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Abstract

Intrusion detection systems normally use some kind of signatures to identify attacks. These
signatures are manually created by experts in most cases. Nowadays a trend to more complex
and fast spreading attacks can be observed and computer worms spread itself over the whole
world within minutes. This is possible because vulnerabilities are known to the public just a few
hours before the first exploit is available or sometimes even disclosed by the publication of ex-
ploit code. Attacks exploiting such a kind of vulnerability are called zero-day exploits. Zero-day
exploits such as the Slammer worm render the manual signature generation useless for those
attacks. The automated signature generation addresses this problem. It attempts to automati-
cally identify malicious network traffic or software code in order to generate a specific signature
for it.

This thesis is part of the EU project NoAH that aims at developing an automated signature
generation mechanism that is based on attack alert information originating from a network of
honeypots. A framework for tracking the connection state and decoding protocol-field informa-
tion of application-level protocols provides additional knowledge for the signature generation.

In this thesis, we extended the framework with a plugin for the FTP protocol and did a redesign
of its structure in favour of ease of use and extensibility. A signature generator for the Snort
signature format has been implemented that uses both information from the honeypot network
and application state information. It uses an external library for full protocol-field knowledge. The
resulting signatures are able to protect server applications from buffer overflows if triggered by
abusing a single protocol field. The false-positives rate for these signatures is almost zero since
they capture the vulnerability characteristics of the detected attacks.
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Chapter 1

Introduction

Security aspects of IT infrastructures became more and more important during the last years
due to the increased number of attacks found in the Internet. Attacks can only be successful
when a software component has security related vulnerabilities. The root causes of vulnerabili-
ties are software bugs, misconfiguration or insiders abusing their credentials and access rights.
Software bugs enable attackers to write malicious computer programs which exploit the vulner-
able software. Such software exploits allow an intruder to gain e.g. privileged access rights on
the victim host to evade authentication mechanisms or even execute malicious software on the
target machine. Presumably all software available on the market has its bugs and may be vul-
nerable to attacks. To detect attacks and protect software from attackers different technologies
have been invented. This master thesis attends to a specific aspect of such an attack detection
technology: the automated signature generation for intrusion detection systems (IDS). The pre-
sented work is part of the EU project NoAH which aims at the automated signature generation
for IDS with the aid of honeypots.

1.1 The trinity of trouble

Today’s operating systems for personal computers consist of millions of lines of code (LOC)?.
Approximately five up to fifty bugs can be expected per one thousand lines of software code.
It can be taken for granted that half of these bugs give raise for some security critical issues
and can be regarded as vulnerabilities. Those provide the basis for writing software exploits.
Even if programs are highly optimized and tested with the newest tools available with respect
to security aspects, the number of bugs contained in one thousand lines of code will be in the
range of a one-tenth of a percent of the number of LOC. Since software tends to grow even
bigger bugs will always be existent and so the vulnerabilities.

A good example for the exploding volume of code in software is the operating system Windows.
In 1993 the Windows version NT 3.1 had about six millions LOC. The last Windows NT version
4.0 consisted already of 16 MLOC. The follow-up versions of Windows NT, Windows 2000
and XP had already reached a code size of about 29 and 40 MLOC respectively. The current
version Windows Vista has even more than 50 MLOC.

Interconnectivity between computers, especially through the Internet and an increasing number
of software programs with an extensible architecture are the two other major contributors to an
inconceivable number of present security vulnerabilities in software systems.

The three above mentioned major causes for software vulnerabilities are sometimes referred to
as the trinity of trouble.

1.2 Intrusion prevention

Firewalls, sometimes called security gateways, represent the typical first line of defense to pro-
tect against malicious network traffic. Unfortunately, these network components provide only

1The background information for this section has been taken from [10].
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16 CHAPTER 1. INTRODUCTION

incomplete protection against malicious traffic by blocking or accepting traffic to certain IP ad-
dresses, ports or services. But since access to the services provided by the servers must be
possible, a firewall may not be able to protect this server.

Intrusion detection and prevention systems, IDS and IPS respectively, try to provide a more
thorough protection. Normally they use some sort of signature. The most common signatures
consist of rules how a network packet is (not) allowed to look like in order to distinguish between
malicious and benign network traffic. These signatures are thus called network-based signa-
tures. Example rules are byte strings which are matched to the application payload of a network
packet or regular expressions describing payload character patterns.

Another type of signature are host-based signatures where the rules describe certain code exe-
cution patterns on the host computer. Examples are system call or control-flow patterns. These
patterns make host-based signatures very system-specific and their generation resource inten-
siv.

On the other hand signatures on the network-level are system-independent and thus easy to
deploy. However, a drawback is the high rate of false positives. This is due to the fact that
network-based signatures rather describe some properties of the network connection or some
byte strings contained in the network traffic than the vulnerability itself. It is obvious that a byte
string can be contained in benign traffic data too.

To narrow the number of possible matches with benign network traffic and hence to reduce the
rate of false positives, signatures based on full protocol-field knowledge could be used. This
means that a signature is based upon knowledge of the protocol-specific message fields and
field-specific properties. But at least as important as the capabilities of the IDS or IPS and its
signature description language is the methodology of how attacks are identified and how infor-
mation from attacks is extracted. Today signatures are mostly still created by some experts. But
manual creation will not be useful if exploits for software are available before experts can craft
signatures for the corresponding vulnerability.

1.3 Situation in the Internet

In the case of zero-day attacks, the vulnerabilities are recognized only a few hours before or
even only at the moment when a novel attack was observed. As the only defense strategy in this
case is to react as quickly as possible, manual signature generation will be too slow to contain
it and malicious software like e.g. a computer worm could have spread to thousands of hosts.
Nowadays a trend to more complex and fast spreading attacks can be observed. Computer
worms spread itself over the whole world within minutes. These so called zero-day exploits can
hardly be addressed by manually generated signatures and the fast spreading worms make the
manual creation of signatures meaningless. This is where automated exploit signature comes
into play. Automated signature generation mechanisms attempt to automatically identify mali-
cious network traffic or software code and generate a specific signature for it. In the best case
these signatures resemble the manually crafted signatures denoted in the preceding section.
In the past years several projects aimed at the automated generation of exploit signatures. The
most important work is presented in chapter 3. To emphasize the ability of fast spreading com-
puter worms, two examples for the spreading of Internet worms are given in Figure 1.1 and 1.2.
Both examples show the initial situation and the world-wide distribution of infected hosts for the
Code-red and the Slammer worm respectively. The spreading of each worm at a certain time
after outbreak is shown on the second pictures.

Figure 1.1: The spread of the Internet worm code red on July 19, 2001 (within 24 hours)
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Figure 1.2: The spread of the Internet worm slammer on January 29, 2003 (within 30 minutes)

1.4 The Network of Affined Honeypots (NoAH)

The goal of the EU project NoAH [25] is to develop an infrastructure that can detect past and fu-
ture remote exploits in the Internet automatically. Furthermore, upon detection of a new exploit,
it should automatically generate a signature for detecting the exploit with non-NoAH systems,
e.g. proprietary intrusion detection systems. To accomplish this objective it is planned to reroute
traffic towards unused IP addresses. The rerouted traffic will then be handled by a farm of hon-
eypots. These honeypots are normal PC’s running emulated operating systems and services
like web or FTP servers. The emulating containment system Argos will be able to detect var-
ious kinds of attacks and provide precise attack information for e.g. signature generation. The
project’s aim is a full-scale infrastructure across Europe.

NoAH intends to help limiting damage to national research and education networks (NREN) and
to networks of internet service providers (ISP). It will further allow to better assess threats for
information security organisations and provide researchers with attack-related data to improve
detection techniques.

1.5 Problem statement

The context of this master thesis is the EU project NoAH. As already pointed out the goal of
this project is to provide a full-scale infrastructure for the automated generation of signatures
for zero-day attacks. This is useful since manually created signatures can hardly protect IT
infrastructures from zero-day exploits. In the context of this project an application state tracking
framework has been developed at the ETH Zurich during different past student work. This state
tracking framework allows to implement application protocol plugins for tracking the state of
network connections with full protocol knowledge. With this protocol knowledge it should be
possible to reduce the false-positives rate of the signatures generated. As the tracker framework
just had plugins for the IP, UDP and TCP protocols, the first task of this thesis was to work on
the implementation of an application plugin for the Tracker and to improve the Tracker software.
The state information should then be used as the basis for a signature generation mechanism
which creates network-based signatures.

1.5.1 Application plugin for the tracker framework

For being able to use various protocol field and state information for signature generation an
application protocol plugin was required. To accomplish this task various protocols had to be ex-
amined and compared with each other. The specifications should then serve as the basis for the
implementation of a packet decoder and state machine for the selected protocol. Performance
tests on the one hand and security related tests like memory profiling on the other hand should
improve the plugin and make it ready for long-term usage.

1.5.2 Signature Generation Mechanism

The signature generation mechanism should extract information from the containment system
and the tracker log files and create information on a meta-level. In a second step these meta
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information has to be converted into a specific signature format compliant with an existing in-
trusion detection system. The two popular and freely available open source IDS Bro and Snort
were proposed as an alternative.

Extracting attack information from both the tracker log files and the containment system poses
a difficult task. Argos provides state information of the system at the time when the attack was
detected. Provided information includes a memory and register dump and if possible network
packet data that is related to the attack. The tracker framework additionally provides knowledge
about the protocol fields and the connection state of the network packets. The challenge is to
create meaningful signatures from this rather unstructured information. As not for each attack
the entire set of information is available, signatures can not always be created the same way.
Furthermore it is possible that the generated signatures heavily differ in accuracy. This is a
major problem and complicates the design of a signature generator.

1.6 Structure of the Report

In the next chapter the architecture of the NoAH project is presented and how the project com-
ponents are meant to interact. The chapter 3 delineates the different methodologies to identify
attacks and extract exploit information by means of presenting related research work. Chapter
4 describes the first task of this thesis, namely the design and implementation of an applica-
tion state tracking plugin for the tracker framework. The follow-up chapters deal with signature
generation. In Signature Generator a simple first signature generation mechanism is presented
whereas the chapters 6 and 7 describe a generic approach for signature creation with full pro-
tocol knowledge. The ideas documented therein evolved from experiences made during the
design and implementation of a first solution as a proof of concept. The report is closed by a
chapter comparing the results of this work with approaches presented in the related work chap-
ter. Furthermore the findings are summarized and an outlook is given.

The appendix presents various additional information. In appendix C the tracker framework is
explained in details. Appendix F provides installation advices for the software accompanying
this master thesis. At the end of the report a list of abbreviations explains the meanings of the
abbreviations used throughout this documentation. The following index lists technical terms and
shows the page numbers where these terms have been introduced. Normally for each term first
the page number of the position in the text where the term occurs is printed. The last page num-
ber given for an index entry references the corresponding entry in the glossary if existent. The
glossary can be found in the appendix B and provides the reader with information for selected
technical terms.



Chapter 2

Current state and Setup of the
NoAH project

2.1 NOAH architecture overview

The architecture of NOAH mainly consists of two parts. A first part is responsible for redirecting
network traffic towards unused IP addresses to a farm of honeypots. The second part accounts
for filtering the redirected traffic and detecting possible attacks. After the detection, the detec-
tors provide information for attack signature generation. Figure 2.1 illustrates the basic setup of
the NoAH architecture. The second part is called the "NoAH core”. The hosts from which mali-

Low-inter: n

Honeypot ofi- interaction
Honeypot

High-interaction

Honeypot

Low-interaction

Honeypot High-interaction

Honeypot

ARGOS

Figure 2.1: The core components of the NoAH architecture

cious network traffic originates are pictured as pirates. Traffic will be redirected by two different
mechanisms:

e If an organization decides to participate in the NoAH project unused IP addresses of the
organization’s address space are statically redirected to a network of honeypots.

e The above method is limited to larger enterprises reserving a range of IP addresses.

Honey@home client’s have the honey@home client running. This small program can be
used to redirect traffic directed towards unused IP addresses of home networks, also

19



20 CHAPTER 2. CURRENT STATE AND SETUP OF THE NOAH PROJECT

known as SOHO’s. This way NoAH can be brought to home users. The tool needs no
configuration and is easy to install. It runs both on Windows and Linux.

Redirected network traffic passes low-interaction honeypots in the NoAH core first. Low-
interaction honeypots emulate services using scripts. The lightweight processes are able to
cover a large network space but such emulation can not provide a high level of interaction
with possible attackers. One of the most popular and widely-used low-interaction honeypot is
honeyd. It emulates thousands of IP addresses and performs network stack emulation. The
honeypots are highly configurable and lightweight. They are an efficient mechanism to filter
out unestablished and uninteresting connections like port scans, SSH brute-force attacks etc.
This is a desired effect since the second-level honeypots, the high-interaction honeypots, are
responsible for detecting special kind of attacks. The high-interaction honeypots are entirely em-
ulated server systems by the honeypot containment system Argos. This latter type of honeypot
is closely related to this work as Argos is the system that detects attacks and provides us with
information for signature generation. It is described in more detail in the next sections.

2.2 Components related to this work

In Figure 2.2 the part of the NoAH architecture on which this work is based is depicted. The
upper part in the illustration, the honeypot containment system, is developed at the Vrije Uni-
versiteit (VU) Amsterdam. The application state tracking framework has been developed in past
semester theses at the ETH Zurich. The basic functionality of the interface which is to connect
both the information from the containment system and the Tracker with each other has been im-
plemented too. A possible signature generation mechanism would receive its information from

=T
Argos L Snitch ]

Argos.netlog

Control Socket| | Perl Script Argos.csi.x

f \ 4 Interface

= st
- IPC
= File 1/0

h )

: : TrackerOutput.dat |
w |::> Application State i
Tracker TrackerDump.dat |

.

Figure 2.2: The functioning components of the NoAH project which are related to this work

the interface component. The subsequent sections will describe the two components serving as
an information source for the signature generation component.

2.3 Containment system Argos

The containment system Argos [8] aims at the detection of remote code execution exploits.
This means that some malicious code is injected remotely via network traffic and will then be
executed. The executed machine code should not be confused with sequences of interpreted
instructions like e.g. Java bytecode. Argos is a "secure” system emulator and meant to be used
in the context of honeypots. It is based on Qemu [26], an open source emulator that uses
dynamic translation to achieve good performance.

Argos extends Qemu to enable it to detect remote attempts to compromise the guest operating
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system. Using dynamic taint analysis (DTA) it tracks network data in the (emulated) memory of
the guest operating system and detects any attempts to execute it as part of a program. When
an attack is detected the memory footprint of the attack is logged and written to a log file.

2.4 The tracker framework at a glance

In this section, the tracker framework is presented shortly. For a more detailed view on the
Tracker and e.g. its algorithms, refer to appendix C. The installation and configuration of the
Tracker is explained in the manual in appendix F.

