
Christoph Renner

Crypto-Breaker Reloaded

Semester Thesis
September 2007 to January 2008

Advisors:
Prof. Dr. Roger Wattenhofer
Michael Kuhn
Stefan Schmid

1

Abstract

A large number of CPUs connected to the Internet are idle almost all the time. These CPUs can
help solving computationally difficult problems like the discrete logarithm problem. The goal of
this thesis is to improve the work of Christoph Schwank towards a volunteer computing applica-
tion which participates at the Certicom ECC Challenge. We decided to switch towards Koblitz
curves since the ECC2K-130 seems to be the next simplest challenge to solve. This switch and
the poor performance of Crypto++ [7] which was used before resulted in a complete rewrite of
the client application.
Our server software consists of the BOINC [6] framework enhanced with distributed checking
which prevent selfish behavior of participants with almost no additional resources used on client
side. As client software we use the original BOINC client which runs our client application.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 The Task . 3
1.3 Results . 4
1.4 Overview . 4

2 Design 5

3 Implementation 7

4 Pollard’s rho algorithm for Koblitz curves 9
4.1 Distributed version . 9
4.2 Optimization . 9
4.3 Checking function . 10
4.4 ECC library performance . 11

5 Conclusion and Future Work 13

A BOINC server installation 14
A.1 Requirements . 14
A.2 Compiling the server programs . 14
A.3 Creating a project . 15
A.4 Modifying config.xml . 15
A.5 Changing file permissions/ownership . 15
A.6 Adding the application . 15
A.7 Setting up the daemons . 15

2

Chapter 1

Introduction

1.1 Motivation

Volunteer computing uses resources which are provided by volunteers. One of the most popular
volunteer computing projets is SETI@Home [5]. It uses the computers of volunteers distributed
over the whole planet to analyze radio signals from space. To motivate people or organizations
to donate computing power, a user gains credit proportional to the work done by his computers.
On the internet one can see the user’s ranking. Selfish users might try to gain credit for work they
have not done to get a bether position in the ranking without donating more computing power. To
avoid this selfish behavior SETI@Home uses redundancy. The whole work is divided into work
units which can be computed for their own. SETI@Home then assigns each work unit to multiple
users and then compares the results and calculates the credit which is then granted to all these
users. The drawback of this approach is that this redundancy uses a lot of computing power. For
example if each workunit is computed three times, only 33% of the donated resources are used
for computing and the rest is used to check whether the computation is correct and to determine
how much credit is granted for this work unit.The approach pursued in this thesis does not use
redundancy to check whether a result is correct. Instead it uses checking work units which use
a special function to determine whether a result is correct. The resources needed to compute
such a checking work unit can be much less than those needed to compute a normal work unit.
This asymmetry is essential for our approach to save resources for other work units.

1.2 The Task

The main goal of this thesis is to compete at the ECC Challenge [1]. To solve the ECC Challenge
one must calculate a discrete logarithm on an elliptic curve. We decided to attack ECC2K-130
because we expect that this is the simplest challenge which has not yet been solved. To actually
get a chance to solve this discrete logarithm the following tasks have to be performed:

• Port the client application to linux. That enables us to run larger tests on the infrastructure
which is provided by the ETH and increases the number of potential participants for our
project.

• Modify the client application to use Koblitz curves instead of curves over GF (p).

• Implement optimizations which exist for Koblitz curves to reduce the number of expected
iteration steps until one finds the solution.

• Speed up the client application by optimizing its C++ code.

• Implement a new checking algorithm since the one used by Christoph Schwank has a
weakness which could be exploited by unhonest users.

3

1.3 Results 4

1.3 Results

The result of this thesis is a modified version of the BOINC server which performs distributed
checking for the distributed version of Pollard’s rho algorithm for discrete logarithms. The check-
ing needs almost no resources on client side and it should be easy to adapt this server to work
with other algorithms. The source code on CD also includes the client application which does
the actual work to solve the discrete logarithm problem for Koblitz curves.

1.4 Overview

Chapter 2 describes the general idea of the used checking algorithm whereas chapter 3 de-
scribes its implementation in our version of the BOINC framework. Chapter 4 gives an overview
about the distributed version of Pollard’s rho algorithm we use. And Appendix A is a short tutorial
on how to setup a BOINC server with distributed checking capabilities.

