Online Information and ACK
Aggregation

Master Thesis

Thibaut Britz
<britzt@student.ethz.ch>

Advisors:
Prof. Dr. Roger Wattenhofer

Stefan Schmid
Yvonne Anne Oswald

Distributed Computing Group
Computer Engineering and Networks Laboratory (TIK)
Department of Information Technology and Electrical Engineering

July 20, 2007

ETH Distributed @
Eidgendssische Technische Hochschule Ziirich I
Swiss Federal Institute of Technology Zurich ComPUt'ng Gro

Copyright © 2007 Distributed Computing Group.

Contents

1 Introduction 1

2 Related Work

3 Algorithms for Information Aggregation 5
31 Model . .. 5
3.2 DeterministiclowerBound 6

3.21 2-Node Networks 7
322 ChainGraphs 8
323 TreesofHeighth 9
3.3 2-Node Networks 9
331 OnlineAlgorithm A o 9
3.3.2 OnlineAlgorithm B 14
333 OnlineAlgorithm C' o 19
3.4 GeneralTrees 24
3.41 SendingCriterion 24
3.4.2 LlowerBoundforA,BandC 24
3.4.3 UpperBoundforCinGeneral Trees 26
3.4.4 UpperBound for C'in Trees of Heighth 28
3.5 Optimal Offline Algorithm 28
3.51 2-NodeNetworks 28
3.6 Simulation 29
3.6 Topology 32
3.62 Data. 32
3.6.3 Results 33

4 The Acknowledgement Problem 37
41 Model . .. 37
4.2 2-Node Networks. 38
4.3 ChainGraphs 40
4.4 TreesofHeighth 44
4.5 Optimal Offline Algorithm 45

451 2-Node Networks 45

452 ChainGraphs 45

4.53 Trees . . . 49

4.6 Simulation 49
4.60 Algorithms 49

4.62 Results 54

5 Conclusion 59

CONTENTS

Introduction

The aggregation of information is a fundamental operation in distributed computing. For ex-
ample, in sensor networks, large numbers of nodes make measurements at their location and
typically send this data back to a source. Very often, it is not necessary that the source knows the
individual data of each node, but is only interested in an aggregated form thereof, e.g., the sum,
the minimum, or the spikes in the data. By aggregating and delaying data cleverly on intermedi-
ary nodes, communication costs and energy can be saved, while keeping the source node up to
date.

So far, information aggregation has mainly been studied in static environments.

This thesis investigates online information aggregation algorithms in dynamic distributed envi-
ronments where node values change over time. We will propose three basic aggregation algo-
rithms, prove their upper and lower bound on general trees and simulate our information aggre-
gation algorithms on real world sensor data. Later on we will propose an alternative upper bound
for the tree based distributed acknowledge problem, which is a special case of our information
aggregation model.

Related Work

There has been some related work in the field of TCP acknowledgment which focuses mostly
on the objective function of minimizing the number of acknowledgments sent and the sum of
delay costs incurred for all the packets. Dooly, Goldman and Scott [1] propose a 2 competi-
tive online algorithm for a single link (one leaf node and one root node connected through one
edge) and show that the offline case can be optimally solved by using dynamic programming.
Karlin, Kenyon, and Randall [2] propose a randomized online algorithm that achieves a com-
petitive ratio of _5 for the single link case as well. Sanjeev Khanna, Joseph Naor, and Dan
Raz [3] study the problem of aggregating TCP acknowledge packets in a tree and propose a
O(h log(c))-competitive distributed algorithm, where « are the total communication costs in
the tree. Brito, Koutsoupias and Vaya [4] propose general upper and lower bounds for the dis-
tributed asynchronous case in a tree.

Susanne Albers and Helge Bals [5] investigate a different objective function that minimizes the
number of acknowledgments sent and the maximum delay incurred for any of these packets.
They propose a -competitive deterministic algorithm for the single link, which is also a lower
bound for any deterministic online algorithm.

A different approach is taken by Frederiksen and Larsen [6]. They study the single link case and
their objective function consists of measuring the total time elapsed while packets are waiting at
the leaf node, but have not yet been delivered. They propose a 1.397-competitive randomized
and a 1.618-competitive deterministic algorithm for this problem.

A similar model is introduced by Papadimitriou and Servan-Schreiber [7, 8]. Instead of leaves
acknowledging packets, leaves aggregate information which has to be sent to the root as soon as
possible. The arrival of messages is modeled by a poisson process and the messages are allowed
to be aggregated as they are sent up the tree. They try to minimize the number of messages sent
and the delay cost incured for all messages.

Kempe, Dobra and Gehrkey [9] analyze gossip-based! protocols for the computations of sums,
averages, random samples, quantiles, and other aggregation functions in undirected graphs and
analyze their speed of convergence. Mosk-Aoyama and Shah [10] propose a distributed random-
ized algorithm for computing separable functions based on properties of exponential random

"In gossip-based protocols, each node randomly contacts one or more nodes in each round, and exchanges infor-
mation with these nodes.

variables in undirected graphs and analyze its speed of convergence as well.

Massouli and, Le Merrer, Kermarrec and Ganesh [11] analyze the complexity and the accuracy
of aggregating data in undirected graphs by using a random walk technique. Patt-Shamir [12]
proposes a deterministic protocol for computing the median in an undirected graph with polylog
complexity and a randomized protocol that computes an approximate median with polyloglog
communication complexity per node.

Our work focuses on the objective function of minimizing the number of messages sent and the
delay costs incurred by not keeping the root up to date. In contrast to the TCP acknowledgment
problem, we will analyze a more general case where each leaf node has a value which can in-
crease or decrease. The root wants to know the aggregated value thereof (e.g. sum, minimum,
maximum, over all nodes) and the difference between the aggregated value and the actual value
at the root represent the delay costs that occur in each time step. Our goal is to design an online
algorithm that minimizes these delay costs and the communication costs, thus the number of
messages sent by the algorithm.

In the second part of this thesis, we show how the acknowledge problem can be mapped to our
model and prove an alternative upper bound to the bound proposed by Khanna [3].

Algorithms for Information
Aggregation

3.1 Model

We are given a rooted tree I'. We view the tree T" as being directed from the leaf nodes to the
root, with each node n; (except for the root) having exactly one link to its parent. This edge
of node n; is denoted as e; and has cost c¢(e;), whereby the cost of sending over this edge is at
least 1. Let N denote the set of nodes in the tree, L denote the set of leaf nodes in the tree and
R denote the set of root nodes. Let n, and ! denote the respective number of nodes in each set
(r = 1 as T is arooted tree).

Each leaf node of the tree has a field with a value the root wants to know and which changes
over time. Let the time be slotted (synchronous time model) and each value has to wait at least
one time unit at a node before being sent upwards to its parent. Let v} denote the actual value at
the leaf and ! its corresponding value at the root node at time ¢ (which might not be up-to-date).
Let € (¢ < 1) be the minimal amount which can be added or subtracted from a value at a leaf
node. Therefore all leaf node values have to be a multiple of €. If ¢ = 1, values at the leaf nodes
are restricted to integers.

Our goal is to minimize the communication cost (thus minimize the number of messages) while
trying to keep the root up to date with the values at the leaf nodes by sending messages. Multiple
values can be aggregated to one single message and each message has to wait at least one time
unit, before being sent to the next node.

Let Algorithm X denote an algorithm which takes an input sequence o and decides when and
what value to send. X]Z will denote a specific sending event (sending event j) of Algorithm X
at node 7 on the time axis, ¢ X its corresponding time and v X will denote the value which was

sent. If the index is omitted from X]’:, it will denote the last sending event of X (e.g. vx: for
the last sent value). Let C'x denote the total costs, CCx the communication costs and DCx the
delay costs for an Algorithm X, i.e. Cx = CCx + DCx.

At the beginning, vx = r; = actual value at the node for all nodes 7. As the value at the root is
equal to the value at the local node, no delay costs occur.

6 3.2. DETERMINISTIC LOWER BOUND

Let there be an adversary who can modify and choose a sequence of values at the leaf nodes
such that they yield the worst case sequence for our algorithms. Let oo =Y., ., ¢(e;) define
the total communication costs in a tree and let A define the maximal difference between two
consecutive values, depending on all edge costs c(e;) (A = f(c(ep),c(er),...,c(en, — 1))). If
A is not bounded, our adversary can achieve an infinite competitive ratio for any deterministic
algorithm (this is shown in the lower bound section).

An online algorithm A is called ¢ — competitive if there exists a constant k£ such that
Costa(o) < ¢ Costopt(o) + k for all possible input sequences o. Opt is the optimal
offline algorithm that knows the entire input sequence ¢ in advance and A is our online
algorithm which does not know the input sequence in advance. An online algorithm A is called
strictly ¢ — competitive it k = 0.

An online algorithm can be either distributed or centralized. A distributed algorithm runs at each
node locally and makes decision only based on the local information it has at that node. Thus
all sending events of a node will depend on local information only. A centralized algorithm
assumes a global information model, where a central entity determines which values are sent by
which nodes. Sending events will depend on global information.

In both cases, future arrivals of values are not known to the algorithm and can be freely chosen
by the adversary. In the case of two nodes (one leaf node and one root node), the distributed
algorithm has the same information as the centralized algorithm. This thesis will address
distributed algorithms only.

We choose the following global cost function which reflects our goal to minimize both
the communication costs and the delay costs:

C = Communication cost + Delay cost

= Communication cost + Z laggr(vé,vl, ..., vt 1) —aggr(rb,rt,....rl)|

t € time steps

where aggr represents one of the following aggregation functions: maximum, minimum, average
or any other separable function.

E.g. if we are interested in the average of all leaf node values, the advantage of this cost function
is that when a value at a node is increasing over time and another value at a different node
is decreasing at the same rate, the delay costs will not increase without any value being sent
towards the root, as the aggregated average stays unchanged.

If the delay costs would be defined as the sum of all non aggregated differences between the
value at the root and the value at the leaf node, the delay costs would increase, as the changes
would not yet have reached the root, while the result we are interested in (e.g. the average) would
still stay the same. The changes would therefore generate delay costs even though the aggregated
result at the root node might be accurate and does not change.

In the case of one leaf node n;, one root node and one edge, the cost function can be reduced to:

C = Communication cost + Delay cost

= Communication cost + E ot — 7t

t € time steps

3.2 Deterministic Lower Bound

Definition 3.2.1 (Offline Algorithm O). Let O be the optimal offline algorithm that can send any
value it wants, anytime it wants.

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 7

As the delay costs are calculated by an aggregation function and do not depend directly on the
difference between the actual node value at the root and at the node, O could omit sending
events by relying on global information and we therefore have to restrict O’s knowledge to
make sending decisions based on local values (past and future values) only.

If we would allow O to have global knowledge, an infinite competitive ratio can not be
prevented. E.g., if we are interested in the maximum node value in a tree, the adversary could
choose a very high value at one node (which will be propagated to the root by the online and the
optimal offline algorithm) and then at a different node, switch between two values (both values
must be less than the global maximum) back and forth. As the online algorithm is distributed, it
has to propagate the change towards the root as each change at a node could influence the global
maximum. O however would never send anything up, as it knows that the value at the root is the
actual maximum of the entire tree. The same holds for other aggregation functions.

As for the centralized algorithm, it is unclear whether O can achieve an infinite competitive
ratio as well or not. In the centralized case, our online algorithm also has the same global
information as O. Neither our online algorithm, nor the optimal offline algorithm is allowed to
change the value that is being propagated towards the root in the tree. If this would be allowed,
both algorithms could simply omit sending events at lower levels, by changing values at a higher
level in the tree, clearly a behavior which hardly reflects reality.

3.2.1 2-Node Networks

Let there be a deterministic arbitrary Algorithm A with no limitations on what value the algo-
rithm sends or when the value is sent.

The adversary will choose the following sequence of values:

Each sending interval of A (all the values between two sending events of A) will consist of the
same value z. As A is deterministic, the adversary knows which value A will send and chooses
x4+ A or x — A (depending on which one is furthest away from the value that A will send) as
the next = value for the next sending interval.

Also let us assume that O, the optimal algorithm, will always send the value of the next interval
one time unit in advance, such that O only has c(e;) communication costs in each sending inter-
val of A. Any further decrease of O’s costs would increase the lower bound, we can therefore
safely assume that O has at most c¢(e;) costs.

Thus the following costs will occur at most for O:

Co < cle;) (communication costs)

A will have at least the following costs:

Ca > kA+c(e) (delay + communication costs)

As the adversary chooses the value that is furthest away from the last sent value of A, A must
have at least A delay costs in each time step. k& denotes the number of time steps A will wait
before having a sending event. As we do not know the sending criterion of A, we must assume
that £ = 1, because this minimizes A’s delay costs.

A must also have a sending event at the end, thus c(e;) is added to A’s costs. If A would not
have a sending event, the lower bound would be oo as k would be infinite (no sending event ever
arrives).

8 3.2. DETERMINISTIC LOWER BOUND

Please note that these A delay costs for A can be achieved independently of the aggregation
function used in the cost function, because in the case of only one leaf node, the aggregation
function can be reduced to the difference between vf and rf.

We thus obtain the following lower bound for A’s competitive ratio:

% S A—i—c(ei)
Co — c(e;)

cles)

Therefore A’s competitive ratio has a lower bound of A + 1. This lower bound also holds
for the centralized case, as in the case of two nodes a distributed algorithm has the same
information as a centralized algorithm.

3.2.2 Chain Graphs

Let there be a chain of nodes ng,n1,ns,...,n,, h + 1 nodes in total. Let ng denote the leaf
node and ny, denote the root node. Each node n; has exactly one communication link ¢(e;) to its
parent node 74 1.

The adversary will apply the same strategy as in the case of two nodes, but instead of
choosing = + A or z — A directly after A has a sending event at the leaf node, he will keep the
original z until A has completed propagating the change towards the root and change the value
at the leaf node to z + A or x — A thereafter.

Also let us assume that O will always send the value of the next interval A — 1 time units in
advance, such that O only has ¢(e;) communication costs and no delay costs at each node in the
chain for each sending interval of A at the leaf node.

Thus the following costs will occur at most for O (Let O be the optimal algorithm):

Co < ZC(Bi) (communication costs)

A will have at least the following costs:

h—1
Cay > Z (kA +cle;)) (delay + communication costs)

For the same reasons as in the case of two nodes, k¥ = 1 and A must have ¢(e;) communication
costs. As A is a distributed algorithm, A’s behavior will be the same at each node.
We thus obtain the following lower bound for A’s competitive ratio:

Ca o Yifg (A+c(e)
Co = XI5 elen)

h A
= —— = 41

Z?gol c(e;)

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 9

Therefore A has a lower bound of h’flA

——=— + 1 for the competitive ratio.
S efer) P

3.2.3 Trees of Height h

Let there be a tree composed of the nodes ng, n1,na, ..., np—1, n nodes in total. Let ng, ..., nj—1
denote the leaves and n,_; denote the root node. Each node n; has exactly one edge with
communication cost ¢(e;) to its parent node 7 1.

