
Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis
at the Department of Information Technology

and Electrical Engineering

Generation of Accurate
Performance Analysis Models for

Embedded Systems
Matthias Keller

Advisors: Wolfgang Haid, Kai Huang
Professor: Prof. Dr. Lothar Thiele

Zürich, April 2008

Abstract

Formal-analysis-based methods are a powerful method for performance
analysis of heterogeneous distributed systems. Due to their capability
to analyze best- and worst-case behavior, analysis-based methods are
particularly useful for the analysis of embedded real-time systems.
Unfortunately, the effort to create an analysis model for a specific system
is considerable.

In this thesis, an approach is presented that seamlessly integrates
the generation of an analysis model into a design flow for embedded
real-time systems. In particular, the approach is targeted at a multi-
processor system-on-chip (MPSoC) design flow and uses modular
performance analysis for system performance analysis. The model
generation is based on the specification that is used for system synthesis
and all the required application and architecture model parameters are
automatically obtained.

While the fully automatic generation of an analysis model for a specific
system implementation itself is useful, the proposed approach allows to
generate analysis models for alternative system implementations as well.
This enables the efficient design space exploration of MPSoC systems
based on modular performance analysis.

Zusammenfassung

Formale Analysemethoden sind ein mächtiges Werkzeug für die
Performanzanalyse von heterogenen verteilten Systemen. Da das
Verhalten eines Systems sowohl für den günstigsten als auch für
den ungünstigsten Fall analysiert werden kann, eignen sich formale
Analysemethoden besonders für die Untersuchung von eingebetteten
Realzeitsystemen. Der Aufwand für die Erstellung eines geeigneten
Modells ist allerdings erheblich.

Diese Arbeit beschreibt einen Ansatz, der die Erstellung von Modellen
zur Systemananalyse nahtlos in einen Entwurfsablauf für eingebettete
Realzeitsysteme einbindet. Der Fokus liegt hierbei auf dem Entwurf von
Multiprozessor Systemen. Für die Analyse von Charakteristiken auf
Systemebene wird Modular Performance Analysis verwendet. Dabei
basiert die Modellerstellung auf der selben Beschreibung, die auch für
die Synthese verwendet wird. Alle relevanten Parameter im Bezug auf
die Applikation und die eingesetzte Architektur werden automatisch
ermittelt.

Hierbei ist die vollautomatische Modellerstellung nicht nur auf
eine konkrete Implementierung beschränkt, Modelle für alternative
Konfigurationen können ebenso erstellt werden. Dies ermöglicht eine
effiziente Entwurfsraumexploration für Multiprozessor Systeme unter
der Verwendung von Modular Performance Analysis.

Acknowledgements

I would like to thank

• Prof. Dr. Lothar Thiele for giving me the opportunity to write
this thesis in his research group at the Computer Engineering and
Network Lab of the Swiss Federal Institute of Technology (ETH)
Zürich.

• Wolfgang Haid and Kai Huang for their constant support during
the whole project that made this work possible.

• Prof. Dr. Arndt Bode and Dr. Carsten Trinitis for supporting me in
writing this thesis abroad.

• The Center for Digital Technology and Management (CDTM) and
especially the Lothar-und-Sigrid-Rohde Foundation for financially
supporting my time abroad.

• Prof. Dr.-Ing. Klaus Diepold for supporting my wish to write my
thesis in the truly challenging environment at the Swiss Federal
Institute of Technology (ETH).

• My parents for supporting my studies in Zürich and also my studies
in general.

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Aim of this Thesis . 4
1.2 The SHAPES Project . 4
1.3 Modular Performance Analysis with Real-Time Calculus . 8
1.4 Related Work . 10
1.5 Thesis Outline and Contributions 11

2 Modeling Systems for Performance Analysis 13
2.1 Overview . 14
2.2 Abstract Model . 14
2.3 MPA-RTC Writer . 16
2.4 XML Reader and Writer . 31
2.5 Model Verification . 31
2.6 Related Work . 32
2.7 Moses . 33
2.8 Implementation Environment 33

3 Analysis Model Calibration 35
3.1 System Model . 36
3.2 Performance Parameters . 36
3.3 Measuring Amounts of Transferred Data 37
3.4 Measuring Processing Times 37

4 SHAPES Internals 43
4.1 VSP Architecture . 43
4.2 Distributed Operation Layer 44
4.3 Functional Simulation . 47
4.4 Hardware Dependent Software 47
4.5 Software Stack Generation 48

5 Analysis Model Generation for SHAPES 51
5.1 Restrictions . 51

viii Contents

5.2 Calibration Procedure Overview 52
5.3 Calibration Mapping Generation 55
5.4 Instruction-Accurate Simulation 56
5.5 Call Tree Extraction . 60
5.6 Result Annotation . 63
5.7 Analysis Model Generation 70
5.8 Implementation Environment 71

6 Case Study 73
6.1 Case Study Application . 73
6.2 Calibration Mappings . 76
6.3 Simulation Performance . 76
6.4 Calibration Toolflow Performance 77
6.5 Comparing Real Event Streams with Calculated Arrival

Curves . 78
6.6 Modeling Event Sources . 79
6.7 Model Verification . 80

7 Conclusions and Outlook 91

A Appendix 93
A.1 Model Verification Result Plots 94
A.2 HdS Software Stack Configuration 97

B Presentation Slides 99

List of Tables 115

List of Figures 117

Abbreviations 119

Bibliography 121

1
Introduction

An embedded system is a special-purpose information processing system
that is closely integrated into its environment. Embedded systems are
ubiquitous nowadays, their existence is not perceived in most of the
cases. Furthermore, embedded systems are often required to meet real-
time constraints.

One popular example for the deployment of embedded systems is the
control of technical or chemical processes in arbitrary environments that
range from home appliances and cars to nuclear power plants.

Many recent applications can be found in consumer electronics devices
like mobile media players or broadband routers. Here, lightweight
operating systems with multitasking capabilities are necessary to allow
the concurrent processing of multiple tasks and sporadic user inputs.

The dedication to a certain task of a specific application domain enables
tremendous savings in costs, power consumption and size compared
to general-purpose computer systems. The designer can select both
hardware and software components to optimize a system for its specific
task.

Modern electronic technology allows to integrate different functionali-
ties on a single chip. An example of a system-on-chip (SoC) design locates
a processor core, memories and peripheral devices like communication
controllers on the same chip. The development time of a SoC design can
be massively shortened by using components from existing intellectual
property (IP) libraries. In general, SoC design facilitates further
reductions in costs, power consumption and system size.

Recent multi-processor system-on-chip (MPSoC) designs employ
multiple heterogeneous computing resources on a single chip. Complex

2 Chapter 1. Introduction

on-chip networks are used to integrate different components such as
CPUs, field programmable gate arrays (FPGAs), digital signal processors
(DSPs), memories and other peripheral devices.

MPSoC architectures are the key technology for building distributed
parallel embedded systems that are able to cope with the demand of
future applications in the area of multimedia and digital signal processing
in general.

Design Space Exploration

On the design level, MPSoC systems can be characterized by their large
design space. For instance, the existence of multiple, heterogeneous
processor cores leads to several choices in the binding of application
tasks to processing elements. Furthermore, there is also a large degree of
freedom in the temporal domain where the designer has to be concerned
about selecting and configuring schemes for resource sharing.

Suitable configurations can be found by analyzing different design
points with respect to the design requirements. These requirements can
be expressed by certain characteristics of a system design, such as end-
to-end delays, throughput, or buffer requirements. The estimation of this
parameters is generally referred to as system-level performance analysis.

Efficient methods for system-level performance analysis are crucial for
the exploration of the large design space. This applies especially to the
early phases of the exploration where a large number of implementation
choices is investigated, often in an automated or semi-automated way.

Unfortunately, the analysis of heterogeneous distributed systems is
difficult. For instance, small local changes in a mapping can massively
influence the overall system performance of a specific implementation:
Firstly, the execution time of a task with special requirements changes, if
the task is mapped to a processing element with fitting capabilities, such as
floating-point units, vector units or programmable logic arrays. Secondly,
the impact of on-chip and off-chip connection delays on the execution
time is affected by the spatial location of communicating tasks. In a
more general way, Wandeler introduces six categories of challenges that
appear in the system-level performance analysis of complex distributed
embedded systems [46, p. 3-4]. In the context of this thesis, especially the
categories resource sharing, interferences between different applications
and workload correlations are of interest.

There exist two main classes of methods for system-level performance
analysis, namely simulation-based and formal-analysis-based methods
[46, p. 4]. Depending on the used layer of abstraction, there is a trade-off
between evaluation time and result accuracy. More precisely, simulation
techniques on a low level of abstraction, such as cycle-accurate simulation,

3

offer a high accuracy for the price of a long evaluation time. Higher level
practices include instruction-accurate simulation, trace-based simulation
and lastly formal analysis methods. The latter deliver rather coarse-
grained results because of the high layer of abstraction they are applied
to.

Different methods are used in certain stages of state-of-the-art design
space exploration. The design space is iteratively narrowed by
subsequent explorations at decreasing levels of abstractions. An example
state-of-the-art design space exploration setup might use a hierarchy of
formal analysis methods for fast performance estimation at the beginning,
trace-based simulation with different abstraction levels for the analysis
of selected candidates, and finally low-level simulation techniques for
further selection and system verification.

The main drawback of simulation-based methods can be found in
the long runtime and insufficient corner-case coverage [46]. It becomes
apparent, that the result of a simulation is always depending on the
data that was used to drive the simulation. The expressiveness of the
input data is difficult to measure, usually it is more likely that only the
average-case behaviour is covered [19]. Furthermore, manual corner-
case identification and input pattern selection is not practical for complex
embedded systems. The latter criticism on simulation-based methods is
for instance highlighted in [33].

In contrast, formal-analysis-based methods can be used to analyze the
upper and lower bounds of certain characteristics. These bounds cover
both best-case and worst-case behaviour as they include observations of
varying time intervals.

Overall, three desirable characteristics of system-level performance
analysis methods in the context of design space exploration can be named:

• Rapidness: A short evaluation time is crucial for a viable exploration
of the large design space. Preferably, a fast method should be
available during the whole design space exploration.

• Accuracy: Wide ranges of the whole design space exploration can
only be covered with the same method if the provided accuracy is
competitive to methods that work on a low level of abstraction.

• Completeness: Observations of the average-case behaviour are not
sufficient for raising critical design decisions.

4 Chapter 1. Introduction

1.1 Aim of this Thesis
It has been shown that formal-analysis-based methods are well-suited for
design space exploration [43, 47, 14].

The problem of existing approaches is that the analysis models need to
be generated by hand from either abstract system specifications or also
manually performed benchmark measurements. Additionally, most of
them are only considerable during the early phases of a design space
exploration.

This thesis aims to show an approach for automatically generating
performance analysis models that can be used in all phases of a design
space exploration. Consequently, both the analysis model generation as
well as the analysis with a formal method can be fully integrated into a
design tool flow.

The following sections give an introductory overview of the research
environment in which this thesis is embedded. Some more detailed
aspects of the following topics will be mentioned in the later chapters
that deal with the implementation phase.

1.2 The SHAPES Project
Scalable Software Hardware Architecture Platform for Embedded
Systems (SHAPES) [26] is a joint project of several European top
universities and industry leaders. The list of partners includes, but is
not limited to, the Swiss Federal Institute of Technology, RWTH Aachen
University, TIMA Grenoble Laboratory and ATMEL Roma. The SHAPES
project started in January 2006 and will end mid of 2009.

The goal of the SHAPES project is to develop a hardware platform and
a software design flow that copes with the challenges in the design of
scalable embedded systems.

After introducing the hardware architecture (see 1.2.1), the program-
ming model (see 1.2.2) as well as a functional simulation (see 1.2.3) are
described. Next, an instruction-accurate simulator that supports the
software development process is shown (see 1.2.4). The distributed
operation layer (DOL) that is described afterwards deals with the
optimization of application to architecture mappings (see 1.2.5). After
mentioning the software stack generation (see 1.2.6), the introduction of
the SHAPES project ends with the presentation of an example application
(see 1.2.7).

1.2. The SHAPES Project 5

1.2.1 Tiled Architecture
The main challenge in building future computer architectures that utilize
nanoscale CMOS technologies with billions of gates is the wiring [26]
as the delay of interconnects is rapidly increasing on smaller CMOS
technologies [15].

A tiled architecture is proposed as the solution for this problem. The
idea are “small” processing tiles that are connected by “short” wires. A
distributed packet switching network is used for connecting on-chip and
off-chip tiles. The system density is maximized by adopting 3D next-
neighbours engineering methodologies for off-chip networking [27].

The current SHAPES tile is the evolution of Atmel Diopsis [30], a
MPSoC which includes an ARM9 RISC processor and a floating-point
VLIW mAgic DSP [28]. Additionally, a tile includes a distributed network
processor, on-tile memories and a set of on-tile peripherals. Each tile can
be equipped with a distributed external memory.

1.2.2 Programming Model and Application Specification
The programming model defines how applications can be programmed in
a platform-independent manner. It is based on the process network model
of communication. In short, an application exists of several processes that
exchange messages over communication channels. Each communication
channel is equipped with a FIFO buffer for storing unprocessed messages.

On an abstract level, the application specification defines the process
network layout by defining processes and their communication paths
that are implemented as software channels. The application specification
allows the use of any network semantics, e. g. Kahn process network [16],
by imposing additional restrictions or semantics onto the elements [42].

1.2.3 Functional Simulation
A functional simulation can be derived automatically from the application
specification. The underlying event-based simulation control is
implemented on the SystemC kernel [39].

The resulting execution trace basically contains the number of
activations per task and the amount of transferred data per software
channel. This information can be used for debugging and testing as well
as for obtaining mapping relevant parameters at the application level.

1.2.4 Virtual SHAPES Platform
The Virtual SHAPES Platform (VSP) is the simulation environment for
the SHAPES architecture. The VSP is distributed as a CoWare Virtual

6 Chapter 1. Introduction

Platform [7], a proprietary model specification format. The VSP model
can be analyzed with the CoWare Virtual Platform Analyzer (VPA)
application.

For a good tradeoff between performance and accuracy, instruction-
accurate simulation is used for the SHAPES platform. This means that
the concrete instruction set architecture (ISA) is simulated. Thus, the
hardware dependent software like drivers and operating systems can be
developed concurrently with the hardware and tested before the actual
hardware prototype is available [17].

Simulation is not only helpful for shortening the development cycles,
it also plays a decisive role in the design space exploration. Trace and
profiling information are necessary in the mapping procedure to evaluate
the quality of different mappings. These information can be collected
much easier by a simulation model than from the hardware [27].

Furthermore, the VSP can also be used to support the high-level
architecture exploration. The goal of this process is the system level
evaluation of different combinations of SHAPES tiles [17].

Virtual Platform Analyzer

Virtual Platform Analyzer (VPA) is a tool for running simulations on
Virtual Platforms.

A simulation can be interrupted by breakpoints on arbitrary single
addresses or address ranges. VPA offers access to all information that are
needed to collect trace and profiling data. These information include the
program counter for each core, the local clock of each processing core, the
platform clock, the values of all hardware registers and the contents of all
memory regions.

VPA offers a graphical user interface (see Fig. 1) as well as a scripting
interface. All features of the VPA plus all features of the underlying Tcl
programming language [41] can be exploited by the scripting interface.

Section 5.4.1 deals with the implementation of a script for fully
automatic gathering of profiling data.

1.2.5 Distributed Operation Layer
Complex MPSoC systems offer a large degree of freedom in the binding of
application processes and communication paths to processing elements
and communication resources, respectively. The additional choice
between different resource allocation and arbitration schemes also leads
to a large design space. Established design methodologies and tools for
the design of single processor systems are not suited for handling such
complex systems. Thus a new design methodology is necessary to keep

1.2. The SHAPES Project 7

Fig. 1: Virtual Platform Analyzer

the time and effort that has to be spent for the development of scalable
and efficient MPSoC systems at a reasonable amount [42].

The Distributed Operation Layer (DOL) framework [8] is proposed
to face that challenge. The idea is to find an optimal mapping
of an already parallelized application onto a MPSoC architecture
in an automated fashion. System-level performance analysis and
multi-objective application-architecture mapping optimization based on
evolutionary algorithms [48] are the two main services that are offered
for this task [42].

1.2.6 Software Stack Generation
A software stack contains the different layers that form the final software
binary. The existence of architecture-specific layers requires an adapted
software stack for each hardware architecture on which it should be
executed.

Application tasks, the top layer of a software stack, are based on a
specific API that is provided by the Hardware dependent Software (HdS).
Basically, the HdS implements typical functions of an operating system,
e. g. drivers and a scheduling service. It is in turn based on the Hardware
Abstraction Layer (HAL), the bottom layer, which is unique for each
hardware platform.

A software stack is generated out of an application that is specified
with the programming and specification model of DOL (see 1.2.2). The
processing steps include the generation of an application initialization
routine, the generation of build scripts and finally the compilation and

8 Chapter 1. Introduction

linking of the executable binary [12].

1.2.7 Application Example: Wave Field Synthesis
Wave Field Synthesis (WFS) is a digital audio application that deals with
the reproduction of acoustical scenes. The basic concept is to create
an accurate representation of the recorded, original wave field with its
natural temporal and spatial properties by the superposition of the signals
of a large number of loudspeakers. This accurate reproduction can take
place in a listening area that has different properties than the recording
room [38].

Due to its high computational complexity, WFS has not found broad
application until today. Decreasing costs of computation power enabled
the first application in the professional market, but the execution speed
is still limited by the available computation power. A shift from
former homogeneous digital signal processor systems to highly parallel
heterogeneous MPSoC architectures like SHAPES is proposed to satisfy
this demand [38].

1.3 Modular Performance Analysis with Real-
Time Calculus

Modular performance analysis with real-time calculus (MPA-RTC) [47, 25]
is a formal method for system-level performance evaluation of distributed
heterogeneous embedded systems. The theory behind MPA-RTC and the
development of a Matlab toolbox for MPA-RTC is a current research topic
at the Computer Engineering and Networks Laboratory (TIK) [45] of the
Swiss Federal Institute of Technology (ETH).

1.3.1 Real-Time Calculus
Real-time calculus [6] is based on network calculus [21] which is in
turn based on max-plus algebra [2]. Using RTC, it is possible to
determine worst-case bounds on system properties, such as buffer
memory requirements or end-to-end delays. In particular, MPA-RTC is
suited for communication-centric designs like a communication network
of connected processing elements.

1.3.2 Arrival and Service Curves
The processing capabilities of a resource are described by service curves,
while the workload in terms of arriving events of a computation or

1.3. Modular Performance Analysis with Real-Time Calculus 9

communication task is given by arrival curves, respectively (see Fig. 2).
The upper and lower arrival curve of an event stream give the upper and
lower bound on the number of events that arrive in any time interval.
Similarly, the upper and lower bound on the number of events that can
be processed by a resource in any time interval are given by the upper
and lower service curve.

MPA-RTC offers a set of event and resource models that are modeled
as special shaped arrival and service curves, respectively.

0 5 10 15 20
0

1

2

3

4

5

6

7

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

arrival curve

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

time interval ∆ in ms

p
ro

ce
ss

in
g

 c
ap

ab
ili

ti
es

 d
u

ri
n

g
 ∆

service curve

Fig. 2: Arrival curve of a periodic event source with jitter (left) and service curve of a
TDMA resource (right)

1.3.3 Abstract Modeling of Tasks
A computation or communication task with a specific execution demand
and a single incoming event stream complies with the abstract greedy
processing component (GPC) in MPA-RTC. This component stands for
the mathematical transformation of incoming arrival and service curves
into outgoing arrival curves and remaining service curves, respectively.

