
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

Code Refactoring and Memory Optimization
for the Trace-based Simulation Framework

Daniel Matter

Supervisors: Dr. Iuliana Bacivarov, Kai Huang
Professor: Prof. Dr. Lothar Thiele

Computer Engineering Group

Semester Thesis SA-2007-63
September 2007 to February 2008

Abstract

The trace-based simulation is a useful tool to simulate hardware-software codesign at system-level
for best trade-off between accuracy and speed. The existing trace-based simulation developed for
the DOL framework has some disadvantages concerning the extendability with new schedulers,
the usability in terms of controlling the simulation and the high demand of memory capacity.

This thesis proposes design modification and presents their implementation to overcome these
problems. Moving the design towards a more object-oriented style simplifies the task of adding
a new scheduler by providing a common interface for all concrete schedulers and by rendering
unnecessary macros. The usability is improved by an XML configuration file which can control the
simulation. The memory optimization is achieved by two design changes: The postponing of the
trace decomposition from the initialization phase to the simulation phase and the separation of the
shareable and non-sharable information of the trace events, namely the flyweight design pattern.

The main achievement of the memory optimization is that the memory consumption is independent
of the accuracy of the simulation and that the memory usage is reduced to at least 25% while the
simulation speed could be maintained.

Contents

List of Figures iii

Listings iv

1 Introduction 1
1.1 Context . 1

1.1.1 Traced-based Simulation Framework for Multiprocessor Systems 1
1.2 Motivation . 4
1.3 Task Description . 4
1.4 Overview . 5

2 Design 7
2.1 Code Refactoring . 7

2.1.1 Avoidance of Macros . 7
2.1.2 Reorganisation of the Scheduler Class Hierarchy 8
2.1.3 Configuration File . 8

2.2 Memory Optimization . 9
2.2.1 Postponing of the Trace Decomposing . 9
2.2.2 Exploitation of Repetitive Trace Events . 9

3 Implementation 11
3.1 Code Refactoring . 11

3.1.1 Control of the Simulation . 11
3.1.2 Avoidance of Macros . 12
3.1.3 Reorganisation of the Scheduler Class Hierarchy 13

3.2 Memory Optimization . 18
3.2.1 Initialization Phase . 18
3.2.2 Simulation Phase . 20

4 Evaluation and Results 23
4.1 Memory Optimization . 23
4.2 Speed Comparison . 25
4.3 MPEG-2 Case Study . 27

5 Conclusion and Future Work 31
5.1 Conclusion . 31
5.2 Future Work . 32

A CD-ROM Content 33

Bibliography 35

ii

List of Figures

1.1 Simulation methodology . 2
1.2 Performance statistics . 3
1.3 VCD trace . 4

2.1 Position of the decomposition in the original version 9
2.2 Position of the decomposition in the modified version 10
2.3 Trace list and pool . 10

3.1 Diagram for the Statistic_Performance class 15
3.2 Diagram of the scheduler classes . 17
3.3 Path of the trace events during the initialization . 20
3.4 Diagram of the of the add_trace_event function of the Trace class 21
3.5 Trace event flow during simulation (simplified) . 22

4.1 Memory requirement comparison . 24
4.2 More detailed memory requirement plot of modified version 25
4.3 Memory usage comparison over clip duration . 26
4.4 Initialisation time . 27
4.5 Simulation time (with performance statistics) . 28
4.6 Simulation time (with VCD tracing) . 28
4.7 Simulation time (with VCD tracing and performance statistics) 29
4.8 Estimated execution time . 30

iii

Listings

2.1 Conditional inclusions in the scheduler class . 8
3.1 config.xml . 12
3.2 get_mapping function form the Config class . 13
3.3 Frame of the sc_main function from the root file of the simulation 14
3.4 get_perform_obj function from Config class . 15
3.5 TRACE_EVENT . 19
3.6 TRACE_EVENT_INT and TRACE_EVENT_EXT . 19

iv

Chapter 1

Introduction

This thesis describes code modification proposals for the trace-based simulation framework.

1.1 Context

Nowadays, the trend of system design is moving from single processor architecture toward
multiprocessor System-on-Chip (MpSoC) architecture. This shift can not only be noticed in the
newer generation of general-purpose processors like the quad core processors of Intel, but also in
the area of the embedded systems the heterogeneous multiprocessor systems are required by the
ever increasing complexity of the embedded applications. Although these MpSoCs offer high scale
integration and high computing power, the challenge is to find a scalable HW/SW design style to
alleviate the complex design procedure. The SHAPES [1] (scalable software hardware architecture
platform for embedded systems) project proposes a tiled architecture as well as complete solution
for the programming of such architecture.

Due to the fact that the multiprocessor SoC has opened up a large design space, having an effi-
cient and accurate performance estimation method is mandatory for the design space exploration,
especially in the early design stage. Traditional HW/SW cosimulation, be it at register-transfer level,
cycle accurate, or instruction accurate level, is too slow to be included in an iterative performance
optimization process. Therefore, performance evaluation at a higher abstraction level, for example
at the system level, is necessary to minimize the modeling effort and to get the best trade-off
between accuracy and speed.

A trace-based simulation framework has been newly developed for the DOL environment, which
is a part of the framework of SHAPES European project. The DOL aims at reducing significantly
the effort of mapping applications onto a SPAPES multiprocessor hardware platform under certain
mapping constraints [2].

The trace-based simulation framework aims at solving the problem for performance evaluation at
system level. It takes application specification, architecture specification and mapping specification
as input and provides system performance statistics, such as processor load, bus load, maximal
backlogs and overall system execution time. They can be used to guide the designers to improve
the design of the system.

1.1.1 Traced-based Simulation Framework for Multiprocess or Systems

The traced-based simulation achieves a speed-up with respect to cycle-accurate simulation
by abstracting the computation behavior as high-level execution traces. Therefore, to simulate
the computation behavior effects on the target architecture, one does not need to run the ac-
tual programming code. Besides, in trace-based performance evaluation, the tedious analysis
of branches in the source code is no longer required since the execution has already been flattened.

1

2 CHAPTER 1. INTRODUCTION

The diagram depicted in Figure 1.1 reveals that the framework consist of two parts:

• The first part is the modified functional simulation of the DOL which is responsible to generate
the execution traces. The role played by the functional simulation is depicted in Figure 3.3 of
[4]. How the functional simulation is modified to generate the trace is presented in section 4.2
of [4]. The format of the trace can be found in this section as well. Important to know is that
the trace consist of three different trace event types: Computation events, read events and
write events.

• The second part is the core of the trace-based simulation which can evaluate different map-
ping and architecture specifications. The working model of the trace-based simulation is out-
lined in section 3.1 of [4] and the output of the simulation is the topic of subsection “Simulation
Settings”.

