
Developement of a Simulink Toolbox for the
analysis of Real-Time Embedded Systems

Semesterthesis

Authors: Marcel Breu, Remo Niedermann
Supervisor: Prof. Dr. Lothar Thiele
Tutors: Simon Perathoner, Nikolay Stoimenov

Zurich, January 8, 2008

Acknowledgment

At first we want to thank Prof. Dr. Lothar Thiele for the possibility to write our semester
thesis at his institute at the Computer Engineering and Networks Lab of the Swiss Fed-
eral Institute of Technology (ETH) Zurich.
Further we are very grateful to Simon Perathoner and Nikolay Stoimenov because of
their continuous help and support as supervisors during the whole semester thesis.

Contents

1. Introduction 4
1.1. Motivation . 4
1.2. Related Work . 6
1.3. Contribution . 6
1.4. Structure of this work . 6

2. Modular Performance Analysis with Real Time Calculus 7
2.1. Theoretical Background . 7

2.1.1. Variability Characterization Curves 7
2.1.2. Analysis of a Greedy Processing Component 9
2.1.3. Resource sharing . 10
2.1.4. System Performance Analysis . 10

2.2. Software Architecture . 12

3. Implementation 13
3.1. Requirements . 13
3.2. Software Architecture . 14
3.3. Curve Representation in Simulink . 16
3.4. Function Implementation in Simulink . 17
3.5. Analysis of non-cyclic systems . 20
3.6. Analysis of cyclic systems . 21

3.6.1. Initial Curves . 21
3.6.2. Storage elements . 21

3.7. Testing . 25

4. User Guide 27
4.1. Tutorial . 27

4.1.1. How to create a Model . 27
4.2. Errors and Solutions . 30

4.2.1. Number of Curve Segments . 30

2

4.2.2. Initial Curve Problem . 30
4.3. List of Components . 34

4.3.1. Curves . 34
4.3.2. Analysis . 35
4.3.3. Processing and Scheduling Components 36
4.3.4. Complex Task Activations . 37
4.3.5. Operations . 37
4.3.6. Display Components . 39

5. Conclusions and Outlook 40
5.1. Conclusions . 40
5.2. Outlook and Future Work . 41

A. Appendix 43
A.1. Covered Functions . 43
A.2. Original Task Description (german) . 43
A.3. Real-Time Calculus . 44
A.4. Implementation of the dwork . 44

3

1. Introduction

1.1. Motivation

Embedded systems are special-purpose information processing systems that are closely
integrated into their environment. An embedded system is typically dedicated to a
specific application domain, and knowledge about this domain and the system’s envi-
ronment are used to develop customized and optimized system designs (in contrast to
general-purpose computing systems like personal computers).
The embedding into a larger product leads to distributed components that need to com-
municate with each other trough some interconnection network.
Embedded systems are typically reactive systems i.e. they are driven by events from
their physical environment to which they are connected through sensors and actuators.
The pace of execution is therefore determined by the environment and as a result many
embedded systems must meet real-time constraints. A correct result arriving too late
or even too early is wrong for a real-time system. If such a wrong result can lead to a
catastrophic failure, the real-time constraint for the system is called hard.
From the above assessments it becomes clear that distributed embedded real-time sys-
tems are inherently difficult to design and to analyze. Particularly, as often not only the
availability and the correctness of the computation are of major concern but also the
timeliness of the computed results. So for real-time systems the focus is on the analy-
sis of timing aspects. In particular, a designer is interested in best-case and worst-case
delays as he needs to know whether the end-to-end latency constraints are fulfilled or
not. Further the loss of data due to buffer overflows is mostly not accepted. Therefore
it is essential for the designer to know if the allocated buffer sizes can accommodate the
worst-case buffer requirement of the system.
There are several different approaches to analyzing or estimating the performance of
distributed embedded systems. An important distinction is between formal perfor-
mance analysis methods and simulation based approaches. The former determine hard
guarantees of the performance of a system, while the latter can not due to insufficient
corner case coverage. This work is based on an analysis method called Modular Per-

4

formance Analysis with Real Time Calculus (MPA-RTC) [1]. With this framework it is
possible to compute hard upper and lower bounds to various performance criteria [2].
The MPA-RTC framework has been implemented in Java and is mainly intended to be
used as a MATLAB toolbox. For a user this means that he has to model the system by
writing MATLAB-code. It is a modular approach where each HW/SW component is
modeled independently with a MATLAB function. The inputs and outputs of the func-
tions get names and the connections between the components are then made by using
the right output names as inputs for the next component (Figure 1.1 shows on the right
side a MATLAB model). This can be quite a tedious task and it is error-prone and time-
consuming. A much more intuitive approach would be to have graphical blocks with
inputs and outputs (like the one in Figure 1.1 on the left side) and then the connections
could be made just by dragging the outputs of one block to the inputs of the next. Simu-
link allows to build such graphical models and this work will describe how a graphical
user interface for the MATLAB RTC toolbox has been implemented in Simulink.

CPU 2

T1
ed=1

CPU 1

T2
ed=4

T1
ed=4

FS

B=2

FS

B=1

p = 10;
j = 2;
d = 1;

cpu1 = 2;

cpu2 = 1;

wced1 = 1;
wced2 = 4;
wced3 = 4;

ai1 = rtcpjd(p,j,d);

bi1 = rtcfs(cpu1);
bi2 = rtcfs(cpu2);

[ao1 bo1] = rtcgpc(ai1, bi1, wced1);

[ao2 bo2] = rtcgpc(ao2, bi2, wced2);
[ao3 bo3] = rtcgpc(ao3, bo1, wced3);

PJD

P=10, J=2,

D=1

Figure 1.1.: Performance models of the same system made with a graphical representa-
tion on the left and MATLAB code on the right

5

1.2. Related Work

SymTA/S is another tool for performance analysis with a graphical user interface. The
name stands for Symbolic Timing Analysis for Systems. The SymTA/S software and
technology was developed at the Institute of Computer and Communication Network
Engineering at the Technical University of Braunschweig [4].
In contrast to the MPA framework the SymTA/S approach is limited to a few classes of
input event models [5].

1.3. Contribution

A basic prototype of a graphical user interface for the RTC Toolbox in form of a Simu-
link library already existed but this prototype was not complete and many problems
were not solved. The contribution of this work is the design of a new GUI which ex-
tends the functionality of the prototype by the following points:

• Almost all functions of the RTC toolbox are implemented as Simulink blocks

• The precision (in terms of number of segments) for the representation of Variabil-
ity Characterization Curves can be adjusted dynamically

• The library is able to model cyclic systems.

• The appearance of the blocks has been improved (i.e. blocks can have an arbitrary
number of input ports and the port labels will change accordingly)

1.4. Structure of this work

• In Chapter 2 the theoretical background of Modular Performance Analysis with
Real-Time Calculus is presented. In particular the concepts of variability charac-
terization curves and of performance models are described.

• Chapter 3 is the main part of this work, it explains how exactly the functionality
of the RTC toolbox was implemented in Simulink.

• Readers who just want to work with the library are advised to read Chapter 4
because this is a guide on how to use the library.

• The last chapter contains the conclusions of the work and some points for future
improvements of the library.

6

2. Modular Performance Analysis with
Real Time Calculus

2.1. Theoretical Background

Modular Performance Analysis with Real Time Calculus (MPA-RTC) [1] is a frame-
work for performance analysis of distributed embedded systems that has its roots in
network calculus [3]. MPA-RTC analyzes the flow of event streams through a network
of computation and communication resources in order to derive hard upper and lower
bounds to various performance characteristics of a distributed embedded system, such
as end-to-end delays or buffer requirements.
The central idea of this method is to build a so-called performance model which is an
abstraction of the concrete system. The performance model consists of components
that are communicating with each other through arrival and service curves (denoted
together as variability characterization curves).
The next sections describe the parts of such a performance model: first the variability
characterization curves, how a component processes these curves, the resource sharing
between different components and the analysis of such networks.