The tracker framework captures network packets and processes them with the appropriate net-
work protocol plugin if available. Each plugin can add some reporting information to a buffer
which is forwarded to the reporting thread when the entire plugin stack is processed. An arbi-
trary number of threads can be configured which are responsible for packet processing. The
basic concept is depicted in Figure 2.3. The network capturing is done by the pcap library [18].

Capturing Thread
Pcap Packet
Capturing Loop

Dispatch Callback
Handle Function

== Socket
= IPC |
== File I/O g
GetThreadId() |9 )
Statetracking Threads

TrackerOutput.dat
TrackerDump.dat

Reporting Thread

UDP /[ TCP
Application Plugin

Figure 2.3: The basic design of the tracker framework

When the capturing loop receives a packet, it calls a callback function named di spat ch() .
This function has to determine if the packet belongs to a connection which is already registered
in the Tracker and thus belongs to a certain thread or if it has to create a new connection entry
for the packet and assign a new state-tracking thread. This mechanism is necessary since each
state-tracking thread has its own plugin instances and thus only the appropriate plugin can ac-
cess stored state information whereas the other plugins would not have information about this
certain connection.

A plugin is written by implementing the following functions:

e extern "C' int initFunction(stateTrackerThread*, u_int32_t);

In this function dynamic allocated structures etc. should be initialized. The function will be called
at the startup of the Tracker when the plugins are loaded.

e extern "C' int shutdownFunction(void* );

This function should free dynamically allocated memory. It is called when the Tracker gets ter-
minated.

e extern "C' int entryFunction(u_char*, u_int32_t, void*, protocol*,
st at eTracker Thread*, reporthbufferEntry*, packetlnfox);

Each time a captured packet is delivered to a certain thread and belongs to the corresponding
protocol, this function is called. In this function the implementation of the corresponding protocol
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state machine should take place amongst other things.

A typical sequence of actions to be taken in the function ent r yFunct i on could be:

1. Extract information of the preceding protocol which invoked this function. For this purpose
the voi d+ pointer can be used to submit arbitrary data structures.

2. Process the payload according to the specification of the current protocol.
3. Create a report of extracted information, especially for state changes.

4. If there is an appropriate next protocol, call its entry function.

As mentioned in the appendix F.1 an XML file is used to configure properties of the Tracker. The
plugins are registered and intertwined by declaring the plugins as <pr ot ocol > elements and
the dependencies in form of subelements called <subPr ot ocol >. The listing 2.1 shows an

excerpt of the t racker Conf i g. xm file and how the protocols are connected with each other
by referencing them via <subPr ot ocol > elements.

Listing 2.1: Configuration of protocol plugins in the t r acker Conf i g. xm file
<protocol id="ip">
<library>plug—in/IPTracker/libIPTracker.so</library>
<subProtocol protocolRef="tcp" linkage="6" />
<subProtocol protocolRef="udp" linkage="17" />

<description>Internet Protocol</description>
</protocol>

<protocol id="udp">
<library>plug—in/UDPTracker/libUDPTracker.so</library>
<description>User Datagram Protocol</description>
</protocol>
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Related Work

In [30] twelve approaches for automated signature generation are presented and compared
against each other. However a classification of the signature generation methods has not been
done. In [2] more or less the same signature generation methods as in the already mentioned
work above are described. A classification of the approaches was done by sorting them ac-
cording to the attack detection method they use, e.g. approaches without attack detection or
using network-level attack detection. Because the type of attack detection itself is not relevant
anymore due to Argos this work groups the signature generation methods with respect to the
information the signature generation mechanisms use.

The quality of a signature generation method depends not only on the methods used for identi-
fying the relevant content and the algorithms for creating a signature out of this information. An
at least equal important aspect is what kind of traffic is used for analyzing payloads and extract-
ing signatures. If a system observes the entire network traffic and can not be sure that a certain
network packet really belongs to malign traffic it is more difficult to obtain a low false-positives
rate than if a system uses attack detection. In the latter case mainly malign traffic would be used
for signature generation and this tends to result in a decreased false-positives rate. This is why
in [2] the signature generation approaches are sorted according to the type of attack detection
that is used prior to signature generation.

The following sections present existing approaches for automated signature generation, sorted
by the type of information used for the signature. For a more thorough description of these
approaches refer to the literature. In the appendix D different techniques for typical problems
and suitable algorithms are presented, which are or may be used for signature generation. The
appendix E provides some signature examples to give an idea of how signatures can look like.

3.1 Content-based signatures

Content-based signatures are used widely by automated signature generation systems. The
signature is a tuple

(IP protocol number?, destination port, byte sequence)

where the byte sequence is a variable-length, fixed sequence of bytes. The main problem is to
identify a characteristic string within the payload of network packets. Afterwards string matching
rules can be generated. An IDS would just compare each incoming network packet against the
string and if the string can be found in the payload the packet would be treated as malign. The
reason why this approach is often applied may be that it is rather easy to implement and it is fast.
The main problem with this string-based approach is that when any words inside the relevant
string of a payload are changed the IDS won't recognize the exploit anymore by just matching
the complete string against the payload. There have been various extensions probosed of how
to find relevant substrings for a signature describing a certain exploit and so to diminish the
probability of the above-mentioned problem with altered strings.

Lhttp://www.iana.org/assignments/protocol-numbers
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3.1.1 Honeycomb

Overview Honeycomb [5] is built as an extension to honeyd which is a low-interaction honeypot.
Network traffic seen at a honeypot is used as input for the signature generation algorithm.
Thus no distinction between benign and malicious traffic is made. The signature output
can be converted into Bro or Snort signature format.

Signature Generation A signature is generated on two levels. On the first level stream assem-
bling is applied to the packets. For TCP, streams are saved as messages collected accord-
ing to their direction, as TCP connections are bidirectional. In case of UDP messages are
saved as unidirectional. Then an analysis signature is created which is based on anoma-
lies recorded by protocol analysis at network and transport layer. There is no knowledge
of application layer protocols. In a second stage similar recorded connections are com-
pared against each other by a two-dimensional LCS algorithm and payload byte patterns
found are added to the signature. Horizontal detection means that a message is com-
pared with each message of all the other connections corresponding to the same state.
Vertical detection is done by concatenating messages of one connection and comparing
it to concatenated messages of similar other connections. This allows to detect patterns
in interactive sessions in contrast to the horizontal detection. For an example of a honey-
comb signature look at section E.1.

Signature Refinement Honeycomb maintains a signature pool. When a new signature is a su-
perset of an existing one, the old signature is dropped. Dropped signatures are not lost
because the pool is backed up regularly. If the new signature does not replace an existing
one it is just added to the pool. Signatures equal to existing ones are discarded.

3.1.2 Polygraph

Overview Polygraph [14] is a system specifically targeted at generating signatures for polymor-
phic worms. A flow classifier reassembles flows per port and puts them in a suspicious
flow pool. The classifier is not specified.

Signature Generation There are three different signature types specifically designed to detect
polymorphic worms. All three signatures are built from substrings called tokens which are
byte sequences longer than a certain minimum length. Frequent tokens are collected and
each flow is represented by a number of tokens. The grouping of tokens can be achieved
by hierarchical clustering.

The conjunction signature is a set of unordered tokens. If a signature and an incoming flow
have the same tokens they are equal. For a set of tokenized flows a conjunction signature
can be generated by simply extracting the tokens present in all flows.

The token-subsequence signature is a set of ordered tokens. A flow matches a signa-
ture if it contains the same set of tokens in the same order as the signature. A common
token-subsequence signature for a set of flows is found by applying the longest common
subsequence (LCSeq) problem to all signatures for the flows contained in this set.

The Bayes signature is a set of tokens with a score assigned to each of them. A flow is
matched against this signature by adding up the scores of tokens, which are present in
the flow. If the sum is greater than a threshold it is a worm. The score is derived from the
Bayes law. It is mainly based on the probability that a certain token is present in a worm.

Signature Refinement Signatures are a set of tokens describing a certain exploit. They are
refined by hierarchical clustering.

3.1.3 Earlybird

Overview Earlybird [31] proposes an automated approach for quickly detecting previously un-
known worms and viruses. The main idea of the approach is to compute a Rabin finger-
print for all possible substrings of an incoming network packet. Each fingerprint is hashed
together with the destination port and protocol. The hashes serve as indexes in a so-called
content prevalence table which counts the number of occurences for a certain hash value.
A second table called the address dispersion table counts the number of similar IP source
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and destination addresses for each hash value. Sorting the prevalence table with respect
to the substring counters and taking into account the size of the corresponding entries in
the dispersion table one gets a set of likely worm traffic. This approach is called content
sifting.

Signature Generation The system generates pattern-matching signatures formatted for the
Snort intrusion detection system including transport protocol and port information. As the
content-sifting algorithm does not keep any per-flow state the generated signatures de-
scribe only content information contained within a single packet. An example of an early-
bird signature can be found in section E.2.

3.1.4 Autograph

Overview Autograph [9] is a system for automated generation of worm signatures. The sys-
tem maintains a suspicious flow pool for which TCP flows are reassembled. If the number
of flows for a specific destination port exceeds a threshold the signature generation pro-
cess is initiated. Autograph measures the frequency with which non-overlapping payload
substrings occur across all suspicous flow payloads and proposes the most frequently
occurring substrings as signature candidates. This is done by the content-based payload
partitioning (COPP) algorithm.

Signature Generation The above signature candidates are filtered for possible benign content.
In a repetitive process the most prevalent content block is selected as signature. This
process repeats with the remaining flows, until some fraction of all flows in the pool has
been covered. Finally a set of selected signatures can be formatted as Bro signatures.

3.1.5 TaintCheck

Overview TaintCheck [13] uses dynamic taint analysis to protect designated applications.
Whenever tainted data is used in a way that is disallowed by the installed policy,
TaintCheck generates an alert and launches the signature generation process. The output
is a three byte long string signature.

Signature Generation The three bytes of the signature are determined by matching the most
significant bytes which were used to overwrite a return address or a function pointer with
the originial content, i.e. network data is compared against memory data. If the original
content and the three bytes do not match, some decoding or other data transformation
operations have been applied between data input and attack detection. In this case the
original content is used as a signature. The signature length of three bytes is too short
because assuming an uniform byte distribution would lead on average to one false positive
per 16 MB of traffic.

3.2 Flexible content-based signatures

These approaches on the one hand work on a byte level as the methods in the previous sec-
tion. But on the other hand they are more flexible in that they do not just try to match strings
or substrings with incoming packets. Their signatures describe patterns of how malicious bytes
are organized. Example techniques are the use of byte-frequency distributions or regular ex-
pressions.

3.2.1 PADS

Overview The position-aware distribution signatures (PADS) system [36] uses a double-
honeypot system to track malicious activities in local networks. A high-interaction honeypot
redirects connections to low-interaction honeypots. When the high-interaction honeypot
gets compromised, the low-interaction honeypots will be able to capture several worm
variants. Worm signatures are computed off-line.
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Signature Generation The PADS signature consists of a signature for normal and anomalous
traffic. Both signatures contain byte frequency distributions (instead of fixed values) for
each position in the signature string?. Signature generation and worm identification in
a payload are very related. To understand the signature generation process the worm
identification process needs to be understood.

To examine a byte sequence for the existence of a worm, a window of the length of a
PADS signature slides over the byte sequence and computes a matching score A for
every window . This matching score is a formula that involves computing a matching
score M for both the byte sequence with the anomalous and the normal signature. If the
matching score A for a window position is higher than a threshold (which is normally zero),
the sequence is assumed to carry a worm.

The position of the window with the highest matching score is called significant region.
For finding a worm signature we need this region because the anomalous signature is the
byte-frequency distribution (BFD) of the significiant regions of all worm variants at hand
during the signature generation process. If the significant regions of all worm variants
were known the BFD could be easily computed and so the signature. But to know the
significant regions we would have to know the signatures which we don’t. Fortunately we
can approximate the significant regions for all the worms by applying the expectation-
maximization (EM) algorithm.

3.2.2 PAYL

Overview PAYL [16] is an anomaly detection sensor that detects inbound anomalous loads,
and correlates them with outgoing traffic on the same ports.

Signature Generation The PAYL anomaly detection sensor computes during a training phase
the "normal profile” of a site using n-grams. For a packet payload, an n-gram consists of
any sequence of n consequent bytes in the payload. When a new packet arrives, all possi-
ble n-grams are computed for it and also the frequencies of these n-grams are registered.
Then a formula is used to compute the distance between arriving packets and the n-gram
distribution, which was seen during the training phase. If this distance is larger than a
threshold and the incoming traffic was intended for port i, then such packets are put into
a buffer list of "suspects” for port i. Any outbound traffic to port i, which is also detected
as anomalous using the anomaly detection sensor, is compared with this buffer. For the
compared strings, a similarity score is computed based on a formula, which requires the
generation of the longest common substring (LCS) and the longest common subsequence
(LCSeq) of the two strings. If the similarity score is greater than a threshold, the outgoing
traffic is blocked. As a by-product of the correlation between inbound and outbound traffic,
a signature for the worm is generated in the form of a LCS and a LCSeq.

3.3 Context and semantics aware signatures

These approaches go beyond the previous approaches and the byte level analyzation respec-
tively. They understand application-level protocols and thus can determine in which states an
application has to be for unveiling an exploit.

3.3.1 Nemean

Overview Nemean [35] provides automatic generation of intrusion signatures from honeypot
packet traces. The system consists of the Data Abstraction Component and the Signature
Generation Component. The Data Abstraction Component normalizes packets and per-
forms flow aggregation by ordering the packets into connections (multiple packets between
two hosts) and sessions (multiple connections between two hosts). At last the aggregated
sessions are normalized via pre-defined service specifications, e.g. for HTTP. The output
of this component is a semi-structured session tree.

2The byte frequency distribution of normal traffic is equal for all bytes.
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Signature Generation The Signature Generation Component groups sessions and connections
according to a similarity metric. Automata learning is used to construct an attack signature
from a cluster of sessions or connections and these Finite-State-Automata signatures are
transformed into a signature format of an IDS.

Signature Refinement As clustering is used to group session and connection information to
signatures, refinement could be done by successively applying the clustering algorithm.

3.3.2 COVERS

Overview The COntext-based, VulnERability-oriented Signature (COVERS) [37] system allows
to automatically generate attack signatures for control flow hijacking attacks. It consists of
an attack detection part and a signature generation part. The attack detection part employs
the address space randomization (ASR) technique in contrast to e.g. Argos which uses
dynamic taint analysis.

Signature Generation Signature generation consists of three steps. The correlation step iden-
tifies the specific network packet (or flow) involved in an attack, and the bytes within this
packet that were responsible for triggering the alert. To identify the relevant bytes a foren-
sic analysis of the victim process memory around the corrupted pointer is done by using
the LCS method on recent input data and the data held in memory. However there are
some cases where this approach will not produce meaningful signatures.

