is not limited to IP addresses [12].

2.3.2 Link-State Algorithms

Link-state algorithms are based on the concept that each node knows its neighbour nodes.
When the total amount of these information are distributed to all nodes in the network, each
node possesses adequate information to construct a map of the network and thus to build
its routing table. Hence, link-state algorithms comprehend two mechanisms. Distributing
the information on the one hand and computing the routes out of these information on the
other hand [12].

Distributing the information is achieved by flooding. Flooding means that each node
will receive a copy of the link-state packet of all nodes. Computing of the routes out of
these link-state packets is done by each node independently using a standard shortest
path algorithm5.

A famous example for this routing process is the Open Shortest Path First Protocol
(OSPF) [26]. OSPF extends the link-state algorithm described with several improvements
such as authentication of routing advertisements, additional hierarchy and load balance.

2.3.3 Inter-Domain Routing

The Internet is organized in autonomous systems (AS). An AS represents an internetwork
controlled by an administrative authority, such as a Internet Service Provider (ISP) or a
big company [12]. Regarding routing issues, autonomous systems provide an additional
routing hierarchy optimizing the scalability of routing protocols. In order to achieve this,
routing is furthermore separated into routing inside an AS and between different AS, also
called inter-domain routing.

The distance vector and link-state routing protocols described can not be used for inter-
domain routing, because they are not scaleable for it. Therefore, distance vector and
link-state routing protocols are known as interior gateway protocols (IGP) for intra-domain
routing, whereas the exterior gateway protocol (EGP) or its successor the border gateway
protocol (BGP) [25] are used for inter-domain routing.

4also known as Bellman-Ford algorithm [48]
5such as Dijkstra’s algorithm [49]

23

Background Information 2.4 Publish-Subscribe Service Discovery

2.4 Publish-Subscribe Service Discovery

The need to discover information is fundamental to any large scale and distributed envi-
ronment [33]. An upcoming technology is the use of publish-subscribe mechanisms. A
publish-subscribe system is a communication infrastructure that enables data access and
sharing over disparate systems and among inconsistent data models [34]. Gnutella6 is an
example of a publish-subscribe system.

A publish-subscribe system, also known as pub-sub system, is a routing mechanism
that delivers data packets from publishers to interested subscribers [35]. Unlike multi-
cast group communications where group addresses and memberships are statically bound,
pub-sub systems use a communication model where the eligibility of group membership is
evaluated dynamically. Such a communication system has many potential benefits. For in-
stance, instead of requiring publishers to identify destination addresses for their messages
(potentially requiring multiple messages to multiple destinations), a pub-sub network can
handle message routing in a way that avoids unnecessary message replications [34].

A pub-sub system further can be seen from a subscriber’s point of view. A subscriber
who wants to use a certain type of service, but unaware of the existence of this service type
or the location of service instances needs a discovery mechanism. Therefore, the intention
of a subscriber discovering a specific service type represented by a subscribe message
should be automatically guided towards an optimal service instance [27]. This type of view
defines a pub-sub system as promising technology for address-agnostic service discovery.

(b)

(b)

(b)

(b)

(b)

(b)

(b)

(b)

Publisher A

Publisher B Subscriber B

Subscriber A

Publish-Subscribe Network

Publish „A“ (a)

Subscribe „A“ (c)

Figure 2.3: Publish-subscribe service discovery

Figure 2.3 shows a pub-sub network and two publishers and subscribers, respectively.
Publisher A publishes a certain service ”A” in the pub-sub network (a). Now, the information
about this service type is distributed and shared in the pub-sub network (b). Thus, the
subscribe message from subscriber B who wants to discover service ”A” (c) is automatically
directed to publisher A by the pub-sub network. So, the pub-sub network is providing the
opportunity for decentral and address-agnostic service discovery.

6a file sharing network [50]

24

2.5 Field-Based Routing Background Information

2.5 Field-Based Routing

Field-based routing is an exploring novel routing mechanism inspired by the field theory
from physics. Destination nodes generate a potential field overlay for the network in order
that data packets of source nodes modeled as test charges diffuse along the steepest gra-
dient of the potential field [29]. The benefit of field-based routing is that each point in space
knows exactly how to participate in the global behaviour based on only the knowledge of
its position [30]. Therefore, this approach is very efficient in networks with frequent topol-
ogy changes and may guarantee loop-free topologies. Field-based routing is very helpful
for address-agnostic issues and can be used for MANETs7, anycast routing or publish-
subscribe networks, for example.

Fields are not restricted to one specific destination node. Different nodes can contribute
to the same potential field. In that case, the potential field is obtained in the same way as in
physics by creating the linear superposition of the influence from the individual nodes of the
group. The peaks in the resulting total field represent the location of the destination nodes.
Packets following the steepest gradient will then be delivered to any node of this group [32].

This case can be adapted for group members building an entire anycast group. Figure
2.4 depicts the potential field of such an anycast group with ten members.

Figure 2.4: Example potential field with ten destination nodes [27]

The potential field for a network performing field-based routing can be computed for ex-
ample analogously to an electrical potential field in physics [27]. The destination node is
related to a point charge Qj located at −→r j , whereas data packets are modulated as elec-
trical test charges at position −→r . The resulting potential ϕj (−→r) is:

ϕj (−→r) = 1
4πε · Qj

|−→r −−→r j |

The fundamental difference between the physical field model and field-based routing in
networks is that a field in physics is continuous, whereas in a network the field is only
defined at the nodes and propagating over the underlying network links. Therefore, the
potential has discrete values and the potential at any node n resulting from this charge is
defined as:

ϕj (n) = c · Qj

dist(n,nj)

7Mobile Ad Hoc Network

25

Background Information 2.5 Field-Based Routing

The distance between node n and node nj is represented by dist(n,nj) and c is a constant.
For simplicity, c can be set to c = 1 and the distance can be declared as the shortest
distance in hops:

ϕj (n) = Qj

|n−nj |

Finally, the potential field is a superposition of the individual fields of each destination node
in a group:

ϕ(n) =
N∑

j=1

ϕj (n) =
N∑

j=1

Qj

|n−nj |

Field-based routing can be controlled for example with the point charge Q for point out a
specific destination node (by increasing Q) or even more by changing the distance function
into an exponential function. Large values for an exponent result in steep potential fields,
whereas small values result in flatter distributions.

Finally, routing in this model is realized by forwarding data packets towards the steepest
gradient, as already mentioned. This is achieved by comparing the potential values of all
neighbour nodes at a node. The steepest gradient is then obtained by the neighbour node
with the highest value [27].

26

Chapter 3

The Architecture of ANA

This chapter introduces the network architecture proposed by the ANA project [1]. The
high level design principles such as basic abstractions and building blocks are defined in
the ANA Blueprint [3]. The first two sections of the chapter 3.1 and 3.2 describe the basic
building blocks and the communication concepts of ANA. For a more detailed discussion,
one has to refer to the ANA Blueprint.

The next two sections 3.3 and 3.4 explain fundamental instruments in order to use com-
munication concepts and develop code for ANA. For more detailed instructions regarding
development and source code writing in ANA, one has to refer to the ANA core documen-
tation [4].

3.1 Terminology

As already mentioned in the introduction, the ANA project separates the network architec-
ture into two main components:

• MINMEX

• ANA Playground

Actually, there exist a third main component called the hardware abstraction layer. How-
ever, it is not relevant for this Master Thesis and therefore not specified more precisely.
Nevertheless, these two (three) main components allow basically to run ANA on a physical
device (e.g. computer, sensor, network processor, switch, router, etc.). Figure 3.1 shows
the collection of these either mandatory or optional software components:

The Architecture of ANA 3.1 Terminology

KVR

MINMEX

ANA Playground

Brick

Brick

Brick =
Smallest Possible
Element

Multiple Bricks =
Functional Block

Figure 3.1: MINMEX and Playground building the network architecture

• MINMEX: The MINMEX or Minimal INfrastructure for Maximal EXtensibility defines
the common denominator among ANA nodes and must be present in all implemen-
tations. It provides the basic low level functionality which is required to bootstrap and
run ANA.

• ANA Playground: The Playground is the execution environment where the more
elaborated and complex networking functionality of ANA is placed. The playground
hosts the optional protocols and applications that one is free to develop with the help
of the functionality provided by the MINMEX elements.

The most important element in the MINMEX concerning this Master Thesis is the following:

• KVR: The key-val repository (KVR) is a directory service to access communication
mechanisms, protocols and compartments. Functional blocks located in the Play-
ground may add entries with self-chosen keywords which can later be looked up via
the standard resolve functionality (explained in section 3.3).

The important elements in the ANA Playground are depicted and related to each other in
figure 3.2:

• Brick: A brick is the smallest possible element in the ANA Playground providing some
functionality. It can be part of a bigger functional block or of a compartment. Together
all bricks form the Playground of an ANA node. Before a brick can participate in ANA
it has to attach itself to the MINMEX. Bricks interact through the MINMEX. There is
no direct communication between two bricks. The MINMEX allows to discover other
existing bricks and dispatches messages between IDPs owned by different bricks.
The first two bricks in the ANA Playground were the vlink brick and the Ethernet brick
as described in the introduction.

• Functional block: Functional blocks are the information processing units of ANA.
Multiple bricks acting for the same purpose, e.g. a protocol, are combined to a func-
tional block. Functional blocks generate, consume, process or forward information.
They might consist of other functional blocks.

To sum it up, a brick is a running instance of an atomic functional block. A functional block
is a more abstract concept.

28

3.2 Compartments The Architecture of ANA

Bricks or
Functional Blocks

IDPs

Information Channel

Node A Node B

Figure 3.2: Data flow through bricks, functional blocks, IDPs and information channels

• Information dispatch point (IDP): IDPs are access points to bricks, functional blocks
or information channels. The MINMEX manages the binding of IDPs to bricks. For
example, the MINMEX is able to exchange a brick behind a given IDP. This leads to
the possibility to exchange functionality, whereas leaving the address constant.

• Information channel: Information channels are an abstraction for communication
channels. Functional blocks communicate over information channels.

• Label: A label is a node local identifier for an IDP.

In order to top off the terminologies, functional blocks might make use of a quick repository
(QREP). This is not a concept of the architecture, but an instrument offered by the ANA
core software. Similar to the KVR in the MINMEX, the QREP is able to store entries from
clients of functional blocks. The QREP is brought up here, because it is used in this Master
Thesis and it will be mentioned later in this documentation.

3.2 Compartments

The concept of compartments allows the division of communication networks into smaller
units. A compartment is basically a policed set of functional blocks, IDPs and informa-
tion channels with some commonly agreed set of communication principles, protocols and
policies [3]. The boundary of a compartment can be based on technological or adminis-
trative boundaries. Compartments using different technologies can communicate together
through a common overlay compartment or ”translation” compartment. They provide both:
Hiding of compartment internals from the outside world and hiding of communication com-
plexity from its members. Each compartment has to provide the following key functions
[2, 3]:

• Registration and de-registration: The registration function assures that only ad-
missible communication elements become a member of the compartment. It can be
either some kind of authentication function or it can be completely open.

• Identifier management: Typically some kind of identifier is assigned to a member
during registration phase. A resolution function has to be provided to look up an
identifier and to obtain the information necessary to communicate with the requested
member.

29

The Architecture of ANA 3.2 Compartments

• Routing: The routing function is responsible to select a communication path inside
the compartment.

3.2.1 Node Compartment

The node compartment is a special compartment which is present in each ANA node.
The MINMEX as well as each functional block residing on one node belong to the node
compartment of this node. The node compartment provides mechanisms for functional
blocks to make themselves visible for other functional blocks on the same node. It provides
also the possibility to search for a functional block which provides a certain functionality.
Any functional block or IDP belongs to exactly one node compartment. Therefore the node
compartment has full control over the functional blocks and IDPs. The node compartment
may provide different views of the actual ANA node to different functional blocks. Thereby,
it can hide some functionality from some functional blocks, or define some obligations for
certain functional blocks [2].

3.2.2 Network Compartment

A network compartment encompasses several nodes and involves communication across
an underlying network infrastructure. Each node which wants to belong to a given network
compartment has to implement the required network stack. By providing the network func-
tionality of different compartments, an ANA node may connect to different network compart-
ments. The communication between different nodes is provided by information channels
and is typically accomplished over a physical link (but it may also be a virtual one). Network
compartments can be combined in a flexible way. A network compartment may combine
the functionality of several OSI layers, or it may provide only a part of an OSI layer. To allow
communication between different network compartments they may be layered. Therefore, a
communication between two nodes may traverse several network compartments [2]. Figure
3.3 shows the layering of different compartments.

Node A Node B Node C

Compartment A Compartment B

Compartment C

Figure 3.3: Layering of network compartments

30

3.3 ANA API The Architecture of ANA

3.3 ANA API

This section describes the basic ANA API which is used by bricks to communicate with the
MINMEX. The ANA API is divided into different packages or levels that rely on each other
[2].

• API Level -1: Defines the platform dependent communication mechanism between
the bricks and the MINMEX.

• API Level 0 (AL0): AL0 groups all functions that permit to access the MINMEX in a
platform unspecific way. It consists of attachment and detachment functions as well
as a registration function or callback functions.

• API Level 1 (AL1): AL1 is a library of procedures for interacting with ANA compart-
ments, information channels and functional blocks. It does not remove the need to
manage communication with the MINMEX at AL0. But once attached, there are pro-
cedures for creating requests and parsing replays.

• API Level 2 (AL2): At AL2, functionality can be accessed through ordinary method
calls.

These levels express different degrees of sophistication an do not imply a layering as in
networking. If an ANA application wishes, it could be fully based on level 0 [3].

Each compartment is asked to understand some very fundamental and specific API
functions belonging to AL2 which represents high level concepts of the ANA network archi-
tecture:

• Publish / Unpublish

• Resolve / Lookup

3.3.1 Publish / Unpublish

The publish function is used by an entity (typically a functional block) in order to ask a
compartment that it wants to be reachable via this compartment [36]. For instance, a
functional block of IP could ask an Ethernet compartment to become reachable via the
Ethernet compartment. The publish function provides the opportunity to build a protocol
stack dynamically. Figure 3.4 illustrates an example with IP and Ethernet.

In the example, the functional block of IP publishes its IP address in the Ethernet com-
partment. Hence, the functional block of Ethernet now knows that IP exists and wants to
be reachable by the name ”1.2.3.4”. Note that the name ”1.2.3.4” has no meaning within
the Ethernet compartment. Additionally, IP tells Ethernet on which IDP it wants to receive
further data in order that Ethernet is able to map the name ”1.2.3.4” with the IDP ”i”.

31

The Architecture of ANA 3.3 ANA API

IP

Ethernet

Node A

i

e

Ethernet
Compartment

Publish „1.2.3.4"

„1.2.3.4" → i

Figure 3.4: Publish example

The publish function prototype at AL2 looks as follows [4]:

���������� ����	�
����
�����
� ���������� ������������������

���� ������ �� ��� ����� ����!��� ���� ���
�"�
����� ��� ��
�"�
�������!���

��	�������#��
�"����� ���
�
�"�����"���$%

Where:

• �����������������: Is the IDP of the compartment functional block to whom the
publish is directed.

• ����� �: Defines a subset of the compartment in which we want to publish the IDP.

• ����� ����!��: Is the size in bytes of the field pointed by ����� �.

• ��
�"�
����: Is the description or name of the service provided by the requester
entity.

• ��
�"�
�������!��: Is the size in bytes of the field pointed by ��
�"�
����.

•
�"����: Is the callback function providing the service one wants to publish.

•
�
�"�����"���: Is a flag indicating whether the callback function is supposed to be
launched in a separate thread or not.

The unpublish function is the reverse of the publish function and retracts a previous publish
activity. The prototype looks as follows [4]:

��� ����	���
����
�����
� ���������� ������������������

���� ������ �� ��� ����� ����!��� ���� ���
�"�
����� ��� ��
�"�
�������!��$%

The meanings of the arguments are identical as for the publish.

3.3.2 Resolve / Lookup

The resolve function now offers the ability to discover the entities published previously. In
other words, an entity asks the compartment, if another entity is reachable via this com-
partment [36]. Furthermore, if the resolved entity is reachable via the compartment, a new
IDP is created and mapped to the IDP previously published by the resolved entity. Hence,
after having resolved an entity successfully, one is able to start communicate via an IDP
opening an information channel to the resolved entity. Figure 3.5 shows again an example
with IP and Ethernet.

32

3.3 ANA API The Architecture of ANA

In the example, IP B published its name ”1.2.3.4” in the Ethernet compartment. Now, IP
A wants to resolve ”1.2.3.4” in the Ethernet compartment and receives a positive reply,
because the compartment knows ”1.2.3.4”. Additionally, the reply contains a newly created
IDP ”s” opening an information channel to ”1.2.3.4”.

IP A
Ethernet A

Node A

i

e

Ethernet
CompartmentResolve „1.2.3.4"

s → Ethernet B, t

Ethernet B

IP B

r
s

Publish „1.2.3.4"

Reply „s“

„1.2.3.4" → z
t → z

z

y

Node B

Figure 3.5: Resolve example

The resolve function prototype at AL2 looks as follows [4]:

���������� ����	�
����
������� ���������� ������������������

��� ��������� ��� ������������ �
��� ���
���� ��� ��
�������� �

� �
 � ���!"��
��� �����
�"����� ��� ����
�"��������� #$

Where:

• �����������������: Is the IDP of the compartment functional block to whom the
resolve request is directed.

• �������: Delimits a subset of the compartment in which to look for the entity. There
are two special types of context defined:

– ”.” for a node local resolve and
– ”*” for the biggest subset possible, whereas it is up to the compartment how to
implement ”*”.

• ������������ : Is the size in bytes of the field pointed by �������.

• ��
���: Is the description or name of the entity one wants to resolve.

• ��
�������� : Is the size in bytes of the field pointed by ��
���.

• � ���!"�: Determines the type of channel to the entity(es). The possible channel
types are ’u’ for unicast, ’a’ for anycast, ’c’ for concast, ’m’ for multicast and ’b’ for
broadcast. Indeed, in case the resolve request matches different entities in the com-
partment, the channel type will indicate to the compartment what kind of channel to
build.

• ����
�"����: Is an optional argument and corresponds to the description or name of
the resolver entity. This is useful for the resolved entities in order to reach back the
resolver.

33

The Architecture of ANA 3.4 XRP Messaging

• ���������	
��
��
: Is the size in bytes of the field pointed by ���������	
.

How the resolve resolution is performed is compartment specific. The example of Ethernet
implements resolving by sending a broadcast message and thus, it is analogous to today’s
ARP (Address Resolution Protocol [37]) request.

The lookup function is very similar to the resolve function, except that the resolve func-
tion creates an IDP and furthermore an information channel, whereas the lookup function
only returns some reachability information. The prototype of the lookup function looks as
follows [4]:

�
� �
�����		�����	
�� �
�������� �����������������

!	�� "�	
��#� �
� �	
��#���
��
 !	�� "������ �
� ��������
��

������ �
�����������	
�� ""������ !	�� "���������	
 �
� ���������	
��
��
$%

Where all meanings of the arguments are identical, except that ������ is the data structure
which will contain the desired reachability information upon lookup reply.

3.4 XRP Messaging

XRP (eXtensible Routing Protocol) defines a common message format in the ANA world.
An ANA developer is not forced to use XRP to encode messages, but an entire XRP engine
is already implemented and given by the ANA core software and provides a very simple
way to encode and decode information. Additionally, the ANA API starting from Level 1
also uses XRP messages to exchange information concerning the API functions.

An XRP message always starts with a command which is followed by a set of classes
[4]. The detailed encoding of an XRP message is depicted in figure 3.6:

Command Arg1Arg1 SizeArg1 ClassNb Args Arg2 Class ...

Figure 3.6: XRP message format

• Command: Determines the purpose of a message.

• Nb args: Is the number of XRP arguments attached to this command.

• Arg1 class: Is the XRP class of the first argument attached to this command. By
class, a known description (e.g. meta data) about the nature of the argument is
meant.

• Arg1 size: The size in bytes of the first argument value.

• Arg1: Is the value of the first argument associated to the XRP command.

Afterwards, the pattern is repeated for all attached arguments.
The ANA core software also offers a wide XRP API for encoding and decoding XRP

messages as well as comparing commands and comparing classes, extracting the number
of arguments and many more.

34

3.5 Summary The Architecture of ANA

3.5 Summary

This chapter presented the architecture of the ANA project. In each ANA node there are
two main components: On the one hand there is the MINMEX which is the minimal com-
ponent to be provided from each ANA node and on the other hand there is the Playground
in which the real functionality provided by the functional blocks is hosted. The smallest
possible element of a functional block is a brick. IDPs are access points to bricks, func-
tional blocks or information channels and the information channel itself is an abstraction of
a communication channel.

The terminology of compartments is also introduced which allows different network
types to coexist. High level concepts such as publish in a compartment in order to be
reachable through this compartment or resolve in a compartment in order to discover a de-
sired target and open an information channel impressively shows the ability of ANA building
a protocol stack dynamically.

In addition, different API levels offer the possibility to execute such high level functions
and the XRP API provides an instrument for ordinary information encoding and decoding.

35

Chapter 4

IP and Routing in ANA

This chapter describes in detail the implementation of the Internet Protocol (IP) and Rout-
ing Information Protocol (RIP) in ANA which enormously extends the features of an ANA
network. By means of the IP compartment, it is possible to send messages over multiple
Ethernet segments, whereas without, only messages inside the same Ethernet segment
is possible for communication. Furthermore, RIP offers the leadoff opportunity to perform
routing inside an ANA network. IP and RIP was introduced in theory in section 2.2 and 2.3.

The first section of this chapter covers the design of the IP and RIP architecture for ANA.
It gives an overview and comparison to the standard IP as well as specifies the analysis and
decomposition in order to fit into the modular and flexible ANA world. Section 4.2 details the
precise implementation of every brick involved and defines brick and node communication
interfaces. The IP and RIP compartment finally is validated in section 4.3 and summarized
in the last section of this chapter.