2.1.1. Variability Characterization Curves

The timing characterization of event and resource streams is based on variability char-
acterization curves (VCC) which are an abstraction of the classical representation such
as sporadic, periodic or periodic with jitter. While the number of events and the avail-
able resources are represented in the time domain, the VCC’s are represented in a time-
interval domain. Figure 2.1 depicts this step from one domain to the other: The curves
in the time-interval domain are created by moving a window of size S over the time
domain and counting the minimal and maximal number of events in all of these win-
dows.
The event streams are described using arrival curves αu(∆), αl(∆) ∈ R≥0, ∆ ∈ R≥0 [5]
which provide upper and lower bounds on the number of events in any time interval

7

events

∆

1

3

S

t

events

S

Figure 2.1.: From event streams to VCCs

of length ∆. In particular, if R [s, t) denotes the number of events that arrive in the time
interval [s, t), then the following inequality is satisfied:

αl(t− s) ≤ R [s, t) ≤ αu(t− s)∀s < t

In a similar way, the resource streams are characterized using service functions βu(∆),
βl(∆) ∈ R≥0, ∆ ∈ R≥0. If C [s, t) denotes the number of processing or communica-
tion units available from the resource over the time interval [s, t), then the following
inequality is satisfied:

βl(t− s) ≤ C [s, t) ≤ βu(t− s)∀s < t

These curves can be obtained from different sources: perhaps the pattern of the event or
resource stream is known, e.g. bursty or periodic or they can be derived from a finite set
of event traces. In other cases, one can derive the curves by deriving the bounds from
the characteristics of the generating device or the hardware component [6]. Figure 2.2

events

∆∆

cycles

αu

αl

βu

βl

Figure 2.2.: An example of an event and a resource stream: left) periodic with jitter,
right) TDMA

8

shows an example of a periodic event stream with jitter and a resource curve from a
TDMA resource.

2.1.2. Analysis of a Greedy Processing Component

Figure 2.3.: A greedy processing component

A Greedy Processing Component as in Figure 2.3 (taken from [7]) realistically models
the semantics of many HW/SW tasks. In particular, an incoming event stream rep-
resented as a pair of arrival curves αl and αu, flows into a FIFO buffer in front of the
processing component. The component is triggered by these events and will process
them in a greedy manner while being restricted by the availability of resources, which
are represented by a pair of service curves βl and βu. On its output, the component gen-
erates an outgoing stream of processed events, represented by a pair of arrival curves
αl′ and αu′ . Resources left over by the component are made available again on the re-
source output and are represented by a pair of service curves βl′ and βu′ . The output
curves are given by [7]:

αl′ =
[(

αl � βu
)
⊗ βl

]
∧ βl

αu′ =
[
(αu ⊗ βu)� βl

]
∧ βu

βl′ = (βl − αu)⊗0

βu′ = (βu − αl)�0

The definition of the used operators is given in the appendix.

9

2.1.3. Resource sharing

The service inputs and outputs in the system performance model are interconnected
to reflect the resource sharing policies in the system. If for example several tasks of a
system are allocated to the same resource these tasks share this resource according to a
scheduling or arbitration policy. In the performance model, this scheduling or arbitra-
tion policy on a resource can then be modeled either by the way the abstract resources
β are connected among the different abstract tasks or by additional scheduling blocks.
One of the simplest resource sharing strategies to implement is fixed priority: this is
done by connecting the service curves of two performance modules serially, so the sec-
ond module can only use the service that is left-over from the first one. This scheme is
depicted in Figure 2.4 (taken from [7]).

Figure 2.4.: Modeling of the fixed priority resource sharing scheme

2.1.4. System Performance Analysis

After interconnecting all components the performance model captures all the informa-
tion that builds the basis for performance analysis. Various performance criteria, such
as end-to-end delay guarantees or buffer requirements can be computed analytically in
the performance model. The performance analysis of a distributed embedded system is
done by combining the analysis of the single processing components of a performance
model. The maximum delay dmax experienced by an event at a system module and the

10

maximum size of the buffer bmax can be bounded by the following inequalities:

Figure 2.5.: Maximal delay and buffer requirement obtained from arrival and service
curves

dmax ≤ sup
λ≥0

{
inf
{

τ ≥ 0 : αu(λ) ≤ βl(λ + τ)
}} de f

= Del(αu, βl)

bmax ≤ sup
λ≥0

{
αu(λ)− βl(λ)

} de f
= Bu f (αu, βl)

A graphical interpretation is that bmax is the maximal vertical distance and dmax the
maximal horizontal distance between the upper arrival curve and the lower service
curve as can be seen in Figure 2.5 (taken from [7]).
The total end-to-end delay or the total buffer requirement is then computed by adding
the delay or buffer requirement of the single components. However, another computa-
tion is also possible when an event stream is processed by a sequence of components
and when the components use the same shared memory. Then it is possible to exploit
a phenomenon known as ”Pay Bursts Only Once“ (this means that the worst-case sce-
nario of all tasks will not coincide [8]) and the end-to-end delay and the total buffer
requirement can be tightened to [2]:

dmax ≤ Del(αu, βl
1 ⊗ βl

2 ⊗ . . .⊗ βl
n)

bmax ≤ Bu f (αu, βl
1 ⊗ βl

2 ⊗ . . .⊗ βl
n)

11

2.2. Software Architecture

The Real-Time Calculus (RTC) Toolbox is a free MATLAB toolbox for system-level per-
formance analysis of distributed real-time and embedded systems. The RTC Toolbox is
based on an efficient representation of Variability Characterization Curves (VCC’s) and
implements most min-plus and max-plus algebra operators for these curves. On top
of the min-plus and max-plus algebra operators, the RTC Toolbox provides a library of
functions for Modular Performance Analysis with Real-Time Calculus [9].

Figure 2.6.: The architecture of the RTC Toolbox

12

3. Implementation

This chapter describes the actual implementation of the graphical user interface in
Simulink. The first section lists the requirements that the GUI should fulfill. In sec-
tion 3.2 the Software structure is presented. Section 3.3 explains the problem with the
curve representation in Simulink and the solution to it. In section 3.4 some important
points of the implementation will be discussed in detail and the following two sections
deal with the problem of cyclic dependencies. At the end of this chapter in section 3.7
the testing of the blocks is described.

3.1. Requirements

1. The Simulink GUI should work with MATLAB R2007b and the current latest ver-
sion of the RTC Toolbox.

2. The Simulink GUI should only be a separate front end to the RTC Toolbox. It
means that the RTC Toolbox should be able to work as before without the Simu-
link GUI. There should be a clear separation between the GUI and the Toolbox.
The interface of interaction between the two should be clearly defined. Any
needed Java methods should be added to the file MatlabUtil.java

3. The user should be able to model any system with the Simulink GUI that is pos-
sible to be modeled with the RTC Toolbox including cyclic systems.