The worst-case and best-case execution demands can be given in an
arbitrary corresponding real unit like the needed computation time per
task activation or the amount of transferred data per task activation. The
corresponding real unit of the execution demands and the real unit of the
processing capabilities of the used resource have to match, of course.

For the case of multiple, independent event streams and a single
resource, more complex components with an underlying scheduling
strategy for resource sharing are available.

1.3.4 Features of MPA-RTC
Currently, MPA-RTC supports the following scheduling policies:
preemptive and non-preemptive fixed-priority scheduling, time division

10 Chapter 1. Introduction

multiple access scheduling (TDMA), first-in first-out scheduling (FIFO)
and earliest deadline first scheduling (EDF).

Furthermore systems with complex task activation schemes can be
modeled by combining multiple event streams with binary logic functions
[13].

1.4 Related Work
Over the past decades, many models for formal scheduling analysis
have been developed. Popular examples are rate-monotonic scheduling,
earliest deadline first (EDF) and time-division multiple access (TDMA).
Instead of dealing with single events, these techniques are usually de-
signed for the analysis of input event streams with certain characteristics.
In particular, most of the existing models are limited to the analysis of
event streams that correspond to periodic or sporadic event sources with
jitter.

This limitation makes existing methods inapplicable for the analysis
of complex systems. The reason can be found in the fact, that the
characteristics of an input event stream, such as periodicity, change
tremendously while the stream is propagated through the network of
different components.

To overcome this problem, MPA-RTC introduces arrival curves as a
new event stream presentation plus new scheduling analysis techniques
for local components.

Gresser [10] follows a similar idea by introducing an event stream
model based on event vectors and event dependence matrices for deadline
verification. The main step consists of finding the so-called C(I)-function
which states the maximum requested computation time for any time
interval. Setting up this function out of the given event streams and
dependencies is NP-hard, thus this method is not suitable for analyzing
large systems without further improvements. Additionally, the model has
only been proven for the analysis of systems that use EDF scheduling, so
far.

Event model interfaces and event adaption functions are used in
SymTA/S [33] to resolve input-output event stream incompatibilities.
More precisely, event model interfaces and adaption functions are
abstracting complex event streams by simple event streams. Latter can be
described either by periodic or sporadic event stream models with jitter.
From there falling back to already existing models for scheduling analysis
is possible.

Künzli and Wandeler use MPA-RTC for the design space exploration
of a network processor [43] and an in-car navigation system [47],

1.5. Thesis Outline and Contributions 11

respectively. In both cases, information from system specifications is used
for estimating system parameters, only the early phases of a design space
exploration are covered. The analysis models are generated manually.

Henia et al. [14] propose a whole design space exploration loop
based on SymTA/S by interfacing a multi-objective optimization based
on evolutionary algorithms. The process for extracting the system
parameters that are used in their analysis model is not explicitely covered
in their work.

Based on the Polis [3] framework and Ptolemy [5], Lahiri et al. [20]
are also using formal analysis methods for the whole design space
exploration. Trace-based simulation is carried out once to extract so-
called communication analysis graphs (CAG). This approach is limited to
communication scheduling and does not include strategies for the sharing
of processing resources.

SPADE [23] and its successor Sesame [32] are two projects that use
trace-based simulation during the whole design trajectory. Both projects
are following the Y-chart paradigm which means that application and
architecture description are independent from each other and only
merged in a concrete mapping.

In Sesame, the trace generation includes a manual instrumentation
of the application sources. The used language offers three operations,
namely read, write and execute. Depending on the phase of the design
space exploration and the corresponding desired layer of abstraction,
these operations are implemented in a varying level of details. The process
of refining the architecture model is referred to as trace transformation.
Apart from the fact, that an instrumentation can only be carried out with
knowledge of the application domain, the work of Thompson et al. [44]
reveals a high manual effort that is necessary to set up a simulation.

Pimentel et al. [31] perform a one-time calibration of an architecture
model that is used in a trace-based simulation. Performance data is
gathered from instruction-accurate simulation with SimpleScalar ISS [36].
High manual effort is necessary for performing their calibration approach.

Concluding, a comparison of several projects and frameworks for
design space exploration of embedded systems can be found in [11].

1.5 Thesis Outline and Contributions
In this thesis, an approach for fully automatically generating accurate
performance analysis models based on a one-time calibration is presented.
The proposed design space exploration loop that is based on this approach
is outlined in Fig. 3.

Chapter 2 starts with the introduction of the so-called abstract

12 Chapter 1. Introduction

Model

Generator

Analysis

Writer

MPA-RTC
Objective

Multi-

Optim.

Calibration Results

MPA-RTC

Fig. 3: Design space exploration loop that uses performance data from a one-time
calibration for generating accurate performance analysis models. Firstly, an
instance of the abstract model is generated for each design point that was selected
by the optimization controller. Then, MPA-RTC is employed for formal-based
system-level analysis. The results of the analysis are returned to the optimization
controller.

model, a new abstract specification language for modeling complex
embedded systems. The also presented MPA-RTC writer can be used
for automatically generating a Matlab script that employs the MPA-RTC
toolbox from an instance of the abstract model. In the envisioned design
space exploration tool flow, the abstract model is used as the interface
between a project-specific specification model and a specific method for
formal system-level analysis, here MPA-RTC.

The general concept of employing instruction-accurate simulation
during a one-time calibration is presented in Chapter 3.

Chapter 5 describes a reference implementation of the proposed tool
flow for an automatic generation of performance analysis models. Here,
SHAPES is used as the example environment.

Finally, the results that can be obtained with the current approach and
reference implementation are shown in Chapter 6.

For a better understanding of the latter two chapters, a short
introduction into internals of the tool support of the SHAPES project
is given in Chapter 4.

2
Modeling Systems for
Performance Analysis

Complex embedded systems consist of several shared computation and
communication resources. Varying schemes for resource sharing might be
applied. These schemes are no longer limited to standard concepts, such
as fixed-priority or first-in first-out (FIFO) scheduling, it is also possible to
schedule a resource by a hierarchy of several concepts. In addition, tasks
with multiple inputs and outputs may have to be activated by complex
patterns.

Modeling such systems for carrying out formal analysis is elaborate.
Usually, a high manual effort is necessary to transform the abstract system
model into a model, or rather a script, that matches the specification of
the analysis tool.

Thus, an automated way for the generation of analysis models is
desirable, especially for a growing number of components. Furthermore,
interchangeability between different system description formats on the
input and varying methods for performance analysis on the output can
only be established by an intermediate description model. Independence
between system and analysis model is also essential concerning the
software development effort that has to be spent for automatically
analyzing and generating both parts, respectively.

14 Chapter 2. Modeling Systems for Performance Analysis

2.1 Overview
The proposed abstract model is designed to be as unrestrictive as possible
on a high level of abstraction. Limitations should only appear in
connection with a particular technique for formal analysis.

An instance of the abstract model can be created by using a reader. By
now, there exist two readers, namely the XML reader and the SHAPES
reader. The latter converts architecture, application and mapping
description of a SHAPES application into an instance of the abstract
model.

In turn, a writer is necessary for converting an instance of the abstract
model into the input format of an analysis framework. While the XML
writer is mainly used for debugging purposes, Matlab scripts that employ
the MPA-RTC toolbox can be created with the MPA-RTC writer.

Fig. 4 highlights the proposed idea of multiple reader and writer
implementations that can be interchanged.

Abstract

Model

DOL

Specifications

MPA-RTC

Matlab script

Trace-Based

Simulation

XML

SymTA/S

XML

SPIRIT [37]

Fig. 4: Available and imaginable readers and writers for the abstract model

The following sections describe the introduced model as well as the
implementation of the MPA-RTC writer. Insights into the SHAPES reader
are given in 5.7.

2.2 Abstract Model
Basically, an instance of the abstract model includes typical parts of a
process network, such as connected event sources and processes, as well
as a description of the available resources with the related schemes for
sharing. Optional observation targets, i. e. end-to-end delays, complete
the description. Fig. 5 gives a more detailed overview of all mandatory
components on the top layer.

2.2.1 Process Network
A minimal process network in the context of this work has to include an
event source, a process and an event sink. One connection element is

2.2. Abstract Model 15

Abstract

Model

Observation

Target

Event

Source

Event

Sink

Activation

Unit

Connection

Resource
1, ∗

1, ∗

2, ∗ ∗

1, ∗

∗Task

1, ∗

1

Fig. 5: Entity relationship diagram of the abstract model. Numbers adjacent to blocks
indicate the frequency in which each entity must occur in a valid instance of the
abstract model. “1,*” denotes that the specific entity can occur in an arbitrary
frequency starting from at least one occurence.

necessary for linking each pair of two components, thus two connections
are needed to put this small network together.

Both process and event sink components are only accepting a single
input. However, activation units can be used to extend a single input
port to a gate with an arbitrary number of inputs. The output port of
the activation unit can be activated by using either a disjunction or a
conjunction of the input ports.

On the outgoing side, an event stream can be partitioned by defining
multiple, weighted connections that start at the same output port.

Event Sources

In many cases, it is sufficient to use a periodic event source with jitter.
This component takes the period, the jitter and the minimum distance
between two subsequent events as input parameters.

Regarding the preferred usage with MPA-RTC, it is also possible to
define an event source by arbitrary upper and lower curves. Here, a
curve is specified by passing a list of segments for its periodic and its
aperiodic part.

2.2.2 Resource Model

A resource offers a service that can be characterized by the bandwidth that
corresponds to its processing capabilities. There exist three options for
the availability of a service, namely full, periodic and delayed availability.

16 Chapter 2. Modeling Systems for Performance Analysis

Resource Sharing

Several scheduling schemes are available for resource sharing. Currently
fixed-priority scheduling, preemptive EDF scheduling, preemptive FIFO
scheduling and TDMA scheduling are supported.

All scheduling schemes are splitting the service of a resource into a
number of slices. Depending on the used scheme, each slice needs to
be parameterized, e. g. with the length of the corresponding TDMA slot.
The capabilities of a slice can either be consumed by a process or be split
up again by another scheduling scheme. Without further limitation, a
hierarchy of any depth is supported by the abstract model. An example
hierarchy of several resource sharing schemes is shown in Fig. 6.

TDMA

FIFO

EDF

Task

Task

Task

Task

Task

Task Task

Task

Task

Fig. 6: Hierarchy of several resource sharing schemes. The processing capabilities of
each TDMA slot are again shared by other scheduling schemes.

2.2.3 Observation Targets
Observation targets can be useful, if the value of a certain characteristic
should be available at a specific location in the generated analysis model,
i. e. for automated post-processing of the results. By now the abstract
model allows to watch the backlog of a task’s input buffer as well as the
end-to-end delay between two tasks.

2.3 MPA-RTC Writer
Systems for analysis with MPA-RTC are modeled as Matlab scripts. The
source code example in Lst. 2.1 describes a system with two tasks that

2.3. MPA-RTC Writer 17

share a full service. Preemptive fixed-priority scheduling is used for
resource sharing.

Lst. 2.1: Two tasks example in MPA-RTC
01 % Ful ly a v a i l a b l e resource , bandwidth = 1
02 b1 = r t c f s (1) ;
03 % P e r i o d i c event source with j i t t e r
04 % period = 3 , j i t t e r = 1 , min . d i s t a n c e = 2
05 a1 = r t c p j d (3 , 1 , 2) ;
06 % F i r s t task , h ighes t p r i o r i t y , WCED = 5 , BCED = 3
07 [a2 b2] = r tcgpc (a1 , b1 , [5 3]) ;
08 % Second task , WCED = 4 , BCED = 2
09 [a3 b3] = r tcgpc (a2 , b2 , [4 2]) ;
10 % The r e s u l t i n g a r r i v a l curves are now a v a i l a b l e in
11 % a2 and a3 . In turn , the r e s u l t i n g s e r v i c e curves
12 % are a v a i l a b l e in b2 and b3 .

2.3.1 Limitations

The set of systems that can be analyzed with MPA-RTC is smaller than
the set of systems that can be described by the abstract model. Thus,
analysis with MPA-RTC can only be carried out for systems that meet a
set of limitations that restrict the resource model.

TDMA Scheduling

In MPA-RTC, TDMA scheduling is implemented as a resource model.
This means that TDMA scheduling can only be used to share a fully
available resource, but not for sharing remaining service or service that is
provided by another scheme.

EDF and FIFO Scheduling

Both, EDF and FIFO schedulers components in MPA-RTC allow only to
share the available service between a set of processes. It is not possible to
embed other components that implement scheduling techniques.

Covered Resource Sharing Hierarchies

In conclusion, TDMA scheduling can be applied on top for splitting a
fully available service into several slices.

The available service on the next layer can either be shared by EDF, FIFO
or fixed-priority scheduling. Latter is modeled as chain of components
that passes the remaining service top down. Within this chain, processes
as well as EDF and FIFO scheduler components can be included.

18 Chapter 2. Modeling Systems for Performance Analysis

2.3.2 Command Order Constraint
Apparently, a certain sequential order of the used commands in Lst. 2.1
is necessary, such that all corresponding input parameters are available
before the next command is issued. Finding a valid order is the major
issue when generating scripts that employ the MPA-RTC toolbox.

Event and Service Flow

A command set can be ordered to reflect the event flow or the service flow,
respectively. Finding a direct solution is only possible if both sequences
are not mutually exclusive. An iterative solution for this problem is
covered later (see 2.3.8.2).

Complex Components

In MPA-RTC, there exist two complex components that embed a number
of processes. More precisely, only one single command is issued to define
an EDF or FIFO scheduler including all managed tasks. Thus, the input
arrival curves of all embedded tasks need to be available in advance.
A direct solution for the ordering problem is no longer available if an
event path between two or more embedded tasks of the same complex
component can be found (see Fig. 7). In this case, the problem also needs
to be solved with an iterative solution (see 2.3.8.3).

α3

GPC

GPC

GPC

EDF

α1 α2

β1 β3

β4

β2

α7

Fig. 7: EDF component with an event path between two embedded tasks in MPA-RTC

2.3.3 Component Graph
Satisfying the ordering constraint is difficult. Therefore, building a simple
converter for MPA-RTC is not feasible.

2.3. MPA-RTC Writer 19

The presented approach introduces an extra internal graph representa-
tion for MPA-RTC models. A component graph is a directed graph that
describes both event and service flows.

This concept is necessary for two reasons. Firstly, an algorithm must be
able to decide if a certain process network can be modeled in MPA-RTC.
Solving this problem is related to the analysis of dependency relations in
this approach. Secondly, an order of the given components that satifies
the command order constraint must be found. Here, the basic idea is to
perform sort operations on subsets of all given components.

2.3.3.1 Graph Structure

A vertex of a component graph corresponds to a component of the abstract
MPA-RTC model. The list of components includes event sources, event
sinks, activation units, resources and all kinds of processing components
such as greedy processing components (GPCs) and schedulers.

Directed horizontally and vertically aligned edges are connecting the
vertices of a component graph.

A vertical edge points from a service parent to its single service child
that receives the remaining service. Likewise, a horizontal edge denotes
that an event stream is passed from a parent to its child. The weight of
an horizontal edge stands for the scaling factor of the arrival curve. For
instance, a factor of two means that twice as much events arrive in any
time interval.

Each component is limited to one incoming and one outgoing edge in
the service domain. In contrast, the number of outgoing horizontal edges
is not limited for any component. Furthermore, an activation unit has to
receive the arrival curves of exactly two parents.

Service Paths

The term service path refers to a special subgraph of a component graph.
Only vertices that are connected by a specific vertically aligned path are
included in this subgraph. The order of a service path is explicitly given
by the sequence that is described by the graph.

On the abstract system level, all included components share the service
of the same resource. Here, the sequence of the components corresponds
to the scheduler priorities of the underlying fixed-priority scheduler
(see 2.3.1).

2.3.3.2 Graph Generation

Event and service flows are described by the process network (see 2.2.1)
and the resource model (see 2.2.2) of the abstract model, respectively.

20 Chapter 2. Modeling Systems for Performance Analysis

Extracting the vertices of the corresponding component graph is a
simple task. Basically, an instance of the matching MPA-RTC component
is created for each entity of the abstract model.

Special Case: Converting Activation Units

As the only exception, activation units cannot be converted without
further modifications. The problem is that the abstract model is not
limiting the number of inputs of activation units, while activation units
in MPA-RTC are only defined for exactly two inputs.

The solution is to replace a single activation unit by several activation
units in the MPA-RTC model. The used procedure starts with a list that
includes all input ports. Each pair of two ports is replaced by the single
output port of an added activation unit during iterative runs over the
changing list. In the final state, the list contains only one single entry that
refers to the output port of the whole activation unit.

To the end, a network that contains u activation units on l layers is used
to model one activation unit with n input ports in MPA-RTC (see Eq. 2.1
and Eq. 2.2). Fig. 8 shows how an activation unit with five incoming ports
is modeled in MPA-RTC.

l = dlog2 ne (2.1)

u =

 l∑
i=1

2i−1

 − (
2l − n

)
=

(
2l − 1

)
−

(
2l − n

)
= n − 1 (2.2)

O
R

O
R

O
R

O
R

Fig. 8: Activation based on the disjunction of five incoming event streams in MPA-RTC

Connecting the Graph

After the vertices have been extracted, at least two solutions exist for
connecting the graph in both dimensions.

The first approach is to create a separate graph for each dimension.
Both graphs need to be merged afterwards by comparing matching
components.

2.3. MPA-RTC Writer 21

Based on so-called event stream connectors, the second and finally used
approach needs to process each component only once.

An event stream connector corresponds to a process network
connection. All connectors can be generated at once by parsing the list
of process network connections. This step is actually performed in the
initialization phase of the component graph generation.

As the proper order of any service path is already accessible in
the abstract model, links in the service domain can be established
immediately while MPA-RTC components are created along the given
sequence.

Concerning connections in the event domain, it is not guaranteed that
the component which refers to the connection peer has been instantiated,
yet. But, the event source connector that corresponds to the given process
network connection already exists. So, any component can be linked in
both involved dimensions immediately after it has been instantiated.

Concluding, splitting any process network connection in two sections,
that can be established asynchronously, leads to an efficient algorithm for
the generation of component graphs.

2.3.4 Dependency Relations
There exist two types of dependencies, namely service and event
dependencies. Here, dependency between two MPA-RTC components
is regarded as a transitive binary relation.

Let C denote a set of MPA-RTC components. In the following, the two
relations Rservice ⊆ C × C and Revent ⊆ C × C are introduced.

Def. 1: (Service dependency) ∀a, b ∈ C : (a, b) ∈ Rservice, if a directly or indirectly
consumes the remaining service of b. In words, this means that a is depending
on b in terms of service.

Def. 2: (Event dependency) ∀a, b ∈ C : (a, b) ∈ Revent, if there exists at least one path
that starts at a and ends at b. In words, this means that a is depending on b in
respect of events.

For simplification, R ⊆ C × C corresponds to one of Rservice and Revent in
the further explanations. Apparently, both relations are independent and
cannot be mixed.

2.3.5 Component Interrelations
Eq. 2.3 describes the case of two MPA-RTC components that are linked in
only one direction.