The framework takes as input the application specification, architecture specification and mapping
specification (see Fig. 1.1). Details for the specifications can be retrieved from sections 4.1.1 - 4.1.4
in [4].

Mapping

Specification
Execution

Traces

Architecture

Specification

Performance Estimation

Results

Application

Specification

Functional

Simulation

Trace-based cosimulation

Figure 1.1: Simulation methodology[4]

Trace Transformation

An important issue is the trace transformation or decomposing which concerns the communication
events (read and write trace events). In the process of trace transformation, each communication
events containing more data than the atomic data size will be divided into smaller trace events
which do not exceed the atomic data size. (see Fig. 3.6 of [4]). The atomic data size defines the
granularity level of the simulation and can be defined by the user. The flexibility of the atomic data
size provides the designer with a trade-off between accuracy and efficiency.

The introduction of the atomic data size allows to reflect the actual behavior of the hardware com-
ponent, e.g the bus width or the fixed packet length of a device driver. The bus width is then also
considered in the scheduler because date with the length of the bus width cannot be preempted.

1.1 Context 3

Simulation Settings

The trace-based simulation provides two different simulation settings, which results in two different
outputs, that we will call simulation modes. One is the “Performance Statistic” feature and the other
is the “VCD Tracing”. Both modes allow to evaluate the mapping and architecture specification by
tracking the simulation data.

The performance statistic mode keeps account of the read, write, computation and total execution
time of each processor, the processing time on each bus and the computation, read, write and
processing time on buses of each process. Moreover, information about the maximal backlogs
of the software channels and of the ready queues of the buses are logged. After the simulation,
all figures mentioned before, as well as the maximum values of workload on resources and the
estimated execution time are prompted to the shell and stored in a file. An example of the shell
output can be seen in Figure 1.2.

Figure 1.2: Performance statistics

The VCD tracing builds a file with wave forms according to the Verilog VCD format. These waves
represents the activities of the processes and hardware resources in the temporal domain. Figure
1.3 shows the waves of a simple application example.

4 CHAPTER 1. INTRODUCTION

131600 ps 263300 ps 394900 psTime
consumer
consumer_computation
consumer_read_on_processor
consumer_read_through_buses
generator
generator_computation
generator_write_on_processor
generator_write_through_buses
square
square_computation
square_read_on_processor
square_read_through_buses
square_write_on_processor
square_write_through_buses

 1

 2

Figure 1.3: VCD trace [4]

1.2 Motivation

A trace-based simulation framework should fulfil several conditions. The system level performance
evaluation for an application mapped onto a multiprocessor embedded system architecture, should
be efficient in terms of time and memory usage, and at the same time maintain sufficient accuracy
for making design decisions.

Furthermore, a modular framework allows for making extensions in a fast way. Implementing a
new scheduler, for example, should not involve the task of adding code at several classes or files.

Additionally, an efficient use of the framework asks for the possibility of simulating autonomously
various mapping and architecture specifications. After running through all predefined specifications,
the output of the performance data should be well structured and maintain predicative information
for each mapping.

1.3 Task Description

The first step of the practical work described in this thesis is to review the existing codes of the trace-
based simulation framework. In a second step, suggestions for optimizations and updates should
be made. A designer may discover the following points during testing the simulation framework:

• Adding a new scheduler, like a static scheduler for example, requires explicit extensions dis-
tributed allover the code. Pieces of code can be copied from other implementations, but in a
more sophisticated design, this should be avoided.

• The usability in terms of switching between simulation modes or other parameters i.e atomic
data size, is cumbersome. A new code compilation is required for every setup.

• The simulation can only be controlled by hand by passing parameters over the command line.
The circumstantial work flow is described below.

1. The example number wished to simulate has to be feed. Afterwards, the trace for the
example is loaded.

2. The user can decide between the option “exit” or “continue”.

3. In case of selecting “continue”, the mapping specification can be entered by the user.

4. After the finish of the simulation, it jumps back to step 2.

• The memory overruns during loading the trace. This problem emerges by trying to simulate a
large trace or by using a small atomic data size.

This thesis proposes and implements optimizations for the existing trace-based simulation frame-
work with respect to memory usage and refactores the trace-based simulation library towards a
more object-oriented style to solve these problems.

1.4 Overview 5

1.4 Overview

In Chapter 2, the design modification towards a more user-friendly and modular framework are
proposed. Moreover, the approach to reduce the memory usage is presented. Chapter 3 provides
detailed information about the implementation of the modifications stated in the previous section.
The evaluation result of the modified framework are compared with the original framework and
presented in chapter 4. In the last chapter, we give the conclusions of this thesis.

Chapter 2

Design

This chapter reviews the code of the existing framework and discusses refactoring proposals which
bring improvements in terms of memory usage, performance, modularity and usability. The first
section presents the modifications which lead towards a more user-friendly and modular simulation
environment. The second section introduces a design strategy solving the memory problem which
might result in a performance improvement as well.

2.1 Code Refactoring

This section suggests some design changes to improve the usability of the framework in terms of
simulation control and modular extensions (like schedulers). The first subsection explains how the
macros in the code can be avoided. The next subsection states how the scheduler class hierarchy
should be organized and the last subsection introduces a configuration file. In each subsection, the
existing code is reviewed, the proposal solution and potential impact are presented as well.

2.1.1 Avoidance of Macros

In the current state, a simulation mode can be activated by defining the according macro in the
Makefile, for deriving the VCD tracing or performance statistics. As a counterpart in the code,
calls to the functions which log the data for the VCD tracing or performance statistics appear as
conditional inclusions (see Listing 3.1 for an example). The problem is the code modularity and
scalability: For example, in the scheduler classes, these conditional inclusions have to be placed
in the code of every scheduler.

A first approach to avoid this was to try moving the macros into simulation mode functions. If the
inclusion is not activated, then just empty functions will be called, e.g. the scheduling function of
the scheduler classes. But the following problem comes up: The processor, bus and process class
have a pointer to an object, which stores the data for the performance statistics. These objects are
set in a member function of the performance statistic class. Not running the function which sets
the performance log objects would produce an error as soon as the framework accesses these
objects. Running this function and instantiate all objects would produce unnecessary overhead.
Thus, another solution is needed.

The proposed modification contains two classes. A parent class containing empty functions which
do not do anything and a subclass containing functions with the effective implementation. Thereby,
the parent class instantiate dummy objects of classes without any member variable but with empty
functions. Details about the implementation can be found in the next chapter in section 3.1.2 where
also a class diagram (Fig. 3.1) is shown to gain more insight. By applying this modification, we
do not only solve the issue regarding the conditional inclusions in the scheduler class. Moreover,
this solution has the advantage that the simulation mode can be switched using the same code
compilation.

