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Abstract

Today, many service providing organisations require their users to authenticate before enabling
them to use their services. A widely used system for this purpose is the so called username-
password system. The most important advantages of this system are the ease of use, the experience
in implementing and the acceptance of users. However, this system has some severe disadvan-
tages. The first lies in the fact that many users have a vast amount of accounts. As an example
there are such accounts for email, online auctions, gaming and online banking. Trying to reduce
the entropy they need to store in their brain, they tend to choose the same username-password
combination for authentication with different organisations. This is particularly relevant if ser-
vices with different security levels, such as a bank account and an email account, are accessed
with the same authentication information.

Federated identity management allows a user to acquire a credential with certified attributes.
He only needs to store the credential in a safe place and can authenticate using the credential.
The authentication process transparently uses public key cryptography and therefore offers much
better security compared to the username-password approach. Another advantage of federated
identity management is the possibility to performing authentication across borders of different
domains (e.g., companies). An anonymous credential system, such as idemix, can be extended
such that it implements the concept of identity federation. It uses not only credentials with
certified attributes but guarantees that the identity of each user will be protected. The privacy
protection reaches even further, as the actions of a user with a credential are not linkable. As an
example, a user can authenticate several times with one company using the same credential and
still the organisation will not gain any information apart from the fact that an eligible user has
accessed its system. Such a far-reaching privacy protection has disadvantages, too. Credentials
are issued as digital information which enables users to share them arbitrarily. Moreover, the
credential can be duplicated by malicious software without the owner even noticing. In other
words, anonymous credential systems do neither prevent users from sharing their credentials nor
can they detect if several copies of one credential are used extensively by different users. This
may hinder the large-scale adoption of anonymous credential systems.

In this thesis, we will first present an overview of several techniques to cope with credential misuse,
such as sharing or theft, in anonymous credential systems. A comparison of the techniques will be
the basis for the choice of an effective misuse prevention mechanism. We will then describe how
two concrete techniques — K-show credentials and hardware-bound credentials — have been
implemented into the idemix system. The result is a system offering strong privacy combined
with effective sharing and theft prevention.
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Chapter 1

Introduction

Nowadays more and more services become accessible over networks. The services are provided by
organisations, which want to make it accessible for a number of users. While these services seem
to have many benefits for their users, at the same time they prove to introduce a severe disadvan-
tage. This drawback is associated with the authentication process required by the organisations.
Hereby, not the actual authentication process causes problem, the trouble arise due to the system
being used for authenticating users. Today, the most used system for this purpose is a so called
username-password approach. Its ease of use is a reason for the wide spread implementation, but
unfortunately the system offers many attack vectors.

The need for authentication is explained with the protection of the assets of the organisation.
Additionally, it is a useful technique to separate the assets of the system users, for example
separate the e-mail accounts of different users. However, during the setup of a username-password
combination, the users often are urged to provide much information to the organisation and
thereby reduce their own privacy. Not many users have realised yet, to what extent this data could
be used. For example, the payment transaction to a travel agency indicates an easy target for a
burglary. A completely different misue of private information is the use of acquired information
to send specifically targeted advertisements to the user. The last example is already a lucrative
business.

An anonymous credential system, such as idemix, is an authentication system which offers
far-reaching privacy protection for the users. It offers several other advantages over username-
password system, too. An important merit is the use of certified attributes, which strengthens
the assurance of information provided to the organisations. A bit contra-intuitive is the fact that
the attributes do not need to be revealed to the organisation and still the assertion given to the
organisations is stronger compared to the username-password approach. The primitive that is
used to achieve this goal are so called zero-knowledge proofs. The setup of this system leads to
very strong privacy protection of the user.

Another benefit of idemix is the possibility to extend it to a federate identity management system.
Federated identity management allows a user to authenticate across the borders of different
domains. For example, let us assume that an organisation O1 provides the IT infrastructure to
another organisation O2. If an employee of O1 wants to access a computer room at the location
of organisation O2, he nowadays needs to authenticate to O2. However, as O1 is managing those
resources by order of O2, the access should be granted. Federated identity management makes
it possible for the employee to authenticate with O1 which authenticates to O2 on his behalf.
Clearly, the usability of many systems could be enhanced using this technique.

To issue certified attributes to a user, the idemix system uses so called credentials. As they
contain certified attributes, they are also denoted as certificates. The credentials are issued to
the user by an identity providing organisation and contain information which is signed by the
identity providing organisation. The attained attributes can be used to acquire more credentials
or to authenticate at some service providing organisation.

As credentials are digital information, they are easy to copy. This is a problem as a user, for

13



14 CHAPTER 1. INTRODUCTION

example, can copy his credentials and share them with another user. Such practices are clearly
a misuse of the credential system. Idemix current lacks the ability to cope with duplicate cre-
dentials. In particular, there are no possibilities to detect or even prevent such misbehaviour.
Especially, the anonymity of the system seems to be in conflict with a mechanism to prevent
misuse. However, there have been different approaches proposed which limit the misuse possibili-
ties of users in the system. Some accomplish this objective by limiting the incentive of the user to
copy his credentials. Others limit the number of usages of a credential in a certain time interval
to reduce the number of copies that can be used simultaneously without being detected. Anyhow,
none of the above mentioned methods can prevent the occurrence of credential duplicates. This
results as the discussed approaches are all cryptography-based.

A completely different angle of approaching the problem is the following. The idea is to transform
credentials form digital information into physical objects. Clearly, such a transformation cannot
be achieved. Nevertheless, the enclosure of essential information in a tamper resistant object
attains the envisioned goal. A credential is not mere digital information anymore. Thus, the ability
to freely copy the credential is eliminated. Even though the introduction of tamper-resistant, i.e.,
secure hardware reduces the problem of duplicate credentials to a certain extent, it is not the
ultimate solution to misuse protection. This results from the fact that even data residing in a
tamper-resistant device can be extracted. Hence, there needs to be another mechanism to limit
the possibilities after a secure hardware device has been broken. We propose to use the K-show
credentials as described by Camenisch et al. in [3] in addition to the hardware-based protection
mechanism. Consequently, we achieve an anonymous credential system with an effective misuse
protection. The idemix system is thereby considered ready to be used in real world scenarios and
its spread is supported by including idemix into the open-source Higgins Trust Framework1.

In addition to the choice of an effective misuse protection mechanism, we provide a prototype
implementation of this mechanism. It is embedded into the already implemented idemix system.
The computation time of the prototype is measured and the prototype implementation is found
to perform poorly. The reason of which is the arithmetic which is running in the application
layer. The necessity of this measure is discussed in broader detail. As a reaction of the poor
performance of the implemented system, we provide an exploration of expected runtimes with
the use of the embedded cryptographic coprocessor.

Let us give a brief overview of the structure of the thesis. After the problem statement provided
as Chapter 2, we discuss the theoretical basics which are necessary for the understanding of
the thesis. Afterwards, Chapter 4 focuses on credential systems by giving an introduction on
the basic mechanisms as well as by comparison with well-known authentication systems. This
chapter also reasons about the choice of a credential system as authentication system for future
applications. Chapter 5 provides an overview over the different techniques that can be used for
misuse protection in anonymous credential systems. The aim of the succeding chapter is to high-
light in extensive detail the implemented misuse protection mechanism. In addition the idemix
system is briefly described to allow the understanding of the implementation part. Subsequently,
Chapter 7 talks about the extensions that effectively needed to be made to the idemix system.
In addition to that, it describes all other implementations that were necessary, i.e., especially
the implementation of a arbitrary position arithmetic for a Java card is motivated. Thereafter in
Chapter 8 the findings are summarised and an outlook on future work is given.

1Refer to http://www.eclipse.org/higgins/ for more details.

http://www.eclipse.org/higgins/


Chapter 2

Problem Definition

2.1 Theft and Misuse Protection for Anonymous Creden-

tials

Anonymous Credential Systems allow a user to authenticate in Web transactions by proving
certified attributes about him or herself while maintaining strong privacy protection. Anonymous
Credential Systems are capable of even establishing full unlinkability of transactions modulo the
linking enabled by the attributes disclosed.

This capability bears the risk that anonymous credentials may be misused by malicious users,
e.g., by massive sharing of the credential in peer-to-peer settings, or stolen by for instance mal-
ware, where the anonymity properties foil the possibility to identify stolen credentials or thieves.
Therefore, reliable mechanisms for theft and misuse prevention are even more important for
Anonymous Credential Systems than for normal username/password or public key mechanisms.

Research envisions two major solutions for these challenges. (a) The anonymous credentials may
be tied by cryptographic means to a hardware device and cannot be used without the device
being present in the transaction. (b) The anonymous credential may be extended by compact
e-cash primitives to prevent massive multiple use of the credential: if the credential is for instance
invoked more than ten times a day, the identity of the owner is automatically revealed by the
multiple-spending prevention of the e-cash.

This research project is to explore the theft and misuse protection capabilities for the Iden-
tity Mixer, an Anonymous Credential System based on Camenisch-Lysyanskaya signatures. The
project involves current research in cryptography as well as system architecture and implemen-
tation for security systems. The project is aligned with the open-source user-centric identity
management project Higgins.

Qualifications:

• Understanding of cryptography and security

• Design for security systems

• Programming in Java and software engineering methods

The project consists of the following deliverables:

• Written elaboration on theft and misuse mechanisms for Anonymous Credential Systems
to be published as research report or scientific paper.

• Design for the integration of theft and misuse protection mechanisms into the Higgins Trust
Framework client and server infrastructure.

15
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• Implementation of the mechanisms for the Higgins Trust Framework and its Identity
Mixer plug-in. Requirements: the implementation must be demoable, contributable to open-
source, and reusable.



Chapter 3

Theoretical Background

In this chapter we provide cryptographic basics as well as definitions of some fundamental terms
and concepts. The description of the concepts is provided as far as necessary for the understanding
of the thesis. Most of the concepts are referred to within the thesis. Some descriptions, however,
are only described as they are necessary for a further understanding of the idemix 1 system.
Therefore this chapter is a mere reference in case more detail on the used concepts is needed.

3.1 Fundamental Terms

Identification and authentication are terms that will be used often throughout the thesis. We want
to provide an intuition more than a definition of the terms to prevent any misunderstanding.

Authentication is the process of determining whether someone is who he claims to be. It is car-
ried out between two parties called the prover and the verifier. If the entity acting as prover
can successfully convince the verifier that he is who he claims to be, he is authenticated.

Identification is the process of verifying the identity of someone. As in the case of authentication
it is carried out between a prover and a verifier.

In other words we could describe identification as a process closely related to authentication. The
only difference being that after successful identification the verifier is convinced to know the real
name of the prover. In the authentication process the condition of the verifier must not be the
knowledge of the identity. The prerequisite can for example be a paid subscription. In case of a
successful authentication we consequently never assume that the verifier can link the prover to
a value such that the verifier will recognise when the same prover returns.

3.2 Mathematical Preliminaries

The different cryptographic terms we use, need some explanation. Some properties of described
systems hold under certain assumptions. Those assumptions are defined here. Accordingly, the
following sections provide the cryptographic insight as far as needed for the understanding of the
thesis.

3.2.1 Cryptographic Assumptions

First of all, two definitions are needed to be able to discuss a number of assumptions.

Definition 1 (RSA modulus). An RSA modulus n is the product of two primes p and q such
that n = p · q. Let us name an RSA modulus built of two safe primes a special RSA modulus.

1Refer to Section 6.3 on page 53 for a brief introduction.
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18 CHAPTER 3. THEORETICAL BACKGROUND

Definition 2 (Safe prime). A safe prime is a prime number p which follows from another prime
number p′ (called Sophie German prime) by computing p = 2 · p′ + 1.

Strong RSA Assumption

This assumption states that it is infeasible to determine e > 1 and x ∈ Z
∗

n when provided with an
RSA modulus n and an element y ∈ Z

∗

n that solve the equation y = xe (mod n). The modulus
n needs to be a special RSA modulus. [3]

Interval RSA Assumption

Given an exponent e and an RSA modulus n it is infeasible to find a pair fulfilling y = xe

(mod n). [1]

The last problem is easier to solve than the RSA problem which is intuitive as not the exponent
to a given base needs to be found. This yields an additional degree of freedom and makes the
assumption stronger compared to the RSA assumption.

The formulation of the decisional Diffie-Hellman assumption requires some additional definitions.

Definition 3 (Group). A Group G with an operator ◦ is denoted as (G, ◦) and fulfils these
properties:

• Neutral Element : ∃ a neutral element denoted as 1 with 1 ◦ a = a ◦ 1 ∈ G, ∀a ∈ G

• Inverse Element : ∃ an inverse element i for which a ◦ i = i ◦ a = 1, ∀a ∈ G

• Closure: for all a, b ∈ G the element a ◦ b is also in G

• Associativity: a ◦ (b ◦ c) = (a ◦ b) ◦ c holds for all a, b, c ∈ G

Lemma 3.2.1 (Cyclic Group). A cyclic group (G∗, ◦) is a group where the elements can be
generated by the computation of the group operation ◦ on any element of the group.

Definition 4 (Multiplicative Group). Let n be a number in the group denoted by Z. Additionally
let the set I be the numbers i ∈ Z for which gcd(i, n) = 1 holds. Then Z

∗

n is the multiplicative
group consisting of the set I.

Definition 5 (Generator). The element g which is able to generate a cyclic group (G∗, ◦) is
called a generator of this specific group G∗.

Discrete Logarithm Problem

Let g, h be elements of the group (G, ∗) and x an arbitrary number in Z. The discrete logarithm
problem states that for a group with an appropriately chosen order |G| = n it is difficult to find
the number x solving the equation:

gx = h (mod n)

Although the discrete logarithm problem applies to all multiplicative groups as defined in Def. 3
for cryptographic purposes mostly groups of the form Z

∗

n as defined in Def. 4 are used. After the
definitions of a group, a generator and a cyclic group, we can define the decisional Diffie-Hellman
assumption.

Decisional Diffie-Hellman Assumption

The DDH assumption states that in a cyclic group G of order |G| = q with a randomly chosen
generator g, the element formed as gab is independent of g, ga and gb. Stated differently the
following holds:
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Theorem 3.2.2. If G = 〈g〉 is a cyclic group of order q and g is a generator thereof which
is chosen at random. Additionally a, b, c ∈ {0, . . . , q − 1} are all chosen randomly. If the DDH
assumption holds then the following terms are distributionally equal.

(

g, ga, gb, gab
)

=d

(

g, ga, gb, gc
)

This assumption is far stronger than the computational Diffie-Hellman assumption and the dis-
crete logarithm problem. For the latter it is obvious that by solving the discrete logarithm problem
the attacker would be able to compute a = logg ga and consequently gab = (gb)a which would
solve the DDH as well.

3.2.2 The Random Oracle Model

A strict definition of the random oracle model is not needed here. However, an intuitive descrip-
tion serves for the understanding of the basic concept. The random oracle provides upon input i
a truly random output o which is uniformly distributed in its output domain. To make the model
practical, it answers always with output o(i) when challenged with the same input i.

In particular, the random oracle model is used to model cryptographic hash functions. Especially,
extensive requirements on the randomness of the output of the hash function with regards to a
proof make the random oracle model useful. In such a case, a property can be proven under the
random oracle model. The proof is holding if it could only be broken by requiring impossible
behaviour from the random oracle, i.e., breaking a problem which is believed to be hard.

3.2.3 Commitment Scheme

The aim of a commitment scheme is for a party A to proof to its communication partner B
that it knows some value x. A can show x to B after having committed to it, where B is able
to verify the correctness of the given x w.r.t. the commitment. Two fundamental properties of
a commitment scheme can be extracted as stated in [14]. One is the binding property which
means that A needs to choose a value and cannot change the chosen value after he committed
to it. The other is the hiding property which implies that B cannot extract the value x from the
commitment. It requires A to provide B with the value x if B should get to know the value.

The binding and hiding property are mutually exclusive which leaves room for optimisation. The
Pedersen scheme for example, achieves perfect hiding but only a computationally secure binding.
A perfectly hiding but only computationally binding scheme is shown after the Pedersen scheme.