22 Chapter 2. Modeling Systems for Performance Analysis

a, b ∈ C, a , b : (a, b) ∈ R ∧ (b, a) < R (2.3)

In contrast, the relation between two components that are not linked at
all can be described by Eq. 2.4.

a, b ∈ C, a , b : (a, b) < R ∧ (b, a) < R (2.4)

A complex component, e. g. an EDF scheduler, may have links between
two or more embedded components. The term self-dependency is used
for this setting that is characterized by Eq. 2.5.

a ∈ C : (a, a) ∈ Revent (2.5)

Symmetric relations between two commands a and b as stated in Eq. 2.6
are only allowed if the dependency between a and b is not strict. In
other words, the emerging cycle must be connected to at least one other
component c ∈ C outside the cycle for which Eq. 2.7 holds. More precisely,
cyclic event dependencies are only allowed if the cycle is activated by a
disjunction of the feedback of the cycle itself as well as an event stream
that is produced outside the cycle. For illustration, a valid event stream
cycle configuration is shown in Fig. 9.

a, b ∈ C, a , b : (a, b) ∈ Revent ∧ (b, a) ∈ Revent (2.6)

(b, c) ∈ Revent ∧ (a, c) ∈ Revent ∧ (c, a) < Revent ∧ (c, b) < Revent (2.7)

O
Rc a b

Fig. 9: Event stream cycle in MPA-RTC

2.3.6 Graph-based Dependency Evaluation
In the trivial case, (a, b) ∈ R is obvious when both components are
explicitly joined by an edge in the component graph.

The membership (a, b) ∈ R of a not directly linked pair a, b ∈ C can be
checked by exploiting the transitivity of the relation. Starting from a it is
recursively checked if (p, b) ∈ R holds for any directly connected parent

2.3. MPA-RTC Writer 23

p ∈ C. If (a, b) < R, the search ends when a component that has no parents,
such as an event source or a resource, is reached.

2.3.7 Sorting a Set of MPA-RTC Components
A set of MPA-RTC components can be sorted by analyzing its mutual
dependencies.

There are no limitations on how a set of components for sorting has to
be composed. For instance, a set can include components that are part of
two subsets that are not related in the considered dimension (see Eq. 2.4).
Thus, some elements of a set of components may not be comparable.
As standard sort algorithms like merge sort expect data sets that can be
totally ordered, these algorithms are not applicable for the given problem.

Def. 3: (Dominated element) A component c ∈ S ⊆ C is dominated by the subset
{S \ c} if ∃d ∈ {S \ c} : (c, d) ∈ R ∧ (d, c) < R.

Let S ⊆ C denote the list of all components that are not part of the
ordered sequence, yet. The proposed sort algorithm chooses always the
first element c ∈ S that is not dominated by the subset {S \ c}. This is done
by iteratively choosing one candidate c ∈ S that is individually compared
with each component d ∈ {S \ c}. If c is not dominated by any component
d ∈ {S \ c}, c is added to the ordered sequence.

Eq. 2.8 highlights the upper and lower bounds for the number of
comparisons c that are necessary to sort a set with a cardinality of n ≥ 2.

n−1∑
i=1

i =
n · (n − 1)

2
≤ c <

n−2∑
i=0

(n − i) · (n − i − 1) (2.8)

It becomes apparent, that the proposed algorithm is not scaling for
large sets. For instance, more efficient standard sort algorithms could
be applied if a set of components is split into independent subsets
beforehand.

Special Case: Sorting a Service Path

However, it is still desirable to use this strategy for a specific reason.
Concretely, it offers a better sort order when a service path (see 2.3.3.1)
has to be sorted in both event and service dimensions.

As already mentioned, the two sequences that result from sorting the
same set concerning event and service dependencies, respectively, may
not match. Because inconsistencies in the service dimension can be fixed
in the later Matlab script generation (see 2.3.8.2), top priority is given to
the order that refers to the event flow when a service path is sorted. So, the

24 Chapter 2. Modeling Systems for Performance Analysis

goal is to always ensure the correct order in the event dimension, and the
best achievable order in the service dimension. Here, the best achievable
order of a service path refers to the order with the smallest number of
permutations compared to the correct order in the service dimension.

For illustration, the components of a service path are already ordered
properly concerning the service flow after the graph generation. The
proposed sort algorithm is then used to guarantee the correct order in the
event dimension. As the algorithm always selects the first eligible element
of the presorted list, only the least necessary number of permutations is
introduced.

In contrast, splitting the service path in the event dimension for the
utilization of standard sort algorithms would destroy the sequence of the
presorting step.

Furthermore, it turns out that the current implementation of the MPA-
RTC toolbox is more likely to be the bottleneck for the analysis of large
systems with a high number of components.

2.3.8 Matlab Script Generation
A component graph contains all information that are necessary for finally
generating a Matlab script.

Concerning the syntax, the corresponding toolbox command for any
component is given by the type of the component. Variable names can be
implicitly determined by either the incrementing edge index or the name
of the modeled process, respectively. Finally, special properties like the
weight of an edge can directly be converted into Matlab code by using
predefined macros.

2.3.8.1 Finding the Next Command

Without any limitation, all commands that refer to event sources can be
written immediately as they are not dependent on any other command.
A similar rule applies to event sinks and latency observations, the
corresponding commands are always displayed at the end of a script.

All remaining components are organized in a number of sets. From
these sets, all except one are related to an ordered service path (see 2.3.7).
There is one set of this kind for each involved resource, resources that are
scheduled by TDMA have a separate set for each TDMA slot, respectively.

The order of the underlying sorted service path is preserved in the
corresponding set. Thus, each set starts with a resource as the first
element. Again, the corresponding commands of all resources can be
written out immediately without caring about the order.

As activation units are only linked in the event dimension, they are

2.3. MPA-RTC Writer 25

not included in any service path. Therefore, activation units are treated
separately by a dedicated, unordered set.

Iterative Command Selection

In general, a component is removed from its set after it has been written
out. For an ordered set this implies that all remaining components are
shifted upwards by one position.

After removing the resources, there are n components that are
arbitrarily distributed over m sets. Each of this m sets refers to an ordered
service path. Additionally, a activation units can be found in the extra set.

The iterative selection algorithm picks exactly one component per step.
Thus, n + a iterations are necessary to get a valid command order of n + a
toolbox commands, or MPA-RTC components, respectively.

Any component demands and offers a number of variables that
correspond to arrival curves. In the basic case, a component can be
picked if all demanded event variables are already available in the script.
The list of already known event variables is updated after each issued
command. Section 2.3.8.3 deals with an expansion of this procedure for
resolving complex dependencies.

As all service path sets are already ordered concerning the event flow,
only the top most element of each set is eligible in all steps. Obviously,
this does not hold for the extra set of unordered activation units. Here,
all remaining activation units have to be considered as candidates in all
iterations.

Fig. 10 illustrates the described method.
The bounds for the number of needed tests c for determining the

command order of n + a components are stated in Eq. 2.9. Again, m
denotes the number of sets over which the n components are arbitrarily
distributed.

n + a ≤ c < m · n + (m + 1) · a (2.9)

2.3.8.2 Computing the Service Flow

By now, the service flow always came second. Similar to the event
variables, components also offer and demand certain variables that
correspond to a service. Again, there is a list of already provided variables
that is updated after each displayed command.

Because breaking the order in the service dimension is allowed when
sorting a service path, the demanded service variable of a recently picked
command might not be available, yet. In this case, the value of the missing
variable has to be determined by iterative calculations. This is done by

26 Chapter 2. Modeling Systems for Performance Analysis

GPC

GPC

GPC

GPC

GPC

GPC GPC

GPC

GPC

GPC

GPC

Resource 3Resource 2Resource 1

Fig. 10: Snapshot of an iterative command selection. Each column of components
corresponds to a service path that has been sorted in the event dimension. All
dashed components have already been issued. The three components with
the bold border refer to the only three candidate components that have to be
evaluated in the current iteration.

adding extra code to the Matlab script.
Concretely, an iterative analysis that represents a fixed-point problem

is used. For the case that after an iteration all calculated output service
curves stay unmodified, convergence is reached and the last calculated
output service curves are valid.

First of all, the missing variable is initialized with the value of the lastly
written service variable of the same service path (see Lst. 2.2, line 7). The
loop header that follows (see Lst. 2.2, line 13) marks the beginning of a
block of iterated commands. The command that demands the missing
service variable is the first command within this block (see Lst. 2.2, line
15). The block is basically closed after the command that provides this
variable has been written (see Lst. 2.2, line 18 and line 31).

In the execution of the generated script, a solution is found if the
iteratively calculated value for the missing variable converged. This
means that the upper and lower service curve did not change between
two sequential calculation steps (see Lst. 2.2, line 23). A source code
example for iteratively estimating the value of a service variable is given
in Lst. 2.2.

Lst. 2.2: Computing the service flow by iterative calculations
01 % Ful ly a v a i l a b l e resource , bandwidth = 10
02 b1 = r t c f s (10) ;
03 % period = 3 , j i t t e r = 1 , min . d i s t a n c e = 2
04 I1_out = r t c p j d (3 , 1 , 2) ;
05 % b2 i s missing before the second task has been analyzed . Here ,
06 % b2 i s i n i t i a l i z e d with value of the already known v a r i a b l e b1 .
07 b2 = b1 ;
08 b2_upper = b2 (1) ;

2.3. MPA-RTC Writer 27

09 b2_lower = b2 (2) ;
10 b2_upper_last = r t cuplus (b2_upper) ;
11 b2_lower_ las t = r t cuplus (b2_lower) ;
12 conv_b2 = f a l s e ;
13 for i t _ b 2 = [1 : 2 0]
14 % F i r s t task in event flow order , demands b2
15 [T2_out b3 T2_delay T2_buf] = r tcgpc (I1_out , . . .
16 b2 , [4 . 0 1 . 0]) ;
17 % Second task in event flow order , provides b2
18 [T1_out b2 T1_delay T1_buf] = r tcgpc (T2_out , . . .
19 b1 , [1 . 0 1 . 0]) ;
20 b2_upper = b2 (1) ;
21 b2_lower = b2 (2) ;
22 % Both upper and lower s e r v i c e curve must converge .
23 i f ((b2_upper == b2_upper_last) & (b2_lower == b2_lower_ las t))
24 conv_b2 = t rue ;
25 break
26 end
27 % Save the current values for the comparisons in
28 % the next i t e r a t i o n .
29 b2_upper_last = r t cuplus (b2_upper) ;
30 b2_lower_ las t = r t cuplus (b2_lower) ;
31 end
32 i f (conv_b2)
33 disp ([’ Fixed point f o r b2 reached . ’])
34 e lse
35 disp ([’ Fixed point f o r b2 NOT reached . ’])
36 end

2.3.8.3 Solving Event Dependencies

During the iterative command selection (see 2.3.8.1) it is checked if a
candidate component has a self-dependency in the event dimension. So,
the candidate component either refers to a complex component with an
event dependency between embedded tasks, or to a component that is
part of an event stream cycle.

If a candidate component has a self-dependency in the event dimension,
it is selected. But, instead of directly issuing the corresponding command
to the Matlab script, the component is pushed on a temporary stack. This
stack refers to the so-called dependent commands stack.

After each command selection, it is checked if the overall demand for
defined variables of the dependent commands stack can be fulfilled by
already really issued commands and commands that are on the stack.
Any next selected command is pushed onto the dependent commands
stack until this conditions holds.

Flushing the Stack

If all variable requests of the dependent commands stack are fulfilled, it
can be flushed. First of all, this always refers to performing iterations
until a fixed-point is reached. Here, all calculated output event streams
must stay unmodified after an iteration so that convergence is reached.

28 Chapter 2. Modeling Systems for Performance Analysis

For calculating the start values of the first iteration, another temporary
stack is created. Here, complex components are not added as a whole,
but as set of several components of which each refers to an embedded
task (see Lst. 2.3, line 7 and 15).

Additionally, a disjunctive activation unit is replaced by a variable
assignment if only one of both input variables is available in the first
iteration. This method refers to feeding an event stream cycle with a first
event from outside.

After all components have been copied to the new stack, the stack
contents get sorted in the event dimension. After the resulting sequence
of commands of this sort operations has been issued to the Matlab script
for initializing all variables, all components of the dependent commands
stack are also issued in the same sequence as they were pushed onto
the stack. Here, the latter commands are surrounded by a loop that
corresponds to the fixed-point iterations that need to be performed (see
Lst. 2.3, line 20 to 26).

Finally, the contents of both stacks can be flushed. Normal operation
with directly issuing commands takes place as long as no further
component with a self-dependency in the event dimension is detected.

Lst. 2.3: Resolving a self-dependency within a FIFO component
01 % Ful ly a v a i l a b l e resource , bandwidth = 10
02 b1 = r t c f s (10) ;
03 % period = 3 , j i t t e r = 1 , min . d i s t a n c e = 2
04 I1_out = r t c p j d (3 , 1 , 2) ;
05 % The FIFO component can not be issued before
06 % T1_out has been i n i t i a l i z e d .
07 [T1_out b2] = r tcgpc (I1_out , b1 , [1 . 0 1 . 0]) ;
08 T1_out_upper = T1_out (1) ;
09 T1_out_lower = T1_out (2) ;
10 T1_out_upper_last = r t cuplus (T1_out_upper) ;
11 T1_out_lower_last = r t cuplus (T1_out_lower) ;
12 % The values of the second GPC are a l s o c a l c u l a t e d
13 % here for having a previous value in the convergence
14 % check during the f i r s t i t e r a t i o n .
15 [T2_out b2] = r tcgpc (T1_out , b2 , [4 . 0 1 . 0]) ;
16 T2_out_upper = T2_out (1) ;
17 T2_out_lower = T2_out (2) ;
18 T2_out_upper_last = r t cuplus (T2_out_upper) ;
19 T2_out_lower_last = r t cuplus (T2_out_lower) ;
20 for i t _ h o r i z o n t a l = [1 : 2 0]
21 [T1_out T1_delay T1_buf T2_out T2_delay . . .
22 T2_buf b2] = r t c f i f o (I1_out , [1 . 0 . . .
23 1 . 0] , T1_out , [4 . 0 1 . 0] , b1) ;
24 % Removed for i l l u s t r a t i o n :
25 % Check convergence of T1_out and T2_out .
26 end

2.3.8.4 Modeling Observations Targets

Mainly due to resource sharing, events may have to wait in the buffer
of the communication channel before they can be processed from the

2.3. MPA-RTC Writer 29

following task.

Backlog Observation Targets

MPA-RTC has no prior limits on the size of communication buffers, a
communication buffer is always available for writing. Furthermore, it
is assumed that any task is immediately writing an event to the buffer
of the outgoing communication channel after an arriving event has been
processed.

Depending on the processing capabilities of the receiving task, its input
buffer might get filled up more and more by arriving events. The upper
bound of the size of the emerging backlog is necessary for calculating the
minimum buffer space requirements.

The minimum buffer requirements of any single task are directly
available in the result vector of the corresponding toolbox commands.
Examining standalone task-specific buffer space requirements is sufficient
when analyzing systems that allocate a dedicated memory region of a
certain size for each communication channel.

For systems that allocate one memory region that is shared between all
buffers, there exist two ways for estimating the required size of the shared
memory region. Firstly, it is possible to sum up all task-specific buffer
space requirements. But, this method is too pessimistic as it assumes,
that all buffers may reach the maximum buffer fill level at the same time.
Here, MPA-RTC offers an extra way that is called “pay bursts only once”
[21] for estimating tighter bounds.

In SHAPES, a separate buffer is allocated for each communication
channel. Thus, the current implementations of the abstract model as
well as the MPA-RTC writer are only supporting task-specific backlog
observations targets.

Event Delays

After an event has arrived in the input buffer of a task, a certain time
elapses until the event has been processed. Firstly, a task might not be
able to process the arriving event immediately due to the availability of
the service. Secondly, the processing time of an event is depending on
its execution demand. The maximum event delay refers to the maximum
possible time that might be necessary to process one event due to both
described effects.

Again, the standalone task-specific maximum event delay is part of the
result vector of all toolbox commands that refer to tasks.

30 Chapter 2. Modeling Systems for Performance Analysis

End-to-End Delays

The needed time amount for processing an event by a chain of connected
tasks is called end-to-end delay. In the abstract model, this refers to a
latency observation. A latency observation can either be defined for one
single task or two tasks that are connected by at least one path in the
event dimension. The maximum latency contains all occurring waiting
and processing times, including those that appear at the two ends of the
observation target.

Once more, an additive approach or “pay bursts only once” can be
used. Although “pay bursts only once” leads to tighter bounds, the
current implementation uses the additive approach.

Multipath Latency Observations

Using the additive approach means that all local delays that occur by
walking along a connecting event path need to be added up. Again,
all task-specific event delays are already given in the result vector of all
toolbox commands that are related to tasks.

Due to components that support multiple event outputs, the two given
ends might be connected by more than one path. Fig. 11 shows an
example configuration with two event paths between two components.
All possible paths need to be evaluated for determining the worst-case
delay.

GPC

GPC

O
RGPC GPC

Fig. 11: Example for multiple event paths between two components in MPA-RTC

Graph-based Tracing of Multiple Event Paths

The proposed algorithm for determining all paths is based on the
component graph (see 2.3.3) of the analyzed model. The iterative search
procedure starts at the end that is closer to the event source.

Only one path is investigated at the same time. An internal data
structure saves the sequential order of the already visited components
on the investigated path.

2.4. XML Reader and Writer 31

In each iteration, all event children of the component that was most
recently added to the path history are checked. Here, event dependency
relations (see 2.3.4) are used for finding child components that are
connected with the target component. The first eligible child component
is added to the history of the current path.

If there are more than one suited children, a copy of the current path
history is made for each remaining child. The currently evaluated child
is added to the copy, the copy is pushed on an extra queue that contains
partial paths that need to be evaluated one after another.

A path is complete and thus removed from the queue when the target
component is reached. The full procedure terminates when the path
queue is empty.

2.4 XML Reader and Writer
For any instance of the abstract model, an equivalent instance of the
introduced XML document type exists.

There is basically no difference between the data structures of both
representations. Each entity type of the abstract model is directly related
to an XML element type. Hierarchical data structures in the abstract
model correspond to nested sets in the XML representation.

The current implementation of both XML reader and writer is based
on SAX and JDOM. An XML instance verification step is part of the XML
reader.

2.5 Model Verification
The validity of a given instance of the abstract model can be checked
by the model validator. As a part of the concept, a model instance has
always to be verified before it is passed to a writer. This makes the overall
approach more robust as any implementation of a writer is only required
to work on valid models.

Currently, the following malfunctions are checked by the model
validator:

• Minimum Components Constraint
Any instance of the abstract model must at least contain one event
source, one process, one event sink and one resource.

• No Unused Ports Constraint
All input and output ports need to be connected.

32 Chapter 2. Modeling Systems for Performance Analysis

• Single Input Constraint
Except for activation units, only one connection is allowed per input
port.

• Invalid Process References
Connection elements, latency observations and backlog observa-
tions contain references to processes. All referenced processes must
be existent.

• Unused Resources
At least one task has to be bound to any resource. In detail, this
means that a scheduling strategy with at least one scheduled task
must be defined for each resource.

Although it is still possible to specify erroneous models, it turned out
that the current implementation detects the most common errors.

2.6 Related Work

A tool-independent XML system description format called tool-
independent system description for real-time embedded systems
(TiDRES) is proposed in the semester thesis of Christoph Rüegg [34].
Here, the main motivation is to have a single system specification that
can be converted into tool-specific formats. Currently, there exist XSLT
transformations for interfacing SymTA/S, PESIMDES [29] and MPA-RTC.

On the abstract view, TiDRES is limited to a smaller class of describable
systems than the new abstract model. For instance, TiDRES does not allow
to share a resource by more than one scheduling strategy. Additionally,
activation units are limited to only two inputs.

Concerning the implementation, TiDRES is currently not able to create
MPA-RTC models that employ EDF or FIFO schedulers. There is a first
approach for coping with cyclic dependencies, but TiDRES is not able
to deal with complex dependencies in a way as the proposed MPA-RTC
writer does. Additionally, multipath latency observation is one of the
features that are also not supported by the current implementation of
TiDRES.

Apparently, there exist more abstract description languages for system
modeling, such as Ptolemy [5]. However, TiDRES and the proposed
abstract model are the only two known description languages that can be
used for interfacing MPA-RTC.