In a second step application protocol fields are analyzed whereas a language for sim-
ple message format specifications has been developed. After the field is identified by the
specification, abnormal field characteristics are identified by comparing the field against
reference values which are continuously updated using benign input traffic.

The signature consists of the message format specifier, the message field carrying the
exploit and thresholds for the characteristics. An example can be found in the section E.3.

3.3.3 Polymorphic Worm Detection using structural Informa tion of Exe-
cutables

Overview In [6] an approach is presented to generate signatures for detecting polymorphic
worms. It is based on the control flow graph (CFG) of executable code. First a linear
disassembler extracts a sequence of valid instructions. Then a CFG is created for which
a spanning tree is calculated. From this all possible k-node subtrees with a selected basic
block as root node are generated. These trees also include non-spanning-tree links. The
adjacency matrix of each tree is combined with node colors (14-bit vectors) which provide
an indication of the instructions in a basic block. Out of the matrix a fingerprint is computed.
The detection part is very similar to the Earlybird approach (see subsection 3.1.3). The
main difference is the mechanism used to index the prevalence table. While Earlybird
uses simple substrings, this approach uses fingerprints extracted from CFGs. Thus worms
are identified by checking for frequently occurring executable regions that have the same
structure.

3.4 Other approaches

In this section approaches are presented which can not be classified as signature generation
mechanisms (SGMs). Nevertheless these methods describe interesting ideas which could be
used in a future SGM.

3.4.1 DOME

Overview The Detection Of Malicious Executables (DOME) [12] approach allows to detect code
injection attacks and attacks originating from executables with modified code. The detec-
tion mechanism is based on the fact that malicious code often makes use of system calls.
DOME makes a static analysis of the executable of an application to identify the location
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of system calls in it and supervises if the locations at runtime differ. Although DOME does
not generate any signature describing malicious activities, it can recognize such activities
by verifying any activity against a signature describing normal/approved behavior.

3.4.2 Paid

Overview The Program semantics-Aware Intrusion Detection system (PAID) [17] defends ap-
plications against control flow hijacking attacks that make use of system calls. It analyses
the location and ordering of system calls and parts of the control flow of the application
with the aid of the application’s source code.

Signature Generation The recompilation step analyses the system call usage of an application’s
source code and constructs a System Call Site Flow Graph (SCSFG), which is included
in the resulting library or executable. This graph is a deterministic finite-state automaton
(DFA) representing the system call sequences and their location (site) in the program.

3.4.3 HoneyStat

Overview HoneyStat [7] is a system which combines network and host level attack detection
methods. A HoneyStat node emulates multiple operating systems and detects three dif-
ferent types of events: memory events, network events, and disk events. The system does
not generate any signatures from the generated events but information during an event is
recorded. The gathered information is forwarded to a central analysis node which corre-
lates all received HoneyStat events.

3.4.4 Vigilante

Overview Vigilante [20] is an end-to-end approach to contain fast spreading worms using
collaborative worm detection at end hosts. The system introduces the concept of self-
certifying alerts (SCAs). A SCA contains a description of an attack that is detailed enough,
to allow other hosts to verify, if they are vulnerable to it. This is done by replaying the mes-
sage(s) of a SCA in a sandboxed version of the targeted service. This SCA verificator
replaces the section that is marked as critical with a nonce. If the nonce is activated and
thus the host is vulnerable, it could generate a protection filter for the corresponding at-
tack. SCAs have been developed for three common vulnerabilities. Arbitrary Execution
Control (AEC) SCAs identify vulnerabilities that allow worms to redirect execution to arbi-
trary pieces of code. Arbitrary Code Execution (ACE) SCAs describe code-injection vul-
nerabilities. Arbitrary Function Argument (AFA) SCAs identify data-injection vulnerabilities
that allow worms to change the value of arguments to critical functions such as the exec
system call.

Signature Generation The three types of SCAs have a common format: an identification of the
vulnerable service, an identification of the alert type, verification information to aid alert
verification, and a sequence of messages with the network endpoints that they must be
sent to during verification. The verification information allows the verifier to craft an exploit
whose success it can verify unequivocally. It is different for the different types of alerts,
e.g. for AEC an SCA specifies where to put the address of the nonce code to execute in
the sequence of messages. In the section E.4 an example of an AEC SCA is given.



Chapter 4

Application Protocol Plugin

4.1 Requirements

As NoAH is primarily meant to detect exploits for server software the application protocol to be
implemented in the tracker should be a client/server application protocol, e.g. the HTTP pro-
tocol. Because in the second task state information of this application protocol plugin will be
used for exploit signature generation, exploits for this protocol have to be available. So prior
to the design and the implementation of the plugin a survey of available exploits in relation to
the corresponding network protocols had to be done. During the design of the plugin another
important requirement emerged. Several network protocols use multiple connections in parallel
for the hosts communicating with each other, e.g. one connection for exchanging control com-
mands and an arbitrary number of connections for exchanging data as it is the case for the FTP
protocol. In this case it could be possible that a network packet belonging to a data connection
arrives at the Tracker for processing before the data connection initiating control packet arrives.
In this case of possibly asynchronously arriving network packets the Tracker has to be able to
collect packets although they do not actually belong to one of the implemented protocol plugins.
The section about the non-protocol specific gargabe collector plugin devotes to this aspect.

4.2 Exploit survey and Protocol Evaluation

Software vulnerabilities do neither depend on the purpose for which the software was written
nor on which target platform or operating system it will run. Vulnerabilities rather depend on the
development process and the technologies used throughout. Consequentially the number of
occurring vulnerabilities in network software and thus possible exploits varies for software prod-
ucts and not for protocols. Testing the signature generation mechanism implied to have several
successfully executable exploits for the same protocol. It has shown that the number of avail-
able exploits for the same application protocol differs but remains very low. Even if an executable
exploit is available, it is not sure that the vulnerable version of the target server software can
be found. And even in this case, the success of an exploit depends on the vulnerability of the
overall target system. For instance the success of an exploit for server software on Linux may
vary for each distribution and version. This is the reason why Windows 2000 was selected as
the primary target operating system to attack. Furthermore Windows 2000 is more susceptible
to remote exploits than its widely used successor Windows XP.

Because exploiting software is a very complex and cumbersome craft it has been decided to use
the Metasploit framework [28] for attacking the containment system. Logically even less exploits
are available for this attack framework. For the evaluation of the most suitable application net-
work protocol which will be implemented in form of a plugin, different exploits in the Metasploit
framework and the corresponding exploitable software had been searched and tested. The ta-
bles 4.1 and 4.2 list the most important and usable exploits available for FTP and HTTP protocol
respectively. The tests have been done with target machines running Windows 2000 (WinZ2k),
both english and german version, and Windows XP. A test was either successful (/) or it failed
(X). The fields marked with an asterisk represent exploits which triggered the vulnerability, e.g.
the buffer overflow, but could not execute the shell code successfully.

29
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Exploit name Description s QS -
WIin2kDE | WIin2kEN [ WinXP

warftpd_165_user Uses overflow in the USER | / * v/
command.

warftpd_165_ pass Uses overflow in the PASS | * * *
command.

3com_3cdaemon_ftp_overflow | Overflow via the USER com- | * * v
mand.

slimftpd_list_concat LIST command with overly-long | X X *
argument triggers overflow.

cesarftp_mkd Improper input validation allows | * X *
code execution via overflow.

Table 4.1: Tested FTP exploits for the metasploit framework

Exploit name Description s QS -
WIin2kDE | WIin2kEN [ WinXP

trackercam_phparg_overflow Stack overflow via PHP argu- | X * *
ments.

minishare_get_overflow Buffer overflow via missing Link | * * v
length validation.

apache_chunked_win32 Due to improper interpretation | X X X
of an unsigned value, buffer
sizes for requests with chunked
encoding are computed wrong.

icecast_header Sequence of 32 http headers | / v/ v
will overrun a buffer.

ypops_smtp Too long smtp message over- | * * *
flows a buffer.

Table 4.2: Tested HTTP exploits for the metasploit framework

Server applications for the file transfer protocol (FTP) exhibit a large number of similar buffer
overflow vulnerabilities. Mostly the buffer overflow can be triggered in an argument field of a
command request message. The kind of protocol-specific and typical buffer overflows for the
FTP protocol, and the amount of available and successfully executable exploits for different FTP
server applications led to a more thorough examination of the protocol specification of FTP. It
is important to emphasize that from all examined protocols FTP is the one with the highest
number of similar exploits for distinct server applications. Further there was a high percentage
of vulnerable versions of server applications available with respect to the available exploits.

4.3 The File Transfer Protocol (FTP)

The FTP protocol sits on top of the transport layer in the OSI model and uses the transport
control protocol (TCP). It is commonly used for exchanging files over a TCP/IP network. The
main specification part can be found in the request for comment (RFC) document 959.

FTP consists of two connections. The control connection normally is connected to the server
port 21 and initiates an arbitrarily number of data connections. The connection ports for the
data connections depend on the mode which was used to negotiate the data connection. In
active mode the client creates a listening socket and tells the server via the PORT command on
which port it is available. As incoming connections are often refused when the client is behind
a firewall and/or a network address translation (NAT) box, the passive mode is mostly used in
the Internet. In the passive mode the client sends a PASV command to tell the server to open a
listening socket on a certain port. This port is normally the port number of the control connection
on the server side minus one.

FTP is based on the Telnet protocol. Commands are sent in cleartext and normally for each
command a reply is awaited. It consists of a three digit reply code and some human readable
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reply message. An example of a command specification taken from RFC 959 is given below. All
commands are defined in Backus-Naur-Form (BNF) notation.
Example Definition of the USER command in FTP:

USER <SP> <user nane> <CRLF>
<usernane> ::= <string>

A typical FTP command / reply sequence would be:
220 Service ready for new user.
USER anonynous

331 User nanme okay, need password.
PASS anonynmous@rozil | a. org

230 User | ogged in, proceed.

\Y

V V V V

The relation of data and control connections became of interest during the plugin implementa-
tion, since the tracker has to temporarily store possible data connections for the case where the
data connection negotiation command would be processed delayed. This led to a second plugin
called the garbage collector.

4.4 The Garbage Collector Plugin

As shown in [21], all packets belonging to a certain network connection have to be processed by
the same thread, since state information for this connection is only available in the thread which
received the connection initiating packet. If for some reason the FTP command for negotiating a
data connection would be buffered and the data connection initiating packet would be processed
first, it may be possible that this packet will be delivered to the wrong thread. Actually it will not
be even delivered since we can not assign a port number for the data connections statically
because the port numbers are negotiated in most cases for the FTP protocol, as we have seen
before. Then the tracker would discard the packets and our plugin never notices that the data
connection was indeed opened. It may be even the case for more complicated protocols such as
peer-to-peer protocols that not even a single connection could be statically preconfigured since
all ports are negotiated. These problems made a plugin necessary which buffers all packets
belonging to a connection not assigned to a plugin. Note that the last scenario when we are not
even able to preconfigure a single connection with respect to the port assignments is not solved
by this plugin. However it would be easily possible to augment functionality of this plugin, e.g.
by a polling mechanism, in order to come by this most complicated case.

The most important structure in this plugin is the class Synchr oni zedMap which holds all pack-
ets sorted according to the connections they belong to. In order not to overflow heap memory,
packets are deleted in different situations. So what the garbage collector plugin actually does,
is just to insert arriving packets into the synchronized map which is described in the following
subsection.

4.4.1 Class SynchronizedMap

The class Synchroni zedMap consists of a map called cont ent Map which holds con-
nection information such as state changes sorted according to the connection keys for
each registered network packet. The number of maximum opened connections is limited
by MAX_OPEN_CONNECTI ONS. Connections which get closed are registered in a sub-map
called cl osedMap which sorts connections according to the time when they were closed. If
CARE_CLGCSED | NTERVAL number of elements have been inserted into cl osedMVap, closed
connections are removed from all internal maps (cont ent Map and cl osedMap) if they have
been closed for longer than CARE_CLOSED TI ME. The connection holding map has an upper
bound number of contained elements of MAX_HASH ENTRI ES and each opened connection
must not have more than MAX_ENTRI ES_PERKEY. Note that according to this condition it fol-
lows that

MAX_OPEN_CONNECTI ONS * MAX_ENTRI ES_PERKEY <= MAX_HASH_ENTRI ES
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But what happens if we had the maximum number of opened connections and each opened
connection has the maximum number of entries? The map would be blocked and a new con-
nection could not be added. A workaround is the following. We allow to set the constants in
a way that the above inequality is hurt. But if we reach a number of connection entries bigger
than MAX_OPEN_CONNECTI ONS * MAX _ENTRI ES_PERKEY we switch to congested mode. In
this mode we will force first the deletion of closed connections until we reach a limit number of
NUM_DEL_FORCED. If this is not possible it would be thinkable that we even remove entries for
opened connections. As it becomes clear from the above explanations such a map is a compli-
cated thing and needs a lot of fine tuning before it is used in a real-world scenario with a high
amount of network traffic. Following the above mentioned maps for opened and closed connec-
tions are shown as they are declared in the private section of the class Synchr oni zedMap.

e nulti map<unknownConnecti onKey, unknownConnecti onl nfornmati on*>* content Map;

The content map just maps information on a certain connection. Each arriving packet will put
its information into this map in form of a map entry. This method allows us to have information
for connections with the same end points but which chronologically differ in the same map. This
is important because it is theoretically possible that two consecutive connections between two
hosts could have the same port assignments but the tracker was not able to process information
about the first connection when the second connection will be stored in the map. The map in
this case would mark the first connection as closed and then it will be possible to insert a new
connection with the same end points again.

e map<cl osedTi meval , unknownConnecti onKey>* cl osedMap;

Each connection which will be closed gets an entry in this map. The keys are sorted according
to the time when the connection was closed. This enables us to only delete the oldest connec-
tions.

e semt*nmapConpl et eLock;

This is a semaphore which controls the access to the maps above. The maps can only be
accessed via certain API functions and those are made thread safe by use of this semaphore.

Class unknownConnectionKey

The class unknownConnect i onKey describes an arbitrary connection to the server which is
monitored. This means that if we would track the connection states to more than one contain-
ment system, we would have to add additional information to this class. However it was assumed
that monitoring one containment system is sufficient. A connection key has the following prop-
erties:

Transport Layer Port  This number corresponds to the port taken from the IP frame and e.g. stands for
the TCP protocol.

Client Network Address A network address can be currently either IP version 4 (IPv4) or version 6
(IPv6). Further types of network layer addresses could be added.

Client Port The client port of the transport layer protocol, e.g. port 21 for the FTP protocol if TCP is the
transport layer protocol.

Server Port  The port of the containment system.

