Eidgendssische Technische Hochschule Ziirich
Institut fiir Technische Informatik Swiss Federal Institute of Technology Zurich
und Kommunikationsnetze Ecole polytechnique fédérale de Zurich
Computer Engineering and Networks Laboratory

Politecnico federale di Zurigo

SIEMENS

MASTER THESIS

for the degree of
Master of Science ETH in Electrical Engineering and Information Technology

Ethernet-based Deployment
Support Network

September 2007 until March 2008

Author: Tutors:
Florian Betschart Dr. Simon Kiinzli

Kevin Martin
Dr. Jan Beutel

Supervisor:
Prof. Dr. Lothar Thiele

Abstract

Embedded in the area of wireless sensor networks an Ethernet-based Deployment
Support Network (DSN) has been developed within the work presented in this
thesis. This system allows us to monitor the sensor network nodes by inspecting
captured status messages. In addition, the user can reprogram and configure the
sensor network e.g. reset the sensor nodes using a remote procedure call protocol.
Wireless sensor networks are hardly observable due to the distributed nature of
the system as well as limited energy recources, memory and computing power. As
a previous system approach based on Bluetooth technology did not provide the
reliabiliy and data throughput as intended, a wired architecture should deal with
above limitations. After having evaluated different design approaches finally a hy-
brid system consisting of USB-interfaced DSN nodes and an Ethernet platform
has been built.

The work included DSN node hardware design to connect the target nodes, imple-
mentation of the DSN node’s firmware and development of the required gateway
software running on the Ethernet platform. The user can access the DSN over the
network in the backbone.

The evaluation of the system showed that the Ethernet-based DSN achieves good
reliability concerning the implemented features. The DSN nodes support high data
throughput and configuring of the sensor nodes is possible within a few seconds.

Zusammenfassung

Drahtlose Sensornetze erfordern aufgrund ihrer Systemkomplexitdt wiahrend der
Entwicklung, der Testphase wie auch wahrend der Wartung ein hohes Mass an
Beobachtbarkeit. Begrenzte Ressourcen wie Energie, Speicher und Rechnerkapaz-
itdt verlangen nach einer Losung, welche moglichst wenig zusétzliche Hard- und
Software der Netzwerk Knoten selbst dafiir verwendet.

In dieser Masterarbeit entstand wahrend 26 Wochen ein neues so genanntes De-
ployment Support Network (DSN), welches dem Benutzer erlaubt das eigentliche
Sensornetz zu beobachten und zu konfigurieren. Das neue DSN soll ein bereits
bestehendes System abldsen, welches iiber Bluetooth kommuniziert. Um gegeniiber
dem Bluetooth-Netz Zuverlassigkeit und Datendurchsatz zu erhohen und auch
grossere Netze (64 oder 128 Knoten) bedienen zu konnen, nutzt das neue System
Ethernet und USB und stellt im Wesentlichen drei Dienste zur Verfiigung:

e Software upload zu den DSN Knoten als Zwischenspeicher und automatische
Programmierung der Sensor Knoten.

e Empfangen von Statusmeldungen, so genannte log messages, von den Sensor
Knoten.

e Kontrolle des Netzes durch Senden von Befehlen an DSN- und Sensor Knoten
unter Verwendung eines Remote Procedure Call Protokolls.

Ein zentraler DSN Server bildet die Schnittstelle zum DSN iiber Ethernet. Auf den
Server konnen Benutzer mit Client Tools zugreifen um beispielsweise die Knoten
mit neuer Software zu bestiicken. Die Arbeit bestand darin, eine Evaluierung von
moglichen Systemarchitekturen durchzufiihren und danach die gewéhlte Variante
umzusetzen inklusive Hard- und Software Entwicklung der DSN Knoten sowie
DSN spezifischer Software Implementation fiir einen bestehenden Ethernet zu
USB Gateway. Abschliessende Tests mit acht DSN- bzw. Sensor Knoten haben
gezeigt, dass die DSN Knoten eine hohe Performance aufweisen und zuverléassig
funktionieren.

Preface

With the present master thesis I finish my graduate study at the Department of
Information Technology and Electrical Engineering (D-ITET) at the Swiss Federal
Institute of Technology (ETH) in Zurich. First, I would like to thank to Prof. Dr.
Lothar Thiele and Dr. Jan Beutel from the Computer Engineering and Networks
Laboratory (TIK) for supporting and attending my work. I would like to thank to
Siemens Building Technologies (SBT) to make it possible to do my thesis in the
interesting field of fire detection systems in the Communication & Wireless Group
(CWL Group) as part of R&D department in Zug.

[would like to thank to my advisor Dr. Simon Kiinzli, Senior Engineer at SBT, for
his guidance and helpful feedback during the project. Furthermore, I would like to
address my sincere thanks to my co-advisor Kevin Martin and Severin Hafner, both
R&D Engineers at SBT, who helped me especially with the DSN tools. Thanks
also to Manuel Lussi, Apprentice Electronics at SBT, who supported the soldering
of the DSN adapterboard prototypes. My gratitudes also go to the CWL Group,
namely Alex, Erich, Urs, Pascal, Christian, Matthias B., Philipp and Matthias N.
for their helpfulness and the kindly atmosphere during the work.

In addition, special thanks to Chris Liechti, Software Developer at SBT, for the
inspiring discussions related to my work or technical stuff in general.

Many thanks and love to Carola who attended me on my way the last four and
half a year during my academic education.

Zug, March 2008

Florian Betschart

Contents

Abstract
Zusammenfassung
Preface

1 Introduction

1.1 Wireless Sensor Networks
1.2 WSN observability limitions
1.3 Deployment of WSNs oL
1.3.1 Debug code running on target nodes
1.3.2 Bluetooth-based Deployment Support Network
1.3.2.1 DSN Server

1.322 GUlnode

1.3.2.3 DSNAnalyzer as client

1.33 WSNSpy

1.4 Problem statement and scope of thesis
1.5 Chapter overview

2 Related work

2.1 TWIST . ..o
2.2 Motelab
2.3 Tutormeto
2.4 sMote
2.5 SUMMATY . . o v v v e e e e e e
3 Conceptual Design
3.1 Requirements and guidelines
3.2 Projects motivation - or why not to buy it?
3.3 Proposal from SBT

3.4 Fundamental DSN architecture options

iii

viii Contents

3.5 Comparison and design decision 17
3.5.1 NSLU2device e 19

3.6 USB adapterboard hardware 19
3.6.1 Keyfeatures. oo 20
3.6.2 EEPROM 21
3.6.3 Power concept 21
3.64 Housing 21

3.7 USB adapterboard firmware 21
3.7.1 JSON-RPC command transfer 22
3.7.2 Command forwarding to target node 23
3.7.3 Log message capturing and display 24
3.7.4 EEPROM access for programming 24
3.7.5 I?C master and slave mode operation 24
3.7.6 Battery measuremento 25
3.7.7 Watch Dog timer oL 25
3.7.8 Hardware utilisation and settings 25
3.79 Idlemode 25
3.7.10 Operating System, 25

3.8 NSLU2software 26
4 Hardware development 29
4.1 Tools e 29
4.2 Hardware overview 29
4.3 Hardware architecture and system components 30
4.3.1 Microcontroller Lo 30

4.3.2 USBinterface Lo oL 30
4.3.3 Powermodule o 31
4.3.4 Battery measurement circuit L. 32
435 T2C'bus 33
4.3.6 Bootstrap Loader circuit 33
4.3.7 JTAG . . . o e 34
4.3.8 EEPROM 34
4.3.9 Peripheral connectors 35

4.4 Layout considerations Lo Lo 35
4.4.1 Mechanical design constraints 35

4.5 Prototype assembly and commissioning 36
5 Firmware implementation 39
5.1 Programming language and environment 39

5.2 Firmware architecture 39

Contents ix
5.2.1 Program flow 40
5.2.2 Settings 41
5.2.3 JSON-RPC processing 42
5.24 Log message output 42
5.2.5 I?°C and EEPROM accesso oo 43
5.2.6 Lowpower mode 43
5.2.7 Target node programming 43
6 NSLU2 software 47
6.1 Programming languageo 47
6.2 Software implementation 48
6.2.1 Overview and software settings 48
6.2.2 Software flow chart 48
6.2.3 Web applications 50
6.2.4 Logmessage format 50
6.2.5 XML-RPC format 50
6.2.6 EEPROM programming with NSLU2 50

7 Evaluation 53

7.1 Overview and test cases 53
7.2 Adapterboard hardware 54
7.2.1 Measurement and test equipment 54
7.2.2 Test set-up and description 54
723 Testresults 54
7.2.3.1 Power measurements 54

7.2.3.2 Relevant signals 56

7.2.3.3 Overall look and functionality o7

7.2.4 Conclusions o 59

7.3 Adapterboard firmware with plugged A8O 59
7.3.1 Measurement and test equipment 59
7.3.2 Test set-up and description 60
733 Testresults oo 60
7.3.3.1 Log message transfer 60

7.3.3.2 JSON-RPC command transfer. 62

7.3.3.3 Communication to EEPROM 63

7334 A80flashing. 65

7.3.4 Conclusions e 65

7.4 NSLU2 software and Ethernet-based test DSN 66
7.4.1 Measurement and test equipment 66
7.4.2 Test set-up and description 66

Contents

X
743 Testresults 68
7.4.3.1 Functional evaluation 68
7.4.3.2 Performance evaluation 68
7.4.3.3 Target command RTT computation. 71
7.4.3.4 Results of software performance investigation 71
7.4.4 Conclusions and improvements 73
7.5 Backwards compatibility to BTnode-based DSN 73
7.5.1 Measurement and test equipment 73
7.5.2 Test set-up and description 74
753 Testresults 74
7.5.4 Conclusions e 75
8 Conclusions and future work 79
8.1 Summary e 79
8.2 Conclusions 80
8.3 Design approach review 80
8.4 Outlook e 81
A Schematics and Footprints 87
B Adapterboard components list 99
C Test DSN components list 103
D Work schedule 105
E CD contents 107

List of Figures

1.1

2.1

3.1

3.2

3.3
3.4

3.5

The target nodes use radio communication to build a wireless net-
work monitoring the environment. Over an adapterboard, they trans-
fer log messages to and receive commands from the DSN nodes, here
BTnodes. The BTnodes communicate with Bluetooth over the GUI
node to the DSN Server. The DSN is a sublayered wireless network.
The DSNAnalyzer is a client GUI-tool to reconstruct the WSN and
configure the target nodes. L.

The TWIST architecture bases on standardised hardware. The WSN
nodes (Telos motes) [11] are attached over USB cables and hubs to
NSLU2 devices (Network Storage Link for USB 2.0 by Linksys) [18]
acting as so called Supernodes. Running a modified Linux OS ver-
sion, they use TCP/IP for communication to a server. The Supern-
odes are responsible for WSN node administration, status message
capturing and code distribution. In the backbone, a web-based con-

trol station is the interface between user and testbed. Figure taken
from [10].

Block diagram of the proposed adapterboard as DSN node with a
Siemens A80 radio module connected.
The conceptual design of the Ethernet-based DSN. The black frame
defines the components to develop or to add within the work de-
scribed in this thesis. o0 o oL
Picture of the Linksys Network Storage Link for USB 2.0 (NSLU2).
Block diagram of the adapterboard with microcontroller, target
node interface, BTnode connector, extension connector and stereo
jack. On the board, peripherals are connected over an I2C bus. . . .
Schematic overview of the adapterboard software. Basically, the
software has to handle JSON-RPC commands, program the EEP-
ROM with a code image and display log messages from the target
node over USB.

20

xii

List of Figures

3.6

4.1

4.2

4.3

4.4

5.1

5.2

2.3

5.4

6.1
6.2
6.3

7.1

7.2

The NSLU2 software runs with a Debian Linux OS. The software
provides an USB to Ethernet gateway, processes commands to the
DSN nodes and forwards log messages to a network client such as

the DSN Server. 28
Power module of adapterboard with battery connector X2, switch
and voltage regulator on the right. 32
The Bootstrap Loader circuit disables UDTR# when USB is not
plugged. 33
The new USB-adapterboard in a Blue Box. A Siemens A80 and a
BTnode are plugged. L. 36
Overview of soldered components of adapterboard. 37

Program flow of the adapterboard firmware. After a start-up se-
quence, the firmware switches between various eventhandlers to al-
low quasi-parallel execution of JSON-RPC commands and log mes-
sage capturing. 44
A JSON-RPC command includes three parameters. Method is the
string containing the name of the method in the global table to
invoke, params is an array of arguments to pass to the method if
required and the id. The id is necessary to match the JSON-RPC
response later with the corresponding request. 45
If the JSON-RPC command is sent to the adapterboard to forward
a command to the target node, the adapterboard fills a buffer and
sets a pointer to a second buffer. The target polls at I2C' bus address
20 and reads the first buffer. When a second command should be
transferred, the command is written to the second buffer. Next, the

target reads the second buffer and soon. 45
EEPROM page write execution when the adapterboards controller

isthe bus master. 45
Flow chart of the execution of the NSLU2 software. 49
Data format of the log message sent to the PC. 50
Schematic description of the EEPROM programming procedure

started from PC. o 51

Test arrangement for the functional and performance tests of the
adapterboard. 55
The picture on the left shows the voltage Vg, filtered with C11 and
the one on the right illustrates the ripple of the microcontroller’s
source voltage V... 56

List of Figures

xiii

7.3

7.4

7.5

7.6
7.7

7.8

7.9

7.10

7.11

Picture (a) shows the ACLK (below) and the MCLK. Both have a
frequency of 4 MHz. The picture on the right is the SMCLK running

at 12.9 kHz that wakes up the Watch Dog periodically.

The picture shows the signals on the I?°C bus when the A80 is
transferring a log message, above the SDA and below the SCL.
The bus frequency is 100 kHz and the period therefore 10 pus. The
communication works properly. A start condition is fulfilled when a
high to low transition on the SDA line when SCL is high occurs. A
low to high transition of the SDA signal indicates a stop condition
when SCL is high. Data on SDA is stable while SCL is low. For a

complete protocol specification, see [17].

This signal composition of Reset and TCK from the NAND Chip
U6 invokes the Bootstrap Loader (BSL) of the MSP430 to upload
new code to the controller over the UART interface as described
in [24]. The BSL program execution starts when the TCK input of
the controller has received a minimum of two negative transitions
and is low when Reset rises from low to high level, 3 V here. This

works well on the adapterboard.

Schematic of the test set-up for the firmware evaluation.

Example of the log messages produced by the dummy logger. Here,
the A80 received a log interval of 16.7 ms which obviously results

in an event handler stuck on the A80.

The terminal output on the PC from several JSON-RPC requests
is shown. The client sends the command over the adapterboard to
trigger the A80 to change the communication channel to 55, which
is equal to 869.3875 MHz and was defined as a system parameter

inthe DSN.

Tested functions write_byte, read_byte, read_at and write_page of
the adapterboard firmware. The data transmission works properly
in both directions. Under a) the start-up sequence of the adapter-
board is shown, b) proves the correct writing and reading of several
bytes whereas c) verifies the proper page write. The last paragraph

d) shows a typical log output after an A80 reset.

Build-up of the 8-node DSN test system. The eight adapterboards
with an A80 plugged are connected over USB hubs to a NSLU2 as

Ethernet gateway. The client PC interacts with the DSN.
A complete 8-node test DSN built within this work.

xiv

List of Figures

7.12

7.13

7.14

7.15

An extract of the web page ../DSN/logs from the Firefox web
browser. It displays the 1000 latest log messages sent out from the
A80 nodes. Under a) one can see the URL and b) shows the format

with IP address, port name, time stamp and processed message. . .

The picture shows /DSN/list that informs the user about the DSN
configuration. The first time an A80 sends a log message, this page
is updated with the new serial port name and the corresponding

A80 module ID.

Typical output on the NSLU2 console. The A80 runs the dummy
logger software that waits for the start command after start-up.
Then the new image is uploaded to the NSLU2 over the web browser

and the user starts the programming procedure.
Test set-up of the backwards compatibility test.

7

78

List of Tables

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2

7.1
7.2
7.3

7.4
7.5

7.6

7.7

Overview of the JSON-RPC commands the adapterboard supports.

Overview of the functions to call using the XML-RPC protocol on
the NSLU2.o

Usage of the DIL switch pins.
Overview of the different wire-widths
Assembly plan of the adapterboard hardware step by step (without

automatic power switch circuitry).o

Source code organisation of the adapterboard firmware.
Overview of the implemented eventhandlers and priorities.
Adapterboard firmware settings. L.

Settings in the NSLU2 software.
List of the supported web pages from the NSLU2 software.

Source voltage measurements of the adapterboard.
Power consumption of the adapterboard with A80 and BTnode
plugged.
Clock measurements of the adapterboard. The drift of the SMCLK
is ok, since this clock is easily controllable by the firmware and the
WDT timer does not need high accuracy.
Overview of the adapterboard functionality test results.
Correctly received log messages from the A80 over the adapter-
boards USB interface. The messages carry about 80 bytes payload.
Logs means here log messages.
Results of sending JSON-RPC requests to the adapterboard, that
always replied correctly and executed the corresponding method
with no failure. L
Results of sending JSON-RPC requests to the A80 over the adapter-
board. The A80 replied mostly formal correctly.

23

35

xvi List of Tables

7.8 Overview of the results from the functional test of the NSLU2 Soft-
ware. For a detailed desription of the command formats see the

Readme in the Appendix. 69
7.9 Results of the first Ethernet-based DSN log message transfer per-
formance test. 70

7.10 Overview of command transmission performance tests and the RTTs.
The JSON-RPC requests are packed in the XML-RPC request
"send_rpc_cmd(args)” that is sent to the NSLU2 and then forwarded
tothe DSN nodes. 70
7.11 Test results when the adapterboard transmits log messages. 74

Chapter 1

Introduction

1.1 Wireless Sensor Networks

This thesis is embedded in the area of Wireless Sensor Networks (WSNs). A WSN
consists of distributed sensor nodes that run autonomously. Such devices normally
are equipped with a microprocessor, a power module, a radio chip and antenna
for communication. This system’s objective is to monitor the environment and
gather information in various application areas such as sports, human health care,
building technologies or vehicle systems. Optical, thermal, acoustic, or acceler-
ation sensor units are therefore integrated. WSNs can for example be installed
as alarm transmitter in fire detection systems or earthquake warning systems as
described in [1]. There are often different types of WSN nodes in a system. One
type records data periodically like air temperature for example. Another one acts
as data storage unit or as data gateway to a wired backbone network. With wire-
less communication, sensor nodes can be placed and deliver data from impassable
areas, which is a big advantage compared to wired systems. Also radio reprogram-
ming is possible without touching the system at all.

1.2 'WSN observability limitions

Devices in a WSN are highly energy- and resource-constrained due to the dis-
tributed nature, which makes the design and implementation a rather difficult
task. The development requires a detailed adaptation of the devices to the opera-
tion environment. The nodes are built for a special purpose and the required hard-
and software is therefore highly optimised because of limited processor memory,
speed and energy. A network observing glacier movement is typically different
from one used to monitor human health state as described in [3] for example. The
architecture named CodeBlue provides wireless monitoring of patients and alert-
ing first responders. Those devices have to allocate more computing power and

2 1 Introduction

should be small, light and unobtrusive to wear, whereas the first example with the
glacier monitoring would probably care less about equipment size or velocity of
data transmission. On the other hand, this type is optimised to resist the harsh
environmental conditions.

How and where to proceed captured data? Should the device send the data to
a gateway, which needs a lot of battery power, or do some first analysis itself?
What kind of media acces control protocol shall be taken? Does the device need
any ciphering for data communication and how to realise it with low computing
power? These are questions, WSN-Engineers have to deal with. Naturally, veri-
fication during development, testing, commissioning and maintenance of a WSN
described are fundamental tasks. Due to above described boundaries, observabil-
ity is very limited but highly needed in WSNs. Therefore, a system to monitor a
WSN has to take care on these limitations.

1.3 Deployment of WSNs

1.3.1 Debug code running on target nodes

There are several ways to observe a WSN’s behaviour. Blinking LEDs' or message
outputs to indicate the device state lead to a solution with additional hardware
or debug-software. Since all this more or less influences the system actions by
instrumenting the devices memory and wasting energy, this is not satisfying.

1.3.2 Bluetooth-based Deployment Support Network

To overcome the problem described above, the Swiss Federal Institute of Technol-
ogy Zurich (ETH Zurich) has developed a so called Deployment Support Network
(DSN) [1]. This second autonomous multi-hop network is sublayered to the WSN
using Bluetooth Nodes (BTnodes) for communication and gathering data from
the WSN nodes. More information about Bluetooth can be found in [5] and the
datasheet of the BTnodes is available from [(]. The basic idea is to monitor the
WSN without using the same radio frequency range. No interfering would ever
disturb the WSN nodes message traffic. Each node of the WSN therefore is con-
nected physically with a DSN device. Power for the DSN nodes is usually provided
over cables or from batteries alternatively. Programming of the WSN nodes over
the DSN is possible.

ILight Emitting Diodes

1.3 Deployment of WSNs 3

DSNAnalyzer

GUI AT || GUI
GUIs & Analysis Tools

Y DSN Layer
w1 %

DSN Server

GUI Node

DSN Node

Target
Node

\

WSN Layer

Figure 1.1: The target nodes use radio communication to build a wireless network monitoring
the environment. Over an adapterboard, they transfer log messages to and receive commands
from the DSN nodes, here BTnodes. The BTnodes communicate with Bluetooth over the GUI
node to the DSN Server. The DSN is a sublayered wireless network. The DSNAnalyzer is a client
GUI-tool to reconstruct the WSN and configure the target nodes.

1.3.2.1 DSN Server

The central element of the DSN is the DSN Server described in [7]. It runs on a
public host and gives a client the possibility to interact with the DSN. In detail, it
provides to control the DSN and the WSN attached by sending out commands to
the BTnodes and target nodes. In addition, it allows to get log messages from the
target nodes, as mentioned above. All messages from the target nodes are stored
in a SQL-database. This database can then be read by different tools like e.g. the
DSNAnalyzer developed in a master thesis [8]. The DSN Server provides remote
programming of the target nodes over the BTnode-based DSN.

4 1 Introduction

1.3.2.2 GUI node

The so called GUI node is also a BTnode device and builds the connection between
DSN Server and DSN. The GUI node communicates with the DSN nodes over
Bluetooth and is on the other side plugged over a serial connection to the host
where the DSN Server runs. All log messages and command traffic as handled over
the GUI node.

1.3.2.3 DSNAnalyzer as client

The DSNAnalyzer is a backend software tool that relies on the DSN Server. It has
a graphical user interface and can be used to monitor the target node network,
to send commands to it and to create statistics by analysing log message data.
The WSN network can be stimulated and the target network can be reprogrammed
over the DSN Server. Tests and measurements like range of DSN nodes and RSSI*-
values of the nodes can be set up. An overview of the existing system used at SBT
consisting of target node network, DSN, DSN Server and DSNAnalyzer can be
seen in Figure 1.1.

1.3.3 WSNSpy

Another approach to observe a WSN is the WSNSpy developed by Hafner in [9].
In this project, a client tool was developed to passively overhear sensor network
traffic by setting up a distributed spy network. Nodes of the same hardware as
the target nodes run a spy application programmed in [9] to simulate the sensor
network from the gathered message transmissions of the target nodes. The work
consists of the spy network and a client tool for user interface. The client tool
provides a GUI in order to show graphically the state of the target network and
to do some analysis.

The system does neither make use of the sensor nodes themselves nor generates
further network traffic in the frequency band of the target nodes. The WSNSpy
only captures low-level information from the overheard messages. Test results de-
scribed in [9] show, that the WSNSpy is able to overhear almost 100 % of the
WSN network traffic. As a drawback compared to the DSN, it does neither sup-
port sending commands to the target nodes nor reprogramming.