2.7. Moses 33

2.7 Moses
A modeling language specification for Moses [24] that corresponds to the
abstract model has been created. Now, Moses can be used for graphically
creating instances of the abstract model and therefrom Matlab scripts that
employ the MPA-RTC toolbox.

Fig. 12: Screenshot of Moses application. Instances of the abstract model and therefore
MPA-RTC models can be generated with a graphical user interface.

A screenshot of the resulting application is given in Fig. 12.

2.8 Implementation Environment
Java 1.5 has been used for implementing the described concepts.

34 Chapter 2. Modeling Systems for Performance Analysis

3
Analysis Model Calibration

The proposed design space exploration tool flow uses formal-based
analysis methods for the evaluation of application to architecture
mappings. In contrast to existing approaches, accurate performance data
are used for specifying execution demands.

Here, instruction-accurate simulation offers the desired level of result
accuracy. Apparently, it is not reasonable to carry out a time-consuming
instruction-accurate simulation for each design point. Instead, the idea
is to use instruction-accurate simulation only during an initial analysis
model calibration. In this calibration, a small set of design points, so-
called calibration mappings, is evaluated.

After the one-time calibration, the necessary performance data for each
evaluated analysis model instance is loaded from the calibration results.

This chapter presents an approach for performing an analysis
model calibration by analyzing execution traces of instruction-accurate
simulation. At first, the class of supported systems is described. Then,
required performance parameters are identified. After presenting how
the whole design space can be covered in an economic way, the extraction
of the desired performance parameters is described.

Chapter 5 describes a reference implementation of the presented
approach for SHAPES.

36 Chapter 3. Analysis Model Calibration

3.1 System Model
The described approach is suited for the analysis of distributed systems
that can be represented as a Kahn process network (KPN) [16].

To form a process network, a group of processing units are connected by
communication channels. The unbounded FIFO communication channels
are used for transferring atomic data units. Here, an event refers to an
atomic data unit.

All processes are iteratively invoked, a firing corresponds to an
invocation.

3.2 Performance Parameters
In an analysis model, a platform is basically represented by a set of
resources that refer to processors and communication busses.

Any resource offers the capability to process a certain workload during
a given time interval. The measurement units for describing a processing
capability as well as for characterizing an execution demand must match
specific to the addressed resource.

Basically, any artificial unit, such as processed video frames, can be
used for describing demands and capabilities.

However, it is desirable to use standard units for two reasons. Firstly,
the capabilities of a hardware component can be directly extracted from
the data sheet without carrying out extra benchmark measurements.
Secondly, most generalization is reached by sticking to standard units.

Capabilities of a Communication Bus

Concerning a communication bus, it is obvious to specify capabilities and
workload in bytes per second and bytes.

Capabilities of a Processor

The capabilities of a processor could be specified in cycles per time unit,
instructions per time unit or processing time per time unit.

Using instructions per time unit is only reasonable if any instruction
corresponds to the same number of cycles. This is not given for all
instruction set architectures.

The remaining options cycles and processing time per time unit offer
the same accuracy. But, using the latter is more desirable as this unit
demands the lowest level of implemented architectural details in the
used measurement tool.

3.3. Measuring Amounts of Transferred Data 37

Above all, it becomes apparent that any processor offers one second
of processing time per second and processing core. Thus, workload
measurements specific to different processors can be compared easily.

Needed Performance Parameters

The workload of a computation has to be given in the necessary processing
time specific to a certain processor. In turn, the workload of a bus
transaction is measured in the amount of transferred data in bytes. All
measurements are subject to a firing of the observed process.

3.3 Measuring Amounts of Transferred Data

Obviously, the amount of transferred data during a bus transaction is
neither specific to the used platform nor to an exact design point.

By restricting the system model to synchronous data flow [22], the
amount of transferred data per firing and channel is known a priori from
the application specification.

For the more general case, functional simulation is sufficient for getting
the upper and lower bounds of the amount of transferred data per firing
and channel.

3.4 Measuring Processing Times

Purely event-based methods such as functional simulation are not suited
for measuring processing times. Here, instruction-accurate simulation is
used as this method also models the time behavior of the platform.

3.4.1 Influences

There are mainly three influences that are affecting a measured processing
time of a certain application source code.

Processor

Firstly, the processing time is specific to the used processor as well as
the related architecture-specific compiler that was used to generate the
executable code.

38 Chapter 3. Analysis Model Calibration

Communication

In general, a processor has to read and write data from and to buffers
for transferring data. Here, a buffer refers both to dedicated memory
resources as well as send and receive buffers of communication resources,
such as DMA or ethernet controllers.

A processing time measurement is influenced both by the characteris-
tics, such as latency, of the accessed buffer as well as the characteristics
of the connection. The combination of a buffer and the used connection
specific to the used processor refers to a communication path.

Resource Sharing

Lastly, extra waiting times can occur during communication operations
due to the employed resource schedule and resource sharing in general.
For instance, a full buffer has to be emptied by another process before data
can be written again. Thus, a process that wants to access a full buffer for
writing has to wait until the buffer is accessible again.

As the analysis of the impact of resource sharing is an objective of the
later formal-based analysis, the influence of resource sharing does not
have to be addressed in the calibration process.

In particular, formal-based analysis methods require that the specified
execution demands reflect the necessary workload without any influence
of resource sharing such as blocking.

3.4.2 Purpose
Apparently, the initial one-time calibration has to cover all possible design
points that might be chosen for an evaluation in the later formal analysis.

This can be achieved most economically concerning the usage of
time-consuming instruction-accurate simulation, if the outcome of each
simulated calibration mapping can be re-used for calculating the
performance data of as many design points as possible.

Dividing the Program Path

The idea is to divide the program path that is executed during a firing of
a specific process into several sections that can be assigned to categories.
Each category is treated separately concerning the measurement of the
processing time. The goal is a modular system that allows to generate
missing values by combining partial measurements.

On the first level, there exist two categories of sections, namely
communication and computation. Here, communication is not only
limited to memory accesses, it includes all actions that need to be taken

3.4. Measuring Processing Times 39

for reading or writing data, respectively. For instance, looking up the
proper communication device by a given device name is also a part of a
program path section that refers to communication.

For processes that communicate over different channels during one
firing, a communication section can also be assigned to a specific process
network channel in the second available dimension.

Calibration Result

Recapitulatory, the goal of the calibration process is to extract a result set
that contains the following data in terms of processing times.

Firstly, it contains the totaled processing time of all sections that refer to
a computation section of the program path. This number has to be given
for all processors to which the process can be bound to.

Secondly, it includes the added processing time of all sections that refer
to a communication section specific to the used process network channel.
This measurement has to be given for any possible combination of a
process, a process network channel and a communication path to which
the channel is bound to. Here, the processor to which the process is bound
to is implicitly given by the used communication path.

Depending on the concrete implementation, the processing times of
multiple measured firings can either be averaged or given in a worst-case
and best-case sense.

The overall execution demand for one firing of any process for a
particular design point is given by adding the corresponding processing
times for computation and communication.

Obviously, all measurements must be subject to the same input data to
ensure the validity of the modular approach. The additionally needed
determinism between input and output data is already given by the
system model.

3.4.3 Calibration Mapping Generation
A set of calibration mappings is complete if both ends of any
communication channel are mapped at least once to any available
communication path. As a communication path is always subject to a
specific processor, any process gets implicitly also bound to all available
processors at least once.

While there are no restrictions on the employed resource sharing
strategies in a calibration mapping, it is desirable to avoid waiting times as
well as to ensure that communication paths are not used simultaneously
by processes that run concurrently on different processors. As this might
be difficult for complex systems, it may be necessary to post-process

40 Chapter 3. Analysis Model Calibration

Tab. 1: Example calibration result contributions
Usage Totaled processing time
Computation 31 ms
Communication, Channel A 10 ms
Communication, Channel B 10 ms
Communication, Channel OUT 15 ms

measured processing times.

3.4.4 Execution Trace Analysis

Execution traces of an instruction-accurate simulation are used for
measuring processing times.

3.4.4.1 General Procedure

For any calibration mapping, the corresponding software stack is
generated and executed on the instruction-accurate simulator. An
execution trace is generated during each simulation run.

Basically, an execution trace contains an entry for each function call
during a program execution. Besides of the name of the called function,
the processing time that was spent during the specified function call is
given.

Listing 3.1 shows an example source code of an application that is
written corresponding to the DOL API. An example execution trace with
already calculated processing times and annotated channel names is given
in Fig. 13. Table 1 shows the contributions of the assumed calibration
mapping to the calibration results.

The given results are specific to an arbitrary design point that refers to a
calibration mapping. While it is desirable to evaluate a number of firings
of the same process and a specific calibration mapping, only one firing is
evaluated here for illustration purposes.

Lst. 3.1: Example application code
01 i n t example_f i re (DOLProcess *p) {
02 double c , d ;
03 DOL_read ((void *)PORT_A, &c , s i ze of (double) , p) ;
04 DOL_read ((void *) PORT_B , &d , s i ze of (double) , p) ;
05 double sum = c + d ;
06 DOL_write ((void *)PORT_OUT, &sum , s i ze of (double) , p) ;
07 return 0 ;
08 }

3.4. Measuring Processing Times 41

Fig. 13: Annotated example execution trace

example_fire // 5 ms, computation
DOL_read // 10 ms, communication, channel A
example_fire // 1 ms, computation
DOL_read // 10 ms, communication, channel B
example_fire // 20 ms, computation
DOL_write // 15 ms, communication, channel OUT
example_fire // 5 ms, computation

3.4.4.2 Identifying Process and Channel Context

In the given example, the two occurrences of DOL_read were assigned
to different process network channels. Furthermore, all three mentioned
symbols DOL_read, DOL_write and example_fire could appear in the
process context of different instances of the implementation that is given in
Lst. 3.1. Intentionally, information about the current process and channel
context is not part of an execution trace.

Here, four sources for identifying process and channel contexts are
presented.

Application Source Code Modification

The application sources could be modified in a way that process context
and channel identifiers are written to a console. The recorded output
can be used to extract process context and channel sequences that can
be matched with the execution trace. However, this way should only be
chosen as the last possible option as it modifies the processing times by
adding extra instructions.

Source Code Analysis

If static scheduling is used, process context sequences can be extracted
from a source code analysis. For a known input data set, the sequence of
used communication channels can also be extracted from a source code
analysis.

Functional Simulation

In the scope of a specific task, the sequence of used communication
channels for given input data is invariant to the used simulation method.
This method is desirable if a functional simulation is available that offers
the desired details.

42 Chapter 3. Analysis Model Calibration

Extended Execution Traces

Specific to features of the instruction-accurate simulator, an execution
trace may include additional parameters such as memory and register
contents that contain information about the current process and channel
contexts.

3.4.4.3 Post-Processing

Due to effects of the resource sharing scheme that is used in the evaluated
calibration mappings, it might be necessary to post-process the measured
processing times. An example approach is given in 5.6.4.

4
SHAPES Internals

This chapter aims to give an introduction about several SHAPES internals
that are necessary for understanding the following chapters dealing with
a concrete tool flow implementation for SHAPES.

4.1 VSP Architecture
The currently used version of the Virtual Shapes Platform models one
single tile that consists of one ARM9 RISC and one mAgic VLIW DSP
core. Both cores are integrated on one single Atmel Diopsis 940 chip.
Fig. 14 shows the simplified layout of the Atmel Diopsis 940 chip.

Floating-Point Support

Only the mAgic core features a floating-point unit, a special math library
has to be used for carrying out floating-point calculations on the ARM9
core.

Memory Resources

Tab. 2 gives an overview about the main memory resources of the VSP
architecture.

While the DXM is directly mapped to the address space of the ARM9
core, a DMA controller must be used for transferring data between DDM
and DXM.

44 Chapter 4. SHAPES Internals

Memory

80 KByte

Data
Memory

128 KByte

Program

M

D

A

Data &

Program

48 KByte

USB

Host PHY

ETH

Ext.

IO

External

Memory

64 MB

ATMEL

Diopsis 940
ARM9 core

mAgic VLIW DSP Core

100 MHz

100 MHz

AHB matrix, 100 MHz

EBI

Data bus

Fig. 14: Atmel Diopsis 940 with external memory

Tab. 2: VSP memory configuration
Resource Shortcut Size
ARM9 Internal RAM (Program and Data) RDM 48 KByte
mAgic DSP Internal Data Memory DDM 80 KByte
mAgic DSP Internal Program Memory 128 KByte
External RAM DXM 64 MB

4.2 Distributed Operation Layer

While there exist more detailed resources about DOL, this section intends
only to explain a set of basics that are necessary to understand further
chapters.

In particular, detailed information can be found in the documents
“Semantics of the DOL XML Schemata”, “C/C++ Coding Guide” and
“Tool Description” [26].

4.2.1 Platform Specification

Concerning real hardware components, the platform specification states
the available processors, memory resources and communication bus
resources.

4.2. Distributed Operation Layer 45

Communication Paths

Beside of real hardware components, the platform specification describes
virtual communication paths.

According to the application model (see 1.2.2), processes communicate
over channels that are equipped with FIFO buffers. The buffer of a
communication channel corresponds to a dedicated region of a memory
resource in the real implementation. Apparently, a shared memory
resource has to be used if the two communicating tasks are located on
different processors.

A write path describes how a specific processor can access a particular
memory resource that hosts a channel buffer. In turn, a read path
describes how a specific processor can read the channel buffer. In both
cases, the declaration of the communication path states the employed
communication bus resources.

4.2.2 Mapping Specification
Where and how components of an applications are executed on the
platform is defined in an instance of the mapping specification. In the
spatial domain, bindings define how processes and software channels
are mapped to processors and communication paths, respectively. More
precisely, a software channel is mapped to a combination of a write path
and a read path. Apparently, a combination is only reasonable if both
parts expect the channel buffer on the same memory resource.

Mappings in the temporal domain are referred to as schedules. A
scheduling policy including its according parameters is assigned to each
resource in this domain.

In connection with the HdS, it is currently not possible to directly
configure the schedules of a system. Concretely, a static sequence of
task activations is automatically generated during the software stack
generation. Detailed information on this process is missing.

4.2.3 Programming Model
In general, a DOL application has to be implemented in the C
programming language. The process execution model expects two
specific functions that need to be implemented for any DOL application
process.

The initialization function is executed once for each instance of a process
when the application is started. After the initialization, the execution
control is reiteratively calling the so-called fire function of any process
instance.

Lst. 4.2 shows an example instance of the DOL process handler

46 Chapter 4. SHAPES Internals

definition that is given in Lst. 4.1. Here, an application developer can
describe the corresponding names of the implemented functions that refer
to the initialization and the fire function, respectively. Besides the two
function names, a reference to a data structure that corresponds to the
local state of a process instance has to be specified.

Lst. 4.1: DOL process handler definition
01 typedef s t r u c t _process {
02 L o c a l S t a t e l o c a l ;
03 P r o c e s s I n i t i n i t ;
04 P r o c e s s F i r e f i r e ;
05 } DOLProcess ;

Lst. 4.2: Example DOL process handler
01 DOLProcess consumer = {
02 &consumer_state ,
03 consumer_init ,
04 consumer_fire
05 } ;

Although the DOL programming model allows an arbitrary naming
of the initialization and fire functions, this work demands that the
corresponding function names can always be resolved by adding the
suffixes _init and _fire to the name of the process handler. In turn,
the name of the process handler must be equal to the base name of the
implemented process.

While the base name of a process is specific to the implementation, the
name of a process refers to a certain instance of the implementation. For
example, the identifiers consumer_1 and consumer_2 refer to two specific
instances of the implementation of the consumer process. Both instances
get activated by calling consumer_fire in the proper task context.

4.2.4 DOL API
Without giving an introduction into the whole DOL API, Lst. 4.3 describes
all functions that will appear in the following chapters. In particular,
DOL_read (Lst. 4.3, line 2) and DOL_write (Lst. 4.3, line 4) form the API
for communication, while DOL_detach (Lst. 4.3, line 6) belongs to the task
management API.

Lst. 4.3: Extract of DOL API
01 / / Read l e n b y t e s from p o r t i n t o b u f
02 i n t DOL_read (void * port , void * buf , i n t len , DOLProcess * process) ;
03 / / Write l e n b y t e s from b u f t o p o r t
04 i n t DOL_write (void * port , void * buf , i n t len , DOLProcess * process) ;
05 / / Detach p r o c e s s p
06 void DOL_detach (DOLProcess *p) ;

4.3. Functional Simulation 47

4.3 Functional Simulation
As an additional detail of the functional simulation (see 1.2.3), the
information that is given by the output of the functional simulation is
shortly described here.

Firstly, the resulting trace file contains a header section where all
modeled communication channels are specified. This information is
necessary for matching entries of the main section with process network
channel names. In turn, the main section contains two entries for each
firing of a process and one entry for each communication channel access.
The number of transferred bytes is included in the latter case.

Fig. 15 and Fig. 16, respectively, show example extracts of a trace file of
a functional simulation.

Fig. 15: Extract of functional simulation output. Header section

c C1 10 o generator 0xbf9247a8 i square_2 0xbf924ba8
c C2 10 o square_1 0xbf9249bc i buffersum_1 0xbf924dbc
c C3 10 o buffersum_1 0xbf924de4 i merger 0xbf9251e4

Fig. 16: Extract of functional simulation output. Main section

10 merger started.
11 merger r 0xbf9251e4 5000
12 generator w 0xbf9247a8 5000
13 square_1 w 0xbf9249bc 5000
14 generator stopped.

4.4 Hardware Dependent Software
The HdS provides an operating system kernel as well as architecture-
specific C libraries for both core types that are used in the SHAPES
platform. Furthermore, the HdS implements the DOL API that provides
methods for task management and communication operations.

4.4.1 Scheduling
There are two operating system kernels that differ in the support for
concurrently running tasks. While the OS kernel that is designed for the

48 Chapter 4. SHAPES Internals

ARM9 processor supports multiple tasks, it is only possible to run one
application task on the mAgic processor.

A non-preemptive static scheduler is used for sharing the processing
power of the ARM9 core. Generally, a task only returns from the
processing state if a communication operation cannot be finished
immediately. Thus, the scheduling dynamics are implicitly determined
by the size of the used communication buffers.

4.4.2 Driver Modules
Communication buffers are implemented as device drivers, a device node
is created for each buffer. Both available implementations store the data
in a circular buffer.

The so-called generic software FIFO driver allocates the buffer memory
at any free address on the heap during boot up. The corresponding device
is only accessible on the same processor.

In turn, the D940 external FIFO driver allocates a channel buffer at a
user-defined location on a shared memory resource. Both processors can
concurrently access the buffer, mutual exclusive access is guaranteed by
spinlocks.

Lastly, the HdS offers a third driver module that provides a debug
output console.

4.5 Software Stack Generation
After providing the application, platform and mapping specifications as
well as the sources of a DOL application, the software stack generation
can be used for generating a runnable binary image for each processor.

4.5.1 Code Generation
Generally, the mapping-independent source tree of a DOL application
contains only task-specific C source and header files. At the beginning
of the software stack generation, a code generator is used for creating
a mapping-specific main control routine. This generated routine acts
as the application entry point, it is basically responsible for allocating
communication channels as well as initializing application processes.

4.5.2 Compilation
Based on the GNU ARM-ELF toolchain and a mAgic toolchain from
TARGET, scripts from the HdS distribution can be used for finally

4.5. Software Stack Generation 49

generating the software stacks.
Chapter A.2 gives a list of pitfalls in the configuration of the software

stack generation. These points need to be considered for generating
usable software stacks.