The adversary will apply the same tactic (with the same values) at each leaf node in the
tree as in the chain of nodes. As our local algorithm A and O both can merge packets on their
way up the tree, we have to assume that A is able to merge those packets and has minimal
communication costs only. The adversary will change the values at each leaf node at the right
time, such that O can also merge all the packets on their way up the tree, and has at most
minimal communication costs as well. Therefore O has at most the following costs in each
round (a round is defined as the time needed for A to propagate the change at each leaf node
towards the root until the adversary is able to start changing values at the leaf nodes again
without any values from the previous round interfering with the next change):

n—2
Co < Zc(ei) (commumnication costs)
i=0

A will have at least the following costs in each “round”:

n—2
Cy > Z (kA +cle;)) (delay + communication costs)
i=0

For the same reasons as in the case of two nodes, £ = 1, as this minimizes A’s delay costs. As
A is a distributed algorithm, A’s behavior will be the same at each node.
We thus obtain the following lower bound for A:

Ca ST (A + cler))

Co — Z?;OQ c(e;)
n—1) A
7(5) +1
Zizo c(e;)
Therefore A’s competitive ratio is at least % + 1.
2o clei)

3.3 2-Node Networks

3.3.1 Online Algorithm A

The criterion of when to send and what to send has to be chosen wisely. E.g., if an algorithm
decides to send periodically, the adversary could achieve an infinite competitive ratio by not

10 3.3. 2-NODE NETWORKS

changing any values at all. Another possibility would be to send only after a specific threshold
between the last sent value and the current value has been reached. The adversary can achieve an
infinite competitive ratio here as well by choosing a value below the threshold, which will never
be sent towards the root by the algorithm, but will be sent to the root by the optimal algorithm
directly at the beginning.

A sending criterion, depending only on the last sent value and the current value at the root and
having no memory about past values, will never be good, as the adversary can always choose a
value such that the algorithm does not have a sending event and keep the same value for the next
time steps to come.

Definition 3.3.1 (Online Algorithm A). Let A be our distributed local online algorithm.
A sends its last value v; at node i if

current t

> [va —vi| = c(e;)

t=time where last value was sent

Whereby v 4 is the last send value of the node and vf the value of the node 1 at time t.

This implies that the delay cost for A never exceeds c¢(e;) — 1 + (¢(e;) — 1 + A) between two
consecutive sending events of A, where A is the maximal difference between two consecutive
values at a node. c(e;) — 1+ (c(e;) — 1+ A) is reached when the adversary chooses a sequence
of values such that the value at time ¢4 + 1 is at distance ¢(e;) — 1 from v4. Thus the value
thereafter can at most increase the delay cost for A by c(e;) — 1 + A.

For the analysis of Algorithm A, we will analyze all possible kinds of intervals that exist
for A between two consecutive sending events of A at one node, written as interval |t 4,,%4,,].
This interval contains all node values of each time step between ¢ 4, and (including) £ 4, ,. (The
start event at the beginning of the entire sequence of values also counts as a sending event but
without communication costs).

We can then divide these intervals in 4 types of intervals, depending on whether vp matches v 4
at the beginning and/or at the end of the interval and compute an upper bound for the competitive
ratio in any of these intervals.

By fixing A’s delay cost to c¢(e;) in each of these intervals, the number of different cases to
analyze is reduced significantly. This is proven in the next two Lemmas, which imply that by
having a higher delay cost than c(e;) for A in any of these intervals, the competitive ratio in
these intervals can only increase by a constant factor.

Lemma 3.3.1. Consider an arbitrary interval |t s, t 4, | between two sending events of A. When
the delay cost for A in this interval is equal to 2(c(e;) — 1) + k, where k > 0, then O has at
least costs (delay or communication costs) of k in [ta, — 1,t4,], whereby these costs for O can
not exceed c(e;).

Proof. Let v; be the value at t 4,, and v;_; the value at £ 4, — 1. Since the delay costs for A are
greater than 2(c(e;) — 1) in the entire interval, A must have at least a delay cost of (c(e;) — 1)+ k&
on v; (otherwise A would have an earlier sending event) and the delay costs of the values before
vy in the interval are at most c¢(e;) — 1. This implies that the difference between v; and v;_ is at
least £ and O will have at least delay costs of k in [t4, — 1, ¢4,] (under the condition that O has
no sending event), no matter what value vo was.

If £ > c(e;), then O can limit the costs to ¢(e;) by using a sending event on ¢4, — 1 and sending
v;. Thus the costs for O can not exceed c(e;) in [t4, — 1,t4,] and will be equal to k as long as
k < c(e;). O

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION n

Lemma 3.3.2. Consider an arbitrary interval |t s, t,] between two sending events of A. Let
the delay costs for A be fixed to c(e;) in this interval and let p be A’s competitive ratio.
By letting the adversary choose another sequence of values in this interval, such that the delay

costs for A are greater than c(e;) in this interval, the adversary can at most increase ppc A=c(ei)

by & PDCy—c(e:) + % thus giving us ppc ,>c(er) < 5PDCA—c(es) T %

Proof. Let C4 and Cy be the total costs for A and O, under the condition that A has a delay cost
of ¢(e;). By letting the adversary choose a different sequence of values in this interval, he might
increase the delay costs for A to 2(c(e;) — 1) while leaving the delay costs for O unchanged, thus
nearly doubling the delay costs for A. According to the preceding Lemma, any further attempt
by the adversary to increase the delay cost for A by another k (k < ¢(e;)), will also increase the
costs for O by the same amount. If & > ¢(e;) (k < A), A alone will have k costs while O’s costs
are limited to c(e;).

Thus, PDCA>cle;) < %pDCA:c(ei) + f:i)' O

We can now conclude our analysis by fixing A’s delay cost in each interval |t 4,.t4,.,] to c(e;)
and apply Lemma 3.3.2 at the end. The next Lemma determines how a worst case sequence for
A will look like for the competitive ratio to be maximal in an interval.

Lemma 3.3.3. Consider an arbitrary interval |t 4,,t,] between two sending events of A. Let
vo denote the last send value of O before t4,. For the competitive ratio to be maximal in this
interval, the worst case sequence consists of:

(i) values less than or equal to vo if vo < V4,

(ii) values greater than or equal to vo if vo > V4,
Proof.

1) vo <w Ap-
If the sequence consists of values greater than or equal to v 4,, the adversary could always
increase the competitive ratio by choosing values less than or equal to v4,, as these values
yield smaller delay costs for O and higher delay costs for A. Thus the worst case sequence
will never consist of values greater than or equal to v 4,,.
If the sequence consists of values less than or equal to v 4,, but greater than vg, the adver-
sary could always increase the competitive ratio by choosing values less than or equal to
v, as these values yield higher delay costs for A.
Thus the worst case sequence will consist of values less than or equal to vo (depending on
whether v should be equal to v 4, at the end or not), with the closest values to v yielding
the highest competitive ratio.

(i) vo > va,:
By using the same argument as above, we proof that the worst case sequence consists of
values greater than or equal to vg.

O]

We now have to analyze all the different types of intervals that exist. Depending on whether
vo matches v 4 at the beginning and/or at the end of the interval, we have to analyze 4 different
kinds of intervals.

Lemma 3.3.4. Consider an arbitrary interval |t 4,,t,] between two sending events of A. Let
do denote the difference between vo and va, (60 = |vo — va,|) at time ta, and §, denote the
difference between vo and v 4, (61 = |vo — v, |) at time t4,. If:

12 3.3. 2-NODE NETWORKS

(i) 6o = 0 and 51 = 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called I.

(ii) 0o # 0 and 61 = O, then the competitive ratio in this interval will be co. Let this interval
be called I.

(iii) 0o = 0 and 61 # 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called I3.

(iv) 69 # 0 and 81 # 0, then the competitive ratio in this interval will be at most 2 €' c(e;).
Let this interval be called 1,.

Proof. In each of the following intervals, it is assumed that A has exactly 2¢(e;) costs, as we
fixed the delay costs for A to be c(e;).

(i) 50 = (0 and (51 =0:
Since dg = 0, §; = 0 and A chooses the last value in this interval as the new v 4, O must
have at least one sending event in this interval. If O would not have one sending event in
this interval, 6; = 0 could never be reached. Thus the costs for O will be at least c(e;),
while the costs for A are 2¢(e;), yielding a competitive ratio of at most 2 for A in this
interval.

(i) dp # 0 and §; = 0:
The adversary will choose a worst case sequence that consists of the value vp during the
interval |t 4,,%4,]. As O has no costs at all, this will be the worst case sequence yielding a
competitive ratio of oc for A in this interval.

(iii)) §p = 0 and &7 # O:
If O has a sending event in this interval, O will have at least communication costs of ¢(e;).
If O has no sending event in this interval, O must have delay costs equal to the delay costs
of A, namely c(e;).
Thus the competitive ratio will be at most 2 in both cases for A in this interval.

(iv) 0p # 0 and 91 # O:
If O has a sending event in this interval, O will have at least communication costs of ¢(e;).
If O has no sending event in this interval, the last value in the interval must be different
from vp (as 61 # 0). O must therefore have at least delay costs of € at ¢ 4,, yielding a
competitive ratio of at most 2 € ! ¢(e;) for A in this interval.
This interval can be repeated indefinitely often. This implies that the competitive ratio of
an arbitrary sequence can not be lower than 2 €' ¢(e;).

O
We therefore obtain the following table of competitive ratios:

H Interval ‘ maximal competitive ratio
Il 50:0and51:() 2
[2 (50750211’1(1(51:0 o0
13 50:0and517é0 2
Iy || 6o #0and 6y #0 | 2 e ! c(ei)

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 13

From these 4 different types of intervals, the interval 5 yields the highest competitive ratio,
since O has no costs at all. The next Lemma proves that each interval I5 is preceded by exactly
one interval I5. Thus, the number of intervals having I; will be less than or equal to the number
of intervals I3 and we can analyze the amortized competitive ratio' for both intervals together.

Lemma 3.3.5. Consider an arbitrary interval |t a,,t,] between two sending events of A. Let
do denote the difference between vo and va, (6o = |vo — va,|) at time t4, and 6, denote the
difference between vo and v 4, (01 = |vo — va,|) at time t 4, .

Each interval having 69 # 0 and §1 = 0 is preceded by exactly one interval having §g = 0 and
01 # 0.

Proof. As, by definition of the model, at the beginning of the entire sequence of values at the
node (from start to end), vo = v4 and from the 4 cases from above, the only way to go from
01 = 0to §; # 0 is by an interval having dg = 0 and §; # 0, there must be exactly one interval
having g = 0 and 7 # 0 before each interval having dyg # 0 and d; = 0.

O

This is also covers the case where the interval I3 is not directly followed by an interval I5, but
might have one or more intervals I, in between.

Lemma 3.3.6. Let there be one interval having 6y # 0 and 61 = 0 and one interval having
0o = 0 and 61 # 0. By analyzing both intervals together and adding their costs, both intervals
will have an amortized competitive ratio of at most 4.

2¢(e;)+2c(e;) —4

Proof. Adding A’s and O’s costs for both intervals as defined in 3.3.4 gives us (e} 70

as new upper bound for the competitive ratio of the combined interval.
This also bounds the case if there is no sending event for A at the end of the entire sequence of
values (from start to end).

O
We therefore obtain the following table of amortized competitive ratios:
H Interval \ maximal c.r. | amortized maximal c.r. | amortizes | amortized by
Il 60=0and51=0 2 2
_[2 (50#0&1’1(1(51:0 o0 4 Ig
I3 60:0and517é0 2 4 IQ

Iy || 6o #0and 61 # 0 | 2L c(e;) 2 e te(e;)

Thus the competitive ratio of oo is never reached, and Algorithm A has an upper bound of
2¢ ! ¢(e;), under the condition that A’s delay costs are fixed to c(e;) for each interval.

Theorem 3.3.7. Algorithm A is O(e~! c(e;) + %)—competitive 10 O.

Proof. According to Lemma 3.3.4 and Lemma 3.3.6, the amortized competitive ratio of an in-
terval can never exceed 2 ! ¢(e;). Thus the final competitive ratio of an arbitrary sequence
can never exceed 2 € ! ¢(e;), under the condition that A’s delay costs are fixed to c(e;) for each
interval. According to Lemma 3.3.2, removing this limitation will increase the upper bound to
39 .—1 A _q.-1 A

92€ Fele) + ey = 3¢€ c(e;) + e

Thus A has an upper bound of O(e ! c(e;) + %) for the competitive ratio. O

'Let the amortized competitive ratio be defined as the competitive ratio of one ore more intervals analyzed together
and considered as one interval only.

14 3.3. 2-NODE NETWORKS

Theorem 3.3.8. Algorithm A’s competitive ratio has a lower bound of Q(e ™! c(e;)).

b

Proof. The following sequence yields a competitive ratio of €1 ¢(e;). a® means that the value

a is repeated b times.

c(eq) clei) _ c(eg) cleg) cleg) c(e;)
0,e7c, 07 %—¢0¢ %e 0 %—60c e . ,07¢

O will never have a sending event and each sequence 0@_6, —€, OC(%)_G, €, yields a competi-
tive ratio of 2 e~! ¢(e;), as O only has 2 e delay costs and A has 4 c(e;) costs in each sequence.
Thus the entire sequence will reach a competitive ratio of 2 € ! ¢(e;) at the end, and by conse-
quence, Algorithm A is thus 6(e~"! ¢(e;))-competitive. O

3.3.2 Online Algorithm B

Definition 3.3.2 (Online Algorithm B). Let B be our distributed local online algorithm with
the same sending criterion as A. Opposed to A, which sends the last value in the interval, B
will send the value which occurred most in the last interval. If there is more than one candidate,
B will send the candidate which is furthest away from vp. If there are two candidates at the
same distance from vg and furthest away from vg, B will send the smallest candidate. If the
candidate (the new vp) is equal to the old vp, B will omit the sending event and reset the local
delay cost counter to 0.

This implies that the delay cost for B never exceeds c(e;) — 1 + (¢(e;) — 1 + A) between two
consecutive sending events of B, where A is the maximal difference between two consecutive
values at a node. c(e;) — 1+ (c(e;) — 1 + A) is reached when the adversary chooses a sequence
of values such that the value at time tp + 1 is at distance c(e;) — 1 from vp. Thus the value
thereafter can at most increase the delay cost for B by c(e;) — 1 + A.

For the analysis of Algorithm B, we will analyze all possible kind of intervals that exist
for B between two consecutive sending events of B at one node, written as interval Jtg,,tp, .,].
This interval contains all node values of each time step between g, and (including) ¢p, , ,. (The
start event at the beginning of the entire sequence of values also counts as a sending event but
without communication costs).

There are 3 types of intervals for which we can compute an upper bound for the competitive
ratio:

(@) lvo —vB,| = |vo — vB,+1]
(i) [vo —vB,| > |vo —vB, 41
(iil) |vo —vg,| < |vo — vB,+1]

Lemma 3.3.1 and Lemma 3.3.2 also hold for Algorithm B since both Lemmas are proven without
making any assumptions on the values being sent by A. We can therefore continue our analysis
by fixing B’s delay cost to ¢(e;) and apply Lemma 3.3.2 at the end.

We now have to analyze the different types of intervals that exist.

Lemma 3.3.9. Consider an arbitrary interval |tg,, t,| between two sending occurrences of B.
Let 6 denote the difference between vo and vg, (69 = |vo — vp,|) at time tp, and &1 denote
the difference between vo and vp, (61 = |vo — vp, |) at time tg,. If:

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 15

(i)
(ii)

(iii)

(iv)

v)

(vi)

0o = 01 and 6y = 0. impossible. Let this interval be called I.

S0 = 01 and 6y > ¢, then the competitive ratio in this interval will be at most €' (8 +
21/80). Let this interval be called Is.

dg < 01 and 6y = 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called I5.

8o < 61 and 6y > €, then the competitive ratio in this interval will be at most e " (8 +
21/80). Let this interval be called 1.

8o > 01 and 81 > €, then the competitive ratio in this interval will be at most 2 e~ * ¢(e;).
Let this interval be called I5.

0o > 01 and 51 = O, then the competitive ratio in this interval is co. Let this interval be
called I.

Proof. In each of the following intervals, it is assumed that B has exactly 2¢(e;) costs, as we
fixed the delay costs for B to be c(e;).