Example 3.2.1. If a party wants to commit to a value x ∈ Zq, it can issue a Pedersen com-
mitment. This scheme suggests the computation of the commitment with C = gx hr where
G = 〈g〉 = 〈h〉, i.e. g and h are generators of group G. Furthermore, r ∈ Zq is a randomly cho-
sen value to blind the committed value x. The two values (x, r) are called commitment opening
information as they enable B to verify the commitment C. As mentioned above, the Pedersen
commitment scheme is perfectly hiding.

Example 3.2.2. Given is a group with G = 〈g〉 = 〈h〉 and x as described in Example 3.2.1.
A scheme that is perfectly binding but only computationally hiding is achieved by computing
the commitment as C = (gxhr, hx). Again the commitment is opened by supplying B with the
values x and r. [13]

3.3 Zero Knowledge Proof of Knowledge

A zero-knowledge proof has the goal of proving knowledge of a statement without revealing the
statement itself to the other party. For example, an entity is willing to prove knowledge of a
password. Apparently, it does not want its communication partner to get to know the password.
In this case, the entity could issue a zero-knowledge proof of the password and send it to its
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communication partner. The latter would learn that the entity knows the password without
getting to know the password itself.

An introductory example given by Quisquater and Guillou [21] of a zero-knowledge proof of
knowledge uses a cave with shape similar to the one depicted in Fig. 3.1. The prover called Peggy
wants to prove to the verifier Victor that she knows a secret. The secret can be used to open the
door in the middle of the cave. However, she does not want Victor to get to know the secret.

S

J

X Y

Figure 3.1. Visualisation of the zero knowledge paradigm

A scheme which allows Peggy to achieve her goal is the following. She enters the cave and goes,
starting from the location S, to either one of the dead ends X or Y . In the meanwhile, Victor
waits at the starting point S. As soon as Peggy has reached her destination, Victor goes to
junction J and tells Peggy where she should meet him from. If Peggy did not know the secret to
open the door she would only have a chance of fifty percent of having picked the right part of
the cave. Therefore, Victor will never be completely certain that Peggy really knows the secret.
However, after k independent repetitions of the experiment his incertitude will have fallen to
2−k.

From the given example, three properties of a zero-knowledge proof of knowledge follow imme-
diately.

Completeness : The verifier accepts the proof always if the answers of the prover are correct
and both parties are following the protocol.

Soundness : Upon a wrong answer from the prover, the verifier must always rejects if both
prover and verifier are following the protocol.

Zero knowledge : The verifier does not get to know any data that might be useful in learning
the secret of the prover. He only learns about the correctness of the proof which does not
even imply that he will be able to convince another party that he has been proven the
secret.

An interactive protocol which proofs knowledge of a discrete logarithm is given in [20] and
shown below. This scheme is not considered to be efficient as interactiveness requires too much
communication.

Common inputs are 〈g〉+ 〈g̃〉 = Gq and (h, h̃) ∈ Gq

Prover knows x ∈ Z
∗

q with h = gx and h̃ = g̃x
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Prover Verifier

choose r ∈R Z
∗

q

A = gr, B = g̃r
A,B
−−−−→

c
←−−−− choose random c

y = r + cx (mod q)
y

−−−−→

verify gy = A · hc

and g̃y = B · h̃c

The notation introduced by Camenisch and Stadler in [9] can be used to denote such a zero-
knowledge proof. It allows conjunction of the arguments to be proven as seen in example 3.3.1.
The notation of the above zero-knowledge proof would consequently be the following.

PK{(α, β) : y = gαhβ}

Example 3.3.1. A user U is proving the correct building of a commitment C = gxhr in addition
to a range prove of γ and a proof of knowledge of δ. Such a prove would be denoted as

PK{(α, β, δ, γ) : y = gαhβ ∧ z = gδ ∧ (a ≤ γ ≤ b)}

where the allowed range for γ is the interval [a, b].

Definition 6 (Quadratic Residue). Let p be a number with p ∈ Z. Let additionally be n a
modulus.

p is said to be a quadratic residue if and only if there exists a number x for which p = x2 (mod n)
holds otherwise it is named a quadratic non-residue. All quadratic residues w.r.t. a modulus n
can be found by computing i2 (mod n), with i ∈

[

0, n−1
2

]

.

If the zero-knowledge proof is done using the group G of quadratic residues modulo a composite
n which is a product of safe primes, i.e. G = QRn, then the protocol must follow special rules.
The first of which is that challenge c has to be smaller than the smallest factor of the group
order |G|. Second, the protocol performs a proof under the strong RSA assumption. Hereby the
soundness needs special attention as determining if an element belongs QRn is believed to be
hard for an entity not knowing the factorisation of n. However, Brickell et al. stated in [1] that
it is sufficient in most cases to execute PK{(α) : y2 = g2α} instead of PK{(α) : y = gα} which
solves the problem that the verifier cannot verify that g is indeed a generator of group G as g2

(mod n) clearly is.

To make the proposed scheme efficient, Fiat and Shamir have shown in [15], that the proof can
be changed into a signature under the random oracle model. The so called Fiat-Shamir heuristic
will be denoted as signature proof of knowledge: SPK{(α) : y = gα}(m).

3.3.1 Fiat-Shamir Protocol and Signature

The Fiat-Shamir protocol is a construction which is particularly useful for device with low com-
putation resources such as smart cards. The scheme is an early example of a protocol using
zero-knowlege proofs for authentication purposes. It has special properties and which need some
assumptions.

• a trusted entity T or PKI is present

• valid users do not need to be stored

• no information is leaked when showing a signature
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• factorisation of modulus n is known to T only

• a hash function f : N 7→ [0, n[ which leads to an output that is for any polynomial time
algorithm indistinguishable from a truly random source

The assumption of a trusted entity is not desirable, however it is considered to be easier to
introduce compared to a working and widely accepted PKI. The second property relieves T as
well as all other parties of the burden to have a list of all users which makes the scheme extremely
scalable. The protocol of showing a signature is computationally zero knowledge.

The issuing of a smart card requires the user to identify with the trusted entity T . The latter
needs to execute the following steps:

1. create unique identifier I = (userName, address, ID, securityParameters, . . .)

2. calculate vi = f(I, i) for small i

3. pick k values for which vi is a quadratic residue (mod n) and compute the smallest square
root si of each v−1

i (mod n).

4. issue card (I, sj), with j ∈ [1, . . . , k]

We use a bijective indexing function g−1(i) = j to map the k chosen values to the interval
j ∈ [1, k]. By definition there exists an inverse function g reversing this mapping. In the scheme
the indices i are stored on the card which is congruent to storing the mapping function g. Note
that the use of this mapping function is done for convenience purposes only.

The protocol which allows a smart card and hence a user to identify with a verifier works as
follows:

1. P → V : send I

2. V : generate vj = f(I, i), i = g(j) with j ∈ [1, k]

3. repeat for i ∈ [0, t[
P → V : send xi = r2

i , with randomly chosen ri ∈ [0, n[

P ← V : send random binary vector (ei1, . . . , eik)

P → V : yi = ri

∏

eij==1

sj (mod n)

V : check xi = y2
i

∏

eij==1

vj (mod n)

The security parameter of the scheme is the product k · t which is explained by the probability of
V accepting the prover even though P did not know the sj which evaluates to 2−kt. The choice
of k and t are consequently subject to optimisation even if the overall security of the system, i.e.
kt, is fixed. The communication can be reduced by choosing a large k and reduce the number of
iterations t. In the latter case the requirements on available memory are raised. Conclusively we
can see that the burden can be shifted from memory intensive to communication intensive with
a small t and a small k respectively.

The random vector of V prevents P from cheating. However, it can be replaced by a hash function
h(·) to make the protocol non-interactive. This results in the following protocol between a prover
P and the verifier V .
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P signs message m

1. compute xi = r2
i , with randomly chosen ri ∈ [0, n[ and i ∈ [1, t]

2. compute h(m, x1, . . . , xt), use kt bits as eij where i ∈ [1, t] ∧ j ∈ [1, k]

3. compute

yi = ri

∏

eij==1

sj (mod n), for i = 1, . . . , t

4. send (I, m, eij , yi) to V

V verifies the message m

1. compute vj = f(I, j), for i = 1, . . . , k

2. compute

zi = y2
i

∏

eij==1

vj (mod n), for i = 1, . . . , t

3. check if the first kt bits of h(m, z1, . . . , zt) are the same as the eij

For memory restricted device the hash function h can be chosen to be the same as hash function
f without having security implications as long as the chosen hash function is considered to be
secure.

A challenge lies in the fact that an attacker can verify if his signature will be accepted which makes
it necessary to have an appropriate security level, i.e., to choose the product kt sufficiently large.
This is convenient as even with a fixed key length k the security level can be adjusted arbitrarily.

Even though the signatures are believed to not reveal any information, their zero-knowledgeness
cannot be proven. This follows from the fact that everybody can verify a signature and all the
same V is unable to generate false signatures. Hence, the secret information needs to be in the
signature, however, it is not extractable by V which makes the signature scheme secure. [15]

3.3.2 The Camenisch-Lysyanskaya Signature Scheme

The signature scheme introduced by Camenisch et al. in [7] is summarised here. The protocols
are not described in detail as they will not be specifically addressed in the thesis. The scheme,
however, is important as it allows an entity to sign a value without getting to know it, which is
needed in the idemix system2. In particular, a party can commit to a value which will then be
signed by the signer. In addition to this ability, the protocols allow an entity to efficiently prove
knowledge of a Camensch-Lysyanskaya signature. The scheme is based on discrete-logarithm-
based proofs of knowledge and shown to be secure under the strong RSA assumption.

Key generation :

• input is 1k where k is the security parameter;

• choose a special RSA modulus n = p · q with length ln = 2k;

• choose uniformly at random a, b, c ∈ QRn;

• PK = (n, a, b, c); SK = p

2Refer to Section 6.3 on page 53 for a brief introduction.
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Message space :

• the messages {(m1, . . . , mL) : ∀mi ∈ {0, 1}lm} with the length parameter lm

Signing algorithm :

• input mi;

• choose random prime number e with length le ≥ lm + 2;

• choose random number v with lv = ln + lm + l where l is a security parameter;

• compute r with re = amibvc (mod n);

• output σ = (e, v, r)

Verification algorithm :

• check if re ≡ amibvc (mod n)

• check if 2le−1 < e < 2le

The basic operations of the signature scheme are given above. However, we do not provide the
protocols as they are described in wide detail in [7]. The protocol is used whenever a signature on
a secret message is needed. As such, it is a basic operation for the credential system as proposed
in [5].

3.4 Dynamic Accumulators

The intuition behind an accumulator is to combine different values into one accumulator. The
combination of the values is done such that the accumulator fulfils certain requirements. For
example, it needs to be possible to proof that some value is in the accumulator. Yet, this proof
must fail if the value has not been used in the computation of the accumulator. Such a scheme
can be used to deal with revocation. For example, in a PKI3 environment each public key that
is valid could be put into the accumulator. Instead of revoking the public key, the value could
be taken out of the accumulator. If now each user has not only to prove possession of the secret
key but also that his key is in the accumulator, a revocation scheme would be attained. As the
example shows, an important operation for accumulator schemes is the addition of values to the
accumulator. Similarly, the revocation of values contained in the accumulator is just as important.
A scheme which makes these operations particularly easy, is described in [6] and sketched in the
following.

The setup of this accumulator scheme uses an RSA modulus n, a seed v and the IDs of the users
denoted as IDi. The accumulator value is built with

zv = v
Q

i
IDi (mod n).

The values zv and n are published and a witness value x = v
Q

i\j IDi (mod n) is generated for
each value IDj contained in the accumulator to confirm it is contained in zv. The latter can
be achieved as the verifier is able to compute xIDj (mod n) which is per definition equal to the
accumulator value zv.

A limitation of this scheme is that upon the addition of a value to the accumulator all witnesses
need to be recomputed. Camenisch and Lysyanskaya have presented a solution in [6] which they
called dynamic accumulator. There are several schemes proposed to attain a dynamic accumulator
but all come with constant computing time, i.e. it is not depending on the number of values
already in the accumulator.

3Public Key Infrastructure
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A first possibility is to change zv upon a new user with IDnew to z′v = zIDnew
v (mod n) and

the witnesses have to be changed accordingly with x′ = xIDnew (mod n). Revocation is more
elaborate because not only that the revoked ID IDrev needs to be extracted from all witnesses
but also the target value, i.e. zv is adapted. The accumulator is straightforward changed to

z′v = z
1/IDrev
v (mod n) and the witnesses are determined by x′ = xbz′av (mod n) such that

a · IDj + b · IDrev = 1. This follows through the following calculation where in the last step the
condition from above is used.

x′IDj = ((xbz′av )IDj )IDrev ·1/IDrev

= (zb
vz

′aIDj
v )IDrev ·1/IDrev

= (zbIDrev
v zaIDj

v )1/IDrev

= z1/IDrev
v

A second possibility relies on the issuer knowing the factorisation of n. The scheme can be further
improved, resulting in not changing the accumulator when a new member joins and calculating
new witnesses only upon revocation. Refer to [6] for more details.
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Chapter 4

Discussion of Selected

Authentication Systems

As more and more services become accessible from remote locations, authentication gains in
importance. This results, as accessing a service over a network does not allow the use of standard
physical tokens, such as a passport or a driver’s licence.

Today, the usual way of performing authentication is by using a username-password system.
However, there are settings which require more sophisticated approaches. A PKI-based authen-
tication system is one of them. Unfortunately, it suffers from several disadvantages, too. The
following sections provide an overview over security-relevant aspects of both systems as well as
an introduction to credential systems. These systems provide the users with far-reaching privacy.
As they still are being designed there is much space left for optimisation and for extending the
system. Before we present one such optimisation, we will discuss the three above mentioned
systems.

4.1 Username-Password System

Today the most-commonly used authentication scheme is a username-password approach. In
such a system, a user chooses a username and a corresponding password when he first wants to
authenticate to a service providing organisation. We refer to the username-password combination
also as authentication tuple. In addition to the authentication tuple, the user is required to
provide additional data. This could be the name, address or date of birth of the user. Successive
visits are authorised if a valid authentication tuple is provided. The advantages of this system
are particularly the ease of implementation and use. Notably, there is no user-side deployment
required.

It has severe disadvantages when regarding the security. The biggest problems are not due to
system design but to typical user behaviour. In particular, users who have many accounts tend to
choose the same authentication tuple. Thereby, colluding organisations can link user actions and
security issues at one organisation are a risk for the authentication to another organisation, too.
Another security issue arises due to most users not managing their different authentication tuples
appropriately. For example, they store all used username-password combinations unencrypted in
a file on their computer.

All the same, there are also weaknesses due to the design. An important one is that user actions
carried out with one username at one organisation are linkable. This fact decreases the privacy a
user can benefit from. Another weakness, which is privacy relevant, is caused by the additional
data which the user is supposed to provide. Mostly this data is acquired due to legal obligations
or for marketing purposes. However, if not properly checked, the organisation cannot rely on
the given information as the user might provide wrong data on purpose. The consequence is a
reduction of the privacy of honest users whereas dishonest users contribute to the dissatisfaction

27
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of the organisations.

A disadvantage having special importance, regarding the goal of this thesis, is the possibility
of users to share their authentication tuple. Especially, there is no binding of a username to a
real person. The linkability of the system still offers organisations to run probabilistic algorithms
to detect massive sharing. Then again, there is no possibility to detect duplicate use of the
authentication tuple itself. As an example, we will look at two users sharing a username. If both
users make use of the account only seldom, they might still authenticate fewer times compared to
one user making heavy use of the system. Consequently, the non-shared authentication is rather
suspected to be shared than the shared authentication tuple. On the other hand, a username
shared over the Internet is suddenly used by hundreds of users and the organisation will recognise
the increase in authentications.

In Fig. 4.1 we can see that the security of the system is heavily relying on the choice of the
password. For example, especially the username but also the password are vulnerable to a guessing
attack as the username is mostly in direct relation to the name and surname of a user. This attack
is indicated by the “guess” box at the lower right corner of the figure. Another example might
be the use of security flaws in some software running on the target host which makes it easy
to extract data from this host. This attack is depicted as “3rd party weakness”. The attack
vector indicated at the left side of the figure refers to the possibility of extracting the data not
from the user itself but to retrieve it from the organisation which the user authenticates to. At
the organisation the attack vectors are equal to the possibilities at the user’s side although the
probability of success is very different. Unfortunately, many service-providing organisations only
give advice on the choice of a strong password. They do not enforce compliance with guidelines.
The latter regulate for example the length and the number of different character types that need
to occur in a password. This measure limits the success of password guessing and brute force
password extraction attacks.