4. The results of the analysis should be the same regardless of whether the user uses
the Simulink GUI or not.

5. Create a structured library of components in Simulink following the guidelines
where RTC MATLAB functions are grouped as:

Curve generation functions: rtcbd, rtccurve (create any curve), rtcfs, rtcpjd, rtc-
ps, rtctdma

Analysis: rtcbuf, rtcdel

13

Processing and scheduling components: rtcedf, rtcfifo, rtcgpc, rtcgsc

Functions for complex task activations: rtcor, rtcand

Operations on curves and curve sets: rtcaffine, rtcceil, rtceq, rtcfloor, rtch, rtc-
max, rtcmaxconv, rtcmaxdeconv, rtcmin, rtcminconv, rtcmindeconv, rtcmi-
nus, rtcplus, rtcrdivide, rtcsteps, rtctimes, rtcuminus, rtcv

Display components: display (for displaying a scalar or textual representation
of a curve), plot (for graphically representing curves), plotgsc, plotgpc

6. Create a short tutorial for using the Simulink GUI.

3.2. Software Architecture

The Software Architecture is structured in three levels: Simulink, MATLAB and Java
(Figure 3.1). A Simulink block will call a MATLAB function which then will call a func-
tion from the Java-Core to do the whole computation. Basically in the MATLAB RTC
toolbox curves are represented as Java objects and the operations on curves are imple-
mented in the Java-Core. Simulink, on the other hand, cannot handle Java objects so it
is necessary to convert these curves into matrices. This is done by using special MAT-
LAB functions (more details can be found in the next Section). The new RTC Library
in Simulink consists of six categories: curve, analysis, processing and scheduling com-
ponents, operations and display components and each of them contains blocks (e.g. the
category processing and scheduling components contains the GPC, GSC, FIFO and EDF
blocks).
Every block implementation consists of two parts:

• A Level-2 M-File S-Function: These M-Files contain the behavioural logic of the
blocks. The block input and output ports are defined, the calculation is done with
the input data and the result of the calculation is assigned to the output ports.

• A block mask: Block Masks are custom user interfaces with an own parameter
dialog box and a self-defineable visual appearance. In the library they are used to
provide a custom help message and to allow the user to easily enter the parame-
ters of a block.

14

JAVA

(jar-File)
Java Code

Simulink

(mdl-Library)
RTC Library

Operations

on curves

Analysis

Processing and

scheduling

components

Complex task

activations

Curves

Display

components

mdl_ceil

mdl_floor

mdl_affine

mdl_buf

mdl_del

mdl_edf

mdl_fifo

mdl_gpc

mdl_or

mdl_and

mdl_pjd

mdl_fs

mdl_curve

mdl_plot

mdl_gsc

mdl_displayMatlab

(m-Function)

RTC Files as:

rtcedf

rtcfs

rtcgpc

etc.

Figure 3.1.: Software Architecture and Dataflow

15

3.3. Curve Representation in Simulink

The RTC toolbox represents the arrival and service curves as Curve-Objects which is a
user defined Java datatype. In Simulink however it is not possible to pass objects but
only numerical matrices. This section describes the implications of this property for the
implementation of the Simulink library.
The RTC toolbox defines curves as consisting of an aperiodic part and a periodic part.
These parts are made of segments where every segment is a three-tuple: x-position,
y-position and slope. The end of a segment is defined by the start point of the next
segment, so basically a curve is a piecewise linear graph. This structure has to be rep-
resented now as a simple matrix to be used in Simulink. A solution to this problem is
already provided in the RTC toolbox in form of the functions importFromSimulink
and exportToSimulink which convert a matrix into a curve and vice versa. It is
possible to call these functions directly in MATLAB but then the user has to provide
the class name, in this case this would be e.g. MatlabUtil.importFromSimulink
which is not so user-friendly. That is why two MATLAB functions were added which
call the Java functions. Their names are fromSimulink and toSimulink.
The matrix has three columns and the number of rows is defined by a Java variable. In
the first three rows additional data about the curve, like the period and the size of the
periodic and aperiodic part is stored and then the following rows contain the segment
information (x-position, y-position, slope) first of the aperiodic part and then of the pe-
riodic part (this means that three segments less than the number of rows can be stored
in this matrix). Hence the number of rows is very important for the representation of
curves, this length was set to 250 in the RTC toolbox and could not be changed. This
was too unflexible, since it permitted to handle accurately only curves up to a fixed size.
To overcome this limitation getter and setter methods for this Java variable have been
added to the Java-Core (this was the only change to the Java-Core that was done during
this work). The corresponding MATLAB functions are called rtcsetNumInputs and
rtcgetNumInputs. rtcsetNumInputs(num) sets the number of segments that the
user thinks is necessary to store and rtcgetNumInputs() returns the number of seg-
ments (there is also the function rtcgetDataLength which returns the total size of
the matrix, i.e. the number of segments plus three). This approach leads to a drawback:
At the time where a block is set up in Simulink the size of the output curve is not yet
known (because the computation of this is done in a following step). This means that
the size cannot be set dynamically to different values for different curves, but there is
one value for all curves. This is some sort of waste, many curves will have less seg-

16

ments than the maximum size and in their matrices there will be many zero values (in
MATLAB the Java curve objects require just the memory they need).
Figure 3.2 shows the error message from Simulink if a curve has more segments than

Figure 3.2.: This message means that the number of segments needs to be increased

the matrix can store. This means that the user has to increase the size. Just taking the
value provided in the error message might not be such a good idea, because Simulink
just stops when it finds the first curve which is too big. This does not mean that the
problem is completely solved, it could be that the curves grow even larger while the
analysis continues and that the error message shows up again.
The user now has the possibility to adapt the size of the data structure that stores a
curve which is an important advantage with respect to the prototype. For the modeling
of several sample systems this approach has shown to be useful.

3.4. Function Implementation in Simulink

Simulink is an environment for multidomain simulation and Model-Based Design for
dynamic and embedded systems. It provides an interactive graphical environment and
a customizable set of block libraries that lets a user design, simulate, implement, and
test a variety of time-varying systems, including communications, controls, signal pro-
cessing, video processing, and image processing. It is integrated with MATLAB, pro-

17

viding immediate access to an extensive range of tools that lets users develop algo-
rithms, analyze and visualize simulations, create batch processing scripts, customize
the modeling environment and define signal, parameter and test data [10]. Simulink
provides three possibilities to create custom blocks and libraries:

MATLAB Function Blocks There are three subtypes of these blocks which can use
MATLAB commands to implement functionality

Subsystem Blocks These blocks allow to introduce hierarchy: some components can
be aggregated into a new single component. This improves conciseness in mod-
els, but only predefined blocks can be used

S-Function Blocks They allow to implement custom functionality using M,C or C++
code

Since the RTC toolbox exists in form of M-Files our first approach was to use embed-
ded MATLAB function blocks. This did not work because embedded MATLAB only
supports a subset of the MATLAB language and the whole Java-functionality cannot
be used. The next approach was to look at the prototype in which some functions were
already implemented in form of S-Functions. The most efficient solution seemed to be
to do it the same way as in the prototype, hence the blocks of the new library use S-
Functions (more specifically they are called Level-2 M-File S-Functions).
Simulink provides a template file for S-Functions. Starting with this template the be-
haviour of the different blocks had to be implemented and the main part was always
done in the ”output“ function. The following parts will describe how the curves are im-
plemented, how blocks of different input-output combinations have been constructed
and what block masks can do to improve the user interface.