@

(i)

(50 = 51 and (50 =0:
As dg = 61 = 0, this kind of interval will never occur because B will not send when the
new v g is equal to the old vp.

(50 = (51 and (50 Z €.

If O has no sending event:

Let us assume that vg, > v at time ¢p,, that the adversary can only choose values less
than or equal to vp and that e = 1 (All three limitations will be removed at the end of the
proof).

For dg = 41, the adversary will choose the following worst case sequence of values:
Without loss of generality, we can fix the order of the values in a sending interval as it has
no influence on neither the competitive ratio, nor the choice of candidate by B.

The adversary will choose its first value to be at distance dy from v (value vo — dyp), as
do has to occur at least once in the sequence or otherwise dg # d1, as B only sends values
which occurred during the interval.

The rest of the sequence consists of values at distance 0, 1,2, ...,y — 1 from vp (values
vo,v0 — L,vo —2,...,v0 — (y — 1)), y values in total, y < dy. The values closest to vp
yield the highest competitive ratio, thus those values will be chosen first. These values can
occur at most once, since otherwise B will not choose the value at distance dg from vo as
the new vg and dy # d7.

Repeating the same sequence again (values dg, 0, 1, 2, ..., y — 1) can not increase the com-
petitive ratio, because the value dy has the greatest g—g ratio from all these values and must
be repeated first, as otherwise a different value is chosen as sending candidate by B. We
can therefore restrict our analysis to one sequence (values dg,0,1,2, ...,y — 1) only.

We limited ourself to all the values less than or equal to v, but the worst case sequence
could also consist of values greater than vo. But as all values at a certain distance from
vo and greater than v yield a smaller competitive ratio as if those values are at the same
distance, but less than vp, we can limit our analysis by assuming that all values are less
than or equal to v, but that all values in [vp, vo — (y — 1)] can occur twice instead of once.
The analogue reasoning holds for vp, < vo.

16 3.3. 2-NODE NETWORKS
We thus obtain the following costs (communication and delay) for B and O in this interval:
260+ 2((60 + 0 oo+ 1 og+2)+ ...+ (6 -1
Cy — 250+ (o +0)+ @G+ D)+ @ +2) 4+ Coty=1) (5 ey
0+2((00+0)+(do+1)+(0g+2)+ ...+ (do+y—1))
280 + 2(y do + §(y — 1))
= v c(es) + clei)
260 +2(y do + §(y — 1))
= 2c¢(e)
oo +20+1+4+2+4 ... -1
o > F O+1+ +y + (y))C(ei)
200 +2(y 0o + 5(y — 1))
do+2(4(y—1
260 + 2(y do + 5(y — 1))
] -1
> ot y(y) C(G')
280 + 2y 0o + y(y — 1)
Cgy < 2c(e;)
Co — So+y(y—1) A
Co 260—1—83; do+y(y—1) c(el)
5200 +2y o+ y(y — 1)
do+yly—1)
In order to find the extrema of the function, we maximize g—g by the following calculation:
d Cg 1 1 1 1
——— =0 y=—-+ -3 +44 =———-\V3+4)
dy Co Y=g tgVetihory=—o = ovet o
g—g is thus maximized by y = —% + %\/3 + 49g9. The second solution can be discarded
because y has to be greater than or equal to 0.
The maximal competitive ratio will thus be:
Cp < 2450 + 200v/3 + 400 + 3 — 2v/3 + 40y
Co — 450 + 3 — 2v/3 + 44
By analyzing the extrema and calculating the limit (if §g goes to infinity) of g—g, we can
deduce that g—g < 8+ 2v/dg, 0p > 1.
In reality, infinity is never reached for dy and J§y < c(e;), as we fixed the delay costs for B
to be at most ¢(e;) and by the definition of our model, ¢(e;) is at least 1. We can therefore
bound the competitive ratio to 8 + 24/c(e;).
As we limited ourself to integers (¢ = 1), removing this limitation will at most increase the
competitive ratio for B to ¢! %, as the delay costs for O can be reduced to at most
“e=1
€ DCc._,. We can therefore increase the upper bound to e ! (8 + 24/c(e;)).
If O has a sending event in this interval, the competitive ratio can be at most 2 in this
interval. As 2 < e ! (8 + 2+y/c(e;)) (¢ < 1), O will not have a sending event for the
competitive ratio to be maximal in this interval and B will be at most e~ (8 + 2+/c(e;))
competitive in this interval.
(iii) dp < 01 and &g = O:

If O has a sending event in this interval, O will have at least ¢(e;) communication costs.
If O has no sending event in this interval, O will have at least ¢(e;) delay costs as §y = 0

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 17

and vp = vpg at the beginning of the interval.
Hence the competitive ratio for B can not exceed 2 in this interval.

(iv) dp < 61 and dy > e:
The analogue reasoning as in the case where §y = d; holds, but instead of the adversary
choosing dg as the first value in the interval, he chooses ;. As d1 is greater than Jy and B’s
delay costs are at least c¢(e;) in this interval, O must have at least the same delay costs as O
where §yp = d1. (The number of values y might be reduced, but the delay costs that O loses
on those values are compensated by the increase in delay costs due to d; > dg.) Thus the
competitive ratio can be at most the competitive ratio of the case where dg = d;, namely

e 1 (84 2/c(e;)).

(V) 0g > 01 and 61 > €
If O has a sending event in this interval, O will have at least ¢(e;) communication costs.
If O has no sending event in this interval, O will have at least delay costs of € (because
1 < §; < dp). The competitive ratio will therefore be at most 2¢~1 ¢(e;) for B in this
interval.

(vi) dg > 61 and 61 = O:
The adversary will choose a worst case sequence that consists of the value vo during the
interval |tp,,tp, |, such that at the end, 51 = 0. As O has no costs at all, this sequence
yields a competitive ratio of co for B in this interval.

O
We therefore obtain the following table of competitive ratios:

H Interval \ maximal competitive ratio
Il 50:03.11(1(51:0 /
I || 6o =91 and dg > € e ! (8 + 2\/0(61‘))
I3 || g < d1anddg =0 | 2
Iy || o < dpand by > € | e7! (84 2+/c(e;))
I; dp>01and 1 >¢€ | 2 e 1 C(@Z')
Ig || g >d1andd; =0 | oo

From these 6 different types of intervals, the interval Iy yields the highest competitive ratio, since
O has no costs at all. The interval I5 yields a competitive ratio of 2~ ¢(e;).

The next Lemma proves that each series of intervals having dy > 01 is at least preceded by one
interval having §y < 7. A series of intervals having dg > d; is defined as all the intervals having
do > 61 until an interval having Jy < J1 is reached. As a side note, if the values at the leaf nodes
are restricted to integers, then there can be at most A intervals having dy > §; for each interval
having dp < d1, because the difference between dy and §; is at most A.

We can thus analyze the competitive ratio for these intervals together. A’s new amortized com-
petitive ratio for each of the two intervals is proved in the next three lemmas.

Lemma 3.3.10. Consider an arbitrary interval |tp,, tp,| between two sending occurrences of
B. Let 6y denote the difference between vp and vg, (09 = |vo — vp,|) at time tg, and 0, denote
the difference between vo and vg, (61 = |vo — vp,|) at time tp, .

Each series of intervals having 0o > 01 is preceded by at least one interval having 0y < 0.

18 3.3. 2-NODE NETWORKS

Proof. As, by definition of the model, at the beginning of the entire sequence of values at the
node (from start to end), vo = v and an interval having Jy < J; is the only way of increasing
the difference between vp and vp at the end of the interval, there must be at least one interval
having dy < d1 before each series of intervals dy > ;.]

Lemma 3.3.11. Consider an arbitrary interval |tg,,tp,] between two sending occurrences of
B. Let §g denote the difference between vo and vg, (09 = |vo —vp,|) at time tg, and d denote
the difference between vo and vp, (61 = |vo — vp,|) at time tp, .

A series of intervals having §g > &1 without a different type of interval in between has a compet-
itive ratio of at most 2 €+ c(e;).

Proof. If O has no sending event:

If this type of interval is repeated more than once without a different type of interval in between,
such that distance between v and vp is decreased in multiple steps, then O’s delay costs must
be increased by at least € in each step (starting with €). Thus if the distance between vp and vpg
is decreased in = (z > 1) steps, O must have at least €(1 + 2 + 3 + 4 + ... +) delay costs, and
the competitive ratio will be at most:

Cp < 2z c(e;) 1 2z c(e) _q1 4c(e)
— =€ L =€
Co ~ e(1+2+3+4+...+2) Sz +1) z+1
The competitive ratio g—g <et %J(ref) is maximal if z = 1 and will never exceed 2 e~! c(e;).

If O has one or more sending events, then the series is composed of the following two
type of intervals:

(1) One or more series of intervals with O having a sending event. The competitive ratio of
each of these series will be at most:

Cp < 2z c(e)

= =2<2e (e
Co ~— zc(e) <2 ce)

(i) At most one series of intervals where O has no sending event. The competitive ratio will
be at most (as proven above):

Cp < 2z c(e) _ 3m c(e;) _ 4 c(e;) <26 efey)
Co ~ e(1+2+3+4+...+2x) Sz +1) z+1

Hence a series of intervals having dg > §; without a different type of interval in between has a
competitive ratio of at most 2 ! ¢(e;). O

Lemma 3.3.12. Let there be one interval having 6y < 01 and a series of intervals having oy >
01. By analyzing those intervals together and adding their costs, the combined interval will have
a competitive ratio of at most 3 times the competitive ratio of the interval having g = 61.

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 19

Proof. Adding B’s and O’s costs for those intervals as defined in Lemma 3.3.9 gives us
% CB50<61 + CB<50>51
Co C050<51 + CO(SO>61

0314 + 0315 + CB’16

COI4 + 0015 + 0016

Cp,, + 2c(ei) + 2c(e;)

0014 +e+0
Ch,, + 2c(ei) + 2c(e;)

IN

IN

IN

< 3

< 3e ! (8+2Vc(ey))

as new upper bound for the competitive ratio of the combined intervals.
This also bounds the case if there is no sending event for B at the end of the entire sequence of
values (from start to end).

O
We therefore obtain the following table of amortized competitive ratios:
H Interval ‘ maximal c.r. ‘ amortized maximal c.r. ‘ amortizes | amortized by
I || 5o =0and 61 =0 / /
Iy || 6g = 01 and 09 > € e ! (8+2\/0(6i)) e ! (84—2\/0(61’))
I3 || g < dpanddg =0 | 2 2
Iy || 6g < d1and 6p > € e ! (8 + 2 c(ei)) 3e ! (8 + 2\/C(€i)) Is and Ig
Is || g > d1and 61 > € | 2 e ! c(ei) et (8 + 2\/6(62')) n
I || 0o > d1and 6, =0 | oo 3e L (842/c(ei)) I

Thus the competitive ratio of co or 2 e~! ¢(e;) is never reached, and Algorithm B has an upper
bound of 3 ¢ ! (8 +2+/c(e;)) for the competitive ratio, under the condition that B’s delay costs
are fixed to c(e;) for each interval.

Theorem 3.3.13. Algorithm B is O(e~! \/c(e;) + %)-competitive to O

Proof. According to Lemma 3.3.9 and Lemma 3.3.12, the amortized competitive ratio of an
interval can never exceed 3 € ! (8 + 2/c(e;)). Thus the final competitive ratio of an arbitrary
sequence can never exceed 3 € ! (8 4+ 24/c(e;)), under the condition that B’s delay costs are
fixed to c(e;) for each interval. According to Lemma 3.3.2, removing this limitation yields
S e L (8+2y/cles))+ ﬁ =9¢ 1 (4+/cle;))+ ﬁ as new upper bound for the competitive
ratio.

Therefore B’s competitive ratio has an upper bound of O(e ! \/c(e;) + C@_)) O

3.3.3 Online Algorithm C

Definition 3.3.3 (Online Algorithm C). Let C' be our distributed local online algorithm with
the same sending criterion as A. Opposed to A, which sends the last value in the interval, C
will send the average of all values which occurred in the last interval.

20 3.3. 2-NODE NETWORKS

Again as before, the delay costs for C' can not exceed c¢(e;) — 1 + (c(e;) — 1 + A) between two
consecutive sending events of C, where A is the maximal difference between two consecutive
values at a node. Also, let |t4,,%4,] denote a sending interval of C' as we defined it before.
Lemma 3.3.1 and Lemma 3.3.2 also hold for Algorithm C, since no assumption about which
values are being sent by A was made in the proof. We can therefore continue our analysis by
fixing C’s delay cost to ¢(e;) and apply Lemma 3.3.2 at the end.

Let us analyze the different kind of intervals that exist:

Lemma 3.3.14. Consider an arbitrary interval |tc,, tc,| between two sending events of C. Let
do denote the difference between vo and vey, (o = |vo — ve,|) at time te, and &) denote the
difference between vo and ve, (61 = |vo — vy, |) at time te,. If:

(i) 0o = 0 and 61 = 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called 1.

(ii) 6o # 0 and 61 = O, then the competitive ratio in this interval will be co. Let this interval
be called I.

(iii) 09 = 0 and 01 # 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called I5.

(iv) 6o # 0, 61 # 0 and dy > 01, then the competitive ratio in this interval will be at most
2 € ! c(e;). Let this interval be called I.

(v) do # 0, 01 # 0 and §g < 61, then the competitive ratio in this interval will be at most 4.
Let this interval be called Is.

(vi) 99 £ 0, 61 # 0 and 69 = &1, then the competitive ratio in this interval will be at most 4.
Let this interval be called Ig.

Proof. In each of the following intervals, it is assumed that C' has exactly 2¢(e;) costs, as we
fixed the delay costs for C' to be c(e;).

(i) 0o = 0and §; = 0:
If O has a sending event, O must have at least ¢(e;) communication costs.
If O has no sending event, O must have the same delay costs as C as g = 0.
Therefore the competitive ratio for C will be at most 2.

(i) dp # 0 and §; = 0:
The adversary will choose a worst case sequence that consists of the value vp during the
interval |t , o,]. As O has no costs at all, this will be the worst case sequence yielding a
competitive ratio of oo for C' in this interval.

(iii) dp = 0 and d; # O:
If O has a sending event, O will have at least communication costs of ¢(e;).
If O has no sending event in this interval, O must have at least delay costs equal to the
delay costs of C as dg = 0.
Thus the competitive ratio will be at most 2 for C in this interval.

(iv) 09 # 0, 01 # 0 and dy > I1:
If O has a sending event, O will have at least communication costs of c(e;).
If O has no sending event, O will have at least delay costs of € (because dy > J§; # 0).
Hence the competitive ratio will be at most 2¢ ! ¢(e;) for C in this interval.

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 21

(v) 09 # 0,01 # 0and dy < d1:

(1) ve, > vo and v, < vo:
v, < vo and ve, > vg:
If O has a sending event, O will have at least communication costs of ¢(e;).
If O has no sending event, O must have on average ¢; delay costs for each value in
the interval, while C' has g 4 §1 delay costs for each value in the interval on average.
Thus for the competitive ratio to be maximal, §; will be as small as possible, namely
0o + €, and we obtain the following competitive ratio:

@ < 2(504—(51
Co — 01
22(50 + €

- 0o+ €
< 4

The factor 2 comes from the fact that C’s communication costs are equal to the delay
costs.
If O has a sending event, the competitive ratio can be at most 2. Hence the competitive
ratio can not exceed 4 in this interval.

(i1) v, > vo and ve, > vo:
Vo, < V0 and ve, < Vo
If O has a sending event, O will have at least communication costs of ¢(e;).
If O has no sending event, O has on each value more delay costs than C. Thus the
competitive ratio can be at most 2.