2Received Signal Strength Indication (RSSI) is a measurement of the power that a received radio signal
contains.

1.4 Problem statement and scope of thesis 5

1.4 Problem statement and scope of thesis

Despite the users are very familiar with the BTnode-based DSN and its easy use,
performance and reliability problems have occured with an increasing number of
nodes using Bluetooth as communication technology and a single serial channel
from the GUI node to the backend server. In addition, Bluetooth connections seem
not to be stable over a long time. This is a real bottleneck, since all DSN data
traffic is passing there. In parallel to the WSNspy, which is currently in use, a new
system was desired to monitor at least 64 nodes. This master thesis scope was to
design a new Deployment Support Network based on a wired concept in order to
get rid of the limitations described above. It should be possible to send network-
specific commands to the target and the DSN nodes, to upload new software to
the target nodes, and to observe the target network by forwarding log messages
from the target nodes to the DSN Server. Inferfaces to the work described here
are the target nodes on the one side and the DSN Server on the other.
Therefore, a new adapterboard to connect the target node to some wired network
was to develop. A design decision had to be taken which technology, either Ether-
net or USB or both to use to transport data from the adapterboards to the DSN
Server. We also addressed design details such as the boards power supply or the
partitioning of software to several processors of the DSN devices. To still work
with the DSN Server later on, we had to define an interface to our wired DSN.
Except the "hard work”, this master thesis basic outline also included the study
and analysis of related work in this field and an in-deep evaluation at the end.

1.5 Chapter overview

The thesis is structured as follows: Chapter 2 describes related work. The actual
most important WSN testbeds from the candidates point of view are discussed.
The third chapter shows and explains the conceptual design of the different system
components. In addition, design alternatives are put in relation to the chosen
approach. A detailed documentation of the Hardware development as well as the
software implementation is given in Chapter 4, 5 and 6 respectively. In Chapter
7 the evaluation and testing of an 8-node system is presented whereas Chapter 8
summarises and concludes the thesis and gives an outlook to further work.

1 Introduction

Chapter 2

Related work

In this chapter, we give an overview of various services and testbeds for the de-
velopment, debugging and monitoring of WSNs. The presented systems have a
similar scope, but are not related to work performed at ETH or Siemens. We
describe shortly each testbed’s basic features and focus subsequently on the simi-
larities, but also underline the differences to the DSN developed within this thesis.

2.1 TWIST

One of the latest presented testbed architectures for the observation and control of
a WSN is TWIST developed by Wolisz et al. [10]. TWIST is a scalable and hierar-
chical testbed architecture for the deployment of WSNs, see Figure 2.1. It allows
the user to configure the sensor nodes, provides network-wide (re)programming
and supports several sensor node platforms. From the infrastructure’s point of
view, it is similar to our Ethernet-based DSN because it also bases both on Ether-
net and USB communication and makes use of standardised hardware like hubs as
well as open-source software. A nice feature of TWIST is the capability to control
the power of the sensor nodes remotely. In the backbone a server is running to
store received debug data or sensor measurement results. Several users can access
the server for data exchange over the web. Network topologies are dynamically
selectable and some testbed nodes can even be integrated as part of the sensor
network application. In default configuration, TWIST is mainly for observation
of sensor nets in indoor environments. Experiments show, that over one hundred
sensor nodes can be serviced with TWIST. Despite the similarities, it differs from
our approach:

e Our DSN has to provide a hardware interface to the already existing target
nodes (Siemens A80) which actually neither have an USB or Ethernet con-
nector nor the corresponding software stack. So an adapterboard is needed

2 Related work

Passive
USB
Cable USB2.0
HUB
I T T] [[[T
Passivei ! ! !
USB | Active
Cable | UsSB
‘ Cable

Socket
]

WSN
Node

Control
Station

Ethernet
Backbone

@) {0

Bu b4 b

Passive
USB
Cable

e 8 8 8

WSN
Node

Figure 2.1: The TWIST architecture bases on standardised hardware. The WSN nodes (Telos
motes) [11] are attached over USB cables and hubs to NSLU2 devices (Network Storage Link for

USB 2.0 by Linksys) |

] acting as so called Supernodes. Running a modified Linux OS version,

they use TCP/IP for communication to a server. The Supernodes are responsible for WSN node
administration, status message capturing and code distribution. In the backbone, a web-based
control station is the interface between user and testbed. Figure taken from [10)].

to interface the A&O0.

e As the A80 does not support direct programming, we use an EEPROM on
the adapterboard to store the application code image for the A80.

e The A80 uses the I2C' protocol to communicate to the DSN node, so an extra
software had to be implemented to convert I2C' to USB.

e We support up to eight DSN and target nodes per one NSLU2 whereas
TWIST supports two.

e Our adapterboard supports to plug an additional sensor device like the BTn-
ode also for environment monitoring if desired.

2.2 Motelab 9

e We provide a extension connector on our adapterboard for debugging reasons
and I?C communication bus access over a stereo jack.

2.2 Motelab

Motelab presented by Werner-Allen et al. in [13] provides a public permanent in-
stalled testbed for development and testing of wireless sensor network applications
over a web interface. It is mainly a composition of software tools for controlling
Ethernet-connected sensor network nodes and provides an easy access for debug-
ging and collecting data. Tmote Sky devices [12] are used as target nodes. Several
users may login over the Internet to a central server to download sensor data or
upload executables for the testbed. The server handles the data logging, scheduling
and reprogamming of the sensor nodes. Concerning the hardware, it is important
to highlight that each sensor node is connected to Ethernet. Similar to our DSN,
a piece of adapter hardware is integrated in between. A second cable is used for
mains power supply. Both Motelab and our DSN use Ethernet and a web-based
infrastructure in the backbone. An infrastructural disadvantage of Motelab is that
each node makes use of two wired connections, one for Ethernet and one for power.

2.3 Tutornet

A tiered sensor network testbed represents Tutornet [I14] currently running in
Ronald Tutor Hall at University of Southern California, USA. The whole network
consists of several clusters and allows testbed programming as well as collecting
data from the sensor nodes. A cluster consists of a stargate and attached sensor
nodes via USB. A stargate is a composition of a wireless network adapter connected
to a USB hub. The stargates communicate via WLAN to a central testbed server
that acts as top tier. Multi-hop routing between the central PC and stargate or
among stargates is possible. As in Motelab, different users can access the testbed
server over the Internet.

2.4 sMote

At UC Berkley, USA, various wireless network testbeds are in use at the moment
such as Smote, Omega or Trio [15]. The latest is an outdoor testbed whereas the
others are deployed within buildings. These nets are installed for development and
test of WSN applications. It facilitates research on e.g. routing protocols or system
architecture experiments.

We focus here on sMote, because it has an interesting feature related to this

10 2 Related work

work. The nodes are supplied from Power Over Ethernet (PoFE) [21] and not from
batteries or mains power. The testbed also supports data capturing, debugging
and reprogramming over a web interface. sMote consisted (it was replaced later
by Motescope [15]) of 78 Mica2Dot wireless microsensor motes [16]. This example
shows, that PoE is employed in scientific environments and would have been a
feasible alternative for our DSN adapterboard’s powering concept.

2.5 Summary

The presented examples are similar to our approach concerning the network ar-
chitecture. They all make use of wired technology as either Ethernet, USB or
both to connect the target nodes. Often the target nodes themselves have a USB
interface so that they can be plugged directly to a network. However, the most
important difference of all of them to our DSN is the sublayerd wired network with
the adapterboards we use. Despite for example Motelab also uses something like
an adapterboard to connect to Ethernet, no message administration or processing
is done on that platform in contrast to our adapterboard software. We therefore
need less communication software overhead in the target node application itself,
as for example a TCP/IP stack.

Our architecture supports the use of both BTnode-based DSN and the developed
Ethernet-based DSN. Observing and controlling the WSN using two independent
technologies (wired communication and Bluetooth) could even improve the over-
all performance and reliability. For example to use the BTnodes where a wired
connection is hardly possible to deploy would be a good alternative.

Chapter 3

Conceptual Design

In this chapter we document the conceptual design of the Ethernet-based DSN. We
list the requirements and guidelines by SBT and clarify the interfaces to existing
work. Next, we present possible alternatives to the proposed approach that we
discussed at the beginning of the design phase. Afterwards, we describe the design
of each system component that was developed within this work.

3.1 Requirements and guidelines

We already introduced the scope of the thesis in Chapter 1. Here we go into more
details. Considering the thesis’ proposal by SBT, this project’s main focus was
to design and to develop a new DSN based on Ethernet technology in order to
deal with the reliability and throughput limitations of the BTnode-based DSN
for increased network size issues. SBT wants to use a wired network to monitor
a network of at least 64 sensor nodes. At the moment, the sensor node type is
a Siemens AS80, as already mentioned. Later on, a new radio module should be
supported. The Ethernet-based DSN should guarantee the reuse of the software
infrastructure for analysis of captured data, namely DSN Server and DSN Analyzer
respectively. Basically, the new system has to provide the following functionalities:

e Data and event message logging
The core service of the DSN is the data and event message logging that allows
the user to supervise the state of the target nodes e.g. if a connection to a
WSN gateway was found. So far, the target nodes send out log messages to
a BTnode connected over an I2C bus [17]. The new system has to provide
a possibility to capture these messages, too, but to transfer them over the
Ethernet to the DSN Server.

e Command service
The Ethernet-based DSN has to support the same functionality as the BTnode-

12 3 Conceptual Design

based to send such Remote Procedure Calls (RPCs) to configure the DSN or
to request status information from the target node e.g. stored code version
number and type, WSN connectivity information or a list of reachable nodes.

e Remote programming of target
The BTnode-based DSN provides a remote programming service that allows
to send a code image to the DSN node and storing it in a special memory.
Our system needs to distribute the code over the network to the nodes.

e Powering of both DSN node and target node
The A80 radio module has to be supplied from the DSN node. We desire
just to use one cable for both power and communication to the DSN node, if
possible.

e 64-node test system
Whatever the architecture looks like, the Ethernet-based DSN should allow
its use with at least 64 distributed nodes.

e Employment of BTnodes
Not strongly required but nice to have is the possibility to reuse the BTnode-
based DSN with the new hardware. We will use this feature for our bench-

marking of log message loss versus the wired system.

To sum up, the Ethernet-based DSN has to provide features similar
to the BTnode-based DSN, but using wired technology. From this point
of view it is pretty clear that we lack of proper adapterboards as DSN
nodes to build a network to interface the DSN Server over Ethernet
on the one side and the target nodes over an onboard I°C bus on the
other.

3.2 Projects motivation - or why not to buy it?

In this section we present the reasons that motivate this work and why we can
not buy such an Ethernet-based DSN that fits our application:

1. If we consider the related work presented in chapter 2 we have to admit
that no testbed for WSNs exists that could directly interface our application
specific target nodes (A80), neither from the hardware’s nor the software’s
point of view.

2. With the BTnode-based DSN, we used two devices to build one DSN node,
namely adapterboard and BTnode. Now we only need one adapterboard.

3. The system should have a reasonable price especially for a 64-node network.

3.3 Proposal from SBT 13

4. Already existing know-how and infrastructure is strongly recommended to
be reused with the new system. For example the BTnode equipment has to
be compatible with the new adapterboards and we want to employ the DSN
Server and DSNAnalyzer.

To conclude the requirements section we can state that the existing BTnode-
based DSN is not able to monitor and control the WSN in a convenient manner
when the network size is increased up to about 64 nodes and no suitable testbed
exists that can do it for us so far.

3.3 Proposal from SBT

As a first suggestion to build a wired DSN, SBT proposed to develop a proper
Ethernet-adapterboard as DSN node to connect the target node directly to the
network. From the hardware side, this adapterboard would basically consist of
a microcontroller, an EEPROM to store target node software code, an Ethernet
controller and connector, I?C bus [17] and BTnode connector. In order to fulfill
the basic requirements described above, the software had to include a TCP/IP
stack to allow Ethernet communication, a webserver application and EEPROM
programming procedures as well as an /?C-communication stack. Figure 3.1 shows
a block diagram. All together, those adapterboards would build the DSN inter-
facing both the target nodes and the DSN server over Ethernet switches in the
backbone. The DSN node is supplied from Power over Ethernet PoF so that just
one cable has to be plugged.

Adaptor Board
2
< ! 1
BTNode e
connector TCP/TP Webserver
stack Application
Status [®
Indicators |le——» Power Measurement
Application
Ethernet Ethernet Target Control
o Application |

connector [*] Controller T

Figure 3.1: Block diagram of the proposed adapterboard as DSN node with a Siemens A80 radio
module connected.

14 3 Conceptual Design

3.4 Fundamental DSN architecture options

As a starting point for the conceptual design, we took the proposal from SBT
summarised aboved and added in the Appendix. We analysed PoE devices and
concepts, availability and prices, the use of different microcontroller types and
the existing know-how. Discussions with engineers from the Wireless and Com-
munication Group of SBT yielded to seven architectural design options for our
Ethernet-based DSN. The outcome is presented as follows:

e A: Proposed approach and buying PoE switches
This solution fits the proposal and makes use of commercial so called Pok
injectors at the network’s root side and splitters close to the adapterboards.
Two separate lines connect the DSN node to the splitter, one for data and
one for power. On the adapterboard, a Texas Instruments 77 MSP430 mi-
crocontroller is employed, see Chapter 4 for device information.

e B: Proposed approach and buying PoE PCB module
Similar to the approach before, here we would buy a PoE Printed Circuit
Board PCB module from TI and integrate it to the adapterboards PCB
design. One Ethernet cable is needed for both power and data. A PoE injector
is necessary at the network’s root side. As before, we would solder a TI
MSP430 controller on the adapterboard.

e C: Proposed approach with a self-designed PoE circuit
Here, we would completely develop the PoE electric circuit on the adapter-
board by our own. Nevertheless, we had to buy PoE injectors. Here as well,
we would employ a TT MSP430 microcontroller.

e D: Proposed approach with USB power
We would build the adapterboard with Ethernet connection but employ a
separate USB cable just to power the device, not for communication. A CPU
with more memory and processor speed is a further option.

¢ E: Buying Ethernet gateway and developing adapterboard
There are commercial Ethernet to serial gateways with PoE available. We
would therefore develop an piece of hardware to connect the target node with
such a gateway. Only one cable is needed to the DSN node. The adapterboard
software would not need a TCP/IP stack, since this is integrated in the
gateway application.

e F: Proposed approach with ”high performance” CPU
This system requires to develop an adapterboard as described in the proposal.
But since we do not rely on battery power here, we could even use a bigger

3.4 Fundamental DSN architecture options 15

CPU as for example an ARM7 [22] processor to increase the computing power
on the DSN node'. Every of the three PoE concepts is an option here.

¢ G: Buying gateway and developing USB-adapterboard
We would buy a commercial platform, namely a Linksys (NSLU2) device
[18], to work as Ethernet gateway using a TCP/IP Stack of an open source
Operating System OS. Such a NSLU2 is used e.g. with TWIST described in
chapter 2 as well. As DSN nodes, we would develop USB-adapterboards to
connect the target nodes to the NSLU2. We had to implement software both
for the adapterboard and the NSLU2. The NSLU2 is self-powered and the
adapterboards are supplied from USB (over self-powered hubs).

Mn fact, we doubt the proper functionality of the TCP/IP communication stack functionality with 2 KB RAM
in the TT MSP430F169, despite several F169-platforms use this stack to run a webserver.

S 8 ! 4 € 9 (4 L HYSPM BLIRID)
707 L TN TISN O () 1omod (©) | (1) (Auew moy ‘papasu sz TSN () preoq (S) 21qe[reAe xnuij uelqep ()| (1) moy-mou| xnury pappaquug €S 19A0 A[npow oIper
UoI0AUU0d S Sunndwoo ysy JO 0] © ‘}ou-0pou-y,9 € 10j - -1ydepe + paeoqieidepe Jo MS plo ITHD 861| Mod ; uonejuowordwr J/dD1 ou 100UU09 0) preoqradepe
preoqiaidepe uuojerd oy eyep/ 1omod oyeredoas d[qesnal 194 A\S UO1O2UUOD OU D ‘MS wioprerd 0y gsn uSisop 29 ‘xnui| ‘Kemojes
Aq payury ‘(joey 1dooxo) ojqissod gog ou - uuojrerd uuojrerd uo [[e ‘poppau pajeudisop gs 1oao0 Ajddns 1wyl Se (ZNISN)
jsnf Ajrenjoe d[npour OIpeI Mau 0} xnui| uonjeuowadur ‘dojorap 03 gog ou urioperd Ang o
pIreoqioydepe mou ‘wojerd jo UMOUY-[[oM + Yors dI/dDL ou
uopsodwod S1q 9AnE[I
911 (S) ymoad o -/ (5) 10mod ©) () orqemod (1) moy (1) preoqiordepe Jo MS PO () (1) LNV uo dIn jo q0d ‘(LINYIV
uonesLeIIwey Sunndwoo ysry (¢sepourg) 1omod moj ou -MOU| Ou 19][01U0D LIHD 6€1 10d / uoneyuowdrdwr J1/ddDL '3°9) DN 19831q Yyum
‘MOY-MOuY S ‘(wey g3 91 921040 uonnjos goJ uo on - JOUWIdYIH I0J SOIBWAYDS annboe 01 Hn jo preoqiddepe-jouroyg
Alquiosse \H ‘yseld €3 957) Surpuadop ‘yoyms woxy (Coers dI/dDL) +2120dT MS/MH MOY-Mouy JO10[& Jo yuowdopAdpyPas 14
Kzowouw o1ow NS 01 9]qeo T Isnf JALV Joj a[qeiod gn parexSour st god
SLI (L) preoqiaydepe (L) 1090301d n (9) s201A2p [RUOHIPPE OU (D MS (7) preoqiaydepe (1)| (9) preoqioydepe 10J SIOALIP)LIM 704 ‘@[npour orpex
JoMS JdOHA/dI/dDL Y ¢BurSesoed ‘pud oy ur s, g0d € ‘Kemores JO MH/MS PIO "IIHD 00S| Hod/uonejuswardwt J1/d0 L Ou 01 300UU03 0} preoqIaidepe
Ajquiasse M H jouIRYIg woperd asodind (a1qeqreae) dojoaap 03 qod ou Jo juowdojonsp
JOUIDYIF UO ST ANpow o [exouas -J19s ‘Keamajes ddejIaul
pazinbal yoyms woiy ‘arqissod JouI g 1omod
NS 03 2[qeo | snf AsN-a1 + Sunndwoo Y3y Ang :q
6€1 () dSIN 1omod (€) ¢pudrxos uoneorjdde &) (7) sqny pue siaydepe jo sjo| (9) oyy1o0ds (€) pasnaraq pinodo) (S) MS preoquo 91qed gSn 1o Addns
Sunnduwos ZHN 1 @ MW ¢ (erep 10j | ‘1omod 10j) pieoq MS preogaydepe pjo jo ried TAHD ST1 noLIp 9q 03 A1 uIIXd (8192A0EPdSIN)
Alquiesse M\ H ‘31 amod mo Ppapaau apou -1091depe J[qe[IeAR ()068SD 19][0NU0D 110d “poels Sunsixo jo pleoqiadepe-jourayg
‘(wey g3 8 NSd yoed 03 S9[qed ¢ MOY-MOUY JOUIdYH I0J SOBWAYDS 1od/uoneyuawardw J1/dDL Jo JuowdofoAdp-j[es :d
“Useld g3 911) 0ErdSIN + (pers dI/doL) dojeaap 01 o ou
WIS o1 dAlE[al 0SFdSIN 10§ d]qenod d[n
801 (1) dSIN Jomod (1) ¢pudixa uoneordde ()] (£) s201A3p JeUONIPPE OU (€) oyroads (¥) preoqiardepe jo MS plo (03] () MS preoquo preogiaidepe ayy
Sunndwod ZHN 1 ® MW POPaSU YIJIMS TOI} pileoq JINOLIIIP INq ‘0LOSIN'T © UHm "IAHD601 q0d JO INOIABYSQ 1091100 U0 1NOIIo god
Surourgus ‘J1 1omod moj opou NS 01 9]qed | isnf -191depe H0d JO uSISop 90UIAJAI SI A1) uonerado Jo u3isop pue (0cFdSIN)
1IN2119 god a2dK1 0 dSIN 1598319 MOY-Mouy] J[qe[IeAR)068SD I9[[01U0d pasoidde ou “yoeys Junsixa jo preoqioydepe-jouroyyg
Ajquiasse H M U0AD ‘(wey g 8 0SPdSIN + JOUIAY} JOJ SONRUIOYDS yod/uoneyuowordw J1/dDL Jo JudmdoppAdp-Jpes D
“yseld g3 911) (Crows dI/dOL) Jopjos pue
Krowaur oI dANR[OI 0SPdSIA 10§ o[qeiod gn ugisop 0} JoJ [eUOnIppE
4! (@ (11 08) () (uorsuoixo uoneorjdde (03} () s99140p [EUONIPPE OU () oyooads (9) preoquadepe Jo MS plo (€) (€) MS preoquo €0d uo ajerdajur
Jmpowr ZHN 1 @ MW T DI Sursnoy e ur 9oeds 210w Spadu pieoq J[npour god “IJHD 981 JINOIJIP 2q 0} 0] S[npow Fod sudwnnsuy
qod 1o} 1omod mof PopadU YOIIMS WOIJ -19)depe 103 (S0am ¢) awn) AIdAI[Op A1ay11 110d “oeys Junsrxo sexd14Anq ‘(0€ydSIN)
soud Y3y adAy 0y dSIN 159831q apou NS 03 2[qeo | snf MOY-Mouy J[qe[reAr 0068SD 19[[01U0d Jo 10d; uoneyuawordw 41/dDL pleoqiadepe-jourayg
1omod M UoAd ‘(wey g3 § 0SPdSIN + JOUIDY) 10J SONLLIAYOS a[npow-g)d puodds e Jo JudwdoPAdp-JRs :g
Sunndwos ‘yseld g3 911) (e di/dD1L) i ojesout 03 3snf god
Ajquiasse H K1owour ANI| dATIR[I 0S¥dSIN 103 d1qeitod JIn
$S1 (€) dSIN 1omod (¥) (uoisuaixa uonesrdde ((4) (€) AemAue papasu yoyMms ejep (§) oyy1oads (L) pasna1aq ued S (2] (¥) M\S pIeOQUO qod 10j s1on1|ds
Sunndwoos ZHIN | @) nq ‘10399(ur o [euonippe pieoq preoqiaidepe pjo jo ued LIHD LY JINOLJIP 9q 03 A[Y1] pue s10300[u1 panqLISIp
Alquiesse m\H MW g DI Jomod mo| preoqiardepe 0y zonrjds woiy -191depe dqe[ieA. ()(68SD 19[[0NU0D 110d ‘uonerado pasodde ou 10 Tenuad Anq ‘(0EFdSIN)
odKy 0y dSIN 159551q S9[qEd 7 9pou A} 0} Ixou MOY-MOou| JOUIOY)H 10§ SONBWAYDS (d1n "8°9) yoeys Sunsxo preoqiaydepe-jouroyyg
LA UoAd “(wey g 8 0ErPdSIN + Opers di/doL) Jo yiod / voneyudwerdur J1/ddL 30 yuowdoPAdpyPRS 1V
‘yseld g3 911) apou NS 03 d[qe [isnf - 0£FdSIN 10§ d]qerod Jn ug1sop O opewW-J|os ou
K10 wow 9[N1| dANE[I
Supjuey sapmIIIp ddUBULIOLId] dLIoAey Aymiqertog pue Anpiqes NuUBUNUIBIA AS PuE \H Sunsixy apou NS 110339 350D uonnjos
pue sysny AN Jd js0) .