50 Chapter 4. SHAPES Internals

5
Analysis Model Generation for

SHAPES

The overall goal envisions to integrate the proposed concept in a
design space exploration loop. In particular, MPA-RTC shall be
used for evaluating design points that are chosen by a multi-objective
optimization controller, namely EXPO [9]. As EXPO outputs DOL
mapping specifications, an analysis model based on abstract SHAPES
specifications has to be generated for each design point before MPA-RTC
can be used.

At first, this chapter describes the implementation of a one-time
calibration process for SHAPES. Afterwards, it is explained how SHAPES
specifications can be converted into an instance of the abstract model (see
Chapter 2).

5.1 Restrictions

Two restrictions apply to ensure the validity of the implementation that
is presented here.

Firstly, the approach is only suited for applications whose process
network is limited to synchronous data flow (see 5.7.4).

Furthermore, the size of each channel buffer must be a multiple of the
fixed amount of data that is transferred during one access to the specific
channel (see 5.6.4).

52 Chapter 5. Analysis Model Generation for SHAPES

5.2 Calibration Procedure Overview
In general, the analysis model calibration for SHAPES is based on the
approach that is described in Chapter 3.

For SHAPES, the results of functional simulation and instruction-
accurate simulation are combined for extracting the desired performance
parameters (see 3.2).

5.2.1 Required Input Data
Here, information about the application, the used platform and finally
the results of an initially performed functional simulation have to be
supplied.

Concerning the application, the application source codes as well as the
SHAPES application specification (see 1.2.2) must be provided.

For information about the platform, the platform specification needs to
be supplied. Both platform and application specifications must be given
in their XML representation.

Lastly, the result of the functional simulation has to be provided
explicitly in the form of the corresponding execution trace as well as
implicitly in the form of an extra annotated application specification.

After providing the needed input data in the initial setup, the calibration
process runs fully automated.

5.2.2 Functional and Instruction-Accurate Simulation
While a functional simulation is carried out only once per application
and input data set, instruction-accurate simulation is used for evaluating
several calibration mappings per application and input data set. The same
input data set is used during the single run of the functional simulation
run as well as all runs of the instruction-accurate simulation.

Contribution of Functional Simulation

The functional simulation is used for obtaining the number of transferred
bytes per process network channel as well as the sequence of used
communication channels. Latter is employed for matching entries of
an execution trace to a channel context.

Contribution of Instruction-Accurate Simulation

Processing times are obtained by instruction-accurate simulation. Here,
an extended execution trace with additional information about memory

5.2. Calibration Procedure Overview 53

and register contents is used for determining process and channel
contexts.

5.2.3 Calibration Mapping Generation
As the evaluation of different resource sharing strategies is not subject of
the calibration process, a set of calibration mappings covers the whole
design space if all options in the spatial domain have been addressed.

Neglecting special mapping constraints, this means that each software
channel needs to be mapped to any read path and any write path at least
once. As communication paths are specific to the used processor, this
implies that each process will also be mapped to any processor at least
once.

5.2.4 Simulation Runtime
In general, signal processing applications are designed to run for an
unlimited time as long as the hardware platform is switched on. In
this context, the comparatively short system initialization phase can be
neglected.

Here, a simulation terminates after a defined number of data samples
has been processed. This number and the data samples itself need to be
reasonably chosen for each application such that critical execution paths
are covered with a high probability.

5.2.5 Program Path Sectioning
Prior knowledge about the HdS API, the DOL API as well as the DOL
programming model is used for splitting an executed program path into
different sections that can be assigned to categories.

Without reasoning about the chosen call depth at this point, Tab. 3 gives
an overview about all functions that are used for splitting and categorizing
the program path of each process.

5.2.6 Sequential Call Trees
A so-called sequential call tree can be generated by post-processing an
extended execution trace of an instruction-accurate simulation. This kind
of tree contains all information that are necessary for extracting processing
times in the requested detail level.

In detail, a sequential call tree contains a node for each single call of a
characteristic function (see Tab. 3).

The real execution sequence is preserved within each layer of the

54 Chapter 5. Analysis Model Generation for SHAPES

Tab. 3: List of characteristic functions
Function Name Category

DOL Programming Model
*_fire Computation
* refers to the base name of any involved process implementation

DOL API
DOL_read Communication
DOL_write Communication

HdS API
generic_swfifo_read Communication
generic_swfifo_write Communication
d940_extfifo_read Communication
d940_extfifo_write Communication

hierarchical graph, it can be read from left to right. The hierarchy as
well as edges between nodes describe caller and callee relationships.

Fig. 17: Sub-tree of one firing. Two messages have been sequentially read, the result
was written afterwards. The annotated numbers denote processing times in
picoseconds. The processing time of any related node on a lower level is included
in the processing time of a node on a higher level.

Fig. 17 shows a sub-tree of a sequential call tree.

The corresponding full tree contains a sub-tree of this kind for any firing
of each process.

In the final result extraction, all sub-trees that correspond to one firing
of a certain process instance are evaluated separately for finding the best-
case and worst-case processing times of each process.

5.3. Calibration Mapping Generation 55

5.2.7 Tree Visualization
The shown call tree visualization is based on a tool that was developed
by Sandro Blum within his semester thesis [4].

5.2.8 Workflow
In detail, the whole calibration workflow starts with the generation of
calibration mappings (see 5.3).

Then, each calibration mapping is evaluated separately. This evaluation
starts with the generation of the corresponding software stacks (see 4.5).
Instruction-accurate simulation is employed for extracting execution
traces (see 5.4). Based on the resulting traces, call trees are generated
(see 5.5). Finally, the information of the created call trees as well as the
output of the functional simulation are combined in the result annotation
where the calibration results are added to the application specification
(see 5.6).

The whole calibration procedure finishes after all calibration mappings
have been evaluated.

5.3 Calibration Mapping Generation
Two patterns are sufficient for covering all currently available mapping
options in the spatial domain.

5.3.1 Mapping all Processes to the ARM9 Core
Since the mAgic core is limited to only one running task, using generic
software FIFO buffers is not reasonable here. So, only one calibration
mapping is necessary for binding all software channels to the single read
and write paths that target a generic software FIFO buffer.

All processes are implicitly bound to the ARM9 core in this calibration
mapping. Obviously, this strategy is only feasible if the memory demand
of the corresponding software stack is not exceeding the resources of
the ARM9 core. Concerning that the ARM platform implements a
Von Neumann architecture, the memory demand of the software stack
refers to the memory requirements for storing both instructions and data.

Applications with a slightly exceeding memory demand could be
analyzed by using multiple calibration mappings that swap one task to
the mAgic core. However, the current limitations concerning the memory
demand are rather caused by the availability of only one SHAPES tile
instead of the available memory for the ARM9 core.

56 Chapter 5. Analysis Model Generation for SHAPES

5.3.2 Mapping One Process to the mAgic Core
As both ARM9 and mAgic cores are able to access channel buffers that
are implemented as a D940 external FIFO device, there exists a read path
and a write path for each processor.

All needed bindings can be achieved by creating one dedicated
calibration mapping for each task. In this mapping, the chosen task is
bound to the mAgic core, while all other tasks are bound to the ARM9 core.
All software channels are bound to communication paths that employ a
D940 external FIFO buffer.

Again, restrictions on the memory demand of the generated software
stacks apply.

5.4 Instruction-Accurate Simulation
The described calibration procedure requests a separate processing
time information for each call of a characteristic function during a
simulation. Before a sequential call graph with that information can
be generated, instruction-accurate simulation has to be employed for
generating execution traces.

In particular, the Virtual Platform Analyzer (see 1.2.4) is used for
instruction-accurately simulating the Virtual Shapes Platform architec-
ture.

5.4.1 Interfacing the VPA
A purpose-built Tcl script is used for interfacing the Virtual Platform
Analyzer during the fully automated calibration procedure.

For running a simulation based on the Tcl script, a configuration file
with certain details about the analyzed software stacks has to be supplied.
The result of a simulation is given in the form of an execution trace. Here,
tagged trace entries of all simulated processors are combined in one single
trace.

Terminology and Scope

In general, both available cores of the VSP platform are simulated
concurrently, but also independently. For simplification, all concepts that
are introduced in the following sections are always regarding an arbitrary
single core, if not stated otherwise. Similar, the term program counter
refers to the content of the program counter register of an arbitrary single
core.

5.4. Instruction-Accurate Simulation 57

The following sections give an overview about the basic features of the
Tcl script.

5.4.1.1 Simulation Control

For using a certain processor, an image file that corresponds to a software
stack for the specific core has to be stated in the configuration file.

A simulated core gets marked for termination after its program counter
hitted a given address for a predefined number of times. For instance, it
can be specified that tracing the ARM9 core should end after the symbol
DOL_detach was hit for five times. As the termination flag refers only to
an internal state of the script, toggling the flag is not directly affecting the
simulation.

But, the whole simulation is terminated when all used cores are marked
for termination.

5.4.1.2 Breakpoints and Breakpoint Ranges

Firstly, a new entry is appended to the execution trace when the program
counter hits a single address that corresponds to a breakpoint.

Secondly, an entry is generated when the program counter enters a
memory region that corresponds to a breakpoint range.

Breakpoint Range Entrance Detection

The support for setting up breakpoints and breakpoint ranges, respec-
tively, is a native feature of the VPA. But, the VPA is intentionally pausing
the simulation each time when the program counter reaches an address
that lies within a breakpoint range.

Instead of inefficiently tracing any single step within a breakpoint
range, a breakpoint range gets temporarily disabled on entrance. It gets
not enabled again before another defined memory region that refers to a
breakpoint range was hit.

5.4.1.3 Memory Observations

The current content of an address that is defined in a memory observation
is added to all trace entries. This setting is also specific to a core.

5.4.1.4 Execution Trace Format

Overall, an execution trace entry contains the following information:

• Identifier of the breakpoint or breakpoint range, respectively

58 Chapter 5. Analysis Model Generation for SHAPES

• Core Index

• Content of core program counter register

• Core clock timestamp in picoseconds

• Platform clock timestamp in picoseconds

• Content of all defined memory observations specific to the observed
core

• Content of the first four general purpose registers specific of the
corresponding core

A trace entry can be regarded as a system state snapshot at the time
when the corresponding event occurred. Fig. 18 shows an example entry
of an execution trace that was generated by the described Tcl script.

Fig. 18: Example execution trace entry

[LOG] TYPE:context NAME:main CORE_IDX:0 CORE_PC:538969820
CORE_CLOCK:1585020000 VPA_CLOCK:1585020000 CORE_MEM:0x20303ae8
CORE_REG:1,540161008,536870915,1

5.4.2 Function Call Tracing
Due to preemptive scheduling, an execution path that corresponds to
a certain function might not be executed from start to end at once.
Additionally, jumps to other function contexts can occur during the
execution of a specific function.

The following strategy is used for accurately tracing all slices that refer
to a call of a traced function.

Function Entrance

By setting a breakpoint on the address of the first instruction of a traced
function, a trace entry is generated on each function entrance. Concerning
recursive functions, an entrance breakpoint must always stay enabled
during a simulation.

5.4. Instruction-Accurate Simulation 59

Function Re-Entrance

Function re-entrances can basically occur at any address of a function
context, but not at the address of the first instruction. Though, function
re-entrance is covered by setting a breakpoint range on the memory region
that includes all but the first instruction of a traced function. As already
stated, breakpoint ranges get dynamically enabled and disabled by the
simulation control.

Function Exit

There is no explicit notification mechanism for detecting when a certain
function context was exited. The only possible way is to trace the function
that initially called the traced function. Here, the execution of the called
function ended one instruction before the context of the calling function
was re-entered.

Unfortunately, either all functions need to be traced, or knowledge
about the involved execution paths must be available for implementing
this functionality.

5.4.3 Traced Functions
Theoretically, only tracing all calls of fire functions, DOL_read and
DOL_write should be sufficient for sectioning the program path of an
application process (see 5.2.5).

However, the list of traced functions needs to be extended for accurately
tracing the initially interesting set of functions.

Application Main Functions

The two functions scheduler_schedule and __APP_ENTRY_POINT refer to
the application main function of a software stack that was generated for
the ARM9 core and the mAgic core, respectively.

As a fire function is always called from the application main function,
calls of these two functions must be traced for implicitly determining
when the function context of a fire function was exited.

Low-Level IO Functions

On the ARM9 core, the execution of an application process is preempted
if the specific process has to wait for a communication resource or data,
respectively, to get available.

This preemption is implemented in the low-level IO functions
generic_swfifo_read, generic_swfifo_write, d940_extfifo_read

60 Chapter 5. Analysis Model Generation for SHAPES

and d940_extfifo_write. As the processing time of calls of these
functions is included in the processing time of a DOL_read or DOL_write
call, re-entrances into the corresponding contexts of the stated four
functions must be traced.

5.4.4 Scheduler Context Detection
On the ARM9 core, concurrently running application task instances are
calling the same set of functions, such as DOL_read and DOL_write. For
assigning a specific function call to a task instance, the current scheduler
context is included in each trace entry that refers to a function call on the
ARM9 core.

In detail, the used scheduler implementation is maintaining an internal
structure that contains an object for each available task. The HdS source
code has been modified so that a pointer to the object that corresponds
to the currently running task is always available in a global variable with
the name active_task. A memory observation is used for tracking the
value of the mentioned pointer.

5.4.5 Simulation Setup
While the names of all traced functions are known a priori, the
corresponding memory regions must be obtained for setting up a
simulation. This information is stated in the symbol tables of the
generated software stacks.

As the introduced variable active_task is defined globally, the
corresponding address can also be extracted from the symbol table.

Obtaining Symbol Tables

For the ARM9 core, the symbol table itself is obtained by the tool
“objdump” of the employed GNU ARM-ELF toolchain. A symbol table
that refers to the software stack for the mAgic DSP core is automatically
generated by the toolchain from TARGET [40] during the software stack
generation.

5.5 Call Tree Extraction
Based on an execution trace, a separate sequential call tree for each
employed processor can be generated. In turn, an optional so-called
compact call tree can be assembled by concentrating a sequential call tree.

5.5. Call Tree Extraction 61

5.5.1 Node Data Model
Each node of a sequential call tree refers to a specific function call of a
traced function. In general, a node of a sequential call tree corresponds
to several entries of the related execution trace.

A node of a sequential call tree contains the following information:

• Name of corresponding function

• Core index

• Program counter of first contributing trace entry, also called start
address

• Value of scheduler context pointer

• Value of fourth general purpose register of the first contributing
trace entry

• Number of contributing trace entries

• Function entrance timestamp

• Function exit timestamp

• Overall processing time

• Processing time of the first contributing trace entry

• Processing time of the last contributing trace entry

Firstly, this data is used for finding matches during the node extraction.
Secondly, it will be used later for implementing a filter that removes
waiting times from a given processing time (see 5.6.4). Lastly, the value of
the general purpose register plays a role in the channel context detection
(see 5.6.3).

5.5.2 Node Extraction
For extracting the call tree nodes, the given execution trace is sequentially
read. While creating the first node is trivial, Algorithm 1 describes how
each trace entry is matched to already extracted nodes.

If a matching node is found, the timing information of the found node
is updated. Otherwise, a new node is created and added to the list of
already extracted nodes.

62 Chapter 5. Analysis Model Generation for SHAPES

Algorithm 1: Trace entry matching
Input: List of already extracted nodes
Input: Execution trace entry
n← number of already extracted nodes;1

matchFound← false;2

for i← n to 1 do3

Select node i for comparison with trace entry;4

if ¬ Function name matches then5

continue;6

end7

if ¬ Core matches then8

continue;9

end10

// There is only one process
// that runs on the mAgic core
if Core , mAgic then11

// The scheduler has no process context
if Function name , scheduler_schedule then12

if ¬ Process context matches then13

continue;14

end15

end16

end17

// The start address of a node refers
// to the address of the first instruction
// of the corresponding function.
if Program counter of trace entry > Start address of node i then18

matchFound← true;19

end20

break;21

end22

if matchFound then23

Update node i;24

else25

Create new node;26

end27

5.5.3 Calculating Processing Times

Apparently, an execution trace entry contains only a timestamp that
refers to the entrance into a function context. Eq. 5.1 describes how
the processing time of a trace entry is calculated.

5.6. Result Annotation 63

In addition, Eq. 5.2 describes how function exit timestamps are
calculated. Here, it is assumed that the previous function ended exactly
one instruction before the function context was switched.

tprocessing = timestampnext entry − timestampcurrent entry (5.1)

texit = timestampnext entry − 1
CPUclock speed[Hz]

(5.2)

5.5.4 Sequential Call Tree Ordering
The described algorithm has to be carried out separately for each
processor. Thus, it is assumed that the used set of extracted nodes has
been filtered by the core index beforehand.

Initially, a set of extracted nodes is ordered by the timestamp of the first
contributing trace entry.

The tree generation starts with selecting the node that refers to the
application main function. While this node gets marked as the root node
of the new tree, Algorithm 2 is used for sequentially adding all following
nodes to the tree. Apparently, the described algorithm is based on the
known order of the extracted nodes.

5.5.5 Compact Call Tree Generation
In a so-called compact call tree, multiple nodes of a sequential call tree that
refer to function calls of a specific function within the same process context
are merged. While this representation is better for visually analyzing the
profiling results, compact call trees play no further role in the described
implementation.

Fig. 19 shows the corresponding compact call sub-tree of the sequential
call sub-tree that was shown in Fig. 17. In opposite to a sequential call
tree, a compact call tree includes the number of merged firings as well as
basic statistics about the totaled processing times.

5.6 Result Annotation
The goal of the result annotation step is to extract processing times in the
granularity that is stated in 3.4.2.

Following the idea of the already existing functional simulation,
the resulting processing times are also back-annotated to the SHAPES
application specification of the investigated application. Fig. 20 shows

64 Chapter 5. Analysis Model Generation for SHAPES

Algorithm 2: Sequential call tree ordering
Input: Root node of the partially assembled sequential call tree
Input: New node n, that needs to be added
current← root node;1

while current has children nodes do2

foreach Child node c do3

Select c for comparison with n;4

// There is only one process
// that runs on the mAgic core
if Core , mAgic then5

// The scheduler has no process context
if Function name of current , scheduler_schedule then6

if ¬ Process context matches then7

continue;8

end9

end10

end11

if Timestamp range of c overlaps timestamp range of n then12

current← c;13

Add processing time of n to current;14

break;15

end16

end17

end18

Add n as a new child of current;19

an example XML application specification with annotated results of a
functional simulation as well as results of a model calibration.

5.6.1 Basic Approach
In general, the needed results are extracted by sequentially analyzing
each sub-tree of a sequential call tree that refers to a fire function. The
maximum and the minimum of all values that are found by analyzing
several firings of the same process instance correspond with the worst-
case and best-case processing time, respectively.

Known Tree Structure

Given by the structure of the analyzed software stack, nodes that
correspond to fire functions can only be found on the second most top
level of the whole tree. Similar, nodes that refer to calls of DOL_read and

5.6. Result Annotation 65

Fig. 19: Compact call tree of one process instance

Fig. 20: Example calibration result annotation

<process name="generator" basename="generator" range="">
<port name="out" basename="out" range="" type="output"/>
<source type="c" location="generator.c"/>
<profiling name="NumOfFires" value="50"/>
<profiling name="WCED arm" value="2832520000"/>
<profiling name="BCED arm" value="2826370000"/>
<profiling name="WCED arm out generic_swfifo" value="117630000"/>
<profiling name="BCED arm out generic_swfifo" value="11490000"/>
<profiling name="WCED arm out d940_extfifo" value="1091590000"/>
<profiling name="BCED arm out d940_extfifo" value="758580000"/>

</process>

DOL_write are guaranteed to be located on the third most top level of the
whole tree.

Processing Time without Communication

Tab. 3 shows that only fire functions refer to computation. Initially, the
processing time of a call of a fire function also contains time that was
spent for communication. This extra time can be removed by subtracting
the contributions of all children nodes that refer to a call of DOL_read or
DOL_write, respectively.