As already mentioned, nowadays a user has affiliations with several service providing organisa-
tions. To reduce the entropy he has to store, the user tends to choose the same username-password
combination for several systems. The security threat lies in the possibility to gain information
for several systems. Even worse, the accounts accessible with the same authentication tuple have
possibly different value and are therefore protected differently by the respective organisation.
For example, a bank protects the eligible access combinations much better compared to a social
networking service. Exemplary the attack on the social networking system could allow for an
attack on the bank account. This attack is not depicted in Fig. 4.1, although it would only mean
to add another organisation where all the attack vectors again apply. The probability of success
of such an attack can be calculated by multiplying the probability that the user uses the same
authentication tuple with the probability of a successful attack.

Currently, settings with high security requirements, e.g. in a banking environment, extend their
system by a token. The user not only has his username and password but also a token. For the
authentication, the organisation sends a challenge to the user. The token is able to computes
a response from this challenge. Successful authentication requires the triple built of username,
password and correct response to the challenge. Thereby, a substantial increase of the overall
security can be achieved at the price of less convenience for the user. He only accepts such an
inconvenient system for high value accounts where the need for increased security is obvious.

Looking at the attack tree for the basic username-password system depicted in Fig. 4.1 the
attack possibilities are massively reduced with the addition of such a token. In particular, the
brute force and password guessing are much less promising. In addition, stealing the database
entries is not sufficient as the correct response of the token is required for authentication. We
are not evaluating this scheme further as inherent problems, especially the lack of privacy and
manageability for the user, persist.

4.2 PKI-based System

A very different security is offered by a PKI-based authentication scheme. The user gets an asym-
metric key pair, which he will have to use for authentication with an organisation. The increase
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in security results from the reduction of attack vectors. In particular brute force and guessing at-
tacks as well as the use of a keylogger and social engineering are not promising anymore. Clearly,
the verifier still is able to link all transactions. This results as the user authenticates with respect
to his public key.

Regarding the aspect of sharing prevention, the advantage of this system is that a software
token, i.e. the key pair, is needed in order to authenticate. It cannot be transferred as easily
as a username-password combination as most users are not capable to store it in their brain.
However, the transfer from one computing device to another is as simple as in the username-
password system. Hence, no effective sharing prevention is attained.

PKI-based systems are currently not widely used. The reason for the small number of implemen-
tations might be the difficult deployment on the user’s side. In many use cases, the user cannot
be expected to master the difficult setup. In addition to that, the management of a large number
of keys would cause even more trouble than the management of a large number of username-
password combinations. Subsequently, the drawbacks of a PKI-based setting are only tolerated
with high-value credentials. Particularly, such credentials are much less subject to sharing as
the user is not willing to do so. Duplicated credentials still need to be regarded as for example
malware could extract the authentication information.

4.3 Credential Systems

Credential systems are currently not widely used in practice. However, they offer a wide range
of opportunities wherefore those systems are of enormous interest in the research community.
A number of properies make them superior to username-password systems. Due to this reason
we provide an extension to a credential system. We want to analyse the system in more detail
compared to the systems described so far.

A credential system has first been introduced by Chaum [11] and it has been extended various
times. This thesis relies mostly on the scheme as described by Camenisch et al. in [5]. A brief
introduction into the basics of credential systems and in particular into anonymous credential
systems is provided. To be able to explain such a system, some terms need to be defined. The
definitions provided here are not rigorous but serve more to clarify the reader’s intuition.

Definition 7 (Pseudonym). A Pseudonym is an identifier used to associate a user with his
resources. Even so, the pseudonym is used to bind credentials to a specific user. Throughout the
paper, a pseudonym is abbreviated as “nym”.

Definition 8 (User). A party using the given system and being defined by having one unique
master key pair consisting of a master secret key (MSK) and a master public key (MPK). A user
can get several nyms which all are bound to her MSK.

Definition 9 (Organisation). An entity in the credential system having special properties such
as the ability to issue credentials or to offer some other service. Service-providing organisations
mostly act as verifier of either credentials, nyms or other attributes.

Definition 10 (Trusted party). An entity being able of performing any operation. The results
of its computations are trusted by all other entities. Also it is trusted not to share knowledge of
the values it has been given.

Definition 11 (Semi-trusted entity). Similar to the trusted party with the difference that the
trust relation only holds for a specified entity.

In a large scale, highly-connected system, the privacy of the users becomes an issue. This issue
can be addressed using a pseudonym system. In such a scheme each organisation does only know
its users by pseudonyms. Depending on the type of service that the organisation offers, each user
might have even several nyms with one organisation.

Example 4.3.1. It is not possible to have more than one pseudonym with the government.
However, a user might have several pseudonyms with one bank. This corresponds to the real
world situation where one person might have several bank accounts but only one passport.
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The introduction of a pseudonym system has severe implications for all organisations. They
are not necessarily able to link the pseudonym to a real person. Clearly, the privacy of users
cannot come at the cost of insecurity on the organisation’s side. A suitable system, valuing both
sides of a commercial relationship, could speed up the growth of e-commerce considerably. A
simple pseudonym system, as the one just described, shows already some privacy benefits. A
more complete system with several other properties is used in the following. This system is called
anonymous credential system or idemix which is the name of an implementation of an anonymous
credential system by the IBM Zurich Research Laboratory.

4.3.1 Basic Setup of a Credential System

To set up a credential system three roles are required: a user U , an organisation OI issuing
certificates1 and an organisation OV verifying certificates. Certain statements apply for any
organisation. Instead of specifying that the statement applies for both OI and OV , we denote
the organisation that case as O. In some cases it is necessary to have a trusted party T or a
semi-trusted party Ts but the reliance on such parties is reduced as far as possible as trusted
parties are in practice hard to establish.

Notably, a credential system is a means to enforce privacy and anonymity on the application
layer and therefore it provides no possibility for protecting the user on a lower layer, for example
the network layer. Consequently, the anonymity provided by the application only applies if the
communication channels support anonymity as well. For example, onion routing schemes such as
TOR2 or JAP3 or mix networks support anonymity on the network layer.

Pseudonym generation

Generating a credential is based on the organisation knowing the user U either by the real
identity or by a pseudonym. The first situation is necessary for credentials, such as a passport or
a driver’s licence, the second is the general case. Regarding the privacy, the first case should be
limited as far as possible. Nonetheless, a credential obtained in an identifying session can be used
to acquire further credentials in a “pseudonymised” session. Thereby, the organisations issuing
the pseudonymised credentials still benefit from a good security if they trust the issuer of the
identifying credential.

A nym NU,O is established before a credential can be generated. This action is necessary inde-
pendent of the knowledge an organisation has about the user U . It is a fundamental property
of the system that O cannot link any two transactions of U through the use of the credential.
In particular, even if a credential C received under a pseudonym NU,O is used several times to
authenticate at organisation O. Similarly, the usages of same credential C utilised to authenticate
to another organisation Oi cannot be linked. The notation of the nym is chosen such that it is
visible which user U and organisation O know the nym. Still it does by no means imply that the
organisation is aware of any information about the user.

An important fact is that nyms are bound to the MSK of a user. This is achieved by cryptographic
means. For example, a Pedersen commitment on the MSK can be used as nym.

Credential generation

As soon as a pseudonym has been established, the issuing organisation can issue a credential to
a user known under nym NU,O. The organisations issuing credentials are usually called identity
providers as they provide the user with signed attributes. Those attributes can be used within
the system by U , i.e., they can be proven in zero knowledge to any verifying organisation.

In a practical credential there need to be user-chosen, jointly-established and organisation-chosen
attributes which can be certified in a credential. The user-chosen ones are provided by the user

1Certificates and credentials are treated as synonyms throughout the paper.
2further details can be found on http://www.torproject.org/
3further details on http://anon.inf.tu-dresden.de/index.html
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similar to filling in a form in current systems. Jointly-chosen attributes are used for jointly-
chosen random values which relieves the communication partners of the establishment of a trust
relationship. The last type of attribute, organisation-chosen attributes, is used for the attributes
that are certified by the organisation.

The credential is obtained by U upon a successful execution of the issue protocol. It needs to be
stored for further use. However, it is never to be handed over in an unaltered manner to another
party. This also applies if the credential is shown to a verifier.

Showing Credentials

Using a credential to authenticate to a verifying organisation OV involves showing certain at-
tributes as well as proving legitimate possession of the credential. The second requirement can
be met by showing knowledge of the MSK that has been used for the nym establishment. All the
same, this proof is not satisfactory as U might have shared his credential including the MSK.
There is no other assurance for the verifier that this has not happened except if the sharing of
the MSK is aggravated by some means. The proof of knowledge of the MSK is accepted at this
state.

NU,OI

NU,OV

NU,OV

OI

OV

U

credential

credential

attribute1

attribute1
attribute2

NU,OI

NU,OI

Figure 4.2. Credential generation and showing to an verifier: OI issues to U a certificate under nym N1

upon the attributes attribute1 and attribute2. U wants only attribute1 to show to the verifier OV which is done
under nym NU,OV

.

Some parts of the lifecycle of a credential including the acquisition and the use are depicted in
Fig. 4.2. The zero-knowledge proof is illustrated as a wall. When U wants to use the credential,
he needs to randomise the credential and issue a zero-knowledge proof of knowledge of the
randomised credential. He can choose which attributes are to be revealed. However, the fact
that the pseudonym NU,OV

is related to the MSK needs to be revealed as well as the signature
from OI . Still, the nym used with OV does not need to be the same as the one use with OI .
Nonetheless, they necessarily need to be issued on the same MSK. The signature of OI is also
hidden using a zero-knowledge proof. Hence, the verifier does not learn anything except for the
fact that the attributes shown in the certificate have been signed and handed over to the person
known under nym NU,OV

. This allows U to access the service or resource pseudonymously and
he is not linkable through the use of the certificate. U needs to have no personal data at the
organisation, e.g. with a newspaper subscription, he does not need to reveal any information
except the valid subscription. The user can subsequently read the newspaper anonymously. Both
cases are practical but the anonymous authentication is limited to services not being associated
with a personal account at the organisation.

In Fig. 4.2 the credential is shown under a different pseudonym than it has been issued to. This
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procedure is called credential transfer. The name might imply that a credential is transferred
from one user to another. In fact, the transfer can only happen from one pseudonym to another
if both pseudonyms are built w.r.t. the same MSK. The MSK is unique for each user, wherefore
the transfer cannot happen from one user to another. The binding of the MSK to a user is
discussed in detail later on. This is necessary as credential misuse can, for example be achieved
by sharing the MSK.

4.3.2 Properties of Credential Systems

There are two main objectives of a credential system, which are the protection of the privacy of
the users on one hand and the security of the resources provided by organisations on the other
hand. In traditional systems those properties are conflicting goals. To depict this conflict, we
have a look at two systems. Either of them is optimised for one of the conflicting goals. The
first system achieves full anonymity for the users whereby optimal privacy can be attained. The
second system could implement strong authentication combined with identification of the users
and hence achieve a high level of security for the service providing organisations.

The currently used anonymous credential system has a number of properties which protect the
users and the organisations. The most important among them, serving the protection of the or-
ganisations, is that pooling of credentials is impossible. For example, a user can not use credentials
that he has obtained in combination with credentials delivered to another user. In particular, a
credential can only be shown when the MSK of the nym is known. Combined use of credentials is
only possible when the used nyms base on the same MSK. In other words, the MSK upon which
the nyms of the credentials that are used together must match. As mentioned earlier, they must
be built using the MSK. As a consequence, different users cannot pool their credentials.

The privacy offered by an anonymous credential system actually goes as far as not even collud-
ing organisations can reveal identifying information about their users. This property could be
undermined by requiring the user to reveal his name. However, the system design allows the user
to reveal only the attributes he is willing to show. Thereby, no identifying information is given
to the organisation without the user getting to know.

The advantages of an anonymous credential system over the username-password system can be
visualised by a comparison of their respective attack trees. The attack tree of the idemix credential
system is given in Fig. 4.3. Figure 4.1 depicts an attack tree for a current username-password
system. An obvious discrepancy is the lack of attack vectors targeting either the channel or
the verifying organisation. This results from credential systems using zero-knowledge proofs for
authentication and hence not leaking information that can be used in a successive authentication.
In particular, there is no information about the actual credential or the MSK leaked to the
verifying organisation. In addition to those advantages, it also gets harder to convince the user
to give the credential information away. This is due to this operation not being a standard
operation because a credential is never to be given away in an unaltered manner. The anonymous
credential system, however, needs to offer an operation allowing the user to copy a credential
from one device to another. Still, this operation could be associated with many agreements that
the user needs to allow, which make a social engineering attack much less likely to succeed. An
important finding of this comparison is that it gets much harder to acquire the MSK form the
user. Especially, the MSK is needed within the credential system only, whereby acquiring this
critical information is no longer possible without the user’s knowledge or due to implementation
flaws.

Single-show vs. Multiple-show Credentials

Single-show credentials can only be used one time. They can, for example, be used as electronic
cash or as vouchers. If a single-show credential is given away deliberately, this action translates to
a gift in the real world, meaning that the donor cannot use it anymore. The only problem which
might arise is that the presentee is legally not allowed to use the credential. Yet, this problem is
not in the scope of the thesis.
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Figure 4.3. Attack tree of the idemix anonymous credential system
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For such credentials only double spending is a serious problem. A solution to this problem
has been proposed by Camenisch et al. in [4]. The intuition is to use a serial number and a
double-spending number which encodes the pseudonym of the user in each credential. Multiple
use of a credential can be detected through the serial number and the double-spending number
allows revealing the pseudonym. The extraction of the pseudonym allows for punishment of the
respective user. We do not provide a detailed description to this solution as the intuition of the
scheme is the same as the one used for the K-show credentials. K-show credentials are discussed
in extensive detail in Section 6.1.

Multiple-use credentials, on the other hand, are to be handled very differently as they allow
sharing. They could basically be used by several users at the same time even though only one
user had the right to use the credential. Organisations issuing such credentials demand protection
against such misbehaviour of users. Dealing with this problem is the main objective of this thesis.

Credential Revocation

The challenge of revoking a credential is similar to revocation of public keys in a PKI. Digitally
signed objects have to be made invalid although they verify correctly. One solution is to publish a
list of revoked credentials which does not scale as the length of such a list is linear in the number
of revoked credentials. Additionally this solution is not privacy aware.

As a first proper solution, embedding an identification number IDU of user U into the credential
is proposed. The credential is consequently of the following form: d = . . . · aIDU (mod n).
Additionally a list of all valid identification numbers is to be published. U then proves that his
ID is on the list by computing Gi = gIDU and then proving the following:

PK {(. . . , γ) : d = . . . · aγ (mod n) ∧ ((1/G1)
γ = 1 ∨ . . . ∨ (1/Gk)γ = 1)}

Alternatively, a list with all invalid IDs could be published and the user has to prove that his ID
is not on the list. The impact of the choice whether to publish the valid or invalid user IDs on
the security of the system is similar to an access policy which is “accept” or “reject”, respectively.
The main disadvantage of this solution is its linearity in the number of either valid or invalid
user IDs which makes it inefficient for large groups of users.

A second approach is using the inclusion of the user ID in the credential as seen above and a
list of all valid IDs is published as {ID1, . . . , IDL}. The user chooses a random h and computes
hu = hIDU . He also proves to the verifier that the ID in the credential and the one used for the
computation of hu match, i.e.