TELI0}1I0 UONBN[EA

:(L00T WZT 12q0100) 21qe], uoneneaq yoeoiddy ugrsoq

3.5 Comparison and design decision 17

3.5 Comparison and design decision

In order to determine which of the design alternatives we follow to build the new
DSN nodes, we defined criteria and gave them weights. Cost effort is the most
important one for us and has weight 7. The criteria are:

e cost effort with existing know-how

e estimated cost per DSN node (including injectors, splitters, hubs, PCB man-
ufacturing, components)

e already existing HW and SW e.g. TCP/IP stack for the TT MSP430
e maintenance of the system

e usability and portability

e the candidate’s favourite approach ("fun factor”)

e computing performance of the DSN node

e risks and difficulties

We compared each architecture variant from A to G by making an in-deep
study of advantages and drawbacks of each according the defined criteria above.
We gave points to the different design variants. The higher the number of points
for a criterion the better. The Design Approach Evaluation Table on the
previous page illustrates the results. We finally took our decision from the ranking
of the design variants and from three core questions:

1. Shall we use Power over Ethernet on the DSN node or not?

2. Shall we buy a standard computing platform (NSLU2) for Ethernet connec-
tivity and use USB to connect the adapterboard?

3. If we chose a variant from A to D or F, what microcontroller type to use (TI
MSP430, ARM7)? Or are there even alternatives?

The fact that an existing TCP /IP protocol stack like /P from Adam Dunkels
[23] is likely to be difficult to port without any bugs on a self-developed HW
platform made us decide to employ a NSLU2 box with Ethernet connectivity for
our DSN. The needed TCP/IP stack is available when we us an OS, namely Linux.
The power concept says that the Linksys platform is supplied from mains power
and the adapterboards are powered over USB (hubs). As a result of the whole
evaluation, we took design variant G. Figure 3.2 illustrates the new Ethernet-based
DSN.We focus on a modular 8-node test DNS for the work presented

18 3 Conceptual Design

DSNAnalyzer

l GUI ’ AT GUI l
GUIs & Analysis Tools

Ethernet

= &E |

Sl [-

DSN Server
Ethernet

DSN Layer

Ext. Power

NSLU2

580014 | |

WSN Layer i |)))

Figure 3.2: The conceptual design of the Ethernet-based DSN. The black frame defines the
components to develop or to add within the work described in this thesis.

in this thesis. Later on, this various 8-node modules can be arranged
together to form a 64-node network, as required by SBT. The DSN Server
is redesigned in parallel to this thesis to replace the serial communication by
Ethernet. To test our 8node DSN within this work, we will implement software
based on Python scripts to allow Ethernet communication for logging and sending
commands. To conclude, we specify the different system parts to implement:

1. Design and development of prototypes of an USB-adapterboard as DSN node
including hardware components choice, schematics, PCB layout and assembly
of prototypes.

2. Adapterboard firmware to connect the target node over I?C' bus and the
NSLU2 over USB.

3. Application software for the NSLU2 concerning the functional requirements
of the Ethernet-based DSN to work as gateway to USB and to provide a

network client interface.

4. Planning and installation of a test DSN consisting of 8 nodes.

3.6 USB adapterboard hardware 19

3.5.1 NSLU2 device

Since the NSLU2, see Figure 3.3 is a core component of the Ethernet-based DSN,
we mention the most important product features here. Further information can
be found in the datasheet available from [1&]. The NSLU2 hardware provides four
status LEDs, the CPU is clocked at 266 MHz and includes 32 MB of SDRAM
as well as 8 MB of Flash memory. In addition, it supports a 100 MBit Ethernet
network connection. The original purpose of the NSLU2 is to attach up to two
external USB-connected hard drives and to serve as network-attached storage
NAS. However, the NSLU2 can be used for other applications. Therefore, the
NSLU2-Linuz project [20] was launched. An USB disk can be plugged to one of
the USB slots and run a Debian Linux [19] version on it.

For our DSN, we do the same and use one USB-slot to plug an USB-Stick and run
a Debian. We use the other USB slot to connect a hub with attached DSN nodes.

Figure 3.3: Picture of the Linksys Network Storage Link for USB 2.0 (NSLU2).

3.6 USB adapterboard hardware

In this section we present the conceptual design of the adapterboard hardware.
The DSN node has to support the receiving of commands and to send out log
messages from the target node. Furthermore a BTnode connector is required and
a battery supply circuit, since the adapterboard is not powered over USB when
we want to use the wireless BTnode-based DSN. Figure 3.4 shows a block diagram
of the new DSN node.

20 3 Conceptual Design

USB <-> Radio Module Adapterboard

l Bat
; Bat N i
4x AA | Ext. supply i Btnode cor }‘l
H Voltage 3V 10 :
| <6. i Regulat: i
1 <64V LDO 3V 10 spy ST
Power switch Batteries / | T
Ext. supply / USB
Microcontroller 10 Extensi
xtension
5V MSP430F169 UARTO m——"
USB connect usB Serial UART1 fc DIL 16
— | converter Msalsat‘(: i

3 x debug LED

D Ext. clock 4 MHz

BSL / Reset Logic

i

I’C phone jack

Digital IC Bus

{

Reset button ‘ ‘ 8-way switch ‘ JTAG EEPROM 512KBit |«----,

Figure 3.4: Block diagram of the adapterboard with microcontroller, target node interface, BTn-
ode connector, extension connector and stereo jack. On the board, peripherals are connected
over an I2C bus.

3.6.1 Key features

Most parts of the adapterboard hardware do not make high technological demands
and are standard implementations and we can refer to reference designs. Never-
theless, the interfaces are application specific here.

To access the adapterboard, there is the USB interface with a connector, an USB-
serial converter and a microcontroller. Since the TI MSP430F169 controller is
well-known to the engineers at Siemens and fits the application, we chose this
type. To upload code to the controller’s flash, both Bootstrap Loader BSL [24]
and JTAG [25] are provided. We decided to operate the adapterboard at 3V, so
a voltage regulator is used that converts the input voltage from either batteries
or USB input to 3 V. The BTnode and the target node both are powered from
USB or batteries directly. On the board, an EEPROM is accessible to store the
code image for the target node. The EEPROM is connected to the controller over
a central I2C bus that also interfaces the BTnode and certainly the target node.
A 16-pin extension connector provides access to several in- and output signals of
the target node for debugging reasons. The adapterboard has to be capable to re-
set the target node to invoke its reprogramming procedure. Therefore, an general
purpose output pin of the controller is connected to the A80 reset pin. Note that

3.7 USB adapterboard firmware 21

the A80 reset signal is active high.

3.6.2 EEPROM

We do integrate on the adapterboard a stereo jack that interfaces the I2C' bus
to connect an I*C' spy device. The EEPROM supports hardware setting of the
three least significant I2C' address bits and also has a write protection input pin.
Therefore, we use a 8-bit DIL switch. The four spare bits of the DIL act as general
purpose inputs to the controller. To supervise the battery state, we employ a
voltage divider for a measurement. The output voltage value is forwarded as input
to a controller’s ADC? input.

3.6.3 Power concept

As a nice feature, a special circuit disconnects the battery supply line if USB
power is present. As we will use self-powered USB hubs in front of the NSLU2
device, we can expect a maximum of 100 mA per port for one adapterboard.
When the BTnode is not plugged, we certainly use less than 100 mA to supply
all the components on the adapterboard and the target node itself. If the BTnode
is plugged, the batteries deliver enough current. We did not perform detailed
calculations then.

3.6.4 Housing

At the end, the assembled adapterboard PCB gets a housing, namely a blue box
(Blue Boz). The Blue Box contains a battery pack and a cable to plug to a supply
connector on the PCB. Fixed magnets on the bottom of the Blue Box allow to
attach it to a magnetic side board for example. The Blue Boxes are available "as
is” from SBT. The components are listed in the Appendix. So far, it was clear that
we had to consider the Box size for the hardware implementation.

3.7 USB adapterboard firmware

We designed the adapterboard firmware according to the requirements listed in
section 3.1 to support the DSN application. In this section, we explain the con-
ceptual design and core functionalities and do not discuss implementation specific
properties like e.g. command format. In addition, we do rather specify and ex-
plain the different features of the firmware than show the exact program flow.
We treat this topics in particular later in Chapter 5. A schematic overview of the
adapterboard software stack is given in Figure 3.5.

2 Analog Digital Converter

22 3 Conceptual Design

RPC command to target

RPC command to adapterboard

(RPC) log message to NSLUZ2

A
f Y ™
DSN node
(Log messages) \
Idle
RPC)
C)
EEPROM Serial data Clocks \
communication transfer /
) .)
I‘C hardwgre UART drivers Pen.pheral
module settings drivers)
_ J
A2
: 1“C bus
A4

RPC command to target

(RPC) log message from target

Figure 3.5: Schematic overview of the adapterboard software. Basically, the software has to han-
dle JSON-RPC commands, program the EEPROM with a code image and display log messages
from the target node over USB.

3.7.1 JSON-RPC command transfer

For command transmission to the DSN nodes we use JSON-RPC [20] because
the target node already uses this mechanism. JSON-RPC is a lightweight remote
procedure call protocol. Two communication peers can establish a connection and
each of them is allowed to invoke a method provided by the opponent. To start
a remote method, one of the peers has to send a request and receives a response
back, except the request was a notification.

Any JSON-RPC command execution is invoked by the NSLU2 Ethernet gate-

way or the DSN Server respectively in our DSN. The DSN node receives the
command string and then starts the requested procedure, e.g. reset the target

3.7 USB adapterboard firmware 23

JSON-RPC command Function

target.reset The adapterboard has to drive a specific output
pin high and low to reset the target node.
target.disable The adapterboard has to drive a specific output
pin high to hold the target node in reset.
log.disable The target node stays under operation, but
no log messages are displayed over USB.
log.enable The adapterboard displays log messages.
write.eeprom[data] The firmware writes a data packet to

the I?C interfaced EEPROM and awaites an ack.
forward.command[method] | A buffer is filled with the JSON-RPC

command to transmit to the target node.

The buffer is read and cleared when the target polls.

configure.master The target node is hold in reset and

the adapterboard is configured as I2C master.
configure.slave The target node is reset after the

adapterboard is configured as I2C slave.
read.bytes Read a number of bytes from the

EEPROM and display them over USB.
adapterboard.reset Both the DSN node and target node are reset.

Table 3.1: Overview of the JSON-RPC commands the adapterboard supports.

node. Table 3.1 shows the commands that the adapterboard as DSN node has to
support.

Important to know is the fact that all JSON-RPC commands have to be
replied with a response from the receiver back to the sender. Therefore,
the application sends back a JSON-RPC formatted string as response at the end
of each executed procedure if no error occurred.

3.7.2 Command forwarding to target node

The adapterboard has to support command forwarding to the target node. Here,
the request for the target is packed in the JSON-RPC command "forward.command”.
Whenever the adapterboard receives this command, it unpacks the data and writes
the command to a buffer waiting for the target to poll the I?C bus. Actually, the
target polls just at specific I2C addresses. We use the concept of double buffering.
If a command buffer is full and the target has not polled yet, the next is filled
and queued. The execution of commands has the highest priority in the
adapterboard’s firmware.

24 3 Conceptual Design

3.7.3 Log message capturing and display

The default action for the adapterboard is to listen to the I2C' bus, to gather log
messages from the target nodes and to write them out over USB. In order to do
that, the DSN node operates as I?C slave and has the specific I?C' 8-bit address
20 (what is clear so far, since the A80 writes to this address). We are going to
use the MSP430F169 hardware I?2C' peripheral interface for communication that
requires application specific settings.

3.7.4 EEPROM access for programming

In order to write a code image we employ the JSON-RPC protocol as well. The
reason is that we just can’t store the whole image in the microcontroller’s memory;,
so we have to transfer the data packet per packet to the controller who writes the
data to the EEPROM.

In default configuration, the target node works as I?C' master and checks an
I?C-attached memory at the addresses 80 to 82 for new application code after
start-up. If new code is found, the target node reprograms itself. The
EEPROM address can be set by the DIL Switch, see section 3.6. An EEPROM
programming procedure therefore requires to take different steps controlled by the
NSLU2 device:

1. I?’C master and target disable
First step to take when the EEPROM should be written is to configure
the adapterboard as I?C master and hold the target in reset, otherwise
the adapterboard can not write anything to the EEPROM. Therefore, the
adapterboard has to execute the command "target.disable”.

2. Code packet transmission
The adapterboard receives a JSON-RPC command "eeprom.write” containing
a packet of the code image as parameter, typically 64 or 128 bytes, and sends
the data immediately to the EEPROM. Afterwards, the adapterboard replies
with an acknoledgement to the NSLU awaiting the next packet.

3. I?C slave and target reset
When all data has been written to the EEPROM, the adapterboard is recon-
figured as I2C slave and the target is reset to trigger its self-reprogramming.

3.7.5 I’C master and slave mode operation

Per default, the adapterboard operates as I?C slave and the target is the master.
But to write to the EEPROM, it has to become master, as described above. The
firmware has to provide the possibility to change between the two modes. The

3.7 USB adapterboard firmware 25

A80 software communicates with 100 kHz on the I2C bus. If the adapterboard is
master, the bus clock speed is set to 400 kHz to increase the EEPROM writing
speed.

3.7.6 Battery measurement

The ADC of the controller allows to make a measurement of the actual voltage
state of the batteries, if inserted. The firmware therefore provides the correspond-
ing functions to enable and disable the measurement and to read the voltage value.
The battery measurement functions are not used in the current firmware revision.

3.7.7 Watch Dog timer

To give the user the possibility to change the software mode of the adapterboard,
a so called Watch Dog timer WDT' is employed. The WDT interrupts the program
flow and observes the 4-bit DIL switch input value and resets the adapterboard
firmware if the input has changed.

3.7.8 Hardware utilisation and settings

A block of software is responsible to initialise the controllers hardware such as the
external oscillator, pin configurations, Watch Dog and UART baudrate selection.
We also have to implement the drivers for the USB (UART1) as well as the I*C'
bus functionality.

3.7.9 Idle mode

When the adapterboard is not occupied with DSN services execution, the firmware
falls into an idle mode.

3.7.10 Operating System

We decided not to run an OS on our DSN nodes. A suitable OS would have
been the Tiny Microtheading Operating System TinyOS [27]. This is a free and
embedded open source OS and there exists a slight port for the MSP430 controller
using about half a kilobyte of memory (RAM). However, we do not use such an
OS for the following reasons:

e We do not rely on a critical timing and scheduling of the tasks, that is typ-
ically handled by an OS. In our application, no more than one or two tasks
are executed quasi-parallel. For example the display of a log message is in-
terrupted by the arrival of a JSON-RPC command and its execution.

26 3 Conceptual Design

e The code overhead requiering additional memory resources is not in relation
to the provided OS-functions we could employ.

e Most of the device drivers used here are standard e.g. UART1 for serial
communication. So we implement that drivers by our own and do not use an
OS’ I/O protocol stack.

3.8 NSLU2 software

The NSLU2 software is mainly responsible for DSN and target node adminis-
tration and providing a fast USB to Ethernet and vice versa data gateway. The
NSLU2 allows to install a full Debian Linux OS as described above which includes
the TCP/IP stack for our application. We do not have to care about memory
here, since the 32 MB RAM is certainly enough for our application. Hereby, we
have already answered the question about to employ an OS or not. This gives us
the opportunity to use multi-threading as basic operation concept. Figure 3.6
presents the basic components of the NSLU2 software.

The DSN interfaces are on one side the USB attached adapterboards and on the
other side an Ethernet network. To meet the requirements, we defined the following
core features for the NSLU2 software to implement:

e Scanning for DSN nodes after start-up
After start-up, the NSLU2 software has to scan for plugged DSN nodes. It
tries to open a serial connection and creates a thread object for each. This
object handles all the data transfer to and from one single DSN node.

e Command transmission

To allow a DSN client (DSN Server) to send a JSON-RPC command to the
DSN node or target node respectively over the network, we employ the Ex-
tensible Markup Language Remote Procedure Call XML-RPC protocol [23].
This protocol simply gives the user the possibility to call functions from
remote applications over the Internet. The XML decribes the command de-
coding and HTTP [29] is the transport mechanism. Therefore, we include a
web server in our NSLU2 application. The client may invoke the transmis-
sion of a JSON-RPC command to the nodes by sending a request looking
like "send.rpc.cmd[port name, JSON-RPC command]” to the NSLU2. After
having received this request, the application unpacks the JSON string, sends
it to DSN node, awaits a response and sends it back to the client over a TCP
socket. We will specify a special parameter to indicate when the NSLU2 has
to send the JSON-RPC command to all connected DSN nodes. Table 3.2 lists
the supported XML-RPC commands to call by the client.

3.8 NSLU2 software 27

XML-RPC command ‘ Function

ports.list The NSLU2 sends back a list of all
serial ports with a plugged DSN node.

send.rpc.cmd[port name, JSON-RPC cmd] | Sends a command to the

DSN node or to the target node
eeprom.write.cmd Invokes the EEPROM programming
procedure on the NSLU2

Table 3.2: Overview of the functions to call using the XML-RPC protocol on the NSLU2.

¢ EEPROM programming procedure

The target programming is similar to the command transmission. At first, the
user has to upload an EEPROM image. Therefore, he can call a website and
upload the file. Once an image is present, the programming can start. The
client has to send a command looking like "eeprom.write.cmd[port name]” to
the NSLU2. By the way, we decided to fragment the EEPROM code image
on the NSLU2 and not on the PC for a first try. The NSLU2 then starts
the programming of the EEPROM on the adapterboard by sending the data
packets. The DSN node is responsible for the correct writing to the EEPROM.
The NSLU2 application receives back the acknoledgements (acks) until the
whole image has been transferred.

¢ Log message capturing and storage
The main task of the NSLU2 is to capture the raw log messages from the
different DSN nodes by reading the serial lines. The application proceeds the
messages and stores them in a database, a so called logger pool. If a client
logs in, the NSLU2 send the messages immediately over the TCP socket. In
addition, the last 1000 log messages are displayed in a web site.

e Web- and XML-RPC server
To upload the EEPROM image, to watch the log messages and to send XML-
RPC commands to the NSLU2, we run a web server. The web server supports
the request of web pages dynamically.

28 3 Conceptual Design
| XML-RPC [JSON-RPC cmd] request |
| JSON-RPC responses |
| Time-stamped log messages from target |
A
v
' N SLU2 SOﬂWG re ™ | JSON-RPC cmd / response |
----- » | Eeprom programming |
DSN node object thread)
(| Log messages from target |
(Logger pool thread) (Web server)
L BN}
(onlll J [TCP sockeD (XML-RPC J ‘%
communication
Debian Linux OS
\. J

Figure 3.6: The NSLU2 software runs with a Debian Linux OS. The software provides an USB
to Ethernet gateway, processes commands to the DSN nodes and forwards log messages to a
network client such as the DSN Server.

Chapter 4

Hardware development

This chapter documents the development of the adapterboard hardware. Based
on the conceptual design and the blockdiagram showed in the previous chapter we
explain the different functional parts of the PCB, describe the components chosen
and show the commissioning of prototypes. For detailed electrical circuitry or
components information, see the schematics and components list in the Appendix.

4.1 Tools

For the development of the hardware, we took the standard software for electron-
ics design Altium-Designer’. This tool provides all the functions to draw PCB
schematics and layout and the candidate had already worked with it in previous
projects. For simulation of electric circuits we employed SIMetrix? that is an open
source software.

4.2 Hardware overview

Actually, we speak in most cases about the A80 as the target node. Important
is the fact that the adapterboard should work with any target node
supporting the /°C interface. Some layout considerations had to be taken
therefore and are explained later. Basically, the adapterboard has to provide an
USB on one side and an I2C interface on the other to communicate to peripheral
components like target node or EEPROM. Since we want to reuse the BTnodes
with batteries for some use cases, only a low power microcontroller is suitable for
this adapterboard. As a matter of fact, we have to provide both USB and battery
supply despite USB is the default solution.

1Version 2004
28IMetrix Intro 5.3

30 4 Hardware development

Note that the specific designators are used here to refer to a specific pin of a
component e.g. pin U4.1 means pin 1 of the chip U4 (MSP430F169 here).

4.3 Hardware architecture and system components

4.3.1 Microcontroller

We chose the MSP430F169° from Texas Instruments for this adapterboard as com-
puting platform for the following reasons. It is a low-power 16-bit RISC microcon-
troller with 2 KB of RAM and 60 KB of flash memory. The average instruction
cycle time is about 125 ns. It can be clocked up to 8 MHz and supports two phys-
ically separated USART modules that can be used either in UART, SPI or I2C
mode. That is exactly what fits our application, as we need an serial interface to
the NSLU2 device (USB) and I*C' to connect the target node. So we do not need
to implement I?C' in software. Many sensor node platforms e.g. TmoteSky [12]
use this type of controller and the A80 as well. So a lot of know-how about this
controller type is available at SBT.

We use the internal oscillator of the MSP430 for clock generation. But since it is
not very accurate and robust to environmental conditions change, we added an
external quartz crystal of 4 MHz to verify proper operation for timing constrained
parts like UART communication. To have the possibility to set a general purpose
input value of the MSP430 we integrated a DIL switch of eight pins, see Table
4.1. Four pins are used as controller inputs. A use case could be to restart the
controller up on a change of this switch settings.

The MSP430 needs decoupling power capacitors to stabilise the input voltages.
We dimensioned them according the controllers datasheet. A strong requirement
is the capability of the controller to reset the target module to invoke the self-
programming procedure. Therefore, U4.20 is used as output and connected to the
reset input pin of the target connetor (pin X5.1). If desired, the target module
can drive the two LEDs D9 and D10 (green and red) on the adapterboard PCB.
For this purpose R17 and R18 have to be soldered. With adapterboard Rev(0 and
Revl, they are not.

4.3.2 USB interface

For USB communication we integrated a connector X1 for data and power. The
FT232BL* chip from FTDI interfaces the microcontroller. This module is an USB-
UART converter and provides a virtual serial port on the host when the adapter-
board is connected. In addition, it can be used for hardware flow control. Host

3datasheet under http://focus.ti.com/docs/prod/folders/print/msp430f169
4datasheet under http://www.ftdichip.com/Documents/DataSheets

4.3 Hardware architecture and system components 31

drivers are open source and available from FTDI. We employed an external EEP-
ROM for the FTDI here - not to mistake with the bigger I?C-EEPROM to store
the code image - for USB configuration settings storage. The chip requires a clock
source. According the datasheet, we integrated a 6 MHz crystal with two 22 pF
filter capacitors.

We use a ferrit bead in series to the USB power line to reduce noise being ra-
diated down to the USB cable and secondly to protect the adapterboard from
high current peaks. To indicate data receive or transmission, the FTDI can drive
a green and a red LED respectively. If the adapterboard consumes more than 100
mA (BTnode start-up) the user has to make sure that the host or the USB hub
delivers more than 100 mA (USB 1.0) or use battery power in parallel. A hub is
allowed to deliver up to 500mA per line (practically it depends also on the amount
of adapterboards plugged).

The 3.3 V supply output pin U1.6 is connected to Ul.12 over the Shottky Diode
D7 with a forward voltage of about 0.3 V at 10 mA to set the UART signal high
level to 3 V.