Chapter 2

Design

The basic concept of our checking algorithm is to exploit that often it is easier to verify the
correctness of a solution than to calculate the solution itself. A client can provide A as a
fingerprint of its calculation which can be used by other clients to test the correctness of
its solution. For the algorithm to be efficient several things have to be considered: First, the
overhead of generating A while computing the solution should be small to not slow down the
computation. Second, there should be a huge asymmetry of resources needed to verify a
solution with help of the fingerprint to the resources needed to calculate the solution itself. And
of course the generation of a solution and A which would validate the solution without actually
calculating the solution must be at least as hard as actually calculating the solution and A.
Section 4.3 shows that for the distributed Pollard’s rho algorithm such a checking algorithm
exists. The detailed checking algorithm is described in [8].

Cheaters might be able to create results and checks which look correct but can be created
much faster than if they would really be computed. To avoid that such cheaters can do allmost
all the checking and therefore check their own results. Checking units are distributed uniformly
among all active clients. 1 This is only possible if checking is much faster than computation;
Otherwise fast clients could create more results than the slower clients could check. A group of
malicious users could accuse a honest user of cheating if they knew that they were doing all
the checking for one result. They could then all together mark that result as wrong because no
one else would do any checks on this work unit. To prevent this type of attack we assign checks
one by one. This means we assign one checking unit, wait until we get the result back and then
assign the next checking unit. Therefore one cannot know who will check the result afterwards
one has submitted his check.

Since the main goal of volunteer computing is to calculate the solution and not the checking
one wants to minimize the number of checks per workunit. But it must be assured that selfish
behavior is not worthwhile. This means that the fraction of false positives 2 and false negatives 3

should be upper bounded by some θN for false negatives and some θP for false positives. Let α
denote the number of checks in favor of the result’s correctness (including the result itself) and
β the number of checks which state that the result is wrong. We have the following upper bound
for the probability of a false positive:

Pr[P |α, β] ≤
(

α + β
α

)

pβ
P (1 − pP)α

where pP it an upper bound for the fraction of cheaters involved to check this result. pP can be
written as:

pP = min(β
α+β

, p)

where p denotes the upper bound for the fraction of cheaters. The expressions for the false
negatives are as follows:

1Clients are considered active if they had contacted the server withing the last N hours
2False positive denotes checks which indicates that the result is wrong although it was correct
3Wrong result which passed the checking as correct

5

6

Pr[N |α, β] ≤
(

α + β
α

)

pα
N(1 − pN)β

pN = min(α
α+β

, p)

Let’s now look at some pseudo code which illustrates the checking algorithm.

Algorithm 1 Distributed checking
ok = false
newcheck = true
α = 1
β = 0
users_ok = { user who reported solution }
users_failed = {}
repeat

choose one user among the active ones
assign check to that user
wait for user to report result of check
if check is ok then

α = α + 1
users_ok = users_ok + { user }

else
β = β + 1
users_failed = users_failed + { user }

end if
if α < β AND Pr[P |α, β] < θP then

newcheck = false
else if α > β AND Pr[N |α, β] < θN then

newcheck = false
ok = true

end if
until newcheck = false
if ok then

punish users in users_failed
give credits to users in users_ok

else
punish users in users_ok
drop reported solution
give credits to users in users_failed

end if

Chapter 3

Implementation

The BOINC framework consists of several components listed in Table 3.1. Because the
checking algorithm assigns checking units to a specific user and this feature is not contained
in the original BOINC server it must be implemented into the BOINC framework. Fortunately
Christoph Schwank has already done this before. So I knew exactly where I had to insert my
code.

The changes on the database structure were straight forward. Each result must have an addi-
tional field for the α and β. To keep track of the checking state a new table called checks was
created. It has the following structure:

integer id unique integer which identifies the check
integer resultid the result which this check should test for correctness
integer userid user to which this check is assigned
integer checkstate current state of this check
integer creationtime Unix time when this check was created

When a new result is reported a new record is inserted into this table with resultid set to the
according id in the results table, creationtime set to the current time and checkstate set to
CHECKS_UNASSIGNED which means that this check has not yet been assigned to a user.
A daemon named checkingcontroller periodically checks for unassigned checks. For each of
them it randomly chooses one user, sets the corresponding userid and changes the checkstate
to CHECKS_ASSIGNED. If a client asks the scheduler for more work the scheduler checks
the checks table for assigned checks which match that userid. If that set is not empty the
scheduler creates a new checking unit for that user which contains the needed information
to check this results and sets the checkstate to CHECKS_SENT. These work units have a
very early deadline so that the client performs checking with high priority. When this checking
unit gets reported the checkingcontroller changes the checkstate of the according check to

Database BOINC uses a MySQL database to stores state information
Scheduler A cgi program which is contacted by the client.
Feeder Reads jobs from database and stores it in memory which is used by the sched-

uler. This is more efficient than to create a new database connection for every
scheduler request.