As this class will be used in containers from the Standard Template Library (STL), the less-than-
operator is overloaded. In the case of FTP it is possible that we only know one application port,
either the one of the server or the client. This comes from the fact that either the client opens a
listening socket (active mode) or it tells the server to open a listening socket for a certain port
(passive mode). Either way only one port will be known beforehand. This is why a port set to
SVAP_UNKNOWN_PORT will be ignored when two connection keys are compared against each
other.
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4.5 The FTP Plugin

4.5.1 Deriving a state machine for connection state observa  tion

The FTP protocol defines five different state machines for request / reply sequences. Each
request command is assigned to one of these state machines. The most commonly applied
state machines are shown in Figure 4.1 and 4.2. For each state machine the corresponding
request commands are listed. Note that the reply codes shown besides the transitions denote
the first digit of the actual reply codes. This is because each of the three digits in a reply code is
subject to some classification. Please refer to the original protocol specification (RFC 959, page
34) for more details.

State machine one

Await Reply

Figure 4.1: First state machine of the FTP protocol specification

Assigned request commands:
ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV, QUIT, SITE, PORT,
SYST, STAT, RMD, MKD, PWD, STRU, and TYPE.

State machine two

Await Reply

Figure 4.2: Second state machine of the FTP protocol specification

Assigned request commands:
APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

Additional state machines

For some special commands more specific and complex state machines exist which can be
seen as concatenations of the above two types of state machines for two or three commands.
In particular:

e The sequence of the RNFR command followed by the RNTO command describes its own
state machine.

e The restart command REST has its own state machine and will be followed by either
APPE, STOR or RETR.
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e The login sequence with the commands USER, PASS and ACCT is the most complicated
state machine and describes state transitions between those three commands whereas
PASS and ACCT can be seen as optional.

A derived state machine

In order to be able to track the state of a connection we have to know exactly in which over-
all state the connection is. This implies that we must have a single state machine which can
be used throughout the entire life cycle of the connection. There will be only one single entry
point and one single state when the connection gets closed. The Figure 4.3 shows the derived
state machine. Note that the properties of each of the five afore described state machines are
somehow contained in this new state machine. After each received reply message the state

120

: i 220
' Prelogin
[ L Command Await ]
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[ Reply Await J
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Command Await
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Command . Second Reply
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Figure 4.3: The derived state machine used by the FTP plugin

machine traverses one of the three in Figure 4.4 depicted states. These states however are just

Reply

Success ]—> Next regular state
Failure ]—} ?

Figure 4.4: After each command / reply sequence one of the illustrated states is passed. They
do not affect the FTP state machine itself but are meant rather for additional information.

for information and output purposes respectively and do not affect the internal current state.
The three states correspond to the output states of the single FTP state machines. Using the
above temporary states makes sense because we actually have to track the state of the server
part of the communication. This is the network site which is known and it should be not possible
that the server application is comprised. So the definitive state transition will be just done when
the server response has been received. After reply reception we will emit information about the
statefolf the server - either the request from the client caused an error, a failure or it was suc-
cessful.

The overall state machine has been implemented rather straightforward. There is a class
Ft pDat a which holds all the possible requests and replies. For this purpose the following two
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data structures r equest Command and r epl yCode are used. Listing 4.1 shows the declaration
of those structures.

Listing 4.1: The structures representing requests and replies respectively

struct replyCode

{
unsigned short code; /I The reply code
unsigned short firstDigit; // The first digit of the reply code, e.g. 5xx
charx msg; // The message which should be printed if this reply
/] code is detected
unsigned short argumentType;// The type of argument to parse. Currently only
/I hostport is implemented for the replies
replyCode (unsigned short , unsigned short , char«, unsigned short );
b
struct requestCommand
{
char* cmd; // The command as a string
charx msg; // The message which should be printed if this reply
/] code is detected
char x nextCommand; /! Some requests need further commands
unsigned short argumentType;// The type of argument to parse.
unsigned short cmdSize; /I The size of the command, e.g. 3 digits
/I (important for parsing the arguments)
set<int >x validReplyCodes; // Each command has a set of allowed replies and
/] these replies result in a new state
unsigned short stateType; /I One of the state machines from the specification
requestCommand (char =, char «, char«, unsigned short , unsigned short |,
set<int >x, unsigned short );
~requestCommand () ;
b

These data structures are hold by two containers from the Standard Template Library (STL) and
are publicly accessible as members of the class Ft pDat a. They are declared as following:

e typedef map<string, requestComuand*> request MapT;

The request commands are hold in a map of this type. The requests are mapped to a unique
string identifier which is the same as the command string in the structure r equest Cormand.

e typedef map<int, replyCode*> repl yMapT;
The replies are hold in a map of this type. They are mapped to their unique reply code.

4.5.2 The plugin design

To track the state of a connection the plugin maintains a list of control connection items de-
clared by the structure ft pConnect i onl d. Each connection is mapped to its corresponding
state related structure f t pCont r ol Connect i onl nf 0. This structure holds information about
the current state and a map of data connections which have been initiated by the control con-
nection. Note that in the case of the PASV command which tells the server to create a listening
socket, we just know if the control connection was successfuly negotiated when the server
sends a reply with the number 227. For this reason the connection info structure also holds
two data connection structures for the currently negotiated data connection and the data con-
nection settings prior to the ongoing negotiation. This allows us to restore the previously data
connection properties if a server refuses a passive data connection request. Data connections
are described by the structure f t pDat aConnect i onl nf o.

The functionality of the entry function which is called for each arriving packet contains the fol-
lowing main steps:

1. Look in the map holding active control connections if a connection for the given packet
already exists. If it exists go to 3.

2. Create a new entry for the current control connection.
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3. Test if the packet is a TCP closing packet. These packets are forwarded from the TCP
plugin in order to have full knowledge of the connection state. If it is a closing packet, the
connection state will be set to closed. Succeeding FTP operations on this connection will
be ignored.

4. Decide from which site the packet originated. The packet parsing and state handling will
be somewhat different for request and reply messages.

5. Parse the message.

6. Update state and do reporting.

At some positions in the code this rather conceptual functionality had to be broken and espe-
cially the order of first parsing the message and then update the state was not always the most
efficient way. This is the result of the need for one single overall state machine which emerged
from the five possible state machines of the specification.

4.6 Evaluation

After implementing the FTP protocol plugin for the tracker framework, evaluation had been post-
boned since the signature generator was intended to be demonstrated at the NoAH meeting
in Amsterdam, NL. Because of this, evaluation of the plugin was planned to be done after
the implementation of a first signature generator. Meanwhile we have been strucked that the
implementation-oriented design of the tracker framework is not very convenient. The reasons
are the following:

e Implementing a state tracking plugin for each desired protocol is cumbersome and re-
quires too much effort. Protocols are seldomly fully specified and require a lot of experi-
ence and effort to be implemented correctly. Furthermore extensions of the original proto-
col specification often complicate the protocols and it has been sighted that even popular
applications omit extended functionality of the original network protocol.

e Adding additional functionality that has always the same basic structure as hardcoded
plugins is normally not a good design choice. Generic design and configurability are the
catchwords for this point and are the techniques which constitute a valuable framework
design.

e As network protocols are widely implemented and in use some already existing implemen-
tations should provide the functionality instead of implementing twenty years old network
protocols by our own from scratch.

These observations amongst others are recapitulated in section 6.1. Despite the further direc-
tion of this work heading towards another approach than using the tracker framework a short
evaluation of the performance of the implemented plugin will be presented.

4.6.1 Tracking states

After a couple of initial tests it showed that not a single packet was forwarded to the FTP plugin.
During packet analysis the invalid TCP checksum for each network packet attracted attention. It
came out that this effect is caused by a feature of newer network interface cards (NICs) called
TCP checksum offloading. When this option is enabled, the network adapters will calculate the
checksum by themselves, making the CPU and the operating system not have to do this work.
When we are capturing and analyzing outgoing network packets we normally receive packets
before they get to the network adapter and thus we won't see the correct checksum because
it has not been calculated yet!. Offloading parts of network protocol processing from the host
CPU is a hot topic in the research area of operating systems and network acceleration. As
a consequence testing the TCP checksum in the TCP plugin had to be deactivated. Another
option would have been to deactive offloading at the local host.

Listing 4.2 shows a single but complete packet element as it is logged in the XML log file of the
Tracker. The listing 4.3 shows an excerpt of the Tracker log output for the FTP subelements of
the packet elements only. It reveals that we are able to track commands and their replies and
even are able to make note of negotiated data connections.

1Source: http:/imww.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.html
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Listing 4.2: A single packet element

<packet packetld="1124" thread="0" captureTime="1189000430.798982">
<IP src="192.168.3.10" dest="192.168.3.11" payloadSize="59"
direction="fromClient" />
<TCP connectionld="1111" src—port="56417" dest—port="21" payloadLen="27"
newState="TCP_ESTABLISHED" />
<FTP valid="true">
<request type="PORT" argParsed="true" argValid="true" argLength="20"
newState="FTP_CTRL_REPAWAIT" lastReply="215" />
</FTP>
</packet>

Listing 4.3: Tracker log excerpt

<FTP valid="true">
<request type="PORT" argParsed="true" argValid="true" argLength="20"
newState="FTP_CTRL_REPAWAIT" lastReply="215" />
</FTP>

<FTP valid="true">
<reply type="200" argParsed="false" argValid="false" argLength="0"
newState="FTP_CTRL _SUCCESS" currentCmd="PORT" />
</FTP>

<FTP valid="true">
<request type="LIST" argParsed="true" argValid="true" argLength="0"
newState="FTP_CTRL_REPAWAIT" lastReply="200" />
</FTP>

<FTP valid="true">
<reply type="150" argParsed="false" argValid="false" argLength="0"
newState="FTP_CTRL _SECREPAWAIT" currentCmd="LIST" >
<dataConn portSite="client" portNum="52092" />
</reply>
</FTP>

4.6.2 Measuring performance

For measuring the delay added to the overall processing time of the Tracker an FTP batch job
was used. Listing 4.4 shows the script.

Listing 4.4: FTP batch script

open 192.168.3.11 user Sysadmin peterli

dir

cd /pub

dir

cd /upload

dir

rename test.txt neu.txt
dir

rename neu.txt test.txt
dir

cd /pub

get empty_document. bin
get empty_document. txt
get short_document. bin
get short_document. txt
get long_document. bin
get long_document. txt

by

It opens a connection to a remote host and performs different file operations. The time needed
to process a packet is measured by using the system call get t i neof day before and after the
packet processing inside the code of the Tracker. The measurements can be enabled by using
a precompiler directive to set the variable PERFORMANCE NMEASUREMENT. Figure 4.5 shows the
delays for the processed packets exchanged with the FTP server according to the batch script.
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It can be seen that the FTP plugin has only a small part of the overall delay. Furthermore the
delay approximately remains constant. The overall delay was also measured without the use of
the garbage collector plugin and has not shown any significant differences. The average delay
induced by the FTP plugin for processing FTP network packets is about 26 microseconds. This

delay corresponds to a one-digit percentage compared to the overall delay for processing a
packet with the Tracker.

Conplete packet processing vs, plugin delay
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Figure 4.5: The delays for processing the complete packet and processing the FTP protocol part
with the FTP plugin respectively



Chapter 5

Signature Generator

In the context of the NoAH project, the goal of this thesis was to present a simple signature
generation mechanism (SGM) in a first step as a proof of concept (PoC). This simple SGM has
been presented at the NoAH conference in Amsterdam, Netherlands, in June 2007. The goal
was to demonstrate the successful collaboration of the NoAH project components, i.e. Argos,
the tracker framework, the Signature Generator and an IDS supporting the signature format of
the generated signatures.

5.1 Requirements

The signature generation component mainly can be divided into two parts. The first one is
responsible for correlating information from Argos and the Tracker and preparing the extracted
information for the second component, the SGM. The SGM has the function to synthesize a
concrete signature for e.g. an existing IDS from the extracted information. It exists only one
extraction component but an arbitrary number of SGM components.

Prerequisites for the information providing component are the following.

1. The information extractor has to work reliably. This means that during each process of
extracting attack information it is known how much information is available if any, and of
which quality the information is. The latter depends on the methods with those information
was extracted as these have not always to be the same.

2. The information extraction should be fail-proof, i.e. it is not possible that an information
extraction process can terminate unexpectedly.

3. The information extraction should be fast. At this point the motto "safety before speed”
applies.

Prerequisites for the SGM components and for a simple SGM for demonstration purposes in
particular are

1. The target signature format should be compliant with at least one IDS available for free.
2. This IDS should be popular, widespread and easily configurable.

3. The signature rule language should be rather simple in order to create signatures effi-
ciently. This assures that focus is laid on the information extraction.

4. In contrast to the above point the signature format should be powerful enough. This means
that the accuracy of the extracted information should not be significantly reduced when
transformed into a signature of this format.

5. The signature format should allow signatures with a low false-positives rate. More explicitly
the false-positives rate should be constrained by the quality of the extracted information
and not by the signature generated thereof.

39
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5.2 Signature format evaluation

For a simple SGM the rule language to build signatures should be rather simple. Two of the
most prominent open source IDS, Snort [11][1] and Bro [33][34], have been considered and
were compared against each other. Bro is to prefer over Snort if we want to build a customized
and very secure system. But because of the simplicity of the Snort rules and its architecture
Snort has been chosen to serve as the basis for a first SGM. Furthermore the Bro system is
compatible with Snort rules. It has shown that the Snort rule language is quite powerful despite
its simplicity. In accordance to the stated prerequisite the Snort rules should not narrow the
power of the extracted information and thus should not increase the theoretical false-positives
rate of the extracted information.

5.3 Architecture

This section presents the architecture for the information extracting component. The extracted
information could be seen as a generic kind of signature although this is not consequently
realized in the design®.

5.3.1 Extracting alert information

Recall from the Figure 2.2 that the interface connects the log file information available from
Argos and from the Tracker. From this information we should be able to extract useful attack
information and generate a first simple signature.

Because the code of the interface that was already available was not that big, we decided to
integrate the SGM into the interface. There are only a few classes involved in the signature
generation. The class Ext r act or extracts information from the given Argos log file and tries
to correlate this information with the Tracker log files. The Argos alert reports are named
according to the following pattern:

argos. csi.<randomal ert identifier>

where the number random al ert identifier (rid) iscreated by Argos and should be
unique among the entire set of created alert reports. The available set of extracted information
for describing an attack in the extractor class depends strongly on the state of the implemen-
tation and research. Therefore the class can be seen as a container holding all the extracted
information as members. For each information there will be a corresponding function which re-
turns the information value.

Each time an alert is generated by Argos the interface notices this by receiving a message at
the control socket connected to Argos. Subsequently the information extraction and signature
generation will be started.

Sni t ch. pl is an additional process running on the guest system under attack and is used
to determine the process which has been attacked and some further information. The snitch
process sends its information to the interface via a separate control socket. This is why a sec-
ond thread was needed which waits for incoming messages from the snitch process. Because
information from the thread connected to snitch is needed by the main process for signature
generation, a special map was needed which can be accessed safely by multiple processes.
The class called Sni t chMap uses a semaphore to protect its information from concurrent ac-
cesses. This method is very similar to the one used by the class Synchr oni zedMap in the
tracker framework. The interface polls the Sni t chMap when it needs information for a certain
alert report. Listing 5.1 shows how the interface gathers available information when an alert
message from Argos was received.