4.1 Design

This section explains the design of the IP and RIP architecture and pictures out the dif-
ferences to the standard IP. First and foremost, it particularizes the decomposition of IP in
order to provide full flexibility and extensibility.

4.1.1 Protocol Overview

IP, introduced in section 2.2, acts as network protocol in the network layer. The purpose of
IP is to connect different networks and provide unique global addressing. This is achieved
by encapsulating the data packets with an IP header and the usage of a well-defined ad-
dressing scheme.

This Master Thesis decomposes IP in order to abstract the needed and most important
pieces for ANA. As can be seen in table 4.1, IP in ANA is therefore different to the standard
IP [17] and does not offer the full functionality. Naturally, encapsulation of the datagrams is
fundamental, hence the IP header is supported and of course looks identical to the standard
IP header. Nevertheless, certain fields of the IP header in ANA have to be detailed specially,
as explained in the implementation section 4.2. Furthermore, checksum computation is
supported as well as the original addressing scheme. Thus, the premises for connecting
different networks and for sending messages between IP subnets are given and the ability
to forward IP datagrams is supported accurately. However, some functionality such as
fragmentation, IP options and ICMP is not mandatory for this Master Thesis and therefore
not included.

IP and Routing in ANA 4.1 Design

Interesting to know, in ANA each node is a router and therefore always tries to forward
foreign IP datagrams to a suitable interface.

Supported functionality Not supported functionality

IP header and encapsulation Fragmentation

Checksum computation IP options

Addressing and forwarding ICMP messages

Table 4.1: Differences between IP in ANA and the standard IP

In addition, ANA treats the protocol field or next header field of the IP header in a different
way compared to the standard architecture. Because the protocol stack is built dynamically
ANA does not know fixed next header codes in the next header field as the standard IP
does [22]. Each protocol or user application which wants to be reachable through IP first
publishes itself in the IP compartment (refer to 3.3). The next header code corresponding to
this user application will be generated dynamically during the publish activity, i.e. randomly.
Hence, the next header codes can not be known initially. If a user application intends to
communicate with another user application it first has to ask the compartment in order to
retrieve the corresponding next header code. This is exactly what the resolve functionality,
illustrated in 3.3, is for.

Furthermore, there are information channels like multicast or broadcast channels which
aim at multiple targets. However, the next header codes of these targets are not identical
as a result of the dynamic and random allocation. Obviously, it is unlikely to retrieve all next
header codes even more if the amount of targets or addresses are not known in advance.
Therefore, ANA uses two ways to deliver IP datagrams:

• For information channels aiming at one specific target a resolve request is processed
by the IP compartment in order to discover the desired next header code. An IDP
is created which leads to encapsulating payload with an IP header containing the
resolved next header code.

• For information channels aiming at multiple targets a resolve request creates an IDP
which leads to encapsulating payload with an IP header containing a special delivery
flag in the next header field but a description for the targets in the payload. Therefore,
the special flag mentioned indicates the compartment to lookup the targets by means
of a description instead of a next header code.

IP datagrams containing resolve requests are indicated by a special flag in the next header
field as well. Refer to the implementation section 4.2 for a more detailed discussion about
these flags.

RIP, introduced in section 2.3, operates as routing protocol in order to afford the aspired
forwarding feature. Remember, routing and forwarding are two different processes but
usually, forwarding is done by dint of the results of routing. Besides certain meanderings
concerning the implementation (4.2), RIP in ANA provides all the features of the standard
RIP [24].

4.1.2 Architecture and Decomposition

In order to design an IP architecture to provide full flexibility and extensibility, one has to an-
alyze and separate the different main pieces of IP. Depicted in figure 4.1, the decomposition

38

4.1 Design IP and Routing in ANA

of IP and RIP results in a very flexible and modular architecture. The main pieces of the
protocol are independent from each other and individually exchangeable and extensible.

Checksum Encapsulation

Routing (RIP) Forwarding Table

User Application

from / to Neighbours

ANA Node

Compute
Checksum

Update
Table

Discover
Next HopRoute

Update

Resolve
Request

Unpublish

Publish

Data

Resolve
Request

Resolve
Response

Data

Route
Request

Figure 4.1: Node overview of the IP and RIP architecture

This Master Thesis strongly separates between the mentioned four different processes
encapsulation, checksum computation, forwarding and routing.

• The encapsulation process handles, as the name implies, the encapsulation of pay-
load with the IP header. Moreover, it distributes the IP datagrams in both directions:
Receiving and transmitting.

• Computing the checksum is rolled out from the encapsulation process to give the
opportunity to be reused from different other processes. Thus, the checksum compu-
tation process is responsible for computing the correct checksums of the IP headers
exchanged with the encapsulation process.

• Forwarding is achieved with help of the forwarding table, sourced out as well. There-
fore the encapsulation process looks up destination IP addresses in the forwarding
table in order to perform the forwarding process.

• Finally, routing is a separate process which updates the forwarding table continuously.
As mentioned before, this Master Thesis uses RIP in order to perform leadoff routing
between IP nodes in an ANA network.

39

IP and Routing in ANA 4.1 Design

The benefits of this modular and flexible architecture are perspicuous. If one wants to
change the routing process, simply the routing process has to be exchanged and all other
processes remain unaltered. If one needs to extend the whole protocol stack and develops,
as an example, a TCP layer, the separated checksum process can be reused, because the
algorithm is identical. In conclusion, the design and modular architecture segmented by
this Master Thesis offers full flexibility and extensibility as aspired by the ANA project.

For the purpose of providing the described flexibility, well-defined communication inter-
faces between the individual processes are needed. The next part explains the messages
between the processes and between the nodes in order to make up the functionality of IP
and RIP in ANA, whereas the concrete and precise message formats can be found in the
implementation section 4.2.

4.1.3 Communication Interfaces

The described architecture needs specific message exchange between the individual pro-
cesses in order to function properly. Furthermore, the format of the message has to be
well-defined to achieve the aspired flexibility. This part describes all the messages existing
by design and shown in figure 4.1, whereas the implementation section 4.2 deals with the
accurate implementation of the interfaces. The unique message names introduced in this
part are used throughout the rest of this documentation. Moreover, communication inside
a node and communication between nodes is differed.

4.1.3.1 Inside a Node

• Messages received by the encapsulation process:

This is the interface between a user application and the IP compartment. If one
develops a user application of IP he has to use this interface.

– PUBLISH: Publish messages are sent by user applications which want to be
visible in the ANA network and reachable through IP. One can find more details
in section 3.3.

– UNPUBLISH: Unpublish messages are the opposite of publish messages. A
user application is able to retract the previous publishing. This is described in
detail in section 3.3.

– RESOLVE: A resolve message is used by user applications to setup an informa-
tion channel to another user application. As explained in section 3.3, this activity
has to precede data messages.

– Data: After having resolved a target successfully and opened an information
channel, a user application can start to communicate with data messages (pay-
load) to newly created IDPs by the IP compartment.

• Messages received by the checksum computing process:

This is the interface between the encapsulation and the checksum computing algo-
rithm [17].

– DATA: A data message for the checksum computing process simply contains
the IP header. The checksum computing process will compute the checksum
and send it back.

40

4.1 Design IP and Routing in ANA

• Messages received by the forwarding table:

This is the interface between encapsulation and the forwarding table as well as be-
tween routing and the forwarding table.

– DISCOVER: A discover message contains the destination IP address for which
the correct next hop has to be looked up in the forwarding table in order to for-
ward the IP datagram.

– CHANGE: A change message updates the forwarding table. Therefore it is com-
ing from a routing process and contains the desired routing information.

– ROUTEREQ: The routing table of the routing process is empty in the beginning.
Even the subnets in which the node is located itself are missing. The routing
process can ask the forwarding table which has been configured before with
these interesting information. Hence, this kind of message triggers the dispatch
of all entries in the forwarding table for a routing process which wants to know
initially all the attached subnets of the node.

• Messages received by the routing process:

These messages characterize no additional interface but describes the routing adver-
tisements for the routing process.

– ROUTEUP: This message type denotes route updates which have their seeds
in routing processes on remote nodes.

4.1.3.2 Between Nodes

• Messages received by the encapsulation process:

The encapsulation process is the only process which is able to receive and under-
stand genuine IP datagrams from neighbour nodes. There are different kind of IP
datagrams existing in the compartment. On one hand, there are IP datagrams pro-
cessing a resolve request from a user application and on the other hand, there are IP
datagrams containing the actual payload for user applications.

– resolve request: A resolve request message is the result of a RESOLVE mes-
sage from a user application. It wants to discover the desired target (e.g. next
header code) on a remote node in order to open an information channel. The
information channel therefore is of type ’u’ or ’a’. Refer to the implementation
section 4.2 for a more detailed discussion.

– resolve response: A resolve response represents the successful discovery of
a resolved target on a remote node. An information channel will be opened and
the corresponding IDP is sent back to the origin user application.

– data: As the name already implies, this kind of message type indicates data
messages (payload).

41

IP and Routing in ANA 4.2 Implementation

4.2 Implementation

This section describes the precise coding of the IP and RIP architecture in the ANA Play-
ground. It shows how it becomes part of the dynamic protocol stack, how the messages
of a communication interfaces are encoded and pictures out the development of each brick
accounting for the functional block of IP and RIP.

4.2.1 Overview

IP and RIP is implemented in the ANA Playground as first use case for a complex protocol.
The protocol is represented by a functional block. Each process separated and explained
in the design section 4.1 is implemented as an individual brick whereas all bricks together
form the mentioned functional block. The messages exchanged between the bricks are
encoded as XRP messages, except the data message (payload). XRP is introduced in 3.4.
The messages exchanged between the nodes are genuine IP datagrams.

Ethernet

Applications

IP

Figure 4.2: Protocol stack of IP running on top of Ethernet

Noticeable, the IP and RIP compartment needs another compartment in order to send the
data packets to the wire and identifying the neighbour nodes. For now, the Ethernet com-
partment and thus the Ethernet brick [4] is used as data link compartment, as depicted in
figure 4.2. Therefore, the IP address along with an IDP to the encapsulation brick (ip_enc.c,
figure 4.3) which is communicating with neighbour nodes is published in the Ethernet brick.
This behaviour is indicating the establishment of a dynamic protocol stack. Mentionable,
there are also other data link compartments imaginable, or even more, the IP compartment
directly attaches to the vlink brick [4] of the ANA node. This is achieved thanks to the flexi-
ble and extensible architecture of ANA as well as the architecture of IP in ANA designed by
this Master Thesis. More on this can be found in section 6.2 about further work.

The ANA API functions supported by this compartment are publish, unpublish and re-
solve functions:

42

4.2 Implementation IP and Routing in ANA

Publish and unpublish is as explained in 3.3 for user applications which want to be reach-
able through IP. The resolve function (3.3) is necessary in order to open an information
channel to a desired target, before one is able to send data messages. In the IP com-
partment the argument, thus the scope of the resolve function is implemented as
follows:

• ”.” / ”localhost” or ”127.0.0.1” in order to reach only local targets.

• An arbitrary IP address, e.g. ”10.0.1.2” to reach targets on a specific node.

• The address of a subnet, e.g. ”10.0.1.255” in order to reach targets on all nodes in a
specific subnet.

• ”*” or ”255.255.255.255” in order to reach targets on nodes inside all attached sub-
nets. Note that in the ANA world sending to ”255.255.255.255” is a reasonable activity
resulting in the summation of broadcasts on all attached subnets.

The argument is implemented as follows:

• ’b’ or ’m’ in order to reach multiple targets (broadcast channel, no guarantee about
the existence of the targets).

• ’u’ or ’a’ in order to reach exactly one target (unicast channel, the target actually
responds to the resolve process).

ip_sum.c ip_enc.c

rip.c ip_fwd.c

ip_usr.c

from / to Neighbours

ANA Node

DATA

CHANGE

DISCOVER
ROUTEUP

RESOLVEPUBLISH

Data

resolve
request

resolve
response

data

ROUTEREQ

UNPUBLISH

Functional Block:
IP and RIP

Figure 4.3: Functional block of IP and RIP in the ANA Playground

43

IP and Routing in ANA 4.2 Implementation

Figure 4.3 shows the functional block of IP and RIP in the ANA Playground. It is on purpose
a similar illustration to the one in the design section 4.1. This time, the separated processes
are displayed as the actual bricks and the communication is substituted with the message
types introduced in the design section 4.1.

The messages between nodes are, as mentioned before, regular IP datagrams. Never-
theless, one has to notice the following aberrations and assumptions by this Master Thesis
concerning the IP header fields:

• Version: The IP version is set constantly to ”4”.

• Header length: Because there are no IP options, the header length is set constantly
to ”5”.

• ToS: The ToS field is not used yet and thus, set constantly to zero.

• Identification: Because there is no fragmentation supported, this field is set con-
stantly to zero.

• Flags and Fragment offset: No fragmentation leads the ”Do not fragment” flag set
to ”1” and the rest set to zero.

• TTL: The TTL is set initially to the default TTL of ”64”.

• Options: No IP options.

Furthermore, a small aberration of the implementation of RIP in ANA compared to the
standard RIP can be observed. This Master Thesis implemented RIP as a user application
for the IP compartment. Therefore, the advertisements are broadcasted and received over
IP whereas in the standard RIP, the advertisements are sent over UDP and with special IP
multicast addresses. UDP actually does not bring any additional functionality. In addition,
there is no standard RIP header existing because the advertisements are XRP encoded,
exploiting the predestined container functionality of XRP.

4.2.2 Configuration

In order to configure the ANA compartment, an additional, special brick was developed in
this Master Thesis. The configuration brick acts similar to the well-known �������� and
���	
 commands. The brick is indicated as special because after finishing its job, it closes
automatically which is in contrast to the other bricks.

There are three different actions possible with the configuration brick: Bind a specific
IP address to a specific interface (1). Define a default gateway for a specific ANA node (2)
and manually add new routes to the forwarding table (3).

44

4.2 Implementation IP and Routing in ANA

Figure 4.4 shows the processing of the configuration brick:

Validate command line
arguments

Argument = route?

Encode message

Argument = interface?

Encode message

YY

Send to forwarding table

Start

CHAHH NGECHANGECONFIGCONFIG

Send to encapsulation

Argument = default
gateway?

Resolve default gateway

Y

N N

Close

N

Figure 4.4: Configuration process for an ANA node running IP

1. Configuring an IP address:

(a) A CONFIG message is encoded and sent to the encapsulation brick in order to
bind the given IP address with an Ethernet brick.

(b) A CHANGE message is encoded and sent to the forwarding table in order to add
the given subnet.

The configuration is started with the following command line arguments:

2. Configuring a default gateway:

(a) The brick resolves the default gateway in order to know in which subnet it is
located.

(b) A CHANGE message is encoded and sent to the forwarding table in order to add
the given default gateway.

The configuration is started with the following command line arguments:

45

IP and Routing in ANA 4.2 Implementation

3. Configuring a route:

(a) A CHANGE message is encoded and sent to the forwarding table in order to add
the given route containing the subnet, next hop and corresponding interface, e.g.
Ethernet brick.

The configuration is started with the following command line arguments:

� ���������	�
�� ��
��
��������������� �� ������ �� �������
���

�� ������� �� ��
���!��������������������"�

Note that it is necessary to configure the IP compartment. Without configuring an IP ad-
dress for an ANA node, it will not be able to participate in the compartment. For now,
this configuration is done manually, however, there are imaginable scenarios to extend this
process for an automatic configuration and addressing, similar to Zeroconf (Zero Configu-
ration Networking [41]) as an example. This is possible thanks to the flexible and extensible
design of the ANA architecture as well as the architecture of IP in ANA designed by this
Master Thesis. More on this is written in section 6.2.

4.2.3 Parametrization

The implementation of IP in ANA offers some ability to tune different parameters and
constants. The parameters and constants all are defined in the header file located at
�����#$%&����' in the trunk directory. The header file is included in all bricks involved.

(%&
��& � ��
) *+,-

(%&
��& � �)�" *+,.

(%&
��& � ���� *+,/

(%&
��& � ��� *+,,

(%&
��& �����)���0� 1

(%&
��&
��������!���� 2*

The description and effect of each constant is described in this part. The values offered are
default values which have been tested.

• IP_CMD: This constant is a special next header code for the IP header as described
in the design section 4.1. It serves as a flag in order to tell the compartment that
this IP datagram can have two special meanings (depending on the first byte in the
payload):

– On the one hand the IP_CMD next header means that this IP datagram handles
resolve processes, therefore, is a resolve request or resolve response message.

– On the other hand it means that this IP datagram delivers some payload for a
target not to identify by the next header code but by the description carried within
(e.g. uses a multicast or broadcast information channel).

• IP_DLV: This constant always comes together with an IP_CMD datagram. It means
that this IP datagram is a broadcast data message delivering some payload for a
target not to identify by the next header code but by the description carried within. It
is the first byte of the payload.

• IP_RES: This constant always comes together with an IP_CMD datagram. It means
that this IP datagram is a resolve request message. It is the first byte of the payload.

• IP_RSP: This constant always comes together with an IP_CMD datagram as well. It
means that this IP datagram is a resolve response message. Again, it is the first byte
of the payload.

46

4.2 Implementation IP and Routing in ANA

• RES_ID_SIZE: This size in bytes defines the size of the resolve ID identifying different
resolve process.

• MAX_INTERFACES: This parameter stands for the maximum amount of network in-
terfaces, e.g. Ethernet bricks, for one node. This value is necessary because at a
certain point in the program source code, every interface has to be addressed sepa-
rately.

For the other specifications and data structures which one can find in the header file, refer
to the appendix C containing the doxygen documentation of the program source code.

Additionally, the implementation of RIP in ANA offers some parameters as well. They
are defined directly in the RIP brick.

• RIP_UP_TIME: Defines the time in seconds between periodic ROUTEUP messages.

• RIP_DEL_TIME: This parameter defines the starting value for the age of an entry in
the routing table, regarding garbage collecting issues.

4.2.4 Communication Interfaces

This part describes the important interfaces between the individual bricks. Without a clear
definition of the interfaces, the architecture can not provide the aspired flexibility. Therefore,
one has to picture out the message format of the exchanged information. Messages inside
a node are XRP encoded (with the data message from a user application after a successful
resolve process as one exception). Messages between nodes are genuine IP datagrams.
The following explanations want to picture out the XRP message encoding in detail (XRP
commands and XRP classes as introduced in section 3.4). Additionally, the IP datagrams
between nodes are disclosed. Obviously, this part is fundamental in order to understand
and use the interfaces inside and between nodes.

4.2.4.1 Inside a Node

• Figure 4.5 shows the XRP messages received by the encapsulation brick:

This is the interface between user application and IP compartment. If one develops a
user application of IP he has to use this interface.

XRP_CMD_PUBLISH
XRP_CLASS_DESCRIP
XRP_CLASS_LABEL
(XRP_CLASS_LABEL)

XRP_CMD_UNPUBLISH
XRP_CLASS_DESCRIP
XRP_CLASS_LABEL
(XRP_CLASS_LABEL)

XRP_CMD_RESOLVE
XRP_CLASS_CONTEXT
XRP_CLASS_TARGET
XRP_CLASS_CHANTYPE
XRP_CLASS_DESCRIP
(XRP_CLASS_LABEL)

Figure 4.5: XRP messages received by the encapsulation brick

47

IP and Routing in ANA 4.2 Implementation

– The PUBLISH message is encoded as follows:· XRP_CMD_PUBLISH: Identifies a PUBLISH message.· XRP_CLASS_DESCRIP: Contains the description of the user application
publishing itself.· XRP_CLASS_LABEL: Contains the data receive IDP in order to send data
to the user application publishing itself.· (XRP_CLASS_LABEL): Contains another IDP which can be used to send
back a confirmation of the publish process. This class is optional.

– The UNPUBLISH message is encoded as follows:· XRP_CMD_UNPUBLISH: Identifies an UNPUBLISH message.· XRP_CLASS_DESCRIP: Contains the same description of the user appli-
cation published before.· XRP_CLASS_LABEL: Contains the data receive IDP published before.· (XRP_CLASS_LABEL): Contains another IDP which can be used to send
back a confirmation of the unpublish process. This designation is optional.

– The RESOLVE message is encoded as follows:· XRP_CMD_RESOLVE: Identifies a RESOLVE message.· XRP_CLASS_CONTEXT: Contains the context, e.g. the desired scope for
this RESOLVE message. More information one can find in section 3.3.· XRP_CLASS_TARGET: Contains the target description.· XRP_CLASS_CHANTYPE: Contains the channel type in order to distin-
guish between different resolve behaviours. Again, more information is writ-
ten in section 3.3 and in the realization part.· (XRP_CLASS_DESCRIP): Contains the description of the origin user appli-
cation. This designation is optional.· XRP_CLASS_LABEL: Contains an IDP which is used to send back the
result of the resolve process, e.g. the IDP opening an information channel
to the desired target.

Additionally, the encapsulation brick is responsible to receive and forward data mes-
sages (payload) after having opened an information channel by a resolve process
successfully. This data message is an arbitrary message and obviously has no de-
fined format. While leaving the functional block of IP, it will be encapsulated with an
IP header.

• The XRP message received by the checksum brick is depicted in figure 4.6:

This is the interface between the encapsulation and the checksum computing algo-
rithm.

XRP_CMD_DATA
XRP_CLASS_MESSAGE
XRP_CLASS_LABEL

Figure 4.6: XRP message received by the checksum brick

48

4.2 Implementation IP and Routing in ANA

– The DATA message is encoded as follows:· XRP_CMD_DATA: Identifies a DATA message.· XRP_CLASS_MESSAGE: Contains the IP header from which one wants
to compute the checksum. Actually, an arbitrary message with 20 bytes in
length could be included.· XRP_CLASS_LABEL: Contains the IDP used to send back the checksum.