7

8 CHAPTER 2. DESIGN

. . .

i f d e f INCLUDE_PERFORMANCE_STATISTICS
_current_ready_queue_ptr−>cur ren t_back log −= data_num ;

#endif

. . .

i f d e f INCLUDE_VCD_TRACE
vcd_t rac ing−>read_from_buses_star t (cu r ren t_ t race_even t_p t r) ;

#endif

wai t (cur ren t_ t race_even t_p t r −>data_ t ransfe r_ t ime , SC_NS) ;

i f d e f INCLUDE_VCD_TRACE
vcd_t rac ing−>read_from_buses_end(cu r ren t_ t race_even t_p t r) ;

#endif

. . .

Listing 2.1: Conditional inclusions in the scheduler class

2.1.2 Reorganisation of the Scheduler Class Hierarchy

In the original version, adding a new scheduler type demands to insert code in several files
and classes like the library file and resource classes. In order to facilitate the insertion of a new
scheduler in the trace-based simulation framework, we propose the following: The definition of
a consistent interface for schedulers and arbiters in order that all the instances of schedulers or
arbiters can be accessed in the same way. The insertion of the new scheduler should be done just
by coding the new scheduling subclass and adding the corresponding lines in the mapping XML
file parser, where the scheduler is declared.

In order to implement these new facilities, the default implementation of the scheduler is coded in
a main scheduler class, including parts of the scheduler which do not typically vary. A subclass
can then either inherit the function if the standard implementation is needed or override the parent
function with the own functionality. Hence, the workload for implementing a new scheduler is
reduced further.

The basic concept for this refactoring step was found during developing a static scheduler for the
framework. At the moment, we considered how the code should be redesigned in order to allow
implementing a new scheduler type in a straightforward manner.

2.1.3 Configuration File

To control the trace-based simulation framework and define, for example, which mapping specifi-
cation should be evaluated next, the intervention of the designer is required after each simulation.
This results in the need of supervising the simulation while running through different mapping
files what might be time consuming and does not allow the fully automation of the trace-based
simulation. As a consequence of the implementation of the above mentioned modification, more
parameters must be passed at the beginning to select all options. The passing of all parameters
every time is tedious and can be error-prone. Therefore, a script or a configuration file is needed in
order to support the handling of the simulation.

The suggested solution allows to choose flexibly between automatic and manual operation modes.
Simulation settings, architecture and mapping files can be predefined in a XML configuration file
before running the simulation. Inputs like example and mapping file to simulate, which not have
been specified in the file, will be asked as before, during the simulation. If the simulation modes
or architecture specification is not defined in the configuration file, then default value will be used
for simulation, e.g. no simulation mode and the “architecture.xml”. We have chosen an XML format
for the configuration file. This is convenient because no additional parser must be included in the
framework since all existing specification files are stored in a XML representation.

2.2 Memory Optimization 9

2.2 Memory Optimization

As we have mentioned in section 1.3, a main disadvantage of the trace-based simulation framework
is the high memory demand for the simulation. Analyzing the framework reveals that the trace
events are the main responsible part for the memory consumption. A trace event instance allocates
50 bytes of memory and the application we intend to simulate consist of several millions of events.
Multiplying these two numbers implies that a smart design for the trace storage is important. In the
next two subsections, modifications towards a better memory usage are proposed and discussed:
The postponing of the trace decomposition and the exploitation of repetitive trace events.

2.2.1 Postponing of the Trace Decomposing

In the actual design, the application event trace is decomposed during the initialization phase, as
it is illustrated in Figure 2.1. Each communication event, which is originally meant to transmit more
data than the defined atomic data size, is split into ci trace events.

ci =

⌈

actual amount of data to communicate
atomic data size

⌉

Consequently, the number of trace events is given by N .

N =

∑

i

ci + number of computing events

This may result in a infeasible amount of trace events in terms of memory usage if the atomic
data size is very small. To solve this problem, it is proposed to postpone the decomposition of
the communication events to the time just before the event is dispatched to the scheduler (see
Fig. 2.2). So, the additional trace events resulted from the decomposition into atomic data sizes
only need to be temporarily created before the dispatch. As a result, the trace size should shrink
significantly for high granularity levels. However, the decomposition needs to be done for each
mapping specification, whereas the original framework does the decomposition only once during
the initialization.

Figure 2.1: Position of the decomposition in the original version

2.2.2 Exploitation of Repetitive Trace Events

A problem not solved yet is that some applications that we would like to simulate, the execution
trace contains too many events even without the decomposition into atomic sizes. Thus, a better
method to store the trace events has to be found. It can be observed that many trace events are
identical. This fact leads us to the next step of optimization.

A pool with reference items including the trace event details is created. For all “equal” trace events
only one reference item needs to be allocated. This reference saves only the essential information.
The variables used for the simulation, like for example target computation or communication
resource, which can be derived from other available information, do not need to be part of the
event. In the new coding, all trace events can be specified by a pointer to the according reference

10 CHAPTER 2. DESIGN

Figure 2.2: Proposed position of the decomposition in the modified version

item. Figure 2.3 illustrates the design approach.

Figure 2.3: Trace list and pool

As result of the modification, the trace event list needs only 8 bytes per element as follows: 4
bytes for the pointer to the next element and 4 bytes for the pointer to the item with the detailed
information. This should effect a drastic reduction of memory requirement, especially if the
simulated application is highly repetitive in terms of trace events. This design is derived from the
so-called “flyweight” design pattern [3].

Chapter 3

Implementation

This chapter presents implementation details of the design modifications proposed in Chapter 2.
The first section covers the code refactoring points which effect a more user-friendly style for con-
trolling and extending the framework. The second chapter presents the memory optimization fea-
tures.

3.1 Code Refactoring

This section discusses first the configuration file and the new added Config class which allow a
more user-friendly usability of the simulation. The next two subsections contribute to an easier ex-
pendable framework, i.e. to add a new scheduler class. Subsection 3.1.2 explains how we can avoid
the conditional inclusions in all the scheduler classes, section 3.1.3 presents the new organisation
of the scheduler class tree.

3.1.1 Control of the Simulation

This section presents the configuration file, i.e the config.xml and the Config class which
parses the corresponding XML file and controls the simulation.

Configuration File

An example of the config.xml can be seen in the Listing 3.1. On the first hierarchy level of the
XML structure, we have the mode nodes and an example node.

There are two different mode nodes:

• One node has the name attribute VCD_Tracing. The attribute value of this node triggers the
simulation mode which enables collecting information for VCD tracing. If the value is set to 0,
the VCD file will not be generated. If it is set to 1, the VCD tracing will be done.

• The Perfomance_Statistic node has besides the name attribute, another two attributes.
The first attribute is again value, which defines if the simulation setting “performance statistic”
should be activated or not. The second attribute named type is used to specify the output
mode. The enumeration of the different types can be extracted from the comment line in the
Listing.