Curves

In the prototype all interconnections between blocks consisted of a combination of
lower and upper curves. The other possibility would be to have separate connections
for lower and upper curves but this would increase the number of connections and
therewith lead to a more cluttered model. That is the reason why the new library also
uses the representation with a single connection which consists of a lower and an up-
per curve. For the code this means the following: The signal has a user-defined number
of rows and six columns, the first three are for the lower curve and the last three are
for the upper curve (see 3.3 for more explanations). However in the RTC Toolbox all
functions which return a combination of a lower and an upper curve the first element
is the upper curve e.g.:

18

beta = rtcfs(5);

output = [toSimulink(beta(2)) toSimulink(beta(1))];

so element two of beta (the lower curve) will be the first part of the output signal and
element one (the upper curve) is the second. Accessing the elements and reconverting
them into curves is done using the following code (where it is assumed that the output
of the previous code is fed as input to the next code):

beta_lower = fromSimulink(input(:,1:3));

beta_upper = fromSimulink(input(:,4:6));

beta = [beta_lower beta_upper];

The actual code looks a bit different because of the use of so-called dwork storage ele-
ments (more on this in 3.6.2), but these code parts show the general idea.

Blocks with a variable number of inputs and outputs

The most difficult type of blocks to implement were those which had a user definable
number of input ports and then produced a variable number of output ports like the
EDF and the FIFO block. The first problem there was how to construct the call to the ac-
tual RTC-Toolbox function, because it needs a variable argument size e.g. rtcfifo(alpha,
beta), rtcfifo(alpha, beta1, beta2) or even worse with different data types. To achieve
this the ”cell-array“ functionality of MATLAB was used. Cell-arrays can be built dy-
namically and they can contain different datatypes. The following code shows this: It
builds the cell-array args. In every step a curve, a worst-case execution demand and a
deadline is added to it. This array can then be passed to the RTC-Toolbox function.

for k=1:numInputs

args = {args{:} beta(k) wced(k) deadline(k)};

end

The second problem was that the EDF and FIFO functions return a variable number of
outputs, depending on the number of inputs. Unfortunately this could not be solved
with a cell-array and another trick was needed. The basic idea here was to use the
MATLAB function ”eval“ which takes a string and executes it the same way as when
it would have been typed on the MATLAB command line. So in a loop the string gets
constructed and then the eval-function will execute the statement in the string. To as-
sign the outputs of the function to the ports the eval-function has to be used again.
A code example for the EDF-block which does this is given in the following (only the
assignment of the last port is shown):

% Goal: have a string like [a1,del1,buf1,...]=rtcedf(args{:})

% which will then be EVALuated

19

strbegin = ’[’;

ret = ’a1,del1,buf1’;

for k=2:(block.NumInputPorts-1)

ret = strcat(ret, ’,a’, mat2str(k), ’,del’,mat2str(k),’,

buf’,mat2str(k));

end

strend = ’,b]=rtcedf(args{:});’;

func = strcat(strbegin, ret, strend);

eval(func);

% Assign the outputs of the function to the output ports

be=eval(’b’);

block.OutputPort(block.NumOutputPorts).Data=[toSimulink(be(2))

toSimulink(be(1))];

Block Masks

Another limitation of the prototype was that the block masks could not handle param-
eterized number of input ports. If a block needed more inputs than the predefined
number the ports did not get a name. This can be solved with dynamic masks, so the
mask uses a so-called callback-function to update its appearance. For some blocks like
the DEL WCED or FIFO the block mask has an additional functionality. These blocks
need parameters for all inputs. The user cannot enter the number of input ports that
he wants to have like in other blocks but only a vector with the parameters. The block
mask then determines the number of input ports from the size of this vector.

3.5. Analysis of non-cyclic systems

For systems which do not include cyclic dependencies the analysis is straightforward
i.e. the output of a block becomes the input of the next block. But the fact that the same
blocks are used for cyclic and for non-cyclic systems has an impact on the efficiency
of non-cyclic systems: They need to be calculated twice, the first time only the initial
curves of the blocks are taken into account. For the second time the real inputs are used
and the result will be right. This means that the analysis time is twice as high as in
the optimal case. The explanation for the use of these initial curves is given in the next
section.

20

3.6. Analysis of cyclic systems

3.6.1. Initial Curves

After implementing the first version of the blocks one big problem occurred: For sys-
tems with cyclic dependencies the blocks need some initial curves for the first execu-
tion. An example of a system with cyclic dependencies is given in Figure 3.3. Task two
has a higher priority than task one. This means that task two gets a full service resource
and task one gets what is left-over from task two. But task one needs to process the
event stream first. So the situation is the following: Task one has events to process but
does not get processing time and task two has a full service resource available but no
events to process. The first try to solve this problem was to implement an initial block.
This block has two inputs: for the first time the input from port one (the initial curve)
is forwarded to the output and thereafter the input of port two (the actual curve) gets
forwarded (Figure 3.4). The usage of this block did not solve the problem. Simulink
has rules to determine the execution order of blocks and this rule does not choose the
initial block as first block. Hence it will execute a block which does not have all inputs
available and the problem persists. Another solution which works is presented in the
next section.

3.6.2. Storage elements

In Simulink a block can have storage elements. These are called ”dwork“ and are vec-
tors (curves are represented as matrices so there will be a conversion from a vector to
a matrix and vice versa). The main idea is that the functions in the blocks do not di-
rectly access the input data but the storage element (as depicted in Figure 3.5) and this
element will be initialized before the first access. After the first timestep the values of
the storage element will be overwritten with the values from the input ports. For the
previous example (Figure 3.3) this means that task one can be executed, it will use the
curves in the storage element and the same holds for task two. After this step both
blocks update their storage elements with the actual input.

For the introduction of the dwork storage element a property in the block setup func-
tion needs to be changed and some supplementary functions need to be implemented:

Setup Hence the blocks do not access directly the input ports to calculate the output
data, the DirectFeedthrough option of the input ports has to be declared to be
false.

21

(a) Model

(b) Simulink Representation

Figure 3.3.: Example system with a cyclic dependency

22

Figure 3.4.: Initial Curve Block

Figure 3.5.: The construction of a block with dwork

PostPropagationSetup In this function the dwork elements are declared.

Start The Start-Function is executed only once during an analysis. The initial curves
are defined and stored in the dwork elements.

Output This function is in all blocks, independent whether they have dwork elements
included or not. This function is the heart of the block because here it is imple-
mented what the block is designed for and this means for the dwork elements,
that they will first be read out and the vector is stored in a matrix. The matrix will
then be converted into curve-objects. After this procedure the function can do its
job.

23

Update At the time the block is executed, it uses the curves from the dwork elements
and the current input curves need to be stored after the execution of the Output-
Function. This is exactly what the Update-Function does: The data from the input
ports are stored in the dwork elements.

An example of the dwork implementation is in the appendix A.4.

The initial curves solve the problem of cyclic dependencies but a new problem can
occur. Figure 3.3 shows an example where this problem arises. On a CPU two tasks
are executed. The second task has higher priority than the first one. The scheduling
determines that task two gets full service while task one gets only time to execute when
task two is idle whereas task two can only execute when task one already has done
some executions. For the first iteration each block will be executed with initial curves.
The outputs of the tasks depend on the initial curves which means that by changing
the initial curves the output change and therefore the inputs of the two blocks for the
second iteration. This difference at the beginning of the analysis can have consequences
for the whole analysis.
The parameters for the initial curves are shown in Table 3.1 and the Simulink represen-
tation is in Figure 3.3(b) It is difficult to find some useful initial curves because there

Input Initial Curve in GPC Delay & Buffer
β = FS(1) β=FS(1) Delay = 17
α = PJD(10,0,0) α=PJD(10,50,1) Buffer = 2
β = FS(1) β=FS(1) Delay = 9
α = PJD(10,0,0) α=PJD(1,0,0) Buffer = 1

Table 3.1.: Initial Curve Problem

always exists a model where the result is not correct. All blocks of the new Simulink
library have the initial curves shown in Table 3.2.