4.3.3 Power module

The microcontroller, EEPROM and NAND ICs are supplied from a 3 V source
voltage. We employ a Low-Dropout Regulator (LDO) here. This type of voltage
regulator offers a minimum between the input and the output voltage (which is
actually the dropout) so that it can still regulate the output voltage. In general, the
LDO allows the battery to discharge to a few hundred millivolts above the desired
output voltage. We do not use a switching regulator because with an LDO, we
have a small noise. Since switching regulators do operate between 50 kHz and 1
MHz, they could affect the analog circuits or even the I?C’ communication. The
ultra LDO LP2985° from National delivers a 3 V output voltage and fits our
application. It has a guaranteed 150 mA output current with the smallest possible
size (SOT-23 micro SMD package). Furthermore, it requires just a few external
components.

Power for the BTnode and the target node is delivered from either batteries or USB
directly, since both devices have a voltage regulator on their PCBs. The battery
voltage must not be higher than about 6.2 V for the new radio module. The
decoupling capacitors are chosen according the regulators reference schematics.
We added a nice feature to the adapterboard. When the USB cable is plugged,
the power switch should automatically separate the battery supply line in order
to save energy. Figure 4.1 shows the schematic of this power module. When USB

5datasheet under http://www.national.com/pf/LP/LP2985

32 4 Hardware development

is plugged, the npn Transistor T1° is floating. Therefore, the gate voltage of the
n-JFET T27 is almost zero and the gate-source voltage below the cut-off voltage
of about -3.2 V (the four AA batteries lowest voltage is about 0.8 V each which
yields to a sum of 3.2 V). As a result, the n-JFET is turned off separating the
battery supply line. If no USB is plugged, the gate-source voltage of T2 is almost
equal to zero due to the high impedance R12 and therefore T2 is turned on. We
made a SIMetrix simulation of the power switch circuitry that worked satisfyingly.
Alternatively, if the power switch would not operate properly, we added
a switch that can be soldered to turn the battery power on and off by
hand.

! J——,l_—

Ensble Meas -—{m-
—

RFD14N05SLSM 34.6V
n-channel MOSFET
R10 | * S1 SWSPDT2opt. VEE
100k [opt. e
| NN 1 o
VBT D 3 o2x
4
RI11 [R ve
Y 300k OR opt. i U3 3VLDO
7110
3 1 [1 s
5 Vin Vout
[——— P
s i D6 :
i R12 10M ~| T2 Schottky 3o ONdfr _lo“ ES_R
Ext/4XAA < 6.4V ! ey e c12 47§F/ X7R| C
c1s 2.2uF 3
1l 2| ND Bypass c13
470pF ! o
» D3 TmuF
3
B }J‘ LP2985
o 10Kk L&h
VBUS 5V
1 4%@
NPN Bipoloar R15
Philips BC849C 200k
co_| cio_l c11_[lowESR SB_powr
100nF 100nF 10uF R16 c20 | 3V signal
300k 470pF |

Figure 4.1: Power module of adapterboard with battery connector X2, switch and voltage regu-
lator on the right.

4.3.4 Battery measurement circuit

Using a simple high-impedance voltage divider, the controller can measure a forth
of the current battery voltage value, namely the signal V_Bat, as input. The
MSP430 can drive the MOSFET T3 to enable the measurement by software.

Sdatasheet under http://www.farnell.com/datasheets/12788.pdf
"datasheet under http://www.vishay.com/docs/70231/70231.pdf

4.3 Hardware architecture and system components 33

4.3.5 I?C bus

The adapterboard communicates with the peripheral devices e.g. the target node
over an on-board I*C' bus. According to the bus specification [17], two 1.5k-pull-up
resistors are required for the signals SCL and SDA because the bus signals are idle
high. Since any target node could have the pull-up resistors on its PCB, no pull-up
resistors are needed any more on the adapterboard. Therefore, the two soldered
pull-up resistors are not directly connected to V.. and can be "pulled down” by
the MSP430 software over the outputs U4.28 and U4.30.

We utilise two Diodes D11 and D12 for bus overload protection. The resistors R32
to R35 are for current limitation. The peripheral phone jack X4 allows the use of
a debugging device with I?C master, slave and spy functions. The device e.g. can
act as I?C slave on a specific I2C' address.

4.3.6 Bootstrap Loader circuit

Reset/ BSLL

UGA 74HCOOD Schmitt NAND
T
UDTRZ ;—--—1«> & HeB ,
gt s L L Laioy R3S
L2 e 12

) 6 7
5 Reset »
- <t = 4 k c
Vee =

Vo i e e s e S
' USB_power ; 53

out

User button

100nF
ueC T
URTSZ —p—20 & :
. oS TR =
| 10] : =
U6eD
12 % logic 1
i1 N 11
13 RS
e——1

Figure 4.2: The Bootstrap Loader circuit disables UDTR# when USB is not plugged.

The MSP430 microcontroller supports programming over the serial interface by
using the so called Bootstrap Loader (BSL), see [24] for further information. Both
the controller’s flash and data memory can be modified. Therefore, the UART
protocol is used. To invoke the BSL, a certain BSL entry sequence has to be
applied to specific device pins TCK and Reset of the MSP430. Therefore, the

34 4 Hardware development

’ pin ‘ signal name function ‘
1 Eeprom_WP | EEPROM write protection (active high)
2 Eeprom_A0 EEPROM I%C address lsb
3 Eeprom_A1 EEPROM I2C address bit 1
4 Eeprom_A2 EEPROM I%C address bit 2
5 U4.6 controller input
6 U4.5 controller input
7 U4.4 controller input
8 U4.3 controller input

Table 4.1: Usage of the DIL switch pins.

signals UDTR# and URTS# of the FTDI chip are used. Both are active low.
To start the BSL, UDTR# has to hold the controller in reset by applying the
low voltage signal (0 V here) to the controllers reset pin U4.59. But if no USB
is connected e.g. when we have the BTnode with batteries operation, the FTDI
chip’s UDTR# having a low level would also drive pin U4.59 low, despite no BSL
should be invoked. To overcome this problem, we designed a small but effective
BSL circuit. This solution employes a quad 2-input NAND gate chip® with ESD
protection supplied by V.. from the voltage regulator. The NAND verifies that the
controller can only be reset when both USB is plugged and the UDTR# is active,
see Figure 4.2. The URTS# has to be inverted for proper operation, since it is
active low. To allow to reset the adapterboard by hand, a user button is applied.

4.3.7 JTAG

To allow debugging and programming of the adapterboard, alternatively a JTAG
[25] programmer can be employed plugged to connector X3.

4.3.8 EEPROM

One of the most important components on the adapterboard is the EEPROM chip
U5 interfaced to the I?C bus. We chose the 24LC512 CMOS Serial EEPROM from
Microchip? with 64 KB of memory. It is supplied also from V,. and supports a bus
speed of 400 kHz. A 128-byte page write mode is available with a 5 ms maximum
write cycle time.

We use the 8-pin DIL switch S2 to set the three least significant address bits of
the EEPROM by hand, see Table 4.1. In addition, the provided write protection
function at U5.7 can be activated by setting pin 1 of the DIL switch high.

8datasheet under http://www.alliedelec.com/ITmages/Products/Datasheets
9datasheet under http://ww1l.microchip.com/downloads/en/devicedoc/21754E.pdf

4.4 Layout considerations 35

4.3.9 Peripheral connectors

The adapterboard has three connectors X5 to X7 to interface the A80, the BTnode
and an extension connector.

The X5 is a 20-pin connector. Pin 1 is the input for target reset which is active
high, as already mentioned before. Over pin 19, the radio module is supplied from
Vpe. Pin X5.14 and X5.16 are for I2C' communication. The other connected pins
are general purpose in- and outputs controllable by the target node software and
connected to X7 each. The Jumpers J1 to J3 are for reuse of the old adapterboard
software version and do connect the serial interface signals TXD and RXD of the
BTnode with the I?C signals SDA and SCL. These signals are also available at
X7 and as inputs at the controller. Jumper J2 has to set Outl high when
the A80 is plugged.

The BTnode connector is attached to the I*C' bus (pins X6.12 and X6.13) and the
input for the supply voltage Vp, is at pin X6.17 and X6.18 respectively. To allow
the BTnode to measure the actual battery voltage state on the adapterboard, the
signal V_Bat is yielded to X6.10 as input over a 0 € resistor.

The extension connector X7 is for debugging reasons e.g. to add LEDs or to observe
the I2C bus signals. The general purpose in- and output signals from the target
Inl to In3 and Outl to Out3 are accessible here. Furthermore, all these signals
are yielded to the controller as interrupts (if enabled).

4.4 Layout considerations

After having completed the adapterboard schematics, we made the layout. Here,
we used the constraints listed in Table 4.2. For more detailed layout information,
see the Appendix. Generally, we placed the components according to functional
belongings. Decoupling capacitors are as close as possible to the chips. In order
not to create antennas we took care to make the ground planes area-wide with
no thin tails. We tried to place the trough-hole components e.g. X5 so that it
would not touch the metallic part of the Blue Boxes battery case later in order
to prevent short-circuits. We also tried to keep the signal wires close together
to minimize inductive coupling but also short to reduce capacitive coupling. The
latest criteria often conflicts with the first one. However, in most cases we stroke
a balance between the two.

4.4.1 Mechanical design constraints

To fix the adapterboard in the Blue Box with screws later, we mad holes at each
corner of the PCB. In addition, we made two holes to employ two plastic spacer

36 4 Hardware development

PCB design constraint Size
number of layers: 2
minimum space between wires, vias: 0.2 mm
signal layer width: 0.2..0.3 mm
power line width: 0.2..0.8 mm

Table 4.2: Overview of the different wire-widths

for A80 short-circuit protection. We use plastic screws since we want no electro-
magnetic induction from the BTnode antenna. The antenna is situated directly
above a screw. The PCB has a size of about 125 mm times 70 mm. We ordered 12
PCBs from PCB Pool/Beta LAYOUT GmbH'"" in Germany for the price of 1160
CHFr. Considering the component costs a single assembled adapterboard has a
price of about 165 CHEFr.

4.5 Prototype assembly and commissioning

Figure 4.3: The new USB-adapterboard in a Blue Box. A Siemens A80 and a BTnode are plugged.

After having received the manufactered PCBs we started with the assembling
of four adapterboards. This task asked for a special assembling order and a precise
work, since most of the components are relatively small and SMDs'!, see Table
4.3. First of all, we soldered the power circuit and then the FTDI chip and its
peripherals e.g. control LEDs. Step by step we integrated the various functional

Ohttp:/ /www.pch-pool.com
11Surface Mounted Devices

4.5 Prototype assembly and commissioning 37

parts and verified their proper behaviour e.g. powering the board from batteries
and USB. In between, we could already test the USB interface by plugging the
device to the PC and installing drivers when the FTDI chip had been recognized.
Alternatively, all the ICs could be soldered first because they are in general more
difficult to put on the PCB.

At the end, we managed to load a piece of test software over the BSL to the
controller’s flash at the first try. When the assembled adapterboard was ready, we
inserted it into the Blue Box, see Figures 4.3 and 4.4.

lastic stereo jack
spcrews manual battery .

control switch

plastic
UsB screws
BTnode

'\'.‘4‘. B T-*-, /

ag .. t JSB I ¢

e, i E

= iﬁ‘\ : 3 l% R3; X7 = it
Eil) l ic 8 | y]

e s Falis | Cj’a‘

Ll [1)
= c25 21 R24 R26 127 R25

08 J0000 3
RFmodh le .‘
| Ee nzann
3-8 5880 LJHU-QIV

EEPROM DIL switch

i | MSP4
radio 3V SP430

uC extension

module
regulator connector

Figure 4.4: Overview of soldered components of adapterboard.

Once four adapterboards run a testsoftware that let the green, yellow and red
LED blink, we assembled the remaining eight PCB. Because we could not manage
to get the power switch working as intended after spending hours with trying with
different other transistors and resistors, we decided to solder the second possibility
namely the S1, D5 and R15 to switch off battery by hand. During the commis-
sioning of the adapterboards it happened sometimes that the BSL or the supply
of the controller did not work up on the first try due to bad soldering. Finally,
they all behaved as intended, see chapter 7. We determined some failures of the
schematics and in the layout what we have improved and released under adapter-
board Revl. In the Appendix, this revision’s schematics and layout drawings are
inserted. Important to mention here is that we added the resistor R50 close to the
NAND chip to allow JTAG programming since this did not work with RevO0.

38 4 Hardware development

’ Step ‘ Soldered components Assembly check
1 X1, X2, C1, R1, S1, D5, C20, Turn off battery
D4, R10, R11, R14, power by hand,
R15, R16, C11, C19, U3, D7, 3 V output required
C12, C13, C14, T3, C17, C22 from voltage regulator.
2 Ul, R2, R3, C4, C5, R4,
Q1, C7, C8, C2, C3, C9,
C10, RS, R9, D1, D2, U2, Connect PCB to PC over
R6, R7, C6, RS USB, try to install drivers.
3 U4, U6, C27, R22, R23, C18,

C22, C16, R24, R19, R20, R21, | Load test software onto
R25, R26, R27, D8, D9, D10, the controller to let some
C23, Q2, C25, C24, C21, R38, | LEDs blink.

4 X3, X4, R32, R33, R34, R35,
R36, D11, D12, R37, U5, C26,
J1, J2, J3, R45, X5, R21, X7,
X6, R44, R43, R43, R39, R40, | Reset controller,

R41, R28, R29, R30, R31, R46, | plug A80, plug BTnode
R47, R48, R49, S2, S3 and check for blinking

Table 4.3: Assembly plan of the adapterboard hardware step by step (without automatic power
switch circuitry).

Chapter 5

Firmware implementation

The following chapter explains the implementation of the actual adapterboard
firmware based on the conceptual design described in Chapter 3. We do rather
focus on the firmware development here than on how to program the MSP430,
since this is shown in the Readme in the Appendix. For implementation details we
refer to the source code available from the CD inserted at the end of this thesis.

5.1 Programming language and environment

We use the standard C [30] as the programming language for the MSP430 con-
troller firmware for the following reasons:

e The controller’s hardware architecture is designed for C. Pointers, arrays and
stacks are relatively easily programmable.

e Texas Instruments provides development tools like compiler and debugger for
the MSP430 for free.

e Various libraries and code examples are available as open source.
e The candidate had already certain experience in working with C.

We employed the MSPGCC' toolchain [31] including compiler, linker, assem-
bler and debugger. There are also various commercial toolsets available but the
MSPGCC compiler is suitable enough for our purpose. We do not need highly opti-
mized object code size or speed here what is traditionally provided by commercial
distributors.

5.2 Firmware architecture

The conceptual firmware design was made in Chapter 3. Here we show in more
detail e.g. how the firmware proceeds the commands and log messages. The source

40 5 Firmware implementation

Files Implementations

config.h baudrate definitions, EEPROM address definition
memory settings

hardware.h port definitions, WDT configuration, clock settings

usb.h baudrate settings, buffer allocation, event definitions,
evenhandler declarations

usb.c evenhandler table definition, UART1 settings, UART1

interrupt handler definition, idle eventhandler,
definition, JSON-RPC command processing,
JSON-RPC procedure call

peripheral.h adc function declarations, battery measurement

functions declarations

peripheral.c WDT eventhandler definition, battery measurement
function definitions, timer definition,

DIL switch settings

rpc_commands.c | JSON-RPC commands declaration, JSON-RPC command
table definition, JSON-RPC command definitions
i2c_bus.h EEPROM page size definition, target command

buffer allocation

i2c_bus.c log message buffer allocation, I?C' module
configurations, I2C bus and EEPROM access

function definitions, UART1 interrupt

handler definition

main.c WDT interrupt handler, hardware, UART1 initialisation,
baudrate selection, DIL switch read, global interrupt
enable, I?C slave configuration, target reset,

eventhandler start

Table 5.1: Source code organisation of the adapterboard firmware.

code is organised as listed in Table 5.1. We explain the firmware’s program flow as
follows and treat the most important parts of the code in the following subsections.

5.2.1 Program flow

In Figure 5.1 a flow chart of the firmware is drawn. When the controller is reset,
it starts initialising the hardware, the WDT and configures itself as I2C' slave
in order to receive log messages. After configuring, it executes test routines if the
corresponding code section is uncommented in main.c. As a last step, the firmware
resets the target node and gives the control to the eventhandler.

We implemented four eventhandlers. The firmware executes the idle even-

5.2 Firmware architecture 41

Eventhandler Priority
event_command_key_received | 1
event_log_message 2
event_wdt 3
event_idle 4

Table 5.2: Overview of the implemented eventhandlers and priorities.

SMCLK 12.5 kHz
ACLK 4 MHz
MCLK 4 MHz
UART1 baudrate 230400 kbps
EEPROM page size 128 B
EEPROM I%C bus address 81
JSON-RPC command buffer size 330 B
JSON-RPC target command buffer size 120 B

log message buffer size 230 B
MSP430 I%C slave address, bus clock speed 20, 100 kHz
MSP430 I?C master address, bus clock speed | 84, 400 kHz

Table 5.3: Adapterboard firmware settings.

thandler toggling the red LED when no higher prioritised handler has been launched
or is running. The WDT wakes up with a dutycycle of about 2.6 seconds on an
interrupt and launches the WDT eventhandler. Note that the eventhandler rou-
tines always run to completion but are preempted by interrupts for sure.

Table 5.2 shows the implemented handlers and its priorities (priority 1 is the high-
est). Whenever an eventhandler has finished, the controller checks for launched
handlers and runs them according to the priorities. That concept allows the quasi-
parallel execution of different tasks like JSON-RPC command processing or log
message transfer. Important to mention here is that the MSP430 is I°C bus slave
but can be configured as I*C' bus master over an JSON-RPC command (required
for EEPROM programming).

5.2.2 Settings

Here we list the actual settings of important parameters, see Table 5.3. Note that
these values are fixed at the compile time and the user can not change them dy-
namically e.g. over an JSON-RPC command.

The controller employes two clock sources (external 4-MHz-oscillator and the in-

42 5 Firmware implementation

ternal DCO) to create the three clock signals SMCLK, ACLK and MCLK, see [32]
for signal and register naming. The UART1 for USB communication and UARTO
for I2C use the ACLK for baudrate and bus clock speed calculation. The I?C bus
runs at a clock speed of 100 kHz when the target node is the master, 400 kHz
when the adapterboard controller is the master. The MCLK is the controller’s
main clock and set to 4 MHz whereas the WDT uses the SMCLK. Note that
according to [32], the I?C bus clock must not be higher than the clock
source (ACLK) divided by ten.

5.2.3 JSON-RPC processing

The adapterboard recognizes a JSON string and executes the requested procedure
according the format defined by the JSON-RPC specification [20]. A list of the
supported commands can be found in table 3.1. Basically, the whole command
execution procedure starts when the controller has received the character "{” up
on a UART1 interrupt. All the following characters are stored in a ringbuffer then.
After having stored a character, always the event event_command_key_received
is launched checking if already a ”}” has arrived. This character indicates the
command string’s end. In that case, the firmware reads the buffer and executes the
corresponding function then. The functions are defined in a global table. Figure 5.2
shows an example of a JSON-RPC command format to invoke the adapterboard
to reset the target.

When a command should be forwarded to the target, the firmware receives a
request with the method "forward.command” and fills a buffer that is polled and
flushed by the target node later with the unpacked JSON-RPC string for the
target. The adapterboard always replies back to the sender when a command
execution was succesfull.

The method that forwards a command to the target node employs double
buffering. One buffer is filled whereas the other one can be read by the target.
This concept ensures that no command characters are mixed, since the A80 reads
only one byte per I?C interrupt. Figure 5.3 shows the concept.

5.2.4 Log message output

Any data arriving from the target module is handled as log messages (despite
it is a JSON-RPC answer) and displayed over USB. Therefore, the characters
are stored in a ringbuffer. When an EOL' character has been received, the event
event_log_message is launched. This eventhandler lights the green LED, prints out
the log message and clears the LED again. In between, the ringbuffer can be filled
with new log message characters up on an I2C interrupt.

1End of line

5.2 Firmware architecture 43

5.2.5 I?C and EEPROM access

The firmware provides lots of functions to access the EEPROM? (not all of them
are utilised in the actual revision).

Besides the functions I12C_configure_slave and 12C_configure_master, the method
write_page is employed to transfer a code image packet from the NSLU2 to the
EEPROM. To increase the transfer speed, the function polls the EEPROM for acks
to determine the internal write cycle’s completion. Figure 5.4 shows the execution
steps of the function write_page.

5.2.6 Low power mode

We used the Low Power Mode 0 (LPM0) provided by the MSP430 in a previous
firmware version. The idle eventhandler put the controller into this mode. This
yielded to missed log messages from the target node. We suppose that the LPMO
and its wake-up procedure influence the correct hardware setting of the UARTO
interrupt flags due to clock timing problems. So in the actual firmware version the
LPMO is disabled. Note that the configuration of the UARTO for I2C has
to be done precisely according to the instructions in [32].

5.2.7 Target node programming

Here, we describe the already implemented software behaviour of the target node.
After each reset of the target node, the target node bootloader checks if an update
is required and set a certain flag. It scans the I2C bus at addresses 80 to 82. It polls
for an EEPROM, if one is not accessible, it goes to the next. If a code segment
is detected and the a tag entry is new, it loads the code block. In order not to
load the same software image again, the target node updates the tag entry in the
EEPROM by writing the own serial number.

2A lot of information and how to access the EEPROM by software can be found in
http://wwl.microchip.com/downloads/en/devicedoc/21754E.pdf

44 5 Firmware implementation

Watch Dog init,
set main clock 4 MHz, with fault detection),
baudrate select (max. 230400 baud),

4 Peripheral drivers N
(Port 4, Port 6)

| RPC command to target | peripheral init batter;/drhz[;i?clee(t)enable()
""" q - adc12_init()
| RPC command to adapterboard | @isable target, config I2C modulta - battery_measure()
- reference_measure

- TimerA_delay_us()

. J

| (RPC) log message from target |

C Execute I°C test routines)4

A ¥
; - [RPC command routines (for\
: (Enable target, give corlltrol to eventha_mdler, aID adapterboard or target):
i events are non-preemtive, except by interrupts
- rpc_target_reset()
A 4 A 4 - rpc_target_disable()
/ USBtoserial) v - rpc_log_disable()
interface (UART1) RPC command processing: ~ rrz((::_lroega_derl\)aylzlees(())
- usart1_init() event_c_ommam_:l_l_(ey_received() -~
- putchar() (highest priority event) - rpc_forward_command()
- put_string() B St < T o et » target polls periodically,
- baudrate_select() - process_character() double buffering
- wakeup interrupt - fill_buffer()
uart1_receive() - jsonrpc_rpc() programming Eeprom:
- rpc_write_eeprom()
\ / 128-byte string
7 Y \ 4
4 log message processing: I - rpc_config_slave()
: event_log_message() - rpc_config_master()
(second highest priority event) - rpc_adapterboard_reset()
; N J
Bonrreessseseseantieeenes - putchar() < A

- ringbuffer_put() v
- ringbuffer_get() 12C interface

(UARTO)
NG /

- config_master()
- config_slave()

\ 4 .
- write_init()
/ Watch Dog: event_wdt() \ - read_init()
(third highest priority, | & » - write_byte()
dutycycle = 2.6 s) - write_page()
- read_byte()
check dil state and restart program if - read_at()
> new mode selected by dil switch, set - ack_polling()
program flow \ yellow LED’s blinking state / - wakeup
P T > i2c_interrupt()
data flow

A 4
no other event launched:
eventhandler_idle()
(lowest priority event)

.

| RPC command to adapterboard |

l (RPC) log message from target |

Figure 5.1: Program flow of the adapterboard firmware. After a start-up sequence, the firmware
switches between various eventhandlers to allow quasi-parallel execution of JSON-RPC com-
mands and log message capturing.

5.2 Firmware architecture

45

~

"method": "target.reset",|"params": [],

"id": 1|}

Figure 5.2: A JSON-RPC command includes three parameters. Method is the string containing
the name of the method in the global table to invoke, params is an array of arguments to pass to
the method if required and the id. The id is necessary to match the JSON-RPC response later
with the corresponding request.