The competitive ratio can therefore not exceed 4 in this interval.

(Vl) (50 75 0, (51 75 0 and 50 = (51:
If O has a sending event, O will have at least ¢(e;) costs.
If O has no sending event, O must have on average at least half of the delay costs of C and
we obtain the following competitive ratio:
o o 52
Co — 1
= 4
The factor 2 comes from the fact that C’s communication costs are equal to the delay costs.
Thus the competitive ratio can be at most 4.

O

We therefore obtain the following table of competitive ratios:

H Interval maximal competitive ratio
Il (50:0311(1(51:0 2
IQ 507&08.11(1(51:0 o0
Ig 50:02111(151750 2
Iy || 4o 75 0, 01 75 Oand dg > 01 | 2 el c(ei)
I (50750,(517502111(150<51 4
IG 50750,517502111(1(50:51 4

22 3.3. 2-NODE NETWORKS

From these 6 different kind of intervals, the interval I yields the highest competitive ratio, since
O has no costs at all.

Lemma 3.3.15. Consider an arbitrary interval |tc,, tc,| between two sending events of C. Let
dp denote the difference between v and v, (60 = |vo — v, |) at time to, and §y denote the
difference between vpo and ve, (01 = |vo — vy, |) at time to,. A series of intervals having
0o # 01 # 0 and 6o > 01 without a different type of interval in between has a competitive ratio
of at most 2 € ' c(e;).

Proof. If O has no sending event:

If this type of interval is repeated more than once without a different type of interval in between,
such that distance between v and v¢ is decreased in multiple steps, then O’s delay costs must
be increased by at least € in each step (starting with ¢). Thus if the distance between vp and v¢
is decreased in z (z > 1) steps, O must have at least €(1 + 2 + 3 + 4 + ... + z) delay costs, and
the competitive ratio will be at most:

Cc < 2z c(e;) 1 2z c(e) _q1 4cle)
— =€ — L =c¢
Co ~ e(1+2+3+4+...+2x) Sz +1) z+1

C

The competitive ratio & < e~ 4 clei)
]

41 is maximal if z = 1 and will never exceed 2 et c(e).

If O has one or more sending events, then the series is composed of the following two
type of intervals:

(i) One or more series of intervals with O having a sending event. The competitive ratio of
each of these series will be at most:

Coc _ 2z c(ei) -1
e TR 99 ;
Co ~— zc(e) <2 cler)

(i1) At most one series of intervals where O has no sending event. The competitive ratio will
be at most (as proven above):

Cc < 2z c(e) _ 2xcle;)) g 4c(e)

—¢ — — <9 -1 .
Co~ e(1+2+3+4+...+z) Z(z+1) © T+1-°F e(ei)

Hence a series of intervals having dg > 01 without a different type of interval in between has a
competitive ratio of at most 2 ! ¢(e;). O

As Lemma 3.3.5 has been made without any assumptions of which values are being sent by the
algorithm, it also holds for this algorithm, and we can analyze each interval I5 in combination
with an interval I5.

The same amortized cost analysis can be applied to a series of intervals 1. In this case, the series
stops if a different type of interval is reached. The amortized competitive ratio of both combined
intervals is proven in the next lemma.

Lemma 3.3.16. Consider an arbitrary interval |tc,, tc,| between two sending events of C. Let
do denote the difference between vo and vey, (o = |vo — ve,|) at time tc, and &) denote the
difference between vo and ve, (01 = |vo — vy |) at time te, .

Then:

(i) The amortized competitive ratio of the interval I, is at most 4 ¢+ + 4.

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 23

(ii) The amortized competitive ratio of the interval I will be at most 8.

Proof. 1t is clear that each series of intervals I, must be preceded by at least one of the intervals
13,15 or I, and according to Lemma 3.3.5, each interval I5 is preceded by exactly one interval
Is.

According to Lemma 3.3.6, the competitive ratio of interval I3 can be amortized with the help
of interval I3. As I3 can be used to amortize both intervals /5 and I4, we have to double I3’s
competitive ratio in each of the amortized competitive ratio analysis for both intervals.

(i) We thus obtain a new upper bound for the amortized interval Is, namely % = 8.
3 1

(i1) From these intervals (/3,I5 or Ig), 4 is the worst competitive ratio, so the amortized com-
p
petitive ratio of the combined interval I, will be at most:

Co B ma:r:(CCI3 , 0015 , CCIS)+ 0014
Co maac(C013 , 0015 , 0016)+ 0014
< 2¢(e;) + 0014
- %c(ei) + COI4
< 2c(e;) +2 €t c(e;)
- %c(ei) +0
< 4¢e! 44
O
We therefore obtain the following table of amortized competitive ratios:
H Interval maximal c.r. | amortized maximal c.r. | amortizes | amortized by
Il 60:0and51:0 2 2
I2 50#0&1’1(151:0 o0 8 13
I3 || 6 =0andd; #0 2 4e 48 I, and I,
Iy || 60 #0,60 #0and g > 1 | 2eLe(e;) |4del+4 I3, I5 or Ig
Iy 50750,51750and60<51 4 46714-4 Iy
Ig 50#0,51#0&[&150251 4 46_1+4 Iy

Thus the competitive ratio of co or 2 €' ¢(e;) is never reached, and Algorithm C' has an upper
bound of 4 ¢ ! + 8 for the competitive ratio, under the condition that C’s delay costs are fixed
to c(e;) for each interval.

Theorem 3.3.17. Algorithm C is O(e™! + %)-competitive to O.

Proof. As the amortized competitive ratio of an interval can never exceed 4¢~! + 8, the final
competitive ratio of an arbitrary sequence can never exceed 4 ' + 8, under the condition that
C’s delay costs are fixed to c(e;) for each interval. According to Lemma 3.3.2, removing this
limitation will increase the upper bound to 3(4e 1 + 8) + C(ﬁ) =6l +12+ %.
Therefore C' will have an upper bound of O(e ! + Cé_)). O

24 3.4. GENERAL TREES

3.4 General Trees

3.4.1 Sending Criterion

If there are more than two nodes in a tree, the sending criterion from A, B and C has to be
adjusted accordingly. This is shown in Algorithm 1 which is executed at each node n;. Let
each message sent be composed of the value, the weight (the number of data nodes this message
represents) and the link it is sent through (e.g the node’s nodeid who sent the message).

As all the values will be aggregated, each message will have a fixed size and each node will
have at most one sending event in each time step. Each node can reconstruct the aggregated
value of its children on the basis of the aggregated values it received, the number of nodes those
aggregated values represent (the weight), and who was sending the aggregated value (the link),
as we assumed that the tree is fixed and no node can leave or join the tree.

Figure 3.1 shows an example of a small tree with two leaf nodes 1 and 2, both having
node 3 as parent, which in turn has the root node as parent. Assume we are interested in the
average over all values of the tree, we therefore use the average function to aggregate values at
the nodes which are chosen by algorithm A. The default last sent value (1.s.v.) is set to O and
each node keeps track of the 1.s.v. for each incoming edge. Only the values at the leaves change
over time and the edge costs (e.c) are chosen as shown in the figure below. Table 3.1 shows the
execution of the algorithm on the tree.

Nodes of
no interest

Figure 3.1: Tree T’

3.4.2 Lower Bound for A,B and C

Lemma 3.4.1. All three algorithms (A, B and C) have a lower bound on(W) for

the competitive ratio for the chain of nodes.

Proof. Let the adversary choose a fixed value (e.g. the value 1) such that the leaf node (4, B
and C' have the same sending criterion and will in this case send the same value) sends the value
1 to its parent. Just after the sending event of our online algorithm, the adversary will change
the value back to its original value such that no delay costs will occur for O anymore. O will
therefore have at most the following costs:

Co < clep)

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION

25

Algorithm 1 Algorithm A, B or C executed at node n;

Require: Sold; o = @, S;0 = @,dc =0
1: fort = 0to co do

19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

Si{i} = (thisnodevalue, 1) // if the node is a data node
//Update S; ; with newly received messages
for (value, weight,link) € incoming message at time t do

Sii{link} < (value,weight) // insert/overwrite old tuple sent from same link
end for
// calculate costs
for link € S;;do

(value, weight) < S; {link}

if link € Sold;; then

(lastsentvalue, lastsentweight) < Sold; ;{link}

else
(lastsentvalue, lastsentweight) + (0,0)
end if
dc < dc + weight - [value — lastsentvalue]
end for

/I send messages
if dc > c(e;) then
for link € S;; do
(value, weight) < S; ({link}
value < update(value) // depending on A, B, C
Si{link} < (value, weight)
end for
// agregation function over all values in set
// sends aggregated value and sum over all weights
send(aggr(Sit))
Sold; y11 < Sold; s
for link € S;; do
Sold; 11 {link} < S; {link}
end for
Sipr1 D
dc <+ 0
else
Sit+1 < Sit
Soldi7t+1 — Soldm
end if

37: end for

26 3.4. GENERAL TREES

t H node id | values from ‘ value ‘ L.s ‘ €.C. ‘ d.c ‘ > d.c. ‘ remarks
011 1 0 0 1 0 0 No change.
2 2 0 0 1 0 0 No change.
3 / / / 2 0 |0
r / / / / / /
11 1 2 0 1 2 |2 Sends (2, 1) to parent.
2 2 0 0 1 0 0 No change.
3 / / / 2 0 |0
r / / / / / /
21 1 2 2 1 0 0 Ls.v set. d.c. reset.
2 2 1 0 1 1 1 Sends (1, 1) to parent.
3 1 2 0 2 2 |2 Sends (2, 1) to root.
r / / / / / /
301 1 2 2 1 0 |0
2 2 1 1 1 0 0 L.s.v set. d.c. reset.
3 1 2 2 2 0 0 Ls.v set. d.c. reset.
2 1 0 2 1 1 Yod.c <e.c.
r 3 2 / / / / Aggr. root value changed to 21—1 =2
411 1 2 2 1 0 |0
2 2 1 1 1 0 [0
3 1 2 2 2 0 |0
2 1 0 2 1 |2 Sends (1.5, 2) to root.
r 3 2 / / / /
51 1 2 2 1 0 |0
2 2 1 1 1 0 [0
3 1 2 2 2 2 2
2 1 1 2 0 0 Ls.v set. d.c. reset.
r 3 1.5 / / / / Aggr. root value changed to 12—2 =15

Table 3.1: Execution of Algorithm A on 7.

While our online algorithm has at least the following costs (the value 1 will be forwarded until it
reaches the root):

Ca > Z 2 c(e)

1=0..h—1

(Zi=0..h—1 C(ei))']

The competitive ratio will therefore be at least 2 c(c0)

The same lower bound can naturally also be achieved in the tree.

3.4.3 Upper Bound for C'in General Trees

From here on, we will restrict ourself to the analysis of Algorithm C only, because C yields the
lowest upper bound for the case of 2 nodes. The analysis of algorithm A and B is similar.

Let there be a chain of nodes ng,n1,ne9,...,n,, b + 1 nodes in total. Let ng denote the
leaf node and n;, denote the root node. Each node n; has exactly one edge with communication
costs c¢(e;) to its parent node 7,1 1.

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 27

, , 1 Xy ele) Ay oy
Lemma 3.4.2. Algorithm C'is O(e dteo) T h C(60)) competitive.

Proof. Again, as in the case of two nodes, we look at all the different types of intervals that exist
for C at the leaf node ng.

For a conservative upper bound, we assume that for each sending event of C at the leaf node ny,
C waits and is not able to aggregate the value on its way up with the value of another sending
event, such that there will be exactly one sending event at the nodes n1,ny_1 for each sending
event of C at the leaf node ng. The costs for C' can not be greater if we would allow C' to
aggregate the values (which it does in reality). We can therefore conclude our analysis with the
above assumption.

We use the sum of local delay costs to calculate the global delay costs of the cost function of our
online algorithm C'. The local delay costs at time ¢ are defined as the difference between the last
sent value and the current value at time ¢. It is clearly seen that:

h—1
global delay costs at timet < Z local delay cost at node n; at time t
i=0

E.g., let’s assume that the adversary chooses one value and switches directly after C’s sending
event back to the original value. At that point, the local delay costs are still increased until both
changes reach the root, while the global delay costs stay unchanged.

As for O, we assume that O has no communication costs and no delay costs for each of the
consecutive nodes in the chain (As shown in Lemma 3.4.1, this is not far fetched), such that only
costs at the leaf node occur for O.

Even though O’s sending events take longer than in the case of two nodes, O must have at least
the costs from the case of two nodes, as otherwise this would be a contradiction to our proof
made before (we could use that specific case for the case of two nodes by delaying O’s sending
events by h — 1 time steps).

We therefore obtain the following costs for the leaf node (A > 0): (This is taken from the case
of two nodes)

Ce
Co

(6 €71 +12) c(eg) + A

<
> c(eo)

And the following costs at the nodes n,...,np_1 for each sending event of C at the leaf node
ngo.

Cc = communication cost + delay cost
< cle;) +max(2 c(e;), A)
< 3c(e) +A

Co > 0

Thus for each sending interval at the leaf node ng, C' and O will have the following costs over

28 3.5. OPTIMAL OFFLINE ALGORITHM

the entire chain from leaf to root:

h—1
Co < (6 '+12)cleo) +A+ > (Beles) +4)
h—1 =
< (6 +12)) cle) +hA
=0
Co > cleo)
Ce _ (6 et H12) S Le(e)) +h A
Co — c(eo)
Zz 0 c(el) A

-1
(6 +12) =) eo)

h—1 .
Please note that 1=(+OC)(8’) is equal to the lower bound for Algorithm C. Therefore C' is at most

h—1
O(e ! Z"j(oeoc)(ez) +h (A)) competitive for each sending event of C' at the leaf node ng.

C'is thus O(e ! Zis e C)(e)4p (ﬁ)) competitive. O

3.4.4 Upper Bound for C in Trees of Height h

. . 1 S een) A) .
Theorem 3.4.3. Algorithm C' is O(max ¢ (€ = +h)))-competitive.

(eo) c(eo)

Proof. As we assumed that O has no communication and delay costs at the nodes 11,n, 1
and that C' can not merge any packets at the nodes 71,nj_1, the proof from Lemma 3.4.2 is
also valid for each leaf-root chain in the tree.

As there is more than one leaf-root chain in the tree, we have to take the one with the highest
competitive ratio.

C is thus O(max ;¢ 7,(e ! Zlc(‘) C)(el) +h C@O))))-competitive. O

3.5 Optimal Offline Algorithm

3.5.1 2-Node Networks

The optimal algorithm can send any value any time it wants. Hence at each sending event, the
optimal algorithm can choose the sending candidate from an infinite pool of numbers between
the maximal and minimal value of the entire input sequence 0. We can therefore only calculate
an approximation of the optimal algorithm, as there are infinite candidates for each sending
event of the optimal algorithm.

One possibility is to reduce the optimal algorithm, such that it can only send values from the
input sequence o. Even then, a brute force approach would take |o|(“7‘+1) steps to compute, as
in each time step, the optimal algorithm can decide whether to send (if so choose one value from
the pool of at most || values) or not to send.

We can however compute the optimal solution by using a modified variant of Dooly’s algorithm
[1]. Dooly’s algorithm computes the optimal solution based on optimal subsolutions, which it
combines by using dynamic programming.