Transitioner Takes care of the state transition of a work unit. Creates result for new worku-
nits and timed-out results. Marks workunit for validation, assimilation and dele-
tion.

Validator Compares different results for one workunit. Chooses canonical result and
grants credit.

Assimilator Processes canonical results. Extracts important data and stores it somewere
else.

File deleter Once a work unit is done and marked for deletion the file deleter deletes all
input and result files which belong to that work unit.

Table 3.1: BOINC components

7

8

CHECKS_OK or CHECKS_FAILED depending on whether the check was successfull or not.
The checkingcontroller also periodically checks for completed checks, and increments the α
and β according to the outcome of the check. If another check is necessary it also creates a
new entry with checkstate set to CHECKS_UNASSIGNED and it starts all over again until there
are enough checks for that result. If all the checking is done the checkingcontroller marks the
result as valid if α > β or deletes the result it β > α. At the end it removes all entries from the
checks table which are not needed anymore.

In the original design of BOINC the validator compares the different results for one work unit
and then chooses a canonical representation for these results. Since in our design only one
result per work unit is generated the validator has somehow become redundant. But to avoid
making even bigger changes on the framework our validator still processes each work unit but
it does only some simple format checks on the output files to ensure that the can be processed
easily by the assimilator. Our validator does not grant any credit since this is done after the
checking to ensure that one gets no credit for a result which does not pass the checking. The
assimilator parses the output files which are received from the client and makes the needed
changes in the database. The filedeleter and the transitioner needed no changes. The feeder,
however needed one small change: it must not feed the shared memory with work units which
represent checking units because they are assigned to a specific user and the work units from
that shared memory are not.

Chapter 4

Pollard’s rho algorithm for Koblitz
curves

Given a generator P and a point Q on a group G, the Pollard’s rho algorithm for discrete
logarithms tries to compute l such that Q = lP . To achieve this, the algorithm tries to find
X1 = a1P + b1Q and X2 = a2P + b2Q such that X1 = X2 and (a1, b1) 6= (a2, b2) (mod n) where
n is the order of G. Once such a collision is found, the computation of l is straight forward. One
only needs to solve the equation a1 − a2 = l(b2 − b1) (mod n). This chapter will give a short
overview how we try to find such collisions for Koblitz curves.

4.1 Distributed version

The Pollard’s rho algorithm uses the Floyd’s cycle-finding algorithm to find the cycle in a se-
quence x0, ..., xn where xi+1 = f(xi)∀i < 0. The function f : G → G originally proposed by
Pollard look like this:

f(X) =

P + X X ∈ G0

2X X ∈ G1

Q + X X ∈ G2

(4.1)

where G = G0 ∪G1 ∪G2. The order of G0, G1, G2 should be approximately the same. However
this algorithm cannot easily be distributed over several processors. Instead we use the following
approach: each processor starts at a random point x0 and follows the trail until it reaches a
distinguished point. A distinguished point is a point with some easy to test property. Once a
distinguished point D is reached, it is stored together with the corresponding values a, b such
that aP + bQ = D. As soon as a point already exists a collision is found.

The expected number of group operations until a collision occurs1 is given by E[T] =
√

πn/2/m
where m is the number of processors used. But since collisions are not detected directly be-
cause the iteration continues until a distinguished point is reached it takes additional 1/P [D]
group operations. P [D] denotes the probability that one randomly chosen point is a distin-
guished point. So we get to E[T] =

√

πn/2/m + 1/P [D].

4.2 Optimization

This section briefly describes two optimizations to speed up Pollard’s rho algorithm for the
discrete logarithm problem. For further details see [4] and [3].