PK {(. . . , γ) : d = . . . · aγ (mod n) ∧ hu = hγ}

The verifier can make sure that there is an i ∈ {1, . . . , L} for which hu = hIDi where IDi needs
to be on the list. To reduce the complexity, the verifier could precompute the list resulting in a
lookup table. However this leads to linkable actions of the user as h cannot be chosen arbitrarily
by the user anymore. This could be avoided using a hash function h = H(verifier, time) where
the verifier could precompute the lookup table and h would change with every use. [5]

A more sophisticated approach is the use of cryptographic accumulators. An accumulator can
contain many IDs which are all associated with a witness. It is not possible to compute a witness
for a value which is not included in the accumulator. The witness needs to be presented to prove
that a given ID is contained in the accumulator. The accumulator hence substitutes the list of
valid users, which is sensible as it has some favourable properties. Especially, the accumulator is
much shorter compared to a list of IDs. Also the scheme proposed by Camenisch et al. in [6] allows
the implementation of dynamic accumulators. They enable efficient update of the accumulator
upon the addition of a value. Even better, one scheme offers accumulators which need only to
be changed upon removal of a value. A more detailed description can be found in Section 3.4 on
page 24.
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Anonymity Revocation

The term “revocation” is needed in two entirely different situations. Firstly, a user recognising
that his credential has been stolen wants to revoke this credential. Credential revocation is also
needed if the organisation suspects the user of the illegitimate use of his credential. This type of
revocation has already been described above. Secondly, if an organisation knows that a user of a
credential performs some sort of illegal action, it may demand to reveal the identity, i.e., revoke
the anonymity.

Anonymity revocation can either be executed in a local or a global manner. Local anonymity
revocation means the creation of the link from an authenticated user to the nym he is using
with the issuer of the credential. Upon a defined action, the organisation is able to reveal the
pseudonym of the user. It can subsequently revoke the credential. This can only be done when
the user agrees to the procedure beforehand. Even so the actions which allow for revocation
of the anonymity have to be defined upon issuance of a credential. Moreover, a user-side semi-
trusted party4 is needed to execute the revocation after the organisation proves that a violation
has occurred. Global revocation reveals the identity of the user upon having performed illegal
actions. The necessity of this option is given as illegal actions, even though they should be limited
through the system design, must be punished appropriately.

4refer to page 30 for details



Chapter 5

Analysis of Misuse Protection

Mechanisms for Anonymous

Credentials

As already mentioned, we are extending anonymous credential systems with misuse protection
mechanisms. The choice of appropriate mechanisms is crucial to the acceptance of the system. To
provide a well-founded choice, the most promising approaches for misuse protection are explained
in the following. Their respective advantages and drawbacks are listed in order to simplify the
choice of the mechanism to be implemented. The description of the techniques is kept at a high
level. The cryptographic details do not help a better understanding of the properties of the
systems. The interested reader is referred to the research papers, in particular to [5], [3], [2] and
[1].

When designing a system, the focus needs to be on the possible advantages such a system can offer
for the participants. Especially, its advantages ov er the system it should substitute need to be
taken into account. The organisations in today’s systems require complete identification of their
users and even urge them to provide more data than necessary. Considering this situation, the
organisations have no reason to change to a new system, especially if the risk of systematic misuse
is higher compared to the system in place. When looking at the current system more closely, we
find that many organisations do not really look for identification. The identifying information is
a means of gathering marketing information or simply to comply with legal obligations. As we
have already seen, the security provided by such information is negligible. The lack of a trust
relationship between users and organisations suggests the introduction of a strong authentication
mechanism. We propose this mechanism to be an anonymous credential system, e.g. idemix.

Currently, anonymous credential systems lack an effective misuse protection mechanism. Before
going into details of misuse protection, we need to elaborate on different cases of misuse. We
believe that credential misuse is predominantly associated with the use of duplicate credentials.
Thus, misuse protection is eventually the prevention of duplicated credentials. The vision of
achieving not only the prevention from duplicates, but also a binding to one specific user is
targeted by biometrical systems. The combination of such a system with the system developed
here is believed to be straightforward. We consequently focus on the protection from duplicate
credentials. Hence, achieving protection against shared as well as stolen credentials at the same
time.

One can argue that a stolen credential could still not be prevented as long as the theft is not
recognised by the legitimate owner. This argument certainly holds but it translates directly to
the theft of any physical object: if not detected, the thief can use the object at his discretion. As
an example, a stolen credit card can be used as long as the theft is not reported and the validity
of the card is not revoked. Hence, the challenge is not to prevent the theft itself but achieve that
the victim will be aware of the theft. Trying to prevent theft itself will be fruitless as there always
is the possibility to threaten a user to give away his credentials.

37
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There are different ways to attain misuse protection1 in an anonymous credential system. The
requirements of different approaches are very different as are their implications on credential
misuse. We will structure the approaches in software-based and hardware-based ones.

5.1 Software-based Misuse Protection

In this section the protection mechanisms based on cryptography are analysed in more detail.
There is a broad range of possibilities to address the different misuse scenarios using cryptography.
Given the broad range of possibilities to counteract the problem there is also a broad range of
approaches that have been studied.

Despite there merits, there is one particular thing that cannot be achieved with sole cryptographic
means. This is a limitation of the number of copies that can be made from an original credential.
As it is digital information, there exists no possibility to inhibit the copying procedure. The
approaches given in the following are still useful as they provide other means which inhibit users
from using copied credentials. The ideas behind the mechanism is not to inhibit the copying but
to either make users unwilling of credential misuse or to design the system such that the issuer
maintains tight control of the credentials.

5.1.1 All-or-nothing Non-transferability

The basic idea of all-or-nothing non-transferability is to tie the credentials of one user together.
Assuming that a user owns at least one valuable credential, he will not copy even one of his
credentials. If he would do so, the recipient of the copy was able to use all the credentials of the
misbehaving user.

The method to achieve the binding of the credentials is the publication of the encrypted credential
as soon as it is being established. The published credential is encrypted using the secret key of the
user. If a user U1 wants to share one of his credentials with U2, U1 needs to reveal his secret key to
U2 as otherwise the shared credential cannot be used. With the secret key, however, the recipient
of the copied credential would be able to use all the other credentials U1 owns. This follows from
the fact that copies of all credentials are publicly available. Furthermore, the decryption of the
published credentials of U1 for U2 is possible as he knows the secret key of U1. [5]

This approach is powerful if users have at least one valuable credential in the anonymous creden-
tial system. However, it does not offer a generic protection against duplicated credentials. The
protection is entirely based on the willingness of the user not to share one credential and therefore
not to share any of them. The issuance of credentials could be inhibited if an organisation is not
convinced that the sum of a user’s credentials is of enough monetary value to make him unwilling
to share. In this case, the organisation might suspect that the user will be willing to share all of
his credentials and subsequently not proceed with the issuance.

Another issue is the lack of protection from theft. If the secret key is stolen, the thief can easily
retrieve all the credentials and make use of them. There is a positive side of the credentials being
publicly available, too. A user not having a local copy of the credential can retrieve the missing
credential. This fact could be exploited if the secret key was stored on a memory-constrained
device. The device would not have to store the credentials locally and still it would have the
possibility to retrieve a credential as soon as it is needed.

5.1.2 PKI-assured Non-transferability

PKI-assured non-transferability is similar to the all-or-nothing approach as the mechanism bases
on the user’s willingness to achieve its goal. Still, instead of binding the credentials to each other,
the credentials are tied to a valuable secret outside of the system. For example, a credential
could be secured with the credit card information or the bank account. The system allows each

1Misuse protection refers to the prevention of duplicate credentials in this thesis.
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credential to be bound to a different valuable outside secret. This is an advantage over the all-
or-nothing approach. The case where the organisation is not willing to issue a credential can
be avoided. A challenge, though, is to find an appropriate value to bind a credential to. The
organisation and the user have conflicting goals when choosing an outside value. The user would
like the outside value to be as low as possible. This results as theft of the credential necessarily
implies that the outside value is stolen as well. The organisation on the other hand wants the
value to be as high as possible, as otherwise the user might still share or sell the credential.

As already mentioned, the all-or-nothing and the PKI-based approach are helpful but, in addition
to other deficits, they rely on the cooperation of the user. For the PKI-based approach, the outside
value needs in fact to be higher than the value that could be achieved by selling the credential.
The latter is difficult to estimate. Moreover, a theft of credentials results in the loss of the outside
value of the user. It would be difficult to justify this additional attack vector against the outside
value.

As the all-or-nothing non-transferability, this scheme adds no security protection against dupli-
cate credentials. They can neither be detected nor prevented. General misuse is subsequently not
prevented by either scheme. Malicious software and imprudent users cannot be protected with
such an approach. For those resons, we do not consider this approaches to lead to an effective
misuse protection in an anonymous credential system.

5.1.3 K-show Credentials

The scheme proposed by Camenisch et al. in [3] approaches the problem from a different angle.
A mechanism for detecting credential overuse is provided by so called K-show credentials. A
probabilistic reduction of the number of instances can be achieved. The credentials are slightly
extended such that they can only be shown at most K times during one epoch. Especially, there
is a cryptographic mechanism which reveals certain information if a user overuses a credential.
In particular, the pseudonym information between the user and the issuer can be extracted if the
credential is shown more than the allowed number of times. The definition of the epoch and the
number K can be chosen for each credential individually.

A drawback of the scheme is the lack of a mechanism to minimise intentional sharing. Depending
on the choice of the parameters, sharing with a few people cannot be detected. In other words,
there is no means of detecting a difference between a few instances which are rarely used and one
instance which is very frequently used. However, with the appropriate choice of the parameters,
the limit on the number of instances that can exist undetected can be kept very low.

As opposed to the schemes given previously, this setting can counter general credential misuse.
The limitation on the number of usages of a credential might not look as a big advantage at first,
but it has far-reaching consequences which will be discussed in more detail in chapter 6.

5.1.4 Counter-based Credentials

In the setting of counter-based credentials, the credentials are issued with a counter and a sig-
nature on the counter. When a credential is used, i.e., it is shown to a verifier, the counter needs
to be incremented. Additionally, the prover has to show the signature on the counter that it
wants to use. Certainly, a successful authentication with a verifier causes the latter to issue a
signature on the incremented counter value. The details of the approach are to be published by
Heydt-Benjamin et al. [16].

The most unfortunate property of the scheme is the need for the issuer to be online. This is
necessary for the signature on the incremented counter. The efficiency of the scheme, though,
is promising. As mentioned several times before, the duplication of credentials cannot be inhib-
ited by a cryptographic approach. All the same, counter-based credentials generate high cost in
communication if duplicated credentials want to be used. Those costs arise due to the necessary
synchronisation. A way to undermine the duplication protection is to run an online entity which
manages the counter and its signature. Yet, this online entity is costly as well.
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Similarly to a counter, the entity could issue single-show credentials after each successful cre-
dential show. Such a scheme is computationally intensive. On the other hand, it enables the use
of protection mechanisms such as the double spending test. A costly attack would again be an
online entity administrating the authentications of all sharing entities. [5]

5.2 Hardware-based Misuse Protection

The general idea of hardware-based credentials is to bind a credential to a tamper-resistant
device. In a credential system, the binding can be achieved by hiding the MSK2 of a user in the
device.

The credential can subsequently not be transferred to another device anymore without the ex-
traction of the MSK from the tamper-resistant device. The problem arising due to credentials
being digital information can hereby be effectively countered. In other words, the particular dif-
ference to the previously described methods is that it is much harder to duplicate data stored
on secure hardware compared to duplicating data stored on a standard device, i.e. a personal
computer.

A big advantage of this approach lies in the fact that a highly tamper-resistant piece of hardware is
included in the process of using credentials. The existence of duplicated credentials consequently
implies breaking the tamper resistance. Although being possible, it is associated with very high
cost.

The resource constrains of a tamper-resistant device, however, cause difficulties regarding pri-
vacy. The security device is usually not capable to execute all computations necessary to proof
possession of a credential. Subsequently, it makes use of a host which is supposed to execute
the non-security-critical operations. The tamper-resistant device, on the other hand, will have
the task of computing the security-critical values. As all communication of the security device
is managed by its host, privacy assurances cannot be given. For example, the host could simply
append an identifying value to each message. Consequently, the host can negate the privacy even
in the presence of a tamper-resistant device. Therefore, the security device is not expected to
compute privacy respecting values.

5.2.1 Challenges of Binding Credentials to Hardware

The methods used to bind a credential to a tamper resistant device differ depending on the kind
of hardware being used. The basis for binding a credential to a TPM3, for example, is described
by Camenisch in [2]. The binding to already specified hardware is difficult but in the case of
the TPM it is possible. The binding to other hardware, e.g., smart cards, is less complex as the
device would most probably be designed after the specification of the necessary operations.

Authentication to the hardware device is an important part in the overall system security. As an
example, sharing would be possible even if the credential was reliably bound to a secure device
if the device itself can be passed to another user easily. Hence, the binding of the hardware to
the user needs to be studied as carefully as the binding of credentials to the secure device. A
possible solution is provided in [22] but coverage in detail is out of the scope of this paper.

5.2.2 Embedded Security Device

There is a tendency to embed security devices into standard hardware. The Trusted Comput-
ing Group4, for example, promotes trusted building blocks. Among those building blocks is the
tamper-resistant chip called Trusted Platform Module (TPM). Having the largest market pene-
tration, we study the possibilities of embedded secure hardware on the example of the TPM.

2Master Secret Key
3Trusted Platform Module specified by the Trusted Computing Group (TCG)
4The Trusted Computing Group is an industry conglomerate investing into the development, definition and

promotion of open “standards for hardware-enabled trusted computing and security technologies”[23].
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Advantages

The advantage of the TPM is not only the fact that it is already embedded into nowadays
computers. The use of an embedded security device relieves the user of any action except for the
authentication to the security device. Even better, when the user uses his credentials frequently,
authentication to the TPM is only needed the first time. Subsequent usages, occurring within a
defined time interval, can be carried out without re-authenticating. The system security certainly
is reduced by this measure but it is tolerable compared to the usability which is gained. The
measure should simply show the excellent usability of an embedded security device. Essentially,
the protocol realises a credential system with additional device attestation semantics to make
assertions about the state of the device.

Another advantage is the availability of methods to bind credentials to a TPM. The method
described by Camenisch in [2] extends the direct anonymous attestation (DAA) protocol. DAA,
as specified in [1], allows a TPM to prove that it is genuine while protecting the privacy. The
DAA protocol defines an attester, a host, a TPM embedded in the host and a verifier to be
present. The TPM communicates only through the host it resides in. The primary fonction of
the TPM is to store the secret (m0, m1) which is split into two values for efficiency reasons.

When the host wants to prove that it embeds a genuine TPM, it first asks the TPM to generate
a commitment on the secret (m0, m1). The TPM additionally provides a proof that it has gotten
a signature from an attester on the commitment. Commitment and proof are sent to the host.
As already mentioned, the information sent to the host is not anonymised. As the TPM is only
communicating through the host with any external device, privacy enforcements by the TPM
could be subverted by its host. For example, the simple addition of a unique value to each message
would allow identification and linkablity by the organisation which undermines the privacy of
the user.

Assuming to deal with an honest host, the latter anonymises the data received from the TPM
and sends it to the verifier. The protocol is computed mostly on the host. Only security-relevant
operations, i.e. operations which need knowledge of either m0 or m1 are performed on the TPM.
Therefore, the DAA protocol can be extended to include other attributes than m0 and m1. The
host would add the attributes similar to the secrets residing in the TPM. For details on the
extension we refer to [2].

Disadvantages

The biggest disadvantage of using an embedded security device is the fact that there is no
bijective mapping from users to devices. For example, a user might own several devices. This
causes problems as the users must be allowed to transfer their credentials from a device to
another. Furthermore, there must be the possibility for several users to use one security device.
In the current setting this would imply several MSKs to be stored on one security device.

To solve the problem of a user having several computing devices, a transfer of credentials could
be envisioned. Another possibility to overcome the limitation is a separate credential for each of
his devices as described in [2].

As complicated systems tend not to be accepted by users, we studied the transfer of credentials
from one TPM to another. The general idea is to issue a credential to a dynamic accumulator
instead of directly binding it to the TPM. Another binding between the accumulator and the TPM
is established thereafter. The TPM receiving the credential would be able to reissue credentials
to another TPM. It will be called the master TPM. The reissued credential would be bound to
the receiving TPM. The master TPM is to be the only TPM able of reissuing credentials. Two
fundamental problems could be solved by this approach. First, users having several devices could
easily use them by having issued the credential to one TPM and re-issue them to their other
devices. Second, the migration of an entire system of a user would be largely simplified. However,
the second scenario calls for another method which allows to transfer the master TPM role to
another TPM.