• Figure 4.7 pictures out the XRP messages received by the forwarding table brick:

This is the interface between encapsulation and the forwarding table as well as be-
tween routing and the forwarding table.

XRP_CMD_CHANGE
XRP_CLASS_IPADDRESS
XRP_CLASS_IPMASK
XRP_CLASS_IPNHOP
XRP_CLASS_LABEL
XRP_CLASS_LABEL

XRP_CMD_DISCOVER
XRP_CLASS_IPADDRESS
XRP_CLASS_LABEL

XRP_CMD_ROUTEREQ
XRP_CLASS_LABEL

Figure 4.7: XRP messages received by the forwarding table brick

– The CHANGE message is encoded as follows:· XRP_CMD_CHANGE: Identifies a CHANGE message.· XRP_CLASS_IPADDRESS: Contains the subnet address.· XRP_CLASS_IPMASK: Contains the subnet mask.· XRP_CLASS_IPNHOP: Contains the IP address of the next hop.· XRP_CLASS_LABEL: Contains the IDP for the according interface, e.g.
Ethernet brick.· XRP_CLASS_LABEL: Contains another IDP used to send back a confir-
mation of the updating process.

– The DISCOVER message is encoded as follows:· XRP_CMD_DISCOVER: Identifies a DISCOVER message.· XRP_CLASS_IPADDRESS: Contains the destination IP address of an IP
datagram which has to be forwarded.· XRP_CLASS_LABEL: Contains the IDP used to send back the result of the
discover process, e.g. the next hop and the IDP for the according interface,
e.g. Ethernet brick.

– The ROUTEREQ message is encoded as follows:· XRP_CMD_ROUTEREQ: Identifies a ROUTEREQ message.· XRP_CLASS_LABEL: Contains the IDP used to send back all entries of
the forwarding table.

49

IP and Routing in ANA 4.2 Implementation

• The XRP message received by the RIP brick can be seen in figure 4.8:

These messages characterize no additional interface but describes the routing adver-
tisements for the routing process.

XRP_CMD_ROUTEUP
XRP_CLASS_IPADDRESS
XRP_CLASS_IPMASK
XRP_CLASS_IPNHOP
XRP_CLASS_METRICS

Figure 4.8: XRP messages received by the RIP brick

– The ROUTEUP message is encoded as follows:· XRP_CMD_ROUTEUP: Identifies a ROUTEUP message.· XRP_CLASS_IPADDRESS: Contains the subnet address.· XRP_CLASS_IPMASK: Contains the subnet mask.· XRP_CLASS_IPNHOP: Contains the IP address of the next hop.· XRP_CLASS_METRICS: Contains the amount of hops to the correspond-
ing subnet through the contained next hop.

Note that RIP actually exchanges these advertisements between nodes. While
leaving the node the ROUTEUP message will be encapsulated with an IP header
and thus becomes a data message because in this Master Thesis RIP is imple-
mented as an IP user application.

4.2.4.2 Between Nodes

• Figure 4.9 shows the IP datagrams of resolve request and resolve response mes-
sages:

0x4 0x5
0 4 8 Bits

ip header

0x00 total_length
16 31

0x0000 0x4000
0x40 IP_CMD checksum

source_address
destination_address

IP_RES target_length target
source_length (source_description)

0x4 0x5 0x00 total_length
0x0000 0x4000

0x40 IP_CMD checksum
source_address

destination_address

ip header

IP_RSP

resolve_id

resolve...
...id result_1 result_2 etc.

Figure 4.9: IP datagrams of resolve request (top) and resolve response (bottom) messages

50

4.2 Implementation IP and Routing in ANA

Both message types carry of course an IP header in front. The IP header contains
a special flag in the next header field as described in the design section 4.1. The
IP_CMD code in the next header field identifies this special type of message and
leads to a special treatment which differs from data messages. In order to distinguish
between resolve request and resolve response messages, one has to look at the first
byte of the payload.

– resolve request message:· IP_RES: This flag identifies a resolve request message. It is the first byte of
the payload.· target_length: The length of the description of the desired target, declared
in bytes.· target: The description of the desired target.· source_length: The description length (in bytes again) of the origin user
application.· source_description: The description of the source. This information is
optional. If there is no description of the source given, the description length
is zero.· resolve_id: The resolve ID is a random number generated while sending
a resolve request message and identifies each resolve process in order to
deal with further resolve response messages.

– resolve response message:· IP_RSP: This flag identifies a resolve response message. It is the first byte
of the payload.· resolve_id: The resolve ID of the preceding resolve request message.· result_1, ...: The next header codes of each target found by the resolve
process (explained in 4.1).

• The IP datagrams of data messages are depicted in figure 4.10:

0x4 0x5
0 4 8 Bits

ip header

0x00 total_length
16 31

0x0000 0x4000
0x40 IP_CMD checksum

source_address
destination_address

IP_DLV target_length target
source_length (source_description)

0x4 0x5 0x00 total_length
0x0000 0x4000

0x40 n_head checksum
source_address

destination_address

ip header

payload

source_length (source_description)
payload

Figure 4.10: IP datagrams of broadcast (top) and unicast (bottom) data messages

51

IP and Routing in ANA 4.2 Implementation

This message type can appear in two different modalities. The difference is that a
preceding resolve process could have been done in two ways. On the one hand,
the channel type of a preceding resolve process could have been ’b’ or ’m’ in order
to open an information channel for multiple targets. On the other hand, the channel
type was either ’u’ or ’a’ in order to reach exactly one target. More on channel types
can be found in section 3.3 or 4.1. Hence, for a broadcast data message for multiple
targets, one can not use the next header field of the IP header but an additional target
description is included. For a unicast data message for exactly one target one can
use the next header field in order to deliver the message.

– data message for multiple targets:· IP_DLV: This flag identifies a data message for multiple targets. It is the first
byte of the payload.· target_length: The length of the description of the desired targets, declared
in bytes.· target: The description of the desired targets.· source_length: The description length (in bytes again) of the origin user
application.· source_description: The description of the source. This information is
optional. If there is no description of the source given, the description length
is zero.· payload: The actual payload of the data message.

– data message for exactly one target:· n_head: This is the next header code int the next header field of the IP
header in order to deliver the data message to the desired target.· source_length: The description length (in bytes) of the origin user applica-
tion.· source_description: The description of the source. This information is
optional. If there is no description of the source given, the description length
is zero.· payload: The actual payload of the data message.

4.2.5 The Bricks

This part deals with each brick separately. It gives a brief description of the purpose of
every brick and additionally a well-explained illustration of the internal data processing.
If one wants to know more about certain data processing, refer to the comments in the
program source code and to the doxygen documentation in the appendix C.

52

4.2 Implementation IP and Routing in ANA

4.2.5.1 Encapsulation Brick

The encapsulation brick is the main brick of the functional block of IP. It deals, as the
name implies, with the encapsulation of IP datagrams. Furthermore, it processes resolve
requests in order to open information channels to the desired targets. The encapsulation
brick is also responsible to deliver messages correctly, e.g. it is concerned about forwarding
and local delivery.

To become part of the architecture, there are eight different kind of messages the en-
capsulation brick is able to receive regularly during lifetime:

• PUBLISH messages

• UNPUBLISH messages

• RESOLVE messages

• Data messages (payload) from a local user application

• CONFIG messages

• resolve request messages

• resolve response messages

• data messages from a neighbour node

there exist two different data receive IDPs in order to separate messages from neighbour
nodes and from a local brick. The data receive IDP for the neighbour nodes is published in
the Ethernet brick and the one for local bricks is published in the KVR of the MINMEX.

Receiving a PUBLISH message

As soon as the encapsulation brick receives a PUBLISH message from a user application
the following steps, depicted in figure 4.11, are performed:

Send back confirmation

QREP
Store next header code,
description and IDP

PUBLISHPUBLISH

Decode description and
IDP

Generate next header
code

„control“
message

Figure 4.11: Data processing of the encapsulation brick receiving a PUBLISH message

53

IP and Routing in ANA 4.2 Implementation

1. First of all, the description and according IDP are decoded.

2. A unique next header code for the next header field for the origin user application
is generated. This is done by dint of the random number generator and it is corre-
sponding to the next header field in the IP header one byte in size. Additionally, it
is made sure that the next header differs from IP_CMD and from the existing next
header codes of the user applications already published.

3. The next header code, the description and the according IDP are stored in the QREP
of the encapsulation brick in order to be able to deliver further data messages to the
user application.

4. Finally, the PUBLISH message is sent back as a confirmation, if a reply IDP is de-
clared.

Receiving an UNPUBLISH message

As soon as the encapsulation brick receives an UNPUBLISH message from a user appli-
cation, the proximate instructions, showed in figure 4.12, are executed:

Send back confirmation

QREPDelete entry

UNPUBLISHUNPUBLISH

Decode description

„control“
message

Figure 4.12: Data processing of the encapsulation brick receiving an UNPUBLISH message

1. The description is decoded.

2. The entry is deleted from the QREP.

3. In the end, the UNPUBLISH message is sent back as a confirmation if an IDP to use
for answering is declared.

Receiving a RESOLVE message

Figure 4.13 indicates the details run by receiving a RESOLVE message from a user appli-
cation which intends to open an information channel:

54

4.2 Implementation IP and Routing in ANA

Decode context, target,
description and channel

type

Send to forwarding table

RESOLVEVVRESOLVE

DISCOVEVV RDISCOVER

Context = local?

Channel type = ‚b’ or ‚m’?

Lookup target

QREP

Create IDP

Send back IDP

Context = „*“?

Y

N

Y

Broadcast resolve on all
attached subnets

Y

Encode message

Receive IDP for
according subnet and

next hop

Resolve next hop on
subnet

N

Context = „*“?

N

N

Make header and
message

Broadcast resolve on all
attached subnets

Resolve
process data
structure

Store entry

Y

Send to next hop(s)

rerr solvevv rerr questresolve request

Encode message

DADD TATTDATA

Send to checksum
computation

Receive and add
checksum

„control“
message

Figure 4.13: Data processing of the encapsulation brick receiving a RESOLVE message

55

IP and Routing in ANA 4.2 Implementation

1. If the context is local, the desired target is looked up in the QREP. On success, an
IDP for the information channel will be created and sent back to the user application.

2. Otherwise, the context is not local and it depends further on the channel type. If the
channel type is ’b’ or ’m’, the instructions are addicted to the context again:

(a) When the context is ”*”, a broadcast resolve on all attached subnets is performed
and the resulting IDP for the desired information channel will be sent back to the
user application.

(b) When the context differs from ”*”, one has to discover a specific node. Therefore,
a DISCOVER message is encoded and sent to the forwarding table brick. With
the response of the forwarding table brick, the next hop can be resolved and the
resulting IDP is sent back to the user application.

3. Else, the channel type is ’u’ or ’a’. This means that the encapsulation brick has to send
a resolve request message to make sure that one really receives a resolve response
message. Depending on the context again:

(a) When the context is ”*”, a broadcast resolve on all attached subnets is per-
formed, the resolve process is stored in the resolve process data structure (ap-
pendix C) and a resolve request message is sent to the next hops.

(b) When the context differs from ”*”, a DISCOVER message is sent to the forward-
ing brick in order to discover the next hop. The resolve process is stored in the
resolve process data structure and a resolve request message is sent to the next
hop.

Receiving a data message (payload) from a local user application

As soon as the encapsulation brick receives a data message (payload) from a user applica-
tion after having successfully opened an information channel, the following steps, depicted
in figure 4.14, are performed:

Make header

Send to next hop

DataData

Encode message

DADD TATTDATA

Send to checksum
computation

Receive and add
checksum

„control“
message

Figure 4.14: Data processing of the encapsulation brick receiving a data message from a
local user application

56

4.2 Implementation IP and Routing in ANA

1. Simply, the IP header with the correct checksum is added in front of the payload.

2. Then, the message is sent to the target.

Receiving a CONFIG message

When the encapsulation brick receives a CONFIG message from the configuration brick,
the proximate details, as one can see in figure 4.15, are executed:

Send back confirmation

Device address
data structure

Store entry

CONFIGCONFIG

Decode IP address, IP
mask and IDPs to
Ethernet and config

Encode message

PUBLISHPUBLISH

Send to Ethernet brick

Figure 4.15: Data processing of the encapsulation brick receiving a CONFIG message

1. First of all, the IP address, the subnet mask and the IDP of the according interface,
e.g. Ethernet brick are, decoded.

2. A PUBLISH message is sent to the Ethernet brick containing ”ip” and the IP address
in order to be reachable through Ethernet. This step pictures out the building of a
dynamic protocol stack.

3. The information are stored in the device address data structure (appendix C). This
data structure is needed in order to trace all the attached subnets and to know the
configured IP addresses.

4. Finally, a confirmation is sent back.

57

IP and Routing in ANA 4.2 Implementation

Receiving a resolve request message

As soon as the encapsulation brick receives a resolve request message from a neighbour
node the following steps, depicted in figure 4.16, are performed:

Drop data

rerr solvevv rerr questresolve request

Checksum correct?N

Packet for me?

Y

Send to forwarding table

DISCOVEVV RDISCOVER

Encode message

Receive IDP for
according subnet and

next hop

Resolve next hop on
subnet

N

Send to next hop

TTL ≤ 1?

Decrease TTL

N

Y

Lookup
QREP

Y

Make header and
message

rerr solvevv rerr sps onseresolve response

Encode message

DADD TATTDATA

Send to checksum
computation

Receive and add
checksum

„control“
message

Figure 4.16: Data processing of the encapsulation brick receiving a resolve request mes-
sage

58

4.2 Implementation IP and Routing in ANA

1. After validating the checksum and the TTL, the encapsulation brick has to decide if
the message is for itself or has to be forwarded.

2. If the message has to be forwarded, the following details happen:

(a) The TTL is decreased by one.

(b) A DISCOVER message is encoded and sent to the forwarding table.

(c) With the result of the discover process, the next hop for the message can be
resolved.

(d) The message is forwarded to the next hop.

3. Otherwise, the message is meant for this specific node:

(a) The desired target is looked up in the QREP.

(b) A resolve response message is made containing the resolve ID and the found
resolve results. Obviously, a correct checksum is added as well.

(c) The resolve response message is sent back to the origin node.

59

IP and Routing in ANA 4.2 Implementation

Receiving a resolve response message

Figure 4.17 indicates the instructions executed by receiving a resolve response message
from a neighbour node for a specific resolve request message:

Drop data

rerr solvevv rerr sps onseresolve response

Checksum correct?N

Packet for me?

Y

Send to forwarding table

DISCOVEVV RDISCOVER

Encode message

Receive IDP for
according subnet and

next hop

Resolve next hop on
subnet

N

Send to next hop

TTL ≤ 1?

Decrease TTL

N

Y

Lookup Resolve
process data
structure

Y

Create IDP Delete entry

Send back IDP to
requester

„control“
message

Figure 4.17: Data processing of the encapsulation brick receiving a resolve response mes-
sage

60

4.2 Implementation IP and Routing in ANA

1. After validating the checksum and the TTL, the encapsulation brick has to decide if
the message is for itself or has to be forwarded.

2. If the message needs to be forwarded, the following details are executed:

(a) The TTL is decreased by one.

(b) A DISCOVER message is encoded and sent to the forwarding table.

(c) With the result of the discover process, the next hop for the message can be
resolved.

(d) The message is forwarded to the next hop.

3. Otherwise, the message is addressed for this specific node:

(a) The necessary information are looked up in the resolve process data structure
(appendix C).

(b) A DISCOVER message with the IP address of the sender of the resolve re-
sponse message is encoded and sent to the forwarding table brick. With the
answer from the forwarding table, one is able to know which interface has to be
used in order to communicate with the sender node which contains the resolved
target. This is necessary, because the resolve response message itself does not
contain this mandatory information.

(c) An IDP which opens an information channel to the desired target is created and
sent back to the origin requester of the resolve process.

(d) Finally, the entry for the resolve process in the resolve process data structure is
deleted.

61

IP and Routing in ANA 4.2 Implementation

Receiving a data message from a neighbour node

As soon as the encapsulation brick receives a data message from a neighbour node the
following details, depicted in figure 4.18, are performed:

Drop data

datadata

Checksum correct?N

Packet for me?

Y

Send to forwarding table

DISCOVEVV RDISCOVER

Encode message

Receive IDP for
according subnet and

next hop

Resolve next hop on
subnet

N

Send to next hop

TTL ≤ 1?

Decrease TTL

N

Y

Lookup

Remove header

Local deliver

QREP

Y

„control“
message

Figure 4.18: Data processing of the encapsulation brick receiving a data message from a
neighbour node

1. After validating the checksum and the TTL, the encapsulation brick has to decide if
the message is for itself or has to be forwarded.

2. If the message has to be forwarded, the following details are run:

(a) The TTL is decreased by one.

62

4.2 Implementation IP and Routing in ANA

(b) A DISCOVER message is encoded and sent to the forwarding table.

(c) With the result of the discover process, the next hop for the message can be
resolved.

(d) The message is forwarded to the next hop.

3. Otherwise, the message is addressed for this specific node:

(a) The target given (either by the next header code given in unicast data messages
or the description given in broadcast data messages) is looked up in the QREP.

(b) The IP header is removed from the message.

(c) The resulting payload message is delivered locally to the target user application.

4.2.5.2 Checksum Brick

The checksum brick is responsible for checksum computation. It uses the Internet check-
sum algorithm [17] and sums up blocks of two bytes per message. Even though it antici-
pates an IP header, an arbitrary message of 20 bytes in length can be sent to the brick.

To become part of the architecture, there is only one kind of message the checksum
brick is able to receive during lifetime:

• DATA messages

Receiving a DATA message

As soon as the checksum brick receives a DATA message, the proximate instructions, de-
picted in figure 4.19, are performed:

Decode header

DADD TATTDATA

Compute checksum

Send back checksum

Figure 4.19: Data processing of the checksum brick receiving a DATA message

1. The message is extracted from the XRP framing.

2. The checksum is computed.

3. And finally, the checksum is sent back to the reply IDP.

63

IP and Routing in ANA 4.2 Implementation

4.2.5.3 Forwarding Table Brick

The forwarding table brick holds, as the name implies, the forwarding table (implemented as
QREP). It is used to help the encapsulation brick forwarding IP datagrams to the accurate
next hop. Therefore, the forwarding brick is responsible for the correct forwarding process.

To become part of the architecture, there are three different kind of messages the for-
warding table brick is able to receive during lifetime:

• CHANGE messages

• DISCOVER messages

• ROUTEREQ messages

Each message is received at the same data receive IDP published in the KVR of the MIN-
MEX.

Receiving a CHANGE message

Figure 4.20 shows the instructions executed by receiving a CHANGE message from a
possible routing process, e.g. the RIP brick:

Decode subnet address,
subnet mask, next hop

and IDP

CHAHH NGECHANGE

Delete entryNext hop = „%*&delete“?

Forwarding table
Subnet address
Subnet mask
Next hop
IDP

Update entry

N

Y

Show table

Figure 4.20: Data processing of the forwarding table brick receiving a CHANGE message

1. First of all, the subnet address, the subnet mask, next hop and according IDP for the
interface, e.g. the Ethernet brick, are decoded.

2. When the next hop equals ”%*&delete”, the entry for this subnet will be deleted. In this
case, the entry suffers from missing route updates, hence the route died. ”%*&delete”
acts as a magic string.

3. Otherwise, the entry for the certain subnet is updated and the forwarding table is
printed on the brick output.

64

4.2 Implementation IP and Routing in ANA

Receiving a DISCOVER message

When the forwarding table brick receives a DISCOVER message, the following details, as
one can see in figure 4.21, are run:

Decode IP address

DISCOVEVV RDISCOVER

Send back default
gateway

Success?

Y

N

Send back IDP for
according subnet and

next hop

Perform longest prefix
match

Default gateway
specified?

No default gateway
specified!N

Y

Figure 4.21: Data processing of the forwarding table brick receiving a DISCOVER message

1. Foremost, the IP address is decoded.

2. A longest prefix match is performed.

3. If this ends up in a success, the discovered next hop and the IDP for the according
interface, e.g. Ethernet brick, is sent back.

4. Otherwise, the default gateway is sent back, if one is specified. If no default gateway
is specified, a timeout occurs.

65

IP and Routing in ANA 4.2 Implementation

Receiving a ROUTEREQ message

As soon as the forwarding table brick receives a ROUTEREQ message, the following in-
structions, illustrated in figure 4.22, are performed:

Gathering each entry

ROUTETT REQROUTEREQ

Forwarding table
Subnet address
Subnet mask
Next hop
IDP

Encode message

Send back message

ROUTETT REQROUTEREQ

Figure 4.22: Data processing of the forwarding table brick receiving a ROUTEREQ mes-
sage

1. The forwarding table brick gathers every entry of the forwarding table.

2. The result is encoded as an XRP message and sent back to the requester, e.g. the
RIP brick.

4.2.5.4 RIP Brick

The RIP brick is concerned about routing issues. As the name implies, it implements RIP
in ANA. Moreover, the RIP brick updates the forwarding table continuously. The route
updates are triggered upon a change in the routing table as well as sent by a periodic timer
(implemented with ANA timers).

To become part of the architecture, there is just one kind of message the RIP brick
receives regularly during lifetime:

• ROUTEUP messages

Each message is received at the same data receive IDP published in the KVR of the MIN-
MEX.

66

4.2 Implementation IP and Routing in ANA

Receiving a ROUTEUP message

Figure 4.23 indicates the instructions executed by receiving a ROUTEUP message:

Decode subnet address,
subnet mask, next hop

and metrics

ROUTETT UPROUTEUP

Subnet known? Store entry

Metrics < metrics stored?