The semantics for the example node and its child nodes are:

• The name attribute of the example node is used to select the example. Thereby, the value
specified in name is concatenated to “example” and this is the name of the folder containing
the example to simulate, e.g. for the value “1”, the example to simulate will be stored in the
folder example1. The example node has the following child nodes:

• The sub-node architecture denotes the architecture specification to simulate. If it is not
used, the architecture.xml is set as a default value.

11

12 CHAPTER 3. IMPLEMENTATION

1 <?xml version =" 1.0 " encoding="UTF−8" ?>
2 <con f i g>
3

4 <mode name=" VCD_Tracing " value= " 0 " / >
5 < !−− type=1 −> w r i t e ou tpu t to console , type=2 −> w r i t e i t to f i l e −−>
6 <mode name=" Per fomance_Sta t i s t i c " value=" 1 " type= " 1 " / >
7

8 <example name=" 1 ">
9

10 < a r c h i t e c t u r e name=" a r c h i t e c t u r e . xml " >
11 <mapping name=" mapp ing_f i fo . xml " / >
12 <mapping name=" mapping_rr . xml " / >
13 <mapping name=" mapping_rr2 . xml " / >
14 < / a r c h i t e c t u r e >
15 < a r c h i t e c t u r e name=" a rch i tec tu re_2 . xml ">
16 <mapping name=" mapping_rr3 . xml " / >
17 <mapping name=" mapping_tdma . xml " / >
18 < / a r c h i t e c t u r e >
19

20 < / example>
21

22 < / con f i g>

Listing 3.1: config.xml

• The child node mapping can either be a child node of the architecture node or the example
node in the case when the architecture node is not specified. The mapping nodes are used
to enumerate the mapping specifications to simulate for each architecture specification if one
or more architecture is listed or else for the default value architecture.xml.

The Config Class

The functionality of the Config class is explained in this subsection. In the initialization phase
of the simulation, the configuration file is parsed, instantiating the Config object. The mapping
and architecture file names are not stored, only boolean variables are set to true if mapping file
names and architecture file names other than the default ones are available. The names are read
as soon as the next mapping or architecture specification is due to be simulated. In case that no
names are available, the two booleans remain false.

How the next mapping specification file name can be accessed appears in Listing 3.2. If file names
are specified in the configuration file, i.e. the mapping variable is true, the next file name (at
position i) will be read and returned. If no file name is given, it will ask the designer by a command
line request and will return the entered name.

A similar function manages the architecture specification file names. The difference is only that a
default value will be returned if no name is configured.
Listing 3.3 shows the frame of the root file of the simulation. It can be observed how the functions
of the Config class are applied to control the workflow of the initialization and simulation. The
file names for setting up the architecture (line 19) and mapping (line 29) objects are received from
the Config class (as explained before) as well as the conditions for the while loops (lines 16,
26). The functions generating the value for the conditions of the while loops return true as long
as other mapping or architecture specifications are listed in the configuration file. In case that no
mapping file is configured, the client can decide to stop or proceed. The meaning of the lines 34 -
38 is investigated in the next section.

3.1.2 Avoidance of Macros

The implementation of the proposed design in section 2.1.1 is outlined next. Because we do not
want to use the conditional inclusions anymore, a concept with two different classes is proposed.
A parent class for the two simulation modes (see Section 1.1.1) must be composed which contain
a blank function as implementation. Both classes are inherited by a subclass which overrides

3.1 Code Refactoring 13

1 const char ∗Config : : get_mapping (i n t i)
2 {
3 i f (mapping)
4 {
5 XMLNode xml_mode_exam_node ;
6 xml_mode_exam_node = xml_mapping_nodes . getChi ldNode (" mapping " , i ++) ;
7 cout << " \ nmapping f i l e name "
8 << xml_mode_exam_node . g e t A t t r i b u t e ("name") << " \ n \ n " ;
9 s t r cpy (map_name, xml_mode_exam_node . g e t A t t r i b u t e ("name")) ;

10 return xml_mode_exam_node . g e t A t t r i b u t e ("name") ;
11 } else
12 {
13 char temp [NAME_LENGTH] ;
14 cout <<" Please enter mapping f i l e name : \ n " ;
15 f ge ts (temp ,NAME_LENGTH, s t d i n) ;
16 temp [s t r l e n (temp)−1]= ’ \0 ’ ;
17 s t r cpy (map_name, temp) ;
18 return map_name;
19 }
20 }

Listing 3.2: get_mapping function form the Config class

these empty functions with the real implementation. The function with the actual functionality or
the empty function will then be executed, depending on the instantiated class. Only the functions
called from outside the Performance_Statistic or the VCD_Tracing class need be declared
in the parent class.

In case of the simulation mode “Performance Statistic”, the setup is a little more complex
than the “VCD Tracing” because each bus, processor and process have its own object to
administrate the evaluation data. These objects are instantiated in the constructor of the
Performance_Statistic class, thus the constructor of the parent class must not be empty but
it has to construct a “light” version of the object for each resource or process. Figure 3.1 presents a
class diagram demonstrating the schematic design. To keep the overview, the diagram is simplified
and shows only the Bus_Performance objects.

Now, we come back to the lines 34 - 38 in Listing 3.3. Line 35 calls the function shown in
Listing 3.4 and assigns the return value to the performance_statistics pointer. The func-
tion returns either a instance of the parent class Performance_Statistic or the child class
Performance_Statistic_Imp depending on the boolean with_perform which is set accord-
ing to the entry in the configuration file. A similar function is used to set the vcd_tracing pointer.
Henceforth, all conditional inclusions can be avoided in the code. If a function of the Vcd_tracing
or the Performance_statistic object is called, either the empty functions or the overridden
functions will be executed according to the configuration.

3.1.3 Reorganisation of the Scheduler Class Hierarchy

This section investigates the new design of the scheduler class tree. The result of the reor-
ganisation can be seen in the diagram of Figure 3.2. The diagram reveals that the attributes
are declared at the highest level where they are commonly shared by all the classes and sub-
classes. Moreover, the implementations of the operations of a concrete scheduler are distributed
over all levels. In the next paragraphs, it is reasoned why an implementation is put on a certain level.

The first two functions of the root class both named get_ready_queue are used to get the
entire ready queue list of a scheduler or a certain ready queue specified by its name. Because all
schedulers use the principle of ready queues, these functions can be implemented in the first level.

The scheduling function is the core of each scheduler type and must be implemented for each
scheduler separately. The function declarations on the two upper layers are abstract and effects
that these classes can not be instantiated. The function add_trace_event can not be equal for
bus arbiters and processor schedulers, so the implementation is forced to be in the second layer.