Let LeafV alues|| denote an array containing the value of the leaf node in each time step, let
edgecosts denote the costs of sending and let psv[] denote the array of distinct values in o (each

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 29

value occurs at most once) and psv denote the number of values in psv|[]. Algorithm 2 computes
the optimal solution in O(#3 psv). In the second loop, j is increased up to i + 1 to also handle
the case when there is no sending event at time £ = 0 (all fields in the sending events array for
1 4+ 1 are always set to false). The cost function needs at most ¢ psv steps to complete, as at
most psv different values have to be checked for each optimal subsolution’s last sending event.
Table 3.2 shows the execution of the algorithm for a small example. Each row i takes at most
(t + 1) psv steps to compute, as at most psv different sending values have to be checked for at
most ¢ 4 1 subsolutions in each row.

It is clear that when the node value at the leaf node stays the same for x time steps until
time ¢, the optimal algorithm will not have a sending event in any of the x — 1 time steps
before ¢. Furthermore, instead of recalculating the costs of the subsolutions again and again,
we can further improve the algorithm by caching the costs of the optimal subsolutions. Let
LeafValues[] denote an array of consecutive distinct values in o (each value differs from its
previous value) and let at[] denote their arrival time. Algorithm 3 computes an optimal solution
in O(n?® psv), where n denotes the number of consecutive distinct values in o and psv denotes
the number of distinct values in o (n > pswv).

Please note that Algorithm 3 also assumes that it can freely choose the lastsentvalue (instead
of setting it to the default value 0) at the begining of the sequence o. This can easily be fixed by

removing the loop on line 9 and setting lastsentvalue to 0 on line 1, if 7 == 4 4 1 on line 7.
v O |1 12 |3 [3 |0 [0 | costs
1= send 4
1= send 5
1= send 7
i = send(2) send 10
or send(2) send 10
or send(3) send 10
or send 10
i = send(3) send 10
i = send(2) send 13
or send(2) send 13
or send 13
1=26 send | 13

Table 3.2: Execution of Algorithm 2 with ¢(ey) = 4, default last sent value is set to 0.

3.6 Simulation

In order to see how our algorithms perform in real life scenarios (the “average” case), we built
a simulation framework to compare our algorithms. Moreover we are interested in finding out
if the algorithm having the lowest upper bound (Algorithm C') outperforms Algorithm A, whose
lower bound is greater than Algorithm C’s upper bound for two nodes. We are also interested
in seeing how the algorithms perform with more nodes, as the proven lower bound for C in a
general tree is highly artificial and probably rarely happens in a real world scenario.

We simulated our information aggregation algorithms with freely available sensor data measure-
ments from the Sensorscope project [13]. The Sensorscope project consists of about 100 nodes

30 3.6. SIMULATION

Algorithm 2 Optimal offline information aggregation algorithm for two nodes, O(t> psv)

1: Initialize: edgecosts < c(e;), LeafValues[], psvl]
sendingevents|LeafV alues.size + 1][Lea fV alues.size]
sentvalues[values.size + 1][Lea fV alues.size]
sendingevents|.][.] < false, sentvalues[.][.] + 0

2: // compute solution

3: for i = 0 to LeafValues.size — 1 do

4 min < oo

5: forj=0toi+1do

6: (costs, chosenvalue) < getcosts(0,1,j) + edgecosts
7: if costs < min then

8: min < costs

9: sendingeventsli][.] «— sendingevents|j][.]

10: sendingevents|i][i] < true

11: sentvalues[i][.] < sentvalues[j][.]

12: if j < i then

13: sentvaluesli|[j] < chosenvalue

14: end if

15: end if

16: end for

17: end for

18: // Optimal sending events for leaf node in sendingevents[LeafValues.size-1]
19: // Optimal sending candidates in sentvalues[LeafValues.size-1]
20:
21: Procedure getcosts(start,stop,j):
22: // Calculates costs from start to stop
23: min < infty
24: for k = 0 to psv.size — 1 do
25 costs <+ 0, chosenvalue < 0, lastsentvalue < 0
26: for m = start to stop do
27: costs < costs + |lastsentvalue — Lea fV alues[m]|
28: if sendingevents[j|[m] == true then
29: costs < costs + edgecosts
30: if m == j then
3L lastsentvalue < psv[k]

32: else

33: lastsentvalue < sentvalues[j][m)]

34: end if

35: end if

36: end for

37: if costs < min then

38: chosenvalue < lastsentvalue

39: min <— costs
40: end if
41: end for

42: return (costs, chosenvalue)
43: End Procedure

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 31

Algorithm 3 Optimal offline information aggregation algorithm for two nodes, O(n3 psv)

1: Inmitialize: edgecosts < c(e;), LeafV alues]], psv[|, at[]
costcache[LeafV alues.size + 1], sentvalues[values.size + 1][Lea fV alues.size]
sendingevents|[Lea fValues.size + 1|[LeafV alues.size]
sendingevents|.][.] < false, sentvalues[.][.] < 0
at[LeafV alues.size] < t I/ otherwise last value is skipped

2: for ¢ = 0to LeafValues.size — 1 do

3 Mmin < oo

4. forj=0toi+1do

5: Co8ts <— 00

6: chosenvalue < 0

7: ifi ==0o0rj ==1+ 1 then

8: /I costcache not set

9: for £ = 0 to psv.size — 1 do

10 lcosts + 0

11: lastsentvalue < psv[k]

12: for m =0to¢ do

13: lcosts < lcosts + (at[m + 1] — at[m]) - |lastsentvalue — values[m]|
14: end for

15: if lcosts < costs then

16: chosenvalue <+ lastsentvalue
17: costs < lcosts

18: end if

19: end for
20: costs < costs + edgecosts
21: else
22: for £ = 0 to psv.size — 1 do

23: lcosts + 0

24 lastsentvalue < psv[k]

25: form=j7+1toido

26: lcosts < lcosts + (at[m + 1] — at[m]) - |lastsentvalue — values|m]|
27: end for

28: if lcosts < costs then

29: chosenvalue <+ lastsentvalue
30: costs < lcosts

31 end if

32: end for

33: costs < costs + costcache[j] + edgecosts
34: end if

35: if costs < min then

36: min <— costs

37: sendingeventsli][.] < sendingevents[j][.]
38: sendingevents|i][i] < true

39: sentvaluesli][.] < sentvalues[j][.]
40: costcacheli] < costs

41: if 7 < then

42: sentvalues[i][j] < chosenvalue
43: end if

44: end if

45: end for

46: end for

32 3.6. SIMULATION

dispersed over a relatively small area (the EPFL campus) for which sensor data measurements
are available at the project website.

3.6.1 Topology

As GPS positions are available for each node, we connected all the nodes by setting each link’s
weight to distance? and constructed a directed rooted shortest path tree for each node (The idea
is that a node’s value probably does not differ much from it’s neighbour’s value and fluctuations
probably affect both of them, such that it makes sense to connect them). We then finally choose
the shortest path tree with the minimal total edge weight for our simulations. Figure 4.1 shows
the resulting tree.

The remaining edges’ weights were then set to the same constant as we assumed that the cost of
sending a message is independent of the distance between the two nodes (Referring to the energy
requirements for sending and receiving in the Sensor Network Museum [14]).

Figure 3.2: Sensorscope tree as of March 2007.

3.6.2 Data

All nodes in the sensorscope project have at least a temperature sensor and some even have ad-
ditional sensors (e.g., for wind, rain, solar...). We decided to use the ambient temperature, as
this sensor measurement was present at all of the sensor scope nodes. Unfortunately, the time
between two consecutive measurements can take up to 30 seconds depending on the node, and
some data even contains incorrect measurements, such as spikes or completely wrong measure-
ments due to improper sensor behavior or transmission errors. Therefore we decided to ignore
all sensor measurements spikes over 5 °C and use the last validated value instead.

Our online algorithms are all synchronized algorithms and each algorithm is executed once in

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 33

each time step, which is equal to 1 second in the simulation. As it can take up to 30 seconds for
the next measurement to be read, we decided not to interpolate the data and always use the last
measured value when no new sensor data is available.

The following results are based on one day of measurements as a larger data set would take too
long to simulate. An initial 1000 rounds were not assessed, such that the start up phase does not
interfere with the maximal variance (Experimental results showed that the first values reach the
root after at most 500 rounds).

3.6.3 Results

As an optimal solution, which minimizes both the communication costs and the delay costs, is
hard to compute, we compare the results to a pseudo optimal algorithm which has no commu-
nication costs and immediately sends the results to the root. Every change will therefore take
exactly the number of hops seconds to reach the root.

We also evaluated a time based online algorithm (10s), which whenever a new value or a mea-
surement arrives, waits 10 seconds and then sends the aggregated value to its parent.

Last but not least, we added a synchronized periodic online algorithm (10s sync.), which for-
wards all values every 10 seconds towards the root. Every change will therefore take at most the
number of hops plus 10 seconds to reach the root.

Average sending events per second

m Algorithm A
— Algorithm B
6 — Algorithm C
—— Algorithm 10s
Algorithm 10s periodic sync.

nbr. of sending events
«

Edgecosts

Figure 3.3: Average number of sending events per second

34 3.6. SIMULATION

Average variance of the aggregated value to the aggregated value of Algorithm O:

Algorithm A
— Algorithm B

— Algorithm C -~
—— Algorithm 10s pd
Algorithm 10s periodic sync. /

Average variance (degree Celsius)

005

Edgecosts

Figure 3.4: Average variance of the aggregated value to the aggregated value of Algorithm O

Maximal variance of the aggregated value to the aggregated value of Algorithm O:

Algorithm A
— Algorithm B
— Algorithm C
—— Algorithm 10s
Algorithm 10s periodic sync.

Maximal variance (degree Celsius)

Edgecosts

Figure 3.5: Maximal variance of the aggregated value to the aggregated value of Algorithm O

Figure 3.3 shows the average number of sending events per second. As A, B and C’s wait be-
fore sending a value all depend on the edge costs, it is clear that the average number of sending
events is decreasing with increasing edge costs. 10s’s and 10s sync’s average number of sending
events stays constant, as its sending criterion is independent of the edge costs. With small edge
costs, A has a significant advantage over B and C. This comes from the fact that A sends the
last value in the interval opposed to the value that occurred most or the average value. As most
temperature measurements at the nodes increase or decrease over a longer period of time, it is
clear that sending the last value is better than sending any other value, as it is closer to the future
measurements and generates less local delay costs and therefore less sending events. As the edge
costs raise, this advantage gets smaller and smaller.

Figure 3.4 and 3.5 show the average/maximal aggregated value variance to the aggregated value
of Algorithm O. Algorithm A outperforms both B and C' and its variance is only in rare occa-
sions greater than these of B and C, while A’s number of sending events is always smaller than
B or C’s. 10s’s and 10s sync’s variances are much smaller than A’s, but 10s and 10s sync also

CHAPTER 3. ALGORITHMS FOR INFORMATION AGGREGATION 35

have more sending events than A.

E.g. for edge costs set to 25, A has 0.55596 sending events in average, while 10s has 8.418 and
10s sync has 9.765. A’s average root value variance is 0.093 °C while 10s’s is 0.027 °C and
10s sync’s average root value variance is 0.012 °C. A therefore only has one sending event for
every 17 sending events 10s sync has, while its average variance is only 7.75 times higher than
10s sync’s.

Hence, even though A’s lower bound is higher than the upper bound of B and C for the one link
case, its performance is generally better than the performance of B or C, since A’s lower bound
example is practically inexistent with real sensor data. Also if it is acceptable to have a slightly
greater variance, A, B and C all have fewer sending events than any of the time based online
algorithms.

36

3.6. SIMULATION

The Acknowledgement Problem

4.1 Model

Instead of a leaf node having values which change over time and which have to be sent to the
root, each leaf node has to acknowledge each packet it receives. These ACK packets have to be
sent to the root and multiple ACK packets can be merged to one ACK packet. Again, the goal
is to minimize the delay costs for the ACK packets while keeping the communication costs low.
This model can be mapped to our information aggregation model:

* Leaf node values are increased by 1 for each ACK packet which has to be sent towards the
root.

* The sum function is used as aggregation function at all the nodes.

* On a sending event, both algorithms (our algorithm and the optimal one) have to send the
current value at the node. This value minus the last sent value represents the number of
ACK packets which are being sent to the parent.

In consequence, each ACK packet not having reached the root, will therefore increase the global
delay costs by 1 in each time step. There are a few observations to consider:

* Values at the nodes can only increase. This comes from the fact that the values at the leaf
nodes are increased by 1 for each ACK packet received.

* As the optimal algorithm is bound to send the current value at the node, the optimal al-
gorithm can not acknowledge packets in advance. (In our information aggregation model,
the optimal algorithm could send a higher value in advance such that it has less costs in
the future)

Let O have global knowledge over all packets waiting in the tree. As each packet represents a
unique token which has to be send towards the root, none of the algorithms is able to ’skip” or
acknowledge those packets in advance.

Again as in the preceding model, we use Algorithm A at each node to send back the ACK
packets, in our case, the last value in the sending interval. Algorithm A has a sending event if

37

38 4.2. 2-NODE NETWORKS

the sum of delay costs in the sending interval is greater than or equal to the outgoing edge costs.
In the context of ACK packets, this means that A will acknowledge the number of ACK packets
at the node if the delay costs for the ACK packets at the node are greater than or equal to the
outgoing edge costs. This algorithm is equal to the distributed algorithm proposed by Khanna
[31".

Let us recall that the delay costs for A can never exceed c(e;) — 1+ (¢(e;) — 1+ A) between two
consecutive sending events of A, where A is the maximal difference between two consecutive
values at a leaf node n;. In this case, A will denote the maximum number of ACK packets which
can arrive in one time unit a leaf node n;.

Also node values at the leaf nodes are restricted to integers (as it does not make sense to send
half ACK packets), and A can be indefinitely large. The edge costs c¢(e;) can be an arbitrary
function as well.

We assume that the optimal algorithm has global knowledge.

4.2 2-Node Networks

With the help of the two observations from above, we are able to reduce the competitive ratio of
A from O(c(e;) + ﬁ) to 3. This is shown in the following lemmas.

Again as before, we will analyze all possible kinds of intervals that exist for A between two
consecutive sending events of A at one node, written as interval]t 4, ,%4,,,]. This interval con-
tains all node values of each time step between ¢ 4, and (including) £ 4, , . (The start event at the
beginning of the entire sequence of values also counts as a sending event but without communi-
cation costs).

With the help of the two observations from above, we can enhance Lemma 3.3.1, eliminate O’s
upper bound for the costs and imply that O must have at least £ delay costs in this interval.
Hence there must be at least £ ACK packet arrivals for O in this interval.

Lemma 4.2.1. Consider an arbitrary interval |t 4, ,ta,] between two sending events of A. When
the delay costs for A in this interval are equal to 2(c(e;) — 1) + k, where k > 0, then O has at
least delay costs of k in [ta, — 1,t4,]. In addition there must be at least k ACK packet arrivals
in this interval.

Proof. Let v; be the value at t 4,, and v;_; the value at £4, — 1. Since the delay costs for A are
greater than 2(c(e;) — 1) in the entire interval, A must have at least a delay cost of (c(e;) —1) + &
on v; (otherwise A would have an earlier sending event) and the delay costs of the values before
vy in the interval are at most c¢(e;) — 1. This implies that the difference between v; and v;_1 is at
least £ and O will have at least delay costs of k in [t4, — 1, ¢4,] (under the condition that O has
no sending event), no matter what value vy was.

Even if O has a sending event, O would still have delay costs of at least k in [t 4, — 1,¢4,], as O
can not acknowledge packets in advance.

This implies that there must be at least £ ACK packet arrivals for O in this interval as the delay
costs for O are at least k in this interval. O

Due to the removed limitations in Lemma 3.3.1, we can also improve Lemma 3.3.2 and remove
the limitation on A.