For any given point P = (x, y) on an elliptic curve it is trivial to compute −P . In case of a curve
over GF (2m) this is simply −P = (x, x + y). So for each point calculated with our iteration
function we get one for free. If we now chose allways the point from P and −P which has the

1that is the probability of a collision reached 0.5

9

4.3 Checking function 10

smaller integer representation of his y component we reduce the number of point over which we
perform the collision search by factor 2. This means that the number of expected iterations will
decrease by factor

√
2. Of course the equality X = aP + bQ must still hold so if we choose −P

we have to adjust a and b but this is also trivial: (a, b) → (−a,−b).
One problem which arises form this optimization is the occurrence of trivial two-cycles. Assume
that both Xi and Xi+1 belong to the same group Gj , both Xi+1 and Xi+2 are the negative of
the resulting point after applying the iteration function f and that f for that group has the form
f(X) = X + cP +dQ. Now we have Xi+1 = −(Xi + cP +dQ) and Xi+2 = −(−(Xi + cP +dQ)+
cP + dQ)) = Xi. By using an iteration function f like

f(X) =

X + c0P + d0Q X ∈ G0

...
...

X + c19P + d19Q X ∈ G19

(4.2)

the occurrence of trivial two-cycles can be reduced because this iteration function divides the
group into 20 partitions. Therefore the probability that Xi is in Gk is reduced from 1

3
to 1

20
. This

implies that the occurrence of trivial two-cycles is reduced. However it is not reduced enough.
The next step of reducing trivial two-cycles is to use a look-ahead technique which does the
following: define a function g : G → G′ g(X) = ±f(X) where G′ are all points in P ∈ G with
int(P.y) < int((−P).y) where int(x) represents the integer interpretation of x. Now calculate
T = g(Xi) if T is in the same group Gj as Xi than calculate T = g(Xi) as if Xi was in the group
Gj+1 (j + 1 modulo 20) if T is still in Gj try the other eighteen groups. And then use Xi+1 = T
The idea is to reduce the probability that the two points Xi and Xi+1 belong to the same group.
Experiments have shown that the probability for trivial two-cycles is low enough for practical
pourposes if one somehow detects2 them and does not continue to iterate forever.

As shown by Gallant, Lambert and Vanstone [3] the number of points we use to search for
collisions can even further be reduced for Koblitz curves. Consider now a Koblitz curve over
GF (2m). For every point P on that curve m−1 other points can easily be computed by just m−1
times squaring their x and y coordinates. This operation can be implemented very efficiently if
using a normal basis representation, it is just a cyclic shift of the binary representation of the
field element. 3 By doing so we get the following m points:

P1 = (P.x2, P.y2) = λP
P2 = (P.x4, P.y4) = λ2P

...
Pm = (P.x2m, P.y2m) = λmP = P

because each of these points has also a negative version we can actually reduce the number of
points over which we perform the collision search by a factor of 2m which reduces the number
of expected group operations by

√
2m.

One can choose the distinct representation from the group formed by those 2m points by first
choosing the point from λiP which has the smallest x coordinate when interpreted as integer.
And then the one from ±λiP which has the smallest y coordinate when interpreted as integer.
Of course the equation X = aP + bQ must still hold. But this is again quite simple: one must
just replace (a, b) with (±λ2ia,±λ2ib). The λ2i can be precomputed and λ is one of the roots of
X2 + X + 2 = 0 (mod p) where p is the order of the points in G.

4.3 Checking function

As described in Chapter 2 for each result a client needs to supply proof that he has really done
the requested work. The other clients must then be able to check the correctness of the result
with this proof. A checking function could works as follows:

• the client follows the iteration function until he finds a distinguished point Xn

2e.g. define an upperbound for the number of iterations and abort after reaching this bound
3Unfortunately there was no time left to implement the client using normal basis representation

4.4 ECC library performance 11

• it reports (Xn, an, bn) and (Xn−50, an−50, bn−50)

• a client which should do checking gets (Xn, an, bn) and (Xn−50, an−50, bn−50)

• it starts at (Xn−50, an−50, bn−50) and does 50 iteration steps

• the result passed the check if the client found (Xn, an, bn)

To fulfill the requirements from Chapter 2 one needs to show three things:

• generating the proof must not be to difficult.

• generating a proof to a solution without calculation the solution must be as hard as calcu-
lation the solution and the proof.