This directly leads to the problem of revocation. An efficient solution is necessary as a typical
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user might change his devices frequently, which leads to masses of revoked credentials. There
must be a possibility to revoke a credential issued to a TPM without revoking the attestation of
the TPM. For example, when the user sells his computing device. Nevertheless, the revocation
of a TPM must also be dealt with. It applies when a computing device is stolen and therefore
the TPM residing in the stolen device could be revoked.

Unfortunately, no suitable extension to the already known protocols was able to solve the problem
convincingly. In fact a trusted credential transfer is not realisable with the current specification
of the TPM. This can be demonstrated as either one of the following properties is essential. A
credential must be issued and bound to either a TPM or a secret key of a user. In the second case,
the credential is bound to a digital object which additionally needs to be bound to a hardware
device. In the first case, TPM0 must issue a credential to another TPM TPM1 where the latter
needs to be able to convince the verifier that it posesses a valid credential. TPM1, however, is not
able to pass the credential to another TPM. A solution could be to let TPM0 issue credentials
which is difficult as the signature by the issuer still needs to be present for the credential to verify.
When bound to a user secret, the problem arises that there has to be a binding to the TPM
as otherwise the misuse prevention would be categorised as purely software-based. The problem
of both proceedings ended in a system which had the desired property but different usages of a
credential ended up being linkable. Therefore, this approach has not been pursued further.

5.2.3 External Security Device

The range of available external security devices is broad and goes from PCMCIA-cards and USB-
sticks to smart cards. The latter is one of the most resource-constrained ones and hence a good
example to examine the feasibility of a misuse protection mechanism using an external security
device.

Advantages

The biggest advantage over embedded security devices is that it is reasonable to assume a bijective
mapping of devices to people. In particular, it is reasonable to assume one user to be holding
one external security device per type of credential. For example, each user can have exactly one
external security device from the Swiss government containing an electronic Swiss identification
card. Additionally, each user might have a device from several other organisations. Notably, the
user will not have two security devices from the Swiss government. Also, no two users will have
the same security device for their credentials. Those two cases can arise when embedded security
devices are used. Subsequently, there is no need to transfer a credential from one device to another
one, which has shown to be still an unsolved challenge.

Disadvantages

A problem arising when taking an external security device is that it has more severe resource
constraints, typically due to system constraints. For example, the bound on the computational
power of passive smart cards with an RFID interface is constrained by the power that can be
recovered using the remote interface. The operations still need to be performed fast in order to
achieve a practical system. As an example, an authentication operation at the airport is tightly
constrained in terms of the maximum time it may take. Deployment of a solution using an
external device needs to be taken a look at. Even though not being a technical issue, a practical
solution to these problems is crucial to the success of the system.

Another disadvantage is the size of the device which makes it easier to steal. This shows the
importance of an appropriate mechanism to authenticate to the device. In particular, the assess-
ment of a biometric authentication scenario would have been interesting. Due to the lack of an
on-card reader for biometric data, we dismissed this subject. Furthermore, the possibilities of
extracting the secured information are to be limited. Both challenges are out of the scope of this
thesis and are being addressed already.
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5.2.4 Conclusion

The use of an external device makes it needless to transfer credentials from one security device to
another. This is enormously important as distinguishing between legitimate transfer and illegit-
imate transfer is an unsolved problem. In particular, the transfer from one device of one user to
another of the same user does not have different properties from sharing or stealing a credential.

Because external security device render transfer of credentials unnecessary, we chose to use an
external security device as opposed to an embedded device. The inconvenience due to the external
device is, according to us, tolerable compared to the technical difficulties that arise from the use
of an internal device. Another advantage lies in the trust model. As each organisation is able to
issue its own security device, it does not have to trust the manufacturer of the internal security
device. This is a huge advantage when it comes to real-world deployments of such authentication
systems. Examples are smart cards used for authentication for e-banking. Each bank offers their
own card for its system, which reflects exactly the above trust model arguments.

5.3 Biometry-based Misuse Protection

The simplest case of using biometrics is when an external token is protected with biometrics
where the reader and evaluation is contained within the device. Recent research from [10] and
[24] has shown that even key generation using biometric data is possible. This procedure could
be used to even bind credentials to a specific user. Such a strong binding to a user is desirable
for misuse prevention. The appearance of duplicate credentials in this scenario would imply the
existence of a duplicate of the biometric properties of a user.

A similar proceeding is proposed in [18] where the biometric information is sent to the verifier
through a warden. Even though those approaches are interesting we believe they are not yet
mature enough to be implemented. We still want to mention those approaches as they might will
prove to be useful in the future.
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Chapter 6

A System for Effective Misuse

Protection

A basic problem when dealing with duplicated credentials is that credentials are easy to copy as
they are digital information. As seen in the previous chapter, this drawback of digital information
can only be successfully dealt with when introducing a hardware-based protection mechanism.
Thereby, some essential part of the credential is stored in a tamper-resistant device and it is
secured such that extracting this essential part implies breaking the tamper resistance. The
choice of an external device has already been motivated in Section 5.2. Especially, to use a smart
card seems to be promising for a prototype implementation. As smart cards are very resource-
constrained, they allow an interesting reasoning about the feasibility. Furthermore, smart cards
can be manufactured at low cost which is important if the system should actually be deployed.
A state-of-the-art smart card cannot be altered without the production of new hardware and
is subsequently not suitable for our prototype implementation. However, a Java card offers the
possibility to run applets which can be used to implement any functionality. The deployment of
updates is particularly easy with Java cards as new applets can be installed instead of exchanging
the whole hardware. Another argument in favour of the Java card was the availability at the IBM
Zurich Research Laboratory, where the work for this thesis has been performed.

The binding to hardware, however, does not solve all the issues. A severe problem can arise if the
tamper resistance of the hardware gets broken. The extraction of the secret should not result in
a credential that can be arbitrarily copied and used. Hence, the detection of many instances of
the same credential is to be targeted. A method to effectively reduce the number of copies of a
credential would be able to prevent massive sharing. At the same time, a stolen credential could
not be sold arbitrarily often. Two approaches that would be suitable are the K-show credentials
and the counter-based credentials as outlined in Section 5.1. We chose the K-show credentials
as they do not need the issuer to be online during authentication. Even so, there is a limit of K
shows during one epoch which can by no means be surpassed.

Following the above argumentation, the misuse protection mechanisms that have been selected
as the most promising are the following:

• K-show credentials, which assure that a credential is used at most K times during one
epoch;

• Java card hardware protection assuring that a credential is only used in conjunction with
a specified hardware device.

As already mentioned, the Java card has the desirable property of allowing very good deployment
possibilities of updates. As a smart card, it is very resource-restricted and the feasibility of an
implementation of an anonymous credential system with misuse protection has not been shown
so far. The possibility to run applets allows the execution of arbitrary code which, however, will
be running in the application layer.

45
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The K-show credentials complement the hardware protection in an ideal way. Together with the
counter-based credentials they are able to limit the incentive to steal credentials. As mentioned
above, we preferred the K-show credentials over the counter-based ones, because the K-show
credentials do not suffer from the disadvantage of needing an online issuer for showing a credential.
In the following sections, we provide more details on the realisation of this effective misuse
protection mechanisms.

6.1 K-show Credentials

The sharing prevention mechanism described in the paper by Camenisch et al. [3] is a cryp-
tographic approach to limit massive sharing. Essentially, it reduces the number of times that
a credential can be used to successfully and unlinkably authenticate at a verifier to K for each
epoch, where an epoch is typically realised as a fixed-length time interval. Each credential is shown
w.r.t. a token serial number (TSN) and additionally includes an cheater-identification number.
During one epoch, the user can only make use of K TSNs. This comes as he has to prove in
zero-knowledge, that a chosen number lies in the interval [0, K[. Therefore, he can only generate
K different TSNs during one epoch. Consequently, in case the credential is shown more than K
times, at least one token serial number (TSN) has been used twice. The cheater-identification
number, on the other hand, assures the disclosure of the pseudonym of the user if at least one
TSN is used twice. Thereby the verifier is able to extract the pseudonym which has been used
during the issuance of the credential.

In the case of theft, the implementation of such credentials limits the number of times that a
stolen credential can be sold. This comes as many copies will raise the probability of detection if
there is no synchronisation and the users of the copies act independently. Thereby the incentive
of an attacker to steal a credential is limited. A key point is the careful choice of the parameters
K and the length of an epoch which determine the number of shared instances that can be
around without being detected. Certainly, this number depends on the usage of the credentials.
For example, a credential granting access to a newspaper is expected to be used several times a
day whereas a credential holding the drivers license is rather shown seldom, say once a month.
The parameters can be largely optimised as no general advice on their choice can be given.

The cryptographic details of the construction along with the assumptions can be looked up in
[3]. Still, we present the most essential computations that need to be performed as well as the
particular matching of epochs to real-time which has been chosen in our prototype implementa-
tion.

6.1.1 Credential Structure

The general structure of the credentials is taken from the idemix system. However, there are
some additions to be made. Firstly, the fact that a credential is a K-show credential has to be
encoded in the credential. Secondly, the value of K needs to be stored in the credential as well.
We assume the maximal number of epochs to be 2ltime and the upper bound on the choice of K
to be 2lcnt . Both parameters are provided as system parameters. Hence, those values do not need
to be encoded in the credential. We have made this design decision as it does not restrict the
generality of the approach to use the same upper limits on K and tepoch throughout the system.

The essence of K-show credentials lies in the choice of the parameters K and the length of the
epoch tepoch. The system parameter ltime limits the number of epochs and subsequently it limits
the lifetime of a credential. The latter can be computed as 2ltime · tepoch. As already mentioned,
there is also an upper bound for the choice of K. Both boundaries are due to the design of
idemix. All the same, the limitation should not affect the system design as both lengths are in
the order of 30 bits. Subsequently, even a very small epoch length of one second would result in
a credential lifetime of more than 34 years. Clearly, the maximal number of shows during one
epoch has to be smaller than 2lcnt which implies the upper bound of ∼ 109 on K. Subsequently,
those limitations are restricting neither the choice of the epoch length nor the choice of K.
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6.1.2 Issuance of Credentials

The receiver begins the issuance protocol by choosing a random value and committing to it. The
commitment is subsequently sent to the issuer. The latter can add his own randomness in order
to get a jointly-chosen random value. This randomness is used in the process of generating the
TSN and the cheater-identification number in the holdership proof protocol. [3]

Issuer Receiver

C′

←−
s′ ∈ Zq

C′ = gs′

hr

choose s′′ ∈ Zq

C = gs′′

· C′

s′′

−→
C = gs′+s′′

hr

s = s′ + s′′mod q

It is to mention that in the protocol above only the operations that differ from the currently
implemented system are given in detail. The description of the whole system would go beyond
the scope of this thesis and is in our view not necessary for the overall understanding of our
extensions. A detailed description of the protocols is to be published by Camenisch and Sommer
in [8]. The naming of the parameter in our protocols is in accordance with this paper.

6.1.3 Proof of Holdership of a Credential

Proving holdership of a credential is the action of showing the possession of a credential and this
is subsequently often denoted “show protocol”. The protocol is carried out between two parties
called prover and verifier. As the intuition suggests, the prover takes the role of showing his
credential to the verifier. As explained in Section 4.3 by the term “show” we never assume that
any attribute is revealed. More precisely, a basic instance of the show protocol proves to the
verifier that the prover has, i.e. knows the content of, a credential from the given issuer.

Protocol Description

As already mentioned, the K-show credentials work by letting a user only generate K different
TSNs during one epoch. The cryptographic realisation of this restriction is shown in the following
protocol description.

Note that the subsequent protocol description outlines only the K-show extensions to the idemix
show protocol. For the K-show extension protocol, the verifier chooses a random value which is
forwarded to the prover. The domain of the randomness is to be large as only different random
values allow the identification of cheaters. This argument will become clear in Section 6.1.4.

For a simplification of the protocol, we define a function c(u, v, z). It allows the representation
of the three values u, v and z as one bitstring and is defined as

c(u, v, z) :=
(

u2ltime + v
)

2lcnt + z.

This function visualises the necessity of restricting the maximal possible value for K and the
epoch length. Additionally, we define a function fg,s(x) = g1/(s+x) where x, s ∈ Z

∗

q and g is a
generator of group G which is of prime order q.

Along with the random value, the verifier provides the prover with the current epoch t. After
having received those two values, the prover is able to compute the TSN1 S and the cheater-
identification number E. In addition to S and E, the prover needs to issue a zero-knowledge proof
for a correct generation of certain values. Especially, he needs to prove that S and E are built
correctly. Important is also the proof of knowledge of the jointly-chosen random value committed
to in C and that actually the chosen value of j lies in the allowed range. This last statement is

1For a high-level description refer to section 6.1.
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proven as the chosen value of γ is proven to lie in the specified range. Accordingly, the additions
to the basic show protocol are given in the following protocol description. [3]

Verifier Prover

R ∈ Z
∗

q
t,R
−→

S = fg,s(c(0, t, j)) = g
1

s+c(0,t,j)

E = gxhyfg,s(c(1, t, j))R = gxhy
(

g
1

s+c(1,t,j)

)R

E,S,proof
←−

PK{(x, y, α, β, γ) : S = fg,α(c(0, t, γ),
E = gxhy(fg,α(c(0, t, γ))R,
C = gαhβ

0 < γ ≤ K}
verify proof

store (S; E, R)

Epoch to Real-time Matching

In the case where only one verifier is used, the epoch choice is straightforward. The verifier
chooses any epoch and the user simply has to show his credential w.r.t. the verifier-chosen epoch.
Clearly, the choice of the epoch should be strictly increasing to relieve the users of the burden
to save several counters. This would be necessary as the honest users want to comply with the
restriction which only allows K usages during one epoch.

As soon as several verifiers are used for the processing of authentication requests, the choice of the
epoch has to be synchronised among the verifiers. Practical systems show that synchronisation,
e.g. time synchronisation, is a communication intensive task. Notably, it is unrealistic to assume
that a system of distributed verifiers will be synchronised tightly. Therefore we want to relax the
requirements for the synchronisation as much as possible. However, if a certain desynchronisation
among the verifiers is allowed, the handling of epochs becomes more involved. Before this issue is
discussed, we want to accentuate that we understand an epoch as a time interval and consequently
the synchronisation refers to time synchronisation among the verifiers.

Using several verifiers in a completely unsynchronised way is not possible. Accordingly, we assume
several verifiers to be synchronised such that no pair of verifiers is in two not neighbouring epochs.
In other words, the maximal synchronisation error among all pairs of verifiers is smaller than the
length of one epoch tepoch.

Example 6.1.1. Let us call the current epoch that a verifier V1 uses tn. The epoch preceding
tn is subsequently called tn−1 and the succeeding epoch will be named tn+1. As V1 uses tn at a
certain moment, either all other verifiers will be using an epoch from the set {tn−1, tn} or all of
them are using an epoch in {tn, tn+1}.

The prover is allowed to show his credential w.r.t. the actual epoch of a verifier tn or its preceding
epoch tn−1. The selection of the epochs on the verifier side makes it necessary to relax the
requirements on the epoch a user can choose. Consequently, the verifier accepts proofs from his
current and the immediate preceding epoch.

Example 6.1.2. On an authentication request of user U , the verifier supplies his epoch identifier
tn along with the challenge r. If the user is in epoch tn−1 and has not used the credential K
times, he will not adapt his epoch and show the credential using epoch tn−1.

This scheme of managing epochs has been chosen as it offers two advantages. Firstly, the ver-
ifiers do not need to maintain tight epoch synchronisation which is very useful as it limits the
communication cost and leads to a vast simplification of the system. Hence, the system can be
used even with a large number of verifiers. In particular, if the length of the epochs is chosen
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to be large (e.g. multiple hours or even days). Secondly, the user only needs to maintain one
counter because he never needs to decrease the epoch. For example, if the verifiers were able to
set the epoch to any value within a certain interval, the user would have to maintain a counter
for each of the possible epochs. If the initial assumption on the synchronisation of the verifiers
is met, there is no need for decreasing the epoch as the user is allowed to prove holdership w.r.t.
the previous of the suggested epoch. Furthermore, there is some acceptance of heavy usage of
the credential during one epoch. A credential can on average only be used K times per epoch.
However, if the user uses his credential k < K times during one epoch, he is allowed to use it
2K − k times in the succeeding epoch. For a better understanding of this advantage we provide
an example. Additionally, in Fig. 6.2 the property is realised in an example.