'Khanna’s paper [3] is unclear about whether the remaining delay costs of the child (delaycosts - edge costs) are
added to the parent’s delay costs in the first time step or not. We assume that the remaining delay costs are not added.
Our proof also holds for the other case, as long as there are only costs added and not deducted from the delay costs.

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 39

Lemma 4.2.2. Consider an arbitrary interval |t a,,t,] between two sending events of A. Let
the delay costs for A be fixed to c(e;) in this interval and let p be the competitive ratio of A in
this interval.

By letting the adversary choose another sequence of values in this interval, such that the delay
costs for A are greater than c(e;) in this interval, the adversary can at most increase pp¢c a=c(ei)
by %pDCA:c(ei)r thus giving us PDCA>cle;) < %pDCA:c(ei)-

Proof. Let DCy4 denote the delay costs of A. By letting the adversary choose a different se-
quence of values in this interval, he might increase the delay costs for A from c(e;) to 2(c(e;)—1)
while leaving the delay costs for O unchanged, thus nearly doubling the delay costs for A. Ac-
cording to the preceding lemma, any further attempt by the adversary to increase the delay cost
for A by another k, will also increase the costs for O by the same amount.

Thus, PDCA>cle;) < %pDCA:c(ei)- O

We can now conclude our analysis by fixing A’s delay cost in each interval |t ,,t4,,,] to c(e;)
and apply Lemma 4.2.2 afterwards.

Lemma 4.2.3. Consider an arbitrary interval |t 4., 4,] between two sending events of A and let
A’s delay costs be fixed to c(e;). Let oy denote the difference between vo and va, (|vo — v4,|)
at time t 4, and 61 denote the difference between vo and v4, (|vo — va,|) at time ta,. If:

(i) 0o = 0 and 6; = 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called 1.

(ii) 6o # 0 and §1 # 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called I».

(iii) 09 = 0 and 01 # 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called I5.

(iv) dg # 0 and §; = 0, then the competitive ratio in this interval will be at most 2. Let this
interval be called 1,.

Proof. In each of the following intervals, it is assumed that A has exactly 2¢(e;) costs, as we
fixed the delay costs for A to be c(e;). It is clear that if O has at least one sending event in any
of these intervals, the competitive ratio can be at most 2 for that interval.

Also, as all the values at the nodes can only rise and both O and A will send the current value at
the node at a sending event, vo < vq onty, andt4,. In between ¢4, and t 4,, vo might also be
greater than v4 as O might have a sending event in between.

(i) dg =0 and 61 = 0:
As g = 0 and §; = 0, O must have at least one sending event in this interval and therefore
the competitive ratio can be at most 2.

(i1) dp # 0 and 61 # O:
If O has no sending event in this interval, O must have at least the delay costs of A, as vp
is less than w4, at time ¢4, and the value at the node must have changed, as otherwise A
would not send.
Therefore the competitive ratio can be at most 2.

(iii) d9 = 0 and §; # O:
If O has no sending event in this interval, O must have at least the delay costs of A as
do = 0.
Therefore the competitive ratio can be at most 2.

40 4.3. CHAIN GRAPHS

(iv) dp # 0 and §; = O:
If O has no sending event in this interval, O must have at least the delay costs of A, as vo
is less than v 4, at time £ 4,,.
Therefore the competitive ratio can be at most 2.

We therefore obtain the following table of competitive ratios:

H Interval \ maximal competitive ratio
Il 50:0211’1(1(51:0 2
Iz 507508.1’1(151750 2
I3 50:031’1(1(51750 2
I4 50750811(151:0 2

Theorem 4.2.4. Algorithm A is 3-competitive.

Proof. According to Lemma 4.2.3, the competitive ratio of an interval can never exceed 2, under
the condition that A’s delay costs are fixed to ¢(e;). Thus the final competitive ratio of an
arbitrary sequence can never exceed 2, under the condition that A’s delay costs are fixed to ¢(e;)
for each interval. According to Lemma 4.2.2, removing this limitation yields % 2 = J as new
upper bound for the competitive ratio.

A is therefore 3-competitive. O

4.3 Chain Graphs

Let there be a chain of nodes ng, n1, ns, ..., Ny, h + 1 nodes in total. Let ng denote the leaf node
and ny, denote the root node. Each node n; has exactly one edge with communication cost ¢(e;)
to its parent node 74 1.

Lemma 4.3.1. Algorithm A is O(h max;—q._j, 1 (E((:;)))) competitive.

Proof. Again, as in the case of two nodes, we look at all the different types of intervals that exist
for A at the leaf node ng.

For a conservative upper bound, we assume that for each sending event of A at the leaf node ng,
A waits and is not able to merge those packets on their way up with those of another sending
event, such that there will be exactly one sending event at the nodes n1,nj—1 for each sending
event of A at the leaf node ng. The costs for A can not be greater if we allow A to merge packets
(which it does in reality). We can therefore conclude our analysis with the above assumption.
Let us recall that A has a maximal delay cost of 2(c(e;) — 1) + &k (k > 0) in one sending interval
at the leaf node ng and that O must have at least k£ delay costs as there are at least k¥ ACK packet
arrivals in this interval. O will have at least k delay costs at each of the nodes nq,ny_1 which
follow, as each packet has to wait at least one time unit before being forwarded. As it is unclear
on how O merges different packets, we assume that O has no communication costs at the nodes
Niy....Np—1.

We therefore obtain the following costs for the leaf node (k > 1, as A has a sending event at the
leaf node and there must therefore exist at least one packet): (this is taken from the case of two

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 1

nodes)
Ca < cleg) +2c(eg) +k=3cleg) +k
Co > cleg) +k)
Ca 3cleg) +k
DD G S
Co — cleg)+k
< 3

And the following costs at the nodes ny,n, 1 for each sending event of A at the leaf node n:

o c(e;) < clep):
As the link costs at node n; are less than or equal to the link costs at the leaf node ng, the
delay costs for A can not exceed 2(c(e;) — 1) + k. We obtain the following costs:

Ca
Co

c(e;) + 2c(ep) + k
k

IV INA

O has k delay cost as each ACK packet must wait at least one time unit at each of the
nodes n1,np_1. This cost for O might occur at a different time unit than for A, but this
cost will occur, as each packet will reach the root at the end.

* c(e;) > c(eo):
A must have at least 2 c(eg) + k delay costs, or in the case that the delay costs of the
packets are less than c(e;), the delay costs for A must be less than 2 ¢(e;). (As the delay
costs for A can at most double in each time step and A sends if the delay costs are greater
than or equal to c(e;)).
We therefore obtain the following costs:

Ca < c(e;) +max(2c(eg) +k,2cle;))
= max(c(e;) +2cleg) + k&, 3c(ei))
Co > k

Thus for each sending interval at the leaf node ny, A and O will have the following costs over
the entire chain from leaf to root:

42 4.3. CHAIN GRAPHS

h—1
Ca < 3c(eg) +Ek+ Zmax(c(e;)) +2cleg) +k, 3c(e)))
i=1
< 3hk+3 C(e()) +3 (h — 1) maxizlnh,l(c(ei))
< 3hk+3hmax,—o p 1(c(e))
h—1
Co > cleo) +k+) k
i=1
= cleg) +hk
% < 3 hk+h maXi:[)“h_l(c(ei))
Co ~ c(eg) +hk
< 3 h max;—o.p—1(c(e;))
c(eo)
_ c(ei)
= 3hmax;—o_p1()
c(eo)
Therefore, A is at most O(h max;—q._p—1(z((:;))))-competitive for each sending event of A at

the leaf node ny.
Thus the final competitive ratio of an arbitrary sequence can never exceed

O(h max;—q_p, 1(g((:;)))),and A is O(h max;—q._5 1 (E((:;))))-competitive. O

We can further improve this upper bound, as the chain of nodes only consists of one data node.

Lemma 4.3.2. Let there be a chain of nodes ng,ni, ...,ny and let O have global information.
For each sending event of O at the leaf node ng, O has exactly one sending event at the nodes
N1, N2, .5 Mp—1.

Proof by contradiction. Let us assume this is not the case and let p; and ps denote the packets
which will be merged on their way up in the chain. O could save communication costs by waiting
and sending p; together with p» at the leaf node ng, while the global delay costs rest unchanged.
Hence O is not optimal and there will be exactly one sending event at the nodes n1, 12, ..., np—1
for each sending even at the leaf node. O

The next lemma limits the number of sending events of A between two sending events of O.
Lemma 4.3.3. Let there be a chain of nodes ng, n1, ..., ny. If:

(i) O has local knowledge only, there are at most 2 \/c(eg) sending events of A between two
sending events of O at the leaf node ny.

(ii) O has global knowledge, there are at most 2 (/> . ,_, c(e;) sending events of A be-
tween two sending events of O at the leaf node ny.

Proof.

(i) O has local knowledge only:
Let p; denote the number of packets before A has its first sending event, p» denote the
number of packets between the first and the second sending event of A, and so forth. It is
clear that O must have a sending event if the number of packets reaches c(eg), as the delay

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 43

costs in the next step alone match the communication costs of sending the packets. The
following inequations have to hold:

R~ < c(eo)
(p1 + p2) le) < c(ep)
p3
(p1 + p2 + p3) 0(640) < c(ep)
(p1 +p2+p3s+ ... +pn) (o) < c(ep)

Pn+1

% represents the minimum amount of time steps between the first sending event of A and

the second sending event. If py % > c(ep), O has a sending event on the first sending
event of A, as the costs of not acknowledging the packets p; are greater than or equal to
the costs of sending them. The same argument can be applied to the the other inequations
as well.

The inequations imply that the number of packets in p1, p2....,pr have to be increased by at
least 1 in each step, the last inequation can therefore be reduced to:

(1+2+3+445+...+n) 1+2+3+Z(f§)+...+n+1 < ¢(eo)

1+2+34+4+5+...+n+1= % + 1 has to be less than c(eg), as otherwise it
would be favorable for O to have a sending event as the delay costs in the next step alone
match the communication costs of sending these packets. We therefore have to solve the
following inequation and express n (the number of sending events of A) as a function of

c(eg):

%—i—l > c(eg)

= n > 2 /c(ep)

This implies that n, the number of the sending events of A, can never exceed 2 /c(eg).

(ii) O has global knowledge:
It is clear that O must have a sending event if the number of packets reaches
Y ico.h_1 c(e;), as the delay costs in the next step alone match the communication costs
of sending the packets up to the root. Hence the same arguments as for the case where O
has local knowledge only can be applied and the number of sending events of A between

two sending events of O can not exceed 2 /> . ,_; c(e;).

Lemma 4.3.4. Algorithm A is O(h max;=y._j,—1(min (\/c(e;) , c(ei))))-competitive.

Proof. In Lemma 4.3.1 we assumed that O had no communication costs at all. Lemma 4.3.3

proves that O has at least one sending event for each 2 \/ > n=0.h—1 ¢(e;) sending events of A.
Instead of assuming that O has no communication costs (as we did in Lemma 4.3.1), we can

imply with the help of Lemma 4.3.2 that O must have at least clei) communication

2 \/Zn=0..h—1 c(e)

44 4.4. TREES OF HEIGHT H

costs at each node n; in the chain of nodes.
Thus for each sending interval at the leaf node ng, A and O will have the following costs over
the entire chain from leaf to root (the costs for A stay unchanged):

Ca < 3hk+3hmax;—gp_1(c(e))

h—1
c(es)
Co > cleg)+k+> (k+)
7 ' ; 24/ i=0.n—1 (&)
h—1 ()
= c(eo)+hk+z ac

i=1 2 /> i—o0.n1¢(€i)

> hk-l—% > ic0.h-1¢(€)
Zz‘:o..hq c(ei)
1
= hk+§ | Z c(e;)
i=0..h—1
Ca < 3 h k+hmax;—q 5_1(c(e;))

Co hk+ %\/ Zz‘:o..hq c(e;)

h k+ hmax;— n1(c(e;))

S Pkt dmano s (Vele)) DY
< 6h max;—g_;—1(c(e;))

N max;_o.,1(\/c(e:))

< 6hmax;—o p1(v/c(e;))

Therefore, A is at most O(h max;—q_,_1(\/c(e;)))-competitive for each sending event of A at
the leaf node ny.
Thus the final competitive ratio of an arbitrary sequence can never exceed neither

O(hmax;—g. ,—1(v/c(e;))) nor O(h max;—g_p—1(c(e:))) (according to Lemma 4.3.1), and A

c(eo)

is thus O(h max;—g 1 (min (\/c(e;) , E((:;)))))-competitive. O

4.4 Trees of Height h
c(eq)

ey)))-competitive.

Theorem 4.4.1. Algorithm A is O(h max ;¢ (max;—y_p—1(

Proof. As we assumed that O has no communication costs at the nodes ny,....n,_1, that only
the minimal delay costs (when each packet is sent directly to the root) occur for O, and that A
can not merge any packets at the nodes ny,....ny_1, the proof from Lemma 4.3.1 is also valid
for each leaf-root chain in the tree.

As there is more than one leaf-root chain in the tree, we have to take the one with the highest
competitive ratio.

E((:S)))))-competitive. 0

A is thus O(h max ;¢ ,(max;—g_p_1(

Khanna [3] proved that algorithm A has an upper bound of O(h log(«)), where o denotes

the entire communication costs in the tree (o = E?;OQ c(e;)). Our proof shows that the same

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 45

algorithm has an upper bound of O(h max ;c 1(max;—¢_p—1(S((:S))))). Depending on the

type of tree, the one upper bound outranks the other. E.g., in a tree where all edges have equal
weight, our upper bound can be reduced to O(h), while Khanna’s upper bound still depends on

hlog(a).

4.5 Optimal Offline Algorithm

4.5.1 2-Node Networks

Dooly’s algorithm [1] can compute the optimal solution on a single link in O(n?) (whereby n
denotes the number of packet arrivals), but only handles arrivals of single packets at the node
and assumes that no delay costs occur for packets if they are sent in the same time step.

We therefore modified Dooly’s algorithm to take into account that more than one packet can
arrive at a time and that a packet causes delay costs even if sent in the same time step.

As the problem of choosing the right sending events possesses the optimal substructure property,
we can use a dynamic programming algorithm to compute the optimal solution. Our version is
shown in Algorithm 4. Let nbr Acks[] denote an array containing the number of packets arriving
in each time step and edgecosts denote the costs of sending. Algorithm 4 computes the optimal
solution in O(¢3) time. In the inner loop, j is increased up to 4 + 1 to also handle the case when
there is no sending event at time ¢ = 0 (all fields in the sending events array for 7 + 1 are always
set to false).

It is clear that the optimal algorithm will not have a sending event if no new packets arrive.
Furthermore, if a packet arrives at time ¢, O must have a sending event in the next c(e;) time
steps. In this case, the inner loop therefore only has to check the last ¢(e;) subsolutions at
time ¢ + c(e;), as there must be an optimal subsolution in the last c(e;) time steps. Also, we
can further improve the algorithm by caching the costs of the optimal subsolutions and skip
the empty packet arrivals. Let nbr Acks|| denote an array containing the number of non empty
packet arrivals (#packets > 0!) and let arrivaltimes|| denote their arrival time. Algorithm
5 computes an optimal solution in O(n(n + c(e;)?)), where n denotes the number of packet
arrivals at the leaf node.

4.5.2 Chain Graphs

Lemma 4.3.2 proved that the optimal algorithm does not aggregate packets on their way up in the
chain of nodes, which implies that each packet will take A time steps to reach the root after being
sent at the leaf node, whereby h denotes the height of the chain of nodes (h + 1 = #nodes).
Hence the problem of choosing the right sending events only depends on the packets at the leaf
node, as all other nodes will directly send towards their parent and we can use our modified
variant of Dooly’s algorithm to compute an optimal solution for the sending events at the leaf
node.