P

forward.command(target cmd)

—

1

current buffer |— 2

—

2 = —| next buffer

—
~

sent to target node

/

Figure 5.3: If the JSON-RPC command is sent to the adapterboard to forward a command
to the target node, the adapterboard fills a buffer and sets a pointer to a second buffer. The
target polls at 12C bus address 20 and reads the first buffer. When a second command should
be transferred, the command is written to the second buffer. Next, the target reads the second

green LED

buffer and so on.

(fill buffer with

address bytes)

Y

Set buffer pointer to number
of bytes to transfer

Y

(Init 1°C module for writing)

Y

(Send start condition)

Y

C Send address

and data, stop)

\

/

(Poll EEPRO

M for an ack)

A\
(Clear green LED)

Figure 5.4: EEPROM page write execution when the adapterboards controller is the bus master.

46

5 Firmware implementation

Chapter 6

NSLU2 software

We have defined the functional features of the NSLU2 software in the conceptual
design in Chapter 3. In this chapter we address the implementation and explain
how the software is organised.

6.1 Programming language

Python [33] is an object-oriented scripting programming language and distributed
as open-soure even for commercial products. All what is needed to execute Python
is an editor to create the scripts and the Python interpreter! executing the scripts
line per line. We decided to use Python for the NSLU2 software development for
the following reasons:

e Python runs under Linux/Unix and Windows, so we do not have to care
about OS type if we would change the platform.

e Creating a TCP socket to communicate with a remote computer requires only
a few lines of Python code.

e The language is not that difficult to learn and has relative short and simple
code structures.

e Python Libraries are upgraded frequently and maintained carefully.

A drawback was that the candidate had no experience in programming with
Python, but it took only a few days to get familiar with the basics.

48 6 NSLU2 software

Setting ‘ Variable name Value

IP of NSLU2 1P 10.169.26.4
Port number (HTTP, XML-RPC) http_port 8080
TCP sockets Port 7000

Serial baudrate BAUDRATE 230400 kbps

Table 6.1: Settings in the NSLU2 software.

6.2 Software implementation

6.2.1 Overview and software settings

We installed a Debian Linux on the NSLU2 device and made some other NSLU2
OS "preparations”, see in the Readme. The implemented software consists only of
two scripts. We had to include various so called modules for different functionalites
like time, sockets or the serial communication. A module is another Python file
containing classes and definitions. The user can import such definitions into his
main file and create instances of the classes or redefine methods of the classes.
The NSLU2 software is mainly the script ”tcpserver.py” including the
module "rpcservice.py”, which had to be adapted for our purposes. To
start the software, the user has to start the first script on the NSLU2. Since the
NSLU2 is connected to Ethernet, some settings are needed and are defined as
global variables, see Table 6.1.

6.2.2 Software flow chart

We employ here multi-threading meaning all actions e.g. sending a web page to
the client’s web browser are handled by different threads.

The initial procedure is to check for plugged adapterboards, see Figure 6.1. This
is done by trying to open a serial connection for a specific port name e.g. /de-
v/ttyUSBO for Linux here (COMx for Windows is implemented as well). Up on
success, the script stores the available port names in a global list and starts a
object thread for each. The treads are responsible for all interactions with a single
adapterboard and target node respectively e.g. reading a log message from the
serial line or sending a JSON-RPC command. Next, a further thread is started
that listens to client computers to log in over a TCP socket and sends then the
log messages. In addition, this thread updates the web page with the log messages
from the target modules and the one with the list of plugged adapterboards. Note
that the actual version does not support un- and replugging of adapter-
boards. As the last step, the software starts both the web and XML-RPC server

We used Python 2.4.

6.2 Software implementation

49

XML-RPC command

XML-RPC command with
packed JSON-RPC
command

log message from target

JSON-RPC response from
adapterboard packed in XML-
RPC response from NSLU2

A

browse web pages:
- list of log messages
- serial ports list
- EEPROM image upload

TCP client to receive and
display log messages

(Start)

\ 4
scan for available
adapterboards (serial ports),
add to global list

A 4
load EEPROM
image if available

y

/ for all serial ports I
(adapterboards) in global list,
start object thread with
included functions
-send_rpc

ﬁSON-RPC command routines\
(for adapterboard):

- rpc_target_reset()
- rpc_target_disable()
- rpc_log_disable()
- rpc_log_enable()
- rpc_read_bytes()

- rpc_forward_command()

- read log messages b
- write to eeprom on
adapterboards

A

start logger pool thread
- handle TCP sockets
- update web page
with log messages
- update serial ports to radio
module ID mapping

A 4
set up and start XML-RPC /
web server and register
XML-RPC functions

Host PC / DSN Server

>
program flow

data flow

target polls periodically,
double buffering

programming Eeprom:
- rpc_write_eeprom
(128-byte string)

- rpc_config_slave()
- rpc_config_master()
- rpc_adapterboard_reset()

J

| JSON-RPC command to target |

JSON-RPC command to
adapterboard

| log message from target |

JSON-RPC response from
adapterboard

to / from adapterboard

Figure 6.1: Flow chart of the execution of the NSLU2 software.

respectively.

Figure 6.1 also shows the data flow. A list of the supported XML-RPC functions

is given in Chapter 3.

50 6 NSLU2 software

’ URL Contents

http://10.169.26.4:8080/DSN /logs list of the 1000 latest

received log messages from

all attached adapterboards
http://10.169.26.4:8080/DSN//list table of busy serial ports

with corresponding adapterboards

and target node IDs
http://10.169.26.4:8080/upload.html | EEPROM image upload page
http://10.169.26.4:8080/DSN /test DSN test page

Table 6.2: List of the supported web pages from the NSLU2 software.

6.2.3 Web applications

Once the NSLU2 software has been started, the user can request the web pages
listed in Table 6.2 using a web browser.

6.2.4 Log message format

10.169.26.4|#|/dev/ttyUSB3 { 2008-02-27T09:34:57.423782|#|806403e4|dai tx RT up id=15 n=4 0x44e

Figure 6.2: Data format of the log message sent to the PC.

In Picture 6.2 we can see the log message format sent to the PC and displayed on
the web page. The NSLU2 software takes the raw message from an adapterboard
and adds its IP address, the serial port name and a time stamp.

6.2.5 XML-RPC format

The exact command format to send to the NSLU2 is described in the Readme in
the Appendix.

6.2.6 EEPROM programming with NSLU2

In Figure 6.3 we see the illustrated EEPROM programming procedure. The user
has to upload an EEPROM code image for the target node first over the web
broser (http://10.169.26.4:8080/upload.html). Afterwards, the transmission to the
adapterboards is started when the NSLU2 receives the command looking like "eep-
rom_write_cmd(port_name)” or "eeprom_write_cmd(”broadcast”)” and executes the
function “eeprom_write”. The NSLU2 sends the command to hold the target node
in reset and to configure the adapterboard as I?C' bus master, transfers the image

6.2 Software implementation 51

XML-RPC JSON-RPC adapterboard
command(program) command[128bytes] [128bytes]
PC NSLU2 | uC —
XML-RPC response JSON-RPC responses ack |2C
EEPROM
Ethernet uUSB
2
programming| 1'C

A80

Figure 6.3: Schematic description of the EEPROM programming procedure started from PC.

data packets using the JSON-RPC protocol and sends the command to configure
the adapterboard as I?C bus slave and reset the target node again. Afterwards,
the target node reloads the image from the EEPROM and reprogrammes itself.
Note that the image data bytes are encoded to hexadecimal represen-
tation before they are sent to the adapterboard. The firmware decodes the
data before sending to the EEPROM.

52

6 NSLU2 software

Chapter 7

Evaluation

7.1 Overview and test cases

This chapter describes the functional and non-functional performance evaluation
of the new Ethernet-based DSN built within this work. In order to verify the
correct functionality and expected behaviour of the different components as well
as the whole system, we defined the following test cases:

1. Adapterboard hardware
The adapterboard with plugged radio module as target node is the core com-
ponent of the DSN. The correct hardware behaviour has to be inspected in
detail.

2. Adapterboard firmware with plugged A80
The DSN node software has to capture all the log messages from the A80 and
to handle the JSON-RPC commands. An in-deep study of the application
behaviour is highly recommended.

3. NSLU2 software and Ethernet-based test DSN
This test is separated in two parts. One part proves the NSLU2 software basic
functionality including adapterboard management. The second part tests a
8-node-DSN system’s performance consisting of adapterboards, target nodes
and a single NSLU2. We also compare our DSN with the BTnode-based one.

4. Backwards compatibility to BTnode-based DSN
Here, we plug a BTnode to the adapterboard and investigate its correct op-
eration as DSN node.

In the following sections, we present the results and conclusions obtained from
the test cases described above. All tests took place inside the SBT building GS2a
in Zug.

54 7 Evaluation

7.2 Adapterboard hardware

This section covers the hardware evaluation of the Adapterboard.

7.2.1 Measurement and test equipment

In this tests the following devices and tools were used:

- Tektronix Digital Oscilloscope TDS 1012B 100 MHz, 1 GS/s, No. 63999
- Multimeter FLUKE 183 TRUE RMS, Siemens No. 63404

- Device Under Test (DUT) adapterboard Rev0 in Blue Box No. 73

- Siemens A80 with ID 806403F7

- BTnode Rev3.24, 20/06, MAC:00043F00015B

- FDUZ221 MCLink-USB adapter with I2C' master, slave and spy functions
- Serial terminal program msp430-miniterm

- Serial USB cable for data traffic and powering of the adapterboard

- USB host: Fujitsu Siemens PC with Windows XP, SP2

- USB driver for standard FTDI Chip provided by FTDIChip

- USB driver for FDUZ221 provided by SBT

- A80 software: detectornode, Rev. 2513

- Adapterboard firmware Rev. 2456

7.2.2 Test set-up and description

Figure 7.1 shows the test set-up. An adapterboard is connected over an USB
cable to the PC where a terminal program is running. Furthermore, we plugged
an FDUZ221 to the phone jack of the adapterboard. The FDUZ221 is connected to
the PC over USB. The BTnode is plugged and powered as well in some tests. We
want to prove the correct supply and operation of the adapterboard with attached
BTnode, despite the latest has no functional purpose here but acts as additional
load. We measured the signal values as close as possible to the components. Ground
for the PCB is taken from the PC over USB. The values are mean values if not
declared otherwise.

7.2.3 Test results

7.2.3.1 Power measurements

In Table 7.1 the different voltage measurement results taken are shown. The mea-
surements are illustrated in Figure 7.2. Table 7.2 shows an overview over the power
usage for different operation states. Therefore, we measured the voltage over an 1€

7.2 Adapterboard hardware 55

Oscilloscope
BTnode ~ [}
usSB Adapterboard
PC I% Bus
Multimeter
~ A80
/

Figure 7.1: Test arrangement for the functional and performance tests of the adapterboard.

Signal name ‘ TP ‘ Min. ‘ Max. ‘ Result / Comment

VBus at C11 | 5.04 V | 5.10 V | 5.07 V, test passed, ripple ok
Vee U4.1 3.00V | 3.01 V| 3.00 V, test passed, ripple ok
Vpe X519 |34V | 6.0V | 488V, test passed

Vpe X6.18 | 3.6 V 20.0 V | 4.96 V, test passed

Table 7.1: Source voltage measurements of the adapterboard.

resistor in series to R1 and computed the corresponding current and power value.
Important to know is that the FTDI Chip has a typical current consumption of
about 25 mA under normal operation. So we can almost neglect the MSP430 mi-
crocontroller’s current for the power computation (we fixed Vp,s at 5.07 V). The
CPU means here the TI MSP430 microcontroller on the adapterboard. Note that
at start-up, the BTnode makes a Bluetooth inquiry (up to 198 mA at 3.3 V, see
BTnode Rev3 hardware reference [6]) and consumes a high current of about 100
mA. If a USB hub can not deliver enough current, battery supply in parallel is
used.

’ ‘ Adapterboard only ‘ Plus A80 ‘ Plus A80, BTnode

CPU, no LED 96.8 mW 109.5 mW | 149 mW

CPU, red LED 133.8 mW 152.2 mW | 215 mW

CPU, logging A80

red LED, green LED | 178 mW 194.6 mW | 255 mW

CPU, logging A80

no LED - 112 mW 180 mW (474 mW)

Table 7.2: Power consumption of the adapterboard with A80 and BTnode plugged.

56 7 Evaluation

Tek i @ Stop 1 Pos: 00005 MESSUNG Telo g @ Stop 1 Pos: 00005 CURSOR
+ +
CHZ Aus Tvp
Mittelwert
E:—H Quelle
in .
S04y =
CH1
e TR Ry AN ' 16011
a0y h !
CH1
Mittelwert DSJrIJsDO{n'1
.07 '
CH1
keine
1, - 1s =
CHY S00mY M 10.0ms CHY & 1.08Y CHY 20.0mYEy M 10005 CHY & 289
16-Feb-08 17:04 <10Hz 16-Feb—08 16:21 <10Hz
(a) (b)

Figure 7.2: The picture on the left shows the voltage Vg, filtered with C11 and the one on the
right illustrates the ripple of the microcontroller’s source voltage V...

7.2.3.2 Relevant signals

Here, we investigated the most relevant signals on the adapterboard. The adapter-
board software employes three different clocks, see Figure 7.3 and Table 7.3. We
verified the BSL signals, Figure 7.5, JTAG functionality and I*C' signals integrity.
Note that the BSL signals are provided over the NAND-circuit on the PCB, see
figure 7.4. Furthermore, we tested the proper USB communication over the FTDI
Chip. The drifts for the clocks are ok, since we did not detect any incorrect software
behaviour due to clock drifts during the implementation phase.

Tel T & Stop M Pos: 248,0ns Messung 1 Tek T @ Stop M Pos: 0,000s #UTO-SETUP
* +
Quelle
i
Typ
Fred, . J_L
Wert
I 4003MHz? 4
I m " \
! 1
T CH1
Zuriick s 3,20V Mittelert 153y Auto-Stup
Perinde 77.50,us Fredq, 12,90kHz rickgdngig
CH1 2.00% CH2 1.00% M 100ns CH2 7 880my CH1 1.00% M 25,005 CH1 /7 1.62%
13-Feb-05 1251 <10Hz 13-Feb-08 1255 <10Hz
(a) (b)

Figure 7.3: Picture (a) shows the ACLK (below) and the MCLK. Both have a frequency of 4
MHz. The picture on the right is the SMCLK running at 12.9 kHz that wakes up the Watch
Dog periodically.

7.2 Adapterboard hardware 57

Signal TP Reference value | Result

ACLK U4.50 4.00 MHz 4.003 MHz, test passed, drift ok
SMCLK | TP1, U4.49 | 12.5 kHz 12.9 kHz, test passed, drift ok
MCLK | U4.48 4.00 MHz 4.003 MHz, test passed, drift ok

Table 7.3: Clock measurements of the adapterboard. The drift of the SMCLK is ok, since this
clock is easily controllable by the firmware and the WDT timer does not need high accuracy.

Start Ack Stop
Tek al g @ 5t M Pos: 1368.0Qus AUTO-SETUP
+
\/ CH1
N = Mittelwert
‘ 1219
SDA |
‘.
1+
sCL |IIHHHHII
2+ Auto-Setup
riickgangia
CH1 1.00¥ CH2 1.00v M 50.0us CH1 ./ 360mY

19-Feb-05 14115 <10Hz

Figure 7.4: The picture shows the signals on the I2C bus when the A80 is transferring a log
message, above the SDA and below the SCL. The bus frequency is 100 kHz and the period
therefore 10 ps. The communication works properly. A start condition is fulfilled when a high
to low transition on the SDA line when SCL is high occurs. A low to high transition of the SDA
signal indicates a stop condition when SCL is high. Data on SDA is stable while SCL is low. For
a complete protocol specification, see [17].

7.2.3.3 Overall look and functionality

In this subsection we give an overall look over the functionality test results ob-
tained during operation of the adapterboard, see Table 7.4. For example, the tests
showed that when the adapterbaord is configured as I?C bus slave (per default)
and the A80 is disabled, the FDUZ221 is able to upload a code image to the
EEPROM. We can state that the I2C bus is fully functioning from the hardware
side.

58 7 Evaluation
Functionality Test results and comments
JTAG Programming over the JTAG connector is working now,
whereas the first assembly did not, since a 2.2k
resistor is needed between U6.8 and X3.7.
test passed
DIL switch To set the input value for the MSP430 controller

at S2.5 - S2.8 is possible, dynamic mode changing
while the firmware is running could be employed.
test passed

USB communication
to the PC

Ok for baudrates: 9600 kbps, 19200 kbps, 57600 kbps,
115200 kbps, 230400 kps.

Not ok for baudrate: 460800 kbps.

test passed

EEPROM programming
over FDUZ221

Programming of EEPROM over FDUZ221 ok
test passed

Battery supply

Powering of the adapterboard, A80 and BTnode with
4 x AA batteries works properly.
test passed

Power module

The automatic separation of the battery supply when
USB cable is plugged did not work without any failure.
If battery switch S1, D5 and R14 instead of

C15, R12, R13, D3, D6 and T2 is soldered,

the adapterboard behaves correctly.

test (not) passed!

Driver installation

Un- and replugging to PC, device correct drivers are installed.
test passed

Power up

When both A80 and BTnode connected to the adapterboard,
all devices were powered and the supply did not break up.
test passed

Table 7.4: Overview of the adapterboard functionality test results.

7.3 Adapterboard firmware with plugged A80 59

Tek Sl @ Stop M Pos: 47.60ms TRIGGER
+

Tvp
Flanke

4 Quelle

Reset

Flanke:

24 Megatiy

Modus
TCK ‘ I
i Kopplung

1+
CH1 .00y CH2 1.00% M 25.0ms CH2 ™ 208y
Triggerquelle mit dern Mehrfunktions—Drehkopf festlegen

Figure 7.5: This signal composition of Reset and TCK from the NAND Chip U6 invokes the
Bootstrap Loader (BSL) of the MSP430 to upload new code to the controller over the UART
interface as described in [24]. The BSL program execution starts when the TCK input of the
controller has received a minimum of two negative transitions and is low when Reset rises from
low to high level, 3 V here. This works well on the adapterboard.

7.2.4 Conclusions

The test results show that the adapterboard fulfills the requirements concerning
correct hardware functionality, except all functions of the power module. We can
state that despite this part does not work correctly so far we can use the battery
switch by hand instead and the DSN node hardware behaves as intended.
Despite we here documented just the test procedure for one adapterboard we can
state that all 12 adapterboard prototypes finally worked fine.

7.3 Adapterboard firmware with plugged A80

7.3.1 Measurement and test equipment

In this tests the following devices and tools were used:

- Device Under Test (DUT) adapterboard Rev0 in Blue Box No. 73
- Siemens A80 with ID 806403F7 plugged to DUT

- FDUZ221 MCLink-USB adapter with USB cable

- terminal program msp430-miniterm

- USB cable for data traffic and power

- USB Host: Fujitsu Siemens PC with Windows XP, SP2

- USB driver for standard FTDI Chip provided by FTDIChip

60 7 Evaluation

- USB driver for FDUZ221 provided by SBT
- A80 software: detectornode, Rev. 2446

- A80 software: dummy logger, Rev. 2546

- adapterboard firmware, Rev. 2513

- msp430-bsl program

- Python script serial_client.py

7.3.2 Test set-up and description

In Figure 7.6 the test assembly is drawn. Here a serial connection is set-up over
an FDUZ221 in parallel to the main USB connection from the PC. The A80 is
connected, enabled and runs a dummy logger software. This application writes as
log message "This is the dummy log message from the A80, average log length”
(except the header) with an incrementing number to the adapterboard. This
string has an above-average log message payload of 80 bytes. In order to set the
message intervals, we used the JSON-RPC command "dummylogger.start[args]|”
and evaluated the messages sent.

The FDUZ221 is not even necessary for this test. We used it to spy the I*C' bus
and to support the verification of the log message transfer. This test allowed us
to state the percentage of successful transmitted log messages over USB.

As second test described in this section, we sent a long series of JSON-RPC com-
mands using a Python script to the adapterboard and the A80 radio module
respectively and checked whether there is the correct response received or if the
DSN node replies at all. Here, the A80 runs the detectornode software. The log
level "ac” of the A80 is set to 0 (a = application and ¢ = communication) which
is equal to debug-level and generates much log traffic and is therefore suitable for
our test purposes.

With this system under test, we also verified the communication to the EEPROM
and the programming of the A80.

7.3.3 Test results

7.3.3.1 Log message transfer

The results obtained from the log message transfer test are shown in Table 7.5.
This piece of firmware works correctly and satisfying. We determined that if the
log interval of the dummy logger on the A80 is decreased to lower values than 20
ms (50 messages per second!), the adapterboard could still handle this traffic, but
the A80 is to slow to produce it! Not all messages could be displayed over USB
for those low dutycycles. It is possible that the FDUZ221 influences the proper

7.3 Adapterboard firmware with plugged A80 61

Log data /RPC cmd

MC Link
use r MC Link

uUsB Adapterboard
I’C Bus <

PC

Log data /RPC cmd

~
>

A80

Figure 7.6: Schematic of the test set-up for the firmware evaluation.

communication (acks transfer) between MSP403 and A80. But this requires closer
investigations.

¢t C:\WINNT\system32\cmd.exe - msp430-miniterm com5 230400 --dtr=0

83440196 iac This is the dummy log message from the 480, average log length! 6120
83440196 jac This is the dummy log message from the AB0, average log length! 6121
83440196 jac This is the dummy log message from the AB0, average log length! 6122
83440196 jac This is the dummy log message from the AB0, average log length! 6123
83440196 jac This is the dummy log message from the AB0, average log length! 6124
83440196 jac This is the dummy log message from the 480, average log length! 6125
83440196 jac This is the dummy log message from the A80, average log length! 6126
83440196 esi evthdlr stuck
83440196 jac This is the dummy log message from the A80, average log length! 6127
83440196 jac This is the dummy log message from the AB0, average log length! 6128
83440196 jac This is the dummy log message from the AB0, average log length! 6129
83440196 jac This is the dummy log message from the AB0, average log length! 6130
83440196 jac This is the dummy log message from the AB0, average log length! 6131
83440196 jac This is the dummy log message from the 480, average log length! 6132
83440196 jac This is the dummy log message from the 480, average log length! 6133
83440196 jac This is the dummy log message from the AB0, average log length! 6134
83440196 jac This is the dummy log message from the AB0, average log length! 6135
83440196 jac This is the dummy log message from the AB0, average log length! 6136
83440196 jac This is the dummy log message from the 480, average log length! 6137
83440196 jac This is the dummy log message from the AB0, average log length! 6138
83440196 jac This is the dummy log message from the A80, average log length! 6139
83440196 jac This is the dummy log message from the AB0, average log length! 6140
83440196 jac This is the dummy log message from the 480, average log length! 6141
83440196 jac This is the dummy log message from the AB0, average log length! 6142
83440196 jac This is the dummy log message from the 480, average log length! 6143
83440196 jac This is the dummy log message from the 480, average log length! 6144
83440196 jac This is the dummy log message from the 480, average log length! 6145
83440196 jac This is the dummy log message from the AB0, average log length! 6146
83440196 jac This is the dummy log message from the AB0, average log length! 6147
83440196 jac This is the dummy log message from the AB0, average log length! 6148
83440196 iac This is the dummy log message from the AB0, average loq lenqgth! 6149

Ll e e el el el el el e e el el e e]

Figure 7.7: Example of the log messages produced by the dummy logger. Here, the A80 received
a log interval of 16.7 ms which obviously results in an event handler stuck on the A80.