RIP table
Subnet address
Subnet mask
Next hop
Metrics

Update entry

Message not interesting

N

Y

Y

N

Show table

CHAHH NGECHANGE

Send to forwarding table

Encode messages

ROUTETT UPROUTEUP

Send to all neighbours

Figure 4.23: Data processing of the RIP brick receiving a ROUTEUP message

1. The subnet address, the subnet mask, the next hop and the metrics are decoded.

2. If the subnet is unknown, the entry is stored in the routing table.

3. Else, the subnet is known and the entry of this specific subnet is updated providing
the metrics is lower than the ones stored. Should the metrics not be interesting, the
message will be dropped.

4. When the ROUTEUP message leads to a change in the routing table, the table is
shown and two types of XRP messages are encoded and sent:

(a) A ROUTEUP message in order to dispread the new routing information. Thus,
this message will be encapsulated with an IP header and will leave the node.

67

IP and Routing in ANA 4.3 Validation

(b) A CHANGE message for the local forwarding table brick in order to update the
forwarding table.

Besides the instructions triggered by an event as described above, the brick owns a timer
function in order to run periodic route updates for the neighbour nodes. Moreover, there is
also a garbage collecting function existing which tidies up with route entries, suffering from
missing updates.

4.2.5.5 Sample User Brick

This Master Thesis uses a sample user brick to be able to implement and also validate the
architecture. The sample user brick represents a specific user application of the functional
block of IP. To sum it up, the sample user brick does the following:

• Publishes ”ip_usr” along with a receive data IDP in the KVR of the MINMEX.

• Sends a message to another entity of the sample user brick on an arbitrary node:

– Sends a RESOLVE message to the encapsulation brick with a specific context,
”ip_usr” as target, channel type ’u’ and the source description ”ip_usr”.

– Upon receiving back an IDP to the desired target, it sends a data message
containing a string.

• Displays all the received messages on the receive data IDP along with the IP address
of the sender and the description.

One is able to choose the specific context for the resolve request at runtime by typing an
auxiliary command line argument:

� ���������	
� ��
��
��������������� �� �������

4.3 Validation

This section demonstrates the validation of the implementation of IP and RIP in ANA. In
order to validate the implementation, this Master Thesis used the TIK testbed1 to install an
ANA network running IP and RIP. To configure an arbitrary topology the vlink brick [4] for
setting up virtual links has been used. One can find more instructions how to run IP and
RIP in ANA in the appendix A. The resulting ANA network and IP compartment has been
taken to run several deciding scenarios.

• First of all, this Master Thesis used the sample user brick described before in order to
send simple string messages from one node to another in the same IP subnet. The
resulting IP datagrams all looked accurate and didn’t face any problems in finding the
targets immaculate.

• Moreover, the same test has been accomplished with two subnets as a first interesting
test, highlighting the novel feature for an ANA network. Therefore, the messages have
been sent over two hops, with a router in between. An ANA IP router only needs to
start IP and RIP in ANA but no user application is necessary. All IP datagrams found
their way to the desired targets over one hop properly.

• Furthermore, sending IP datagrams over just two hops is not enough. Now, the mes-
sages are sent over four hops. Thus, a topology with five nodes (including three
routers) has been set up. The IP datagrams all looked good again and followed their
way to the desired targets.

1A collection of hosts attached to both wired Ethernet and wireless LAN interfaces [39]

68

4.3 Validation IP and Routing in ANA

• Additionally, this Master Thesis intended to validate an application scenario. Hence,
a chat application [2] was used this time in order to generate IP traffic. The ANA
network consisted of three nodes in three different subnets as well as a router con-
necting them. Furthermore, this validation scenario was tested with wired Ethernet
and wireless LAN interfaces. In the wired scenario all IP datagrams found their way to
the desired targets via router properly, whereas in the wireless scenario, the IP data-
grams encountered difficulties. The packet loss in wireless networks is much higher,
therefore IP datagrams are lost in this validation scenario in some cases because no
transport control has been implemented so far.

In the second part of this validation section, this Master Thesis would like to reveal the
communication in detail and look at the IP datagrams with a magnifying glass. Therefore,
an ANA network and IP compartment is set up with two nodes communicating together
by the chat application over IP again. The IP addresses of the nodes are configured as
”10.0.0.1” and ”10.0.0.2”, respectively. The IP datagrams concerning the communication
of the nodes were grabbed by wireshark (ethereal) [44]. Now, if the chat application on
”10.0.0.2” wants to send ”Hi there!” to ”10.0.0.1”, one can observe three IP datagrams:

• A resolve request message from 10.0.0.2 to 10.0.0.1

• A resolve response message from 10.0.0.1 to 10.0.0.2

• A data message containing ”Hi there!” from 10.0.0.2 to 10.0.0.1

Remember, before one is able to communicate with a desired target, an information channel
has to be opened by a resolve process. The IP datagram captured on the wire of the resolve
request message is depicted in figure 4.24:

........%..X....

.....AL...%..X.b

..E..’..@.@.&?..

.........chat...

chat.$..V

Legacy Ethernet Header
ANA Ethernet Header
ANA IP Header
Payload

FF FF FF FF FF FF 00 11 25 82 D3 58 AC DC 00 00

00 01 01 0E A6 41 4C DE 01 11 25 82 D3 58 0B 62

00 00 45 00 00 27 00 00 40 00 40 96 26 3F 0A 00

00 02 0A 00 00 01 98 00 05 63 68 61 74 00 00 05

63 68 61 74 00 24 11 FD 56

Figure 4.24: IP datagram of the resolve request message

One can see the legacy Ethernet header, the ANA Ethernet header, the ANA IP header
and the payload of the message. The legacy Ethernet header shows the destination and
source MAC address as well as the Ethernet type field:

• The destination MAC address is the broadcast address. One can
notice that all messages for ANA are broadcasted on the wire.

• The source MAC address is the MAC address of the node config-
ured with the IP address 10.0.0.2.

69

IP and Routing in ANA 4.3 Validation

• The Ethernet type field shows ������. This is a detection flag in order to highlight
communication for ANA (in comparison to ������ which would declare a standard IP
datagram or ������� would declare a IPv6 datagram).

The ANA Ethernet header that shows the destination and source MAC address again as
well as the Ethernet type field:

• The destination MAC address �����	��
�
��	 is the MAC address chosen by the
vlink brick of the node configured with the IP address 10.0.0.1. Note that the first byte
is different from the real MAC address because this byte indicates the vlink ID.

• The source MAC address �����������
�� is the MAC address chosen by the vlink
brick of the node configured with the IP address 10.0.0.2. Note that the first byte
is also different from the real MAC address because this byte indicates the vlink ID
again.

• The Ethernet type field shows ������. This is a next header code in order to highlight
communication for the IP compartment in ANA.

The ANA IP header looks as follows:

• ��
� indicates the version set to ”4” and the header length set to ”5”.

• The ToS field is set to zero.

• The total length shows ������ which one can convert to 39 bytes. Counting them all
shows that this value is correct.

• The field concerning fragmentation is ������
��� corresponding to a ”Do not frag-
ment” flag.

• The TTL shows ��
� which one can convert to ”64”. This value is also correct.

• The next header code shows ���� which declares an IP_CMD message what is cor-
rect as well.

• Then, the checksum ����
�, the source and destination IP addresses are shown
which all are correct.

Finally the payload of this resolve request message looks as follows:

• The first byte contains ���� which identifies a valid resolve request message.

• Then, the length of the target description (������) and the target description itself
(���
�����
�� = ”chat”) are present.

• Not only the length of the source description but also the source description itself look
exactly the same.

• Finally, ���
������ stands for the resolve ID for this resolve process.

70

4.3 Validation IP and Routing in ANA

The IP datagram captured on the wire of the resolve response message is pictured in figure
4.25:

.........AL.....

....%..X...AL..s

..E.....@.@.&L..

.......$..Vw

Legacy Ethernet Header
ANA Ethernet Header
ANA IP Header
Payload

FF FF FF FF FF FF 00 0E A6 41 4C DE AC DC 00 00

00 01 01 11 25 82 D3 58 01 0E A6 41 4C DE D3 73

00 00 45 00 00 1A 00 00 40 00 40 96 26 4C 0A 00

00 01 0A 00 00 02 99 24 11 FD 56 77

Figure 4.25: IP datagram of the resolve response message

Again, one can observe the legacy Ethernet header, the ANA Ethernet header, the ANA IP
header and the payload of the message. It is not necessary to explain everything again,
except for the payload:

• The first byte contains which identifies a resolve response message and is cor-
rect.

• Then, the resolve ID is given. Note that it is naturally identical to the one
in the resolve request message.

• And finally, the discovered next header code is .

Now the wanted information channel from 10.0.0.2 to the desired target on 10.0.0.1 is
opened and the actual communication can start. The figure 4.26 shows the IP datagram of
the data message:

........%..X....

.....AL...%..X.b

..E..’..@.@w&^..

........chat.Hi

there!...

Legacy Ethernet Header
ANA Ethernet Header
ANA IP Header
Payload

FF FF FF FF FF FF 00 11 25 82 D3 58 AC DC 00 00

00 01 01 0E A6 41 4C DE 01 11 25 82 D3 58 0B 62

00 00 45 00 00 27 00 00 40 00 40 77 26 5E 0A 00

00 02 0A 00 00 01 00 05 63 68 61 74 00 48 69 20

74 68 65 72 65 21 00 00 00

Figure 4.26: IP datagram of the data message

71

IP and Routing in ANA 4.4 Summary

Interesting to explain:

• The next header code in the next header field of the IP header shows ���� as ex-
pected.

• The message sent was �������������	���	�
�� = ”Hi there!”.

The validation is a resounding success and the implementation works accurately.

4.4 Summary

IP as the first use case for a complex network protocol, extending the features of ANA in-
creasingly, was successfully designed and implemented in the ANA Playground. Because
of the IP compartment it is now possible to send messages over disparate subnets. Fur-
thermore, RIP provides the leadoff opportunity to perform routing in an ANA network.

IP and RIP in ANA exhibits some variances compared to the standard IP. It does not offer
the full functionality of the standard IP. Nevertheless, the most important features like the
IP header, encapsulation, checksum computation, forwarding and the addressing scheme
are supported. Additionally, RIP offers the full functionality of the standard RIP.

Thanks to the modular concept, the decomposition discloses exceeding flexibility whereas
each protocol piece can be exchanged and extended effortlessly. The architecture of one
node participating in the compartment contains four individual and specialized bricks, sep-
arating and modeling the fundamental functionality of the protocol:

• Encapsulation brick: The encapsulation brick is the main brick of the functional block
and handles the IP headers and the encapsulation of the IP datagrams. Moreover, it
is responsible to deliver data messages locally and to forward them to remote nodes.

• Checksum brick: The checksum brick computes the checksums.

• Forwarding table brick: The forwarding table brick holds the forwarding table and is
therefore responsible for the accurate forwarding of the forwarding process.

• RIP brick: The RIP brick is executing routing in ANA and updates the forwarding table
continuously.

Together, the explained bricks build the functional block of IP and RIP. The communication,
hence the interfaces between the bricks and the nodes, are elaborately defined in order
to provide the aspired flexibility. Node internal communication is encoded as XRP mes-
sages with well-defined commands and classes whereas node external communication is
achieved by genuine IP datagrams.

In the end, several crucial validation scenarios exemplify the respectable implementa-
tion of IP and RIP in ANA. Forwarding paths as well as the format of IP datagrams are
validated correctly by this Master Thesis.

72

Chapter 5

Field-Based Service Discovery
for ANA

Whereas the first part of this Master Thesis is concerned about the Internet Protocol (IP)
in the ANA world, the second part deals with an exploring novel protocol type not yet im-
plemented in today’s Internet. Field-based service discovery is an intuitive combination of
field-based routing explained in 2.5 and publish-subscribe service discovery introduced in
2.4. The ultimate goal is to publish a specific service type network-wide in order to provide
address-agnostic service discovery.

The first section of this chapter deals with the design of such a field-based service
discovery compartment for ANA. It gives an overview and describes the requirements and
processes to achieve the aimed goal as well as the decomposition and predestined fitting
in the modular and flexible ANA world. Additionally, it explains the terminology of dynamic
containers acting as mandatory communication interfaces. Section 5.2 specifies the precise
implementation and development of every brick involved. The field-based service discovery
compartment is finally validated in section 5.3 and summarized in the last section of this
chapter.

5.1 Design

This section pictures out the design of a field-based service discovery protocol. Besides the
description of the protocol itself, it highlights above all the exchangeability of the individual
protocol pieces thanks to the modular and flexible decomposition.

5.1.1 Protocol Overview

The ultimate goal of the field-based service discovery compartment is the opportunity of
publishing a certain service type network-wide. Thus, client applications are able to dis-
cover this specific service type by sending an address-agnostic subscribe message. More-
over, in case of multiple service instances of the same type, the client is guided auto-
matically to the best service instance regarding the network conditions and capacities of
service, respectively.

The network-wide publishing is obtained by a scalar field overlay for each service type.
A scalar field is analogous to a potential in electrostatics, resulting from electrical point
charges. Hence, every node participating in the network computes its potential, respecting
a specific service type with a specific point charge considered as the capacity of service
(CoS). One is free to choose the potential function building the field. Possibilities are for
example an electrostatic field, a magnetic field, a heat field or many other conceivable

Field-Based Service Discovery for ANA 5.1 Design

scalar fields and combinations. The defined distribution holds its maximum at the service
instance itself and is monotone sloping along the other nodes building the network.

Naturally, the described field is not static during network lifetime. As soon as multiple
service instances of a specific service type are published, the resulting field is a superpo-
sition of the individual field quotients. Furthermore, a service instance is able to instantly
update the published CoS. Thus, a specific field for a specific service type depends per-
sistently on emergence, disappearance and CoS of every service instance. Moreover,
different service types in a network result in multiple field overlays for the network which
exist simultaneously and may differ regarding their potential functions.

Routing in the field-based service discovery network is done along the steepest gradient
of the field. In order to achieve this, each node gathers all service type potentials from the
neighbour nodes. Now, if a client application tries to discover a specific service type, the
subscribe message will be forwarded to the next node with the highest potential, until it
reaches a service instance. The node containing the service instance holds per definition
an infinite potential, therefore the forwarding process will be stopped and a response can
be sent back. There are several options for sending back a response, depending on the
implementation:

• If the subscribe message carries an identifying address of the client, e.g. an IP or
MAC address, the response message can be sent back by means of a different net-
work protocol such as IP or a data link protocol such as Ethernet, when acting inside
an Ethernet segment. The response message may carry the according address of
the service instance as well, so further communication between client and service
instance is done over the mentioned accessory protocol. In this case, field-based
service discovery is only used for nonrecurring service discovery needs. Thus, field-
based service discovery is acting as a pure routing protocol from a client towards a
service instance. Field-based routing also can be considered as content-based rout-
ing because the routing process along different field overlays is specific to the service
type a packet intends to reach.

• However, field-based service discovery is more than this. Another possibility is to
store the path from client to service instance in the nodes. Each node perceives from
where it receives a subscribe message and forwards the response message back to
the same node. As a result, the response will take exactly the same path back to the
origin (source routing). A drawback of this case is apparently the situation of a node
failure. If one node of the feedback channel is lost, the whole message will be lost.

• A third way of sending back a response is that the client application itself generates
an additional field overlay for the network. In this case the response message can
be forwarded through the network analogously to the subscribe message. Interest-
ingly, this way defines an entirely novel namespace, resulting in field-based service
discovery as full network and routing protocol.

As seen before, field-based service discovery comprehend a lot of different processes
which have to be strongly separated for the design of the architecture. One has to dis-
tinguish between field assembly (publishing), routing, forwarding and information dissemi-
nation between nodes. Every process is independent from the other.

Field assembly is done as soon as a service type is published and every time a new
service instance appears, disappears or updates its CoS. It describes the process where
each node computes its potential for all the service types. On the other hand, routing
describes the process of gathering all the potentials from the neighbour nodes and picking
out the one with the highest potential. Forwarding describes the process of delivering
payload between nodes by dint of the results of the routing process. Finally, dissemination
specifies the way how information is exchanged between nodes. Information in this case is
protocol information like field assembly and route update messages.

74

5.1 Design Field-Based Service Discovery for ANA

5.1.2 Architecture and Decomposition

Field-based service discovery contains many different processes. One has to strongly sep-
arate between field assembly, routing, forwarding and information dissemination. There-
fore, the design and decomposition of such a protocol results in a very modular and flexible
architecture. Every piece is independent from each other and is individually exchangeable.

Dissemination Field Assembly Forwarding

Routing Table Forwarding Table

Route
Update

Update
Table

Discover
Next Hop

Route
Update

Field
Information

Route
Update

Service Client

Subscribe

Response

from / to Neighbours

Route
Update

Data

from / to Neighbours

Data

Response

Subscribe
MessageField

Information

Data

Publish

Unpublish

Publish
Update

ANA Node

Response

Subscribe
Message

Figure 5.1: Node overview of the field-based service discovery architecture

Depicted in figure 5.1, this Master Thesis strongly distinguishes between five different pro-
cesses:

• The field assembly process handles the publishing of service instances and thus
generates the field assembly information. Additionally, it computes all service type
potentials for this specific node by receiving field information from remote service
instances.

• The routing table is responsible to know all potentials of the neighbour nodes in order
to pick out the one with the highest potential.

• The dissemination process deals with the distribution of information between nodes.
Field assembly information and routing information is thereby strongly separated.

• The forwarding process is responsible to forward subscribe messages from client
applications as well as payload. Furthermore, it provides a feedback channel for
response messages from service instances.

75

Field-Based Service Discovery for ANA 5.1 Design

• The forwarding table holds for each service type the next hop with the highest potential
because forwarding is done along the steepest gradient of the field. Therefore, the
forwarding table supports the forwarding process.

The benefits are obvious and eminent. If one wants to improve the dissemination process,
only the dissemination piece of the architecture needs to be exchanged. If one needs to
establish a different field type overlay for the network, only the field assembly piece has to
be exchanged. If one is not happy with the way the response messages are sent back,
only the forwarding piece of the architecture needs to be exchanged. Furthermore, routing
and forwarding tables may be used by other protocols and applications if necessary and
the whole architecture can be extended easily.

There is also a disadvantage of the architecture existing: If one big process is divided
into smaller processes, the overhead communication between the smaller processes is
increasing. Nevertheless, there are possibilities to reduce overhead (as seen for example
in the implementation of the dissemination brick) but reducing overhead is not a goal of the
ANA project indeed.

For the purpose of providing the described flexibility, well-defined communication in-
terfaces between the individual processes are needed. The next part explains the mes-
sages between the processes and between nodes in order to make up the functionality of
field-based service discovery whereas the precise message formats can be found in the
implementation section 5.2.

5.1.3 Communication Interfaces

The described architecture needs specific message exchange between the individual pro-
cesses in order to function properly. This part describes all the messages existing by design
and shown in figure 5.1 whereas the implementation section 5.2 deals with the accurate im-
plementation of the interfaces.

The messages serve as dynamic containers so as to offer a flexible and generic for-
matting. The formats of the dynamic containers look identical for different variations of the
field-based service discovery compartment and information exchange whereas the content
can be dynamically chosen regarding the compartment requirements. The unique message
names introduced in this part are used throughout the rest of this documentation.

• Publishing and unpublishing a service instance as well as publish updates:

This is the interface between a service instance and the field-based service discovery
compartment.

– PUBLISH: Publish messages are sent by service instances which want to pub-
lish itself network-wide in order to give client applications the opportunity to dis-
cover the service types.

– UNPUBLISH: Unpublish messages are the opposite of publish messages. A
service instance is able to retract the previous publishing.

– PUBLISHUP: Publish updates are necessary for service instances to keep the
field overlay alive. Furthermore, they give the chance to update the published
CoS.

• Field assembly and route update messages for a service type:

These are the field and routing information which has to be exchanged between
neighbour nodes. Refer to the implementation section 5.2 in order to see how the
messages look like inside a node and between nodes.

76

5.2 Implementation Field-Based Service Discovery for ANA

– FIELD: Field assembly messages are the result of publishing a service instance.
They dispread the field information over the network. Thus, the network partic-
ipants are able to compute their potentials. Field messages are processed by
the field assembly process and distributed by the dissemination process.

– ROUTEUP: Route updates contain routing information. As opposed to the field
assembly process, the routing process wants to get to know the potentials of
all neighbour nodes regarding a specific service type. They are generated by
the field assembly process, stored in the routing table and distributed by the
dissemination process.

• Subscribe, response and data messages:

This is the interface between client applications and the field-based service discovery
compartment. The messages are payload messages which has to be exchanged
between neighbour nodes and are supposed to reach service instances as well as
client applications. Refer to the implementation section 5.2 in order to see how the
messages look like inside a node and between nodes.

– SUBSCRIBE: A subscribe message is sent by a client application which wants
to discover a specific service type. It is forwarded by the forwarding process by
dint of the forwarding table.

– RESPONSE: After having successfully discovered a service instance, a response
message is sent back to the client application.

– DATA: Now, there is an information channel existing between the client applica-
tion and the service instance. The client application has discovered a path to the
service instance and is able to send data messages through this path.

• Updating the forwarding table and discover its entries:

This is the interface to the forwarding table which is used by the routing process as
well as the forwarding process.

– CHANGE: The change message is sent by the routing table and updates the
forwarding table with the routes according to the steepest gradient of the field.

– DISCOVER: In order to discover a route for a specific service type, the forward-
ing process sends a discover message to the forwarding table.

5.2 Implementation

This section describes the concrete programming of the field-based service discovery ar-
chitecture in the ANA Playground. It shows which tools have been used and pictures out
the development of each brick involved building the functional block of field-based service
discovery.