This is shown in Algorithm 6. Instead of taking the edge costs of a single link, we use the sum
of all edge costs, as the optimal algorithm will directly send the packets to the root if once
forwarded from the leaf node. The so occurred additional delay costs (as the packets do not
reach the root until A — 1 time steps later) are added to the costs of sending at the leaf node.
Hence, all our subsolutions are optimal subsolutions and we can use dynamic programming to
compute the optimal solution of the entire sequence. Algorithm 6 computes an optimal solution
in O(n(n + (3 c(e;))?), where n denotes the number of packet arrivals at the leaf node.

46

4.5. OPTIMAL OFFLINE ALGORITHM

Algorithm 4 Optimal algorithm for two nodes, O(#3)

1:

[NCII ST NS T NG TN YO TN NG SR NG SN N Y NG S g G G S g g ey
A A S > ool I AU~ S el

R e A T o

Initialize: edgecosts < c(e;), nbr Acks|]
sendingevents[nbrAcks.size + 1|[nbrAcks.size]
sendingevents|.][.] < false
// compute solution
for i = 0 to nbrAcks.size — 1 do
main $— oo
forj =0to:+ 1do
costs < getcosts(0,1i, 7) + edgecosts
if costs < min then
min <— costs
sendingeventsli][.] «— sendingevents|j][.]
sendingevents[i][i] < true
end if
end for

: end for
: // Optimal sending events for leaf node in sendingevents[nbrAcks.size-1]

: Procedure getcosts(start,stop,j):

: // Calculates costs from start to stop
: costs + 0, packets < 0

: for k = start to stop do

packets < packets + nbrAcks|[k]
costs < costs + packets

if sendingevents|j][k] == true then
costs < costs + edgecosts
packets < 0
end if
: end for

: return costs
: End Procedure

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM

47

Algorithm 5 Optimal algorithm for two nodes, O(n(n + c(e;)?))

1: Inmitialize: edgecosts < c(e;), nbrAcks[], arrivaltimes]]
sendingevents[nbrAcks.size + 1][nbr Acks.size]
costcache[nbrAcks.size + 1]
sendingevents|.][.] < false, costcache[.] < 0, jpos < 0

2: // compute solution

3: for i = 0 to nbrAcks.size — 1 do

4: Mmin 4+ o0

5. forj = jpostoi+1do

6: costs < edgecosts

7: ifi ==0orj ==+ 1 then

8: /I costcache not set

9: for k =0to:do

10: costs < costs + (arrivaltimes[i] — arrivaltimes[k] + 1) - nbr Acks[k]
11: /I +1 such that packets will also have delay costs at the sending event.
12: end for

13: else

14: fork =75+ 1toido

15: costs < costs + (arrivaltimes(i] — arrivaltimes[k] + 1) - nbr Acks[k]
16: /I +1 such that packets will also have delay costs at the sending event.
17: end for

18: costs < costs + costcachelj]

19: end if
20: if costs < min then

21: min <— costs
22: sendingeventsli][.] < sendingevents[j][.]
23: sendingevents|i][i] < true
24 costcacheli] < costs
25: end if
26: end for
27: // update jpos
28: if i — edgecosts > 0 then
29: Jjpos <+ i — edgecosts

30: endif

31: end for

32: // Optimal sending events for leaf node in sendingevents[nbrAcks.size-1]

48 4.5. OPTIMAL OFFLINE ALGORITHM

Algorithm 6 Optimal algorithm for chain of nodes nodes, O(n(n + (3 c(e;))?)
1: Initialize: edgecosts <) ,_, ,_; c(€;), nbrAcks[|, arrivaltimes[|, h
sendingevents[nbrAcks.size + 1|[nbr Acks.size]
costcache[nbr Acks.size + 1]
sendingevents|.][.] < false, costcache[.] < 0, jpos < 0

2: // compute solution

3: for i = 0 to nbrAcks.size — 1 do

4 min + oo

5. forj = jpostoi+1do

6: costs < edgecosts

7 ifi ==0orj ==+ 1 then

8: /I costcache not set

9: for K =0toido

10: costs < costs + (arrivaltimes[i] — arrivaltimes[k] + h) - nbr Acks[k]
11: /I +h such that packets will also have delay costs until they reach the root.
12: end for

13: else

14: fork=j+1toido

15: costs < costs + (arrivaltimes[i] — arrivaltimes[k] + h) - nbr Acks[k]
16: /I +h such that packets will also have delay costs until they reach the root.
17: end for

18: costs < costs + costcachelj]

19: end if

20: if costs < min then

21: min <— costs

22: sendingevents[i][.] < sendingevents|[j][.]

23: sendingevents|i][i] < true

24 costcacheli] < costs

25: end if

26: end for

27: /[update jpos

28: if i — edgecosts > 0 then

29: jpos < i — edgecosts

30: endif

31: end for

32: // Optimal sending events for leaf node in sendingevents[nbrAcks.size-1]

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 49

4.5.3 Trees

As the local subsolutions are not necessarily optimal ones (the sending events also depend on the
arrival of packets at other leaf nodes), we can not apply the same approach as above. E.g., if a
lot of packets arrive at another leaf node such that the optimal algorithm will directly send them
to the root, it could be favorable for another leaf node to send its packets as well such that the
packets can be aggregated with those of the other leaf node on their way up the tree (even though
sending might not be the best local solution). It is still an open question whether the problem of
finding an optimal offline solution for the tree is NP-hard or not.

4.6 Simulation

In order to simulate the different algorithms, we developed a simulation framework based on
Sinalgo [15]. In order to get as accurate results as possible, all the simulations were run multiple
times with different seeds. The sum of the communication costs and the delay costs (the smaller
the better) were used to measure the performance of the different algorithms:

C = Communication cost + Delay cost

= Communication cost + Z laggr(vé,vh, ..., vt 1) —aggr(rh,rt, ...,rl)|

t € time steps

The random trees in our simulation are created as follows:

The nodes are uniformly placed at random on a plane and connected to each other by setting each
link’s weight to distance®. We then constructed a directed rooted shortest path tree for each node
and chose the shortest path tree with the minimal total edge weight for our simulations.

The arrival rate was modeled as a poisson process as this is widely used as a model for simulation
of network traffic.

All our simulation results have to be considered with precaution. Even though we will see that
some algorithms outperform others, we can not imply that the one algorithm is better than the
other algorithm, as our simulations only represent a very tiny subset of all possible configurations
and provide no theoretical proof for the performance of each algorithm.

4.6.1 Algorithms
Periodical Algorithms:

Definition 4.6.1 (Periodicy). If there are no packets at the node and a new packet arrives, the
node waits x seconds and then sends all its packets towards its parent.

Definition 4.6.2 (Periodice). The node sends its packets every x seconds towards its parent.
The nodes are synchronized such that each child has a sending event one time step before its
parent has a sending event.

Both algorithms have the deficiency of sending independently of the number of packets waiting
at the node and independently of the edge costs. E.g., if there are very few packets waiting at
the node, the node will send the packets even though the costs of sending can be very high. Or
if there are many packets waiting at the node such that the costs of keeping them for one more
time step outweigh the costs of sending them, the node still waits until the timer is reached.

Khanna Algorithm:
We tested three different implementations:

50 4.6. SIMULATION

Definition 4.6.3 (K hannaq). For each packet at a node, the local delay costs are increased by
1 in each time step. If the local total delay costs are greater than or equal to the edge costs, all
the packets at the node are sent to the parent and the total delay costs are reset to 0.

In addition, when one or more packets arrive at a parent node from a child, the remaining delay
costs of the child (total local delay costs of the child minus costs of sending the packets) are
added to the delay costs of the parent in the first time step.

Definition 4.6.4 (K hannas). As Khannai, but no delay costs from the child are added to the
parent in the first time step.

Definition 4.6.5 (K hannas). As Khannaq, but instead of adding the remaining delay costs of
the child, the cost of sending the packets is not deducted and all the delay costs of the child are
added.

As written previously, Khanna’s paper [3] is unclear about whether the remaining delay costs of
the child (delay costs - edge costs) are added to the parent’s delay costs in the first time step or
not. Our proof holds for all three interpretations, as long as the delay costs are only added and
not deducted.

The performance of Khannay and Khanna; is about equal (as we will see in the Results
section), but far better than the performance of Khannas. This is due to the fact that the delay
costs only increase and never decrease in K hannas. Hence the more hops a packet has passed,
the more delay costs it has accumulated and the decision of sending will depend less and less
on the number of packets waiting at the node, but more and more on the delay costs the packets
have accumulated so far. E.g., in a tree where all edges have equal weight, K hannas will only
wait at the leaf nodes, and immediately send at each inner node of the tree.

This also shows that the upper bound for the competitive ratio for K hanna, and Khannas is
not tight, as the proof holds for all three interpretations.

Randomized Algorithms:

Definition 4.6.6 (Random,). At each time step, the node chooses uniformly at random a value
#packets

x between 0 and 1. The node will then send its packets if x is smaller than x oles)

Definition 4.6.7 (Randoms). At each time step, the node chooses uniformly at random a value
x between 0 and 1. The node will then send its packets if = is smaller than x % The
delay costs are calculated as in K hanna,.

For an arrival rate modeled as poisson process with A = 10 and 2 nodes, experimental simulation
results showed that it is favorable to choose x = 0.75 for Random; .

If x = 0.5, Random; sends on average whenever #packets = c(e;), but it is better to increase
x and send the packets earlier, as the delay costs not only depend on the number of packets at
the node, but also on the time the packets spend at the node.

For Randoms, experimental results showed that it is favorable to choose x < 0.1, because the
delay costs increase much faster than the number of packets, as they also depend on time and
not only on the number of packets at the node.

The disadvantage of these two randomized algorithms is that the performance of the algorithm
heavily depends on the chosen .

Hierarchical Algorithms:
Another interesting approach is to make use of the hierarchical information the nodes might
have. Let us assume that each node has information about s nodes above itself in the tree, and

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 51

the goal is to find a correlation between s and the performance of the executed algorithm.
The next algorithm assumes that each node is able to tell the nodes s hops further down in the
tree when they are not allowed to send packets to their parents.

Definition 4.6.8 (Hierarchicaly). If a node receives new packets in a round, it adds them to
an array of fixed size and calculates the average of all values in this array (If the array is full,
the first added entry in the array is dropped before adding the new value and calculating the
average).

The node then calculates the number of rounds it would take for average packets to reach the
sending criterion, namely send if the delay costs are greater or equal to the edge costs.

This number of rounds, which represents the next number of rounds the nodes are not allowed to
send, is sent to all nodes s hops further down in the tree (It is assumed that the root can transmit
this information in instant time).

Each node executes K hannay and only sends if the delay costs are greater or equal to the edge
costs and if the root did not explicitly tell them not to send.

Experimental simulation results showed that the performance of this algorithms decreases when
the array size is reduced or when the average is approximated by only keeping track of the
average and the number of values, and not of the entire array.

In some cases, this algorithm’s performance is much worse than that of Khanna,. E.g., let us
assume the tree is composed of two nodes, the leaf node and the root node, and that s = 1 such
that the root will tell the leaf node when it is not allowed to send. The adversary now delivers
one packet to the leaf node, which will eventually be send to the root by both Khanna; and
Hierarchicaly. In Hierarchicaly, the root will then calculate the next number of time steps
the leaf node is not allowed to send, in this case @ = c¢(e;) time steps, and broadcast it to the
leaf node. It is easily seen that the adversary can now achieve a very large competitive ratio by
delivering a very high number of packets to the leaf node, which will not be delivered for the
next ¢(e;) time steps by Hierarchicaly, while Khannay will deliver them immediately. The
performance thus heavily depends on the input distribution.

The next algorithm assumes that each node knows the maximal #gitee ratio of the path
leading to the node s hops further above and only sends if the delay costs of the packets waiting
at the node are greater than the maximal % ratio of that path. The leaves’ node degree
is set to 1. The idea behind is that when a node has a sending event, the packets reach the node
s hops above without having to wait.

Definition 4.6.9 (Hierarchicalo). Each node is allowed to periodically send packets to its par-
ent every s time steps (A node is allowed to send one time step before its parent is allowed to
send). Each node calculates the delay costs as in Khanna, and sends all its packets if it is
allowed to send and if the delay costs are greater than or equal to the maximal %ﬁ’gfﬂie of the
path leading to the node s hops further above.

This algorithm also relies heavily on the input distribution, as it assumes that the other nodes
send at the same rate then the node itself. As Hierarchicaly, this algorithm’s performance can
be also much worse than that of Khanna;. E.g., let us assume the tree consists of many nodes
as shown in Figure 4.1, and that s = 2, such that % = 1 for both node ny and node n;.
The adversary now delivers one packet to the leaf node ng, waits two time steps, delivers another
one, etc. All of them will be send directly to the root, while K hanna; will merge them at node
n1, and not send them until c¢(e;) delay costs are reached (This also holds if Hierarchicals is
not synchronized).

Another bad scenario is the case when there are many packets arriving at the leaf nodes, such

52 4.6. SIMULATION

that it is favorable to send them immediately to the root. Hierarchicals only sends the packets
every s time steps, while K hanna; sends immediately.
The next algorithm assumes that each node knows the total sum of all edge costs of the path to

Many more edges
degree of node 1 = c(ey)

Figure 4.1: An example for Hierarchicals’s bad performance

the node s hops further above.

Definition 4.6.10 (Hierarchicals). Each node calculates the delay costs as in Khanna, and
sends if the delay costs are greater or equal to), ;. c(e;).

This algorithms guarantees that when a node has sending event, the packets will reach the node
s hops above without having to wait in between. If s is chosen too large, the performance of this
algorithm will decrease, as the algorithm then only tries to aggregate packets at very few nodes.
Figure 4.2 shows the influence of s on the different hierarchical algorithms’ performances on a
random tree with 256 nodes, A = 10 and c(e;) = 100.

It can be observed that Hierarchicaly’s performance increases with increasing s and that all
hierarchical algorithms outperform K hannai. One possible reason is the following: if one node
with high degree is connected to another node and there are many packets arriving, Khannai
will send very often, while all three hierarchical algorithms will aggregate the packets and only
send once every few time steps (depending on s, the average number of packets received or the
sum of edge costs). It’s also favorable to choose s not too large, as otherwise the performance of
Hierarchical; and Hierarchicals gets worse.

Figure 4.3 shows the influence of s in a random tree where the edges have not equal
weight. Hierarchicalz outranks Khannay as well, for the same reason as mentioned above.
Hierarchicaly’s performance however is worse than that of Khannai. Hierarchicals’s per-
formance heavily depends on the chosen s. As the total edge costs in this graph are greater
than in the previous graph, Hierarchicals’s performance is better with smaller s. This however
makes the algorithm inappropriate for dynamic graphs where the topology is unknown, as s must
best be chosen depending on the arrival rate and the weights of the edges.

Optimal Algorithms:

Definition 4.6.11 (Local Optimum). Let LocalOptimum be the optimal offline algorithm for
a single link (one root node, one leaf node, and one link connecting both nodes) executed first at
the leaf nodes, then at the leaf nodes’ parents, and so forth, until the root of the tree is reached.

As LocalOptimum makes sending decisions only based on local information the node holds,
Local Optimum’s performance is with very high probability worse than the performance of an
optimal algorithm with global knowledge, as it can not optimize the arrival of packets at the
nodes higher up the tree.