Example 6.1.3. We assume verifier V1 being in epoch tn and verifier V2 being in epoch tn−1.
Additionally user U currently uses epoch tn−1 having used the credential already k < K times.

Upon an authentication request from U with V1, the credential can be shown w.r.t. tn−1 and
k + 1 only if k + 1 < K holds. Otherwise the credential is shown w.r.t. tn and K is reset to zero.
In a successive authentication attempt, U contacts the same system but now he is being directed
to V2. Assuming that the epochs at both verifiers have not changed, U is required to authenticate
using tn−1. If k +2 < K holds, the user can proceed with the authentication. Otherwise the user
has to wait until the epoch has changed.

If we assume k to be equal to K − 2, we exactly have a case where a prover is required to wait.
One might argue that the user would have been able to authenticate successfully in both cases
if in the authentication with V1 the epoch tn was used. This argument is correct and could be
solved by using an approach where the prover simply uses the epoch provided by the verifier.
Such a setting, however, forces the user to keep counters for all epochs that he could be supplied
with, which increases the complexity. The concern should rather be addressed by the appropriate
choice of the parameters K and tepoch. In particular, they should be chosen such that an average
user is not hindered.

As seen in the explanation above, there are two reasons for changing the epoch at the users side.
Assuming the actual epoch of a user is tn. The first reason is the authentication at a verifier
using an epoch which is different from both tn and tn+1. The second is a the verifier proposing
tn+1 in combination with the user having used his credential K times in epoch tn.

We want to analyse the number of times a user can spend his credential during a certain epoch. To
do so, we use the reasons for changing the epoch at the user’s side. The second reason indicated
above is particularly simple. Clearly, the user has spent his credential K times during tn. The
first reason is more involved as the number of credential usages in epoch tn cannot be determined.
Nevertheless, we can state that the user has shown his credential less than K times. The average
usage per epoch is accordingly smaller or equal to K.

V1

V2

U tn

tn

tn

tn−1

tn−1

tn+1

Figure 6.1. Illustration of the epoch adaption of a user U authenticating with entities having the maximal
tolerable epoch desynchronisation. The arrows indicate authentications by U at the respective verifier
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Example 6.1.4. Figure 6.1 shows how U would adapt the epoch assuming that he has not
used the certificate already K times at any time. We can see that he is entitled to use epoch
tn−1 longer than the actual length of an epoch. Thereby this mechanism guarantees that a user
can actually authenticate K times during one epoch even though two verifiers occur to have the
maximal tolerable desynchronisation.

In the case of perfectly synchronised verifiers, i.e., when only one verifier is used, the user benefits
from a mechanism which we will call “burst tolerance”. The mechanism also applies with several
verifiers, if their desynchronisation relative to the epoch length is negligible. The benefit of the
mechanism is that during one epoch length at the verifier, a credential can be shown at most
2K times. This seems to be contradictory with the claim that a credential can only be shown K
times during one epoch. The solution of the supposed contradiction is the fact that an epoch at
the prover’s side can be scaled relative to the epoch length at the verifier’s side. In other words,
an epoch for the prover might seem to last shorter or longer compared to the epoch length at the
verifier. The maximal expansion factor for prolongation of epochs is limited to 2, i.e., defining
the epoch length at the verifier as tepoch, the epoch length at the prover is smaller than 2tepoch.
There is no lower bound on the length of an epoch at the prover’s side. Thus, a user can make
use of the allowed K usages in a time that is as short as he likes. However, after the usage of two
epochs, i.e. tn−1 and tn, he will have to wait for the epoch at the verifier to change. To illustrate
this property, we provide another example as well as Fig. 6.2 which depicts both extreme cases
of user-side epoch lengths in direct succession. Here, the shortening of the epochs is done such
that the user can continuously authenticate at the verifier.

V

U tn

tn

tn−1 tn+1

tn+1 tn+2

. . .. . .. . .. . .. . .. . .

KKK

Figure 6.2. Illustration of the scaling that can happen if a user carries out many authentication attempts during
a short period of time and afterwards only relatively few during another epoch. Note, that U would not be allowed
to use his credential after the K usages w.r.t. tn if not the epoch at the verifier had changed.

Example 6.1.5. Let us inspect a system with V using epoch tn and U not having used his
credential during epoch tn−1 and tn.

U is informed during authentication that epoch tn is used by V . According to the scheme defined
above, he authenticates w.r.t. tn−1. Clearly, he can authenticate K times using epoch tn−1. At
the authentication attempt K + 1 he realises that no more authentications w.r.t. tn−1 can be
carried out without being identified. Assuming that the epoch at the verifier has not yet changed,
he increments his epoch counter to tn. Still U is able to use his credential another K times as he
is using it w.r.t. tn. After U utilised the credential another K times, he will have to wait for the
epoch at the verifier to be incremented. Consequently we can see that U has been able to use his
credential 2K times even though the verifier only used one epoch identifier. This burst tolerance
property can prove useful in a number of real-world applications.

6.1.4 Cheater Identification

The cheater identification is an important property of the overall scheme. It allows the verifier, or
a delegatee, to revoke the anonymity of a user in case he overuses a credential. Overuse is given
when the credential is used more than K times w.r.t. one epoch at the verifier2. The process
is independent from the authentication process, which is essential for highly-loaded services. In

2Refer to the previous section for the exact semantics.
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such systems it might even be tolerable to grant access to the system before having tested if the
credential has been overspent. The anonymity can be revoked asynchronously.

The details of the cheater identification as described in [3], can be seen in the following compu-
tations.

fs(1, t, j)R = (E/E′)(R−R′)−1

nym =
E

fs(1, t, j)R

The only possibility for a user to overspend without being detected is, if the same value for R
has been chosen. This is the reason for the domain of the randomness to be large. In a small
domain the verifier might be unlucky and challenge the user with the same value which could
be exploited by a malicious user. With a large domain we refer to a domain being of such a size
that a collision, that is, the same randomness being chosen again, occurs only with negligible
probability.

6.2 Java Card

We provide a short introduction to the design of smart cards and refer to [12] for more details.
Smart cards have been around for decades and they are used in many scenarios where security-
relevant data need to be stored or secure computations need to be performed. The tamper
resistance of a smart card provides a certain level of security even in a hostile environment.
The cards can be equipped such that they have only memory and are called memory cards or
they come with an embedded microprocessor and are called intelligent smart cards. The memory
cards need a way to perform access control to their data which is guaranteed by security logic
functionality. The focus will be on intelligent smart cards as Java cards — our primary target —
are equipped with a microprocessor.

I/O CPU

RAM

ROM

EEPROM

Figure 6.3. Architecture of a smart card with a microprocessor

The hardware that an intelligent smart card is based on, can be seen in Fig. 6.3. To compute
the cryptographic functions efficiently, the card is usually equipped with a cryptographic co-
processor. Security-relevant hardware features such as supply voltage control, frequency control,
temperature sensor, read only EEPROM and so forth are provided.

The lack of strict boundaries between operating system and application layer requires any ap-
plication to be written for a specific smart card only. Java cards were designed to overcome this
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problem. They implement a lightweight Java environment which is able to run on a smart card.
The architecture of Java cards is explored in further detail below.

6.2.1 Architecture

Java cards are enhanced smart cards which are able to run a subset of the Java functionality. They
run a virtual machine and a runtime environment much like the one needed for the execution of
Java code on a usual computer. The biggest difference is that due to the resource restrictions the
supported functionality is very limited.

AppletApplet
Applet

vendor specific
extensions

Java Card Virtual Machine

Java Card
Runtime Environment

Smart Card Operating System

IC (Smart Card Hardware)

Java Card Framework

Figure 6.4. Java Card architecture

Figure 6.4 shows the organisation of the Java runtime environment on a smart card. Some
security-relevant aspects are worth being highlighted. First of all, the virtual machine (VM)
retains its state in the non-volatile memory and therefore cannot be stopped by removing the
power source. This is necessary as there is no internal power source in a Java card. The ability
to stop the VM at in chosen state, however, could lead to security issues.

Second, there is a mechanism to separate applets from each other. It is called firewall and
controlled by a a combination of the class loader and the access control functionality. This is an
enhancement of the sandbox concept to the Java card runtime environment (JCRE).

Applets reside in their specific execution environment where they have access to other applets
residing therein. Public methods are stored in a virtual heap implemented by the firewall. The
access to applets in different execution environments is granted after a request to the JCRE has
been forwarded to the specific applet and the latter grants access.

Memory management is essential as it is clearly security-relevant. In contrast to the standard
Java environment there is no garbage collector. References to allocated memory therefore have to
be handled with care. If values are needed during several sessions, the non-volatile memory is the
only possible storage place. Some data however might only be needed for a short time and can be
stored in random access memory (RAM). Such transient memory has to be requested explicitly at
allocation time. The write time to non-volatile memory is considerably long (typically > 1.5ms)
wherefore the allocation of RAM should be considered for non-security-relevant values. Moreover,
object reuse is to be preferred over instantiation in order not to run out on memory.[12]

6.2.2 Functionality

As seen in the architecture of the Java card, a card offers only limited access to its hardware
arithmetic. This is considered to be necessary in order not to expose security-relevant operations.
On the other hand, the card offers a basic set of Java operations which allows the implementation
of almost any functionality.



6.3 The idemix System 53

6.2.3 Communication

There are two possibilities of implementing the communication from a host to the smart card.
The first communication is byte oriented the second one is block oriented where a block consists
of several bytes. Block oriented communication can in the case of our Java card be carried in
two ways. The first is via a contact interface using ISO 7816 standard or via radio frequency
using ISO 14443. The first standard defines the physical interface, position of connectors and the
electrical characteristics of the pins. The second one regulates the frequency range. Addition-
ally they specify the format of commands between the communication partners as well as the
communication protocols.

Data to be sent to the card is sent as application protocol data unit (APDU) as specified in
ISO 7816-4. Especially, the Java card does not support extended length fields which defines the
APDU that is sent from the host application to the card as follows:

CLA INS P1 P2 Lc DATA Le

CLA: instruction byte where some values are used for card instructions and the like;
values beginning from 0x80 should be used for application specific tasks

INS: defines the instruction that it to be executed on the card
P1: either the first parameter of the method that will be executed or an additional

byte to define the instruction
P2: either the second parameter of the method that will be executed or an addi-

tional byte to define the instruction
Lc: length of the DATA field in bytes
DATA: the data to be processed
Le: length of the expected reply in bytes

The emphasized arguments Lc, DATA and Le are optional. The reply from the card to the host
is structured similarly. Here, the data part is optional and its length is to be specified in the
message with the Le-field. The trailer specifies the error code which the card will always send to
the host. Hence, the status word, i.e., the error or success code, is sent in the obligatory fields
SW1 and SW2.

DATA SW1 SW2

6.2.4 Additional Properties

An open problem is the authentication at the card. The currently most used solution is to
authenticate with a personal identification number (PIN). Clearly, there are better solutions to
this problem, for example the use of biometrical information with on-card matching. This topic
will not be discussed in more detail as it is out of the scope of the thesis and applies orthogonally
to our results for misuse protection of credentials.

6.3 The idemix System

An implementation of an anonymous credential system by Dieter Sommer of the IBM Zurich
Research Laboratory is called idemix. We added our proposed effective misuse protection mech-
anism, consisting of a software-based and a hardware-based mechanism, to idemix. A brief intro-
duction of the design of the system is given here.

The idemix system is structured into two main layers: the protocol layer and the credential system
layer. Figure 6.5 shows those two layers together with the underlying arithmetic. The message
flow is indicated by arrows. Also, the inclusion of XML specifications is indicated. The arithmetic
is depicted as a substantial speedup can be achieved when an idemix -optimised arithmetic is in
place.
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Credential Systems Layer

Protocols Layer

Arithmetic

XML

XML

Figure 6.5. Overview of the idemix architecture

6.3.1 Credential System Layer

The credential system layer provides the high-level scenario of the credential system. Its purpose
is to provide a clearly structured API for applications using idemix. In particular, the attributes
of a credential are addressed in a straightforward way and the mapping to the attribute number
in the actual credential is transparent. In other words, the credential system layer is responsible
to map the datatypes that are provided in a credential to integer numbers. This is necessary
as the protocols layer is only capable of handling integer numbers. For example, a long string
can be mapped to several integers. Additionally, it realises the control flow on a high level of
abstraction. For example, the abstract concepts such as pseudonyms or credentials are translated
into cryptographic primitives. Ontology types and credential structure are known concepts for
this layer. The protocols layer can not handle such concepts on an abstract level. However, it
is essential that the credential structure can to be certified. To reach this goal, the structure is
encoded into one integer attribute which can be passed on to the protocols layer.

6.3.2 Protocols Layer

The protocols layer implements the cryptographic protocols. As already mentioned, it only
deals with integer attributes. The concepts it can handle are signatures, such as Camenisch-
Lysyanskaya signatures, commitments and encryptions. For example, it is concerned with the
effective message flow of the Camenisch-Lysyanskaya signature as specified in [7]. Similarly, it
executes range proofs which have been previously specified by the credential system layer. The
specification is written in an XML file to hand it over to the protocols layer. Also it can generate
Pedersen commitments3 simple discrete logarithm commitments. Just as well, it can issue zero-
knowledge proofs which need to be specified using the XML structure known to the protocols
layer.

3Refer to Section 3.2.3 for details.
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Prototype Implementation

After the determination of the effective sharing prevention mechanism, we implemented the
approach. Certainly, some changes to the idemix system were necessary. Mainly the protocols
layer was subject to changes. The more abstract credential systems layer needed to be made
aware of the new credential types which include K-show credentials, smart card credentials or
credentials which combine the use of the K-show limitation and the hardware binding.

7.1 Extensions to the idemix System

As mention before, the inclusion of the K-show credentials and the binding to the hardware
requires some changes to the current protocols. The binding to hardware is widely transparent
to the credential system layer. It is only reflected in the credential description and needs to
be passed on to the protocols layer. Similarly, the use of K-show credentials is also given in the
credential description to the credential system layer. The assignment of the latter is again limited
to passing on the fact that the credential is a K-show credential along with the value of K. The
details of the protocol changes are given in the following.

7.1.1 Integration of K-show Credentials

Given the introduction in Section 6.1, the protocol additions of the K-show credentials are
not further discussed here. The insertion into the given system required some adaptions of the
standard protocols. We consequently discuss only those changes.

The introduction of K-show credentials proved to be elaborate as the message flow, for example
between prover and verifier, is defined. The addition of the jointly-chosen randomness in the
issuing process fits well into the system. More difficult were the changes for the holdership proof.
In particular, the defined message flow begins with a message from the prover to the verifier. Yet,
for the K-show credentials the initiation of the protocols is done by the verifier by providing a
random challenge in addition to the current epoch. This message is fundamental as it offers the
randomness which is needed for the cheater identification process and the epoch proposition is
essential for the choice of the epoch by the user.

As already mentioned, the current system unfortunately starts the proof at the prover’s side.
Simply adding a message before the currently used protocol would solve the issue. As this would
make the integration into the Higgins Trust Framework1 much more complicated, we did not
regard this solution as appropriate. At this point we want to stress that the protocol implemen-
tation will be part of the open source Higgins Trust Framework. Thus we need to account for
the restrictions imposed by the Higgins Framework.

Nevertheless, it is possible to solve the problem without changing the current message flow. The
proposed solution works by replacing the random challenge using a hash, that is, we make use of

1Refer to http://www.eclipse.org/higgins/ for more details.
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an implementation of a random oracle. The choice of the epoch is done by the user. Certainly,
the verifier still is in control of the valid epoch. If the verifier does not agree with the user-chosen
epoch, he simply rejects the proof. In the case the user acts honestly, this situation arises because
the epoch at the verifier has changed. The user, not being informed of the change, chooses an
epoch which is no longer valid. This issue is solved by letting the user increment the epoch and
start another authentication attempt. However, this user behaviour opens an attack vector. A
malicious verifier could desynchronise the user to render his credential useless. The details of the
attack are described in the following example.