Listing 5.1: Extracting the entire set of available information for signature generation

/1 int rid holds the current random alert identifier

// Extract information
if (extractor.extractinformation("ArgosAlertReport"))

/1 Access the synchronized map

1As we will see a refactored version of the information extractor will treat the extracted information as a generic
signature.
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SnitchEntry« currentEntry ;
int count = O;
while ( !snitchMap.unbagElement(rid , &currentEntry) )

sleep(5); // sleep for 5 seconds and try again
count++;
if (count > 5) // we won't wait any time longer
break ;
}
if (count > 5)
// Information for the current rid was not available
else
/I We gathered information successfully

}

First information is extracted by the extractor class. If the extractor was successful, we look up
at the snitch map for the appropriate snitch entry. We poll the snitch map repeatedly at a cer-
tain polling interval until we either find the desired entry or we exceed the maximum number
of lookups. Because information from Argos is almost concurrently sent with the message from
the snitch process, polling is reasonable. Information from the Sni t chEnt r y object and infor-
mation provided by the Ext r act or now can be combined for generating a signature.

The class Si gnat ur eFact ory is responsible for factoring a rule out of the extracted informa-
tion. A class representing a concrete signature has to be derived from the class Si gnat ure. A
function factoring a signature of this type has then to be added to Si gnat ur eFact ory. Figure
5.1 depicts the process structure of the NoAH core after introducing the snitch thread.

E0[ =T
Argos Snitch ]

Control Socket Perl Script

Argos.netlog
.'

& \4 Interface
= IPC
A 4
= File I/O
ile 1/ \_Snitch Thread

. TrackerOutput.dat
% |:> Application State —
Tracker TrackerDump.dat

Figure 5.1: The process structure after adding alert information extraction

5.3.2 Archiving signature information

The signature generator should be able to archive common information of an alert as well
as concrete signatures. This has been achieved by adding a simple MySQL database. In this
database there are currently three important tables. One is for indexing the signatures, another
holds all the common information. Concrete signatures should have their own tables. The three
available tables are described below.

signatures This table holds the meta information for a signature database entry. Tuples of this
table identify a signature in the database uniquely. The only master key in this scheme is
provided here.

details It provides detailed information on the attack like source port or the position where a
possible buffer overflow occurred. This table is used to create specific signatures, e.g. a
Snort signature. If a signature will be refined information has to be changed first here.

snortSignatures  Shows the concept of how a concrete type of signatures could be stored in a
table. Each signature class that is available should have its own table to store the rules.
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As the database itself could be on a remote machine or kept locally at the same place where
the interface is running, different scenarios how to access the database and to provide API
functions are thinkable:

Local signature collection  This scenario is denoted local because the signature collection, re-
finement and deployment is done locally, in the same process. This approach was thought
of as a first and simple approach, especially for demonstrating the abilities. Note that de-
spite of the property "local” the signature database itself could be on another site than
local.

Remote signature collection It is meant that we implement another signature collector class
which would connect with a remote process for signature collection, refinement and de-
ployment. In this case the signature database would be at the remote site too.

For demonstration purposes a local signature collector class Local Si gnat ur eCol | ect or
has been written. The following functions provide the API for database access:

e bool insertSignature(SnitchEntryx, Signaturex, Extractorg&)

Inserts a signature into the database. If a signature for the corresponding attack already exists
first a refinement is attempted. If a refinement is not possible a new signature for the same at-
tack is created. If the refinement would not make sense the signature insertion is cancelled.

e bool updateSi gnature(Signature*, unsigned int)
This function can be used to update a signature of a concrete type.

As the collector classes represent the access point to the signature database they should
provide additional functions, e.g. for printing tables and converting numerical constants into
their string representations. This is provided in Local Si gnat ur eCol | ect or by the functions
print...() andresol ve. .. (). Getting back to the process structure of the entire architec-
ture we have added a database component as depicted in Figure 5.2.
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Figure 5.2: The process structure containing a MySQL database

5.3.3 Demonstrating signature capabilities

For demonstrating the usability of the generated signatures a small Java server program has
been written that waits for a signature description. It then updates the Snort rules configuration
file and restarts the IDS. This can be easily done in Java by using the classes Runt i ne and
Pr ocess. The functionality to connect the signature generator with this demonstration host has
been integrated into the local signature collector as this is the place where signatures are stored
and refined.
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5.3.4 Attack replaying

During the implementation it has shown that it could be useful to have a facility for replaying
detected attacks. A possible benefit is to refine the maximum length of a protocol field triggering
a buffer overflow. Furthermore it would be even possible to test the created signatures against
the detected attack by using the attack replaying in conjunction with the demonstration host.
This approach describes a similar methodology as proposed by Microsoft research introducing
self-certifying alerts (SCAs). This approach has been presented in the related work chapter in
section 3.4.4.

Attack replaying comprises the following steps:

1. The available replay target systems for a certain attack are identified. Currently this is done
by reading the available services and the platform properties from a XML configuration file.

2. Thenitis tested if the target is responding but no service of the requested type is running.

3. The remaining targets can now be used for replaying. The server application to be attacked
is started by using a secure shell (SSH) connection.

4. If the service does not respond after the attack we can assume that the attack was suc-
cessful. When we close the SSH connection the child processes and thus the started
service will be terminated properly.

Each replay target system is represented by an instance of the class Repl ayTar get. The
class At t ackRepl ayManager starts the attack replaying mechanism, either as a set of syn-
chronized processes or in the same process. This allows us to even use multiple machines
to attack replay targets. This resulting "one-to-many-to-many” relationship between the signa-
ture generation mechanism and the replay targets avoids the vulnerability to Denial-of-Service
(DoS) attacks by minimizing the possible bottle necks. The relationship is illustrated in Figure
5.3. The replaying process itself is done by objects of the type At t ackRepl ayer . This class

Attack Replay Manager

A

MySQL Database

Attack Replayer Attack Replayer Attack Replayer
== Socket
[ Service Control ] [ Service Control ] [ Service Control ]
== IPC
= File I/O
le 1f [ Attack Replayer ] [ Attack Replayer ] [ Attack Replayer ]

Replay Target

Replay Target Replay Target

SSH Daemon [ SSH Daemon ]

[ SSH Daemon ]

[ Service module ]

Figure 5.3: The "one-to-many-to-many relationship” for the attack replaying mechanism

manages the connection for the attack replaying and starts a concurrent control process for the
SSH connection. If we want to have the ability to replay an attack for a certain application proto-
col, we have to derive a class for this protocol from At t ackRepl ayer . For demonstrating the
concept an FTP attack replayer has been implemented. Figure 5.4 shows the overall and final
architecture with all its interacting components. It has to be admitted at this position that "self-
certifying” the generated signatures was achieved only in a restricted sense. The achievement
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Figure 5.4: The complete process structure of the signature generation mechanism
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was the functionality to replay FTP conversations up to the packet triggering the buffer overflow.
The buffer overflow has been verified by generating packet fields that are longer than the buffer
length of the vulnerable application. This information can be obtained from the generated sig-
natures.

The actual information provided by the signature is not the bound of the buffer length which
leads to a buffer overflow, but the critical buffer length which overwrites a target address for
execution. Protecting the application from overwritten jump targets or return addresses instead
from the buffer overflow itself is not a big difference since control-flow hijacking can be prevented
either way. Argos aims mainly at the detection of remote code execution attacks. Control-flow
hijacking is the method enabling exactly such attacks.

So at least it is possible to verify that a signature describes a vulnerability and that this vulnera-
bility can be triggered by the packet field and field length specified.

5.4 A signature generation mechanism (SGM)

A simple approach to generate signatures from the Argos log files was proposed in [3]. The
authors have applied the LCS method to extract a content string which will serve as an identifier
for the detected attack. This string could be easily used in e.g. a Snort signature. More precisely
Argos can detect if an overwritten return address is about to be used in the control flow. This
overwritten return address is identified in the corresponding network packet. The position found
in the network packet is then used to apply an LCS search around the return address in both
the process memory and the network packet. The LCS approach was reimplemented with ade-
guate effort by using the Cargos library. This library provides an API for accessing the log files
generated by Argos. A Snort signature generated by this SGM could look as following:

alert tcp any any -> any 21 (content:"|05 D3 FF 00 09 A4 C6 12|";)

Because the extracted byte string can contain information that could be altered but the vulner-
ability could still be triggered and the exploit executed, a signature created by this method will
not be able to identify altered attacks of the same exploit. Even if only the value of the return
address itself is taken as the byte string, the address may be slightly changed and the rule will
not trigger anymore. On the other hand the less bytes are contained in this signature the higher
the possible false-positives rate will be.

This is where the log files from the Tracker come into play. In the state tracking XML log file
we have a string contained which identifies the message type, e.g. a command string for FTP
command messages. With this information it is possible to have less information in the content
string. A possible Snort signature could now look as following:
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alert tcp any any -> any 21 (content:"USER'; content:"|09 A4 C6
SZ D

However the problem remains the same. As we have a small byte string the false-positives rate
would be high. So what do we actually intend to achieve our generated signatures? We try to
prevent an application-specific exploit from taking place. In other words we try to protect the
vulnerable service from exploits triggering its vulnerability. As the cause for a buffer overflow
often is a protocol field of variable length a possible countermeasure is to filter network packets
with a certain protocol field being longer than the biggest legitimate buffer size. In the case of
the FTP protocol this is simple since the field of variable length in command messages is the
last field of the message. Thus the Snort signature looks as following:
alert tcp any any -> any 21 (content:"USER'; dsize: >32;)

This rule assures that the user name extracted from the message will be not longer than a
certain maximum length. A buffer overflow caused by too long user names can not be triggered
anymore. As already mentioned in the previous section the maximum length for a protocol field
as specified by our signatures is not the bound at which the buffer overflow would be triggered
but at which the control flow of the application would be altered instead, e.g. by overwriting a
function’s return address. This is because Argos determines when and at which position tainted
data will be executed. But this information may not be sufficient to estimate the real bound
for triggering the buffer overflow. However protecting a vulnerable application from altering its
control flow is regarded as a very strong protection unless as even powerful as protecting from
the buffer overflow itself.
Unfortunately for variable-length fields that do not occur at the end of a packet the method
presented above obviously does not work. To come by this shortcoming a more elaborated
architecture for the signature generation is presented in chapter 7.
The above presented SGMs have been imlemented but only the first approach is not dependent
on the application protocol. For the other two approaches an application protocol plugin for the
tracker framework is necessary. The implementation of an application protocol plugin for the
FTP protocol has been presented in chapter 4. Note that the signatures shown are simplified. A
complete signature generated would look like the following:

alert tcp any any -> any 21 (nsg: "(NoAH) Overwritten return address

via FTP USER command in warftpd. exe (w n2k)" dsize: >15; flow

established,fromclient; content: "USER'; nocase; content: "|E2 31

02 75|"; sid:1000005; rev:4;)

5.5 Evaluation

As explained in the section 4.2 an attack usually exploits one or more security-related vul-
nerabilities caused by software bugs which normally have their roots in the implementation
or design. This is why exploits are only exemplarily available. It follows that measuring the
false-positives rate for the generated signatures does not have to be compellingly reliable.

One often made mistake regarding the generation of attack signatures is that the signatures
do not take into account the vulnerable application itself that initially enabled the exploit.
But this is one of the most valuable information since applications merely exhibit exactly the
same vulnerability. Information about the targeted application is not supported by the Snort
rules language which poses a major drawback. However, it is thinkable to select the active
set of Snort signatures for the Snort IDS according to the running services by an external
program. This way we could guarantee that each active signature on the host protects a
running application with an existing vulnerability. The signature database stores the name of
the vulnerable application and the platform for each signature.

A signature is the better the more it describes the vulnerability of the application and not just
properties of the attack exploiting the vulnerability. With the presented approach of using Snort
rules to protect variable-length fields the signatures protect the vulnerability pretty accurately.

The extracted attack information allows the creation of signatures with a zero false-positives rate
when
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1. Argos detects the execution of tainted data, e.g. data injected via the network that is
about to be executed. This corresponds to a remote code execution attack. In this case
the interface will receive the address value of the target instruction. Normally the target
address of e.g. a return or jump instruction has been overwritten via a buffer overflow.

2. We are able to read the instruction value from the memory dump of Argos at the address
given from above.

3. Itis possible to identify the network packet from which the target instruction originated.

4. The buffer overflow used to overwrite the instruction’s target address was triggered by a
too long protocol field of variable length.

5. The Tracker log file provides information for a protocol message type identifier.

If some of the above conditions do not hold we could generate some kind of emergency signa-
ture. An example for this sidestep strategy are byte matching algorithms between the memory
and the network data creating some kind of byte string identifier. The LCS algorithm is one
example of such an algorithm. The different possible signatures have been described in the
preceding section. With a byte string identifying the exploit the false-positives rate would be
poor. This is because benign network traffic could contain the string too. We can weaken the
effect of such signatures by assigning poor quality to the signature, by refining it or even by
discarding the signature.

Note that the architecture and the SGM presented in this chapter have further restrictions. They
have been overcome with the refactored version of the signature generator presented in chapter
7. The two most important restrictions are

1. The vulnerable field of variable length has to be the last field in the network packet.

2. The Tracker must have plugins for the appropriate protocols and the log file must provide
information on the appropriate network packet.

Performance aspects are not considered in this chapter but are presented for the refactored
signature generator in chapter 7. However, the presented delays for the refactored signature
generator are in the same range as the ones for the original signature generator.



Chapter 6

A more generic approach for
sighature generation and state
tracking

6.1 Observations

Protocol knowledge and decoding

As we have already seen at the end of the previous chapter the so far implemented signature
generation mechanism has the disadvantage that the signatures are either not very precise or
the mechanisms require implemented plugins which fully support the protocol decoding, de-
noted by protocol knowledge. This protocol knowledge is used by the SGM as well as by the
Tracker and the attack replaying mechanism. Implementing plugins for each desired protocol
is cumbersome and error-prone. Furthermore adding additional functioniality, here the protocol
plugins, in form of hardcoded functions is not state-of-the-art. Searching protocol fields for their
bounds which are not at the end of the messages unlike in the previously presented case of
the FTP protocol will increase complexity of the parsing algorithms further. Recapitulatory it can
be stated that our components such as the Tracker or the SGM has the need for full protocol
knowledge. This can only be achieved with an adequate effort if the components can revert to
an existing library providing at least functionality for protocol field parsing.

A generic state machine

For the Tracker and the attack replaying mechanism we need not only protocol knowledge but a
state machine for each desired protocol. Note that for these two components the state machines
will differ in some points. So as we can see we have the demand for a generic protocol state
machine in addition to the protocol decoding. The state machines should be configurable for
each protocol according to some specifications. The section 6.5 presents different approaches
how a state machine can be implemented and how configurability can be obtained.