Curve Values Description
α FS(0) no events in the event stream
β FS(1) full service curve with bandwidth = 1

Table 3.2.: Initial Curves

The advantage of these initial curves is the following: The first time a block (e.g. GPC)
is executed it uses the initial curves, which are for α: full service with bandwidth zero
(nothing arrives, a service curve generator has been taken because it is the only one

24

which produces an all-zero curve - with the PJD-Block this does not work) and for β:
full service with bandwidth one. The clue is that after the execution the output α- and
β-curve are the same as the input ones. For the example in Figure 3.3 this means that
the first GPC gets the full service because the second GPC has nothing to do and the
calculation does not change the α- and β-curve.
From these considerations it can be seen that the initialization values for the curves
play an important role. In the library they are hard-coded into the M-Files which is not
a very flexible approach. It would be much better if the user would be able to set them
himself. A first idea to achieve this was to define special functions in the MATLAB
workspace and then use them as initialization curves. However it was not possible in
Simulink to access these functions. Another possibility would be to have the desired
initial curves as a parameter in every block. So the user could double-click on a block
and then select which curves he wants to have as a starting point. This could be done
using a text field where the user enters the function name and this string would then
be evaluated and assigned to the dwork. There might be a problem for blocks with a
variable number of input ports, the user may be forced to define many curves. This
implementation could not be done because it exceeded the time of this semester thesis.

3.7. Testing

One of the most important requirements for the graphical user interface was that it
should compute the same results as the RTC toolbox. For the testing this means that
a model built with Simulink blocks should produce the same results for all possible
analysis scenarios as the model of the same system built with MATLAB code.
In the RTC toolbox there are some demo systems provided which show how to use the
functions. For testing purposes the cyclic dependency demo is especially interesting
because it shows the two major problems of this work, namely curve representation in
Simulink and cyclic data dependencies. In the example system there are two scenarios,
one which has cyclic dependencies, the other not. With the non-cyclic version the im-
plemented blocks worked fine and the outputs from the model and from the MATLAB
code were identical. But if the model was changed to include cyclic dependencies, the
problem of algebraic loops occurred (see Figure 3.6 for the error message). This prob-
lem was then solved by the help of data storage vectors that contain initial curves as
described in chapter 3.6.2. With further testing another problem was found out: The
initial curves for the data storage vector can influence the whole calculation (see chap-
ter 3.6.2).

25

Figure 3.6.: Error message caused by algebraic loop

The result of an analysis can be wrong because of different reasons as pointed out be-
fore, therefore are here some points to test if the result is correct.

• Change the values for the initial curves. This has to be done in the Start-Method
of the corresponding function, so if you want e.g. to change the initial curves for
the GPC-Block you have to edit the file mdl gpc.m. If it returns the same values
for buffer and delays the results should be correct.

• To ensure that the calculation has reached a fix-point the values for the buffer and
the delay should no longer change during the last steps of the analysis, otherwise
the number of iterations has to be increased. In Simulink this can be done by
increasing the stop time because every timestep corresponds to an iteration.

26

4. User Guide

4.1. Tutorial

This step by step tutorial shows how to build a simple performance model with an
example. Figure 4.1 shows the system. It consists of 3 tasks, which are run on two
different CPUs, whereas each one can execute one event per time-unit. The first and
third task share a CPU, the scheduling strategy is fixed-priority with task three having
a higher priority than task one. For task one the Best Case Execution Demand (BCED)
and Worst Case Execution Demand (WCED) are equal to one. Task two and three are
identical and have equal WCED and BCED. This leads to a cyclic dependency between
these two tasks. Task one has lower priority than task three therefore it can only exe-
cute when task three is idle while task three can always execute as long as it has events
to execute but the events first have to be executed by task one and two. If the priority
of task one and three is swapped, the model will no longer have cyclic dependencies
because task one then has higher priority than task three and executes all the arriving
events while task three has to wait until task one is idle afterwards it can execute all
his events. The number of needed blocks is independent whether the system has cyclic
dependencies or not. The differences are just in connecting the blocks.
The event stream or arrival curve is a PJD-curve. The events arrive with a certain pe-
riod (e.g. 10 time units), can have jitter (e.g. 50 time units) and must have a minimum
event inter-arrival time (minimum time difference between two events, e.g. 1). The
parameters for the example model are summarized in Table 4.1

4.1.1. How to create a Model

1. Enter in MATLAB: rtcNewModel(’Testmodel’)
This function creates a new model with name ”Testmodel“ in the current folder.
It initializes the fixed step size to 1, the solver to discrete values, Start Time to
1 and Stop Time to 10. Finally the warnings for unterminated output ports are
avoided. Such a model has a predefined number of segments for curves of 250. If
a curve grows larger, an error message will appear. The number of segments can

27

Figure 4.1.: Example Model

arrival curve period = 10
jitter = 50
minimum event inter-arrival time = 1

service curve bandwidth = 1
Task 1 WCED = 1

BCED = 1
priority = low

Task 2 WCED = 4
BCED = 4
priority = high

Task 3 WCED = 4
BCED = 4
priority = high

Table 4.1.: Specification of the model

be increased using the function rtcsetNumSegments(len) on the MATLAB
prompt (see 3.3 for more explanations).

2. Start Simulink and look for the Real Time Calculus Toolbox. Here are all needed
blocks for the model.

3. Take the boxes by ”drag and drop“ in your model. For the example 3 GPCs (which
will model the tasks), 1 DEL WCED, 1 BUF WCED, 2 FS, 1 PJD and 2 Displays (to
show the size of the buffer and the delay) are needed, as seen in Figure 4.2. Double
click on the box and enter the parameters given in Table 4.1 for the selected box
(e.g. b=1 for FS)

4. The last step is to connect these blocks properly. Here it will be described for the
case that task one has higher priority than task three (no cyclic dependencies).

• The best way is to start at the PJD curve generator. The event stream (α) first

28

Figure 4.2.: Blocks for the Tutorial Model

goes to the first GPC (input port A) and leaves it at output port A’. Then
enters to the second GPC and finally to the third one. The connections are
made by clicking with the mouse-pointer on an output port and then holding
and dragging it to the input port of the next block.

• The next step is to connect the service curves. Task one has higher priority
hence it gets the full service (connect the FS block to the input B of the first
GPC). The output port B’ is the service curve for the third GPC (task three),
so B’ of the first GPC can be connected to the input port B of the third GPC.

• The second CPU has just one task, therefore the second FS block is connected
to the input port B of the second GPC. Now the system is modeled, but the
performance analysis part is missing. This will be done in the next steps.

• To calculate the delay and the buffer requirement there are two ways: the
first one is the modular approach which sums up all the outputs DEL and
BUF from the GPCs and the second one is a holistic approach which gives a
tighter bound (for more details have a look at Subsection 2.1.4). This example
will use the second method with the blocks DEL WCED and BUF WCED.
The blocks get the α curve from the PJD block and the β curves from the
input of the three GPCs.

29

• Finally connect the output of the BUF WCED and DEL WCED block to the
displays.

After this guidance your model should look the same as Figure 4.3(a). The Figure
4.3(b) shows the model when task 3 has higher priority than task 1.

4.2. Errors and Solutions

There are two main errors which can occur therefore here are some solutions to get rid
of them.