62 7 Evaluation

AB80 log | # logs sent | # logs received # logs received | USB
interval | from A80 over normal USB | over FDUZ221 | Success rate
1s 1200 1200 1200 100 %

0.5s 1200 1200 1200 100 %

0.2s 1200 1200 1198 100 %

20 ms 1200 1197 1197 99.75 %

Table 7.5: Correctly received log messages from the A80 over the adapterboards USB interface.
The messages carry about 80 bytes payload. Logs means here log messages.

7.3.3.2 JSON-RPC command transfer

“pesult":"JSON-RPC cmd sent to target module?!","error":null,"id":1>

I 806403f7 dac check: Bx0000
I 806483f7 isi Radio channel set to channel 55
“result”:null, Yerror":null, "id":1>

I 806483f7 dac check: BxB000

4
I 806403f7 dac event_after_rx Ack from

I
Response
“result”:null, Yerror":null, "id":1> from A80
I 806483f7 dac check: BxB0000

I 806403f7 dac check: Bx0000

"pesult”:"JSON-RPC cnd sent to target module!"',"error':null,“id":1> I Adapterboard
806403f7 isi Radio channel set to channel 55

5
I 806403f7 dac event_after_rx

“pesult:"JSON-RPC cmd sent to target module!","error“:null,"id":1>

I 806403f7 dac check: Bx0000

I 806483f7 isi Radio channel set to channel 55
“pesult:null, "error":null, id":1>

I 806403f7 dac check: Bx0000

Figure 7.8: The terminal output on the PC from several JSON-RPC requests is shown. The client
sends the command over the adapterboard to trigger the A80 to change the communication
channel to 55, which is equal to 869.3875 MHz and was defined as a system parameter in the
DSN.

In Table 7.6 the detailed results of the JSON-RPC request tests are described.
The adapterboard replies to all JSON-RPC requests with the correct answer, even
if every 0.5 seconds a command is sent. We sent a total of 1200 and 500 requests
and repeated this three times. The results were always the same: no failures.
Looking at the results obtained from sending JSON-RPC commands to the target

7.3 Adapterboard firmware with plugged A80 63

Request | # JSON-RPC requests | # correct responses | Success
interval | sent (cmd name) received rate
0.5s 1200 (log.disable) 1200 100 %
0.5 s 500 (log.disable, log.enable) | 500 100 %

Table 7.6: Results of sending JSON-RPC requests to the adapterboard, that always replied
correctly and executed the corresponding method with no failure.

Request | # JSON-RPC requests # correct responses | Success
interval | sent (cmd name to target) | from A80 rate
0.5s 500 (info.set.chan[55]) 498 99.6 %
0.5s 500 (version) 494 98.8 %

Table 7.7: Results of sending JSON-RPC requests to the A80 over the adapterboard. The A80
replied mostly formal correctly.

in Table 7.7, we can see that the commands are forwarded correctly in most cases
from the adapterboard to the A80. The adapterboard sends the corresponding
acknoledgement "JSON-RPC cmd sent to target module!” as well as the response
from the target as JSON string to terminal program on the PC. Important is the
fact, that the A80 polls the adapterboard every 0.5 seconds, so smaller request
intervals would not make sense. It is possible, that the adapterboard captures a log
message in between, that is ok. Figure 7.8 illustrates the client output on the PC
from one test sequence, where the A80 was invoked to set the radio communication
channel to 55 again and again. Twice, after about 100 and 350 repeated commands
"info.set.chan” sent to the A80, an error ocurred. We assume, that some characters
were not transmitted correctly over the I2C bus. The error message was equal to
"no such method”, which is by the way a JSON string too. That explains why not
100 % of the requests were successfull. Table 7.6 and 7.7 list the results.

7.3.3.3 Communication to EEPROM

To execute the EEPROM test routines, we had to uncomment the related code
in main.c as already mentioned (uncomment "test section”). The adapterboard
writes bytes, reads bytes and writes a page successfully to the EEPROM when it
is configured as I2C master. We used the functions write_byte, read_byte, read_at
and write_page that all showed the correct behaviour. Figure 7.9 presents the serial
terminal output on the PC while the adapterboard executes the EEPROM test
routines just after the firmware is started. After the test routines, the firmware
configures the adapterboard as slave and continues normal operation including
reset of target. The results obtained prove that the hardware and pins related to

64

7 Evaluation

-—- Miniterm on comS: 230400,8,N,1. Type Ctrl-] to quit. ---

% DSN USB <-> Radio module Adapterboard connected...
% MSP430 Firmware running at 4 MHz with Target ABO/nRF
% F, Betschart, MASTER'S THESIS, (c) Siemens SBT Ltd. 2008

- forcing DTR inactive

¥
"
*

b b b bbb dede dede e b de e e e bl s el d dede de d de e e dedede e de e e e e il d de el et el e e de e e de e e el e

C:\Local\EXT_BetschaF\swing\DSN\AdaptorBoard\firmware>msp430-miniterm com5 230400 -

a)

Global interrupts enabled...
MSP430 configured as master with Eeprom adress selected. ..

Writing 5 bytes to the eeprom: = 0x09 0x06 0x33 O0x56 Ox1l...
Reading this 5 bytes with read byte and read_at:
Printing out the received hytes:

data[0]... must be hex 0x09 => is dec 9
data[1]... must he hex 0x06 => s dec 6
data[2]... must be hax 0x33 => is dec 51
dataFB%... must he hex 0x56 =» is dec 86
datal4]... must be hex Ox1l => is dec 17

b)

Start sending the page...

Stop, sent bytes.

Reading this bytes from Eeprom into data array:
array Tndices do not correspond with values!!!
Printing out the received hytes:

data0]... must be dec 72 = 'H' => 72

data[1]... must be dec 101 = 'e' = 101
data[2]... must be dec 108 = '1' => 108
data[B%... must be dec 108 = '1' => 108
data[4]... must he dec 111 = 'o' =» 111

Eeprom testing OK!
Eeprom testing OK!

Eeprom testing OK!

MSP430 configured as slave now...
Enable the target...

806403f7 isf boot 1.0

8064037 isf go

806403f7 dai reg ap ping_request

806403f7 dai reg ap p2device

8064037 dai reg ap device_control
806403f7 iab {"gw attached":0}

8064037 dai reg ap mesh_admin_app
806403f7 dam {"mode": "node"}

806403f7 iab {"con_state":0}

806403f7 dai reg ap routing_tahle_confirm

I e e]

806403f7 jac 'detector_node' rev 2446 from 2008-02-14 16:15:52

d)

Figure 7.9: Tested functions write_byte, read_byte, read_at and write_page of the adapterboard
firmware. The data transmission works properly in both directions. Under a) the start-up se-
quence of the adapterboard is shown, b) proves the correct writing and reading of several bytes
whereas ¢) verifies the proper page write. The last paragraph d) shows a typical log output after
an A80 reset.

7.3 Adapterboard firmware with plugged A80 65

the connection between EEPROM and MSP430 are used the right way and that
also this communication behaves as intended. Finally, we tested to change the
EEPROM address by setting the three least significant bits of the address by the
DIL switch pins 2, 3 and 4. Also this test was succesful. The adapterbaord was
not able to write anything without changing the address in the firmware as well.
Note that the default address is set to 81 in the firmware.

7.3.3.4 AB80 flashing

To verify the proper A80 flashing after a reset, we used the FDUZ221 to load
an code image to the EEPROM. Afterwards we reset the whole firmware which
therefore resets the A80. The A80 was able to load the code from the EEPROM, to
flash itself successfully and to display the status information about new software
version.

7.3.4 Conclusions

The evaluation of the log message transfer shows that the adapterboard is capable
to read the effective number of log messages sent out from the A80 over the I?C
bus and to transmit the data correctly to a client PC over USB. The performance
is about 50 log messages per second and node, which corresponds to at least 4
KB/s and is higher than with the BTnode-based DSN, evaluated by Dyer et al.
in [1]. In this paper, a rate of three messages per node and second is reached,
assumed a 100 % message yield and a 10-node-net.

We can conclude, that the stereo connector who interfaces the I?C bus is fully
functioning as well. An FDUZ221 can gather all the log messages simultaneously
to the adapterboard firmware and transmit them to a client PC. Furthermore
we can state that the adapterboard receives the JSON-RPC commands and ex-
ecutes them correctly with intervals of at least 0.5 seconds. Also the forwarding
of requests to the A80 works properly in most cases. The A80 fails to detect a
JSON-RPC command in only about 0.4 % and 1.2 % respectively of randomized
JSON-RPC requests, which is an acceptable rate. Bit erros during the I2C' trans-
mission are possible. The EEPROM on the adapterboard is obviously accessible
to store and read data from the adapterboard’s controller, the FDUZ221 over the
stereo link and from the A80.

Finally, we can state that we have a proper functioning adapterboard
as DSN node according the required functionality. The adapterboard
does not limitate the performance of the Ethernet-based DSN when
the number of nodes is increased up to 64.

66 7 Evaluation

7.4 NSLU2 software and Ethernet-based test DSN

7.4.1 Measurement and test equipment

In this tests we used the following hardware:

- 8 adapterboards Rev(

- 8 Blue Boxes No. 20, 71, 73, 74, 76, 77, 78 and 84

- 8 Siemens A80 radio modules plugged with IDs 83440152, 806403E4, 806403F7,
8344016E, 83440189, 8064040A, 8064040D and 83440182

- 10 USB 2.0 cables, different lengths from 60 cm up to 4.5 m

- 2 USB 2.0 hubs Maxxtro 7-port, self-powered

- USB host: Fujitsu Siemens PC with Windows XP, SP2

- 1 Linksys NSLU2 device with a installed OS Debian GNU/Linux 4.0

- 1 RJ45 Ethernet cable, not crossed!

- 1 USB stick as external NSLU2 memory

software:

- USB drivers for standard FTDI Chip from FTDIChip on PC

- A80 software: detectornode, Rev. 2446

- A80 software: gatewaynode, Rev. 2436

- A80 software: dummy logger, Rev. 2546

- Putty ssh client on PC

- adapterboard firmware, Rev. 2513

- Python script rpc_client.py, tepclient.py

- NSLU2 software: Python script tcpserver.py, Version 1.0, Rev. 2545

7.4.2 Test set-up and description

To verify the correct functionality of the NSLU2 in our Ethernet-based DSN, we
tested it in two steps. First, we focussed on the basic software features. For this
purpose, we built a test system as shown in Figure 7.10 consisting of eight adapter-
boards with an A80 each equipped and a single NSLU2 device. We attached the
NSLU2 to the Ethernet and gave it the static IP address 10.169.26.4. We connected
the adapterboards over two USB hubs to the NSLU2. Figure 7.11 illustrates the
device’s arrangement as it was during this test section.

Eight target nodes build a wireless network with one gateway node (A80, ID
83440152) and seven detectornodes. We accessed the DSN by requesting e.g.
"http://10.169.26.4:8080/DSN /logs”, see Figure 7.12 for message examples, and

7.4 NSLU2 software and Ethernet-based test DSN 67

Ethernet
PC Logs NSLU2 Static IP
XML-RPC
commands
Target
rogrammin
prog g [UsB Logs / JSON-RPC cmds /
EEPROM programming
USB 7-port Hub
f— USB 7-port Hub
8 Adapterboards

Figure 7.10: Build-up of the 8-node DSN test system. The eight adapterboards with an A80
plugged are connected over USB hubs to a NSLU2 as Ethernet gateway. The client PC interacts
with the DSN.

loaded an EEPROM image to the NSLU2 over the web browser. Through XML-
RPC, we sent commands with the Python script rpc_client to invoke the corre-
sponding procedures on the NSLU2 such as to reply with a list of the attached
nodes or to send JSON-RPC requests to the adapterboard and target respectively.
We also tested the correct programming of all the A80 (loading EEPROM image
to EEPROM, flashing of A80 and reset). Here, we are just interested in the proper
software behaviour and not in the performance.

As a second step we analysed the performance of our 8-node DSN. Therefore,
we employed two different software versions for the A80 nodes. Once the A80 acted
as detectornode or gateway respectively, once all used the dummy logger software
and did nothing than just transmit a dummy log message as described before to
the DSN node. We checked, if all messages from all target nodes were transmitted
correctly to the PC.

We used the dummy logger software running on the A80' to determine the
maximum messages that the NSLU2 software can handle.
To make a statement about the target programming performance, we measured
the time from sending the programming command to the NSLU2 from the client
PC until all A80 finished flashing from the Eeprom. A significant value is the

1We always used our Ethernet-based DSN to reprogram the target nodes!

68 7 Evaluation

Round Trip Time RTT of the command transfers from PC to the adapterboards
and A80 respectively. We determined the RTT for several usecases.

7.4.3 Test results

7.4.3.1 Functional evaluation

Table 7.8 gives an overview and the results obtained from the functional tests.
We can admit that all the functional software features behave as intended, except
the writing of the code image to the adapterboards EEPROM. Mostly just 6 or 7
adapterboards could be programmed simultaneously. The software uses individual
programming threads and the JSON-RPC protocol to transfer the data to the
adapterboard. A closer investigation of the proper thread execution is needed.

7.4.3.2 Performance evaluation

From Table 7.9 we obtain, that the performance of our 8-node DSN is ok, despite
we loose some log messages during operation. A test with dummy logger software
running on the A80 did not result in an improved performance versus the normal
detector- or gatewaynode software. In decrease of the log message interval rapidly
reduced the message yield at the NSLU2. We determined that the highest number
of handled messages was about 25 per second for eight nodes. In terms of pro-
gramming the EEPROM we measured in all our tests a duration from sending the
XML-RPC command to the NSLU2 until the A80 finished flashing of about four
minutes for eight nodes serviced by a single NSLU2 using the imple-
mented JSON-RPC protocol.

We assume that if we increase the DSN size to 64 nodes, we do not even need
much longer than this four minutes to program the whole net since we can use
eight of our 8-node test nets in parallel.

Any JSON-RPC command request to just one DSN node over the NSLU2
worked in 40 of 40 cases perfectly with a short RTT of about one second. The
periodic broadcast of JSON-RPC commands to all eight nodes worked in most
cases properly, but not that fast as intended. The adapterboard replied correctly
each time and the JSON-RPC answers were retransmitted to the PC. The web
server behaves as intended. The XML-RPC requests such as "ports_list” or "up-
date_list_disable” perform with a RTT of 0.5 seconds. Table 7.10 shows an overview
of the results.

7.4 NSLU2 software and Ethernet-based test DSN

69

Functionality

Test results and comments

Check for plugged
DSN nodes,

(port name),
initialisation

of serial port

The detection of the available port names
and starting of corresponding object thread
works properly.

The software start-up lasts between

5 and 40 seconds each time.

test passed

Request of web pages:
../DSN/list
../DSN/logs
../DSN/test
../upload.html

(web application)

The browser displays all the websites,
see 7.13, the site containing

the log messages is updated as intended,
see Figure 7.12

test passed

Code image upload
to NSLU2

The upload of an new eeprom image works
correctly, web server (GET, POST) is ok.
test passed

Send XML-RPC

requests to NSLU2:

- ports_list()

- send_rpc_cmd(args)

- eeprom_write_cmd(args)
- update_list_disable()

- update_list_enable()
(XML-RPC server)

Ok for all.
test passed

Forwarding of
JSON-RPC commands
to adapterboard

and A80

Ok.
test passed

Writing code image
to 1 adapterboard,
A80 reprogramming

Ok, worked for 20 tries
with no failure.
test passed

Writing code image
to 8 adapterboards
simultaneously

Success rate of 80 %
test (not) passed

Table 7.8: Overview of the results from the functional test of the NSLU2 Software. For a detailed
desription of the command formats see the Readme in the Appendix.

70

7 Evaluation

DSN with 7 detectornodes, 1 gatewaynode

measurement time 300 s 675 s 850 s
log messages sent from A80 5230 15405 19260
correctly received from NSLU2 5212 15220 19052
correctly received over Ethernet 5212 15220 19052
Success Rate 99.66 % | 98.80 % | 98.92 %
log messages/s/node 2.17 2.82 2.83

Table 7.9: Results of the first Ethernet-based DSN log message transfer performance test.

XML-RPC requests to NSLU2

cmds | # Responses Success
command name sent to PC RTT | rate
("ports_list”) 20 20 0.5s | 100 %
("update_list_disable”) 20 20 0.5s | 100 %
JSON-RPC requests

cmds | # Responses Success
command name sent to PC RTT | rate
("broadcast”, "system.listMethods”) | 20 20 3s 100 %
("broadcast”, "target.reset”) 20 18 2s 90 %
("broadcast”, "forward.command”,
"{"method”: ”info.set.chan”,
"params”: [55], 7id”: 1}7) 20 17 7s 85 %
("broadcast”, "forward.command”,
"{"method”: "log.level”,
"params”: ["ac”,0], "id”: 1}”) 20 20 4s 100 %

Table 7.10: Overview of command transmission performance tests and the RTTs. The JSON-
RPC requests are packed in the XML-RPC request "send_rpc_cmd(args)” that is sent to the
NSLU2 and then forwarded to the DSN nodes.

7.4 NSLU2 software and Ethernet-based test DSN 71

7.4.3.3 Target command RTT computation

We now want to estimate the relative high RTTs of the broadcasted JSON-RPC
commands to the target nodes without measuring the exact time slices. When we
broadcast a JSON-RPC command, the NSLU2 forwards them sequentially await-
ing each time the adapteboard to reply. The adapterboard firmware on the other
hand fills a buffer that the A80 flushes after having polled for commands. The
polling dutycycle of the A80 for new commands from the adapterboard is actually
set to 0.5 seconds.

For the computation we make the following definitions:

- command processing time on client PC: tp¢

- transmission from PC to NSLU2: ¢;

- processing on NSLU2 (for each node): txsru2

- transmission from NSLU2 to adapterboard: ¢,

- processing on adapterboard (receive, buffer filling): ¢,
- polling interval A80: ¢, = 0.5 s

- processing time on A80: t 450

tpe < tnsruz < tap = tago < 20ms (71)

t1 <<ty << t, =0.55 = 500ms (7.2)

_120B*[8+1+1]bit _ 1200bit
2 230400baud ™ 230400kbps

The default serial baudrate between NSLU2 and adapterboard equal to 230400
kbps. The upper bound of 20 ms for the processing time is obtained from the
adapterboards performance test, compare Table 7.5. With above equations and

the neglected tpc, tysry2 and t; we can now estimate an upper bound for the
RTT:

~ 5.2ms (7.3)

RTT < 8% (2xty+2xtay, +1,+2xtag) ~4.72s (7.4)

So we can state, that the worst case RTT is almost 5 seconds, despite the
average should be lower. However, this explains the dimension of the RTTs.

7.4.3.4 Results of software performance investigation

In this paragraph we document further investigations made concerning the log
message handling performance of the NSLU2 software. From the results obtained

72 7 Evaluation

from the previous tests we identified the NSLU2 software as the bottleneck in our
8-node-DSN, since the adapterboards are able to send out up to 50 log messages
per second. Between the client PC and the NSLU2 the communication works
properly and fast over the network, if we consider Table 7.9. Here we used the
dummy logger software on the A80 and just observed the console output on the
NSLU2 over the Putty ssh client. We can imagine several performance limitation
reasons around the NSLU2 software:

e Using more NSLU2 devices per DSN node
This is certainly the easiest solution that would increase the DSN performance
but also the most expensive one.

e Change of reading strategy from serial port in NSLU2 software
For the log message transfer the NSLU2 software reads from all available
serial ports a single line when the corresponding thread is running. The thread
invokes the processing procedure and goes to ready state again. Modifications
of code as to read up to 1000 bytes when the thread is running and then to
make a data processing byte per byte showed that a higher log message rate
can be achieved. The problem is hereby, that the EEPROM writing speed
decreases drastically, since the processing of the JSON-RPC responses lasts
much longer.

e Tries with a shorter dummy message
Another approach to find out the performance limition causes was to re-
duce the dummy logger message length on the A80 to 25 bytes. Here, we
investigated a higher log message throughput on the NSLU2 (not exactly de-
termined). This yielded to the conclusion, that the OS buffer size is probably
not a performance limitating value.

e Hardware flow control

To use hardware flow control for the communication from NSLU2 to the
adapterboards would be an alternative. Since we had connected the RTS#
(Request To Send) from the FTDI USB-serial converter chip with a microcon-
troller input on the adapterboard we used it here to check, whether this bit
is toggled whenever we loose log messages in the NSLU2. We observed that
this handshake signal is never toggled (rise from low to high) for none of the
adapterboards (measured at U1.23). Therefore, we assume that no hardware
buffer overflow occures in the NSLU2.

e Disable other activities when reading log messages
We could not increase performance when we disabled actions like updating
the log message pool or the the web page display in the code.

7.5 Backwards compatibility to BTnode-based DSN 73

From above considerations we could not figure out a certain possibility to in-
crease the overall performance.

7.4.4 Conclusions and improvements

From the test results obtained from this section we conclude that our 8-node
Ethernet-based test DSN fulfills the functional requirements and performs ac-
ceptable. It provides a good DSN for the WSN consisting of A80 radio modules.
Sending commands to both adapterboard and A80 as well as remote programming
is possible. As intended, the DSN allows us to capture log messages from the A80
over the wired network from a client PC (or later the DSN Server) in the back-
bone.

What has to be improved is the performance, since the actual configuration with
a single NSLU2 and eight adapterboards is not able to handle more data than a
BTnode-based DSN described in [1]. There, a rate of three messages per node and
second is achieved, with a 100 % message yield and 10 nodes. But they took the
results when each node sent 100 messages, we measured for longer period what is
certainly more significant. No statements are made in [1] about the programming
time of the target nodes.

The bottleneck in our system is the NSLU2 software. Either the number
of DSN nodes per NSLU2 or the NSLU2 software has to be adapted to improve
the performance especially when the network size is increased up to 64 or 128
nodes in the future.

7.5 Backwards compatibility to BTnode-based DSN

7.5.1 Measurement and test equipment

In this tests we used the following devices and tools:

hardware:

- adapterboard Rev0 in Blue Box No. 84 with four metal screws

- adapterboard Rev0 in Blue Box No. 75 with four plastic screws

- Siemens A80 radio module plugged with 1D 83440196

- 2 USB 2.0 cables

- USB Host: Fujitsu Siemens PC with Windows XP, SP 2

- Laptop Fujitsu Siemens with Windows Professional Version 2002, SP 2
- BTnode Rev3.24, 0.50103, 20/06, MAC: 00043F0001B5

software:

74 7 Evaluation

log messages | # logs | # logs # logs Success
sent from AS80 USB FDUZ221 | BTnode | rate
| 10200 (30/s) | 10200 | 10200 | 10200 [100 % |

Table 7.11: Test results when the adapterboard transmits log messages.

- USB drivers for standard FTDI Chip provided by FTDIChip
- A80 software: detectornode, (Rev. 2446)

- A80 software: dummy logger, (Rev. 2546)

- adapterboard firmware (Rev. 2513)

- DSNAnalyzer, DSNServer

- 2 X terminal program msp430-miniterm

7.5.2 Test set-up and description

This test concludes the evalution of the Ethernet-based DSN. Here, the crucial
question is if a BTnode plugged the adapterboard is able to send the log messages
out over Bluetooth to the GUI node and the DSN Server respectively. We therefore
attached an A80 to the adapterboard and a BTnode as well. The A80 ran the
dummy logger software so that we could count the messages it produced. We
tried to capture the log messages over three independent channels, namely the
adapterboards USB interface, the FDUZ221 and the BTnode. The test assemby
is drawn in Figure 7.15.

We took two different adapterboards to investigate the influence of the plastic
screws who fix the PCB in the Blue Box. We did neither test to send JSON-
RPC commands over the BTnode to the target node nor EEPROM programming
because that does not work here anyway. The adapterboard firmware needs to be
adapted. The firmware sends a zero byte out to the I2C when the target polls and
that is exactly was the target always receives here.