Knowledge of protocol field meaning

In the case of the replaying mechanism even knowledge about the meaning of protocol fields is
needed. This implies that protocol decoding itself is not sufficient. For field decoding we have to
know for instance the length of the field and its data type. But for replaying a network conversa-
tion we additionally have to know what the fields mean or in other words what purpose a field is
for. In the section 6.6 some ideas for achieving synthesis of network packets on application-level
are discussed briefly.

a7
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Conclusions

Overall, the consequences of the observations presented in this section are the necessity of
a redesign of the entire tracker framework, parts of the signature generator and the attack
replaying mechanism. The mentioned three techniques needed to accomplish the nontrivial
task of signature generation for almost arbitrary protocols will be addressed in the next sections,
especially with respect to the implementation aspect.

6.2 Survey

In the previous section we concluded that we need
1. the ability to decode protocol fields denoted by protocol knowledge,
2. a generic and configurable protocol state machine,
3. knowledge of the meaning of protocol fields and how to synthesize them.

To accomplish the above three requirements in a first step available tools for complete protocol
modeling have been evaluated. Although a lot of research work exists on this topic libraries
are seldomly publicly available. There is some interesting research work on the field of proto-
col analysis but no work seems to fit our needs entirely. On the other hand some presented
approaches appeared to be an overkill with respect to our needs. It has to be emphasized that
often, especially in the case of research work, even if software is available for an approach the
configuration and specification files for concrete network protocols were only written exemplarily.
The following approaches are introduced briefly.

Specification and Description Language (SDL) SDL [32] is used for the description of re-
active and distributed systems. It is a standard defined by the ITU-T. Opposed to the
approach of the IETF to specify standards in arbitrary text form the ITU-T intends to use
a declarative language to exactly specify and determine behaviour of new protocols. Es-
pecially in the field of wireless communication some example protocol specifications are
available. However none of the IETF protocols seem to be available in SDL. A SDL com-
piler is avilable from Humboldt university.

Generic application-level protocol analyzer (GAPA) This approach is presented in [24] by
Microsoft Research. It defines a protocol modeling language named GAPAL and uses a
stream-based technique to process network packets.

It turned out quickly that no suitable software library would be available which fits all of our
needs. So we decided to look for approaches addressing only one of the above requirements
at a time. The section 6.3 addresses the first of the three above mentioned requirements. The
section 6.5 is about a framework for a generic and configurable state machine. The conclud-
ing section for this chapter, section 6.6 deals with the automated packet synthesis for packet

replaying.

6.3 Protocol knowledge

A survey of available approaches for protocol decoding is presented in this section. The often
used abbreviation PDL stands for protocol declaration language and denotes a language which
can be used to specify certain characteristics of a protocol such as field masks of specific
packets.

From the presented approaches in table 6.1 NetPDL had been investigated further. This dec-
laration language is part of an extensive library called NetBee which is currently written at the
university of Turin, Italy. The presented framework supporting NetPDL was very promising and
will suffice our needs. The next section gives an overview of the NetBee framework.
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| Name | Characteristics
libPDL? e Works on byte streams
e No network protocols yet (used originally for MIDI protocols)
e Potential for a new standard
e Comes with PDML and PSML
NetPDLP e Not yet completely ported to Linux

e Performance comparable to Tethereal
e Over 64 protocols available

Ethereal / Wireshark®

e Protocol dissection and decoding engine Epan:

o Supports over 700 protocols

o Protocols are hard-coded in ANSI C, more than 800 kLOC
e Seems not be intended for usage as external library

Tethereal / Tshark®

e Uses Epan of Ethereal

e Supports different outputs such as PDML, PSML or human-
readable

e Output seems to be only accessible from a file

e Usage not clear, seems not to be intended for library usage

tcpDump® e Not many protocols
e Protocols are hard-coded
e GASP = Generator and Analyzer System for Protocols
e Compiler generates protocol-specific code

GASP*® e Framework is build on the script language Tcl/Tk

e Most recent software release allows to encode and decode packets
of different protocols
e Development seems to have been stopped

JNetStream Protocol Decoder’

e Java library for easy manipulation of captured network packets

e Based on 10 streams

e NPL (Network Protocol Language) is interpreted language for pro-
tocol decoding

e Listed for completeness

Black-box tools

e Either commercial — no source code available
e Freeware — No API available, no documentation, only a GUI in-
stead

ahttp://nmedit.sourceforge.net/subprojects/libpdl.html

bhttp://www.nbee.org/
Chttp://www.wireshark.org/
dhttp://www.tcpdump.org/

ehttp://laurent.riesterer.free.fr/gasp

fhttp://sourceforge.net/projects/inetstream/

Table 6.1: Overview of projects and standards for protcol analysis and decoding

6.4 The NetBee framework

The framework and the corresponding library NetBee are presented in [22]. The purpose of this
library is to provide a modular and flexible API for protocol analysis, traffic classification and
packet sniffing and filtering. The library consists of different modules which implement different
standards, some of them developed explicitly for this framework. Amongst others the NetPDL
language is supported by NetBee. The library consists mainly of the following components:

e A Packet Decoder

e PSML and PDML Readers for decoded protocols

o A NetPDL Protocol Database

e An Interface for the NetVM

e A Packet Processor

To achieve protocol knowledge the packet decoder, its related PDML reader and the NetPDL
protocol database are particularly of interest. The packet decoder processes packets based on
protocol descriptions in the NetPDL language. NetPDL specifications are currently available for
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about 64 or more protocols and are stored in the protocol database. The two types of readers
provide categorized information of decoded packets. The PDML language will be presented in
a following subsection and is very useful for packet decoding. Of minor importance is the PSML
specification which describes just a summary of packet information and uses Visualization Ex-
tensions of the NetPDL language.

In the following first subsection the NetVM is described briefly. The packet processor component
listed above uses the NetVM.

6.4.1 Network Virtual Machine (NetVM)

Network Virtual Machine (NetVM) is a virtual machine targeted to network packet processing.
It is presented in [19]. The NetVM architecture is modelled after the one of an ideal network
processor, i.e. a processor that includes a set of hardware modules devoted to speed-up packet
processing, e.g. lookup tables, and a set of assembly instructions that are targeted to common
packet processing tasks, e.g. checksum computation. The NetVM defines

1. the architecture for a new network processor
2. how to interact with these components from an application

The NetVM aims at becoming a reference specification for network-related data processing.
This interesting hardware-independent approach for network packet processing is of rather poor
importance for this work and it will not be referred to in the remaining text.

6.4.2 Network Protocols Description Language (NetPDL)

The NetPDL! language is an XML-based language that aims at creating a unique database
of protocols that can be used by arbitrary applications. It is presented in [23]. The language
intends to describe the basic features of each protocol, e.g. the protocol fields and the protocol
encapsulation. Additionally, a set of optional specifications can be defined for some specific
tasks. The NetPDL Visualization Extension aims at defining how to print a decoded protocol,
e.g a 32 bit number representing an IP address should be visualized in the dotted-decimal form,
and more. Each NetPDL engine must be able to parse the NetPDL specification, while it can be
able to understand only the optional parts that are of interest of that application.

The NetPDL language is easily extendible according to the needs of some particular application,
its syntax is easy to understand, and the parsing is very simple thanks to the existing XML
technologies. A firstimplementation of a NetPDL engine (and a NetPDL database) can be found
as already mentioned in the NetBee library. Listing 6.1 shows an example definition in NetPDL
for the IP protocol.

Listing 6.1: Example of a NetPDL definition for the IP protocol

<protocol name="IP" longname="1Pv4_(Internet_Protocol_version_4)">
<format>
<fields>
<field type="fixed" name="verhlen" longname="Version_and_header_Length">
<field type="bit" name="ver" longname="Version" mask="F0"/>
<field type="bit" name="hlen" longname="Header_length" mask="0F"/>
</field>

6.4.3 Packet Details Markup Language (PDML)

The PDML language? is a simple language that keeps the information related to a decoded
packet. PDML stands for packet details markup language and it is strongly related to NetPDL.
This language is used by a NetPDL engine that understands the NetPDL Visualization Exten-
sion to create a detailed view of each packet.

A detailed view of a ﬁacket is an XML file that contains all the important information related to
protocols and fields that are contained in one packet, e.g. the protocols, all the field names and
their values, and more. The PDML specification is a way to organize this information. However

Lhttp://www.nbee.org/Docs/NetPDL/
2http://www.nbee.org/Docs/NetPDL/PDML.htm
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the XML representation has not to be saved as a file stringently and could just be kept in mem-
ory for further processing. A PDML document lists all the packets contained in a capture file,
detailing the most important information for every protocol that has been found in the packet
and for each field that has been decoded within the protocol.

The PDML language is becoming a de facto standard in packet analysis and is already sup-
ported by Wireshark and Tshark as an output method. Listing 6.2 depicts an excerpt of a PDML
description of a decoded packet for the IP protocol. It corresponds to the NetPDL definition
shown in listing 6.1.

Listing 6.2: Example of a PDML description for the IP protocol

<proto name="IP" pos="15"
longname="1Pv4_(Internet_Protocol_version_4)" size="20">
<field name="verhlen" pos="15" showvalue="45"
longname="Version_and_header_Length" size="1" value="45">
<field mask="F0" name="ver" pos="15" showvalue="4"
longname="Version" size="0" value="45" />
<field mask="0OF" name="hlen" pos="15" showvalue="5"
longname="Header_length" size="0" value="45" />
</field>

6.4.4 Usage of the NetBee library

The NetBee library and its APl seemed to be exactly what we have been looking for. In order
to be able to use the NetBee library and its source code for a few experiments we signed a
non-disclosure agreement. Furthermore parts of the library had to be changed in order to run
under Linux since it was primarily developed for Windows. Fortunately the developers wrote the
code with portability in mind and most changes could be done with minor effort.

At some points the API of the NetBee library is not very comfortable. Two facade classes have
been written to access the library more easily. They are described briefly at this place and are
examined more thoroughly in the following chapter 7.

PacketDecoder This class can be used as an access point to the packet decoder mentioned
in 6.4. It decodes a given packet and if the decoding was successful different field and
protocol information can be obtained from the object.

DbFieldDecoder Because the packet decoder of NetBee is not able to return any information

contained in the NetPDL definition of a protocol we have to access the database interface
directly. The NetBee database API provides only basic functionality to access the NetPDL
database and it had to be extended by this class, e.g. looking up a given field for a certain
protocol and return the desired field properties.
This is important when we not only want to know what the value of a field is or at which
position (this is what the packet decoder would do) but how the field was extracted and
defined in the database. An example is when we have to know how the length of a protocol
field is determined. Maybe the length is determined by another field. Exactly this kind of
information is not available from the packet decoder.

6.5 Protocol state automaton

Different approaches for the implementation of a finite state automaton are presented in [27] and
compared against each other. The implementation approach of J. van Gurp and J. Bosch, [15],
seemed to provide the needed flexibility for implementing state machines for different tasks such
as attack replaying or protocol state tracking. Due to the design of the automaton it is possible
to specify automata by a simple declaration language. Furthermore additional functionality of
the framework can be easily added. The basic design of the automata presented by Gurp and
Bosch was adopted and slightly modificated.

6.5.1 Architecture

The Figure 6.1 shows the basic UML class diagram of the automaton. Each component of a
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Figure 6.1: The basic class design of the finite state machine

state machine is represented by a class. The class Fsm\vast er is responsible for creating a spe-
cific type of automaton from a specification file. It will create all the necessary states and actions.
They are then linked with each other by Tr ansi ti on objects. Each Tr ansi ti on is assigned
to a source state and has a destination state. This linking scheme of the state machine com-
ponents allows us to have multiple instances of the same automaton. The Fsnivast er creates
a Cont ext object if requested which is the actual instance of the specified automaton. Each
Cont ext has its own current state. An event is characterized by an instance of Event Dat a.
If an event was received in form of such an object the appropriate Tr ansi t i on object for the
current St at e object will be searched. If there is no corresponding transition the context will re-
main in the current state. It is the task of the specification file to specify more reasonable default
transitions than just remaining in the current state. If a Tr ansi t i on object is found it will be
executed and its corresponding actions will be invoked. Each executed transition will end up in
a destination state which will be assigned as the new current state of the dispatching context.
The following properties are implicated by this design:

e An arbitrary number of context objects can be instantiated without affecting the state ma-
chine functionality itself.

Additional context objects will not increase memory significantly.

The event dispatching mechanism is not thread-safe.

The state machine is decoupled from its specific actions to be taken for the transitions.
This allows to implement different functionality of the automaton by just deriving a new
Act i on class.

Additional conditions for selecting the appropriate state transition can be added by inte-
grating the information into the Event Dat a class.

Especially the last property pointed out provides some room for improvements. The St at e
objects determine the transition candidate to be executed by comparing the event name with the
assigned transitions and their corresponding event names. If the event matches a transition the
additional properties of the event have to be examined. If some additional data type will be added
to the event data condition supplementary, the functionality to find the appropriate transition
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will have to be hardcoded into the class St at e. To solve this problem different solutions are
thinkable. For instance we could add an interface named Event Dat aPr oper t y which provides
the functionality to compare against other objects of its own type. Then a St at e object has just
to go through the property list for each transition and if a comparison fails continue with the next
transition candidate.

6.5.2 Specifying protocol automata

The language that can be used to define automata is very easy and rather straightforward to
use. Listing 6.3 shows a part of the automaton specification file for the FTP protocol.

Listing 6.3: Example of a state machine specification for the FTP protocol

<netProtoFsm name="ftp" firstState="ctrlEstablished ">
<types>
<type name="logging" />
<type name="replaying" />
</types>
<states>
<state name="ctrlEstablished " />
<state name="preLoginCmdAwait" />
<state name="preLoginRepAwait" />
<state name="cmdAwait" />
<state name="repAwait" />
<state name="ctrIClosed" />
</states>
<events>
<event fieldName="Command" />
<event fieldName="Code" />
</events>
<transitions>
<l— After tcp connection establishment —>
<transition source="ctrlEstablished" target="preLoginCmdAwait" event="Code">
<value>220</value>
</transition>

The root element is called net Pr ot oFsmaccording to the name of the state machine library
which is called | i bnet pr ot of sm It contains the different types of actions that are available,
a list of states and events and the transitions which connect the different states. It can be seen
that the event itself consists only of a string. This string normally corresponds to the name
of the protocol-specific message type. Further specifications for event conditions are currently
possible by declaring value elements for a transition. As already mentioned in the last section
the additional event conditions are hardcoded. That means that if transitions should be able
to be sensitive to more than an event name and a substring, it has not only to be added to
the Event Dat a and St at e class but even to the state machine declaring language itself. At
this point it has to be remarked that no experience could be collected except during some test
routines. The prospective usage of the library will show the best way of how to declare events.
The author has the impression that two strings should be sufficient because normally an event is
specified by a string denoting the message type and an additional value, e.g. of a protocol field.
Nevertheless the concept of defining and passing events in the framework has to be refined.