66 Chapter 5. Analysis Model Generation for SHAPES

Processing Time for Communication

Each node that corresponds to a call of DOL_read or DOL_write,
respectively, refers to a communication operation on a specific channel.
Given by the properties of a sequential call tree, processing times that
have been spent in function calls of low-level IO functions, such as
d940_extfifo_read, are already included in the processing time of the
parent node.

5.6.2 Process Instance Name Detection
As previously mentioned, nodes of a sequential call tree can be
discriminated by the value of a pointer that refers to the scheduler
context. While this is sufficient for generating a sequential call tree, the
matching name of the underlying process instance is not known. But,
this information is necessary for a correct back-annotation as well as the
channel context detection that is described later.

While finding the matching name of a single task that runs on the mAgic
core is trivial, a special strategy has to be used on the ARM9 core.

Function Call Parameters

Given by the specification of the used compiler, the first four general
purpose registers of the ARM9 core are always filled with the first four
function call parameters on function entrance.

By definition, the fourth parameter of DOL_read and DOL_write,
respectively, is defined as a pointer to the local state data structure of
the involved process instance (see Tab. 4.3). Thus, the memory location
of the local state data structure of the corresponding process instance is
given by the content of the fourth general purpose register of the ARM9
core on function entrance.

Given by the code generator that is used during the software stack
generation, two properties can be named for the local state data structure.
Firstly, the variable name matches with the name of the related process
instance. Secondly, the variable is defined globally. Concluding, a
mapping between the memory location of a local state data structure and
the name of the corresponding process instance can be extracted from the
symbol table of the generated software stack.

5.6.3 Channel Context Detection
Currently, it is not possible to assign call tree nodes that correspond to
communication functions to abstract process network channels by only
employing instruction-accurate simulation. Although the first parameter

5.6. Result Annotation 67

of DOL_read and DOL_write, respectively, contains a reference to the used
communication port variable, this information is not sufficient for the
given purpose. Firstly, the referenced variables have only a local scope.
Additionally, the variable names are not necessarily related to the names
of the accessed process network channels.

Information of Functional Simulation Output

The output of the functional simulation is used for matching call tree
nodes that refer to DOL_read and DOL_write, respectively, to a certain
process network channel.

Given the name of a certain process instance, the channel usage
sequence specific to the corresponding process instance can be extracted
from the trace file of the functional simulation (see 4.3). Here, the names
of the accessed process network channels are included.

Matching Both Extracted Sequences

The extracted sequence matches with the sequence of nodes in the
corresponding sequential call tree if two conditions hold. Firstly,
the sequence can only be matched specific to a process instance, but
not on application-level. This is due to the totally different task
activation behavior of the functional simulation and the scheduler that
is simulated in the instruction-accurate simulation. Secondly, either the
same input data has to be used for driving both kinds of simulations, or
communication must not be conditional.

In the context of this work, conditional communication is already
denied by the synchronous data flow constraint that applies to the overall
model generation approach.

5.6.4 Filtering Waiting Times
As stated in Chapter 3, extracted processing times must not contain
waiting times that occur due to resource sharing.

While filtering waiting times on the mAgic core is currently not possible
due to missing knowledge about the involved DMA controller, there exists
an approach for the ARM9 core.

Low-Level IO Function Analysis

Listing 3 outlines the basic algorithm that is used for writing data into
a D940 FIFO buffer. The general concept of the shown algorithm is
descriptive for both read and write operations of both available buffer
implementations.

68 Chapter 5. Analysis Model Generation for SHAPES

The multi-task operation system kernel that runs on the ARM9 core
changes the process state from active to waiting in two cases. First, if
a communication buffer is totally full or completely empty, respectively
(Lst. 3, line 23). Secondly, if a communication operation cannot be finished
because the used buffer or data, respectively, is only partially available
(Lst. 3, line 18).

Intentionally, the processing time of a write operation should only
contain the time that was spent for executing the parts of the code that
are enclosed between label A and label C once (see Lst. 3).

But, if for instance the buffer was not available for writing in four
sequential tries, the measured processing time includes the execution of
the sequence A→B→E→B→E→B→E→B→E→B→C.

The proposed filter is now used for shortening this long sequence to
A→B→E→B→C. Having in mind that the overall processing time of a
function call may consist of several slices due to function context switches
during execution, the desired sequence refers to the sum of the first and
the last slice that was used to calculate the overall processing time.

Because this strategy would cut off parts that were really spent for
exchanging data if partial data transfers (Lst. 3, line 13) are allowed, this
case is no longer supported. Concretely, this case is prevented by the
requirement that the size of a channel buffer must always be a multiple of
the fixed amount of data that is transferred per operation specific to the
considered channel.

More Optimistic Estimation

By only accounting the last contribution of the processing time that was
spent in d940_extfifo_write, the measured sequence could again be
shortened to E→B→C. But, this is not used because the measured time
would be more optimistic than the measurement of the desired case
without any iteration due to not available data. Currently, the validity of
such an optimization has not been measured.

Additional Solution for Single Processor Mappings

The best results concerning waiting times can be achieved by using
communication channel buffers that are sufficiently large for storing all
messages that a certain task produces during a simulation. Also using
a suited scheduling policy, each task can perform all communication
operations at once during a single activation. Here, free buffer space and
data are always immediately available.

But, this approach is only working if only the ARM9 core is used,
it can no longer be controlled when two processors are concurrently

5.6. Result Annotation 69

Algorithm 3: d940_extfifo_write
Input: Number of bytes that have to be written
Output: Number of written bytes
Label: A
nr← number of bytes that have to be written;1

Initialization of other variables;2

while nr > 0 do3

Label: B
Acquire buffer;4

available← number of bytes that are currently available on the5

buffer for writing;
if available > 0 then6

if nr ≤ available then7

Write nr bytes;8

nr← 0;9

Update buffer status;10

Release buffer;11

Label: C
end12

else if nr > available then13

Write available bytes;14

nr← nr − available;15

Update buffer status;16

Release buffer;17

// Only on multi-tasking OS kernel
Suspend task, activate another task;18

Label: D
end19

end20

else21

Release buffer;22

// Only on multi-tasking OS kernel
Suspend task, activate another task;23

Label: E
end24

end25

return nr26

producing and consuming data. Additionally, it is limited to feed forward
communication.

While the approach could still be used for simple configurations, it
has been fully discarded for preserving the same buffer configuration for

70 Chapter 5. Analysis Model Generation for SHAPES

the evaluation of both single and dual core mappings. Furthermore, this
method is also limited by the size of the available memory resources that
are rather too small.

5.7 Analysis Model Generation
After the one-time model calibration has been performed for a given
application, an analysis model can be generated for arbitrary design
points. In the desired tool flow, the configuration of a design point is
given in the form of an application specification, a platform specification
and a mapping specification.

While many parts of the SHAPES specifications and the abstract model
are quite similar, a list of special details has to be considered for generating
an instance of the abstract model that corresponds to a chosen design
point.

5.7.1 Adding Event Sources and Sinks
The SHAPES application specification does not explicitly include event
sources and sinks in the process network description. In the analysis
model generation, an event source is added to any process that has no
input channels. In turn, an event sink is added to any process that has no
output channels.

It is assumed that all parameters that are needed for modeling the
specific event sources are given, i. e. as annotated values in the application
specification.

5.7.2 Modeled Resources
All resources for which the SHAPES mapping specification contains a
schedule are also modeled in an instance of the abstract model. In general,
this includes processors and communication bus resources.

Basically, the resource sharing configuration can be directly converted
between both representations. As one exception, a static schedule of a
mapping specification is modeled as a FIFO scheduler in an instance of
the abstract model. This refers to the best matching replacement as static
scheduling cannot be modeled explicitly in the abstract model.

5.7.3 Modeling Software Channels
In the application specification, a connection between two processes is
implemented by a software channel. In the generated instance of the

5.8. Implementation Environment 71

abstract model, a software channel is modeled as a chain of tasks that
represent the amount of transferred data per firing on a specific channel.
The amount of transferred data per channel is extracted from the output
of the functional simulation.

An extra task is added to the schedule of any communication bus
resource that is referenced on the write path to which a software channel
is bound. Similar, an extra task is added to the schedule of each
communication bus resource that is referenced on the read path to which
a specific software channel is bound. The list of involved communication
bus resources is given by the platform specification.

5.7.4 Calculating Connection Scalings
For the validity of the method that is presented in this section, an analyzed
process network must conform to synchronous data flow.

The activation scheme of a task in MPA-RTC is given by the
corresponding incoming arrival curve. For instance, if a following task
should only be activated half the amount of its predecessor task, the
outgoing arrival curve of the predecessor task has to be scaled by the
factor 0.5 before it is fed to the destination task.

Eq. 5.3 describes how this scaling factor is calculated for each process
network connection during the generation of an instance of the abstract
model. The needed information about the number of firings is obtained
from the output of the functional simulation.

scaling =
Number o f f iringsdestination

Number o f f iringssource
(5.3)

Obviously, the number of executed read and write operations of a
specific task is related to its number of activations. Thus, the calculated
scaling factor is applied to the specific connection of the extended process
network that refers to the interface between write path and read path of
the modeled software channel. In other words, this ensures that the same
amount of data that is written to a channel buffer gets also read in the
generated analysis model.

5.8 Implementation Environment
In general, all described concepts have been implemented by using Java
1.5 and Apache Ant [1]. Apache Ant is especially used for controlling the
overall tool flow.

72 Chapter 5. Analysis Model Generation for SHAPES

6
Case Study

This chapter presents a case study in which the introduced concept
is applied. Here, the focus lies on the performance of the presented
approach as well as the performance of MPA-RTC.

The verification part of this chapter aims to proof that the final results
that are obtained with MPA-RTC are not conflicting with the real behavior
of the system.

6.1 Case Study Application
An eligible case study application has to provide mainly four attributes.
Firstly, the application must be parallelizable. Next, the application
should reasonably utilize the platform. Thirdly, the application
should take an advantage of the heterogeneous architecture. Lastly,
the application must conform to the restrictions of the workflow
implementation, most notably the synchronous data flow constraint.

Here, a SHAPES application that performs floating-point operations on
vectors is used. Eq. 6.1 describes how a set of four following vectors is
summarized to one scalar value.

~vi ∈ Rn, i ∈N≥1, l ∈N≥1 : rl =

4·l∑
i=(4·l)−3

n∑
k=1

v2
i,k (6.1)

The data flow graph (see Fig. 21) as well as the process network
(see Fig. 22) show how this task can be parallelized. An equal load

74 Chapter 6. Case Study

balancing between both paths is achieved by using two paths for the
main part of the calculations.

1

2 1

1

1

1
1

2
x
2

x
2

Σ

Σ

Σ

1

2

Fig. 21: Data flow graph of the case study application. Numbers adjacent to each input
and output node indicate the number of tokens that are consumed or produced
when the node fires.

buffersumsquare

square buffersum

generator merger

Fig. 22: Process network of the case study application. In the abstract view, each channel
is equipped with an unbounded FIFO buffer. In the used implementation, each
channel buffer is limited to the fixed size of one message.

6.1.1 Application Characteristics
All tasks are exchanging messages, or tokens, of the same length.
Concretely, each message contains a float value for each row of the
represented vector with a length of n. On a communication channel,
a float always corresponds to 4 bytes. Tab. 4 describes the resulting
communications characteristics.

The number of floating-point operations per firing of a certain task is
shown in Tab. 5. All operations of the operating system are only working
with integers.

Lastly, Tab. 6 shows the number of firings per task for processing i
vectors that result in i/4 scalar values.

6.1. Case Study Application 75

Tab. 4: Communication characteristics of one firing
Task Read bytes Written bytes
generator 0 2 · n · 4
square n · 4 n · 4
buffersum 2 · n · 4 n · 4
merger 2 · n · 4 0

n: Static vector length

Tab. 5: Computation characteristics of one firing
Task FP multiplications FP additions
generator 2 · n 0
square n 0
buffersum 0 n
merger 0 2 · n

n: Static vector length

Tab. 6: Process firing scheme
Task Firings per instance Total firings
generator i/2 i/2
square i/2 i
buffersum i/4 i/2
merger i/4 i/4

i: Number of samples
i mod 4 = 0

76 Chapter 6. Case Study

Tab. 7: Calibration mapping configuration

Task Configuration
1 2 3 4 5 6

generator

G
en

er
ic

SW
FI

FO ARM

D
94

0
Ex

t.
FI

FO

mAgic ARM ARM ARM ARM
square_1 ARM ARM mAgic ARM ARM ARM
square_2 ARM ARM ARM mAgic ARM ARM
buffersum_1 ARM ARM ARM ARM mAgic ARM
buffersum_2 ARM ARM ARM ARM ARM mAgic
merger ARM ARM ARM ARM ARM ARM

6.1.2 Case Study Configuration
During the case study, the generator is used to produce i = 100 vectors
with a length of n = 1250 values per vector.

While a smaller number of vectors would obviously be sufficient for
evaluating this simple application without conditional paths, the given
parameters were chosen for obtaining results that are more descriptive
concerning the validity of the later presented results in the long run.

6.2 Calibration Mappings
Due to a confirmed bug in the current version of the HdS, it is not allowed
to bind the final task of a process network to the mAgic core. Concretely,
the operating system kernel that runs on the ARM9 core releases shared
resources before the execution of the final task that is bound to the mAgic
core has finished.

Corresponding to Section 5.3, Tab. 7 shows the resulting calibration
mapping configuration for the case study application.

6.3 Simulation Performance
Referring to the VPA documentation, there exist two simulation modes.
First, the so-called speed-optimized simulation mode offers a faster
execution by reducing the result accuracy. In detail, memory accesses
are done through so-called backdoors. Then, memory accesses by a core
consume no simulation cycles.

In turn, all memory accesses go over the simulated bus in the so-called
full simulation mode. As the desirable higher accuracy is not significantly
decreasing the performance, the case study results are based on the full
simulation mode.

6.4. Calibration Toolflow Performance 77

Tab. 8: Simulation overhead due to profiling
Scenario Number of interruptions Wall-clock duration

Simulated processing time: 458.706.770 ns
No breakpoints 0 0 min 32 sec
Calibration setup 1.731 5 min 2 sec
Single-Stepping 45.855.488 8 hrs 25 min
Simulation host: AMD Athlon XP 2800+, 2 GHz, 1 GB RAM, RHEL 5.1

Beside of the chosen simulation mode, the simulation runtime is
dependent on the number of interruptions due to the set breakpoints.
Tab. 8 shows the impact of breakpoints on the simulation runtime.
Obviously, it pays off to only trace functions that are really necessary
for the desired purpose.

6.4 Calibration Toolflow Performance

Table 9 shows the performance of the calibration tool flow for the given
case study configuration. Here, the given durations refer to the overall
time that was spent for performing the given task during the analysis
model calibration.

The overall performance of the software stack generation is mainly
affected by the bad performance of the used compiler from TARGET for
generating the software stack for the mAgic DSP. While the compilation
of one software stack for the ARM9 core takes around two seconds, about
one minute is necessary for generating one software stack for the mAgic
DSP. In both cases, the operating system cores were already available as
pre-compiled objects.

While the time for setting up the simulations is mainly based on the
number of calibration mappings, the runtime of the simulations itself
is apparently depending on the processing demand of the executed
application as well as the number of processed samples.

The result extraction scales for an increasing size of an execution
trace, the optional tree visualization should not be used in the context
of simulations with many firings.

78 Chapter 6. Case Study

Tab. 9: Calibration toolflow performance
Task Frequency Totaled wall-clock duration
Functional simulation setup 1 0 min 18 sec
Functional simulation 1 0 min 1 sec
Calibration mapping generation 1 0 min 1 sec
Software stack generation 6 6 min 50 sec
Simulation setup 6 0 min 12 sec
Instruction-accurate simulation 6 66 min 29 sec
Result extraction 6 0 min 26 sec
Optional tree visualization 6 12 min 56 sec
Simulation host: AMD Athlon XP 2800+, 2 GHz, 1 GB RAM, RHEL 5.1

6.5 Comparing Real Event Streams with Calcu-
lated Arrival Curves

One goal of the case study is to show that the real event streams lie within
the calculated upper and lower bounds of the arrival curves in MPA-RTC.

After extracting a trace of a real event stream, a cumulative function that
refers to the given event stream is calculated. Concretely, the calculated
function R(t) denotes how many events occurred in any time interval
[0; t]. In this representation, an event stream can be directly plotted into
the coordinate system of a calculated arrival curve.

6.5.1 Event Stream Traces
An event stream trace is specific to a process network channel, or software
channel, respectively.

Fig. 23 shows an example event stream trace. Each line corresponds to
one particular event. While the first number of each row denotes when
the corresponding message was written into the FIFO buffer, the second
number specifies when the same message was read out of the buffer. All
numbers refer to platform clock timestamps in picoseconds.

Fig. 23: Example event stream trace

2936730000;3688070000
13552140000;14300550000
30937960000;31687600000
41539810000;42288200000

The extraction of an event stream trace is based on the analysis of the

6.6. Modeling Event Sources 79

sequential call trees (see 5.2.6) of all involved cores. Here, the sequence
property of a sequential call tree is used. First, it is exploited for matching
the tree with the channel sequence from a functional simulation for
assigning channel contexts. Secondly, the sequence property is also used
for matching corresponding read and write timestamps that might be part
of two different sequential call trees.

6.5.2 Conjunction and Disjunction of Multiple Event
Stream Traces

In MPA-RTC, multiple event streams can be merged by activation units
that are either performing a conjunctive or disjunctive combination. For
comparisons with the outgoing event stream of an activation unit in
MPA-RTC, event stream traces can also be conjunctively and disjunctively
combined.

Firstly, the cumulative function of all involved event streams must be
given. Next, both cumulative functions must be aligned to the same
origin in the discrete time domain. Then, the conjunctive and disjunctive
combination of two event stream traces that are represented by R(t)
and S(t) is given by pointwise calculating min(R(t),S(t)) and R(t) + S(t),
respectively, for all discrete values t.

6.5.3 Merging Event Stream Traces
For the completeness of the concept without further application, it is
to mention that event stream traces can also be merged. This might
be interesting in cases where a task is conditionally accessing different
process network channels.

Concretely, the event stream trace that refers to the overall output
or input event stream, respectively, can be computed by combining all
relevant single event stream traces. Here, all entries must be merged
and ordered by the first or second column, respectively. The relationship
between the first and second column of each entry has to be retained.

6.6 Modeling Event Sources
In embedded systems design, it is normally asked if a certain
configuration is able to cope with an event source that has certain
properties. Thus, the properties of the event source are known beforehand
from the specification.

Here, the event source is included in the application. The next sample is
basically generated after the processing of the previous sample finished.

80 Chapter 6. Case Study

For the verification purpose of this case study, the parameters of the
assumed PJD event source have to be reconstructed from the event stream
traces.

6.6.1 Parameter Extraction
Concretely, an event is regarded as been generated at the time when
the corresponding message was written by the generator task. So, the
parameter extraction is based on the vector~t ∈ Rn of all n timestamps that
correspond to a message that was written by the generator task.

For n ∈ N≥1, the equations 6.2, 6.3 and 6.4 describe how the three
necessary parameters for modeling a PJD event source are computed.

p =
tn − t1

n − 1
(6.2)

k ∈N1≤k≤n : j = max |t1 + {p · (k − 1)} − tk| (6.3)

i ∈N2≤i≤n : d = min{ti − ti−1} (6.4)

6.7 Model Verification
The overall verification procedure on which this case study is based starts
with performing a one-time analysis model calibration.