7.5.3 Test results

The BTnode behaves as intended. It is possible to gather log messages from the
A80 over all three channels, see Table 7.11. We found out, that we have to switch
the battery power on additionally to make sure proper BTnode operation. Oth-
erwise, not enough current is delivered only over USB. If so, the BTnode did not
always appear as DSN node in the DSNAnalyzer.

We could not determine a significant difference between plastic- and metall-screw-
adapterboard’s BTnode behaviour.

7.5 Backwards compatibility to BTnode-based DSN 75

7.5.4 Conclusions

The results prove that it is possible to run both DSNs (Ethernet and Bluetooth)
simultaneously at least for log message capturing and we can assume that the

adapterboard developed within this work supports the use of the BTnode-based
DSN.

76 7 Evaluation

;
i
i
i
\

Figure 7.11: A complete 8-node test DSN built within this work.

7.5 Backwards compatibility to BTnode-based DSN

) Mozilla Firefox

@-

Datei Bearbeiten Ansicht Ch i il
\
@ L htpifno.is9.zs.400800shgs |) «[1

R R R R R RO,

From:

10.169.26.4 # /devittyUSB2 # 2008-02-27T09:34:57.423782 # 8064034 dai tx RT up id=15 n=4 Oxdde

From:

10.169.26.4 # /devittyUSBO # 2008-02-27T09:34:57.465079 # 806403{7 dam (*rx""hello", "src""83440182", *sink"00000000", *he"0, "es"3)

From:

10.169.26.4 # /dewittyUSBO # 2008-02-27T09:34:57.493451 # 806403f7 dam {"nh up"."83440182"} 0))

From:

10.169.26.4 # /devittyUSBO # 2008-02-27T09:34:57.555177 # 806403f7 dam {"nh""83440182", "ptr"."0z702", "he"0, "cs"3, "locked" 1, "maint":1}

From:

10.169.26.4 # {devittyUSB7 # 2008-02-27T09:34:57.623109 # 8344016e dac check: 0x0000

From:

10.169.26.4 # /devlttyUSB6 # 2008-02-27T09:34:57.647717 # 83440182 dac check: 0z0000

From:

10.169.26.4 # /devittyUSBO # 2008-02-27T09:34:57.663990 # 806403f7 dam {"nh""806403e4", "ptr""0x720", *he"0, "cs"3, "locked"1, "maint"1}

From:

10.169.26.4 # /devittyUSB1 # 2008-02-27T09:34:57.737076 # 8064040a dac check: 0x0000

From:

10.169.26.4 # /devittyUSBO # 2008-02-27T09:34:57.749829 # 806403f7 dam {"nh""8344016e", "ptr""0x73¢", "hc"0, "cs"3, "locked"0, "maint"1}

From:

10.169.26.4 # /devittyUSBO # 2008-02-27T09:34:57.811491 # 806403f7 dam {"nh""8064040a", "ptr""0x75¢", "hc"0, "es"3, "locked"0, "maint"1}

Figure 7.12: An extract of the web page ../DSN/logs from the Firefox web browser. It displays
the 1000 latest log messages sent out from the A80 nodes. Under a) one can see the URL and
b) shows the format with IP address, port name, time stamp and processed message.

) Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hife

e&->-@& 2% | ntpefi10.169.26.4:8080/05Mtst

DSN attached Adapterboards to
IP of the NSLU2: 10.169.26.4

Actual time: 2008-02-27T09:54:15.732399

|USB Port name: iRadio module ID, if plugged to Adapterboard:
idevityUSBO [806403£7
idevittyUSB1 [8064040a
idevittyUSB2 [306403e4
lideufttyUSB3 [23440189
IdevityUSB4 [23440152
idevittyUSBS [30640404
IidevityUSB6 [33440182
ideufttyUSB7 [2344016¢

Figure 7.13: The picture shows /DSN/list that informs the user about the DSN configuration.
The first time an A80 sends a log message, this page is updated with the new serial port name
and the corresponding A80 module ID.

78 7 Evaluation

Figure 7.14: Typical output on the NSLU2 console. The A80 runs the dummy logger software
that waits for the start command after start-up. Then the new image is uploaded to the NSLU2
over the web browser and the user starts the programming procedure.

Bluetooth
USB
—_< /
PC . GUI
node ‘%\
3 a r
Y
USB
Log BTnode
| messages
MCLInK Adapterboard
UsB I°’C Bus ~ |
Log messages ‘
> A80

Figure 7.15: Test set-up of the backwards compatibility test.

Chapter 8

Conclusions and future work

We summarise here the achievements of the work presented in this thesis and
make a conclusion based on the evaluation presented in the previous chapter.
Furthermore, we give an outlook to future work.

8.1 Summary

The scope of this work was to develop a Deployment Support Network based on
a wired approach. After having studied and evaluated different design variants,
we decided to build a hybrid system consisting of Ethernet and USB for commu-
nication. To connect the target nodes over I2C' and to provide an USB interface
to the backbone, we developed a new adapterboard including schematics, layout
and assembling of twelve prototypes. Afterwards, we wrote firmware in C for the
adapterboard. According to the required functionality, the firmware supports:

e Log message reading from the target nodes over I?C' bus and sending them
out over USB.

e Receiving and execution of JSON-RPC commands including forwarding to
the target node.

e Writing a code image for the target node to an external EEPROM.

The adapterboards are connected over USB hubs to a so called NSLU2 to
complete the DSN. This commercial device acts as gateway from several USB
ports to Ethernet. We implemented software running in this NSLU2. The software
provides basically:

e Receiving and processing XML-RPC commands from a remote PC or the
DSN Server.

80 8 Conclusions and future work

e Extracting JSON-RPC commands from XML-RPC requests to forward to
the addressed DSN nodes.

e Capturing log messages from all the USB-interfaced DSN nodes and sending
them over Ethernet to a network client. The NSLU2 software adds the log
messages a timestamp, the serial port name and the IP address. The main
log message processing is done in the backbone.

e The user can upload a code image over the web browser and start the image
transmission to one or several adapterboards remotely.

8.2 Conclusions

From the evaluation of a 8-node DSN with a single NSLU2 we can obtain that
the Ethernet-based DSN is able to monitor the target network and that the im-
plemented software features on the adapterboard as well as on the NSLU2 work
properly. Concerning the performance we have to admit that the Ethernet-based
DSN delivers not higher log message data rates than the BTnode-based one so far,
despite a single adapterboard could send about 50 messages per second. The sys-
tem performance can be improved, since the reliability is excellent and the NSLU2
software is not optimised.

If desired, the BTnodes can be employed with the new adapterboards to run the
Bluetooth DSN supplied from batteries. Some modifications in the adapterboard
firmware are nedeed in that case.

8.3 Design approach review

We go out from the Design Approach Evaluation Table in Chapter 3. There
we judged the different design approaches for an Ethernet-based DSN.

From the cost effort’s point of view, we could employ the fully functioning TCP /TP
stack to communicate over the network by using the NSLU2’s Linux OS stack.
The only drawback is that we use one more device between DSN node and the
backbone with the DSN Server, but this seems not to have bad influence on the
portability of the system so far. Furthermore, we managed to finish off within 26
weeks having a running system.

Despite we use no PoE, only one cable to the DSN node for power supply is needed.
Additionally battery power can be used. Concerning the components cost we can
say that we estimated 198 CHFr. per node and we finally had to pay 216 CHFr.
So this is a reasonable price compared to the other alternatives.

The adapterboard can be reused with the BTnode-DSN as well and even for other

8.4 Outlook 81

applications, where USB is needed. The NSLU2 and the hubs are general purpose
devices, and could be employed anywhere, so usability is guaranteed here.

We assumed that we would have at least no data traffic bottleneck at the NSLU2
as part of our DSN and that the performance is limited by the USB-adapterboards.
By now, it seems the other way round. But neither the NSLU2 software is opti-
mised nor the number of DSN nodes per NSLU2. So not to connect each DSN
node to Ethernet was the right design decision.

This approach provides a lot of optimisation possibilites whereas the most of the
others do not. Furthermore, we minimised the risks and difficulties that could have
occurred during this work. We can state that despite we had several hard- and
software implementation problems to solve we finally managed to get an Ethernet-
based DSN running.

8.4 Outlook

Here we propose the next steps to take in order to run a 64-node DSN:

e Investigation of the NSLU2 software and performance optimisation. In addi-
tion, a proper software interface for the DSN Server has to be defined based
on the already implemented software.

e In order to increase network size, several NSLU2s with attached DSN nodes
should operate together for first test reasons.

e The DSN Server has to be redesigned for Ethernet connectivity and to address
the adapterboards.

82

8 Conclusions and future work

Bibliography

1]

[5]
[6]

[7]

Makoto Suzuki, Shunsuke Saruwatari, Narito Kurata, Hiroyuki Morikawa:
A High-Density Farthquake Monitoring System Using Wireless Sensor Net-
works. In SenSys ’07: Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 373-374, Sidney, Australia,
2007.

Siemens: Application for funding (Safety Critical Sensor Networks for
Building Applications). KTI/CTI Application Document, Siemens Inter-
nal, Switzerland, 2006

Konrad Lorincz, David J. Malan, Thaddeus R.F. Fulford-Jones, Alan Na-
woj, Antony Clavel, Victor Shnayder, Geoffrey Mainland, Matt Welsh: Sen-
sor Networks for Emergency Response: Challenges and Opportunities. IEEE
Pervasive Computing. October to December 2004.

Matthias Dyer, Jan Beutel, Lothar Thiele, Thomas Kalt, Patrice Oehen,
Kevin Martin, Philipp Blum: Deployment support network - a toolkit for
the development of WSNs. In Proceedings of the 4th European Conference
on Wireless Sensor Networks, pages 195-211. Springer, Berlin, Germany,
January 2007.

Bluetooth, http://www.bluetooth.com

Btnode, A Distributed Environment for Prototyping Ad Hoc Networks. Rev3
- product brief, http://www.btnode.ethz.ch, March 2006.

Thomas Kalt: Online sensor network analysis tool. Master thesis, Swiss
Federal Institute of Technology (ETH) Zurich, Switzerland, 2006.

[8] Patrice Oehen: DSNAnalyzer: Backend for the deployment support network.

Master thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzer-
land, 2006.

[9] Severin Hafner: Distributed Spy-Software Tool WSNSpy. Master thesis,

Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, 2007.

84 Bibliography

[10] Adam Wolisz, Vlado Handziski, Andreas Képke, Andreas Willig: TWIST:
A Scalable and Reconfigurable Wireless Sensor Network Testbed for Indoor
Deployments. In Proc. of the 2nd Intl. Workshop on Multi-hop Ad Hoc
Networks: from Theory to Reality, (RealMAN 2006), Florence, Italy, May
2006.

[11] Telos - Ultra low power IEEE 802.15.4 compliant wireless sensor module,
http://www.ece.osu.edu/ ~ bibyk/eeb582/telosMote.pdf

[12] Tmote Sky http://www.eecs.harvard.edu

[13] Geoffrey Werner-Allen, Patrick Swieskowski, Matt Welsh: MoteLab: A
Wireless Sensor Network Testbed. In Proceedings of the 4th international
symposium on Information processing in sensor networks, Los Angeles, Cal-

ifornia, USA, 2005.

[14] Ki-Young Jang, Marcos Vieira, Sumit Rangwala, Omprakash Gnawali,
Ramesh Govindan: Tutornet: A Tiered Wireless Sensor Network Testbed,
http://enl.usc.edu/projects/tutornet

[15] sMote, http://www.millennium.berkeley.edu/sensornets

[16] Mica Motes, http://www.xbow.com

[17] I*C bus spec, http://wuw.educypedia.be/electronics/I2C.htm
[18] NSLU2 datasheet, http://www.linksys.com

[19] http://www.cyrius.com/debian/nslu2

[20] http://www.nslu2-linux.org

[21] Power over Ethernet, http://www.poweroverethernet.com

[22] ARM, http://www.arm.com/products

[23] ulP, http://wuw.rowley.co.uk/msp430/uip.htm

[24] MSP430 BSL,
http://focus.ti.com/lit/an/s1aa089d/s1aa089d.pdf

[25] JTAG, http://www.embedded. com/story/0EG2002102850049
[26] JSON-RPC, http://json-rpc.org/wiki/specification
[27] TinyOS, http://www.tinyos.net

[28] XML-RPC, http://en.wikipedia.org/wiki/XML-RPC

Bibliography

85

[29] HTTP, http://www.w3.org/Protocols
130
31

]
| C, www.cprogramming.com

| MSPGCC Toolchain, http://mspgcc.sourceforge.net
[32] TT MSP430 manual,
http://focus.ti.com/lit/ug/slau049f/s1au049f . pdf

[33] Python, http://www.python.org

86

Bibliography

Appendix A

Schematics and Footprints

A Schematics and Footprints

88

14

€

JIeyds)oq UBLIO[] :AgIDERORTl dWEWAYDS\ "\STUINSS puk SJuswnooq\:) EIIE
9 Jo 1194g | 800T°€0'81 2red
M >®m (A4
UOISIADY IoquinN vty
MITAIIAO JPBUIYDS - paeoqrdydepy
opLL

Tomod gsn

v A

sedN d|qeug |

20UOS’€ dneWAYOS
J[npour 1MOJ

108

vas

ova

jsanbar D71 |

axd

axyr

Sup

€uf |

Tyl |

Tug |

£no |
ano |

1o |

oIper 10say

vea A < |

20(UOS’9 OIRWAYOS
a[npow OIpel’/epou] g

dM woidag
0y woidag

1y woidog
v woidag

1omod gsn

JERENG

108
vas

DL

[os dn pnd
eps dn nd

#SLdN
#ALdN

20(QUOS’S OIBWIAYOS
steroydizog /wordoyg

#NTIMI gSN
#41an
#S1dN

raxdan
1axin
asaxdn
1SaX LN

150y |
SEQJN Q[qeug 108
vas
oL <}
> mod gsn
1os dn qnd
eps dn nd
ova dm woxdog
0y woidoqg
jsenbar D[1V woidog
7y woidog
axyd
axi .
#NTIMd gsn
3up #S1dN <
L €Ul
L Ul
1> ug
1 > gno
1 > ano 1ax¥an < ;
1 > hno 1ax.1n
orpey 1959y asaxan < |
> Lve A TSEXL0
20(QUOS'H dNBWAYOS
DOV.LI UM 0€PdSIN

20(QUOS’7 OIIBWAYOS
Q0BJINUI SN

A4

o

89

E |

MBYOS)Og UBLIOL] :AgangyeRfe dnewayas, \sSumog pue sjuamnsod:)
9 30 Z109S | 300C€0'8T Brq
1Ay w 1V 9y 1940 SurwwesSoxd
orsIAy Joquiny ong MOJ[e 0} 10pI0 Ul 19peo] desiooq Ay JO Asn
o) 10§ OEFASIN ON O O} [[OM SE PANIA A1E S LM/MLA
delIdul
g gsn

"g9¥XXE6 10 UOHOAUUOD [BUIAUI OU IARY DN DN

"PIpISU SLIO| Y3 ‘UOHIPUOD

SIY) 10 393 03 1apio u] “mo] uidNO umo si Surnd Aq
PpuBwIwod ay) AZP[OUNIL [[1m

3 ‘IA.LA 2y woy woxddg Sy 03 Panssy SI PUBIIIOD PI[EA B U
‘woidag Ay} JO ul BJEp puE N0 BIRp

udaMIdq Yse[d ejep [enudjod uonuaadid 1oj St 10SISNY 7T Y|

01
1n0a
— ano v
A
4U001
i 9d
—_T— 9
X—5— ON NI < Yl
S —
»— N M o T
5 oA+ O ;
n
snan AS
woidog-gsn

*0'7 SN 10J A9RINOOE UL qnij 0} SUOSEAI
9SI0U 0 NP 10JRUOSAI JO PEA)SUl [RISAID JO SN ‘[LA
10J gSN 19AQ : (anpowr 1amod 235) OIDDA [BUIANXD

w0y 3Ry ‘OIDDA A€ J0 Ajddns romod : TATEZIALIA

‘uoneuruwd) sodoid

8 I) dInsud 0) wiyo £z Ajarewrxoidde jo sioysisax
sauas axmbor sired [eusis NJ- ‘dAdSN 11V
> Q 2 -
Q Z Z =
g © °© LsdL A;||_|
YT #dEETS
vivadga M onea =
NN G50 #NTAMD
IWI ST Py SRR
71 1LOUMd SO =7 4dzz. 80
JUDLIND L]
1 #AATXY LNOLX
F00T 6 1 gz 10 _
1 #AATXL NILX
Woor—ga @ e ZHN 9 o8k adez! 1D
Yo7 NdaxL
o © =
pal & < U013 #1ASTY
wa 1a P~ e
= - U umop 1omod udyM UI[S OY) UMOP Jdiy _
UOLIND OU O] uo 10381501 dn-[|n,
X5Te] #ada 4 2} dAdsn ISt 1Ind NNOD dSn
Aw #L001SU — O ady
LNOEAE ezl #1Sa IShf T |duot
T 1D
T #ua M s
n 4assn e _1—
Yz #S1D Wagsn <
dALT
BB s 1dcecidrLd =
Juee
[iaxin > axy
asaxin_> (48])
- ZHIN 001@¥9C 150
Caaxan | 7 WL 3 vm a g 1NOEAE P> peog oyuuay diy) a1y 0} 3[qed SN
Casaxan | g 8 g § T o 03 uop pajerpes
Xt _H_ utoq (INF)
5 | _n _g indeas ATE Angrat peveons
woly asiou Juorsd
qoLy ¥ oy omod g yum
OIDDA = SOLIdS Ul PAJOIUU0D
v SI peag] 10|

4U001 €0

AS SNEA
JI0[[01U05 SN

A Schematics and Footprints

90

11BYOS)Og UBLIO[]

E |

KGADGYORE_ONEWAYdS) "\STUNIAS PuE SIUSWMI0Q\:)

9 Jog1oaus | 800T €081
1A0Y .
orsiAdy Joquiny DoST VW OL AI/A €0 dA Pa19p|os Jou
93p1iq 1opjos
La b
[npouwr 1dMo04 — —‘
OIDDA LNOSAE OIDDA 19 RN
OdrT [euwul [L4 wolf
SNFA sionoedeo Suridnooag <=,
*s10)e[n3a1 a5e1j0A Y 0} 1xau s1ojoedes ndino g N
oy 1dooxa ‘A[oAndadsal [(I1.] Ay pue Jn ay) 0}
XU pa1ap[os axe siopoedes Surjdnoosp ay [, :10N|
ddoLy : 300€
[eudis Ag UCa) 91t dn0l [d4u00l | Au001
‘A0 =1omod gsn 1 [[
as]0 ‘A€ = Jomod €SN Tomod Gsn _— _-— -
poBand st gSN 1 _— yooz STl 115 010 60 w
“10PIAIp 238)[0A 26804 sdityd
E ST = eojodig NN
T i T 1L
AS snaa
2 301 o
$86¢d1) 1
£l
ECI
ddoLy
RECE € Gl_llw_v ssvddg AND 1199USEIEp OF paTE[ol =
A001 quo01 | 44001 JU0T ang'e €0 Ul SUo1AUU0d s1D
— pu— pu— = == pu— urd 308X9 Yooy 17|
61D 81D LID 91D PIO | ALX /MLy JONO (48] T 1— i AV'9 > VVXp/IXq
ASH MO ¢ Dmoyog an WOl ¢Id
PR]
Iy
mop WA T
29 s10yoedes Surjdnosaq B ! .._A Xorir X
N-Ladf X
J OdTAE €N 1do 4o : 900¢€
BN 1
148!
<0 ¢ 5 t—waa>
“paxmbal YL X /UYOW §> YSH MO] Joyoeded indinQ “astou Indino saonpai ¢17) "saFeI[0A dZI[1qe)s 0)| 05)
s1oyoede) 1 70 ¢ 2do 01d] 3001 =
‘U0 sAem[e 101e[n3a1 A} 198 01 UIA 0] 2IY ‘pajeuruid) K[9Anoe aq snuw jndur q JI01e[ngo;
[it &t A] “pajeu [oA1OE 9 1 440/NO ‘0d'T 103853y uﬂ> 9do 71AdS MS IS
“LHA 93 JO SPA 19YBIY) ‘0T PUB HA WOL PAWNSUOO JUSLING Y} 1YS1Y e G,
ay) 210N ‘T[om se 1omod Surunsuod st A AYs ey 910N “K1dwa jsowre a1e ay) uaym K1aneq ay Ajddnsyoeq AIV'E

01 gS 1uaAd1d 01 A1e55999U ST 9pOIp V7 “Suneoyy st LI oy ‘pagSnidun st gSn J1 "PIOYSAIYI-A oY) Jopun
SLYOIYM ‘A L"Z- INOGR MO[Iq St 93I[0A J0IN0S-018T Ay} 210§a19Y) pue Suneoyy st udu oy douts pag3nid st gsn
10 JUOLINO UDO0[q ST LAI(-U oY, "pa33nyd s11s0y gS © se uoos se pajeredoas s1 juarino Ajddns A1oneq oy |
1S PUB IXF /B UOMII] [ONMS JOMO]

igDd Ul SuondaUU0d

LHASON [ouueyd-u
INSTSONY AT

SESN o]qeug

urd 19BXa Yoy

91

E |

MBOS)oq UBLIOL] :AganEMER fy_onewayds) \s5umag pue sjuawnaody:)
9 30 7 103US | 300C€0°81
1A9Y
e = 0418/0°€d ovuLTd
OVLL YIM 0SPdSIA vas 77> 00WIS/I'ed N1OTIOAv/9'ed
STUL 0INOS/T'Ed osow/s'zd Aw
£ed TYLIVOMTd S AG
*SQINJE3J JAYIO PUE APIS axy ZgP 0aXL/y'ed IVLOVO/E£Td
[eUI9)Xd WOy 0gFdSIN . .
e axt =1 0axXuN/SEd 0VL/LNOVO/TTd
SHRTODHOONHIIEAS 1aX10/9°€d NTONIVL/I'Td
S-TIC MS 1ax¥n/Led NOV/0'Td
Mgl 08L0Td “0EPdSIN Y
s . Jo surd ydnuajur 1040
10 I A AU uni saur] Ads ayp [1v/|
v woidag gt TELTRd Lld ey _BaL >
AT cavera 914 frr AR 1]
G Cov_woidag 1 (2 !
A Sy RS _ ki S1d o axy
_ _ ~ 64 00T _ TP SALSTd NTONS/H Td 1
M.N// MN./ 2t _._.__H__H__H__H__H__H__H_ - 7 9aL/9vd VLT <t <o]
Lvd LALLtd IVLT1d e o]
o -
O foaa [mon OPTEN 08 6Cd & Ty =
- i 4 e CasaxIn >
00T T T 1aLS0'sd OV Sy -— TSAXLN
1 TOWIS/I'Sd NOVLO'1d e < #Slun |
M00T —— 92 & T Al pry des o2
— . —_
. i AT— VW 0 — Juoumo @y W00l —— scd 5] oS 69140SYdSIN T
jdo 1do Xl £sd AT ATIN Sy AnQ[10
e psd pr—
00T 81¥ L1 LTALS ¥00T :E.O|MWV §5d LOX P
o> o] e 0 |
A WOy QAT [01u0)) vT%v L'sd NIX < |
X—=< 1NOTLX ddeg ''szo
Sl Nieix +ITAA
£ +ATPA ok Z ©1SK10) ZIeng)
= 7201 o1 HIN t [BISAID
, e INN/LSY LVILSd. (ot ova
ADL MOL
XUISH —— L . x
AT | g 3| o R ot
i 5ol 1a1/0aL ! v
INN/LSY VDY 7 . x
N SN 2o 0VI09d N
dSINAND poa > g o EV/E9d mod_gsn
IsL - (TR z g z g ¢
NOL SOL : & g S d
AL —— @ o e -
SWL
SUWSDDA —— = —w 2 dU001 2 —1
1aL |1
dSWDOA
0aL NNU_ I
v
OVLL €X 1 R AS
o A€ ALX /AT L