Example 7.1.1. An honest user U authenticates to a malicious verifier V . The only thing the
verifier does, is to reject each authentication attempt. Thereby, U increments his epoch repeatedly
and the difference between the epoch used by U and the valid epoch, used by all honest verifiers,
increases. In such a case, U would need to wait as many epoch as he has been desynchronised
until he could successfully authenticate with a non-malicious verifier again. Probably the worst
thing in the described attack is the fact that a desynchronised user would contribute to his own
desynchronisation. This results, as his authentication attempt even with honest verifiers would
fail and cause him to increment the epoch counter.

Assuming that the choice of the epoch is publicly known, this attack can be countered. For
example, the epoch could be a certain time interval τ . The user still increments his epoch upon
a rejected authentication attempt, but an additional requirement needs to be met. At least the
time τ needs to have elapsed since the last epoch increment. Thereby assuring that a user can
only be desynchronised by less than the epoch length. It assures that the user’s epochs can only
change as fast as the valid epochs determined by the honest verifiers.

Having dealt with the choice of the epoch at the user’s side, we want to focus on the choice
of the randomness. As mentioned, it is crucial to successful cheater identification. The user can
certainly not be trusted to randomly choose a value. In particular, the repeated choice of the
same number would disable the cheater identification, hence rendering the K-show per epoch
limitation useless. A solution, secure in the random oracle model, is to choose a hash value instead
of a random number. The input values to the hash function need to be predefined. The values
consist of context information which is specific for each verifier and values computed for the proof
of knowledge protocol that get known to the verifier during the protocol. The further makes sure
that each verifier can detect a reuse of a specific R value, the latter provides additional input
for the computation of the challenge. If there were no such restriction, the verifiers would need
to coordinate the duplication check of the randomness over all verifiers. This would introduce
enormous cost in communication between the verifiers and lead to a more complicated system
architecture which would be impractical. In the proposed scheme each verifier can manage the
checking of the randomness for duplicates itself. Especially, it needs to make sure no TSN2 is
used with the same randomness twice. Otherwise it risks to detect the overuse of a credential
but not reveal the pseudonym used in the credential.

Verifier Prover

select t
R = H (urlv, τ) , R ∈ Z

∗

q

S = g
1

s+c(0,t,j)

E = gxhy
(

g
1

s+c(1,t,j)

)R

t,R,E,S,proof
←−

PK{(x, y, α, β, γ) : S = fg,α(c(0, t, γ),
E = gxhy(fg,α(c(0, t, γ))R,
C = gαhβ

0 < γ ≤ K}
verify proof

check for duplicate R
store (S; E, R)

2Token Serial Number as introduced in Section 6.1 on page 46
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The accordingly-adapted show protocol can be seen above, where urlv is the verifier-specific
value, i.e., context information. The second value of the function, i.e. τ , symbolises the other
values from the show protocol which complete the hashed value. The changes regarding the
original protocol are verifier-chosen epoch t and the computation of R.

The scheme requires the verifier to check the chosen randomness w.r.t. the database of authenti-
cations carried out during the actual epoch. This adds complexity for the verifier. On the other
hand, the scheme allows to introduce K-show credentials without changing the defined message
flow of the Higgins Trust Framework.

7.1.2 Integration of a Smart-Card-Binding

The advantages of a Java card for the implementation have been discussed earlier. Nevertheless,
the incorporation of a smart card has a non-negligible disadvantage. As the card is supposed
to be the only entity having knowledge of the secret key of the user, i.e. his MSK, the card
has to perform all computations that involve the MSK. Outsourcing the computation would
be possible in a secure way, if at least two non-colluding devices were present. In our case, we
can only assume that one device, i.e. the host, is present. A technique for secure computational
outsourcing is described by Hohenberger et al. in [17]. As already stated, the findings cannot be
put to use as the host is the only outsourcing device present in our setting.

Consequently, we define that all operations using the MSK need to be executed on the card.
Moreover, the secret should be information-theoretically hidden. We subsequently need the card
to perform operations such as multiplication, addition and even exponentiation on arbitrary
position integers. Such operations are available on the Java card but due to security restrictions
they cannot be accessed from the within application layer. Considering this situation, we had
to implement an arithmetic capable of computing all needed operations on arbitrary precision
integers on the application layer.

The arithmetic has been implemented in accordance with the description of Knuth in [19]. Special
attention needed to be paid to the modular exponentiation. This is a costly operation, wherefore
we decided to implement an algorithm discovered by Montgomery. Used for an exponentiation,
this specific algorithm causes at most twice as many Montgomery multiplications as the length of
the exponent. The Montgomery multiplication itself is quadratic in the length of its arguments.
The algorithms with better performance are far more complex and would not have been justifiable
because of the relatively short arguments that have been used.

Special attention was needed for memory allocation. For example, once a portion of RAM has
been allocated, it is only freed after the deselection of the applet or even the reinitialisation of the
card. Consequently, the arithmetic allocates temporary variables which are needed repeatedly.
Having to run the arithmetic operations in the application layer is a performance-limiting factor.
However, there has been no other option to execute the necessary functionality. [12]

Programming an Arithmetic

Before actually implementing the arithmetic, we analysed the operations that would be necessary
to embed the secret key into the Java Card. The sections below give more detail on those opera-
tions. The most important operation of the arithmetic in this context is the exponentiation. This
results from the frequent use as well as the complexity of the operation itself. Other operations
such as multiplication, addition, division and subtraction are clearly also needed.

We needed to implement the arithmetic as a Java Card applet. The Java code written can be
optimised if the translation to byte code is kept in mind. Therefore, the order of declaration
of variables as well as the number of loops had to be evaluated carefully. In addition to these
techniques, variable reuse is a means which results in a speedup of the code. Unfortunately it
also makes code much harder to understand. As the performance of the arithmetic is a key factor
of the runtime of the whole protocol, even this method has been used to optimise the resulting
byte code.
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The implementation provides an arithmetic based upon 8 bit operations as the longest primitive
on a Java card consists of 16 bits. The reason for not operating on 16 bit number is the carry.
If 16 bit operations were used, the carry would be lost. The implemented algorithms follow the
description given by Knuth in [19]. As already mentioned, the most involved algorithm which
has been implemented was the Montgomery multiplication. This algorithm was adequate in
implementation complexity considering the exponents we expect to occur. We can subsequently
study the changes that need to be applied in the idemix protocols.

Adaptation of the Issue Protocol

As a first action, the credentials need to contain a value indicating that a smart card is used.
The change of the XML specification and the parsing are straightforward and need no further
description.

Issuing a credential includes binding it to the user. As the MSK of the user is now supposed to be
secured by the card, the card will have to commit to the key during issuance. The information-
theoretical hiding of the secret is currently done by the host. We show the operations executed
by the card in the following protocol. As for the K-show credentials, we do not provide a detailed
description on how a credential is built. Instead, our changes to the system are described.

Host JavaCard
Cx←− Cx = ax

1 (mod n)

U := Cxbv′

(mod n)

The commitment U is used for issuing the credential on. Subsequently, the host needs to proof
to the issuer the fact that the commitment is built correctly. For this zero-knowledge proof some
more computations are needed to be done on the card.

Host JavaCard
Crx←− Crx

= arx

1 (mod n)

Ũ := Crx
brξ (mod n)

c1 = H(. . . ‖ U ‖ Ũ . . .)
c1−→ c = H(c1 ‖ ncard)

c,sx,ncard
←− sx = rx + cx

This description corresponds to the current implementation. It can be seen that the secret x is
not information-theoretically hidden. The reason being, that we tried to keep the computation
time as small as possible. The entire computation of U on the card would result in information-
theoretical hiding. This change of the protocol is straightforward to implement. Efficiency-wise
it is to say that this change adds at most as many modular multiplications as the length of v′

in the computation of U . The zero-knowledge proof would be computationally more intensive as
well, where the additional modular multiplications are upper bounded by the length of rξ. In
addition to the information-theoretical hiding of the MSK, this adaption would lead to a simpler
protocol for the zero-knowledge proof. The simplification can be seen in the following protocol
description.

Host JavaCard

c1 = H(. . . ‖ U ‖ . . .)
c1−→ Ũ = arx

1 brξ (mod n)

c = H(c1 ‖ Ũ ‖ ncard)
c,sx,ncard
←− sx = rx + cx
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However, there is another method to achieve a better hiding of the secret key from the host
with the addition of a single modular multiplication. The protocol would be changed such, that
the host sends the result of the computation of brξ (mod n) to the Java card. The latter could
multiply the received value with the result of Crx

= arx

1 (mod n) which would lead to Ũ without
the host getting to know the value of the commitment Crx

.

It is to say that the above protocols only describe the receiver’s side. There need to be adaptions
on the isser’s side as well. Especially, the inclusion of the nonce of the card ncard needs to be
taken into account.

Adaptation of the Show Protocol

The adaptation of the proof of holdership protocol is similar to the zero-knowledge proof in the
issuance protocol. This follows from the prover proving knowledge of a randomised credential.
The only part of the credential which is stored on the smart card is the MSK x. Subsequently
proving knowledge of the credential from the point of view of the smart card is the same as
proving knowledge of the MSK. The latter is done during issuance of the credential.

Still we want to indicate the necessary actions for the holdership proof on the prover’s side. The
verifier needs to adapt its protocols in accordance to the prover. Those changes are analogous to
the extension on the prover’s side with the key difference that the computations are performed
on the same hardware.

Host JavaCard
Crx←− Crx

= arx

1 (mod n)

Ũ := Crx
brξ (mod n)

c1 = H(. . . ‖ U ‖ Ũ . . .)
c1−→ c = H(c1 ‖ ncard)

c,sx,ncard
←− sx = rx + cx

The host clearly needs to do more computations. In particular, it needs to prove knowledge
of all attributes. Accordingly, it needs to provide the verifier with his random number ncard

and the values of sx and c. Those values are necessary to verify the zero-knowledge proof. The
computations of the card ensure that the credential cannot be shown without the card computing
the values as given above. An important role for this assurance is played by two challenges. The
first comes from the verifier and is hashed into the value c1 by the host. This challenge assures
the freshness of the proof. The second, is the challenge used by the card ncard. It convinces the
card that the value c is not chosen such that it allows the extraction of partial information about
the secret x. The method of computing the hash value is performed in analogy as done in [1].

7.2 Measurements

We provide a running prototype of idemix using a Java card. In addition to that, the credentials
can be issued as K-show credentials. Together with the secret key embedded in the smart card,
the prototype offers an effective misuse protection.

The prototype implementation needed to be tested for its performance. As the arithmetic is
placed in the application layer, it makes sense to give an expectation on the computation time,
assuming the hardware arithmetic could be used. It is very difficult to make a reliable estimation
as the computation time of very few operations are given. In addition to that, the details of the
algorithms are not provided.

In addition to the reasoning about the performance of the prototype, we argue about memory
requirements for extensions to the proposed system. Especially, we want to explore on extensions
which make more extensive use of the external security device. As already mentioned, the current
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system has to be extended in order to hide the secret information-theoretically3. In addition to
that, it would be interesting to have the most important credentials on the card. Thereby, the
credential could be used with an arbitrary host as the card stores all the necessary values for
the proof. However, in such a case the user either must trust the host he uses or the card will
have to perform many more operations. In particular, the computations of the card need to be
privacy preserving. It can be seen that the extension goes in the direction of running the whole
idemix system on a smart card. That the current hardware technology is not very far from
achieving that goal can be seen by the fact that idemix is running on mobile phones. As shown
by Thomas Heydt-Benjamin the issuing takes less than 10 seconds and the proof of holdership
can be executed in even less time.

We began the measurements by analysing the two protocols described in Subsection 7.1.2. The
runtime is primarily caused by the exponentiations that are executed. Again, we want to mention
that the arithmetic that executes all operations is running in the application layer of the Java
card. Fortunately, the hash function is provided by the card. The runtime of the hashing can
subsequently be neglected. Table 7.1 shows the measured runtimes for both protocols. Important
to note are the system parameters which have been used. The length of base a1, that is, the group
size of the special RSA4 group for the signature scheme, has been set to 72 bits. The length of
the secret key is called lx and has been set to 80 bits. It is used in one exponentiation in the
issue protocol and accountable for the runtime difference between the two protocols. The most
important value considering the runtime of both protocols is the length of the randomness used
for the zero-knowledge proof. It is denoted as lrx

and has been set to 344 bits. This is the shortest
length which still allows the encoding of practical attributes. Certainly, those parameters are far
too small for the system to be secure. Nonetheless, they are suitable for showing the feasibility
of the prototype.

Protocol tcard temulated Operations
Issue: ∼ 9min 40s ∼ 80s (lx + lrx

) ModMult
Show: ∼ 7min 30s ∼ 60s (lrx

) ModMult

Table 7.1. Runtime for the issue protocol and the show protocol

The first column of Tab. 7.1 indicates the runtime for the execution of the issue and the show
protocol on the Java card, respectively. The second column shows again the runtime of those two
protocols with the difference that they are executed on a Java card emulator5. The last column
of the table indicates the number of modular multiplications6 which had to be performed. These
numbers give an intuition on the runtime difference between the two protocols. They will be
further used for the theoretical exploration in the next subsection.

Clearly, a system with a runtime of over 5 minutes is far from being practical. Therefore, the pro-
totype cannot be used directly. However, the use of the hardware arithmetic would substantially
increase the performance of the system. The expectations on the execution times are discussed
in more detail in the next section.

7.2.1 Analysis of Computation Times

There are no specifications of runtimes for basic arithmetic operations on smart cards. Our results
were attained by comparison with an operation whereof the runtime is known. Such an operation
is the verification of an RSA signature. The Philips P8RF5016 smart card for example, specifies
the runtime of this operation to be less than 400ms when using a 1024-bit group size. We use
this hardware as the same card has been used as Java card whereon we analysed the runtime.
Consequently, we will be able to estimate the speedup factor which can be achieved.

3Refer to section 7.1.2 for further details.
4Refer to Chapter 3 for the definition.
5The JCOP emulator has been used here. Refer to http://www.zurich.ibm.com/csc/infosec/jcop_tools/entry.html

for details.
6Refer to [19] for details on the implementation.

http://www.zurich.ibm.com/csc/infosec/jcop_tools/entry.html
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The RSA signature verification operation is basically a simple exponentiation. In the case of a
1024-bit RSA signature verification this would be rising a 1024-bit base to a 1024-bit exponent.
The maximal number of modular multiplications that are needed to perform this operation is
equal to the number of bits of the exponent. Also, the algorithm causes at most as many squarings
as the bitlength of the exponent. The length of the numbers to be multiplied is equal to length of
the base. Assuming that a squaring and the multiplication are similar in their time intensity, the
time of one modular multiplication tmodMult of two 1024-bit numbers is calculated as follows:

tmodMult =
400ms

1024 + 1024
≈ 200µs

In this calculation we assume that the duration of the computations for each bit in the exponent
is the same. In particular, we assume the duration to be independent of the value of the specific
bit. This assumption does not hold in general. However, as there is a side-channel attack on the
timing of the smart card, the security of smart card is enhanced by computing some operation
if a bit of the exponent is zero. As a result the length of an exponentiation is independent of the
number of ones in the exponent, i.e., the duration is only dependent of the overall length of the
exponent.

As seen in Tab. 7.1 the number of modular multiplications for the issue protocol can be calculated
by adding the length of the secret key lx to the length of the randomness lrx

. In addition to the
modular multiplications, there are possibly squarings necessary which account for a doubling of
the number of operations. This is a result of the squarings as well as the multiplications being
dependant on the length of the exponent. For the idemix system, those parameter are suggested
to be 594 and 592, respectively. The size of the base is suggested to be 2048 bit. Subsequently,
the projected runtime of the issue protocol τissue can be estimated with:

τissue ≈ 2(594 + 592)4tmodMult ≈ 1.8s

The length of the base scales the multiplication time quadratically. As the bases are twice as
long as in the given RSA operation, the time for one multiplication is four times as long as in the
RSA operation. On the other hand, we need to analyse the number of modular multiplications.
This boils down to the analysis of the bitlength of the exponent. This length is indicated in Tab.
7.1 and the values, when taking secure system parameters, are discussed further above.

The same considerations as for the issue protocol can be made for the show protocol. This
analysis is of even more interest as the show protocol is carried out more often. A runtime which
is noticeable for the user is likely to be not acceptable for the show protocol whereas in the case
of the issue protocol it might be tolerable.