14 CHAPTER 3. IMPLEMENTATION

1 i n t sc_main (i n t argc , char ∗argv [])
2 {
3 Config ∗conf ;
4 s t r cpy (con f ig_ f i l e_name , " con f i g . xml ") ;
5 conf = new Config (con f ig_ f i l e_name) ;
6

7 s t r cpy (example_name , conf−>getExample ()) ;
8

9 copy here the example_name to a l l o ther f i l e name as p r e f i x
10

11 /∗ Create a p p l i c a t i o n from process network f i l e and t race f i l e . ∗ /
12 app l i c = new App l i ca t i on (app_file_name , t race_f i l e_name) ;
13

14 i n t conf_arch = 0;
15

16 while (conf−>loopArch i (conf_arch))
17 {
18 /∗ Create A r c h i t e c t u r e from a r c h i t e c t u r e xml f i l e . ∗ /
19 s t r c a t (arch_fi le_name , conf−>getArch i (con_arch)) ;
20 a rch i = new A r c h i t e c t u r e (arch_f i le_name) ;
21

22 /∗ Create mapping ob j ec t . ∗ /
23 mapping_ptr = new Mapping (a p p l i c a t i o n _ p t r , a r c h i t e c t u r e _ p t r) ;
24

25 i n t conf_map = 0;
26 while (conf−>loopMapping (conf_map))
27 {
28 /∗ Set mapping . ∗ /
29 s t r c a t (mapping_file_name , conf−>getMapping (conf_map)) ;
30

31 /∗Do mapping . ∗ /
32 mapping_ptr−>set_mapp ing_f rom_f i le (mapping_file_name)
33

34 /∗ Create Pe r fo rmance_Sta t i s t i c to c o l l e c t eva l ua t i on r e s u l t s . ∗ /
35 p e r f o r m a n c e _ s t a t i s t i c s_ p t r = conf−>get_perform_obj (app l i c , a r ch i) ;
36

37 /∗ Set the vcd t r a c i n g to get the waveform of the s i mu l a t i on . ∗ /
38 vcd_t rac ing = conf−>get_vcd_obj (vcd_trace_f i le_name) ;
39

40 /∗ S t a r t s i mu l a t i on . ∗ /
41 s imu la te
42 outpu t the eva l ua t i on data
43

44 conf_map ++;
45 }
46 conf_arch ++;
47 }
48

49 }

Listing 3.3: Frame of the sc_main function from the root file of the simulation

3.1 Code Refactoring 15

Figure 3.1: Diagram for the Statistic_Performance class

1 Per fo rmance_Sta t i s t i cs ∗Config : : get_perform_obj (App l i ca t i on ∗app , A r c h i t e c t u r e ∗arch)
2 {
3 i f (wi th_perform)
4 {
5 return new Per fo rmance_Sta t i s t i cs_ Imp (app , arch) ;
6 }
7 else
8 {
9 return new Per fo rmance_Sta t i s t i cs (app , arch) ;

10 }
11

12 }

Listing 3.4: get_perform_obj function from Config class

16 CHAPTER 3. IMPLEMENTATION

This function can be totally different in a fancy scheduler and hence can be overridden by a leaf
class function.

The two last functions named set_recourse_belong_to are both declared here despite they
are implemented one level down. However, this design allows the Resource interface to use the
same interface for both bus arbiter and processor scheduler.

The remaining functions are all coded in the basis class, but can be overridden by a lower sched-
uler class if necessary. The function add_ready_queue is called from the Mapping class to add a
ready queue to a scheduler, according to the information obtained from the parsing of the mapping
file. The other functions assist the scheduling function. They can differ from the standard imple-
mentation for some schedulers, so the concrete classes can override these functions from the
Bus_arbiter or the Processor_sched classes as it can be seen in the diagram.

3.1
C

ode
R

efactoring
17Figure 3.2: Diagram of the scheduler classes

18 CHAPTER 3. IMPLEMENTATION

3.2 Memory Optimization

This section presents the implementation of the proposed design modification in section 2.2. Both
the initialization and simulation phases of the trace-based simulation have been modified. The
first subsection discusses the changes in the initialization phase, while the second subsection
discusses changes in the simulation phase.

3.2.1 Initialization Phase

The trace is stored in the initialization phase, therefore the realization of the trace storage method
stated in 2.2.2 is presented in this subsection. Two steps lead to the new implementation of the
new trace storage method.

1. Step: Avoidance of Redundancies

The first step analyzes which information for the trace event must really be stored in this phase
and which can be attached later. Listing 3.5 shows the structure of the TRACE_EVENT from original
framework. In the following list, we explain why we do not need every variable.

• The event_flag variable is used to mark the last event of the communication event trans-
formation. Due to the postponing of the decomposition (which is explained later), the variable
is dispensable until the simulation phase.

• The compu_time_left variable stores the simulated time remaining to finish the computa-
tion event and hence is not utilized in the initialization phase.

• The compu_resource pointer contains the address of the computation resource. The Pro-
cess class saves this information as well and therefore it is enough to attach this information
just before the dispatch to the scheduler, i.e in the simulation phase.

• The data_transfer_time is derived from the data_num variable later in the simulation
mode and therefore it is not needed yet.

• The commu_resource_head and the current_commu_resource variables store redun-
dant information with the sw_channel_ptr during the initialization phase. They are only
used in the simulation phase.

• The complete_event is only used during the simulation phase and can be attached before
the dispatch as well.

The result of this “slimming diet” can be extracted from Listing 3.6. The TRACE_EVENT_INT
presents the structure storing the information in the main memory for each trace event in the new
version. The consideration that many of these structure are identical leads to the implementa-
tion of the pool feature with the pool (presented in the next subsection). The main difference to
the original version is that the information for the trace event is saved in two structures. One is
the TRACE_EVENT_EXT structure and the other one the TRACE_EVENT_INT structure which has
been mentioned before. The name TRACE_EVENT_INT stands for intrinsic trace event, meaning
that in this structure only the common information with other trace events is saved. Whereas in the
TRACE_EVENT_EXT structure, extrinsic data is saved. In our case, this is only a pointer to the next
intrinsic trace event to maintain the order of events and a pointer to the characterizing intrinsic trace
event. The structure of the extrinsic trace event is also shown in Listing 3.6.

2. Step: From File to the Trace List

This subsection presents the path of the trace events, from the trace file(s) to the trace list and pool
of each process. Figure 3.3 illustrates which classes and functions read and pass along the trace
events until saved ready for simulation:

• The first box represents the get_trace_from_file function from the Application class.
This function reads all trace files and sends the trace event to the according Process object.
Nothing of the content of the first box is modified in the new version with respect to the original.