¥ €O dSAMmo|

A Schematics and Footprints

92

14 7 €
HBYOSIOE UBLIO[] :Agangrepis dnewayas) \s3umog pue sjuawnsod:)
9 Jo $1094S | 8002 €0°8T B
1A% ad
uoISIANY Joquiny ozig

sjedydiag /moadoy

AL

Y31y 0} MOJ WO} SASLI [AN/LSY [IYM MO DL PUe DL JO SUONISUEI] 9ANESoU
0M} JO WNWIUIW € 10§ SMEIS T[SE “UONIIUU0D S YHM D U U0 pauddo sem [euruLo}
© J1 S [[oM SB MO[ST 43 L[] PRIOSUUOD ST S OU J] “MO[JATOR SULSW 4 LN e} AION]

r [ENR D11

(ALA) TANALSY|

“PapPaaU ST UONBUILLIAY A0 Ou 05 Joafo1d siyy

*SOIIM SNQ AY) JO UOI3101d PEOJIGAO 10§ SIPOI

UL JOUI ST JUSWAIMDAI SIY T, "W ()9 INOQE JO SUS] OB WNWIXEW b
01 [enboa st yorym ‘yred 1sa5uo]

A} 1940 Su Jo Aejop uoneSedord pamof[e wnIxeuw € ul s)nsax jeyJ,
“(opowr

158J DT]) WNWIUI € 18 SUQZ StTDS “VAS 24} 410q Jo (dum 3st)
1) [EWIUTUI Sy} SOUIS “SNQ AU} UO SUOIXA[JAI SNOLIAS 3G JOU [[IAs SIOY]

OIpEI J1 M S UI PAIBANOE 99 UBD snq DTT AL Y31y A[PI i snq T A A

“IQISEIA ST pIeoquaidepy 1o/pue pajodutod jou Anpout

MP0-0rSVd ca

yoel suoyd

00T — sy 00T

—

A

vas 1 ? 1
4001 e 4001
sng D¢l 21 E @:—
= MP0-0rSVE
1na

*(PaI19p[Os SI0ISISAI ()| 218 212Y) A[[ENUIAD)

9ads snq D] 99§ ZHIA §f INOqEe 219Y ST YIIYM ZH 0T UeY) SS3] 3q Jou pinoys Kousnbaiy
JJo-mo oy “(soueyioedes snq Jdoot “xew) 1)1y ssed mof e uid 1ad 1d o1 1noqe jo souejoedes
SnQ) YA pling sioysisar dn-find Y| YL “(9pow piepuels) ZH 001 st Aouanbaxy 39010 TOS YL

— el _|m
[£

12:6

NN 0} 20rpIUI)T

s €1
T
1 o150] & ﬁ
~ (24 ke
= ? o
0Sy ¥ [ST
9N
uopng 108 44001
es| 2 (T g5 | £
© < = S
ALy Ly
SIS ——— s s shz
8ed I "y ¥ b~
qa9n !
ANVN BwydS Q00DHYL von
1S9 /4989y
yoea umop-[nd 1do ‘[[:2pod Jnejop ‘woidog

*3P09 193]S AITAIP A YSI[QEISS 0} ‘SSA 10 DDA O} Pan oG
jsnu sindut 253y, “[000301d D] Y} UI AP0 193]S IITAIP G-/,
a1 Jo (19 “Zq “€q) $1q LS IUSIS 158 31T} Y} UO 10J PAYOO]
9q 03 ST ey} AN[BA AU} 195 0) Pasn e sjeusis ndur 7y Qv S|

ay) 03 suonerado ayum
21qusIp p[nom 31y dA

T NS/TISOTVT
b
[Cov o> A
920 [1v woidag > = 1V vas e < vas_ >
Ilnmﬁoo~ E mv v - 108 A-@ 108
g sng D¢l
» SN
A€) woxdog

93

t

| ¢

HEISIOE UPHOL]

K A0GER P~ oneWwaydg)| "\STUNIdS puE SIUSUMI0Q\:)

9 309 1ays |

1A%y

UOISIANY

800T°€0°81 red
144
Joquiny 271§

J[npow oIpex Hpou Ly

AL

*[[10)03UU0D gAY
s,opou] g Jo soweu [eusis pue jnourd jenby|

"AE'¢ st sopou g
) U0 00 douls preoqioldepe oY) uo OCHISIN
o jo uonoajoxd Ajddns 1oy are s10)s1sa1 Y Y|

10109UU0Y dpou] g

LKEGEE

Al [32:1

|
IS

Al [42:

ol

-

AR A A

—

2|
|

20A
20A

ano
ISON
OSIN
08

ss

100 dHD
9dd

€dd

q1vd
N1d
vivad
JEN

SINL
1aL

ON
AND

OI'DOA =<
O DDA =X A9 € 98uer xeur
NI OQA
NI'DdA t A_
MMW w“ adA
vd
8 - 5>
Vas vas
14d =p< paraplos o
0dd or——— F——<CIveA]
axy 11avn < 1821
AXLTLLAVA 1=
SIY 1IAVA 7>
SLO ILAVA 5> Y] ord
ax¥ 01UV T 1 axr
axL 0L¥vN 1 7 {1 axy
SI01avA =< T 6€d .
SLO oLvN < =
ano w T

9X

JI0JO3UU0D APOU T

91I'Id LXH
AaNo ano — < amo]
ova o ——— <o]
suL 189y 5 OpeT 1% >
soig mo
£l X <X >
vas XL ¢ < axa >
108 Wl — i1
o0 L e — G
LX
J10393UU0d UOISUANXH
. XBW ‘AfE U MaU
“0EpdSIA PUE OPOUL g Y U0 _ (A9 AV'E) INY mE>_
[BLISS 0} D] WO Uo1uu0d [euondQ
4\
Caxd > Q__ P 18
ax.t Q O vas
If
5] aNO AN LXE
o & +
C_ova_ > ST " oav £100 o0 >
DS > L @0 >
1S 57 XS WO no
{_vas > 7 Xwvas 1008 X
= aNO ONI = 5L AYV'E gia
o >——pr N NI < Ta]
€ T N PLVA 100 X
5 s1va 1no 9LV 10—
| LIVaTINO wmbarorava ——— T 5] =
| LLva 1no 01aVY bar D1 B oAnoE Opel 1e59]
1110 18 ——Cope ey]
[9:¢

110s aq 03 sey [INQ
Je 1odumn(:apow o8V

10390UU09 (JATY) 9[NPOW OIPBI MU /)]Y

94

A Schematics and Footprints

USBBf

X4

’-x1

am
odefe

us C27

Masterthesis
F. Betschart / March 2008 / Rev1
USB <-> Radio module Adapterboard for DSN

S2

A Schematics and Footprints

96

@Noli@tm “ Im“ 60000000 |HO00000006 cx
zs |)) « ® 0000000000 (5
mﬁ S Nmmu «e® ® % |XI° gnpowdy T | _“_
* s I TYYYYYY) ® e e
v Lg Jras @Nm- 5 = 80 72d yz0 g 52D _H_mﬂ u
-El.m.ﬁ.%ﬂ.@aﬂﬂﬂ T T]
<L O _m_ m
8Py 9vd 0€d 8cd _m__m__m_ ONN_%&N_ ___ ___ _“—
i o NN s ® gpyg 9ey IF
ﬁ_ﬁw__”mm vvm_k_m_@__ml_“_ﬁm gey 010 80 6 L
P swﬂ_ eeecece) ! 2zbsco . o
o_mwhw- B ex O<._._,- N@-ﬁ Blimw ® Hlto-
m $2E i
8 ; €L
Lo iy Nmo 9N L.m_ W W
e NE“HTE_N_%IJ MHW nmo o_rm__ﬂ_rmnvo oon
S T 90" i rih
pey(E H] 1 mmz gt mmll €@PCl
@
Ly . [ey D WM
ygasn v sL 7|._MX_H_ T m,-&.

97

wwc'vcl

WWwaGo'v1 L

wwel-0.

WWweE9 69

< W89’ ¢~

98

A Schematics and Footprints

Appendix B

Adapterboard components list

100 B Adapterboard components list
Description D Comment Distributor Manufacturer

SMDL thbr c e B1 not soldered

B pass Capacitor C1 10nF Distrelec 830121 Murata GRM188R71 103 A01D

B pass Capacitor C2 33nF Distrelec 823496 Murata GRM188R71 333 A61D

B pass Capacitor C3 100nF Distrelec 823499 Murata GRM188R71 104 A93D

B pass Capacitor C4 47pF /50 V Distrelec 830710 pcos B37930- 5470-J60

B pass Capacitor C5 47pF /50 V Distrelec 830710 pcos B37930- 5470-J60

B pass Capacitor C6 100nF Distrelec 823499 Murata GRM188R71 104 A93D

B pass Capacitor C7 22pF / 50 V Distrelec 830734 pcos B37930- 5220-J60

B pass Capacitor C8 22pF /50 V Distrelec 830734 pcos B37930- 5220-J60

B pass Capacitor C9 100nF Distrelec 823499 Murata GRM188R71 104 A93D

B pass Capacitor C10 |100nF Distrelec 823499 Murata GRM188R71 104 A93D

lo SR C11 |10uF Distrelec 823514 Murata GRM32DR71 106 A12L

B pass Capacitor C12 |2.2uF/ 10V X5R Distrelec 823506 Murata RM188R61A225 34D

B pass Capacitor C13 |10nF Distrelec 830121 Murata GRM188R71 103 A01D

B pass Capacitor C14 |lo SR Distrelec 823523 Murata GRM319R71 475 A88L

B pass Capcacitor C15 |470pF Distrelec 830716 pcos B37930- 5471-J60

B pass Capacitor C16 |[10nF Distrelec 830121 Murata GRM188R71 103 A01D

B pass Capacitor C17 |100nF Distrelec 823499 Murata GRM188R71 104 A93D

B pass Capacitor C18 |100nF Distrelec 823499 Murata GRM188R71 104 A93D

lo SR C19 |10uF Distrelec 823514 Murata GRM32DR71 106 A12L

B pass Capacitor C20 |470pF Distrelec 830716 pcos B37930- 5471-J60

lo SR C21 |10uF Distrelec 823514 Murata GRM32DR71 106 A12L

B pass Capacitor C22 |100nF Distrelec 823499 Murata GRM188R71 104 A93D

B pass Capacitor C23 |lo SR Distrelec 823523 Murata GRM319R71 475 A88L

Quart Capacitor C24 |33pF Distrelec 831418 emet

Quart Capacitor C25 |33pF Distrelec 831418 emet

B pass Capacitor C26 |100nF Distrelec 823499 Murata GRM188R71 104 A93D

B pass Capacitor C27 |100nF Distrelec 823499 Murata GRM188R71 104 A93D

USB Receive L D D1 reen Distrelec 253187 Stanle PG1112

USB Receive L D D2 red Distrelec 253184 Stanle BR1112

Schott Diode 15ns D3 Schott Farnell 8734038 Philips 1PS76SB21

Schott Diode 15ns D4 Schott Farnell 8734038 Philips 1PS76SB21

Schott Diode 15ns D5 opt. Farnell 8734038 Philips 1PS76SB21

Schott Diode 15ns D6 Schott Farnell 8734038 Philips 1PS76SB21

Schott Diode 15ns D7 Schott Farnell 8734038 Philips 1PS76SB21

USB Receive L D D8 ello Distrelec 253186 Stanle P 1112

USB Receive L D D9 reen Distrelec 253187 Stanle PG1112

USB Receive L D D10 |red Distrelec 253184 Stanle BR1112

Dual Protection Diode D11 |BAS40-04 Farnell 8734305 Philips BAS40-04

Dual Protection Diode D12 |BAS40-04 Farnell 8734305 Philips BAS40-04

Jumper and 2-pin Connector J1 Jumper Distrelec 122350 / 122228

Jumper and 2-pin Connector J2 Jumper Distrelec 122350 / 122228

Jumper and 2-pin Connector J3 Jumper Distrelec 122350 / 122228

6 M Quar Cr stal Q1 Cr stal 6 M Distrelec 644810 Jauch SMU4-600-30-30/50

Quar Cr stal4 M Q2 4 M Distrelec 644808 Jauch SMU4-400-30-30/50

Chip Ferrite Bead R1 Ferrit Bead Distrelec 110802 pcos BLM31AJ260SN1L

Resistor R2 27R Distrelec 713256 Visha CRC 0402

Resistor R3 27R Distrelec 713256 Visha CRC 0402

Resistor R4 15 Distrelec 713298 Visha CRC 0805

Resistor R5 470R Distrelec 713286 Visha CRC 0805

Resistor R6 22 Distrelec 713302 Visha CRC 0805

Resistor R7 10 Distrelec 713318 Visha CRC 0805

Resistor R8 100R Distrelec 713270 Visha CRC 0402

Resistor R9 limit current Distrelec 713270 Visha CRC 0402

Resistor R10 [100 Distrelec 713342 Visha CRC 0805

101

Resistor R11 [300 Distrelec 713353 Visha CRC 0805
Resistor R12 [10M Distrelec 713390 Visha CRC 0805
Resistor R13 |10 Distrelec 713318 Visha CRC 0805
Resistor R14 [OR opt. Distrelec 715151 Visha CRC 0603
Resistor R15 [200 Distrelec 713349 Visha CRC 0805
Resistor R16 [300 Distrelec 713353 Visha CRC 0805
Resistor R17 |opt. Distrelec 713270 Visha CRC 0805
Resistor R18 |opt. Distrelec 713270 Visha CRC 0805
Resistor R19 |1 Distrelec 713294 Visha CRC 0805
Resistor R20 |1 Distrelec 713294 Visha CRC 0805
Resistor R21 [100 Distrelec 713342 Visha CRC 0805
Resistor R22 |1 Distrelec 713294 Visha CRC 0805
Resistor R23 |1 Distrelec 713294 Visha CRC 0805
Resistor R24 |1 Distrelec 713294 Visha CRC 0805
Resistor R25 |limit current Distrelec 713270 Visha CRC 0805
Resistor R26 |limit current Distrelec 713270 Visha CRC 0805
Resistor R27 |limit current Distrelec 713270 Visha CRC 0805
Resistor R28 [100 Distrelec 713342 Visha CRC 0805
Resistor R29 [100 Distrelec 713342 Visha CRC 0805
Resistor R30 [100 Distrelec 713342 Visha CRC 0805
Resistor R31 [100 Distrelec 713342 Visha CRC 0805
Resistor R32 |100R Distrelec 713270 Visha CRC 0805
Resistor R33 [100R Distrelec 713270 Visha CRC 0805
Resistor R34 [100R Distrelec 713270 Visha CRC 0805
Resistor R35 [100R Distrelec 713270 Visha CRC 0805
Resistor R36 |1 5 Distrelec 713298 Visha CRC 0805
Resistor R37 |15 Distrelec 713298 Visha CRC 0805
Resistor R38 |47 Distrelec 713334 Visha CRC 0805
Resistor R39 |1 Distrelec 713294 Visha CRC 0805
Resistor R40 |1 Distrelec 713294 Visha CRC 0805
Resistor R41 |OR soldered Distrelec 715151 Visha CRC 0603
Resistor R42 |1 Distrelec 713294 Visha CRC 0805
Resistor R43 |1 Distrelec 713294 Visha CRC 0805
Resistor R44 |1 Distrelec 713294 Visha CRC 0805
Resistor R45 |10 Distrelec 713318 Visha CRC 0805
Resistor R46 [100 Distrelec 713342 Visha CRC 0805
Resistor R47 [100 Distrelec 713342 Visha CRC 0805
Resistor R48 |[100 Distrelec 713342 Visha CRC 0805
Resistor R49 |100 Distrelec 713342 Visha CRC 0805
Resistor R50 |2 2 Distrelec 713302 Visha CRC 0805

S itch S1 S SPDT2 opt. Distrelec 200180 Ni a

8- a DLs itch SMD S2 S DL-8 Farnell 9472096 MULT C MP MC DS-08-T
JPM Push Button S3 User button Distrelec 200858 T co lectronics

npn bipolar T1 NPN Bipoloar Farnell 1081237 Philips BC849C
n-channel JF T T2 JF T-N Farnell 9549854 VS A SLC NXJ110
n-channelM SF T T3 RFD14NO5LSM Farnell 1017790 Fairchild SC RFD14NO5LSM
Testpun t TP1 |TP

FTD USB controller U1 FTD 232BL Farnell 9519769 FTD Chip

Serial eprom not 2C for USB U2 eprom Distrelec 644545 Microchip 93LC46B/SN
volta e re ulator 3V output U3 LP2985 Farnell 9778250 NAT NAL LP2985A M5-3.0
MSP430F169 uC from T U4 MSP430F169 Farnell 1172226 Te as nstruments MSP430F169 PM
Serial eprom64 Bit 8 S -8 |U5 24L.C512/SM Distrelec 644238 Microchip 24 LC512/SM
Quad 2 port NAND U6 74 C00D Schmitt Farnell 1201310 74 COOD |Philips 74 CO0D

SMD USB Connector female B [X1 USB C NN Farnell 1321918 T co lectronics 1734346-1
Connector X2 t./4 AA <6.4V intern 4170910001 / Altium Limited

JTAG Connector X3 JTAG Distrelec 122511 Preci Dip

102 B Adapterboard components list

phone ac / lin enbuchse X4 lin enbuchse intern A5Q00003888

Connector to radio module X5 A80/RM header Distrelec 122513 Preci Dip

40 pol. BThode Connector X6 BTnode connector Farnell 1077743 RS irose DF17C 2.0 -40DP-0.5V 57
16 pin header e t. X7 XT DL16 Distrelec 650687 Preci Dip

Appendix C

Test DSN components list

104

C Test DSN components list

Material Comment Distributor Components
Blue Bo ammond 1591DTBU Distrelec 300503 12
Batter case B PLAB 60 Distrelec 970142 12
Distance holder |20 mm plastic M3 Distrelec 340398 48
ma net .superma nete.ch 48
scre s M3 plastic Bossard BN1066 96
USB cable AB m-m 0.6m Distrelec 679829 2
USB cable AB m-m 1.8m Distrelec 679440 3
USB cable AB m-m 4.5m Distrelec 679444 4
USB cable AB m-m 7.5m Distrelec 679445 1
USB Stic SanDis 2 GB Distrelec 860955 1
USB hub Ma tro 7-port self po ered [Distrelec 677677 2
Lin s sNSLU2 |1 LAN 100 Mbps 2 USB 2.0 |Brac 1

Appendix D

Work schedule

S|NpowW olpes suswals (Q8Y

sauo)sa|iW

pieogieldepy gy

yodal |euly uoneuswndoq

6l

1 1 uonejussaid [eulq

3l

gy sepay sjuswainsesy\ gy
Jeiedwod NSO 8uissl [eA

yAS

08V ZNISN gV S8pou g yy
NSQ e pling UlUOISSIWWOD

9l

SETVEToE R ETVIETU) e ae
juswaldw zZNISN Uoyr 4 S

|[eusjew ogaen|g + s|elsjew
pue ss8|ged ZNSN sqn Jepi

iy ng dnues|y supnol
urew jo uonejuswaldw / S

pwo wel oid j8sal DdY
N Srjo uonejuswsjdwisy S

Jajsuel) ss essaw
O| ®depdlu gsnpiing S

S wals s 0eydSIN pieoq e
jouopeuswsidw 9 S

ZN7ISN Uuo ueigaq / On Jo4 |00}
1S9} Jo uonejusws|dwi g/

s ad j0j01d
JO |quasse uLiep|os

v2d dd On uunsesw
1S9} uluoIsSIWWO0d

ulaplo jno e| god

SjusUOdWOD SoNeWaYoS
uonejuswaldwi/u 1sep

seapl pulj yoleasal ainjelay|
S u 1sap |enydeouo)

i

1 1 uonejussaid Hoys

mi

uisl ® sjool NSd
ou 0} 199

pnig aJnessy]

€€

€91

€6

€c

cve

[A/A"

[A%

ce

T'/l¢c

T0C

TET

19

<l €¢

[A%°1

6

ar e

11°G¢e

1781

71T

0T'8¢

0T'Te oT'vT 0oT’L 6°0€

I N

Jeniga4

Jenuer

Jaqwie aQ

JaqWianoN

Jaqo)

3se| suswals

n 1gs le Weyosjog ueLo|4 Jo sisay] s Jaisely 10} ue|d 108 old

Appendix E

CD contents

Thesis pdf, source code, pictures

Presentations (entry, final)

All PCB development files (Rev0, Revl)

Firmware source code

Software source code

e Components lists

Additional documents

	Abstract
	Zusammenfassung
	Preface
	Introduction
	Wireless Sensor Networks
	WSN observability limitions
	Deployment of WSNs
	Debug code running on target nodes
	Bluetooth-based Deployment Support Network
	DSN Server
	GUI node
	DSNAnalyzer as client

	WSNSpy

	Problem statement and scope of thesis
	Chapter overview

	Related work
	TWIST
	Motelab
	Tutornet
	sMote
	Summary

	Conceptual Design
	Requirements and guidelines
	Projects motivation - or why not to buy it?
	Proposal from SBT
	Fundamental DSN architecture options
	Comparison and design decision
	NSLU2 device

	USB adapterboard hardware
	Key features
	EEPROM
	Power concept
	Housing

	USB adapterboard firmware
	JSON-RPC command transfer
	Command forwarding to target node
	Log message capturing and display
	EEPROM access for programming
	I2C master and slave mode operation
	Battery measurement
	Watch Dog timer
	Hardware utilisation and settings
	Idle mode
	Operating System

	NSLU2 software

	Hardware development
	Tools
	Hardware overview
	Hardware architecture and system components
	Microcontroller
	USB interface
	Power module
	Battery measurement circuit
	I2C bus
	Bootstrap Loader circuit
	JTAG
	EEPROM
	Peripheral connectors

	Layout considerations
	Mechanical design constraints

	Prototype assembly and commissioning

	Firmware implementation
	Programming language and environment
	Firmware architecture
	Program flow
	Settings
	JSON-RPC processing
	Log message output
	I2C and EEPROM access
	Low power mode
	Target node programming

	NSLU2 software
	Programming language
	Software implementation
	Overview and software settings
	Software flow chart
	Web applications
	Log message format
	XML-RPC format
	EEPROM programming with NSLU2

	Evaluation
	Overview and test cases
	Adapterboard hardware
	Measurement and test equipment
	Test set-up and description
	Test results
	Power measurements
	Relevant signals
	Overall look and functionality

	Conclusions

	Adapterboard firmware with plugged A80
	Measurement and test equipment
	Test set-up and description
	Test results
	Log message transfer
	JSON-RPC command transfer
	Communication to EEPROM
	A80 flashing

	Conclusions

	NSLU2 software and Ethernet-based test DSN
	Measurement and test equipment
	Test set-up and description
	Test results
	Functional evaluation
	Performance evaluation
	Target command RTT computation
	Results of software performance investigation

	Conclusions and improvements

	Backwards compatibility to BTnode-based DSN
	Measurement and test equipment
	Test set-up and description
	Test results
	Conclusions

	Conclusions and future work
	Summary
	Conclusions
	Design approach review
	Outlook

	Schematics and Footprints
	Adapterboard components list
	Test DSN components list
	Work schedule
	CD contents