• there must exist a large asymmetry between the resources needed to calculate a solution
and the resources needed for checking

The first point is quite simple: If Xn is a distinguished point it is easy to always store the 50 last
points and also report Xn−50 as proof for the correctness.
If you just create a point which is a distinguished point it is hard and very often even impossible
to calculate Xn−50. Simulation has shown that the probability that such a Xn−50 exists is already
below 10%. This means that the expected number of distinguished points one needs to create
is circa 10. Now it can be argued that there is no personal gain for a user to generate Xn−50

and the according a and b unless he can create the distinguished point at least 10 times faster
than to actually search a distinguished point by our algorithm. But to our knownledge generating
the triple (a, b, X) can only be done by choosing a and b at random (one might also set either
a or b to some fixed value), calculate X = aP + bQ and then chose X ′ = ±λiX according
to the schema explained above. The expected number of tries until one finds a X ′ which is a
distinguished point is 1/P [D] and this is exactly the expected number of iteration steps until
one finds a distinguished point. Therefore one can argue that generating (a′, b′, X ′) is not much
easier than really doing the work. If one now considers that one has to create ten such triples
and in addition also needs to compute X ′

n−50 doing the actual work seems far more worthwile.
The asymmetry clearly exists because calculating 50 iteration steps is almost nothing when
compared to maybe 106 steps which are required to find a distinguished point from a random
start point.

4.4 ECC library performance

Christoph Schwank decided to use the Crypto++ library to implement the client. For our client
application the speed of the group operation on elliptic curves has a really large impact on the
number of iterations per second we can perform. I decided to evaluate other libraries and then
compare them. The only alternative I found is OpenSSL which also contains an ECC library. To
give Crypto++ a fair chance I first optimized the iteration function as implemented by Christoph
Schwank. The most important optimizations were:

• remove all output to stdout and stderr in the iteration function since this is only needed for
debugging. This made the program 1.5 times faster.

• since the program seemed to spend a lot of time calculating hashes and converting In-
tegers to strings, I removed the hash functions which were used to decide if a point is
a distinguished point and to which subgroup of G the point belongs. Instead I made this
decisions only based on the integer representation of the point’s x coordinate. This im-
provement increased the iterations per second by a factor of 2.6

Then I implemented the same functionality using the OpenSSL library. The time needed for a
given number of iterationsteps is shown in Figure 4.1. One can see that the implementation
using OpenSSL is almost 10 times faster. Based on this result I implemented the client appli-
cation using OpenSSL instead of Crypto++. If one assumes that the average computer can do
ten thousend iterations per second. What is then the estimated runtime until one finds a solu-
tion? The order of the group for ECC2K-130 is n = 6.8 · 1038. This brings us to the expected

4.4 ECC library performance 12

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06

tim
e

in
 s

ec
on

ds

number of iterations

OpenSSL CryptoPP

Figure 4.1: Comparison of OpenSSL and Crypto++

number of iterations until we find a collision:
√

nπ/2/
√

262 ≈ 2 · 1018. On a single computer with
ten thousend iterations per second this takes 6 · 106 Years. If we now have hundred thousend
computers which calculate 24 hours a day for our project we still need 60 years. If one assumes
that the computing power doubles all two years one still needs circa 18 years. Besides the run-
ning time until we find a collision there might be another problem: the memory which is used
to store the distinguished points. If we want one workunit to take 24 hours we need to store
2 · 1018/(10000 · 3600 · 24) = 2 · 109 points. Even if we need 100 Bytes per distinguished point
this should not be a problem.

Chapter 5

Conclusion and Future Work

This thesis has described an implementation of a distributed checking algorithm. Our modified
BOINC server with the client application could be used to participate at the Certicom ECC
Challenge.

Our runtime estimations show that optimizing the client for speed must have top priority. One
important step towards a faster client would be to use the normal basis representation. This
would especially speed up the squaring of X.x and X.y. Even more optimization should be
possible because for allmost all group operations one operand is known at compile time and
can therefore be precomputed. One might be able to optimize the group operation for exactly
this operand. Since one probably wants a new property for the distinguished points when using
normal basis representation, one has to throw away all old distinguished points. This means
that all the work already done is lost. Therefore it would make sense to wait until the client uses
normal basis representation and then start attacking the ECC Challenge.

13

Appendix A

BOINC server installation

This chapter explains how to setup a server to compete at the ECC challenge [1] using a modi-
fied BOINC server which implements the distributed checking algorithm described in this report.

A.1 Requirements

To install a BOINC server you need a UNIX like operating system. The code for this thesis was
developed and tested under Ubuntu 7.04 and 7.10. Furthermore you will need the GNU C++
compiler, GNU make and some other tools and libraries. But at the moment you don’t have
to worry about them because _autosetup and configure will complain if any of those are
missing.

BOINC uses MySQL to store its data and Apache to communicate with the clients. So one
has to setup MySQL and Apache. I assume this has already been done and that the user has
full access to the database on localhost with username boincadm and password myPassword.