For each investigated design point, the further procedure starts with
generating a corresponding instance of the abstract model (see Chapter 2
and 5.7). Then, the related event traces are extracted and used for
estimating the parameters of the corresponding PJD event source. Next,
a Matlab script for MPA-RTC is written based on the given instance of
the abstract model. Finally, Matlab is used for the verification of the
generated analysis model.

6.7.1 Extending the Period of the Implicitly Modeled Event
Source

While the case study application is running on the platform, all processing
resources are fully utilized. As the sample generation is part of the
application itself, the implicitly modeled event source refers to the most
demanding event source that can be served with the given resources.

Although the number of activations is rather low in this case study,
there is already a difference between the measured worst-case and best-
case execution demands. While the average-case demand is already fully

6.7. Model Verification 81

utilizing the processing resources, a more pessimistic worst-case analysis
leads to an unfeasible schedule.

To overcome this problem, the period of the implicitly modeled event
source is extended. This is done by adding an idle function to the
generator task. In this function, processing time is spent for performing
a number of floating-point calculations. For the calibration result, the
time that was spent in the idle function is removed.

Thus, by extending the period of the implicitly modeled event source,
extra computation power for handling worst-case behavior is made
available.

As generally any embedded system must be dimensioned for higher
demands than the average-case, this strategy is not affecting any property
of the presented approach. Even more, it is rather seldom that data
is purely generated by an application without interacting with other
components such as communication controllers.

6.7.2 Using Continuous Event Streams in MPA-RTC

Initially, event streams refer to discrete functions in MPA-RTC. The current
implementation of the toolbox models an event stream as a list of curve
segments. Basically, each curve segment has to be treated separately
when calculations are performed.

While performing calculations, initially well-formed event streams get
distorted very fast. The problem is that the number of curve segments
grows tremendously fast when an event stream gets more complex. Not
only leading to a high memory consumption, running mathematical
operations on data sets of this size is not feasible.

To overcome this limitation of the current toolbox implementation, the
results of this case study are based on continuous event streams. While
the concrete impact on the quality of the results is currently not known,
the calculated estimations are definitely more pessimistic compared to an
estimation based on discrete event streams.

6.7.3 Results of Real Measurements and Estimation with
MPA-RTC

For the model verification with MPA-RTC, mapping configuration 1 and
mapping configuration 3 (see Tab. 7) have been chosen. While mapping
configuration 1 refers to the most simple configuration of the given
case study application, mapping configuration 3 has been chosen as the
representative of all configurations that employ both processing cores.

82 Chapter 6. Case Study

6.7.3.1 Analysis Performance

The generation of the corresponding Matlab script from the SHAPES
specifications of a certain mapping configuration takes less than one
second on a machine that is equipped with an Intel Core Duo processor.

Analyzing mapping configuration 1 with MPA-RTC took 8.3 seconds
on the same machine, 61 iterations were necessary until a fixed point
was reached. Similar, 14.0 seconds were spent for analyzing mapping
configuration 3, 79 iterations were necessary until a fixed point was
reached.

6.7.3.2 Corresponding MPA-RTC Models

Fig. 24 and Fig. 25 show the corresponding MPA-RTC models for both
analyzed configurations. FIFO schedulers are used for both modeling the
static scheduler of the ARM9 core as well as the resource sharing of the
communication bus that is employed in mapping configuration 3.

buffer

sum_1

buffer

sum_2

PJD
generator

square_1

merger

square_2

e1

e4

e5

e6

e2

e3

FIFO

β1

β2

α4

α1

α5

α3

α2

α7

A
N
D α6

Fig. 24: MPA-RTC model for mapping configuration 1

6.7.3.3 Execution Demands from Calibration

Obtained execution demands per process and firing are stated in Tab. 10.
Tab. 11 compares the execution demands without communication for both
processing cores.

6.7. Model Verification 83

Tab. 10: Overall execution demands per firing for computation and communication
Task Worst-case demand Best-case demand

Mapping configuration 1
generator 3.1 ms 3.0 ms
square_1 1.6 ms 1.5 ms
square_2 1.6 ms 1.6 ms
buffersum_1 3.4 ms 3.4 ms
buffersum_2 3.4 ms 3.4 ms
merger 2.8 ms 2.7 ms

Mapping configuration 3
generator 5.0 ms 4.3 ms
square_1 24.9 ms 18.6 ms
square_2 3.6 ms 2.9 ms
buffersum_1 5.4 ms 5.3 ms
buffersum_2 5.7 ms 5.3 ms
merger 5.5 ms 4.0 ms

Tab. 11: Worst-case execution demands per processor and firing without communication
Task ARM9 mAgic
generator 2.8 ms 0.3 ms
square_1 1.4 ms 0.3 ms
square_2 1.4 ms 0.3 ms
buffersum_1 3.0 ms 0.9 ms
buffersum_2 3.0 ms 0.9 ms
merger 2.6 ms —

84 Chapter 6. Case Study

buffer

sum_2

generator

square_2

merger

buffer

sum_1

C3_write

C1_readPJD

mAgic DSP

100 MHz

ARM9

100 MHz

DMA

400 MByte/s

FIFO FIFO

square_1

A
N
D

Fig. 25: MPA-RTC model for mapping configuration 3

Tab. 12: Extracted PJD event source parameters
Parameter Mapping config. 1 Mapping config. 3
Period 18.1 ms 22.1 ms
Jitter 6.7 ms 13.8 ms
Minimum distance 12.8 ms 11.7 ms

6.7.3.4 Parameters of Extracted Event Sources

Tab. 12 shows the event source parameters that result from analyzing the
event traces as described in 6.6.

6.7.3.5 Resulting Plots

Fig. 26 and Fig. 27 visualize the calculated upper and lower bounds in
comparison with the real event traces. While only the plots of the first
and the last task in terms of the data flow are shown here, the results of
all process instances are displayed in A.1.

6.7.3.6 Further Calculated Characteristics

Tab. 13 shows calculated system-level characteristics that have been
obtained from MPA-RTC. The measured values and the worst-case
estimates for the end-to-end delay between generator and merger are
shown in Tab. 14

6.7. Model Verification 85

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

generator

real event trace
calculated arrival curve

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

merger

real event trace
calculated arrival curve

Fig. 26: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 1.

0 200 400 600 800 1000
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

generator

real event trace
calculated arrival curve

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

merger

real event trace
calculated arrival curve

Fig. 27: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 3.

86 Chapter 6. Case Study

Tab. 13: Calculated performance characteristics
Task Worst-case buffer size Worst-Case delay

Mapping configuration 1
generator 3.8 44.3 ms
square_1 6.2 44.3 ms
square_2 6.2 44.3 ms
buffersum_1 4.3 44.3 ms
buffersum_2 4.3 44.3 ms
merger 5.6 44.3 ms

Mapping configuration 3
generator 5.2 77.9 ms
square_1 4.9 87.7 ms
square_2 8.7 77.9 ms
buffersum_1 2.4 77.9 ms
buffersum_2 6.1 77.9 ms
merger 7.9 77.9 ms

Tab. 14: Calculated and real end-to-end delay between generator and merger
Source Mapping config. 1 Mapping config. 3
Real measurement 55.2 ms 69.4 ms
Calculated worst-case delay 492.3 ms 782.5 ms
Additive model 22.2 ms 49.8 ms

6.7. Model Verification 87

6.7.4 Result Evaluation
At first, all extracted event traces from the simulation lie within the
calculated upper and lower bounds. Even more, the slopes of real and
estimated curves fit, which implies the validity of the results in the long
run.

6.7.4.1 Quality of Estimated End-to-End Delays

Apparently, the calculated end-to-end delays (see Tab. 14) are very
pessimistic. While the reasoning for this effect has not been totally
discovered, several suspicions exist.

Firstly, the obtained results are based on a fixed point convergence.
Currently, there exists no information about the quality of results that are
calculated in this manner.

Secondly, the impact of using continuous event streams in MPA-RTC
has also not been investigated, yet.

While the delays that are shown here correspond to the sum of task-
specific standalone delays, better results could be obtained by using “pay
bursts only once” [21]. This could especially help as the values that have
been extracted to model the PJD event sources contain a large jitter.

Lastly, the highest contribution to the end-to-end delays is given by the
worst-case delay of the conjunctive activation of the merger task. Namely,
the worst-case delay of this activation contributes 315.3 ms and 461.2 ms,
respectively, which corresponds to more than the half of the overall values.
While these calculated delays are also caused by the modeled bursts, a
detailed reasoning for this behavior is not available, yet.

6.7.4.2 Exploitation of the Second Processing Core

Although parallelization normally should lead to a speedup of the
application, Tab. 14 shows that the opposite occurred. The same trend can
already be observed in Tab. 10 by considering that all execution demands
are higher for mapping configuration 3.

The reason for this behavior can be found in the two different buffer
implementations. The generic software buffer implementation uses a
local event notification system for the arbitration of communication
buffers between concurrently running tasks. In turn, the implementation
of the Diopsis 940 external FIFO buffer is based on a spinlock that is used
for controlling the concurrent buffer access of multiple tasks that might
run on different processing cores.

By definition, a spinlock is acquired by busy waiting until it gets
available. As communication buffers are always located on the distributed
external memory independent of the used buffer implementation,

88 Chapter 6. Case Study

the buffer access synchronization is to blame for the currently low
performance.

6.7.4.3 Busy Waiting for DMA Channel Access

Intentionally, a request for reading or writing a channel buffer should
only be sent after the needed data or free buffer space, respectively, are
available. In practice, busy waiting for not produced data seems to take
place in the form of busy waiting for a DMA channel to get available.

Fig. 28 shows the distribution of processing times that have been spent
on waiting for the DMA controller while trying to read or write data,
respectively. Here, both accesses for querying buffer status information
as well as for transferring data are included. In a more detailed analysis,
it can be observed that reading a buffer status is always reasonably fast,
while reading data from a buffer is delayed up to 20 ms.

0 5 10 15 20
0

10

20

30

40

50

60

time spent for busy waiting in ms

fr
eq

u
en

cy

read

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

120

time spent for busy waiting in ms

fr
eq

u
en

cy

write

Fig. 28: Distribution of waiting times for DMA read and write access

The problem here is, that waiting times due to resource sharing can
no longer be filtered which leads to distorted calibration results. For
instance, the measured excution demand of square_1when bound to the
mAgic core is much too high (see Tab. 10).

Here, one possible solution could be to replace these distorted
processing times by static values that are obtained from a benchmark
measurement.

For the currently shown results, the execution demand of square_1 in
mapping configuration 3 has been manually decreased to 18 ms in the
MPA-RTC model. This value is pretty close to the boundary where the
systems get no longer schedulable in a worst-case sense. Nevertheless,
18 ms is still a too high estimate for the processing time as it still contains
waiting times that occur due to the mentioned problem.

6.7. Model Verification 89

6.7.4.4 Theoretical Usage of Heterogenous Processing Cores

As the presented case study application is performing a large number
of floating-point operations, the mAgic DSP core is outperforming the
ARM9 core only regarding the processing time spent for computation
without communication (see Tab. 11). Here, the reason can be found in
the missing native floating-point support of the ARM9 core.

While basically all parts of the case study application are tailored for
the mAgic DSP core, Tab. 10 gives a hint on the advantage of having
specialized processing resources for purposes such as massive floating-
point calculations.

90 Chapter 6. Case Study

7
Conclusions and Outlook

In Chapter 2, a new abstract specification language for modeling complex
embedded systems has been introduced. Here, the most important
innovation can be found in the presented MPA-RTC writer that is capable
to syntactically resolve all kinds of cyclic dependencies that can occur
during the analysis of embedded systems.

Chapter 3 presented a new method for the calibration of accurate
performance analysis models. Here, the accuracy of the results can be
given in three dimensions. Firstly, the approach is based on instruction-
accurate simulation. Next, the used performance data is extracted from
the simulation of the real application. Lastly, the calibration procedure
offers a high granularity on the level how different contributions to the
processing time of a task are reported separately.

As seen in Chapter 5, the introduced approach can be executed
fully automatically. Basically, all prerequisites for an integration of
the presented concept into a full design space exploration tool flow are
already satisfied.

Finally, a proof-of-concept was presented in the case study in Chapter 6.

Outlook

Regarding a short time interval, the applicability of the presented
concept to more complex applications needs to be verified. Related to
this topic, performing verification measurements on the real hardware
is also thinkable as soon as the hardware gets available. Embedded in

92 Chapter 7. Conclusions and Outlook

the course of the SHAPES project itself, it is also desirable to detect and
repair issues that are currently affecting the performance of the whole
system.

Furthermore, it needs to be checked if the instruction-accurate
simulation can be extended to cover the monitoring of communication
bus activities. Initially, this is dependent on the availability of a software
tool that is suited for this purpose.

Pointing to another direction, the full integration of the shown
implementation into a design space exploration loop in connection with
EXPO is considerable. Here, minor improvements in the tool flow such
as a model for describing mapping constraints may help to additionally
enhance the presented tool flow.

In the long run, a new challenge will come up when the number
of hardware tiles is increased. Here, an interesting question will be if
results that were obtained by analyzing small process networks can be
transferred to more parallelized process networks that are based on the
same task implementations.

A
Appendix

94 Appendix A. Appendix

A.1 Model Verification Result Plots

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆
generator

real event trace
calculated arrival curve

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

merger

real event trace
calculated arrival curve

Fig. 29: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 1.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

square 1

real event trace
calculated arrival curve

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

square 2

real event trace
calculated arrival curve

Fig. 30: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 1.

A.1. Model Verification Result Plots 95

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

buffersum 1

real event trace
calculated arrival curve

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

buffersum 2

real event trace
calculated arrival curve

Fig. 31: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 1.

0 200 400 600 800 1000
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

generator

real event trace
calculated arrival curve

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆
merger

real event trace
calculated arrival curve

Fig. 32: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 3.

96 Appendix A. Appendix

0 200 400 600 800 1000
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

square 1

real event trace
calculated arrival curve

0 200 400 600 800 1000
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

square 2

real event trace
calculated arrival curve

Fig. 33: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 3.

0 200 400 600 800 1000
0

5

10

15

20

25

30

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

buffersum 1

real event trace
calculated arrival curve

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

buffersum 2

real event trace
calculated arrival curve

Fig. 34: Comparison of calculated upper and lower bounds with the real event traces.
Mapping configuration 3.

A.2. HdS Software Stack Configuration 97

A.2 HdS Software Stack Configuration
Unfortunately, the software stack configuration offers some pitfalls. As
non-syntactical error are not checked, but result in a non-predicted
behaviour of the software stack during execution, it is crucial to
understand the configuration process.

There is a configuration file for each processor, the software stack for
the ARM9 core is configured by altering the linker script.

A.2.1 Heap Size Setup
Depending on the number of tasks and their memory consumption, kernel
and user heap might have to be increased. During execution, the software
stack is switching to a safe state if a heap space is too small. In this state,
an instruction that jumps to its own address is executed.

A.2.2 Stack Frame Configuration
The stack frame size has to be considered for dealing with large messages.
While the stack frame size of the multi-tasking kernel can be set in the
linker script, the stack frame size of the kernel that runs on the mAgic
core needs to be set in the configuration file of the “bridge” tool.

A.2.3 Driver Configuration
Next, it has to be checked, if all necessary drivers modules are included
in the configuration. This has to be checked against the communication
paths that are referenced in the used mapping. In case that a driver is
missing, the software stack will run, but no data will be transferred. In
particular, an uninitialized function pointer will be called instead of a
low-level IO function of the buffer driver.

A.2.4 Buffer Device Configuration
Lastly, the configuration of the needed buffer devices has to be verified.
At first, the number of buffer devices must be equal or bigger than the
number of mapped software channels. In case of a D940 external FIFO
buffer, the configuration has to be equal for both processors. Additionally,
it is important that the defined data type of a buffer device matches with
the data type that is used in the application sources.

98 Appendix A. Appendix

B
Presentation Slides

Generation of Accurate Performance Analysis

Models for Embedded Systems

Master Thesis Presentation

Matthias Keller

ETH Zurich, April 8, 2008

Institut für
Technische Informatik und
Kommunikationsnetze

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Background

bu�ersumsquare

square bu�ersum

generator merger

CPU 1 CPU 2

Design space exploration of MPSoC systems

MPSoC systems can be characterized by their large design space.
The goal is to �nd design points that match with the design
requirements.

2 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Background

System-level performance analysis

Estimation of system characteristics, such as end-to-end delays,
throughput, or bu�er requirements.

Design Space Exploration Based on Formal Analysis Methods

Formal based analysis methods o�er a short evaluation time as well
as corner-case coverage.

3 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Problem and Task

Problem of current approaches

Performance data must be extracted manually

Analysis model must be generated by hand

Task

Extract performance data by employing instruction-accurate
simulation

Generate accurate performance models for analysis with
MPA-RTC

Implement a proof of concept for SHAPES

4 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Table of Contents

1 Introduction

2 Abstract Model

3 Case Study

4 Model Calibration

5 Model Veri�cation

6 Conclusions

5 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Related Work

Design space exploration based on formal analysis methods

Henia et al. proposed a design space exploration tool �ow
based on SymTA/S

Wandeler and Künzli used MPA-RTC during a design space
exploration

Combining simulation and formal methods for DSE

Künzli, Poletti et al. showed the much faster evaluation speed
of formal methods compared to simulation by using MPA-RTC
for single components.

One-time calibration

Pimentel et al. performed a one-time model calibration for
trace-based simulation.

6 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Approach

Fun. Simulation

Result

Objetive

Multi-

Optim.

Model

Generator

Analysis

Writer

MPA-RTC

Calibration

Result

Extration

Software

Stak

Analysis

Calibration

Mapping

Generation

Instrution

Simulation

Aurate

Spei�ation

Appliation

Platform

Spei�ation

Calibration

Mappings

Calibration

Mapping

Calibration File

Stak

Generation

Software

Calibration File

MPA-RTC

7 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

1 Introduction
2 Abstract Model

Introduction
MPA-RTC Writer

3 Case Study

4 Model Calibration

5 Model Veri�cation

6 Conclusions

8 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Motivation

Abstract description language for embedded systems

Abstrat

Model

MPA-RTC

Matlab sript

DOL

Spei�ations

Trae-Based

Simulation

XML

SPIRIT

XML

Symta/S

Possibility to use the model for interfacing other frameworks

Better software design compared to a single converter

9 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Example System

<?xml version="1.0" encoding="UTF-8"?>

<analysismodel>

<pjd name="source" period="2"/>

<sink name="sink"/>

<task name="b" bced="1" wced="3"/>

<task name="a" bced="1" wced="1"/>

<connection from="source" to="a" sampling="1"/>

<connection from="a" to="b" sampling="1"/>

<connection from="b" to="sink" sampling="1"/>

<resource name="cpu" bandwidth="4">

<fp preemptive="true">

<priority value="1">

<binding task="a"/>

</priority>

<priority value="2">

<binding task="b"/>

</priority>

</fp>

</resource>

<latency from="a" to="b"/>

<backlog task="b"/>

</analysismodel>

10 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Command Order Constraint

GPC

GPC

α1

β1

β3

β2

α3

α2 a1 = rtcpjd(1);

b1 = rtcfs(5);

[a2 b2] = rtcgpc(a1, b1, [2 1]);

[a3 b3] = rtcgpc(a2, b2, [2 1]);

11 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Solving Dependencies in MPA-RTC

GPC

GPC

α2 α3

β1

β3

β2

α1

% a1, b1 are already defined

b2 = b1;

for i=1:20

[a2 b3] = rtcgpc(a1, b2, [2 1]);

[a3 b2] = rtcgpc(a2, b1, [2 1]);

% Check fixed-point convergence

% Code removed for illustration

end

12 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Component Graph: Dependency Relation Graph for Sorting

O
R α3

α5

α4

GPC

GPC

GPC

FIFO

α1 α2

α6
GPC

GPC

β1 β3

β4

β6

β2
α8

α7

β5

1 Service Dependency

2 Event Dependency

3 Strict Event Dependency

4 Inner-Component
Dependency

13 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Example

e3 e4

e1e2

GPC

GPC

GPC

GPC

β3

β4

β2

α5

β5

α1α2α3

α4

β1

EDF

% b1, b3, a1, e1, e2, e3, e4

% are already defined

b4 = b3;

for it_service = [1:20]

[a2 b5] = rtcgpc(a1, b4, e1);

[a3 b2] = rtcgpc(a2, b1, e2);

for it_event = [1:20]

[a3 a3_d a3_b a4 a4_d ...

a4_b b5] = ...

rtcfifo(a2, e2, a3, ...

e3, b1);

% Check fixed-point convergence

% Code removed for illustration

end

[a5 b4] = rtcgpc(a4, b3, e4);

% Check fixed-point convergence

% Code removed for illustration

end

14 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

1 Introduction

2 Abstract Model
3 Case Study

VSP Architecture
Case Study Application

4 Model Calibration

5 Model Veri�cation

6 Conclusions

15 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Atmel Diopsis 940 Architecture

Memory

80 KByte

Data

Memory

128 KByte

Program

M

D

A

Data &

Program

48 KByte

USB

Host PHY

ETH

Ext.