3.2 Memory Optimization 19

1 typedef s t ruc t TRACE_EVENT
2 {
3 char event_type ;
4 char event_ f lag ;
5

6 /∗ For computation . ∗ /
7 double ∗compu_time_ptr ;
8 double compu_t ime_lef t ;
9 COMPUTATION_RESOURCE ∗compu_resource ;

10

11 /∗ For communication . ∗ /
12 i n t data_num ;
13 double da ta_ t rans fe r_ t i me ;
14 SW_Channel ∗sw_channel ;
15 COMMUNICATION_RESOURCE ∗commu_resource_head ;
16 COMMUNICATION_RESOURCE ∗current_commu_resource ;
17

18 sc_event ∗complete_event ;
19 }TRACE_EVENT ;

Listing 3.5: TRACE_EVENT

1 typedef s t ruc t TRACE_EVENT_INT
2 {
3 char event_type ;
4 double ∗compu_time ;
5

6 i n t data_num ;
7

8 SW_Channel ∗sw_channel ;
9 }TRACE_EVENT_INT ;

10

11 typedef s t ruc t TRACE_EVENT_EXT
12 {
13 TRACE_EVENT_INT ∗ d e t a i l ;
14 TRACE_EVENT_EXT ∗next ;
15 }TRACE_EVENT_EXT;

Listing 3.6: TRACE_EVENT_INT and TRACE_EVENT_EXT

20 CHAPTER 3. IMPLEMENTATION

Figure 3.3: Path of the trace events during the initialization

• In the second box, the functionality of the add_trace_event of the Process class is:

1. Store received information in a TRACE_EVENT_INT structure.

2. Update the computation estimation table.

3. Pass the trace event to the Trace object, a member variable of the Process class,
where the events will be stored in the right order.

The decomposing is replaced from this function running during the initialization to the function
running of the Process running during the simulation in the new version.

• The functionality of the third box is more detailed demonstrated in the diagram of Figure 3.4.
The intrinsic trace event information of the trace event is received as argument. This structure
is compared with all other ”intrinsic objects already placed in the pool. If the object is new, i.e
no identity is found, it will be stored in the pool as well. The pool is implemented as a linked
list. Afterwards, the ”extrinsic“ structure is created which points to the according object in the
pool and of course to the next event. Because the trace events are received in order, they
only must be referenced to the next event pointer of the last arrived trace event.

3.2.2 Simulation Phase

All modifications done in the simulation phase code concern only the running function of the
Process class. The modifications can be summarized in two points.

1. The re-transformation of the trace event to the old shape.

2. The decomposition

Figure 3.5 shows the flow of the trace events during the simulation. Because only the code rep-
resented by the first box is changed (in terms of memory optimization), we will not pay attention
to the implementation of the other encircled boxes. The interaction of the Scheduler class and

3.2 Memory Optimization 21

Figure 3.4: Diagram of the of the add_trace_event function of the Trace class

22 CHAPTER 3. IMPLEMENTATION

the running function of the Process class can be extracted from the schema. A simplification is
made due the numbers of resources (encircled boxes) which can vary according to the number of
different resources in the communication path.

Figure 3.5: Trace event flow during simulation (simplified)

Re-transformation

The re-transformation ensures that the trace event received from the trace list, i.e from the Trace
object, is copied back to a TRACE_EVENT structure of similar structure as in the original framework
(see List. 3.5). The only difference is that the next pointer is not deployed anymore, because this
information was only used to keep the order in the Trace class. All the information for the additional
variables can be derived from the information stored in the variables of the TRACE_EVENT_INT
structure. However, they are needed during the simulation phase to save temporary data.

Decomposition

The decomposition is only applied to the communication events. If the data_num value (amount of
data to tranfer) exceeds the atomic data size, the structure created in the re-transformation will be
cloned as many times as required to meet the corresponding granularity level given by the atomic
data size. The copying and dispatching is done repeatedly: The fist events gets dispatched, then
it is checked if a further instance is needed to meet the atomic data size. If so, a copy is made
and dispatched. The proper rest value and the event flag LAST_ONE must be assigned to the
data_num, respectively to the event_flag variable of the last object of the loop.

This two modifications effect that the workflow and the object representation from this point remains
identical as in the original framework. Therefore, the code does not require any changes after the
dispatch of the trace events.

Chapter 4

Evaluation and Results

In this chapter, we evaluate the performance of the suggested modifications to the existing trace-
based simulation framework and discuss the results. The evaluation has been done with the MPEG-
2 decoder application developed in a former diploma thesis [5]. All specification files and video
clips1 used for the evaluation can be found in the attached software CD-ROM. The following result
are presented: In this first section, the memory requirement for the trace and memory usage during
the simulation are compared between the modified and the original framework. The speed of both
versions is analyzed next. The third section deals with some interesting aspects coming up in a
case study of performance evaluation due to enhanced simulation possibilities.

4.1 Memory Optimization

The modifications presented in Section 2.2 show two effects: On the one hand, the memory used
by the trace is independent of the atomic data size. On the other hand, the memory requirement
for the application with highly repetitive traces i.g. MPEG-2 decoder is reduced significantly.

Figure 4.1 dipicts 4 different curves: A peak memory curve and a trace size curve for both the
original version and the modified version. The trace size curves represent the memory usage
after the initialization, whereas the the peak memory curves shows the maximal memory usage
during the simulation. The figure reveals that for the original version, the memory usage rises
exponentially for smaller atomic data sizes while the memory usage of the modified version is
independent of the granularity level. For both framework, the difference between the peak memory
and the trace size is less than 1%. These observations can be explained as follows:

Regularly, the communication trace events are split into separate trace events which present a
transfer action of the size of atomic data size or less.

• In the original framework, this step is executed in the initialisation process, so the memory
requirement rises significantly for small values.

• In the modified framework, the trace size remains stable over all atomic data sizes due to the
postponing of the decomposing in atomics events.

The slight increase of the interval between the memory requirement only for the trace size and
the peak memory point during the simulation can be explained by the fact that more trace events,
with a smaller data size, must be copied temporarily and then dispatched to the scheduler before
the next wait in the simulation. This effect can be recognized with both candidates but it is less
distinct in the changed version. The difference is only 2MB whereas the the original framework
allocates 10MB more memory for an example with an atomic data size of 32 bytes. Figure 4.2
shows in detail the difference between the peak memory usage and trace memory usage during
simulation for the modified framework. Moreover, for the modified framework, the trace can be
extracted down to very small atomic data size values, i.e. 2 bytes. In contrast, the original version

1Specification of MPEG-2 videos: Frames per second: 25; resolution: 704 x 576 pixels; length: 2 seconds (except the
videos for the experiment generating Fig. 4.3 which evaluates videos with different lengths).

23

24 CHAPTER 4. EVALUATION AND RESULTS

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

4000

atomic data size [byte]

m
em

or
y

us
ag

e
[M

B
]

modified version peak
modified version after initialisation
original version peak
original version after initialiation

atomic data size [byte] 32 64 128 256 512 1024
memory peak [MB] (modified ver.) 289 289 288 288 288 288
trace size [MB] (modified ver.) 287 287 287 287 287 287
peak memory [MB] (original ver.) 3769 2318 1652 1260 1073 1036
trace size [MB] (original ver.) 3759 2313 1649 1257 1071 1033

Figure 4.1: Memory requirement comparison

4.2 Speed Comparison 25

will overfill the user memory2 already on a granularity level of 16 bytes per communication trace.