Since in our setup the cgi program will create files in the download directory the filedeleter will
not be able to delete these files. To allow him to delete these files owned by the user/group of
apache we need to add the user which runs the daemons (in our case boincadm) to Apache’s
group (in our case www-data).

A.2 Compiling the server programs

The source code can be found on the CD in the boinc directory. The first step is to run automake
and friends. This is done by typing the following command: (the $ must not be typed)

$./_autosetup

Then one needs to call the configure script which checks whether all the needed libraries are
installed on your system. This command will output a lot of text. Don’t worry about a warning
which indicates that openGL, glut and GLU are missing since we don’t need the graphical part
of the BOINC API.

$./configure --disable-client

Now we have to compile all the needed parts of BOINC. This is done by typing

$ make

14

A.3 Creating a project 15

A.3 Creating a project

The following command will copy all needed files to $HOME/projects/hello and create the
database. Replace URL with the hostname of your server.

$ cd tools
$./make_project -v --delete_prev_inst --drop_db_first

--db_user boincadm --db_passwd myPassword
--url_base http://URL/ hello Hello@Home

Follow step one and two of the instructions at the end of this output. The project has been
installed into $HOME/projects/hello. From now on it is assumed that this is your working
directory.

$ cd ~/projects/hello

A.4 Modifying config.xml

In config.xml you need to set disable_account_creation to 0 and add
<profile_screening/> to the config element.

A.5 Changing file permissions/ownership

$ chgrp www-data download
$ chmod g+w download

A.6 Adding the application

In project.xml you will need to modify the <app> element that it looks like this

<app>
<name>hello</name>

<user_friendly_name>Hello Project</user_friendly_name>
</app>

Then we need to copy our client executable to a location where BOINC can find it:

$ mkdir -p apps/hello/hello_1.00_i686-pc-linux-gnu
$ cp /path_to_hello/hello_1.00_i686-pc-linux-gnu

apps/hello/hello_1.00_i686-pc-linux-gnu/

Now we can add the application to the BOINC server

$./bin/xadd
$./bin/update_versions

A.7 Setting up the daemons

At first copy the template files which are needed to create work from the templates directory on
the CD to $HOME/projects/hello/templates/. In the <daemons> section in config.xml
replace feeder with distributed_checking_feeder and add the following elements at the end of
the <daemons> element.

A.7 Setting up the daemons 16

<daemon>
<cmd>

hello_validator_with_checking -d 3 -app hello
</cmd>

</daemon>
<daemon>

<cmd>
hello_assimilator_with_checking -d 3 -app hello

</cmd>
</daemon>
<daemon>

<cmd>
hello_make_work -appname hello -d 3 -sleep_time 30
-nr_of_bits_p 131 -wu_name wu_name_template
-wu_template templates/world_wu_mod.xml
-result_template templates/hello_re_mod.xml
wu_filename_template

</cmd>
</daemon>
<daemon>

<cmd>
collision_finder -d 2 -number_of_results_to_check 1000

</cmd>
</daemon>
<daemon>

<cmd>
checking_controller -d 2 -appname hello

</cmd>
</daemon>

Then you can start the daemons with

$./bin/start

Bibliography

[1] The Certicom ECC Challenge,
http://www.certicom.com/index.php?action=ecc,ecc_challenge,
December 2007

[2] OpenSSL: The Open Source toolkit for SSL/TLS,
http://www.openssl.org/,
December 2007

[3] R. Gallant, R. Lambert and S. Vanstone, “Improving the Parallelized Pollard Lambda
Search on Binary Anamolous Curves”, Research Report No. CORR98-15, Department
of Combinatorics and Optimization, University of Waterloo, 1998.

[4] M. J. Wiener and R. J. Zuccherato, “Faster Attacks on Elliptic Curve Cryptosystems”, IEEE
P1363: Research Contributions, 1999.

[5] SETI@Home: A scientific experiment that uses Internet-connected computers in the
Search for Extraterrestrial Intelligence
http://setiathome.berkeley.edu/,
January 2008

[6] BOINC: Berkeley Open Infrastructure for Network Computing
http://boinc.berkeley.edu/,
January 2008

[7] Crypto++: A free C++ class library of cryptographic schemes.
http://www.cryptopp.com/,
January 2008

[8] Michael Kuhn and Stefan Schmid and Roger Wattenhofer, Distributed Asymmetric Verifica-
tion in Computational Grids, 22nd IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Miami, Florida, USA
April 2008

17