77

Field-Based Service Discovery for ANA 5.2 Implementation

5.2.1 Overview

The decomposition of field-based service discovery fits exactly into the ANA architecture
because it is designed with the MINMEX and Playground in a modular and flexible way as
well. Field-based service discovery is implemented in the ANA Playground as exploring
novel and cutting-edge protocol. The protocol is represented by a functional block. Each
process separated and described in the design section is implemented as an individual
brick whereas all bricks together form the mentioned functional block. The communication
between the bricks as well as the nodes, e.g. the interfaces of the dynamic containers, are
encoded as XRP messages, introduced in 3.4.

Ethernet

Applications

Field-Based
Service Discovery

Figure 5.2: Protocol stack of field-based service discovery running on top of Ethernet

Importantly, the field-based service discovery compartment needs another compartment in
order to send data packets to the wire and to identify the neighbour nodes. For now, the
Ethernet compartment and thus the Ethernet brick [4] is used, as depicted in figure 5.2.
Therefore, the dissemination brick (fbr_diss.c) and the forwarding brick (fbr_forw.c), both
the bricks which are actually communicating with neighbour nodes, are published in the
Ethernet brick. This process describes actually the building of a protocol stack dynami-
cally. The neighbour nodes are found by an AL2 broadcast resolve, explained in section
3.3. Naturally, there are also other data link compartments or even network compartments
imaginable, for example the IP compartment. More on this one can find in the chapter 6.2
about further work.

The ANA API functions, explained in section 3.3, supported by the field-based service
discovery compartment are publish and unpublish functions:

Here, publish results in reachability through a certain compartment and compartment-wide
publicity similar to the publish in an IP compartment (4.2) but address-agnostic. Further-
more, one can imagine the subscribe message as additional API function resulting in open-
ing an information channel to a specific target which is similar to the resolve function.

The figure 5.3 shows a similar illustration as in the design section 5.1. This time, the
individual processes are substituted by the different bricks and the communication between
the bricks shows the real XRP commands.

78

5.2 Implementation Field-Based Service Discovery for ANA

fbr_diss.c fbr_potf.c fbr_forw.c

fbr_rtab.c fbr_ftab.c

ROUTEUP

CHANGE

DISCOVER

ROUTEUP

FIELD

ROUTEUP

fbr_serv.c fbr_clie.c

SUBSCRIBE

RESPONSE

from / to Neighbours

ROUTEUP

DATA

from / to Neighbours

DATA

RESPONSE

SUBSCRIBE
FIELD

DATA

PUBLISH

UNPUBLISH

PUBLISHUP

ANA Node

RESPONSE

SUBSCRIBE

Functional Block:
Field-Based Service Discovery

Figure 5.3: Functional block of field-based service discovery in the ANA Playground

5.2.2 Parametrization

The implementation of field-based service discovery offers some ability to tune on different
parameters. The parameters and constants all are defined in the header file located at

in the trunk directory. The header file is included in all bricks involved.

The parameters are mostly self-explanatory. Nevertheless, the description and effect of
each parameter can be read in this part. The values offered are default values which have
been tested.

• PUBLISH_TTL: Defines the time to live for FIELD messages. Here, one is able to
change the scope of the field resulting from publishing a service instance. If the TTL
is over, the FIELD message will be dropped.

• SUBSCRIBE_TTL: Defines similar to the parameter above the maximum scope of
SUBSCRIBE messages. If a SUBSCRIBE message has to hop over more nodes
than specified here, it will be dropped.

79

Field-Based Service Discovery for ANA 5.2 Implementation

• SERVICE_UPDATE_TIME: Defines the time in seconds between periodic PUBLISHUP
messages from the service instances. For now, each service instance has an iden-
tical publish update time. If some service instance is rarely supposed to change or
even needs to update more often (for example a gateway with the bandwidth declared
as CoS), an individual publish update time can be hard-coded.

• ROUTE_UPDATE_TIME: Defines the time in seconds between periodic ROUTEUP
messages.

• GARBAGE_UPDATE_TIME: Defines the time in seconds between periodic garbage
collecting processes. The garbage collecting process is decreasing the ages of sev-
eral service type, service instance, potential or route entries in data structures of the
bricks starting at the value of GARBAGE_LIFES. The described PUBLISHUP and
ROUTEUP messages respectively reset the age of the belonging entries to the value
of GARBAGE_LIFES. If an age is becoming zero, the entry will be deleted.

• GARBAGE_LIFES: As described above, this parameter defines the starting value
for the ages of service type, service instance, potential and route entries in the data
structures of the bricks. Together with the parameter GARBAGE_UPDATE_TIME,
one is able to balance the garbage collecting process.

• MAX_INTERFACES: This parameter stands for the maximum amount of network in-
terfaces, e.g. Ethernet bricks, for one node. This value is necessary because at a
certain point in the program source code, every interface has to be addressed sepa-
rately.

For the other specifications and data structures which one can find in the header file, refer
to the appendix C containing the doxygen documentation of the program source code.

5.2.3 Communication Interfaces

This part describes the important interfaces between the different bricks. Without a clear
definition of the interfaces, the architecture can not provide the aspired flexibility. There-
fore, one has to picture out the message format of the exchanged dynamic containers.
Messages inside a node as well as messages between nodes are XRP encoded. The
following explanations want to picture out the XRP message encoding in detail (XRP com-
mands and XRP classes as introduced in section 3.4). In addition, the messages between
nodes are shown bit by bit. Obviously, the information provided in this part is fundamental
in order to define the interfaces inside a node and between nodes.

5.2.3.1 Inside a Node

• Figure 5.4 shows the XRP messages PUBLISH, UNPUBLISH and PUBLISHUP:

This is the interface between a service instance and the field-based service discovery
compartment.

XRP_CMD_PUBLISH
XRP_CLASS_DESCRIP

XRP_CMD_UNPUBLISH
XRP_CLASS_DESCRIP

XRP_CMD_PUBLISHUP
XRP_CLASS_DESCRIP

Figure 5.4: XRP messages PUBLISH, UNPUBLISH and PUBLISHUP

80

5.2 Implementation Field-Based Service Discovery for ANA

– The PUBLISH message is encoded as follows:· XRP_CMD_PUBLISH: Identifies a PUBLISH message.· XRP_CLASS_DESCRIP: Contains the publish description of the service
type as well as the point charge or CoS. The format of the XRP_CLASS_DESCRIP
class has to look like: , whereas
stands, as the name implies, for the service type and stands for a
numerical CoS.

– The UNPUBLISH message is encoded as follows:· XRP_CMD_UNPUBLISH: Identifies an UNPUBLISH message.· XRP_CLASS_DESCRIP: Contains the service type according to the de-
scription published previous.

– The PUBLISHUP message is encoded as follows:· XRP_CMD_PUBLISHUP: Identifies a PUBLISHUP message.· XRP_CLASS_DESCRIP: Contains the publish description of the service
type as well as the point charge or CoS. The format of the XRP_CLASS_DESCRIP
class has to look like: , whereas
stands, as the name implies, for the service type and stands for a
numerical CoS.

Note that the PUBLISHUP message looks identical to the PUBLISH message. Natu-
rally, the CoS can be updated. UNPUBLISH messages only need to carry the service
type. The field computation brick will delete the service type in order to be able to
learn a novel path to another service instance regarding this specific service type.
For now, it is only possible to publish one service instance of a specific service type
per node (multiple service types are possible) as it can be seen in the implementation
section 5.2, the service instance itself does not know its unique service ID.

• In figure 5.5, one can see the XRP messages FIELD and ROUTEUP:

These are the field and routing containers which have to be exchanged between
neighbour nodes.

XRP_CMD_FIELD
XRP_CLASS_SERVICETYPE
XRP_CLASS_SERVICEID
XRP_CLASS_SEQNR
XRP_CLASS_FIELDTYPE
XRP_CLASS_PARAM1
XRP_CLASS_PARAM2
XRP_CLASS_TTL

XRP_CMD_ROUTEUP
XRP_CLASS_SERVICETYPE
XRP_CLASS_POTENTIAL
XRP_CLASS_LABEL

Figure 5.5: XRP messages FIELD and ROUTEUP

81

Field-Based Service Discovery for ANA 5.2 Implementation

– The FIELD message is encoded as follows:· XRP_CMD_FIELD: Identifies a FIELD message.· XRP_CLASS_SERVICETYPE: Describes the type of service.· XRP_CLASS_SERVICEID: Unique ID for every service instance of a spe-
cific service type in order to distinguish between different service instances.· XRP_CLASS_SEQUENCENR: Contains the sequence number, needed to
differentiate old from new messages.· XRP_CLASS_FIELDTYPE: Contains the field type, e.g. ”electrostatic”.· XRP_CLASS_PARAM1: A variable of the potential function characterizing
the field, e.g. the CoS.· XRP_CLASS_PARAM2: Another variable of the potential function, e.g. the
hop count as a kind of distance metrics.· XRP_CLASS_TTL: Contains, as the name implies, the TTL for the mes-
sage. This value is able to restrict the dimensions of the field and thus the
publish scope.

– The ROUTEUP message is encoded as follows:· XRP_CMD_ROUTEUP: Identifies a ROUTEUP message.· XRP_CLASS_SERVICETYPE: Contains the service type.· XRP_CLASS_POTENTIAL: Contains the potential of the sender node ac-
cording to the specific service type.· XRP_CLASS_LABEL: Contains the IDP opening an information channel to
the sender of the ROUTEUP message.

Note that the IDP entry will be added at reception by the dissemination brick.
Thus, a ROUTEUP message is sent without the IDP entry. The reason of this
behaviour is because in the ANA world each node has to resolve an information
channel to another node by itself.

• The XRP messages SUBSCRIBE, RESPONSE and DATA are visible in figure 5.6:

This is the interface between client applications and the field-based service discovery
compartment. The messages are payload messages which has to be exchanged
between neighbour nodes and are supposed to reach service instances as well as
client applications.

XRP_CMD_SUBSCRIBE
XRP_CLASS_SERVICETYPE
XRP_CLASS_MESSAGEID
XRP_CLASS_TTL

XRP_CMD_RESPONSE
XRP_CLASS_SERVICETYPE
XRP_CLASS_MESSAGEID
XRP_CLASS_MESSAGE

XRP_CMD_DATA
XRP_CLASS_SERVICETYPE
XRP_CLASS_MESSAGEID
XRP_CLASS_MESSAGE

Figure 5.6: XRP messages SUBSCRIBE, RESPONSE and DATA

– The SUBSCRIBE message is encoded as follows:· XRP_CMD_SUBSCRIBE: Identifies a SUBSCRIBE message.· XRP_CLASS_SERVICETYPE: Describes the type of service.· XRP_CLASS_REQUESTER: Contains the requester name, e.g. the de-
scription of the client application.

While leaving the node, a unique message ID for identification needs and a TTL
value will be attached to the SUBSCRIBE message.

82

5.2 Implementation Field-Based Service Discovery for ANA

– The RESPONSE message is encoded as follows:

· XRP_CMD_RESPONSE: Identifies a RESPONSE message.· XRP_CLASS_SERVICETYPE: Contains the service type.· XRP_CLASS_MESSAGEID: Represents the message ID of the initial SUB-
SCRIBE message in order to find the feedback channel.· XRP_CLASS_MESSAGE: Contains some kind of response for the client
application.

– The DATA message is encoded as follows:

· XRP_CMD_DATA: Identifies a DATA message.· XRP_CLASS_SERVICETYPE: Contains the service type.· XRP_CLASS_MESSAGEID: Represents the message ID of the initial SUB-
SCRIBE message in order to identify the discovered path to the service
instance again.· XRP_CLASS_MESSAGE: Holds the payload sent to the service instance.

Note that the RESPONSE message and the DATA message are encoded identical.
Nevertheless, the differentiation is necessary to be able to separate at a certain node
if a message is traveling towards a service instance (DATA message) or towards a
client (RESPONSE message). One can read more on this in the design section 5.1.

• Figure 5.7 pictures out the XRP messages CHANGE and DISCOVER:

This is the interface to the forwarding table which is used by the routing table brick as
well as the forwarding brick.

XRP_CMD_CHANGE
XRP_CLASS_SERVICETYPE
XRP_CLASS_LABEL

XRP_CMD_DISCOVER
XRP_CLASS_SERVICETYPE
XRP_CLASS_LABEL

Figure 5.7: XRP messages CHANGE and DISCOVER

– The CHANGE message is encoded as follows:

· XRP_CMD_CHANGE: Identifies a CHANGE message.· XRP_CLASS_SERVICETYPE: Describes the type of service.· XRP_CLASS_LABEL: Contains the IDP for the next hop of the specific ser-
vice type. If the next service instance is located locally, the XRP_CLASS_LABEL
should contain ”KVR” in order to tell the forwarding brick to stop forwarding
and look for the service instance in the KVR of the MINMEX.

– The DISCOVER message is encoded as follows:

· XRP_CMD_DISCOVER: Identifies a DISCOVER message.· XRP_CLASS_SERVICETYPE: Contains the service type.

Because the forwarding table holds only one entry for each service type, it is the
only information the forwarding table needs to know in order to discover the next
hop.

83

Field-Based Service Discovery for ANA 5.2 Implementation

5.2.3.2 Between Nodes

In this part, the XRP messages exchanged between nodes are shown bit by bit. The XRP
messages all start with the XRP command, three bytes in length. Then, the number of
attached arguments is given with four bytes. Finally, each argument is mentioned first with
the XRP class, again three bytes in length, then with the size of the actual value, 4 bytes
in length and in the end, the value itself. Refer to 3.4 for a more detailed discussion about
XRP message formats.

• Figure 5.8 shows the XRP messages (containers) FIELD and ROUTEUP exchanged
between nodes:

„fld“ 0x0007
„sty“ size_1 value_1
„sid“ size_2 value_2

0 24 39 Bits

„rup“ 0x0002
„sty“ size_1 value_1
„pot“ size_2 value_2

FIELD

ROUTEUP

„snr“ size_3
„fty“ size_4
„pm1“ size_5
„pm2“ size_6
„ttl“ size_7

value_4

value_6

value_3

value_7

value_5

Figure 5.8: XRP messages FIELD and ROUTEUP exchanged between nodes

– The FIELD message is encoded in the same way like inside a node:· ”fld”: Represents XRP_CMD_FIELD.· ”sty”: Represents XRP_CLASS_SERVICETYPE.· ”sid”: Represents XRP_CLASS_SERVICEID.· ”snr”: Represents XRP_CLASS_SEQUENCENR.· ”fty”: Represents XRP_CLASS_FIELDTYPE.· ”pm1”: Represents XRP_CLASS_PARAM1.· ”pm2”: Represents XRP_CLASS_PARAM2.· ”ttl”: Represents XRP_CLASS_TTL.

– The ROUTEUP message is encoded in the same way as inside a node, except
the missing IDP class which will be attached at reception:· ”rup”: Represents XRP_CMD_ROUTEUP.· ”sty”: Represents XRP_CLASS_SERVICETYPE.· ”pot”: Represents XRP_CLASS_POTENTIAL.

84

5.2 Implementation Field-Based Service Discovery for ANA

• The XRPmessages SUBSCRIBE, RESPONSE and DATA exchanged between nodes,
one can see in figure 5.9:

0 24 39 Bits
„sub“ 0x0003
„sty“ size_1 value_1

value
„mid“ size_2

l
value_2 SUBSCRIBE

„rsp“ 0x0003
„sty“ size_1 value_1
„mid“ size_2 value_2 RESPONSE

„dta“ 0x0003
„sty“ size_1 value_1
„mid“ size_2 value_2 DATA

„ttl“ size_3 vavv luelllvalue_3

„msg“ size_3 value_3

„msg“ size_3 value_3

Figure 5.9: XRP messages SUBSCRIBE, RESPONSE and DATA exchanged between
nodes

– The SUBSCRIBE message is encoded as follows:· ”sub”: Represents XRP_CMD_SUBSCRIBE.· ”sty”: Represents XRP_CLASS_SERVICETYPE.· ”mid”: Represents XRP_CLASS_MESSAGEID.· ”ttl”: Represents XRP_CLASS_TTL.

– The RESPONSE message is encoded identical like inside a node:· ”rsp”: Represents XRP_CMD_RESPONSE.· ”sty”: Represents XRP_CLASS_SERVICETYPE.· ”mid”: Represents XRP_CLASS_MESSAGEID.· ”msg”: Represents XRP_CLASS_MESSAGE.

– The DATA message is encoded in the same way as inside a node:· ”dta”: Represents XRP_CMD_DATA.· ”sty”: Represents XRP_CLASS_SERVICETYPE.· ”mid”: Represents XRP_CLASS_MESSAGEID.· ”msg”: Represents XRP_CLASS_MESSAGE.

85

Field-Based Service Discovery for ANA 5.2 Implementation

5.2.4 The Bricks

This part deals with each brick separately. It gives a description of the purpose of every
brick and additionally a well-explained illustration of the internal data processing. If one
wants to know more about certain data processing, refer to the comments in the program
source code and to the doxygen documentation in the appendix C.

5.2.4.1 Field Computing Brick

The field computing brick is the heart of the field-based service discovery architecture and
as the name implies, it handles with potential functions and computes the potentials of the
nodes. If a service instance wants to publish itself, it has to communicate with the field
computing brick. FIELD messages from neighbour nodes are also directed to the field
computing brick. Thus, the field computing brick holds data structures for local service
instances and for all service type potentials traceable in the compartment. Furthermore, it
sends periodic PUBLISHUP and ROUTEUP messages.

To become part of the architecture, there are four different kind of data the field comput-
ing brick can receive during lifetime:

• PUBLISH messages

• UNPUBLISH messages

• PUBLISHUP messages

• FIELD messages

Each message is received at the same data receive IDP published in the KVR of the MIN-
MEX.

86

5.2 Implementation Field-Based Service Discovery for ANA

Receiving a PUBLISH message

The instructions executed by receiving a PUBLISH message from a local service instance
are depicted in figure 5.10:

Decode service type
and field parameters

Choose field type

Generate service ID
and start sequence

numbering

Encode messages

Service and
potential data
structure

Send to dissemination Send to routing table

Store service
information and

potential

PUBLISHPUBLISH

FIELEE DFIELD ROUTETT UPROUTEUP

Figure 5.10: Data processing of the field computing brick receiving a PUBLISH message

1. The service type and some kind of point charge, e.g. the CoS are decoded.

2. An appropriate field type is chosen for this specific service type. For now, it is per
default always an ”electrostatic” field.

3. Then, a unique service ID will be generated for this specific service instance. This is
done by means of the random number generator. The unique ID results as a six digit
random number, whereas the seed of the random number generator is depending on
the system time.

4. Additionally, the sequence counting is starting. For now, it is per default starting at
”100”.

5. Now, the brick is able to store the information in the specific data structures. The brick
holds three types of data structures (appendix C):

87

Field-Based Service Discovery for ANA 5.2 Implementation

(a) All the information about the local service instances, necessary to encode PUB-
LISHUP messages in the further lifetime of the node.

(b) Every service ID and sequence number of all service instances situated in the
compartment, necessary to identify service instances when receiving FIELD
messages from neighbour nodes.

(c) The computed potentials depending on the field type for each service type situ-
ated in the compartment, necessary to store the potentials for the local node and
to encode ROUTEUP messages in the further lifetime of the node. The potential
for a local service instance is per definition infinite.

6. Afterwards, the brick encodes two types of XRP messages.

(a) On the one hand, the brick encodes a FIELD message and forwards it to all
neighbour nodes in order to distribute the field information. This message is
sent only to the dissemination brick whereas on the other hand,

(b) a ROUTEUP message is encoded with the computed potential and sent to the
dissemination brick and to the routing table brick. The routing table needs to
know the local potentials in order to be able to stop forwarding SUBSCRIBE and
DATA messages from a client application.

Receiving an UNPUBLISH message

By receiving an UNPUBLISH message from a local service instance, the steps taken ac-
cording to figure 5.11 are:

Encode message

Service and
potential data
structure

Send to routing table

Delete type

UNPUBLISHUNPUBLISH

ROUTETT UPROUTEUP

Decode service type

Figure 5.11: Data processing of the field computing brick receiving an UNPUBLISH mes-
sage

88

5.2 Implementation Field-Based Service Discovery for ANA

1. Foremost, the service type is decoded.

2. Afterwards, the brick is able to delete the information in the specific data structures
(appendix C):

(a) The information about the local service instance will be cleaned up as well as

(b) the potential for this specific service type. The potential for the service type
needs to be unloaded in order to learn a novel potential dissimilar from infinite.

3. Afterwards, the brick encodes a ROUTEUP message for the routing table brick. The
routing table needs to know about this erasure event so that it is able to delete the
specific route entry and to be in a position telling the forwarding table a novel route
towards another service instance.

Receiving a PUBLISHUP message

When the brick receives a PUBLISHUP message from a local service instance, as can be
seen in figure 5.12, the following instructions are performed:

Decode service type
and field parameters

Update field parameters

Increment sequence
number

Encode messages

Service and
potential data
structure

Send to dissemination Send to routing table

Update service
information and

potential

PUBLISHUPPUBLISHUP

FIELEE DFIELD ROUTETT UPROUTEUP

Figure 5.12: Data processing of the field computing brick receiving a PUBLISHUP message

89

Field-Based Service Discovery for ANA 5.2 Implementation

1. The service type and some kind of point charge, e.g. the CoS are decoded. The new
CoS may be different from the old one.

2. The sequence number is increased by one.

3. Now, the brick is able to update the information in the specific data structures (ap-
pendix C).

4. Afterwards, the brick encodes and sends two types of XRP messages analogously to
step six above when receiving a PUBLISH message.

Receiving a FIELD message

As soon as a FIELD message from a remote node arrives like in figure 5.13, the proximate
details are run:

Decode service type, ID
and field parameters

Encode message

Potential data
structure

Send to dissemination

Update potential and
field parameters

FIELEE DFIELD

ROUTETT UPROUTEUP

Service ID known? Potential- =
Potential stored

Service type known?