4.2.1. Number of Curve Segments

Simulink cannot deal with Java-objects like the curve-object used for the curve repre-
sentation therefore the curve-object needs to be converted into a matrix of finite di-
mension. The rows of the matrix represent segments which are defined as x-position,
y-position and slope. By default the matrix has 250 rows for the segment entries. If a
curve has more than 250 segments after a calculation Simulink returns an error. In Fig-
ure 4.4 is the error message for the cyclic dependency example in chapter 4.1.1, which
occurs when the maximal number of segments is ten. The error message says that the
minimum required size for the curve is eleven. After resizing the minimum number
of segments to eleven the error message occurs again, this time the size should be 16.
The error message will appear several times until the segment size is 27 therefore it
is better to enlarge it much more than the error message indicates otherwise the error
occurs again and again. To be sure that this error nearly never occurs, the segment
size can be set to 108 but before testing this new size be aware of the fact that the ex-
ecution takes much more time than before or that the computer may not have enough
memory. It is important to increase the segment size in a intelligent way, not in small
steps to avoid a lot of executions for nothing and not too big to avoid memory overflow.

The number of segments can be set and got at the Matlab command prompt by in-
voking these functions:
rtcsetNumSegments(len) and rtcgetNumSegments().

4.2.2. Initial Curve Problem

All models can be divided into two main groups of systems: non-cyclic dependency
and cyclic dependency systems. For the second kind of system an error can appear. For

30

(a) Simulink Representation when task 1 has higher priority than task 3

(b) Simulink Representation when task 3 has higher priority than task 1

Figure 4.3.: Simulink Representation of the Tutorial Example

31

Figure 4.4.: Error Message if the number of segments needs to be increased

example: There are two tasks running on the same CPU. For the scheduling task two
has higher priority than task one. The event stream goes from task one to task two.
Task one has events to execute but can only run while task two is idle and task two can
only run when task one already executed some events. In Simulink a problem emerges
because of the execution order of the blocks. For example: Simulink wants to run the
first task but this one has no service curve as input because it depends on task two
while task two can not execute either because there is no the event curve at the input.
None of the tasks can be run. The initial curves solve this problem because each block
can execute its first time but causes another problem.
The initial curves can influence the whole analysis. As an example the tasks have as
initial service curve a full service curve with bandwidth one (CPU can execute one task
at the time) and an event curve which is non zero (e.g. pjd(10,50,1)). Let us assume that
the execution order of Simulink first executes task two afterwards task one. The first
execution of task one runs with the initial curves. The service curve at the output is not
anymore a full service curve of bandwidth one because some events of the initial arrival
curves are executed by task two but in the real model there cannot be any events before
task one has executed some events before. Therefore task one should get a full service
curve of bandwidth one after the execution of task two with the initial curve values.
This small difference can change the values for buffer and delay. In table 4.2 are the

32

values for an example which is shown in Figure 4.5(a) and the Simulink representation
in Figure 4.5(b).

(a) Model for initial curve problem

(b) Simulink Representation

Figure 4.5.: Simulink Representation for the initial curve problem

33

Input Initial Curve in GPC Delay & Buffer
β = FS(1) β=FS(1) Delay = 21
α = PJD(10,0,0) α=PJD(10,50,1) Buffer = 3
β = FS(1) β=FS(1) Delay = 13
α = PJD(10,0,0) α=PJD(1,0,0) Buffer = 2

Table 4.2.: Initial Curve Problem

4.3. List of Components

All components are listed and shortly described in this chapter. Here it will be distin-
guished between a curve and a curve set. This means: an α (arriving) or β (service)
curve set consists of an upper curve and a lower curve. Most blocks in Simulink have
curve sets as inputs or outputs.
The functions are sorted the same way as in the RTC Toolbox: curves, analysis, pro-
cessing and scheduling components, complex task activations, operations and display
components. If a block needs a parameter it can be entered by double clicking the block.
In the block mask is a guide how to enter the values. If an error occurs during the ex-
ecution, call the help function which can be found in the column ”Help-Function“ of
the required block. This help function can be used on the Matlab command prompt
(e.g. help rtcfs). In the following tables BN means block name and HF stands for
Help-Function. ED is called execution demand and is the time an event needs to get
executed. In some cases the best case execution demand (BCED) and the worst case
execution demand (WCED) are different.

4.3.1. Curves

These functions generate an arrival or service curve.

BN Description Parameter Outputs HF

BD Bounded Delay delay, bandwidth β-curve set rtcbd

Curve any curve see the mask or help an upper or
lower curve

rtccurve

FS Full Service bandwidth β-curve set rtcfs

TDMA Time Division
Multiple Access

slot length, cycle
length, bandwidth

β-curve set rtctdma

34

PJD (P,J,D) event
model

period, jitter, minimum
event interarrival time

β-curve set rtcpjd

PS Periodic Service share, period, band-
width

α-curve set rtcps

Table 4.3.: Curve Components

4.3.2. Analysis

These blocks calculate the occurred delay and required buffer size.

BN Description Parameter Inputs Outputs HF

BUF Buffer 1 α-curve set,
n β-curve sets

required buffer rtcbuf

BUF
WCED

Buffer (WCED
needed for cal-
culation)

WCED 1 α-curve set,
n β-curve sets

required buffer rtcbuf

DEL Delay 1 α-curve set,
n β-curve sets

occured delay rtcdel

DEL
WCED

Delay (WCED
needed for cal-
culation)

WCED 1 α-curve set,
n β-curve sets

occurred delay rtcdel

Curve
to BD

Buffer and
Delay of a
Bounded
Delay Curve

β-curve set occurred delay,
required buffer

rtcbd

Table 4.4.: Analysis Components

35

4.3.3. Processing and Scheduling Components

These blocks model tasks and scheduling strategies

BN Description Parameter Inputs Outputs HF

EDF Earliest Dead-
line First

deadline
and WCBC

n α-curve sets,
1 β-curve set

n α-curve sets,
1 β-curve set,
occurred delay
and required
buffer

rtcedf

FIFO First In First
Out

WCBC n α-curve sets,
1 β-curve set

n α-curve set,
1 β-curve set,
occurred delay
and required
buffer

rtcfifo

GPC Greedy Pro-
cessing Com-
ponent

ED 1 α-curve set,
1 β-curve set

1 α-curve set,
1 β-curve set,
occurred delay
and required
buffer

rtcgpc

GSC Greedy
Shaper Com-
ponent

α-curve set, a
shaping-curve
for S

α-curve set,
occurred delay
and required
buffer

rtcgsc

Table 4.5.: Processing and Scheduling Components

36

4.3.4. Complex Task Activations

BN Description Input Outputs HF

AND compute the input to a
component with AND ac-
tivation

2 α-curve sets one α-curve set rtcand

OR compute the input to a
component with OR acti-
vation

2 α-curve sets one α-curve set rtcor

Table 4.6.: Complex Task Activations Components

4.3.5. Operations

Operations on Curve Sets

The blocks here are operations, which can be done on curve sets.

BN Description Input Outputs HF

Ceil computes the ceil of curve
set

α or β-curve set α or β-curve set rtcceil

Floor computes the floor of
curve set

α or β-curve set α or β-curve set rtcfloor

Steps computes the floor of the
lower curve and the ceil
of the upper curve

α or β-curve set α or β-curve set rtcsteps

Affine an affine transformation
of curve set

α or β-curve
set, 2 values

α or β-curve set rtcaffine

Hdist computes the max hori-
zontal distance between 2
curve sets

2 α or β-curve
sets

α or β-curve set rtch

Vdist compute the max vertical
distance between 2 curve
sets

2 α or β-curve
sets

α or β-curve set rtcv

37

Max maximum of 2 curve sets 2 α or β-curve
sets

α or β-curve set rtcmax

Min minimum of 2 curve sets 2 α or β-curve
sets

α or β-curve set rtcmin

Minus substraction of 2 curve
sets

2 α or β-curve
sets or a scalar

α or β-curve set rtcminus

Plus addition of 2 curve sets 2 α or β-curve
sets or a scalar

α or β-curve set rtcplus

Equal equality check of 2 curve
sets

2 α or β-curve
sets

α or β-curve set rtceq

Uminus unary minus of curve set α or β-curve set α or β-curve set rtcuminus

Split splits a curve set into
curves

α or β-curve set α or β the up-
per and lower
curve

Divide division of a curve set
with a scalar

α or β-curve set
and a scalar

α or β-curve set rtcrdivide

Multiply multiplication of a curve
set with a scalar

α or β-curve set
and a scalar

α or β-curve set rtctimes

Table 4.7.: Operation on Curve Set Components

Operations on Curves

The blocks here are operations, which can be done on curves.