IO

External

Memory

64 MB

ATMEL

Diopsis 940
ARM9 ore

mAgi VLIW DSP Core

100 MHz

100 MHz

AHB matrix, 100 MHz

EBI

Data bus

Two Bu�er Implementations

1 Generic SW FIFO 2 D940 External FIFO

16 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Data Flow Graph

1

2 1

1

1

1
1

2
x2

x2

Σ

Σ

Σ

1

2

bu�ersum mergersquaregenerator

One token refers to 1250 · 4 Byte = 5000 Byte.

17 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

1 Introduction

2 Abstract Model

3 Case Study
4 Model Calibration

Goal
Approach
Sequential Call Tree Analysis

5 Model Veri�cation

6 Conclusions

18 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Goal

Fine-grained calibration results

WCED: 2.4 ms

BCED: 1.3 ms

WCED: 4.1 ms

BCED: 2.5 ms

WCED: 4.3 ms

BCED: 2.6 ms

WCED: 2.1 ms

BCED: 0.8 ms

WCED: 0.7 ms

BCED: 0.3 ms

WCED: 0.9 ms

BCED: 0.5 ms

D940

FIFO

GEN SW

FIFO

D940

FIFO

GEN SW

FIFO

D940

FIFO

D940

FIFO

mytask

ARM9 mAgi

Calibration File

mAgi

WCEDmytask = 2.1ms + 4.1ms + 4.3ms = 10.5ms

BCEDmytask = 0.8ms + 2.5ms + 2.6ms = 5.9ms

19 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Approach

Fun. Simulation

Result

Calibration

Result

Extration

Software

Stak

Analysis

Calibration

Mapping

Generation

Instrution

Simulation

Aurate

Spei�ation

Appliation

Platform

Spei�ation

Calibration

Mappings

Calibration

Mapping

Calibration File

Stak

Generation

Software

20 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Sequential Call Tree Analysis

21 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

1 Introduction

2 Abstract Model

3 Case Study

4 Model Calibration
5 Model Veri�cation

Mapping all processes to the ARM9
Mapping one process to the mAgic

6 Conclusions

22 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Case 1: MPA-RTC Model

bu�er

sum_1

bu�er

sum_2

PJD

generator

square_1

merger

square_2

e1

e4

e5

e6

e2

e3

FIFO

β1

β2

α4

α1

α5

α3

α2

α7

A
N
D α6

β1 = 1 ms/ms
p = 18.1479 ms
j = 6.6985 ms
d = 12.7806 ms
e1 = [3.0662 ms, 2.9497 ms]
e2 = [1.6473 ms, 1.5374 ms]
e3 = [1.6455 ms, 1.6364 ms]
e4 = [3.4342 ms, 3.4209 ms]
e5 = [3.4240 ms, 3.4185 ms]
e6 = [2.8516 ms, 2.7721 ms]

Generation time: 1 sec

23 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Case 1: Results

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

generator

real event trace
calculated arrival curve

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

merger

real event trace
calculated arrival curve

Measured end-to-end delay:

55.3 ms

Evaluation time:

6.1 sec

Calculated end-to-end delay:

492.9 ms

24 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Case 2: MPA-RTC Model

bu�er

sum_2

generator

square_2

merger

bu�er

sum_1

C3_write

C1_readPJD

mAgi DSP

100 MHz

ARM9

100 MHz

DMA

400 MByte/s

FIFO FIFO

square_1

A
N
D

25 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Case 2: Results

0 200 400 600 800 1000
0

10

20

30

40

50

60

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

generator

real event trace
calculated arrival curve

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

time interval ∆ in ms

#(
ev

en
ts

)
d

u
ri

n
g

 ∆

merger

real event trace
calculated arrival curve

Measured end-to-end delay:

69.5 ms

Evaluation time:

17.0 sec

Calculated end-to-end delay:

783.3 ms

26 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

1 Introduction

2 Abstract Model

3 Case Study

4 Model Calibration

5 Model Veri�cation

6 Conclusions

27 / 28

Introduction Abstract Model Case Study Model Calibration Model Veri�cation Conclusions

Conclusions

Abstract Model

Comprehensive model for a broad �eld of applications, especially in
the context of MPA-RTC.

Model Generation

Fine-grained, fully automatically generated model. Only minimal
manual e�ort during setup, good performance.

SHAPES

Implementation of a fully automated tool �ow as a proof of the
introduced concept.

Model Veri�cation

Promising results concerning an application during a design space
application loop.

28 / 28

114 Appendix B. Presentation Slides

List of Tables

1 Example Calibration Result Contributions 40

2 VSP Memory Configuration 44

3 List of Characteristic Functions 54

4 Communication Characteristics of the Case Study Appli-
cation . 75

5 Computation Characteristics of the Case Study Application 75
6 Process Firing Scheme of the Case Study Application . . . 75
7 Calibration Mapping Configuration of the Case Study

Application . 76
8 Simulation Overhead due to Profiling 77
9 Calibration Toolflow Performance 78
10 Measured Execution Demands for Computation and

Communication . 83
11 Measured Worst-Case Execution Demands Without Com-

munication . 83
12 Extracted PJD Event Source Parameters 84
13 Calculated Performance Characteristics 86
14 Calculated and Real End-to-End Delays 86

116 List of Tables

List of Figures

1 Virtual Platform Analyzer 7
2 MPA-RTC Arrival and Service Curves 9
3 Design Space Exploration Loop 12

4 Abstract Model Readers and Writers 14
5 Entity Relationship Diagram of the Abstract Model 15
6 Hierarchy of Several Resource Sharing Schemes 16
7 EDF Component with an Event Path between Two

Embedded Tasks in MPA-RTC 18
8 Activation Based on the Disjunction of Five Incoming Event

Streams in MPA-RTC . 20
9 Event Stream Cycle in MPA-RTC 22
10 Snapshot of an Iterative Command Selection 26
11 Example for Multiple Event Paths between Two Compo-

nents in MPA-RTC . 30
12 Screenshot of Moses Application 33

13 Annotated Example Execution Trace 41

14 Atmel Diopsis 940 Layout 44
15 Extract of Functional Simulation Output 47
16 Extract of Functional Simulation Output 47

17 Sub-Tree of One Firing . 54
18 Example Execution Trace Entry 58
19 Compact Call Tree of One Process Instance 65
20 Example Calibration Result Annotation 65

21 Data Flow Graph of the Case Study Application 74
22 Process Network of the Case Study Application 74
23 Example Event Stream Trace 78
24 MPA-RTC Model for Mapping Configuration 1 82
25 MPA-RTC Model for Mapping Configuration 3 84
26 Comparison of Calculated Upper and Lower Bounds with

the Real Event Traces . 85
27 Comparison of Calculated Upper and Lower Bounds with

the Real Event Traces . 85

118 List of Figures

28 Distribution of Waiting Times for DMA Controller Access . 88

29 Comparison of Calculated Upper and Lower Bounds with
the Real Event Traces . 94

30 Comparison of Calculated Upper and Lower Bounds with
the Real Event Traces . 94

31 Comparison of Calculated Upper and Lower Bounds with
the Real Event Traces . 95

32 Comparison of Calculated Upper and Lower Bounds with
the Real Event Traces . 95

33 Comparison of Calculated Upper and Lower Bounds with
the Real Event Traces . 96

34 Comparison of Calculated Upper and Lower Bounds with
the Real Event Traces . 96

Abbreviations

API Application Programming Interface
CMOS Complementary Metal–Oxide–Semiconductor
CPU Core Processing Unit
DOL Distributed Operation Layer
DSE Design Space Exploration
DSP Digital Signal Processor
EDF Earliest Deadline First
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GPC Greedy Processing Component
HAL Hardware Abstraction Layer
HdS Hardware Dependent Software
IP Intellectual Property
ISA Instruction Set Architecture
MPA Modular Performance Analysis
MPA-RTC Modular Performance Analysis with Real-Time Calculus
MPSoC Multi-Processor System-on-Chip
PJD Periodic Event Source with Jitter
RAM Random Access Memory
RTC Real-Time Calculus
SHAPES Scalable Software Hardware Architecture

Platform for Embedded Systems
SoC System-on-Chip
SymTA/S Symbolic Timing Analysis for Systems
TDMA Time Division Multiple Access
VLIW Very Long Instruction Word
VPA Virtual Platform Analyzer
VSP Virtual SHAPES Platform
WFS Wave Field Synthesis
XML Extensible Markup Language

120 Abbreviations

Bibliography
[1] Apache Ant.
http://ant.apache.org/.

[2] Baccelli, F.L. and Olsder, G.J. and Quadrat, J.P. and Cohen, G.
Synchronization and Linearity: An Algebra for Discrete Event Systems.
Wiley Series on Probability and Mathematical Statistics: Probability
and Mathematical Statistics, 1992.

[3] Balarin, F. Hardware-Software Co-Design of Embedded Systems: The
Polis Approach. Springer, 1997.

[4] Blum, S. Darstellung von Abhängigkeitsgraphen. Semester Thesis,
ETH Zürich, Computer Engineering and Networks Laboratory, 2007.

[5] Buck, J. and Ha, S. and Lee, E.A. and Messerschmitt, D.G. Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems.
International Journal of Computer Simulation, 4(2):155–182, 1994.

[6] Chakraborty, S. and Künzli, S. and Thiele, L. A General Framework
for Analysing System Properties in Platform-based Embedded
System Designs. Proc. 6th Design, Automation and Test in Europe
(DATE), pages 190–195, 2003.

[7] CoWare Virtual Platform.
http://www.coware.com/products/virtualplatform.php.

[8] Distributed Operation Layer Web Site.
http://www.tik.ee.ethz.ch/~shapes/dol.html.

[9] EXPO – A Tool for Design Space Exploration of Network Processor
Architectures.
http://www.tik.ee.ethz.ch/expo/.

[10] Gresser, K. An Event Model for Deadline Verification of Hard Real-
Time Systems. Real-Time Systems, 1993. Proc. 5th Euromicro Workshop
on Real-Time Systems, pages 118–123, 1993.

[11] Gries, M. Methods for Evaluating and Covering the Design Space
during early Design Development. Integration, the VLSI Journal,
38(2):131–183, 2004.

[12] Guerin, X. and Popovici, K. and Youssef, W. and Rousseau, F.
and Jerraya, A. Flexible Application Software Generation for
Heterogeneous Multi-Processor System-on-Chip. Computer Software
and Applications Conference, 2007. COMPSAC 2007-Vol. 1. 31st Annual
International, 1, 2007.

[13] Haid, W. and Thiele, L. Complex Task Activation Schemes in System
Level Performance Analysis. Proc. of the 5th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis, pages
173–178, 2007.

[14] Henia, R. and Hamann, A. and Jersak, M. and Racu, R. and Richter,
K. and Ernst, R. System-Level Performance Analysis - The SymTA/S
Approach. Computers and Digital Techniques, IEEE Proc., 152(2):148–
166, 2005.

[15] Ho, R. and Mai, KW and Horowitz, MA. The Future of Wires. Proc.
of the IEEE, 89(4):490–504, 2001.

[16] Kahn, G. The Semantics of a Simple Language for Parallel
Programming. Information Processing, 74:471–475, 1974.

[17] Kraemer, S. Virtual SHAPES Simulation Platform. Workshop Poster
at Automation and Test in Europe (DATE), 2007.

[18] Künzli, S. and Poletti, F. and Benini, L. and Thiele, L. Combining
Simulation and Formal Methods for System-Level Performance
Analysis. In Design Automation and Test in Europe (DATE), pages
236–241. IEEE Computer Society, 2006.

[19] Künzli, S. and Thiele, L. Generating Event Traces Based on Arrival
Curves. In 13th GI/ITG Conference on Measurement, Modeling, and
Evaluation of Computer and Communication Systems (MMB), pages 81–
98. VDE Verlag, March 2006.

[20] Lahiri, K. and Raghunathan, A. and Dey, S. System-Level
Performance Analysis for Designing On-chip Communication
Architectures. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 20(6):768–783, 2001.

[21] Le Boudec, J.Y. and Thiran, P. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer, 2001.

[22] Lee, EA and Messerschmitt, DG. Synchronous Data Flow. Proc. of
the IEEE, 75(9):1235–1245, 1987.

[23] Lieverse, P. and Stefanov, T. and van der Wolf, P. and Deprettere, E.
System-Level Design with Spade: An M-JPEG Case Study. Proc. Int.
Conference on Computer Aided Design (ICCAD 01), pages 31–38, 2001.

[24] The Moses Project – Modeling, Simulation and Evaluation of
Systems.
http://www.tik.ee.ethz.ch/~moses/.

[25] Modular Performance Analysis with Real-Time Calculus.
http://www.mpa.ethz.ch.

[26] Paolucci, P.S. SHAPES Project Web Site.
http://www.shapes-p.org.

[27] Paolucci, P.S. and Jerraya, A.A. and Leupers, R. and Thiele, L. and
Vicini, P. SHAPES: A Tiled Scalable Software Hardware Architecture
Platform for Embedded Systems. Proc. of the 4th International
Conference on Hardware/software Codesign and System Synthesis, pages
167–172, 2006.

[28] Paolucci, P.S. and Kajfasz, P. and Bonnot, P. and Candaele, B. and
Maufroid, D. and Pastorelli, E. and Ricciardi, A. and Fusella, Y. and
Guarino, E. mAgic-FPU and MADE: A Customizable VLIW Core and
the Modular VLIW Processor Architecture Description Environment.
Computer Physics Communications, 139(1):132–143, 2001.

[29] Performance Simulation of Distributed Embedded Systems.
http://www.mpa.ethz.ch/PESIMDES/Overview.

[30] Pier Stanislao Paolucci. Janus: A Gigaflop VLIW+RISC SoC Tile.
Hot Chips 15 IEEE Stanford Conference, 2003.

[31] Pimentel, A.D. and Thompson, M. and Polstra, S. and Erbas, C.
On the Calibration of Abstract Performance Models for System-level
Design Space Exploration. Embedded Computer Systems: Architectures,
Modeling and Simulation, 2006. IC-SAMOS 2006., pages 71–77, July
2006.

[32] Polstra, S. A Systematic Approach to Exploring Embedded System
Architectures at Multiple Abstraction Levels. IEEE Transactions on
Computers, 55(2):99–112, 2006.

[33] Richter, K. and Jersak, M. and Ernst, R. A Formal Approach to
MPSoC Performance Verification. Computer, 36(4):60–67, 2003.

[34] Rüegg, C. A Tool-Independent System Description for Real-Time
Embedded Systems. Semester Thesis, ETH Zürich, Computer
Engineering and Networks Laboratory, 2006.

[35] Simon Künzli. Efficient Design Space Exploration for Embedded Systems.
PhD thesis, Swiss Federal Institute of Technology Zürich, April 2006.

[36] SimpleScalar LLC.
http://www.simplescalar.com/.

[37] The SPIRIT Consortium.
http://www.spiritconsortium.org/.

[38] Sporer, T. and Beckinger, M. and Franck, A. and Bacivarov, I. and
Haid, W. and Huang, K. and Thiele, L. and Paolucci, P.S. and
Bazzana, P. and Vicini, P. and others. SHAPES – A Scalable Parallel
HW/SW Architecture Applied to Wave Field Synthesis. 2007.

[39] The Open SystemC Initiative (OSCI).
http://www.systemc.org.

[40] TARGET Compiler Technologies.
http://www.retarget.com/.

[41] Tcl – Tool Command Language.
http://www.tcl.tk/.

[42] Thiele, L. and Bacivarov, I. and Haid, W. and Huang, K. Mapping
Applications to Tiled Multiprocessor Embedded Systems. In Proc.
7th Intl Conference on Application of Concurrency to System Design
(ACSD 2007), pages 29–40, Bratislava, Slovak Republic, July 2007.
IEEE Computer Society.

[43] Thiele, L. and Chakraborty, S. and Gries, M. and Künzli, S. Design
Space Exploration of Network Processor Architectures. In First
Workshop on Network Processors at the 8th International Symposium
on High-Performance Computer Architecture (HPCA8), pages 30–41,
Cambridge MA, USA, February 2002.

[44] Thompson, M. and Nikolov, H. and Stefanov, T. and Pimentel, A.D.
and Erbas, C. and Polstra, S. and Deprettere, E.F. A Framework
for Rapid System-Level Exploration, Synthesis, and Programming
of Multimedia MPSoCs. Proc. of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, pages
9–14, 2007.

[45] Computer Engineering and Networks Laboratory (TIK).
http://www.tik.ee.ethz.ch.

[46] Wandeler, E. Modular Performance Analysis and Interface-Based Design
for Embedded Real-Time Systems. PhD thesis, Swiss Federal Institute
of Technology Zürich, 2006.

[47] Wandeler, E. and Thiele, L. and Verhoef, M. and Lieverse, P. System
Architecture Evaluation Using Modular Performance Analysis: A
Case Study. International Journal on Software Tools for Technology
Transfer (STTT), 8(6):649–667, 2006.

[48] Zitzler, E. and Thiele, L. Multiobjective Evolutionary Algorithms:
A Comparative Case Study and the Strength Pareto Approach.
Evolutionary Computation, IEEE Transactions on, 3(4):257–271, 1999.

	Abstract
	Zusammenfassung
	Introduction
	Aim of this Thesis
	The SHAPES Project
	Modular Performance Analysis with Real-Time Calculus
	Related Work
	Thesis Outline and Contributions

	Modeling Systems for Performance Analysis
	Overview
	Abstract Model
	MPA-RTC Writer
	XML Reader and Writer
	Model Verification
	Related Work
	Moses
	Implementation Environment

	Analysis Model Calibration
	System Model
	Performance Parameters
	Measuring Amounts of Transferred Data
	Measuring Processing Times

	SHAPES Internals
	VSP Architecture
	Distributed Operation Layer
	Functional Simulation
	Hardware Dependent Software
	Software Stack Generation

	Analysis Model Generation for SHAPES
	Restrictions
	Calibration Procedure Overview
	Calibration Mapping Generation
	Instruction-Accurate Simulation
	Call Tree Extraction
	Result Annotation
	Analysis Model Generation
	Implementation Environment

	Case Study
	Case Study Application
	Calibration Mappings
	Simulation Performance
	Calibration Toolflow Performance
	Comparing Real Event Streams with Calculated Arrival Curves
	Modeling Event Sources
	Model Verification

	Conclusions and Outlook
	Appendix
	Model Verification Result Plots
	HdS Software Stack Configuration

	Presentation Slides
	List of Tables
	List of Figures
	Abbreviations
	Bibliography