N

Y

Potential+ =
New potential

Compute potential

N

Y

Store potential and field
parameters

Figure 5.13: Data processing of the field computing brick receiving a FIELD message

90

5.2 Implementation Field-Based Service Discovery for ANA

1. First of all, the service type, service ID and the field parameters are decoded.

2. When the service ID, e.g. the service instance is known by the brick, the stored total
potential for this service type will be altered. First, the old potential quotient of this
specific service instance is subtract from the total potential, then the new potential
quotient is added.

3. When the service instance is alien for the node but the service type is known, the
summed up potential will be raised with the new potential quotient from the recent
service instance.

4. Otherwise, neither the service type nor the service instance is familiar, a brand-new
potential from scratch will be computed depending on the field type and field param-
eters.

5. Now, the brick is able to store the information in the specific data structures (appendix
C), similar as the message would have been the result of a local service instance. In
this case, only two data structures have to be modified, because the local service
instance data structure has no influence.

6. Afterwards, the brick encodes one type of XRP message. A ROUTEUP message is
encoded with the novel, total potential and sent to the dissemination brick.

Besides the instructions triggered by an event as described above, the brick owns timer
functions in order to run several periodic updates. The information in the local service in-
stance data structure are used to encode periodic PUBLISHUP messages whereas the
information in the potential data structure are required to encode periodic ROUTEUP mes-
sages for the neighbour nodes. Last but not least, there is also a garbage collecting function
existing which tidies up with data entries, suffering from missing updates.

5.2.4.2 Routing Table Brick

The routing table brick is in charge of holding the routing table. Therefore, it is responsible
to know all potentials of the neighbour nodes. Each neighbour node possesses an entry
for each service type traceable in the compartment. The local service instances are also
entered because the table is updating the forwarding table and needs to know when a
forwarding process achieved its aim.

In order to become a part of the functional block, there is just one kind of data the routing
table brick will receive during lifetime:

• ROUTEUP messages

Each message is received at the same data receive IDP published in the KVR of the MIN-
MEX.

91

Field-Based Service Discovery for ANA 5.2 Implementation

Receiving a ROUTEUP message

The instructions executed by receiving a ROUTEUP message are shown in figure 5.14:

Decode service type,
potential and next hop

ROUTETT UPROUTEUP

Potential = 0? Delete entry of
local node

Service type known?

Next hop known?

Routing table
Service type
Potential
IDP

Potential changed? Update entry

Store entry

Y

N

Y

Y

Nothing new N Y

N

N

Show table
For each service type
take next hop with
highest potential

Encode message

CHAHH NGECHANGE

Send to forwarding table

Figure 5.14: Data processing of the routing table brick receiving a ROUTEUP message

1. The service type, the belonging potential and the next hop are decoded.

2. When the potential is zero, the ROUTEUP message is coming from the field com-
puting brick, resulting from unpublishing a local service instance. The entry of this
specific service instance needs to be deleted.

92

5.2 Implementation Field-Based Service Discovery for ANA

3. Else, if the service type is unknown or the service type is known but the next hop is
foreign, the entry will be stored. In this case, a new neighbour node with a belonging
potential becomes well-established.

4. When the next hop is familiar as well, the brick has to compare the stored potential
with the new one. If there is a difference, the entry needs to be updated because the
potential concerning a service type on a neighbour node has changed. Should there
be nothing new, the message can be dropped.

5. Now, as the routing table has changed, it is shown on the brick output. Additionally,
the brick updates the forwarding table. For each service type, the entry with the
highest potential is taken and sent to the forwarding table because routing is done
along the steepest gradient of the field. Therefore, the routing table brick encodes
for each service type one CHANGE message and sends all these messages to the
forwarding table brick.

Besides the instructions triggered by an event as described above, the brick owns a timer
function in order to run periodic updates for the forwarding table. Moreover, there is also a
garbage collecting function existing which tidies up with route entries suffering from missing
updates.

5.2.4.3 Dissemination Brick

The dissemination brick is responsible for distributing the information such as FIELD mes-
sages and ROUTEUP messages to the neighbour nodes and acts as a doorman to pick
up the same information from other nodes. In order to reduce overhead, the dissemination
brick holds a data structure for service IDs and sequence numbers as well. Therefore, it is
able to identify old messages which will not be delivered further.

To become part of the architecture, there are two different kind of data the dissemination
brick can receive during lifetime:

• FIELD messages

• ROUTEUP messages

Both message types are sent by the local field computing brick as well as by neighbour
nodes. There exist two different data receive IDPs in order to separate message from
neighbour nodes and from a local brick. The data receive IDP for the neighbour nodes is
published in the Ethernet brick and the one for the field computing brick is published in the
KVR of the MINMEX.

93

Field-Based Service Discovery for ANA 5.2 Implementation

Receiving a FIELD message from the field computing brick

The instructions executed by receiving a FIELD message from the field computing brick are
depicted in figure 5.15:

Send to all neighbours

FIELEE D (f((rff orr m local node)eFIELD (from local node)

Service data
structure

Update sequence
number

Decode service ID and
sequence number

Service ID known?

Store ID, sequence
number and hop count

Y

N

„control“
message

Figure 5.15: Data processing of the dissemination brick receiving a FIELD message from
the field computing brick

1. The service ID and the sequence number are decoded. This is done because these
information can be stored and used to reject own FIELD messages coming back. The
information are stored in a service data structure (appendix C). In addition, the hop
count is also stored in order to be able to choose the appropriate message, if two
messages contain the same service ID and an identical sequence number.

2. Finally, the message is distributed to all neighbour nodes. This is achieved with the
underlying data link compartment, e.g. the Ethernet compartment. The dissemination
brick opens an information channel to the neighbour nodes by resolving the targets
with help of AL2:

94

5.2 Implementation Field-Based Service Discovery for ANA

Receiving a ROUTEUP message from the field computing brick

When the brick receives a ROUTEUP message from the field computing brick, the following
instructions are performed, displayed in figure 5.16:

Send to all neighbours

ROUTETT UP (f((rff orr m local node)eROUTEUP (from local node)

„control“
message

Figure 5.16: Data processing of the dissemination brick receiving a ROUTEUP message
from the field computing brick

1. Simply, the ROUTEUP message is forwarded to all neighbour nodes. This distribu-
tion is done by means of the underlying data link compartment in the same way as
described above.

95

Field-Based Service Discovery for ANA 5.2 Implementation

Receiving a FIELD message from a neighbour node

By receiving a FIELD message from a service instance located on a remote node, figure
5.17 exhibits:

Send to all neighbours

FIELEE D (f((rff orr m neigii hbour)rrFIELD (from neighbour)

Service data
structure

Decode service ID,
sequence number

and TTL

Service ID known?

Store ID, sequence
number and hop count

N

Decrease TTL

TTL ≤ 0?

N

Drop messageY

Increment hop count

Sequence number ≤
stored || (sequence

number = stored && hop
count > stored)?

Y

Y

Update sequence
number and hop count

N

Send to field computing

„control“
message

Figure 5.17: Data processing of the dissemination brick receiving a FIELD message from
a neighbour node

1. The service ID, the sequence number and the TTL are decoded.

2. The TTL is decremented by one. If the TTL is over, the message will be dropped.

3. Afterwards, the hop count is incremented by one.

4. If the service ID is not known, the brick has just learned a new service instance and
stores the relevant information in a data structure (appendix C). If the service ID is

96

5.2 Implementation Field-Based Service Discovery for ANA

known, the brick needs to decide if the message is newsworthy. This is achieved by
looking at the sequence number and the hop count. If the sequence number is higher
than the one stored or if the sequence number is equal but the hop count is lower
than the one stored, the message is relevant as it is either a brand-new message
or it traveled along fewer nodes. If nothing from the above mentioned applies, the
message is old or uninteresting and will be dropped as well.

5. When the brick is dealing with an important message, the message, including the
novel TTL and the novel hop count, is forwarded to the field computing brick and to
all neighbour nodes by means of the underlying data link compartment in the same
way as described above.

Receiving a ROUTEUP message from a neighbour node

As soon as a ROUTEUP message from a neighbour node arrives, the proximate details
from figure 5.18 are run:

Resolve and add IDP to
sender

Send to routing table

ROUTETT UP (f((rff orr m neigii hbour)rrROUTEUP (from neighbour)

„control“
message

Figure 5.18: Data processing of the dissemination brick receiving a ROUTEUP message
from a neighbour node

1. The ROUTEUP message coming from a neighbour node is incomplete. The IDP in
order to communicate with the neighbour node is missing because each node needs
to resolve its IDPs themselves. Thus, if the node wants a valid IDP to the sender, it
has to resolve the sender with the underlying data link compartment.

2. Afterwards, the IDP is added to the encoded message and the complete ROUTEUP
message will be forwarded to the routing table brick.

Furthermore, a garbage collecting function is also existing which tidies up with data entries
suffering from missing updates.

97

Field-Based Service Discovery for ANA 5.2 Implementation

5.2.4.4 Forwarding Brick

The forwarding brick is responsible for forwarding payload. Before the payload is sent actu-
ally, client applications are able to discover a service instance with SUBSCRIBE messages.
Moreover, the forwarding brick handles the way how RESPONSE messages are sent back
to the client application, after a service instance has been found successfully or a DATA
message has been received. The forwarding brick is the counterpart of the IP encapsula-
tion brick with the slight difference that there is no analogous encapsulation existing.

In order to become part of the functional block there are three different kind of data the
forwarding brick can receive during lifetime:

• SUBSCRIBE messages

• RESPONSE messages

• DATA messages

All message types are either sent by a local client application, service instance or neighbour
nodes. There exist two different data receive IDPs in order to separate message from
neighbour nodes and from a local brick. The data receive IDP for the neighbour nodes is
published in the Ethernet brick and the one for local bricks is published in the KVR of the
MINMEX.

98

5.2 Implementation Field-Based Service Discovery for ANA

Receiving a SUBSCRIBE message from a local client application

The instructions executed by receiving a SUBSCRIBE message from a local client applica-
tion presents figure 5.19:

Decode service type
and requester

Generate and add
message ID

Encode message

Message data
structure

Send to forwarding tableReceive next hop

Store type, requester
and ID

SUBSCRIBE (f((rff orr m local node)eSUBSCRIBE (from local node)

DISCOVEVV RDISCOVER

Send to next hop or
deliver local

Add TTL

„control“
message

Figure 5.19: Data processing of the forwarding brick receiving a SUBSCRIBE message
from a local client application

1. The desired service type and the requester name are decoded. The requester name
is the description of the client application. It is necessary in order to successfully
deliver a further RESPONSE message.

2. A unique message ID will be generated for this specific SUBSCRIBE message. This
is done by means of the random number generator. The unique ID results as a eight
digit random number whereas the seed of the random number generator is depend-
ing on the system time. The message ID needs to be added to the SUBSCRIBE
message.

3. Now, the brick stores the service type, requester name and message ID in a message
data structure (appendix C). This storage is necessary to deal with further messages
concerning the same message ID, for example a RESPONSE message from a ser-
vice instance.

99

Field-Based Service Discovery for ANA 5.2 Implementation

4. One type of XRP message is encoded. The brick sends a DISCOVER message to the
forwarding table brick because it needs to know the next hop regarding the specific
service type.

5. As soon as the answer from the forwarding table is received, the brick knows where
to send the message. Depending on the answer, the next hop is either a neighbour
node or a local brick if the service type possesses an instance on the same node.
Before sending, the TTL is added.

Receiving a SUBSCRIBE message from a neighbour node

As soon as a SUBSCRIBE message from a neighbour node arrives, the proximate details
indicated in figure 5.20 are run:

SUBSCRIBE (f((rff orr m neigii hbour)rrSUBSCRIBE (from neighbour)

Message data
structure

Decode message ID
and TTL

Store ID and IDP

Decrease TTL

TTL ≤ 0?

N

Drop messageY

Send to next hop or
deliver local

Encode message

DISCOVEVV RDISCOVER

Send to forwarding tableReceive next hop

Resolve IDP to sender

„control“
message

Figure 5.20: Data processing of the forwarding brick receiving a SUBSCRIBE message
from a neighbour node

100

5.2 Implementation Field-Based Service Discovery for ANA

1. First of all, the message ID and the TTL are decoded.

2. The TTL is decremented. If the TTL is over, the message will be dropped.

3. Because each node needs to resolve its IDPs themselves, an IDP to the sender is
resolved. This step is necessary in order to store a feedback channel for further
RESPONSE messages. This is only one way to open a feedback channel. The
RESPONSE messages take exactly the same path back to the client applications.
Other possibilities are imaginable as described in the design section 5.1. One is
free to exchange the forwarding brick to handle feedback channels regarding the own
requirements.

4. Now, the brick stores the information in the message data structure (appendix C).
This storage is necessary in order to deal with further messages concerning the same
message ID, for example a RESPONSE message from a service instance.

5. Next, one type of XRP message is encoded. The brick sends a DISCOVER message
to the forwarding table brick because it needs to know the next hop regarding the
specific service type.

6. As soon as the answer from the forwarding table is received, the brick knows where
to send the message. Depending on the answer, the next hop is either a neighbour
node or a local brick if the service type possesses an instance on the same node.

Receiving a RESPONSE message from a local service instance

By receiving a RESPONSE message from a local service instance, the steps taken shows
figure 5.21:

RESPONSE (f((rff orr m local node)eRESPONSE (from local node)

Message data
structure

Decode message ID

Lookup next hop

Send to next hop or
deliver local

Store sender

„control“
message

Figure 5.21: Data processing of the forwarding brick receiving a RESPONSE message
from a local service instance

1. The message ID is decoded.

2. Now, the sender of the message is stored in the message data structure (appendix
C) in order to be able to deliver further DATA messages.

101

Field-Based Service Discovery for ANA 5.2 Implementation

3. The brick looks up the next hop in the message data structure (appendix C) because
the next hop has been stored as the according SUBSCRIBE message passed the
node.

4. Depending on the result, the next hop is either a neighbour node or a local brick if the
client application sits on the same node.

Receiving a RESPONSE message from a neighbour node

When the brick receives a RESPONSE message from a neighbour node, the following
instructions are performed, illustrated in figure 5.22:

RESPONSE (f((rff orr m neigii hbour)rrRESPONSE (from neighbour)

Message data
structure

Decode message ID

Lookup next hop

Send to next hop or
deliver local

Resolve IDP to sender

Store IDP

„control“
message

Figure 5.22: Data processing of the forwarding brick receiving a RESPONSE message
from a neighbour node

1. The message ID is decoded.

2. An IDP to the sender is resolved to be able to deliver further DATA messages con-
cerning this specific message ID.

3. Now, the brick stores the information in the message data structure (appendix C).
This storage is necessary in order to deal with further messages concerning the same
message ID as described at step two.

4. One type of XRPmessage is encoded. The brick sends a DISCOVER message to the
forwarding table brick because it needs to know the next hop regarding the specific
service type.

5. As soon as the answer from the forwarding table is received, the brick knows where
to send the message. Depending on the answer, the next hop is either a neighbour
node or a local brick, if the client application sits on the same node.

102

5.2 Implementation Field-Based Service Discovery for ANA

Receiving a DATA message

Figure 5.23 presents the instructions executed by receiving a DATA message (either from
a local client or from a neighbour node):

DADD TATTDATA

Message data
structure

Decode message ID

Lookup next hop

Send to next hop or
deliver local

„control“
message

Figure 5.23: Data processing of the forwarding brick receiving a DATA message

1. The message ID is decoded.

2. Then, the brick looks up the next hop in the message data structure (appendix C)
because the next hop has been stored as the according SUBSCRIBE message with
the identical message ID passed the node.

3. Depending on the result, the next hop is either a neighbour node or a local brick if the
service instance sits on the same node.

Note that after a successful discovery of a service instance, the message ID is known in all
nodes building the discovered path. Therefore, the message ID becomes a communication
ID representing an information channel between a specific client application and a specific
service instance (including a feedback channel regarding the implementation of this Master
Thesis).

5.2.4.5 Forwarding Table Brick

The forwarding table brick holds the forwarding table. Therefore, it is responsible to know
the next hops in the forwarding process regarding a specific service type. Each service
type traceable in the compartment possesses an entry in the forwarding table, including an
IDP to the current next hop.

To become part of the architecture, there are two kind of data the forwarding table brick
will receive during lifetime:

• CHANGE messages

• DISCOVER messages

103

Field-Based Service Discovery for ANA 5.2 Implementation

Each message is received at the same data receive IDP, published in the KVR of the MIN-
MEX.

Receiving a CHANGE message

The instructions executed by receiving a CHANGE message from the routing table brick
are displayed in figure 5.24:

Decode service type
and next hop

CHAHH NGECHANGE

Store entryService type known?

Next hop known?

Forwarding table
Service type
IDP

Update entry

Y

Y

Nothing new

N

N

Show table

Figure 5.24: Data processing of the forwarding table brick receiving a CHANGE message

1. First, the service type and the next hop are decoded.

2. If the service type is unknown, the entry is stored. In this case, a novel service type
with the belonging next hop becomes well-established.

3. When the service type is known but the next hop differs from the one stored, the
entry for this specific service type is updated. In this case, the field distribution for this
specific service type changed and the node learns a novel route to an optimal service
instance. Otherwise, nothing is new and the message will be dropped.

4. If the forwarding table changed, it is shown on the brick output.

104

5.2 Implementation Field-Based Service Discovery for ANA

Receiving a DISCOVER message

Figure 5.25 shows the instructions performed as soon as the brick receives a DISCOVER
message from the forwarding brick:

Decode service type

DISCOVEVV RDISCOVER

No next hop specified!Service type known?

Y

N

Send back next hop

Figure 5.25: Data processing of the forwarding table brick receiving a DISCOVER message

1. The service type is decoded.

2. If the service type is known, the forwarding table brick sends back the belonging next
hop. Otherwise, no next hop for this specific service type is known (the node has not
learned a route yet) and the message will be dropped.

Moreover, a garbage collecting function is existing which tidies up with route entries, suffer-
ing from missing updates.

5.2.4.6 Sample Service Brick

This Master Thesis used a sample service brick and a sample client brick in order to imple-
ment and validate the architecture. The sample service brick represents a specific service
instance of a certain service type. To sum it up, the sample service brick does the following:

• Publishes the name of the desired service type in the KVR of the MINMEX.

• Sends a PUBLISH message to the field computing brick.

• Displays the received SUBSCRIBE messages.

• Sends back a RESPONSE message containing some text upon receiving a SUB-
SCRIBE message.

• Displays the received DATA messages.

• Sends periodic PUBLISHUP messages to the field computing brick.

• Unpublishes itself upon brick exit.

One is able to choose the service type and the point charge, e.g. the CoS of the service
instance at runtime by typing auxiliary command line arguments:

105

Field-Based Service Discovery for ANA 5.3 Validation

5.2.4.7 Sample Client Brick

The sample client brick represents a specific client application which intends to discover a
specific service type. The service instance found will be the sample service brick mentioned
above. To sum it up, the sample service brick does the following:

• Publishes its description as requester name in the KVR of the MINMEX.

• Sends a SUBSCRIBE message containing the desired service type to the forwarding
brick.

• Displays the received RESPONSE message.

• Sends back a DATA message containing some text upon receiving a response mes-
sage.

One is able to choose the service type to discover at runtime by typing a auxiliary command
line argument:

� ���������	
���
� ������	�������	����
� �������	����

5.3 Validation

This section demonstrates the validation of the implementation of field-based service dis-
covery for ANA. At the beginning, it explains the environment which has been used. Af-
terwards, four different, crucial scenarios have been tested. Field assembly (1) shows the
basic field assembly and distribution process of the compartment, after publishing one ser-
vice instance. The scenario of multiple service instances (2) exhibits the same situation but
with two service instances of the same service type published. More than one service type
(3), resulting in different field overlays is indicated in the multiple fields part. Finally, the last
part of the validation section demonstrates what happens if some node loses the ability to
communicate (4).

5.3.1 Setup

For validating an implementation like field-based service discovery for ANA, a testbed net-
work is mandatory. This Master Thesis used the TIK testbed1 in order to configure an
arbitrary topology of ten nodes running ANA.

1A collection of hosts attached to both wired Ethernet and wireless LAN interfaces [39]

106

5.3 Validation Field-Based Service Discovery for ANA

A

J

I

E

B

C

D H

G

F

1

2

3

4

5

6

7

8

12

13

14

11

159

10

Figure 5.26: Network topology for validating the field-based service discovery implementa-
tion for ANA

The nodes all are located in the same Ethernet segment. The topology is realized with the
support of virtual links. Virtual links for ANA are easily configurable with the virtual link brick
[4], situated in the ANA core software. The instructions how to run the field-based service
discovery compartment in ANA are available in the appendix B. The trick is to appoint
each connection between two desired nodes with one virtual link ID. The IDs used for this
validation topology (1 – 15) and the nodes carrying the names A – J are shown in figure
5.26.

To validate miscellaneous scenarios, one can start sample service bricks and sample
client bricks on certain nodes and observe the outputs of all nodes building the compart-
ment. The important brick outputs are on the one hand, the routing and forwarding table
entries as well as the computed field potential for one node, regarding the field assembly
and the routing process. On the other hand, the outputs of the sample service and sample
client bricks as well as the output of the forwarding brick are interesting in order to validate
message reception and the path which has been taken.

Remember: For now, every field type chosen by the field computing brick is ”electro-
static”. Therefore, the potential function to compute the potential in a node looks as follows
(section 2.5):

Potential =
CoS

Amount of hops to service instance

All effects observed in the network by taking some action depending on the scenarios are
displayed in illustrations (figure 5.27 – 5.30). The illustration shows the validating topology
with all nodes again. Forthright above the nodes, one can check the potential of the node
for specific service types. Underneath the nodes, the routing table is displayed containing
an entry for each neighbour node and service type in the following format:

The entry with the highest potential for each service type, hence the one that is sitting in the
forwarding table, is highlighted in bold. Additionally, the path of a SUBSCRIBE message
from a client application towards a service instance is highlighted in red.