Again, we assume the length of the randomness to be 594 bits. The bases, as described above,
are of length 2048 bit. We explore the runtime for the show protocol, called τshow.

τshow ≈ 2(594)4tmodMult ≈ 1s

We can see that even the slightly outdated smart card is capable of executing its part of the show
protocol in an acceptable time. However, if the MSK is to be information-theoretically hidden,
the computation time would be increased as another 2816 squarings and modular multiplications
would be necessary. This is due to the random exponent which has to be chosen of this length.
Similarly, the issue protocol would be extended by 2818 due to the information-theoretically
hiding of the exponent and also by 2816 due to the randomness which is used in the zero-
knowledge proof. As already mentioned, this zero-knowledge proof is computed in both protocols.

A function that is of interest and has not been considered in the explanations above is the hashing
function. To get a reliable hash value, a part of the hashing needs to be done on the card. The
necessity of this operation has been discussed beforehand and the length of the arguments depends
on the system parameters. The measurements of the Philips smart card have shown that this card
can perform hashing efficiently. This fact is shown in Tab. 7.2. The hashing of three different
numbers of bytes has been analysed. The first row indicates the time for the hashing of two
numbers of the indicated length. The second row shows the time that was needed for sending
the value to the card, initiating the hashing and sending the results back to the host.
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Number of Bytes 47 74 94
thash 6.1ms 10.1ms 10.2ms
toverhead 272.4ms 274.2ms 310.2ms

Table 7.2. Runtime for the hashing operation

The analysis has been carried out as follows. We performed 10000 hashing operations followed by
the computation of another 1000 operations. Thereby, we could extract the overhead caused by
the communication between card and host and other operations. Subsequently, the approximate
time for hasing the number of bytes could be computed. Notably, the runtime of 74 bytes is only
marginally lifferung from the hashing of 94 bytes. This results as the hash function is padding
its input to a multiple of 512 bits. Clearly, the 74 bytes as well as the 94 bytes input are padded
to 1024 bit numbers.

7.2.2 Java Card Simulator

The overall runtime of the prototype is unfortunately not useful even when the system parameters
are shrunk as much as possible. As the Java card emulator has a substantial runtime as well, we
provide a software simulator. The simulator is building a so called virtual Java card. This card is
running on the host hardware but it uses only functions that are available on the real Java card
as well. In addition to that, the simulation environment allows the host to communicate with the
virtual card as if it were a real Java card.

Although the virtual card uses the same arithmetic as the real card, the memory constrains are
not applied. When adapting the Java card itself, we subsequently recommend the use of either a
Java card emulator or the use of a real Java card. On the other hand, the correctness of Java card
code can be best verified using the simulator. Testing is simplified as the native Java functionality
can be used to check against the self-written code. Another advantage of course is the possibility
to verify the functioning of the higher layer protocols.

The simulator basically implements the same functionality that is provided by Java card devel-
opment tools such as the JCOP framework7. Clearly, our simulator does not implement the same
range of functions. We restricted the simulator to the functions that have been needed so far.
Essentially those functions are:

• initialisation of a terminal

• communication using application protocol data units (APDUs)

• initialisation of a card

- applet loading

- reading data from APDU

- sending data to APDU

- applet deselection

• Exception handling

Additionally, some functions needed to be implemented using the native Java library. For ex-
ample, the Java card offers hashing functions but the API is not the same as the Java API.
Therefore, we provide a function mimicking the API of the Java card hash function and in fact
using the native Java implementation to perform the hashing. Such methods were for example
the allocation of RAM, the generation of random numbers and the message digest, as mentioned
above.

7Refer to http://www.zurich.ibm.com/csc/infosec/jcop_tools/entry.html

http://www.zurich.ibm.com/csc/infosec/jcop_tools/entry.html
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Parameter EEPROM ROM
MSK x lx ≈ 256 bytes
Bases aj iln ≈ 53 · 256 bytes ∼ 13kB
Signature (A, e, v) ∼ 460 bytes
Attributes mi ∼ 20kB

Table 7.3. List of memory requirements of credentials stored on a smart card

7.2.3 Memory Constraints

An analysis of the memory constraints can only be performed after determination of the size of
a credential. Thereafter, we can argue about the possibility of storing credentials on the card.
The memory constrains of the card will be analysed using the example of the Philips P8RF5016
smart card, which has been used throughout the thesis. Still, we would like to emphasise that
a state-of-the-art smart card is equipped with more memory as well as a faster microprocessor.
As an example, we would like to mention a specific smart card being able to run a lightweight
webserver8.

A credential consists basically of the signed attributes and the signature on them. To estimate
the number of bytes which are necessary to store such a credential, we first have a look at the
signature. It consists of the three values A, e and v. A, as a group element, consists of 2048 bits.
The length of the exponent e is determined by the order of the chosen group and is in the order
of 400 bits. The length of v is with the current system parameters in the order 2600 bits. The
signature consequently accounts for somewhat less than 630 bytes.

The length of the attributes is much harder to estimate as the current implementation allows
variable size of the attributes. As our aim is neither the determination of the precise size of a
credential nor an upper bound on the size, we can go ahead with estimations. For example, a
practically useful credential would consist of about 20 attributes. When assuming the average
length of an attribute to be in the order of 50 bytes, we get the size of the attributes to be in
the order of one kilobyte.

In addition to the credential-specific values, which have been described above, there are a number
of system parameters which need to be contained in the card as well. Otherwise the card is not
able to deliver all parameters needed for the proof of holdership of a credential. The bases of
the attributes are an example for system parameters which need to be stored once for the whole
system. As the bases are of the same length as the RSA modulus, they have length ln. Typically
this value should be in the order of 2048 bits for a decent security system. The number of bases is
equal to the number of attributes. Moreover, the pseudonym requires two bases and the credential
structure is encoded using one base. Subsequently, the system needs three additional bases. As
the assumed average number of attributes is given above as 20, we want the limit on the number
of attributes to be not less than 50. Consequently, there is a need for 53 bases which account
for 53 · 256 bytes, i.e., about 13 kilobytes. Another parameter of interest is the secret key of
the user. It can only be issued once for each card. This parameter, consequently, needs to be
stored once for all credentials. Certainly, the lengths of different parameters need to be stored as
system parameters as well. However, as there are only around ten such parameters, their memory
requirements are negligible.

The memory constraints of the Philips P8RF5016 smart card are the following. The EEPROM
is limited to 32kB, the ROM is 64kB and there are 2.3kB of RAM. With such constrains only
few credentials could be completely stored on the card. Especially, given the assumptions from
above and shown in Tab. 7.3, only one credential would fit on the card. However, this card is not
a state-of-the-art smart card. Even though the newest generation of smart cards could be able
to handle all the credentials of one user, this might not be a good thing to do as the value of
the card would become substantial. Even though this scenario is appealing for the users, there
might be a security risk associated with it. A careful analysis would have to be carried out before
deployment of such a system.

8Refer to http://www.gi-de.com/pls/portal/maia.display_custom_items.DOWNLOAD_SEEALSO_FILE?p_ID=5453

for more information.

http://www.gi-de.com/pls/portal/maia.display_custom_items.DOWNLOAD_SEEALSO_FILE?p_ID=5453
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When we explore the number of credentials that can be secured with one smart card, we conse-
quently need to pay attention to the value of the sum of those credentials more than the memory
required to store them. If this value gets too high, breaking the tamper resistance might become
economically justified. The lack of trust among different organisations suggests the use of differ-
ent cards. Subsequently, this lack of trust helps a user to not accumulate too much value on one
single card.

The goal of managing entire credentials on the card remains. Especially, as there is the possibility
to store entire credentials on one card but not user one card for all credentials of one user. For
example, a new smart card could be issued for each high-value credential and the low-value
credentials could be added to a card. Still, the trust relations between the issuing organisations
need to be established. The benefit of this procedure is mobility, a credential gains. In particular,
the user could use such credentials even when only a public host were available. However, the
untrusted host could ask the card to reveal more attributes than actually needed. Hence, the
privacy of the user would effectively be violated. To cope with this form of misuse, an input or
output device could be used on the card. Using an input together with an output device adds to
the possibilities of using the devices. For example, a screen could show which values are revealed
and a keyboard could be used to agree with the transaction or cancel it. Still, the security device
would need to perform many more operations. The feasibility of such a scheme would have to be
shown first. Generally, it is a well-known problem that for obtaining certain security features, a
trusted input or output device is required.



Chapter 8

Summary and Outlook

Beginning from a system as proposed in [5] and [20], we analysed the proposed mechanisms
which might be usable for misuse protection. Exemplary mechanisms can be found in [3], [2], [5].
After the analysis of those mechanisms, we proposed a scheme for effective misuse protection in
anonymous credential systems. Subsequently, we proposed a mechanism to cope with misuse of
anonymous credentials and implemented it, based on the already existing idemix system. The
resulting prototype has been analysed and conclusions were drawn. An overview over conclusions
and an outlook on future work is provided in this chapter.

8.1 Summary

We have analysed a number of mechanisms which target the misuse of credentials in anonymous
credential systems. Misuse can occur in many different cases. However, the misuse possibilities in
a credential system can be extremely limited, if the use of duplicates of credentials is prevented.
In a real world scenario, the absolute prevention is illusory. Nevertheless, a limitation on the
possibilities of production and use of credential duplicates can be achieved. We propose that
misuse which can technically be countered is associated with the use of duplicate credentials.
Other misuse scenarios are, for example, that a user is threatened such that he is made willing
to give away his credentials. This and other, similar scenarios have not been considered as they
can only be countered to a certain degree by technical solutions.

In order to restrict the possibilities of creation of credential duplicates, a hardware-based pro-
tection approach is introduced. In particular, the credentials are bound to a smart card. The
binding of credentials to a smart card can be attained by storing the master secret of a user in
the tamper-resistant memory of the smart card. Consequently, the production of the first dupli-
cate of a credential is associated with high costs. Those costs result from breaking the tamper
resistance of the smart card. However, the production of many duplicates is not more costly
compared to the production of only one duplicate. This is due to the fact that copying digital
information is associated with only negligible costs.

We state that the incentive of actually breaking the tamper resistance of a smart card is only
justified, if the costs caused by this action are exceeded by the value gained. In particular, an
attacker will not execute an attack which introduces more costs than the expected revenue.
Therefore, we can increase the efficiency of the misuse protection mechanism by limiting the
number of copies of a credential that can be used simultaneously. As an example, if only a
limited number of copies of a credential can be used, the attacker can not sell as many copies of
a credential as he wants, without the duplicates being detected. To justify the attack, the value
of one copy of the credential needs to be sold at a higher price compared to the case where an
unlimited number of the same credential could be sold. Another successful approach would be
the introduction of a counter associated with each credential. In addition to the counter, there
is a signature on the counter that needs to be presented when proving ownership of a credential.
Thus, different copies of a credential need to stay synchronised. As soon as a copy loses the
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current counter value and the signature, i.e. is no longer synchronised, the show protocol would
fail. The synchronisation of the credentials introduces severe costs. As the simultaneous use of
several copies of a credential is linked to communication costs, it makes the attack less likely to
be profitable for an attacker.

The selection of one of those two approaches has been necessary as only a limited number
of mechanisms could be implemented. In addition to that, we wanted to implement the most
promising approach regarding the overhead of its protocols. All the same, we want to accentuate
that not only these two mechanisms but also the other cryptography-based techniques could
be used simultaneously. This is of great importance as some organisation might choose not to
use the proposed mechanism but one of the other algorithms. As the complementary use of the
described approaches is possible, they could be implemented as extensions to the system at a
later point in time.

The choice among the two approaches which are able to limit the number of credentials has not
been easy. They both have the capability to introduce some protection against theft. All the
same, an average user should not be restricted in the usage of his credentials. This has been an
important requirement for the system. Subsequently, the acceptable percentage of users that are
limited by the misuse protection would probably have to be much lower than 5 percent.

The approach suggesting the introduction of a counter, being associated with each credential,
works as follows. The value of the counter as well as a signature on the latter is needed for
each proof of holdership. If a credential is copied, each copy would need to acquire the latest
counter value as well as the signature to successfully be used. In other words, the copies need
to maintain a synchronised state. This is generally believed to be costly. The main disadvantage
of the approach is the necessity for the issuer to be online in order to sign the updated counter
values after each successful execution of the show protocol.

The other approach introduces a limitation on the number of times that a credential can be shown
during one epoch. This technique introduces a probabilistic mechanism for detecting duplicate
credentials depending on their use. In other words, the independent use of many copies of a
credential would eventually be detected because they would be used more than K times during
one epoch. If the number of copies that can be used without being detected should be optimised,
the copies need to maintain synchronisation. This results as the duplicates need to avoid showing
a credential more than K times during one epoch. The implications for an attacker therefore
are more drastic compared to the counter-based approach. Subsequently, we implemented the
limitation of K shows during one epoch in addition to the hardware protection mechanism.

The prototype implementation is running partially on a smart card, which can be used together
with a host in the process of acquiring a credential. Also, it can engage in a proof of holdership
to prove the knowledge of a credential. However, as access to the hardware arithmetic of a smart
card is not granted, we had to provide an arithmetic to execute the required operations. The
provided 8-bit arithmetic is subsequently running in the application layer of the card. Therefore,
the prototype is operating rather slowly. The execution of the credential issuance takes about 10
minutes and the ownership proof is not significantly faster. The prototype not being practical,
we explored the expectable runtime when the smart card arithmetic could be used instead of our
arithmetic. The estimated runtime was in the range of one second for the show protocol which is
promising as it has been calculated for the slightly outdated Philips P8RF5016 smart card. The
issuance protocol was estimated to take in the order of two seconds. According to us, the use of
smart cards for misuse protection is not only feasible but very promising.

8.2 Outlook

The biggest challenge which has been solved in this thesis is the choice of an appropriate mecha-
nism to protect organisations from misuse of credentials. This issue is of major importance before
credential systems will actually be deployed. We believe that an appropriate mechanism has been
selected. Especially, it is much stronger compared to the mechanisms that many organisations
still rely on. However, the solution to one challenge as often caused new challenges to rise.
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The first such challenge that needs to be addressed, is the choice of the parameters used in the
K-show credentials. There is a major possibility for optimisation for each type of credential.
According to us, the optimisation should be begun with the analysis of typical usage profiles.
Such profiles are necessary to determine the lower bound on the choice of K/tepoch as the average
user should not be limited in the usage of his credential. The process could be continued by the
analysis of other, more unusual user profiles. Other than that, the memory and communication
requirements for different epoch length should be calculated. This would lead to an upper bound
on tepoch.

Another challenge is the implementation of the hardware-bound credentials with a smart card
where the hardware arithmetic can be used. It would be interesting to compare the actual com-
putation time of a real card with the projected times given in this thesis. In addition to that,
a practical prototype could be attained. Although the proposed misuse protection system is be-
lieved to be efficient, there are still some optimisations or extensions waiting for a solution or the
implementation, respectively.
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Appendix A

Timetable

The project can be roughly divided into three parts: reading and understanding the theoretical
part, designing and implementing the functionality and documenting both processes. A graphical
overview should give an idea about the partitions of time that are used for specific parts.

Jun 2007 Aug 2007 Oct 2007 Dec 2007

ti
m

e
p
er

d
ay

Documentation

Implementation

Theory

Figure A.1. Graphical overview over the project

The theoretical part consists of extensive reading into the subject of pseudonym systems at the
beginning. It will be continually be more focused onto theft or misuse related topics of such
systems. It will be mostly finished after the first month and builds the first milestone (M1) of
the thesis.

Jun 2007 Aug 2007 Oct 2007 Dec 2007

gain overview

design

design

write

write

review

review

M1 M2 M3 M4 M5

Figure A.2. Graphical overview over the implementation part including milestones

The most important part needs to be examined more closely. The programming is done by
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evolutionary prototyping meaning that a first version of the program is extended continually
with functionality. Initially there will be needed some effort to get to know the architecture the
other parts are repeatedly executed. Milestones are difficult to figure out however the raw design
being the second milestone (M2) will be finished two weeks after the first milestone. The detailed
design will be ready another two weeks later (M3). The last milestone of the implementation
phase will be at beginning of October when a working implementation needs to be available.

The documentation part is kept at a reasonable level ensuring a complete documentation of the
work will be finished by the end of the project (M5).
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