0 200 400 600 800 1000 1200
286

288

290

292

294

296

298

300

atomic data size [byte]

m
em

or
y

pe
ak

 u
sa

ge
 [M

B
]

memory peak usage
memory usage after initialisation

atomic data size [byte] 2 4 8 16 32 64 128 256 512 1024
memory peak [MB] 299 295 292 290 289 289 288 288 288 288
trace size [MB] 287 287 287 287 287 287 287 287 287 287

Figure 4.2: More detailed memory requirement plot of modified version

Figure 4.3 shows that the memory requirements of both frameworks depend linearly on the video
clip duration. The fact that a pool of reference trace events has to be allocated in the modified
version, can be neglected since already a short clip consists of a large amount of trace events,
and the actual memory usage is essentially improved with the modified version. Because in the
original version the memory usage depends on the atomic data size, several illustrative curves are
drawn for different atomic data sizes. We can observe that the modified framework saves about
25% of memory compared with the original framework not splitting up any communication event
(which corresponds to an infinite atomic data size). By reducing the atomic data size, the slope
of the memory requirement curve produced by the original framework always rises because the
communication events are decomposed to more and more fine grained events.

4.2 Speed Comparison

In this section, the speed performance of the proposed version is investigated and compared with
the original one, for both initialization and simulation phases. First, we compare the initialization
step. The duration of the initialization step is mainly defined by the procedure of loading the traces
from the disk into the main memory (except of a small fraction of time to create the application and
architecture objects). Second, we compare the simulation time of the modified version with respect
to the original one, for different simulation modes.

As it can be seen in figure 4.4, the initialization time for the original framework is exponentially
decaying and for the modified version it is constant (as it was the case of the memory usage
curves in figure 4.1). In the original framework, the behavior is as follows: the higher the level
of fragmentation of the communication events, the more time is used to load the trace into the

24GB in case of a 32bit application running on a 64bit server

26 CHAPTER 4. EVALUATION AND RESULTS

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

duration of mpeg2 clip [s]

m
em

or
y

us
ag

e
[M

B
]

modified version
original version (infinity)
original version (500B)
original version (300B)

duration mpeg2 clip [s] 0 1 2 3 5 7
trace size [MB] (modified ver.) 75 140 291 415 717 990
trace size [MB] (infinite) 259 489 1018 1450 2501 3459
trace size [MB] (500Bytes) 281 531 1104 1572 2711 3750
trace size [MB] (300Bytes) 295 558 1160 1653 2852 3948

Figure 4.3: memory usage comparison over different clip duration. Three curves with three different
atomic data size values are drawn for the original versions

4.3 MPEG-2 Case Study 27

memory for the simulation because of the decomposition. Following the curve of the new version,
it can be noted that the initialization duration remains equal. However, the performance of the
memory optimized version is poorer for atomic data sizes higher than 128 bytes. This loss is
introduced by the new design for storing the trace events which is described in the subsection “2.
Step” of section 3.2.1.

The comparison of the simulation time is shown in the next three figures 4.5, 4.6 and 4.7, for
different simulation modes (see section 1.1.1). Fig. 4.5 and Fig. 4.6 illustrate the simulation time
for both frameworks in two distinct modes, i.e. “performance evaluation” and “VCD tracing” modes.
For both modes, the speed of the modified framework is slower than the original. The exact speed
loss or gain can be extracted from the figures.

The third figure (Fig. 4.7) shows the simulation speed of both framework having both simulation
features enabled, i.e. performance evaluation and VCD tracing. In this third mode, the modified
framework is a little faster, i.e 4%. The speed improvement can be explained by the code design.
As explained in section 3.1.2, the new framework uses empty functions for the inactive simulation
mode. This seems to slow down the simulation speed for single mode simulations (Fig. 4.5 and Fig.
4.6). In exchange, the advantage is that switching between modes does not need a different code
compilation.

0 200 400 600 800 1000 1200
15

20

25

30

35

40

45

50

55

atomic data size [byte]

tim
e

[s
]

modified version
original version

atomic data size [byte] 32 64 128 256 512 1024
time [s] (modified ver.) 28 28 28 28 28 28
time [s] (original ver. 52 35 26 23 20 19

Figure 4.4: Initialisation time

4.3 MPEG-2 Case Study

So far, the performance improvement of the modified framework has been discussed. Making use
of the memory optimization, simulation can be done with a highly increased granularity. Hence, the
trace-based simulation provides more accurate results. This may evince some new findings in the
performance evaluation.

28 CHAPTER 4. EVALUATION AND RESULTS

0 200 400 600 800 1000 1200
10

20

30

40

50

60

70

80

90

100

110

−11.76%
−15.79%

−3.85%

−7.89%

−5.00%

−4.76%

atomic data size [byte]

si
m

ul
at

io
n

tim
e

[s
]

modified version
original version

atomic data size [byte] 32 64 128 256 512 1024
time [s] (modified ver.) 110 63 41 27 22 19
time [s] (original ver. 105 60 38 26 19 17

Figure 4.5: Simulation time (with performance statistics)

0 200 400 600 800 1000 1200
50

100

150

200

250

300

350

400

−5.26%−6.35%

−8.64%

−1.57%

−1.03%

1.98%

atomic data size [byte]

si
m

ul
at

io
n

tim
e

[s
]

modified version
original version

atomic data size [byte] 32 64 128 256 512 1024
time [s] (modified ver.) 347 197 129 88 67 60
time [s] (original ver. 354 195 127 81 63 57

Figure 4.6: Simulation time (with VCD tracing)

4.3 MPEG-2 Case Study 29

0 200 400 600 800 1000 1200
50

100

150

200

250

300

350

400

3.23%1.49%
5.75%

0.76%

5.29%

5.13%

atomic data size [byte]

S
im

ul
at

io
n

tim
e

[s
]

modified version
original version

atomic data size [byte] 32 64 128 256 512 1024
time [s] (modified ver.) 333 197 131 82 66 60
time [s] (original ver. 351 208 132 87 67 62

Figure 4.7: Simulation time (with VCD tracing and performance statistics)

In this experiment, the estimated execution time of the MPEG-2 application to decode a video clip
with a duration of two seconds is inspected for different levels of granularity and two mapping spec-
ifications. One mapping uses the fixed priority scheduler for all resources, while the other mapping
uses the TDMA scheduler. However, we used the same architecture and binding specifications for
both mappings. By studying the plot in Figure 4.8, two aspects can be observed:

1. Both curves show a global minimum at the atomic data size value of 64 bytes, by decreasing
or increasing the data size, the estimated execution time increases.