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM

53

1700

Average costs per time unit

Comparison of the different algorithms’ costsin arandom tree (c(e;) = 100, A = 10, #nodes = 256)

Khannay
—— Hierarchical,
—— Hierarchicaly
—— Hierarchicals

s (the number of nodes to look up)

10 15

Figure 4.2: Comparison of the different algorithms’ costs in a random tree (¢(e;) = 100, A = 10)

Comparison of the different algorithms' costsin arandom tree (c(e;) = 100 - #leaves, A = 10, #nodes = 256)

12000
——— — i
11000 - —— Hierarchicaly
—— Hierarchicals
10000 +
€ 9000 -
5 —
£
E 8000 -
g 7000
[}
8
T
Z 6000 -
5000
4000
3000
1 2 3 4 5 6 7 10 15
s (the number of nodes to look up)
Figure 4.3: Comparison of the different algorithms’ costs in a random tree (c(e;) = 100 *

#leaves, A = 10)

54 4.6. SIMULATION

Figure 4.4 shows K hanna, in comparison to LocalOptimum. As the number of nodes
increases, the performance of Khannay outranks that of LocalOptimum. This is due to the
fact that K hanna, aggregates more packets on their way up to the root, opposed to

Local Optimum, which only tries to minimize the costs on each link.

Comparison of K hanna, and LocalOptimum in achain of nodes (c(¢;) = 100, A = 10)
%
Khanna
e

80 ///

70 . e
£ e /
5
[] -
E e
g 50 /{,./
@
¢, o
8 ~
o]
EE /,/

20 -

/Y/
//
of
=

1 S S S S S S S S S S
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Number of nodes

Figure 4.4: Comparison of Khanna; and LocalOptimum in a chain of nodes (¢(e;) = 100,
A =10)

4.6.2 Results

2 Nodes:

Figure 4.5 shows the costs of different algorithms in the case of two nodes. The arrival rate was
modeled as a poisson process. x and x were chosen such that the algorithms’ performances are
best for A = 10.

Not surprisingly, Local Optimum’s performance outranks all others. Periodics’s performance
gets worse with smaller \, as Periodicy waits too long before sending the packets. The same
holds for A > 100 (not shown in the graph), as Periodice will send too often. Surprisingly,
none of the other algorithms’ overhead (compared to LocalOptimum) increases or decreases
much with varying A. This is probably due to the low arrival rate of packets (as at most one
packet arrives at a time).

Chain of Nodes:

Figure 4.6 shows the percentage of variance between the best algorithm’s average costs and the
other algorithms’ costs in function of the number of nodes in a chain of nodes. The arrival rate
was modeled as a poisson process with A = 10. x was chosen such that the algorithms’
performances are best for A = 10 with # nodes = 2. s was set to the maximal number of hops
in the graph (as we have seen this to be a good choice for Hierarchicals) and all edges have
equal weight.

Khannay’s and K hannasy’s performance is about equal and always worse than that of
Hierarchicaly. Interestingly, Random, and Randomsy (who are not surprisingly close to each
other) outperform some of the other algorithms if there are between 4 and 32 nodes in the chain

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 55

Comparison of the different algorithms' costs (c(e;) = 100)

LocalOptimum
— Khanna
—— Randomy, x = 0.75
—— Random,, y = 0.02
Periodicy, x = 43

Aerage costs per time unit

5
Arrival rate A

Figure 4.5: Comparison of different algorithms’ costs for two nodes. (c(eg) = 100)

of nodes. Hierarchicals outranks them all, as Hierarchicals only sends if the packet reach
the root without any intermediate waiting, which is what the optimal algorithm would do as
well. The greater the number of nodes, the smaller the gap between all the other algorithms and
Hierarchicals is. This is due to the fact that Hierarchicals does not take into consideration
the additional delay costs that occur until the packets reach the root (Hierarchicals could send
the packets much earlier and they would even then reach the root without having to wait at
intermediate nodes).

A similar result can be observed in Figure 4.7 where the edges have not equal weight and

c(e;) = 100(mazhops — hopsy,).

Random Tree:

Figure ref 4.8 and 4.9 show the percentage of variance between the best algorithm’s average
costs and the other algorithms’ costs in function of the number of nodes in a random tree. In all
cases, Hierarchicals has the best performance of them all. The gap between Hierarchicals
and the other algorithms increases with increasing number of nodes independently of the edge
weights chosen. Also both Random algorithms perform better than both versions of K hanna
with increasing number of nodes (although the number of nodes has to be much higher when
the edges have not equal weight).

Fanout Tree:

Figure ref 4.10 and 4.11 show the percentage of variance between the best algorithm’s average
costs and the other algorithms’ costs in function of the number of leaf nodes in tree with fanout
set to 2. Again as in the case of a random tree, Hierarchicals has the best performance of
them all. However, the gap between Hierarchicals and K hanna is much smaller than before.
When the edges do not have equal weight, it even gets smaller with greater number of leaf
nodes.

56

4.6. SIMULATION

Figure 4.6:
A =10)

Percentage of variance between the best algorithms’ average costs and the other algorithms’ costs

Comparison of different algorithms’ costs for the chain of nodes.

Percentage of variance between the best algorithms’ average costs and the other algorithms' costs

35

=

30

25

20

15

10

35

30

25+

20

15+

10

Comparison of the different algorithms’ costsin a chain of nodes (c(e;) = 100, A = 10)

K hanna,

—— Khannay

— Random,, x = 0.75

—— Randoms, x
Hierarchicaly, s = mazhops
Hierarchicals, s = mazhops

2 4

8

16

32
Number of nodes

128 256 512

Comparison of the different algorithms' costsin achain of nodes (c(e;) = 100 - (mazhops — hops,,), A = 10)

Khanna,

K hannay

—— Random,, xy = 0.75

—— Randomy, y = 0.02
Hierarchicals, s = mazhops
Hierarchical, s = mazhops

32
Number of nodes

128 256 512

Figure 4.7: Comparison of different algorithms’ costs for the chain of nodes.

100(mazhops — hopsy,), A = 10)

(c(e;) = 100,

(c(ei) =

CHAPTER 4. THE ACKNOWLEDGEMENT PROBLEM 57

Comparison of the different algorithms’ costs in random tree (c(e;) = 100, A = 10)

17
Khannay
—— Khannay
or) — Randomy, x =0.75
—— Randoms, x = 0.02
sk Hierarchicaly, s = mazhops

e e
w IS
T T

-
~
T

g

o
©
T

o
@

N
IS
ol
5

32
Number of nodes

Percentage of variance between the best algorithms' average costs and the other algorithms' costs

Figure 4.8: Comparison of different algorithms’ costs in a random tree. (c(e;) = 100, A = 10)

Comparison of the different algorithms’ costs in random tree (c(e;) = 100 - #leaves, A = 10)

17

Khanna,

—— Khannay

— Random,, x = 0.75

—— Randoms, y = 0.02
Hierarchicaly, s = mazhops

16 |

09 |-

0.8

32
Number of nodes

Percentage of variance between the best algorithms' average costs and the other algorithms' costs

Figure 4.9: Comparison of different algorithms’ costs in a random tree. (c(e;) = 100 * #leaves,
A =10)

58

4.6. SIMULATION

Figure 4.10:
fanout = 2)

Percentage of variance between the best algorithms’ average costs and the other algorithms’ costs

Percentage of variance between the best algorithms’ average costs and the other agorithms’ costs

Comparison of the different algorithms' costsin atree (c(e;) = 100, A = 10, fanout = 2)

125

Khanna,

Khannas
12| — Random,, x = 0.75

—— Randoms, x = 0.02
1ish Hierarchicaly, s = mazhops
1 7/,4—/'/'/7
e
105 N 4&/'/7/7
R
1.0 —
095 -
09 -
085
08 L L L L L !
2 4 8 16 32 64 128

Number of leaf nodes

Comparison of different algorithms’ costs in a tree. (c(e;)

Comparison of the different algorithms’ costsin atree (c(e;) = 100 - #leaves, A = 10, fanout = 2)

125

095 -

0ol Khanna,
—— Khanna,

— Random,, x = 0.75

b | — Random., x = 0.02
Hierarchicaly, s = mazhops

\
256

100, A = 10,

4 8 16 32 64 128

256

Number of leaf nodes
Figure 4.11: Comparison of different algorithms’ costs in a tree. (c(e;) = 100 * #leaves,

A =10, fanout = 2)

Conclusion

So far, information aggregation has mainly been studied in static environments. Chapter 3 ana-
lyzes three deterministic online information aggregation algorithms to gather dynamic data in a
static tree. In addition, we introduce an optimal offline algorithm which computes the optimal
solution for two nodes in O(n*). Even though we were unable to compute an optimal solu-
tion for the tree, simulations on real world sensor data showed that the algorithm’s performance
outranks the performance of timer based algorithms in terms of communication costs, but with
slightly higher variance. In practice however, our online algorithm probably is even better, as
fewer messages are sent and the arrival of children’s messages at a node are not synchronized,
such that less collisions will occur, which implies that even less messages will be sent.

One of many possible applications of our online algorithms could be on buoys implementing a
tsunami warning system. The operator is interested in the maximal sea level and wants to be
noticed as fast as possible if a tsunami arrives, while all other changes don’t have to reach the
operator immediately. If a tsunami arrives, our online algorithm (the one which sends the last
value in the interval) forwards the new sea level directly to the root (the threshold has to be set
accordingly), while small fluctuations take longer to reach the root, therefore saving energy.
While the focus on Chapter 3 was on information aggregation algorithms, Chapter 4 examines
the acknowledge aggregation. We propose an alternative upper bound for Khanna’s algorithm
and present an optimal offline algorithm which computes the optimal solution for a chain of
nodes in O(n(n + (3 c(e;))?) time steps. In addition, our simulations show that Khanna’s per-
formance is not always best, and many different algorithms can outrank Khanna depending on
the topology and input distribution chosen.

Still, besides the already mentioned open questions, many open problems remain and can be
addressed in future research projects. For example:

* For the ACK aggregation problem:

— So far we extended Dooly’s optimal offline algorithm to handle the single link, and
the chain of nodes. Is it possible to use the same approach to calculate an optimal
solution in a tree as well? If the problem of finding an optimal solution is NP-hard,
is it possible to calculate a k — approzimation of the optimal solution?

— What is the competitive ratio of randomized algorithms in trees?

59

* For the information aggregation problem:

— can the optimal solution also be computed in the chain of nodes or even in a tree,
where Y local delay costs > global delay costs?

— Our analysis only covers deterministic algorithms. What would be the competitive
ratio of randomized algorithms? What are their lower and upper bounds?

— What influence on the complexity of our algorithms does it have if we drop the
aggregation function in the delay cost function and use the sum of all |v} —rf| instead?
Will our algorithms improve? What happens if we limit the adversary to be only able
to choose values such that the input sequence can only increase or decrease over
a certain period of time (e.g two sending events of our online algorithm)? What
happens if we introduce deadlines where values must reach the root after a certain
time?

— How do we best weight communication costs and delay costs? Are there better forms

of measuring the performance of an information aggregation algorithm instead of
adding delay costs and communication costs together?

— In sensor networks, nodes often sleep, because being awake consumes too much
energy. Can we design an efficient and clever sleeping algorithm, such that our
information aggregation algorithms are still competitive?

— How robust are our algorithms? How do we update our online algorithms to han-
dle changing topologies (e.g. nodes joining/leaving, parent in rooted tree changes)?
What happens if messages get lost or get modified? What if an adversary can choose
which messages get lost or can modify single messages? What about collision of
messages?

¢ For the simulations:

— How do the different aggregation algorithms perform in comparison to the optimal
offline algorithm?

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

Daniel R. Dooly and Sally A. Goldman and Stephen D. Scott. TCP Dynamic Acknowledg-
ment Delay: Theory and Practice. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC-98), pages 389-398, New York, 23-26 1998. ACM Press.

Anna R. Karlin and Claire Kenyon and Dana Randall. Dynamic TCP acknowledgement and
other stories about e/(e-1). In STOC ’01: Proceedings of the 33rd annual ACM symposium
on Theory of computing, pages 502-509, New York, NY, USA, 2001. ACM Press.

Sanjeev Khanna and Joseph Naor and Danny Raz. Control Message Aggregation in Group
Communication Protocols. In ICALP ’02: Proceedings of the 29th International Collo-
quium on Automata, Languages and Programming, pages 135-146, London, UK, 2002.
Springer-Verlag.

Carlos Brito and Elias Koutsoupias and Shailesh Vaya. Competitive Analysis of Orga-
nization Networks or Multicast Acknowledgement: How Much to Wait? In SODA ’04:
Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms, pages 627—
635, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

Susanne Albers and Helge Bals. Dynamic TCP acknowledgement: penalizing long de-
lays. In SODA °03: Proceedings of the 14th annual ACM-SIAM symposium on Discrete
algorithms, pages 47-55, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

Jens S. Frederiksen and Kim S. Larsen. Packet Bundling. In SWAT '02: Proceedings of
the 8th Scandinavian Workshop on Algorithm Theory, pages 328-337, London, UK, 2002.
Springer-Verlag.

Christos H. Papadimitriou and et al. Computational Aspects of Organization Theory
(Extended Abstract). In Proceedings of the 1996 European Symposium on Algorithms.
Springer LNCS, 1996.

Christos H. Papadimitriou and Edouard Servan-Schreiber. The origins of the deadline:
Optimizing communication in organizations. Complexity in Economics, 1999.

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-Based Computation of Aggregate
Information. In Proc. 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2003.

Damon Mosk-Aoyama and Devavrat Shah. Computing Separable Functions via Gossip.
In Proc. 25th Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 113-122, 2006.

61

62

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

Laurent Massoulié and Erwan Le Merrer and Anne-Marie Kermarrec and Ayalvadi Ganesh.
Peer Counting and Sampling in Overlay Networks: Random Walk Methods. In PODC ’06:
Proceedings of the 25th annual ACM symposium on Principles of distributed computing,
pages 123132, New York, NY, USA, 2006. ACM Press.

Boaz Patt-Shamir. A Note on Efficient Aggregate Queries in Sensor Networks. Theor.
Comput. Sci., 370(1-3):254-264, 2007.

http://sensorscope.epfl.ch/. SensorScope Wireless Distributed Sensing Sys-
tem for Environmental Monitoring.

http://www.btnode.ethz.ch/Projects/SensorNetworkMuseumn. The
Sensor Network Museum.

http://dcg.ethz.ch/projects/sinalgo/. Sinalgo: Simulator for Network
Algorithms.

http://sensorscope.epfl.ch/
http://www.btnode.ethz.ch/Projects/SensorNetworkMuseum
http://dcg.ethz.ch/projects/sinalgo/

	Title
	Contents
	1 Introduction
	2 Related Work
	3 Algorithms for Information Aggregation
	3.1 Model
	3.2 Deterministic Lower Bound
	3.2.1 2-Node Networks
	3.2.2 Chain Graphs
	3.2.3 Trees of Height h

	3.3 2-Node Networks
	3.3.1 Online Algorithm A
	3.3.2 Online Algorithm B
	3.3.3 Online Algorithm C

	3.4 General Trees
	3.4.1 Sending Criterion
	3.4.2 Lower Bound for A,B and C
	3.4.3 Upper Bound for C in General Trees
	3.4.4 Upper Bound for C in Trees of Height h

	3.5 Optimal Offline Algorithm
	3.5.1 2-Node Networks

	3.6 Simulation
	3.6.1 Topology
	3.6.2 Data
	3.6.3 Results

	4 The Acknowledgement Problem
	4.1 Model
	4.2 2-Node Networks
	4.3 Chain Graphs
	4.4 Trees of Height h
	4.5 Optimal Offline Algorithm
	4.5.1 2-Node Networks
	4.5.2 Chain Graphs
	4.5.3 Trees

	4.6 Simulation
	4.6.1 Algorithms
	4.6.2 Results

	5 Conclusion