BN Description Input Outputs HF

Join join the lower and up-
per curve to a curve set

α or β the up-
per and lower
curve

α or β-curve set

MaxConv max-plus convolution
of curves

α or β-curve
sets or scalars

α or β-curve set rtcmax-
conv

MinConv min-plus convolution
of curves

α or β-curve
sets or scalars

α or β-curve set rtcmin-
conv

38

Max-
Deconv

max-plus deconvolu-
tion of curves

α or β-curve
sets or scalars

α or β-curve set rtcmax-
deconv

Min-
Deconv

min-plus deconvolu-
tion of curves

α or β-curve
sets or scalars

α or β-curve set rtcmin-
deconv

Table 4.8.: Operation on Curve Components

4.3.6. Display Components

These blocks can plot curves or display numbers like delay or buffer size. PlotGPC and
PlotGSC are the same as GPC and GSC but with an added plot function.

BN Description Parameter Inputs Outputs HF

PlotGPC compute
and plot
the output
of a greedy
processing
component

ed, X-
Values

1 α-curve set,
1 β-curve set

α and β-curve
sets, occured
delay and re-
quired buffer

rtcplotgpc

PlotGSC compute
and plot the
output of a
greedy shaper
component

X-Value α-curve set,
a shaping-
curve for
S

α-curve set,
occured delay
and required
buffer

rtcplotgpc

Plot plot a curve or
curve set

parameter
for the
appear-
ance of
the curve

n α and β-
curves or
curve sets

plot of the
curves or
curve sets

rtcplot

Display numbers (no
vectors)

shows the
number

Table 4.9.: Display Components

39

5. Conclusions and Outlook

5.1. Conclusions

This work described how a graphical user interface for the analysis of real-time embed-
ded systems was implemented. It was done in form of a Simulink library which uses
the MATLAB Real-time calculus toolbox. A protoype of such a library was already
given but it had some limitations which could be overcome.
Basically the prototype had two major problems, the first concerned the representation
of variability characterization curves (VCC) in Simulink and the second problem was
that the blocks of the prototype were unable to deal with cyclic systems.
A solution to the first problem was to change the Java-Core of the RTC toolbox. Simu-
link cannot handle objects but only matrices, so the VCCs needed to be converted
into matrices in an efficient way. Functions which do exactly this were already imple-
mented in the Java-Core but they used a fixed number of segments to represent curves.
That was an unflexible approach because curves might grow larger than the predefined
number of segments and then the accuracy would be lost. So two functions were added
to the Java-core which allow to get and set the number of curve segments that the li-
brary should use. If a curve grows larger than this value, Simulink will issue an error
message and the user can define a higher number.
For the second problem it was explained how cyclic dependencies can lead to a situ-
ation where some blocks do not get any data to process. In such a case Simulink will
issue an error message and stops the analysis. In the first implementation the blocks
took the inputs, processed them and assigned the results to the outputs but with cyclic
dependencies this approach does not work. To solve this problem, the implementation
of the blocks had to be changed to include data storage elements. These elements were
then initialized with predefined curves and then in a second step overwritten with the
actual inputs of the block. Now the blocks took the values from the data storage ele-
ments and computed the outputs with them. This means that every block has always
some data to process, Simulink will no longer complain about algebraic loops. The
drawback of this solution is that for non-cyclic systems the analysis has to run for two

40

timesteps, since at the first timestep only the initial values are taken into account for
the analysis. After this step the storage elements are updated with the actual input data
and the right output is produced. The same blocks can be used to analyze either cyclic
or non-cyclic systems but for non-cyclic systems the analysis time is twice as high as an
optimal solution.
This new graphical user interface presents important improvements for the analysis of
distributed embedded systems: Whereas the modeling of systems with only the RTC
toolbox implies the writing of MATLAB-code and this is time-consuming and error-
prone, now with the Simulink library it should speed up the development time and be
much more user-friendly.

5.2. Outlook and Future Work

Although the library should be very useful already in the current state there are some
points which could further improve it:

• The initial values for the curves are hard-coded into the library blocks. As there
exist examples which may show different results (i.e. in terms of delay or buffer
requirement) with different initial values it would be better if the user can define
these values by himself. A first try to implement such a functionality was not
successful. The idea was that a user can define initial curves with special names
in the MATLAB workspace but somehow the Simulink model was not able to
find and use these curves. In the work another possibility was presented but not
implemented: It would require to change all blocks to have the initial curves as
additional parameters.

• In the MATLAB code it is possible to stop the iterations when a fixpoint is reached
and the used number of computation steps can easily be accessed. However
achieving this functionality in Simulink was not possible during this work. It
was found out that it does not suffice to look for a curve which does no longer
change because the curves stay the same for some fixed number of timesteps and
then change. Only when the fixpoint is reached the curves stay the same for more
timesteps than the fixed number. If one analyzes this behaviour more in depth
(i.e. what determines the fixed number of timesteps) it might be possible to build
a ”stop“-block.

41

• In the current implementation there exists a one to one relationship between
blocks and functions from the RTC toolbox. For future usage it would be good
to increase the abstraction level of the user interface such that the user requires
only very few knowledge about the underlying RTC toolbox. This means that
the GUI should become more ’intelligent’ to make the task of the user easier. For
example the modeling of the fixed priority scheduling could be changed. Instead
of connecting service curves appropriately, it would be much easier if the user
could just select a scheduling strategy for some tasks and set the priorities and
the rest would be done in the background. Another intelligent behavior would
be if the model can detect a chain of tasks and therefore automatically choose the
convolution variant for the computation of delays to get a tighter bound.

• Quite another approach to redesign the library would be to completely detach it
from the RTC toolbox. The GUI would then generate a tool-independent XML de-
scription of the distributed embedded system which could then be used through
some converters as input for several different analysis methods (like SymTA/S,
MPA or PESIMDES).

42

A. Appendix

A.1. Covered Functions

All functions from the folders Curve and MPA have been implemented. From the folder
Operations three functions are missing, namely rtcplotbounds, rtcplotv, rtcploth.
The plot function of the library was copied from the prototype.

A.2. Original Task Description (german)

Entwicklung einer Simulink Toolbox für die Analyse von Real-Time Embedded Sys-
tems

Am TIK wurden in den letzten Jahren erfolgreich Modelle und Methoden entwick-
elt, um die Performance von verteilten eingebetteten Systemen in einer frühen Design-
phase zu analysieren. Dabei werden beispielsweise Latenzen von Ereignissen oder
Bufferlevels auf Systemebene untersucht. Die entwickelten Modelle und Methoden
wurden in Form einer Matlab-Toolbox implementiert, um die Forschungsresultate auf
grosse, reale Systeme anwenden zu können. Im Rahmen dieser Arbeit soll basierend
auf der bestehenden Matlab-Toolbox eine Simulink-Toolbox entwickelt werden.
Während man in der Matlab Toolbox die zu analysierenden Systeme von Hand pro-
grammieren muss, würde die Simulink-Toolbox als graphisches User Interface dienen,
um die Systeme als Blockdiagramme zu entwerfen. Dieses Interface würde die zu-
grunde liegende Matlab-Toolbox einem breiteren Publikum zugänglich machen und
würde die Entwurfszeit erheblich verkürzen.