6.5.3 Proposal for a timeout extension

For e.g. tracking the application state of a network connection or replaying network packets we
need the ability to detect timeouts when a packet arrives. The state machine framework can
be extended by adding a time stamp to the class Event Dat a. Each state will then have either
a specified or a default timeout value. If an event arrives the current state will first examine
the defined timeout value against the current time minus the last internal valid timestamp. This
however makes necessary to add a timestamp to the Cont ext class.
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6.5.4 Proposal for a framework for protocol state tracking a nd packet re-
playing

If the previous proposed extension for supporting timeouts is implemented the framework can
be used for tracking the application state of network connections or replaying network packets
from a log file. What has to be done is to create a derived Act i on object for both applications.
In a preprocessing step the Event Dat a structure has to be filled and then the event can be
dispatched. Figure 6.2 shows the basic concept. The green components on the left hand side

|::> [ Capturing ] [ LogReader ]4— Connection State Log File
[ PacketDecoder ] [ Replayer ]<::|
EventData ]

State Machine Protocol Specification File
(libnetprotofsm.so)

LogAction

Connection State Log File

ReplayAction

!

Figure 6.2: The state machine embedded in the two applications state tracking and packet
replaying

correspond to the state tracking part and the blue components on the right side to the replaying
part. The state tracker has to capture packets, e.g. via the library pcap. Then the captured
packet has to be decoded, e.g. with the before mentioned facade classes for the NetBee library.
The extracted information can be transformed to an Event Dat a object which then will be used
for event dispatching by the state machine. A LogAct i on class derived from Act i on will write
useful information to a log file.

The replaying part would work very similar but is quite a litle more complex. It first reads state
and transition history from a log file. According to this information packets are prepared and
generated. At the same time this information can be used to generate an Event Dat a object
which will be used to "drive” the automaton. The Repl ayAct i on will then replay the appropriate
packet. Replies to the sent packets will be received by the replayer component.

6.6 Synthesis of network packets on application-level

For the packet replayer component shown in Figure 6.2 we have to deal with the third and last
requirement, namely the requirement to have full knowledge of how packet fields are created
and what their meanings are. This requirement goes further than just to have the ability to
decode packets - we have to synthesize packets. Fortunately the NetPDL database definitions
provide information that could be used not only for decoding but also for synthesis of network
packets. Information that is needed in addition to the database field definitions could be specified
together with the state machine specification for each protocol.



Chapter 7

Refactoring the Signature
Generator

Besides the need for full protocol knowledge as concluded in chapter 6.1 we hinted in section
5.4 that if arbitrary protocol fields rather than the field at the packet end should be protected we
run into problems due to the inflexible architecture of the first SGM. The findings in the previous
chapters have important implications for the design of the signature generating component. The
gathered experiences have led to a redesign of the signature generator which will be presented
in this chapter.

7.1 Experiences with Signature Generation

The reasons for the rather poor signature generation mechanism presented in chapter 5 can be
found in the architecture of the signature generator. The design lacks of flexibility. Each possible
signature type had to be hardcoded. After intensive tests it became clear that it is necessary
to support different signature types. The goal is to be able to protect an arbitrary protocol field
against triggering a buffer overflow in the vulnerable server application. This is the most complex
type of signature that will currently be supported. But sometimes the signature generator is not
able to generate the above signature type by reason of missing information etc. In this case we
have to sidestep the generation of the complete signature and come up with a simpler type like
identifying the packet by an LCS string as it is presented in the chapter 5.

Because protocol knowledge allows us to omit protocol-specific signature generation code we
do not know for which protocol a signature will be generated. This drawback has to be taken
into account in the design of the signature generator. We must have generic data types which
rather describe signature properties than properties of a protocol. This rethinking originates
from the fact that the signature generator changed from protocol-dependent to generic signature
generation due to protocol-knowledge.

For this reason two classes have been introduced which describe parts of a possible signature:

Packetldentifier The packet identifier is responsible to provide information about the manner
of how the appropriate message of a certain protocol is identified. For instance in the
case of the FTP protocol this class would tell us that the signature is only valid if the
FTP message contains the string 'USER’. This way we can narrow the network packets
for which a signature matches. Because identifying the message type differs between
protocols the class has to be able to handle different identification types.

VariableField This class describes the field wich triggered the buffer overflow. The name al-
ready indicates that the field is of variable length since this is usually the only way to
trigger a buffer overflow. Because various types of fields with variable length exist at least
the most common ways of how to define a field of variable length have to be supported.

55



56 CHAPTER 7. REFACTORING THE SIGNATURE GENERATOR

7.2 Integrating NetBee

The two facade classes Packet Decoder and DbFi el dDecoder introduced in the previous
chapter 6 are used to add protocol knowledge to the signature generator. Because these classes
are tightly related to signature generation and the signature generator heavily relies on the
NetPDL database and the NetBee library, the class DbFi el dDecoder is able to create objects
of type Vari abl eFi el d if it identifies a field of variable length for a search in the NetPDL
database.

7.3 Flexible configuration

The refactored signature generator is able to work offline. That means that the log files for Argos
and the Tracker can be specified manually. Online means that the signature generator receives
alerts via socket communication. In the configuration file of the signature generator the Tracker
version that will be used can be specified. Because the Tracker will be rewritten to support the
requirements from chapter 6 there will coexist two versions of the Tracker?:

e The previous version written in preceding semester theses will be called marcel corre-
sponding to its last major contributor.

e The new version will be called pascal according to the name of its inventor.

It is also possible to generate signatures without a Tracker by specifying any other version than
the two above. In this case as much information as possible will be extracted solely from the
Argos log files.

7.4 Architecture

The architecture will be explained in different steps. We recall from listing 5.1 how information
for signhatures has been extracted before refactoring the signature generator. Each time an alert
from Argos was received the extraction function was called. Since this produces a bottleneck
the concept has been changed to a multi-threaded approach. If an alert is received from Argos
we will start a new extraction thread. This is done the following way:

Listing 7.1: Starting an extraction thread

/1 Some setup
ThreadPoolx threadPool = new ThreadPool;
InterfaceBean* interfaceBean = new InterfaceBean;

I/l We receive an alert from Argos

ExtractionThread+ extractionThread = new ExtractionThread(interfaceBean , logName, rid);
extractionThread —>setThreadPool (threadPool);

extractionThread —>start ();

The class | nt er f aceBean holds various information such as configuration properties, e.g.
where the log files are kept and how the signature database can be accessed. A thread may be
registered to an instance of Thr eadPool . This thread pool can be used to terminate threads
that have not finished at a certain point in time. In addition to the | nt ef aceBean object
the file name of the Argos alert file and the Argos random alert identifier are expected by
the Extracti onThr ead. Figure 7.1 shows the relationship between the above introduced
classes. The class diagram reveals that the threads in the signature generator are derived
from the abstract class | nt er f aceThr ead which actually wraps the C-API functions of the
pt hr ead library. Subclasses of this class have to implement the abstract functions r un() and
di spose() . The function set Thr eadPool ( Thr eadPool ») can be used to assign a thread
pool to the thread instance. The mechanism behind this assignment corresponds pretty much
to the observer ﬁattern also called publish and subscribe pattern.

If an extraction thread has been started the information extraction will be done by an Ext r act or
object and the desired signatures will be created. Listing 7.2 shows the most important steps
that are done during signature generation. Some code pieces will look familiar to some frag-
ments in listing 5.1.

1The reader has to forgive the author the slight trace of geek humor...
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ThreadPool InterfaceThread
+ registerThread(InterfaceThread*) (abstract,
+ unregisterThread(InterfaceThread*) # abstract run()
+ cancelThreads() # abstract dispose()
+ start() :bool

+ stop() :bool
+ setThreadPool(ThreadPool*)

i

InterfaceBean ExtractionThread

Extractor

+ extractInformation(const char*) :bool
+ setSnitchInformation(SnitchEntry*)

Figure 7.1: Class diagram that shows the relations between threads and information extraction

Listing 7.2: Extracting information and generating signatures

try {
PacketDecoder packetDecoder;
DbFieldDecoder fieldDecoder;
SignatureDatabase signatureDb(interfaceBean);
Extractor extractor(&packetDecoder, &fieldDecoder, &signatureDb, interfaceBean);

if (extractor.extractinformation(argosAlertFile —>c_str ()))

/1 1. Access synchronized map

SnitchEntry* currentEntry = NULL;

unsigned int sidTmp = O;

int count = O;

while ( !snitchMap—>unbagElement(argosRid, &currentEntry) )

sleep(5); // sleep for 5 seconds and try again
count++;

if (count > 5) // we won't wait any time longer
break ;

}

SignatureHeaderx signatureHeader = extractor.getCurrentSignatureHeader ();
GenericSignature* genericSignature = extractor.getCurrentSignature ();
SnortSignaturex snortSignature =

new SnortAdapter(&signatureDatabase , genericSignature, signatureHeader);

catch (ConstructorFailed& aConstructorFailed)

{
}

catch (Extractor :: ExtractionFailed& extractionFailed)

{

}
}

The mechanism of unbagging a Sni t chEnt r y object remained the same as described in the
first version of the signature generator. However the Ext r act or is no longer a container which
holds the extracted information. Instead it writes the information into instances of the classes
Si gnat ur eHeader and Gener i c¢Si gnat ur e. These objects can be obtained by invoking the
corresponding getter functions. In order to create a concrete signature, in our case a Snort
signature, we use the class Snort Adapt er which adapts the above by the extractor created
objects to a Snort Si gnat ur e object. This methodology corresponds to the adapter pattern.
Note that in the refactored signature generator exception handling is used.

The class relations for the signature related data types are depicted in the class diagram in
Figure 7.2. The two interfaces have to be implemented if a signature should have access func-
tionality for the database. The class Si ghat ur eDat abase provides some basic functional-
ity to access the database, execute queries, etc. The abstract class Si gnat ur eBase rep-
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<<interface>> <<interface>>
SignatureLoadFromDatabase SignatureSaveToDatabase
+ loadFromDatabase(unsigned + saveToDatabase() throw(CorrelationRequiredException&,
int signatureld) :bool CorrelationCandidatesException&) :bool
SignatureBase SignatureHeader
{abstract}
SignatureBaseAccessToDatabase SignatureDatabase
{abstract}
SnortSignature GenericSignature
SnortAdapter

Figure 7.2: The class relations for the signature related data types

resents the abstract type of a signature. Each signature has to be related to an instance of
Si gnat ur eHeader . This class represents the head of a signature and is used to identify a
signature. The class Si gnhat ur eBase together with the two interfaces build an abstract sig-
nature with database capability. Classes for a Snort and a generic signature are derived from
it. The Snort signature class has a subclass which can be used to adapt a generic sigha-
ture to a Snort signature. Note that the classes Si gnat ur eHeader , Generi cSi gnat ur e and
Snort Si gnat ur e have a database table counterpart. The database table definitions can be
found in the appendix G. As the signature generator is under ongoing development the tables
still may be altered.

7.5 Supported signatures

If the extractor is started it tries to get as much information as possible. But if e.g. no Tracker log
file is available the packet identifier may not be complete. Then a weaker signature is created.
Subsequently the different possible Snort signatures are listed.

Signature with LCS byte string:

alert tcp any any -> any 21 (content:"|05 D3 FF 00 09 A4 C6 12|";)

Signature with string packet identifier and LCS string:

alert tcp any any -> any 21 (content:"USER'; content:"|09 A4 C6
12| ")

Signature with type field packet identifier and LCS string:

alert tcp any any -> any 21 (byte test: 4, = 2, 70; content:"|09 A4
6 12| ";)
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Signature with an open-ended protocol field:

alert tcp any any -> any 21 (content:"USER'; dsize: >32;)

Signature with string packet identifier and token-ended var iable-length field:

alert tcp any any -> any 21 (content:"USER'; content:!"|OD OA|";
of fset: 5; depth: 465;)

Signature with type field packet identifier and variable-len gth field specified by another
field:

alert tcp any any -> any 21 (byte test: 4, = 2, 70; byte test: 4,
>, 450, 66;)

Two possible signatures have been omitted because they follow from the last two presented
signatures. The first one consists of a string identifying the message type and a variable-length
field specified by another field. The second signature omitted consists of a binary field identifying
the message type and a content string of variable length.

7.6 Evaluation

7.6.1 Measuring signature generation performance

For estimating the average delay for generating a signature ten different test runs have been
done for four distinct attacks recognized by Argos. The measurements have been done offline.
For measuring the signature generation delay the same methodolgy has been used as for the
Tracker evaluation; performance measurement can be enabled by using a precompiler directive
to set the variable PERFORMANCE MEASUREMENT. Figure 7.3 depicts the test runs. The mea-
sured delay incorporates both the information extraction and the adaption of the generic signa-
ture to a Snort signature. From the graphic the average delay for the generation of a signature
can be rated to about 850 milliseconds. Note that parsing the log file of the Tracker, correlating
the Tracker log files with information from Argos and the inter-process communication with the
reporting thread of the Tracker is not incorporated in these measures as they do not belong to
the actual signature generation. On the other hand the time needed for initializing the NetPDL
library is included in these measures. Parsing the XML file of the NetPDL protocol definitions
certainly has a major part of the overall delay for generating a signature. The delays shown
give an idea of the induced delay by the signature generation. However, the delay may change
significantly if any of the above tasks are incorporated or omitted in the signature generation.
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Figure 7.3: The delays for generating different signatures



Chapter 8

Conclusions and Outlook

8.1 Results

In this section the potential of our signatures is compared to some approaches presented in
the chapter 3. The NoAH infrastructure filters network traffic very thoroughly before it gets to
the containment system. Still more important, Argos only raises an alert when an attack actually
took place. In this case it provides us with precise information about the system state. If the con-
dition leading to the alert can be mapped to a network packet we have a richness of information
that can be used to describe the attack that has occurred. Currently we use this information
to describe precisely which application has a buffer overflow vulnerability and how it can be
exploited. This approach for protecting server applications selectively from buffer overflow ex-
ploits is of inestimable value. Productive server systems crucial to failures can be protected from
zero-day exploits if the NoAH infrastructure is able to observe the appropriate exploit first.
There are a few approaches with a containment system similar to Argos like e.g. TaintCheck [13]
or Vigilante [20]. TaintCheck however creates very weak string-based signatures out of its ex-
tracted attack information. Vigilante creates its own format of self-certifying signatures. Another
interesting approach is COVERS [37]. It pursues a signature generation mechanism similar to
ours in that after detecting an attack the victim’s process memory is compared to recent input
data. A drawback of this approach seems to be that parsing input data after correlation with
memory depends on a special message format language. Remember that specifying dozens of
protocols by ourselves would be inefficient and error-prone. Instead we rely on the NetPDL pro-
tocol library. Furthermore with the tracker framework we have not only protocol-field knowledge
but even protocol-state knowledge. The position-aware distribution signatures (PADS) system
presented in [36] produces signatures based on byte-frequency distributions. These type of sig-
nature however can not be transformed into a Snort signature. Systems like Autograph [9] or
PAYL [16] generate signatures based on byte strings. These signatures normally implicate high
false positives and are not capable of detecting altered attack code.