2. The estimated execution time to decode the video clip is about twice as much for the TMDA
scheduler than for the FP scheduler over all atomic data sizes. So the TDMA scheduler im-
proves one second by lowering the atomic data size from 1024 to 64 bytes whereas the FP
scheduler improves a half second.

The effects observed previously can be explained as follows:

1. Decreasing the atomic data size allows more switches between processes, so the probability
of a blocked process, which for example wastes the time slot in case of TMDA scheduling,
diminishes. Coming to a certain point in the atomic data size granularity, the context switch
overhead becomes dominated and therefore, the estimated execution time increases again.

2. The explanation for the second occurrence is that preemptive schedulers are more efficient.
But the effiency of the TDMA scheduler increases more by lowering the atomic data size than
the efficiency of a preemtive scheduler.

30 CHAPTER 4. EVALUATION AND RESULTS

0 200 400 600 800 1000 1200
1

2

3

4

5

6

7

8

9

10
x 10

9

atomic data size [byte]

E
st

im
at

ed
 e

xe
cu

tio
n

tim
e

[n
s]

FP.xml
tdma.xml

atomic data size [byte] 2 4 8 16
estimated execution time [ns] (FP.xml) 5.41e+09 2.55e+09 2.18e+09 2.00e+09
estimated execution time [ns] (tdma.xml) 9.30e+09 5.11e+09 4.15e+09 3.64e+09

32 64 128 256 512 1024
1.93e+09 1.90e+09 1.91e+09 1.95e+09 2.06e+09 2.33e+09
3.44e+09 3.38e+09 3.44e+09 3.62e+09 3.82e+09 4.35e+09

Figure 4.8: Estimated execution time to decode a MPEG-2 video clip with a duration of 2 seconds

Chapter 5

Conclusion and Future Work

This chapter gives a conclusion for the whole thesis and proposes some future work. In the first
section, the major design changes and their impacts are summarized. The second section gives
some ideas for future work to improve the framework further.

5.1 Conclusion

In this thesis we have proposed various design modifications for the trace-based simulation frame-
work to optimize the memory usage and the usability in terms of extending the simulation with
additional schedulers and controlling the simulation. The following points summarize the modifica-
tions which lead towards a better usability:

• Avoidance of macros: Adding an additional class with the same interface as the simulation
settings classes Perfomance_Statistics and VCD_Tracing, but with empty functions
allows to avoid the conditional inclusions in the source code. Moreover, no new code compi-
lation is necessary to change the settings and therefore, they can be specified in the config-
uration file.

• Configuration file: The simulation can run without any designer intervention if all parameters
are specified in the config.xml before the simulation. The file is then parsed by the Config
class and takes over the control of the simulation.

• Scheduler class tree: The reorganisation of the scheduler class tree enabled to extend the
framework with new schedulers with a smaller effort and without “copy-paste” programming
style.

The next two points sum up the modifications which optimize the memory usage and the their
achieved results:

• Postponing of the decomposition: The postponing of the trace transformation from the initial-
ization phase to the simulation phase offers the capability of the simulation with a arbitrarily
small atomic data size, because the memory demand does not depend on the atomic data
size anymore.

• Introduction of a new trace storage method: The idea of the partition of shareable and non-
shareable information of the trace events and the consideration of which information really
needs to be saved, effected a memory reduction of 25%.

• The speed performance could be maintained despite the memory reduction.

31

32 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Work

Ideas for future work:

• It can be foreseen that further main memory optimization cannot be achieved anymore be-
cause only the minimum amount of information is stored with the new modifications. In order
to simulate larger traces, other memory optimization solution have to be investigated, like
using the disc as a cache memory. Reading the trace on-the-fly is such an option. Conse-
quently, the trace events are only read from the file when needed. This will allow the simula-
tion of traces as large as the disc capacity could hold. However, attention must be spent to
an efficient implementation which could be achieved by reading the trace from the file in a
separate thread.

• Changing the atomic data size still needs a new code compilation. The usability of the sim-
ulation could be improved further by making it possible to define the atomic data size in the
configuration file as well. The Config class must then be extended accordingly to parse the
value for the atomic data size and assign it to a global variable for example.

• To improve the accuracy of the simulation, bounded hardware buffer sizes should be intro-
duced, so processes get blocked if the buffer is full. The implementation could be done in the
same manner as the software channel buffers, e.g. by constructing a semaphore mechanism
with the SystemC wait and notify functions.

Appendix A

CD-ROM Content

The following list describes the content of the CD-ROM. Archives contain a file README.txt which
further explains their content.

doc/presentation.pdf Thesis final presentation PDF version
doc/presentation.ppt Thesis final presentation PowerPoint version
doc/tex/howto.zip HOW-TO LATEXsource
doc/tex/thesis.zip Thesis LATEXsource
doc/thesis.pdf Thesis PDF version
doc/thesis.ps Thesis PostScript version
dol_ethz.zip DOL package
experiments/example1_2.zip Files for experiments of Section 4.1 and 4.2
experiments/example3.zip Files for experiment of Section 4.3
howto.pdf Trace-based simulation HOW-TO
README.txt This list
systemc-2.2.0.tgz OSCI SystemC 2.2.0
traceSim.zip Trace-based simulation source code (with an example)

33

Bibliography

[1] Shapes project website. http://www.shapes-p.org. This is an electronic document. Date
retrieved: December 30, 2007.

[2] Shapes@tik website. http://www.tik.ee.ethz.ch/~shapes. This is an electronic doc-
ument. Date retrieved: December 30, 2007.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisides. Design Patterns. Addison-
Wesley, 1995.

[4] Jun Liu. A modular trace-based simulation framework for multiprocessor systems. Master’s
thesis, ETH Zurich, August 2007.

[5] Simon Mall. Mpeg-2 decoder for shapes dol. Master’s thesis, ETH Zurich, April 2007.

35

http://www.shapes-p.org
http://www.tik.ee.ethz.ch/~shapes

	List of Figures
	Listings
	Introduction
	Context
	Traced-based Simulation Framework for Multiprocessor Systems

	Motivation
	Task Description
	Overview

	 Design
	Code Refactoring
	Avoidance of Macros
	Reorganisation of the Scheduler Class Hierarchy
	Configuration File

	Memory Optimization
	Postponing of the Trace Decomposing
	Exploitation of Repetitive Trace Events

	 Implementation
	Code Refactoring
	Control of the Simulation
	Avoidance of Macros
	Reorganisation of the Scheduler Class Hierarchy

	Memory Optimization
	Initialization Phase
	Simulation Phase

	Evaluation and Results
	Memory Optimization
	Speed Comparison
	MPEG-2 Case Study

	Conclusion and Future Work
	Conclusion
	Future Work

	CD-ROM Content
	Bibliography