43

A.3. Real-Time Calculus

The min-plus convolution ⊗, the min-plus deconvolution �, the max-plus convolution
⊗ and the max-plus deconvolution � of two functions f and g are defined as:

(f ⊗ g)(∆) = inf
0≤λ≤∆

{ f (∆− λ) + g(λ)}

(f � g)(∆) = sup
λ≥0
{ f (∆ + λ)− g(λ)}

(f⊗g)(∆) = sup
0≤λ≤∆

{ f (∆− λ) + g(λ)}

(f�g)(∆) = inf
λ≥0
{ f (∆ + λ)− g(λ)}

A.4. Implementation of the dwork

The printed source code is from the GPC block and it shows the implementation of the
dwork.

Function DoPostPropSetup

block.NumDworks = 2; % number of needed dworks

l = rtcgetDataLength(); % length of the curves

for c = 1:2

block.Dwork(c).Name=strcat(’curve’,mat2str(c)); % dwork’s name

block.Dwork(c).Dimensions = 6*l; % array size

44

block.Dwork(c).DatatypeID = 0; % ’double’ = 0

block.Dwork(c).Complexity = ’Real’; % real values

end

Function Start

alpha = rtcfs(0); % initial alpha curve

beta = rtcfs(1); % initial beta curve

% convert curve set into a matrix

alpha1= [toSimulink(alpha(2)) toSimulink(alpha(1))];

beta1 = [toSimulink(beta(2)) toSimulink(beta(1))];

block.Dwork(1).Data=alpha1(:); % stored in the dwork

block.Dwork(2).Data=beta1(:);

Function Output

l = rtcgetDataLength(); % length of the curves

ip=zeros(l,6);

ip(:)=block.Dwork(1).Data(:); % dwork stored in a new variable

ipl = fromSimulink(ip(:,1:3)); % lower alpha curve

ipu = fromSimulink(ip(:,4:6)); % upper alpha curve

alpha = [ipu ipl]; % convert from matrix to curve set object

ip(:)=block.Dwork(2).Data(:); % dwork stored

ipl = fromSimulink(ip(:,1:3)); % lower beta curve

ipu = fromSimulink(ip(:,4:6)); % upper beta curve

beta = [ipu ipl]; % convert from matrix to curve set object

...

Function Update

for k=1:block.NumInputPorts

data = block.InputPort(k).Data; % input curve stored in a matrix

block.Dwork(k).Data=data(:); % matrix stored in an array of dwork

end

45

Bibliography

[1] S. Chakraborty, S. Künzli, L. Thiele, 2003, A general framework for analysing system
properties in platform-based embedded system design, In Proc. 6th Design, Automation
and Test in Europe (DATE), pages 190195

[2] Ernesto Wandeler, 2006, Modular Performance Analysis and Interface-Based Design for
Embedded Real-Time Systems, PhD Thesis ETH Zrich

[3] Jean-Yves Le Boudec, Patrick Thiran, 2001, Network calculus: a theory of deterministic
queuing systems for the internet, Springer-Verlag New York

[4] SymTA/S Homepage, www.symtavision.com, accessed 18.12.2007

[5] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, 2006, Evaluation and Compar-
ison of Performance Analysis Methods for Distributed Embedded Systems, TIK Report
Nr. 276

[6] Lothar Thiele, Ernesto Wandeler, 2005, Performance analysis of distributed embedded
systems, Embedded Systems Handbook, CRC Press

[7] Lecture Notes for Hardware/Software Codesign AS2007, Prof. Lothar Thiele,
http://www.tik.ee.ethz.ch/tik/education/lectures/hswcd/

slides/10_ModularPerformanceAnalysis.pdf, accessed: 05.12.2007

[8] Exercise 11 of Hardware/Software Codesign Lecture. Prof. Lothar Thiele,
http://www.tik.ee.ethz.ch/tik/education/lectures/hswcd/

exercises/exercise11_solution.pdf, accessed: 30.12.2007

[9] MPA Homepage, http://www.mpa.ethz.ch/, accessed: 04.12.07

[10] http://www.mathworks.com/products/simulink/description1.

html, accessed: 23.10.2007

[11] http://www.mathworks.com/access/helpdesk/help/toolbox/

simulink/, accessed: 23.10.2007

46

www.symtavision.com
http://www.tik.ee.ethz.ch/tik/education/lectures/hswcd/slides/10_ModularPerformanceAnalysis.pdf
http://www.tik.ee.ethz.ch/tik/education/lectures/hswcd/slides/10_ModularPerformanceAnalysis.pdf
http://www.tik.ee.ethz.ch/tik/education/lectures/hswcd/exercises/exercise11_solution.pdf
http://www.tik.ee.ethz.ch/tik/education/lectures/hswcd/exercises/exercise11_solution.pdf
http://www.mpa.ethz.ch/
http://www.mathworks.com/products/simulink/description1.html
http://www.mathworks.com/products/simulink/description1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/

List of Figures

1.1. Performance models of the same system made with a graphical repre-
sentation on the left and MATLAB code on the right 5

2.1. From event streams to VCCs . 8
2.2. An example of an event and a resource stream: left) periodic with jitter,

right) TDMA . 8
2.3. A greedy processing component . 9
2.4. Modeling of the fixed priority resource sharing scheme 10
2.5. Maximal delay and buffer requirement obtained from arrival and service

curves . 11
2.6. The architecture of the RTC Toolbox . 12

3.1. Software Architecture and Dataflow . 15
3.2. This message means that the number of segments needs to be increased 17
3.3. Example system with a cyclic dependency 22
3.4. Initial Curve Block . 23
3.5. The construction of a block with dwork 23
3.6. Error message caused by algebraic loop 26

4.1. Example Model . 28
4.2. Blocks for the Tutorial Model . 29
4.3. Simulink Representation of the Tutorial Example 31
4.4. Error Message if the number of segments needs to be increased 32
4.5. Simulink Representation for the initial curve problem 33

47

List of Tables

3.1. Initial Curve Problem . 24
3.2. Initial Curves . 24

4.1. Specification of the model . 28
4.2. Initial Curve Problem . 34
4.3. Curve Components . 35
4.4. Analysis Components . 35
4.5. Processing and Scheduling Components 36
4.6. Complex Task Activations Components 37
4.7. Operation on Curve Set Components . 38
4.8. Operation on Curve Components . 39
4.9. Display Components . 39

48

	Introduction
	Motivation
	Related Work
	Contribution
	Structure of this work

	Modular Performance Analysis with Real Time Calculus
	Theoretical Background
	Variability Characterization Curves
	Analysis of a Greedy Processing Component
	Resource sharing
	System Performance Analysis

	Software Architecture

	Implementation
	Requirements
	Software Architecture
	Curve Representation in Simulink
	Function Implementation in Simulink
	Analysis of non-cyclic systems
	Analysis of cyclic systems
	Initial Curves
	Storage elements

	Testing

	User Guide
	Tutorial
	How to create a Model

	Errors and Solutions
	Number of Curve Segments
	Initial Curve Problem

	List of Components
	Curves
	Analysis
	Processing and Scheduling Components
	Complex Task Activations
	Operations
	Display Components

	Conclusions and Outlook
	Conclusions
	Outlook and Future Work

	Appendix
	Covered Functions
	Original Task Description (german)
	Real-Time Calculus
	Implementation of the dwork