107

Field-Based Service Discovery for ANA 5.3 Validation

5.3.2 Field Assembly

In this scenario one service instance is started. The interesting points are the field assem-
bly and the path from a client application to the service instance which the compartment
discovered. As one can see in figure 5.27, the service instance is started on node G with
service type ”gateway” and a CoS of ”12”. The resulting field potentials for all nodes are
shown in table 5.1:

Node Potential for service type ”gateway”

A 6

B 4

C 12

D 12

E 4

F 6

G infinite

H 12

I 6

J 12

Table 5.1: Computed field potentials after publishing one service instance

After publishing a ”gateway” on node G, a client application is started on node A which
tries to discover the ”gateway”. There is no need to wait a long time for the complete field
assembly and routing information exchange because these processes are triggered by the
publishing event. By reason of the route entries as a result of the routing process one can
observe the SUBSCRIBE message from the client application traveling first to node D and
then to its final destination, node G. On node G one is able to see on the output of the
sample service brick:

��� ��������	
	����	 �	�	�
	�

�����	�
�
	����	���� ��������

�����	�
� ����	����� �	����	����������

�����	�
� �������	���
	� �	���
	 ����	��

�����	�
� �	� ���	
	����	 �	�� �� ���!������ �����

Apparently, the client discovered the service instance successfully. On the output of the
sample client brick on node A one can observe:

��� �	� ���	
	����	 �	�	�
	�

�������	�
	����	���� ��������

�������	�
	����	� "�# $ �	�	�
	� %��� ��������	
	����	#

�������	� ����
	����	 �	��

108

5.3 Validation Field-Based Service Discovery for ANA

Obviously, the client application received a RESPONSE message back from the service
instance and sends out again some data. Thus, on the sample service brick on node G
one can see:

��� ���� �����	�
����
��

��
���

� �����	����� ��������

��
���

� �����	�� ��� ���� � � �� !�"�

In conclusion, the field assembly process upon publishing a service instance on node G
was successful on all nodes. Furthermore, a client application effectually discovered the
service instance, hence node A and node G exchanged the message types as expected.

109

Field-Based Service Discovery for ANA 5.3 Validation

A

J

I

E

B

C

D
H

G

F

gatew
ay:∞

gateway | ∞ | KVR
gateway | 12 | C
gateway | 12 | D
gateway | 12 | H
gateway | 12 | J

gateway | 12 | H
gateway | ∞ | G
gateway | 6 | A

gateway | ∞ | G
gateway | 6 | A
gateway | 6 | F

gateway | 12 | J
gateway | 12 | C
gateway | 4 | E

gateway | 6 | I
gateway | 6 | F
gateway | 4 | B

gateway | 4 | E
gateway | 6 | A

gateway | 4 | E
gateway | 12 | J

gateway | 6 | F
gateway | 12 | H
gateway | ∞ | G
gateway | 6 | I

gateway | 12 | D
gateway | ∞ | G
gateway | 12 | J

gateway | 12 | D
gateway | 12 | C
gateway | 4 | B

gatew
ay:6

gatew
ay:4

gatew
ay:12

gatew
ay:6

gatew
ay:4

gatew
ay:12

gatew
ay:6

gatew
ay:12

gatew
ay:12

Figure 5.27: Network overview for field assembly validation

110

5.3 Validation Field-Based Service Discovery for ANA

5.3.3 Multiple Service Instances

In this scenario, two service instances of the same service type are started on different
nodes. The interesting points are the superstition of both field quotients and the novel path
from a client application to the service instance which the compartment discovered. As one
can see in figure 5.28, the additional service instance is started on node I with a CoS of
”120”. The resulting field potentials for all nodes are shown in table 5.2:

Node Potential for service type ”gateway”

A 6 + 40 = 46

B 4 + 60 = 64

C 12 + 40 = 52

D 12 + 40 = 52

E 4 + 120 = 124

F 6 + 60 = 66

G infinite

H 12 + 60 = 72

I infinite

J 12 + 120 = 132

Table 5.2: Computed field potentials after publishing two service instances

After publishing the ”gateways” on node G and I, a client application is started on node A
which tries to discover a ”gateway”. There is no need to wait a long time for the complete
field assembly and routing information exchange because these processes are triggered by
the publishing event. By reason of the route entries as a result of the routing process one
can observe the SUBSCRIBE message from the client application traveling first to node B,
then to node E and in the end to its final, novel destination, node I. On node I, one is able
to see on the output of the sample service brick:

��� ��������	
	����	 �	�	�
	�

�����	�
�
	����	���� ��������

�����	�
� ����	����� �	����	����������

�����	�
� �������	���
	� 	���
	 !���	��

�����	�
� �	�"���	
	����	 �	�� �� ���#������ �����

Apparently, the client application discovered the novel service instance successfully. On
the output of the sample client brick on node A one can observe:

��� �	�"���	
	����	 �	�	�
	�

�������	�
	����	���� ��������

�������	�
	����	� $�% & �	�	�
	� '��� ��������	
	����	%

�������	� ����
	����	 �	��

111

Field-Based Service Discovery for ANA 5.3 Validation

Obviously, the client application received a RESPONSE message back from the service
instance and sends out again some data. Thus, on the sample service brick on node I one
can see:

��� ���� �����	�
����
��

��
���

� �����	����� ��������

��
���

� �����	�� ��� ���� !"�� #�$�

In conclusion, the superstition of two field quotients upon publishing two service instances
of the same type on node G and on node I was successful on all nodes. Moreover, a client
application effectually discovered a better service instance concerning the CoS, hence
node A and node I exchanged the message types as expected.

112

5.3 Validation Field-Based Service Discovery for ANA

A

J

I

E

B

C

D
H

G

F

ga
te
w
ay
:∞

ga
te

wa
y

|
∞

|

KV
R

ga
te

wa
y

|
52

|

C
ga

te
wa

y
|

52

|
D

ga
te

wa
y

|
72

|

H
ga

te
wa

y
|

13
2

|
J

ga
te

wa
y

|
72

 |
 H

ga
te

wa
y

|
∞

 |
 G

ga
te

wa
y

|
46

 |
 A

ga
te

wa
y

|
∞

|

G
ga

te
wa

y
|

46

|
A

ga
te

wa
y

|
66

|

F

ga
te

wa
y

|
13

2
|

J
ga

te
wa

y
|

52

|
C

ga
te

wa
y

|
12

4
|

E

ga
te

wa
y

|
∞

|

I
ga

te
wa

y
|

66

|
F

ga
te

wa
y

|
64

|

B

ga
te

wa
y

|
12

4
|

E
ga

te
wa

y
|

46

|
A

ga
te

wa
y

|
12

4
|

E
ga

te
wa

y
|

13
2

|
J

ga
te

wa
y

|
∞

|

KV
R

ga
te

wa
y

|
66

|

F
ga

te
wa

y
|

72

|
H

ga
te

wa
y

|
∞

|

G
ga

te
wa

y
|

∞

|
I

ga
te

wa
y

|
52

|

D
ga

te
wa

y
|

∞

|
G

ga
te

wa
y

|
13

2
|

J

ga
te

wa
y

|
52

 |
 D

ga
te

wa
y

|
52

 |
 C

ga
te

wa
y

|
64

 |
 B

ga
te
w
ay
:6
6

ga
te
w
ay
:6
4

ga
te
w
ay
:5
2

ga
te
w
ay
:4
6

ga
te
w
ay
:1
24

ga
te
w
ay
:5
2

ga
te
w
ay
:∞

ga
te
w
ay
:1
32

ga
te
w
ay
:7
2

Figure 5.28: Network overview for multiple service instances validation

113

Field-Based Service Discovery for ANA 5.3 Validation

5.3.4 Multiple Fields

In this scenario, an additional service instance of a different type is started. The interesting
point is whether multiple field overlays as a result of multiple service types can exist simul-
taneously. As one can see in figure 5.29, the other service instance is started on node J
with service type ”printer” and a CoS of ”12”. The resulting field potentials for all nodes are
shown in table 5.3:

Node Potential for service type ”gateway” Potential for service type ”printer”

A 46 4

B 64 4

C 52 6

D 52 6

E 124 6

F 66 12

G infinite 12

H 72 12

I infinite 12

J 132 infinite

Table 5.3: Computed field potentials after publishing two different service types

After publishing a ”printer” on node J, a client application is started on node A which tries to
discover the ”printer”. There is no need to wait a long time for the complete field assembly
and routing information exchange because these processes are triggered by the publishing
event. By reason of the route entries as a result of the routing process one can observe the
SUBSCRIBE message from the client application traveling first to node D, then to node H
and in the end to its final destination, node J. On node J, one is able to see on the output
of the sample service brick:

��� ��������	
	����	 �	�	�
	�

�����	�
�
	����	���� ��������

�����	�
� ����	����� �	����	����������

�����	�
� �������	���
	� 	���
	 !���	��

�����	�
� �	�"���	
	����	 �	�� �� ���#������ �����

Apparently, the client application discovered the service instance successfully. On the out-
put of the sample client brick on node A one can observe:

��� �	�"���	
	����	 �	�	�
	�

�������	�
	����	���� ��������

�������	�
	����	� $�% & �	�	�
	� '��� ��������	
	����	%

�������	� ����
	����	 �	��

114

5.3 Validation Field-Based Service Discovery for ANA

Obviously, the client application received a RESPONSE message back from the service
instance and sends out again some data. Thus, on the sample service brick on node J,
one can see:

��� ���� �����	�
����
��

��
���

� �����	����� ��������

��
���

� �����	�� ��� ���� � !�� "�#�

In conclusion, the field assembly process upon publishing service instances of several ser-
vice types was successful on all nodes. Multiple field overlays can coexist in the same
compartment without any difficulty. Furthermore, a client application effectually discovered
the service instance, hence node A and node J exchanged the message types as expected.

115

Field-Based Service Discovery for ANA 5.3 Validation

A

J

I

E

B

C

D
H

G

F

gatew
ay:∞

printer:12

gateway | ∞ | KVR
gateway | 52 | C
gateway | 52 | D
gateway | 72 | H
gateway | 132 | J
printer | 6 | C
printer | 6 | D
printer | 12 | H
printer | ∞ | J

gateway | 72 | H
gateway | ∞ | G
gateway | 46 | A
printer | 12 | H
printer | 12 | G
printer | 4 | A

gateway | ∞ | G
gateway | 46 | A
gateway | 66 | F
printer | 12 | G
printer | 4 | A
printer | 12 | F

gateway | 132 | J
gateway | 52 | C
gateway | 124 | E
printer | ∞ | J
printer | 6 | C
printer | 6 | E

gateway | ∞ | I
gateway | 66 | F
gateway | 64 | B
printer | 12 | I
printer | 12 | F
printer | 4 | B

gateway | 124 | E
gateway | 46 | A
printer | 6 | E
printer | 4 | A

gateway | 124 | E
gateway | 132 | J
gateway | ∞ | KVR
printer | 6 | E
printer | ∞ | J

gateway | 66 | F
gateway | 72 | H
gateway | ∞ | G
gateway | ∞ | I
printer | ∞ | KVR
printer | 12 | F
printer | 12 | H
printer | 12 | G
printer | 12 | I

gateway | 52 | D
gateway | ∞ | G
gateway | 132 | J
printer | 6 | D
printer | 12 | G
printer | ∞ | J

gateway | 52 | D
gateway | 52 | C
gateway | 64 | B
printer | 6 | D
printer | 6 | C
printer | 4 | B

gatew
ay:66

printer:12

gatew
ay:64

printer:4

gatew
ay:52

printer:6

gatew
ay:46

printer:4

gatew
ay:124

printer:6

gatew
ay:52

printer:6

gatew
ay:∞

printer:12

gatew
ay:132

printer:∞

gatew
ay:72

printer:12

Figure 5.29: Network overview for multiple fields validation

116

5.3 Validation Field-Based Service Discovery for ANA

5.3.5 Node Failure

In this scenario, an arbitrary node is killed simulative. The interesting point is whether the
routing process is able to find new routes from a client to the service instances. As one can
see in figure 5.30, the node killed is node D. Therefore, the path discovered from node A to
node J, regarding the service type ”printer”, is interrupted. The resulting field potentials for
all nodes are shown in table 5.4:

Node Potential for service type ”gateway” Potential for service type ”printer”

A 46 4

B 64 4

C 52 6

D killed killed

E 124 6

F 66 12

G infinite 12

H 72 12

I infinite 12

J 132 infinite

Table 5.4: Computed field potentials after killing one node

After killing node D, a client application is started on node A which tries to discover a
”printer”. Depending on the parameters given (in section 5.2) it takes some time until all
routing tables are updated with the correct routing information, because the inoperative
entries of the routing tables have to die out. In this case, regarding the default parameters,
it took between two and three minutes. Afterwards, one can observe the SUBSCRIBE
message from the client application traveling now first to node C, then to node G and in
the end to its final destination, node J. On node J, one is able to see on the output of the
sample service brick:

��� ��������	
	����	 �	�	�
	�

�����	�
�
	����	���� ��������

�����	�
� ����	����� �	����	����������

�����	�
� �������	���
	� �	���
	 ����	��

�����	�
� �	� ���	
	����	 �	�� �� ���!������ �����

Apparently, the client application discovered the service instance successfully. On the out-
put of the sample client brick on node A one can observe:

��� �	� ���	
	����	 �	�	�
	�

�������	�
	����	���� ��������

�������	�
	����	� "�# $ �	�	�
	� %��� ��������	
	����	#

�������	� ����
	����	 �	��

117

Field-Based Service Discovery for ANA 5.3 Validation

Obviously, the client application received a RESPONSE message back from the service
instance and sends out again some data. Thus, on the sample service brick on node J,
one can see:

��� ���� �����	�
����
��

��
���

� �����	����� ��������

��
���

� �����	�� ��� ���� � � �� !�"�

In conclusion, node A has found a new path to the service type ”printer” successfully. Node
A and node J exchanged the message types as expected.

118

5.3 Validation Field-Based Service Discovery for ANA

A

J

I

E

B

C

D
H

G

F

ga
te
w
ay
:∞

pr
in
te
r:
12

ga
te

wa
y

|
∞

|

KV
R

ga
te

wa
y

|
52

|

C
ga

te
wa

y
|

72

|
H

ga
te

wa
y

|
13

2
|

J
pr

in
te

r
|

6

|
C

pr
in

te
r

|
12

|

H
pr

in
te

r
|

∞

|
J

ga
te

wa
y

|
∞

|

G
ga

te
wa

y
|

46

|
A

ga
te

wa
y

|
66

|

F
pr

in
te

r
|

12

|
G

pr
in

te
r

|
4

|

A
pr

in
te

r
|

12

|
F

ga
te

wa
y

|
13

2
|

J
ga

te
wa

y
|

52

|
C

ga
te

wa
y

|
12

4
|

E
pr

in
te

r
|

∞

|
J

pr
in

te
r

|
6

|

C
pr

in
te

r
|

6

|
E

ga
te

wa
y

|
∞

|

I
ga

te
wa

y
|

66

|
F

ga
te

wa
y

|
64

|

B
pr

in
te

r
|

12

|
I

pr
in

te
r

|
12

|

F
pr

in
te

r
|

4

|
B

ga
te

wa
y

|
12

4
|

E
ga

te
wa

y
|

46

|
A

pr
in

te
r

|
6

|

E
pr

in
te

r
|

4

|
A

ga
te

wa
y

|
12

4
|

E
ga

te
wa

y
|

13
2

|
J

ga
te

wa
y

|
∞

|

KV
R

pr
in

te
r

|
6

|

E
pr

in
te

r
|

∞

|
J

ga
te

wa
y

|
66

|

F
ga

te
wa

y
|

72

|
H

ga
te

wa
y

|
∞

|

G
ga

te
wa

y
|

∞

|
I

pr
in

te
r

|
∞

|

KV
R

pr
in

te
r

|
12

|

F
pr

in
te

r
|

12

|
H

pr
in

te
r

|
12

|

G
pr

in
te

r
|

12

|
I

ga
te

wa
y

|
∞

|

G
ga

te
wa

y
|

13
2

|
J

pr
in

te
r

|
12

|

G
pr

in
te

r
|

∞

|
J

ga
te

wa
y

|
52

 |
 C

ga
te

wa
y

|
64

 |
 B

pr
in

te
r

|
6

 |
 C

pr
in

te
r

|
4

 |
 B

ga
te
w
ay
:6
6

pr
in
te
r:
12

ga
te
w
ay
:6
4

pr
in
te
r:
4

ga
te
w
ay
:5
2

pr
in
te
r:
6

ga
te
w
ay
:4
6

pr
in
te
r:
4

ga
te
w
ay
:1
24

pr
in
te
r:
6

ga
te
w
ay
:∞

pr
in
te
r:
12

ga
te
w
ay
:1
32

pr
in
te
r:

∞

ga
te
w
ay
:7
2

pr
in
te
r:
12

Figure 5.30: Network overview for node failure validation

119

Field-Based Service Discovery for ANA 5.4 Summary

5.4 Summary

The ultimate goal of field-based service discovery is publishing a specific service type
network-wide in order to provide the opportunity for client applications of discovering a
specific service type by address-agnostic subscribe messages. This is achieved by as-
sembling a scalar field overlay for the network, depending on the capacity of service (CoS)
of the service instances as well as the hop count as distance metrics. Therefore, a client
application, showing its intent to discover a service type is always guided to an optimal
service instance regarding the service load and the network conditions.

Field-based service discovery as exploring novel and cutting-edge network protocol was
designed and implemented in the ANA Playground successfully. Thanks to the modular de-
composition, the design discloses exceeding flexibility whereas each protocol piece can be
exchanged and extended easily. The design of field-based service discovery fits excel-
lently in the ANA world. The architecture of one node participating in the compartment
contains five individual and specialized bricks, separating and modeling the fundamental
functionality of the protocol:

• Field computing brick: The field computing brick is the heart of the architecture deal-
ing with the field assembly for a specific service type.

• Routing table brick: The routing table brick is responsible to select neighbour nodes
with the highest potential.

• Dissemination brick: The dissemination brick exchanges information between nodes
and strongly separates between field assembly and routing information.

• Forwarding brick: The forwarding brick cares about forwarding payload after a client
succeeded in discovering a service instance by sending a subscribe message for this
specific service type.

• Forwarding table brick: The forwarding table brick holds, as the name implies, the
forwarding table supporting the forwarding process which is done along the steepest
gradient of the field.

Together, the described bricks build the functional block of field-based service discovery.
The communication, hence the interfaces between the bricks and the nodes, are elab-
orately defined in order to provide the aspired flexibility. Node internal as well as node
external communication is encoded as XRP messages acting as dynamic containers with
a well-defined format but dynamic content.

Several crucial validation scenarios exemplify impressively the implementation of field-
based service discovery for ANA. The scenario of field assembly shows the process of
distributing field assembly information upon publishing a service instance. The scenario of
multiple service instances pictures out the superstition of different field quotients. Further-
more, multiple fields coexisting simultaneously are also possible. Finally, the node failure
scenario which leads to novel routes in the nodes, tops off the complete and proper imple-
mentation of field-based service discovery for ANA.

120

Chapter 6

Summary and Further Work

The last chapter summarizes the contributions and objectives achieved for ANA by this
Master Thesis. The conclusion intends to highlight again the novel features developed.
Moreover, the chapter gives an outline about possible enhancements and further work
conceivable.

6.1 Summary

The ANA project builds an autonomic network based on a clean slate approach. The ulti-
mate goal is to develop a novel network architecture that enables flexible, dynamic and full
autonomic formation of networks nodes as well as whole networks. Therefore, the network
stack is not fixed as in the Internet but it is dynamically built depending on the network
needs. This flexibility is achieved by defining a MINMEX containing the required func-
tionality to run ANA on the one hand and the ANA Playground containing actual network
functionality, protocols and applications on the other hand.

This Master Thesis is situated in the ANA project, more exactly in the ANA Playground.
The achieved goal is to develop new protocols and applications to be designed, imple-
mented and tested in the existing ANA prototype. Therefore, the following improvements
have been developed and validated successfully:

• The design and implementation of the Internet Protocol (IP) for ANA as first use case
for a complex network protocol.

• The design and implementation of the Routing Information Protocol (RIP) for ANA as
first opportunity to perform routing inside an ANA network.

• The design and implementation of field-based service discovery for ANA as exploring
novel and cutting-edge protocol, combining field-based routing and address-agnostic
service discovery.

IP in ANA exhibits some variances compared to the standard IP. Nevertheless, the most im-
portant features such as IP header, encapsulation, checksum computation, forwarding and
the addressing scheme are supported accurately, extending the features of ANA increas-
ingly. Because of the IP compartment it is now possible to communicate over disparate
Ethernet segments whereas before, only messages inside the same Ethernet segment
was a possible communication. In addition, RIP offers the full functionality of the standard
RIP.

Field-based service discovery as brand-new protocol provides publishing service types
network-wide in order that clients are able to discover the service types by address-agnostic

Summary and Further Work 6.2 Further Work

subscribe messages. This is achieved by assembling a scalar field overlay for the network,
depending on the capacity of service (CoS) of the service instances.

Thanks to the modular design of all protocols, the decomposition discloses exceeding
flexibility whereas each protocol piece can be exchanged and extended easily. The archi-
tecture of one node participating in the compartments contains individual and specialized
bricks, separating the fundamental functionality of the protocols. In the end, several cru-
cial validation scenarios exemplify impressively the implementation of the novel features
enriching the ANA Playground.

Besides these main topics, a large variety of other task were performed, reaching from
code debugging to giving a presentation on an ANA coding workshop in Liège (Belgium).
In conclusion, the development of new protocols and applications for ANA resulted with IP
and RIP as well as field-based service discovery in two major and functioning features for
ANA and it was a pleasure to participate in the ANA development team.

6.2 Further Work

ANA is an ongoing project and the ANA software is far from being finished. The most in-
teresting and desirable enhancements arised during the development of this Master Thesis
are listed below:

• As already described, IP in ANA does not offer the full functionality of the standard
IP. Therefore it could be necessary to develop additional bricks providing for instance
fragmentation, IP options or ICMP. Thanks to the modular design, the development of
additional bricks for the functional block of IP is possible at any time.

• An important enhancement would be a functional block implementing a reliable trans-
port layer protocol. This is necessary to be able to re-send lost IP datagrams. For
example SAFT (Store And Forward Transport (SAFT) [52]) is well suited for wireless
environments.

• The ANA project enforces the concept of dynamic protocol stacks. Therefore it could
be interesting to try running IP without Ethernet. This is possible by binding the IP
encapsulation brick directly to the vlink brick instead of the Ethernet brick. Obviously,
one has to think about new ideas replacing today’s ARP process.

• For now, the configuration of an ANA IP node is done manually by the configuration
brick. To be convenient to ANAs concept of autonomic networks, new ideas are
imaginable like Zeroconf [41] in order to provide full autonomic address configuration.

• Field-based service discovery runs on top of Ethernet but there are again other proto-
col stacks conceivable. It is possible to run field-based service discovery for example
on top of IP. One only has to change a few source code lines in the dissemination
and forwarding brick to perform resolve processes for neighbour nodes in the IP com-
partment instead of the Ethernet compartment. Moreover, it should be possible to
chose the desired compartment with auxiliary arguments at runtime because the IP
and Ethernet compartment handle resolve processes in the same way.

• The feedback information channel for response messages in the field-based service
discovery compartment is implemented by storing the path of subscribe messages in
the nodes. As already mentioned there are a lot of other ideas possible to offer a feed-
back channel such as providing network addresses of other protocols (for example IP)
or computing additional field overlays for clients.

• Another interesting point for further work is the information exchange between nodes
in the field-based service discovery compartment. It should be possible to fill the dy-
namic containers described in this Master Thesis with RIP routing information instead

122

6.2 Further Work Summary and Further Work

of field-based routing information. Therefore, it could be possible to chose routing
mechanisms dynamically.

• In addition to the hardware abstraction layer, an ANA abstraction layer would be use-
ful. It should allow legacy applications to run over ANA. Therewith one could evaluate
the benefits of the ANA network architecture in comparison with the current Internet.

Last but not least, the ANA Playground provides endless free space for developing further
protocols and applications imaginable.

123

Appendix A

How-to: Start IP and RIP

A.1 Compilation

You can get and compile the ANA source code as follows [40]:

1. Get the source code [51]:

��� ������	
 �

���

�	������������	��������
�����
���

You will need a username and a password. These can be obtained from Christophe
Jelger from the University of Basel.

2. Switch to the trunk directory and compile the program:

�� ���
��������

�	��

���� 	���

Note that for now the IP and RIP bricks only work in user space.

A.2 Loading the MINMEX and the Bricks

1. MINMEX:

�
���
������ �� ����

The MINMEX control gate will be shown on the output which es needed to attach the
bricks (”-b” is used to extend the maximal message size which is necessary for RIP
advertisements).

2. vlink: Virtual link brick [4]

�
���
����� �� ������� !�"#!$�%&"�

You need to have root privileges.

3. Configure the vlink:

�
���
�����'�(����
� � �

�
���
�����'�(�����' ������ �
��

�
���
�����'�(� ������

For more detailed instructions to configure the vlink, refer to [4].

How-to: Start IP and RIP A.3 Start with Shell Script

4. dgrmEthBrick: Ethernet brick [4]

���������	
��
���� �� ����
�������������

You need to repeat step 3 and 4 in order to install multiple interfaces. For each vlink
configured, one dgrmEthBrick has to be started. Therefore, you need to change the
names of the additional Ethernet bricks with an auxiliary argument:

���������	
��
���� �� ����
�������������
 �� ����

5. ip_enc: Encapsulation brick

�������!���� �� ����
�������������

6. ip_sum: Checksum computing brick

�������!�"#	 �� ����
�������������

7. ip_fwd: Forwarding table brick

�������!�$%� �� ����
�������������

8. ip_cfg: Configuration brick

�������!�&�$�� �� ����
�������������
 ����

Please refer to section 4.2 for instructions how to use the configuration brick.

9. rip: RIP brick

��������! �� ����
�������������

10. (ip_usr: Sample user brick, refer to section 4.2)

For a more detailed discussion on how to load, configure and troubleshoot the MINMEX
and the bricks, please refer to [2].

A.3 Start with Shell Script

• There is also the possibility to run an ANA node with IP by dint of a shell script (single
interface):

���������"��!�"���������!�"� '���(��) ���
�*��
 �+��))�
,,)
*�-������
.�/

Where:

– '���(��): The virtual link ID you want to configure for the ���
�*��
.
– ���
�*��
: The interface you want to use, e.g. eth0.
– �+��))�
,,: The IP address for your ANA node (a 255.255.255.0 subnet mask
will be assumed).

–)
*�-������
.�/: The IP address of the default gateway.

• After having started ANA and the IP compartment successfully you can use screen
[46] to observe the outputs of the bricks:

– Show a specific output (”reattach a screen”):
"����� �� 0�!����1 �!�"#	1 �!�$%�2

– Ctrl+A + Ctrl+D to close the output (”detach a screen”)

126

Appendix B

How-to: Start Field-Based
Service Discovery

B.1 Compilation

You can get and compile the ANA source code as follows [40]:

1. Get the source code [51]:

��� ������	
 �

���

�	������������	��������
�����
���

You will need a username and a password. These can be obtained from Christophe
Jelger from the University of Basel.

2. Switch to the trunk directory and compile the program:

�� ���
��������

�	��

���� 	���

Note that for now the IP and RIP bricks only work in user space.

B.2 Loading the MINMEX and the Bricks

1. MINMEX:

�
���
������

The MINMEX control gate will be shown on the output which es needed to attach the
bricks.

2. vlink: Virtual link brick [4]

�
���
����� �� ���������� !�"�#$ �

You need to have root privileges.

3. Configure the vlink:

�
���
�����%�& ����
� ' '

�
���
�����%�& �����% �����' �
�(

�
���
�����%�& 	� �����'

How-to: Start Field-Based Service Discovery B.3 Start with Shell Script

For more detailed instructions to configure the vlink, refer to [4].

4. dgrmEthBrick: Ethernet brick [4]

���������	
��
���� �� ����
�������������

You need to repeat step 3 and 4 in order to install multiple interfaces. For each vlink
configured, one dgrmEthBrick has to be started. Therefore, you need to change the
names of the additional Ethernet bricks with an auxiliary argument:

���������	
��
���� �� ����
�������������
 �� ����

5. fbr_diss: Dissemination brick

������!�����"" �� ����
�������������

6. fbr_forw: Forwarding brick

������!���!#�$ �� ����
�������������

7. fbr_ftab: Forwarding table brick

������!���!��� �� ����
�������������

8. fbr_rtab: Routing table brick

������!������� �� ����
�������������

9. fbr_potf: Field computing brick

������!���%#�! �� ����
�������������

10. (fbr_serv: Sample service brick, refer to section 4.2)

11. (fbr_clie: Sample client brick, refer to section 4.2)

For a more detailed discussion on how to load, configure and troubleshoot the MINMEX
and the bricks, please refer to [2].

B.3 Start with Shell Script

• There is also the possibility to run with field-based service discovery by dint of a shell
script:

���������"�!���"�����!���"�

Note that the MINMEX, vlink and Ethernet bricks have to be running already.

• After having started the shell script successfully you can use screen [46] to observe
the outputs of the bricks:

– Show a specific output (”reattach a screen”):

"����� �� &!�����""' !���!#�$' !���!���' !�������' !���%#�!(

– Ctrl+A + Ctrl+D to close the output (”detach a screen”)

128

Appendix C

Doxygen Code Documentation

C.1 IP and RIP

Data Structure Documentation

devAddr Struct Reference
struct devAddr

Data Fields
• anaLabel_t dev
• char * addr
• char * mask

Detailed Description
struct devAddr
A data structure to store IP addresses of interfaces.

Field Documentation

anaLabel_t devAddr::dev
Interface

char* devAddr::addr
IP address

char* devAddr::mask
Netmask

The documentation for this struct was generated from the following file:

• ip.h

fullTarget Struct Reference
struct fullTarget

Data Fields
• char * address
• anaLabel_t label
• char * destDescrip
• char * source
• uint8_t type
• char * srcDescrip

Detailed Description
struct fullTarget
A data structure to store the properties for communication targets.

Field Documentation

char* fullTarget::address
IP address

anaLabel_t fullTarget::label
Outgoing interface

char* fullTarget::destDescrip
IP user application

char* fullTarget::source
IP source to use

uint8_t fullTarget::type
CMD or next header

char* fullTarget::srcDescrip
Source description

The documentation for this struct was generated from the following file:

• ip.h

resolveRequestList Struct Reference
struct resolveRequestList

Data Fields
• char resId [RES_ID_SIZE]
• anaLabel_t replyTo
• void * context
• int contextLen
• int timerId
• void * target
• int targetLen
• char chanType
• void * description
• int descLen

Detailed Description
struct resolveRequestList
A data structure to store pending resolve requests.

Field Documentation

char resolveRequestList::resId[RES_ID_SIZE]
Resolve ID

anaLabel_t resolveRequestList::replyTo
IDP to send the response to

void* resolveRequestList::context
Context

int resolveRequestList::contextLen
Length of the context

int resolveRequestList::timerId
Timer ID

void* resolveRequestList::target
Target

int resolveRequestList::targetLen
Length of the target

char resolveRequestList::chanType
Channel type

void* resolveRequestList::description
Source description

int resolveRequestList::descLen
Length of the source description

The documentation for this struct was generated from the following file:

• ip.h

File Documentation

ip.h File Reference

Data Structures
• struct fullTarget

struct fullTarget
• struct devAddr

struct devAddr
• struct resolveRequestList

struct resolveRequestList

Functions
• uint32_t AGENTCLASSMEMBER dottedQuadToHex (char *dotted)

A function to transform an IP address from dotted quad to hexadecimal notation.
• char *AGENTCLASSMEMBER hexToDottedQuad (uint32_t hex)

A function to transform an IP address from hexadecimal to dotted quad notation.
• char *AGENTCLASSMEMBER num_mask (uint32_t mask)

A function to transform a netmask to short notation (e.g. "\24").

Detailed Description
IP header file with necessary data structures, defines (documented in the report) and functions.

Function Documentation

uint32_t AGENTCLASSMEMBER dottedQuadToHex (char * dotted)
A function to transform an IP address from dotted quad to hexadecimal notation.

Parameters:
dotted IP address in dotted quad notation

Returns:
IP address in hexadecimal notation

See also:
hexToDottedQuad()

char* AGENTCLASSMEMBER hexToDottedQuad (uint32_t hex)
A function to transform an IP address from hexadecimal to dotted quad notation.

Parameters:
hex IP address in hexadecimal notation

Returns:
IP address in dotted quad notation

See also:
dottedQuadToHex()

char* AGENTCLASSMEMBER num_mask (uint32_t mask)
A function to transform a netmask to short notation (e.g. "\24").

Parameters:
mask Netmask in hexadecimal notation

Returns:
Short notation as string

ip_enc.c File Reference

Functions
• uint8_t AGENTCLASSMEMBER generateNextHeader (void)

A function to generate a next header code for the IP next header field.

Detailed Description
IP encapsulation brick.

Function Documentation

uint8_t AGENTCLASSMEMBER generateNextHeader (void)
A function to generate a next header code for the IP next header field.

Returns:
New random next header code

C.2 Field-Based Service Discovery Doxygen Code Documentation

C.2 Field-Based Service Discovery

137

Data Structure Documentation

ids Struct Reference
struct ids

Data Fields
• char * type
• char * id
• int seq
• int param1
• int param2
• int age

Detailed Description
struct ids
A data structure to store service IDs and according sequence numbers of all service instances.

Field Documentation

char* ids::type
Service type

char* ids::id
Service ID

int ids::seq
Ongoing sequence number

int ids::param1
Parameter 1, e.g. capacity

int ids::param2
Parameter 2, e.g. hop count

int ids::age
Age for garbage collection issues

The documentation for this struct was generated from the following file:

• fbr.h

mids Struct Reference
struct mids

Data Fields
• char * type
• char * id
• int cown
• int sown
• anaLabel_t clabel
• anaLabel_t slabel
• char * requester

Detailed Description
struct mids
A data structure to store the message IDs of all messages.

Field Documentation

char* mids::type
Service type

char* mids::id
Message ID

int mids::cown
Client application is node local

int mids::sown
Service instance is node local

anaLabel_t mids::clabel
Next IDP towards client application

anaLabel_t mids::slabel
Next IDP towards service instance

char* mids::requester
Origin requester

The documentation for this struct was generated from the following file:

• fbr.h

neighbour Struct Reference
struct neighbour

Data Fields
• char * id
• anaLabel_t label
• int age

Detailed Description
struct neighbour
A data structure to store all neighbour nodes.

Field Documentation

char* neighbour::id
Unique ID for neighbour, e.g. MAC address

anaLabel_t neighbour::label
Outgoing interface

int neighbour::age
Age for garbage collection issues

The documentation for this struct was generated from the following file:

• fbr.h

pots Struct Reference
struct pots

Data Fields
• char * type
• char * field
• float potential
• int age

Detailed Description
struct pots
A data structure to store field potentials of all service instances.

Field Documentation

char* pots::type
Service type

char* pots::field
Field type

float pots::potential
Field potential

int pots::age
Age for garbage collection issues

The documentation for this struct was generated from the following file:

• fbr.h

services Struct Reference
struct services

Data Fields
• char * type
• char * id
• int seq
• char * field
• int param1
• int param2
• int ttl
• int age

Detailed Description
struct services
A data structure to store the properties of node local service instances.

Field Documentation

char* services::type
Service type

char* services::id
Service ID

int services::seq
Ongoing sequence number for advertisements

char* services::field
Field type

int services::param1
Parameter 1, e.g. capacity

int services::param2
Parameter 2, e.g. hop count

int services::ttl
Time to live for advertisements

int services::age
Age for garbage collection issues

The documentation for this struct was generated from the following file:
• fbr.h

tab Struct Reference
struct tab

Data Fields
• char * type
• char * potential
• int own
• anaLabel_t label
• int age

Detailed Description
struct tab
A data structure to store the routing table.

Field Documentation

char* tab::type
Service type

char* tab::potential
Field potential

int tab::own
Indicates type of next hop (local or remote node)

anaLabel_t tab::label
Next hop

int tab::age
Age for garbage collection issues

The documentation for this struct was generated from the following file:

• fbr.h

File Documentation

fbr.h File Reference

Data Structures
• struct services

struct services
• struct ids

struct ids
• struct pots

struct pots
• struct tab

struct tab
• struct neighbour

struct neighbour
• struct mids

struct mids

Functions
• int randomsnr (int a, int e)

A function to generate a random number between a lower and upper bound.

Detailed Description
FBSD header file with necessary data structures, defines (documented in the report) and functions.

Function Documentation

int randomsnr (int a, int e)
A function to generate a random number between a lower and upper bound.

Parameters:
a Lower bound
e Upper bound

Returns:
Random number

Bibliography

[1] The ANA Project, Autonomic Network Architecture, http://www.ana-project.org (March
2008)

[2] Ariane Keller, Development of the ANA Core Software, Master Thesis,
ftp://ftp.tik.ee.ethz.ch/pub/students/2007-So/MA-2007-38.pdf (March 2008)

[3] ANA Blueprint, Sixth Framework Program, Project Number: FP6-IST-27489, Deliver-
able D1.4/5/6 Version 1.0, Christophe Jelger et al

[4] ANA Core Documentation, https://subversion.cs.unibas.ch/repos/ana/ana-
core/trunk/doc/anacore-doc.pdf (March 2008)

[5] State of the Art, Sixth Framework Programm, Project Number: FP6-IST-27489, Deliv-
erable 1.1, Christophe Jelger et al

[6] R. D. Pethia, Computer Security, Testimony Before the Committee on Government Re-
form Subcommittee on Government Management, Information and Technology, March
9, 2000

[7] M. Handley and A. Greenhalgh, Steps Towards a DoS-Resistant Internet Architecture,
Proceedings of ACM SIGCOMM Workshop on Future Directions in Network Architec-
ture, 2004

[8] A. Nakao, L. Peterson and A. Bavier, A Routing Underlay for Overlay Networks, Pro-
ceedings 2003 Conference on Applications, Technologies, Architectures and Protocols
for Computer Communications, 2003

[9] L. Peterson, S. Shenker and J. Turner, Overcoming the Internet Impasse through Vir-
tualization, Proceedings of 3rd Workshop on Hot Topics in Network (HotNets-III), 2004

[10] Active Technologies, Vorlesungsslides von B. Plattner, SS 2007

[11] Situated and Autonomic Communications (SAC), http://cordis.europa.eu/ist/fet/comms.htm

[12] Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 3rd
Edition

[13] Christian Benvenuti, Understanding Linux Network Internals, O’Reilly

[14] Klaus Wehrle, Frank Pählke, Hartmut Ritter, Daniel Müller and Marc Bechler, The
Linux Networking Architecture, Design and Implementation of Network Protocols in
the Linux Kernel

[15] Open Systems Interconnection Reference Model (OSI), ISO Standard 7498-1:1994

[16] International Organization for Standardization (ISO), http://www.iso.org/iso/home.htm

[17] Internet Protocol, RFC 791

BIBLIOGRAPHY

[18] Internet Protocol Version 6 (IPv6), RFC 2460

[19] Transmission Control Protocol, RFC 793

[20] User Datagram Protocol, RFC 768

[21] Requirements for Internet Hosts - Communication Layers, RFC 1122

[22] Assigned Numbers, RFC 1340

[23] Internet Control Message Protocol (ICMP), RFC 792

[24] Routing Information Protocol, RFC 1058

[25] A Border Gateway Protocol 4 (BGP-4), RFC 4271

[26] Open Shortest Path First Protocol (OSPF), RFC 2740

[27] Vincent Lenders, Martin May and Bernhard Plattner, Service Discovery in Mobile Ad
Hoc Networks: A Field Theoretic Approach, Pervasive and Mobile Computing 1 (2005)
343-370

[28] Anindya Basu, Alvin Lin and Sharad Ramanathan, Routing Using Potentials: A Dy-
namic Traffic-Aware Routing Algorithm, in Proceedings of the ACM Annual Conference
of the Special Interest Group on Data Communication, SIGCOMM 2003, Karlsruhe,
Germany, August 2003

[29] Vincent Lenders, Field-Based Routing and its Application to Wireless Ad Hoc Net-
works, Diss., ETHZ, Nr. 16681, 2006

[30] Nam T. Nguyen, An-I Andy Wang, Peter Reiher and Geoff Kuenning, Electric-Field-
Based Routing: A Reliable Framework for Routing in MANETs, Mobile Computing and
Communications Review, Volume 8, Number 1

[31] Ulas C. Kozat and Leandros Tassiulas, Network Layer Support for Service Discovery
in Mobile Ad Hoc Networks, in Proceedings of the IEEE INFOCOM, San Francisco,
USA, April 2003

[32] Vincent Lenders, Martin May and Bernhard Plattner, Density-Based vs. Proximity-
Based Anycast Routing for Mobile Networks

[33] The ANA Project, Deliverable 2.8 Version 1.0, Service Discovery and Routing
Schemes for intra- and inter-Compartment Service Provisioning, http://www.ana-
project.org/deliverables/2007/ana-d2.8-final.pdf (March 2008)

[34] Chenxi Wang, Antonio Carzaniga, David Evans and Alexander L. Wolf, Se-
curity Issues and Requirements for Internet-Scale Publish-Subscribe Systems,
http://www.cs.virginia.edu/~evans/pubs/hicss.pdf (March 2008)

[35] Yongqiang Huang and Hector GarciaMolina, Publish/Subscribe in a
Mobile Environment, Department of Computer Science, Stanford,
http://infolab.stanford.edu/~yhuang/papers/mobpubsub.pdf (March 2008)

[36] The ANA Project, ANA Wiki, WP1, Task 1.4, Lookup API, https://www.ana-
project.org/wiki/workpackages/wp1/task-1-4/lookup-api (March 2008)

[37] Address Resolution Protocol, RFC 826

[38] ETH Zürich, Computer Engineering and Networks Laboratory, 8092 Zurich,
http://www.tik.ee.ethz.ch

148

BIBLIOGRAPHY

[39] TIK Testbed, http://tiknet.ee.ethz.ch/doku.php (March 2008)

[40] ANA Code Repository, https://subversion.cs.unibas.ch/repos/ana

[41] Zero Configuration Networking (Zeroconf), http://www.zeroconf.org

[42] Traditional IP Network Address Translator (Traditional NAT), RFC 3022

[43] Session Initiation Protocol (SIP), RFC 3261

[44] Ethereal / Wireshark, http://www.wireshark.org/

[45] Valgrind, http://valgrind.org/

[46] Screen, http://www.gnu.org/software/screen/

[47] Doxygen Source Code Documentation Generator Tool,
http://www.stack.nl/~dimitri/doxygen/index.html

[48] Richard Bellman, On a Routing Problem, in Quarterly of Applied Mathematics, 16(1),
pp. 87-90, 1958

[49] E. W. Dijkstra, A Note on Two Problems in Connexion With Graphs, in Numerische
Mathematik 1, pp. 269–271, 1959

[50] Gnutella, http://www.gnu.org/philosophy/gnutella.html (March 2008)

[51] Subversion, http://subversion.tigris.org/

[52] SAFT, Store And Forward Transport, Simon Heimlicher, Master Thesis ,
ftp://ftp.tik.ee.ethz.ch/pub/students/2004-2005-Wi/MA-2005-08.pdf (March 2008)

149

	1
	ip
	3
	fbsd
	5