It is reemphasized that there are mainly two mechanisms that contribute to a signature’s qual-
ity. The first one is the type of attack detection that is used to extract relevant information for
signature generation. The second aspect is the type of signature that is used to represent the
extracted information. It is important not to mistake the above signature type with a concrete
signature format. The latter is just a transformation of the former into a representation compliant
with an existing signature format, e.g. the Snort signature format.

8.2 Conclusions

The first mandatory subtask of this thesis was to design, implement and evaluate an application
protocol plugin for the application state tracking framework. The evaluation has shown that the
requirements have been fulfilled and the implementation was successful. The plugin has been
tested for memory leaks with different tools such as valgrind and memprof and showed no sig-
nificant runtime dependent problems. Performance tests have shown an average delay induced
by the FTP plugin for processing packets about 26 microseconds. This delay corresponds to
a one-digit percentage compared to the overall delay for processing a packet with the Tracker.
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The correct functioning of the state machine has been approved theoretically and practically by
simulated FTP conversations.

A simple signature generator correlating information from Argos and the tracker framework has
been designed, implemented and demonstrated at a NoAH meeting. The generated signatures
and the capabilities of the generation mechanism however remained at a proof-of-concept level.
From the PoC implementation of the above two subtasks different observations have been
made. The most important observations are summarized below.

e Reliability and accuracy of the generated signatures were not a question of the chosen
concrete signature format, in our case the Snort format. Rather the difficulty was to extract
precise and reliable information and map the information into internal representations that
can be used by a SGM.

e Signature evaluation is a hard topic and is at least questionable in our case of only exem-
plarily available exploits.

e The initial design of the signature generator was too inflexible with respect to the inter-
nal representation of signature properties and the signatures themselves. This led to a
thorough redesign of the entire signature generation component.

e The architecture of the tracker framework proved as inflexible too. The hardcoded proto-
col plugins were not accurate. From this and the preceding arguments a more generic
approach for protocol state tracking, signature generation and further purposes evolved.

The redesigned architecture for generating signatures creates attack signatures in a flexibly
manner. The complexity and accuracy of the generated signatures depend on information that
was extracted from both the honeypot network and a Tracker log. If the detected attack is a
buffer overflow which was triggered by abusing a single protocol field, the false-positives rate for
these signatures is almost zero since the signatures describe the characteristics of the buffer
overflow vulnerability. If for some reasons the extracted information is incomplete, emergency
signatures are generated, e.g. based on byte strings. This assures that we always generate
a valid signature. Due to different methods for extracting attack information we are capable of
predicting the quality of the generated signatures during information extraction.

8.3 Outlook

In summary a system for automated signature generation imposes a large effort and results
in a complex system. Flexibility and generic configurability are the catchwords for such a sys-
tem. What about a design that only knows generic "properties”? Each property is configured
by a specification language and tells the information extractor how it is extracted. From this
set of properties another specification would tell an adapter how to transform different proper-
ties in order to synthesize a specific and concrete signature, e.g. for the Snort IDS as in our
case. Whereas this suggestion is not in the scope of this thesis more immediate but small tasks
should be done first. The appendix H contains a categorized list of todo’s for the current archi-
tecture. The most important steps will be to thoroughly finish the signature generator and add
a state tracking action component for the generic state machine. Different details have to be
clarified such as what happens if a protocol field is stream-based and the field data could be
distributed over several network packets. What has to be done to support signature generation
for reassembled packets? Are there any drawbacks when relying on the NetBee library? How
could the design get adapted for other possible attack types except the supported buffer over-
flows, e.g. format string exploits? These questions or subtasks are just an assortment and the
list could be expanded arbitrarily.



Appendix A

NOAH core components:
Extraction and Processing of
attack information

In this chapter the different information available from both, Argos and the Tracker, is explained.
lllustrations help to clarify which component provides which information. In the first section the
initial state of information extraction for attacks is described. In the following section the effects
of this thesis on the information extraction and processing are depicted.

A.1 Initial attack information

Argos detects when tainted data is about to be executed or used as an operand for an in-
struction. In this case of remote code execution the network packet from which the tainted data
originated is identified. Furthermore the position of the tainted data in the appropriate packet is
determined. Summarized, Argos provides information about the system’s state, e.g. a memory
dump, the set of processor register values as well as the network packet and data therein re-
sponsible for triggering an attack alert. Figure A.1 illustrates the information provided by Argos.
The snitch perl script tells us which application was attacked on which platform. The purpose of

Network Packet Argos
Position Memory DU UL p
neti:ork
packet

Argos II
Snitch Perl Script

- Operating system
- Attacked service / program Hﬁ

Figure A.1: Information provided by the containment system Argos

Tainted data which is
about to be used in
instruction execution

the Tracker is to provide us with information additional to the one given by Argos. It mainly has
information about the packet fields and protocols contained in a network packet and in which
state the corresponding protocols have been for this network packet. Note that this information
could be extracted also on demand. This means that we could inspect a packet history just
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when an alert is raised instead of tracking the packets before they arrive at Argos. However, this
has the drawback that the time needed to generate a signature increases significantly. Figure
A.2 depicts the two sources for information about the attack, Argos and the Tracker. In the initial

Tracker Network Packet Argos
Protocol Field Knowledge N M emo ry D um p
Protocol Connection State: P°5'>il:l°“

TCP: Connection established network
packet

TCP

Src Port I Dest Port

Argos 11
Snitch Perl Script

- Operating system
- Attacked service / program

Figure A.2: Additional packet information provided by the tracker framework

Tainted data which is
about to be used in
instruction execution

state no application protocol plugin was implemented. If Argos points to a position inside the
network packet which belongs to an application protocol field, no information about the protocol
would be available at this time.

A.2 Current state of attack information extraction

After implementing a FTP plugin for the Tracker it was possible to fully decode packets con-
taining an attack for the FTP protocol. Figure A.3 depicts this situation. At a later point in time

Tracker Network Packet Argos
Protocol Field Knowledge N M emo ry D um p
Protocol Connection State: P°5'>il:l°n
TCP: Connection established network

packet

TCP

Src Port I Dest Port

Argos 11
Snitch Perl Script

- Operating system
- Attacked service / program

Tainted data which is
about to be used in
instruction execution

Figure A.3: FTP protocol knowledge by a Tracker plugin

the Tracker plugins have been substituted by the NetBee library and a generic state machine.
However the situation depicted remains the same. In figure A.4 the current process of attack
information extraction is illustrated. In a first step we use the network packet identified by Argos
which was the origin for the tainted data triggering the attack. Comparing the network packet
history from the Tracker and Argos we can find the same packet in the Tracker network log
file. Applying an LCS algorithm on the network packet and the memory dump of Argos allows
us to extract a byte string. This byte string can be used for signature generation in case more
sophisticated signature generation fails. The network packet in the Tracker log file is then used
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Figure A.4: Overview of the information extraction process

to find its related entry in the second Tracker log file. This second log file contains all the infor-
mation extracted by the plugins. Out of the packet log entry information about the packet can
be extracted. Information about the protocols, their fields and connection states is available. A
packet identifier tells us how this network packet is identified, e.g. by containing a certain string.
At last the position of the tainted data triggering the attack alert is used to locate the vulnerable

protocol field.
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Appendix B

Glossary

In this glossary the most important terms from the field of computer networking and security
are explained. The term explanations do not intend to qualify for completeness. They rather
should give an idea of the corresponding terms. Most of the definitions are taken from the
Wikipedia online encyclopedia. Some definitions may have been reworked or supplemented
with additional information.

Activation zone

Address  Space
Randomization

Attack

Attack vector

Computer worm

Where the payload is executed. It produces output events (indicating that the
desired outcome of an attack has occurred) and feedback events (that the
attacker can determine whether an attack was successful).

Despite the wide publicity received by buffer overflow attacks, a vast ma-
jority of today’s security vulnerabilities continue to be caused by memory
errors, with a significant shift away from stack-smashing exploits to newer
attacks such as heap overflows, integer overflows, and format-string attacks.
Address space randomization hinders some types of security attacks by pre-
venting an attacker being able to easily predict target addresses. For exam-
ple attackers trying to execute return-to-libc attacks must locate the code to
be executed; while other attackers trying to execute shellcode injected on
the stack have to first find the stack. In both cases, the related memory ad-
dresses are obscured from the attackers; these values have to be guessed,
and a mistaken guess is not usually recoverable due to the application crash-

ing.

A principal is able to gain unauthorized access to a computer system or to
disrupt its operation in an unintended way. An attack is the exploitation of
existing bugs.

Every interface is a possible vector of attack, e.g. user interface, 1/0O interface,
physical or network interfaces etc.

A computer worm is a self-replicating computer program. It uses a network to
send copies of itself to other nodes on the network and it may do so without
any user intervention. Unlike a virus, it does not need to attach itself to an
existing program. Worms always harm the network and if only by consum-
ing bandwidth, whereas viruses always infect or corrupt files on a targeted
computer.

Lhttp://en.wikipedia.org/
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Design pattern

Dynamic Taint
Analysis

False positives

Firewall

Flaw

Flow

A design pattern is a general repeatable solution to a commonly occurring
problem in software design. A design pattern is not a finished design that
can be transformed directly into code. It is a description or template for how
to solve a problem that can be used in many different situations. Object-
oriented design patterns typically show relationships and interactions be-
tween classes or objects, without specifying the final application, classes or
objects that are involved.

In computer systems with dynamic taint analysis input data from untrusted
sources is normally marked as tainted. When tainted data is used in oper-
ations it may be possible that other data becomes tainted too. When moni-
toring the programs processing tainted data it is then possible to track how
the tainted data propagates in memory. If any tainted data is used in an ille-
gal manner program execution could be stopped. Furthermore a lot of useful
information such as a memory dump etc. could be logged for analysis.

Generally spoken a false positive occurs when the null hypothesis is rejected
given that it is actually true. The null hypothesis is a hypothesis that is pre-
sumed to be true until statistical evidence in the form of a hypothesis test
indicates the opposite. The null hypothesis is often the reverse of what the
experimenter actually belives. A null hypothesis has to be nullified or refuted.
In our case of testing signatures we have a false positive when a network
packet matches a certain signature and thus the network packet is supposed
to carry an exploit notwithstanding it actually belongs to malign network traf-
fic. Our null hypothesis H, would amount to "the packet contains no exploit”.
A false positive rejects Hy although the packet contains no attack and so the
packet content is mistakenly suspected to be malicious by matching to the
signature.

A firewall is a hardware or software device which is configured to permit,
deny, or proxy data through a computer network which has different levels of
trust.

In computer literature a software bug is normally regarded as an
implementation-level software problem whereas a flaw is a problem origi-
nating at the design level and being instantiated in software code. A flaw
may or may not be exploitable.

In general, flows are a "set of packets which share a common property.” The
most important properties are the flow's endpoints. For example, the sim-
plest type of flow is a 5-tuple, with all its packets having the same source
and destination IP addresses and port numbers. Furthermore, 5-tuple flows
are unidirectional, i.e. all their packets travel in the same direction. Such 5-
tuple flows are commonly referred to as microflows. Flows may have two
endpoints, (TCP from host A to host B), or only one (all UDP flows from
host C). Endpoints may also be more general, for example "TCP from net-
work X/20 to network Y/24”. A flow begins when its first packet is observed,
but one should state how to recognise the end of a flow. The most common
method is to specify a fixed timeout, alternatively one can specify a dynamic
timeout algorithm. Examples for flow types are CPB, CoralReef, NetFlow v5
etc., RTFM, and NeTraMet stream. Cisco’s NetFlow format uses the com-
mon 5-tuple definition, where a flow is defined as a unidirectional sequence
of packets all sharing all of the following 5 values: source IP address, desti-
nation IP address, source TCP port, destination TCP port and IP protocol.
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Honeypot

Injection vector

Intrusion detec-
tion system

Intrusion preven-
tion system

Network Address
Translation

Open  Systems
Interconnection
(OSI) model

A honeypot is a trap set to detect, deflect or in some manner counteract
attempts at unauthorized use of information systems. Generally it consists of
a computer, data or a network site that appears to be part of a network but
which is actually isolated, (un)protected and monitored, and which seems
to contain information or a resource that would be of value to attackers. A
honeypot is valuable as a surveillance and early-warning tool. While often a
computer, a honeypot can take on other forms, such as files or data records,
or even unused IP address space. Honeypots should have no production
value and hence should not see any legitimate traffic or activity. Whatever
they capture can then be surmised as malicious or unauthorized.

Describes the format of an input-driven attack. Each target environment im-
poses certain restrictions on how an attack must be formatted. The goal of
the injection vector is to place the attack payload into a target activation zone.
They comprise truly generic rules for formatting an attack.

An intrusion detection system is used to detect many types of malicious
network traffic and computer usage that can not be detected by a conven-
tional firewall. This includes network attacks against vulnerable services,
data driven attacks on applications, host based attacks such as privilege
escalation, unauthorized logins and access to sensitive files, and malware
(viruses, trojan horses, and worms). An IDS is composed of several compo-
nents: Sensors which generate security events, a Console to monitor events
and alerts and control the sensors, and a central Engine that records events
logged by the sensors in a database and uses a system of rules to generate
alerts from security events received. There are several ways to categorize an
IDS depending on the type and location of the sensors and the methodology
used by the engine to generate alerts. In many simple IDS implementations
all three components are combined in a single device or appliance.

An intrusion prevention system is a computer security device that monitors
network and/or system activities for malicious or unwanted behavior and can
react, in real-time, to block or prevent those activities. Network-based IPS,
for example, will operate in-line to monitor all network traffic for malicious
code or attacks. When an attack is detected, it can drop the offending pack-
ets while still allowing all other traffic to pass. Intrusion prevention technology
is considered by some to be an extension of intrusion detection (IDS) tech-
nology.

In computer networking, the process of network address translation (NAT,
also known as network masquerading, native address translation or IP mas-
guerading) involves re-writing the source and/or destination addresses of IP
packets as they pass through a router or firewall. Most systems using NAT
do so in order to enable multiple hosts on a private network to access the
Internet using a single public IP address.

The open systems interconnection basic reference model (OSI reference
model or OSI model for short) is a layered, abstract description for com-
munications and computer network protocol design, developed as part of
the open systems interconnection (OSI) initiative. It is also called the OSI
seven layer model. A layer is a collection of related functions that provides
services to the layer above it and receives service from the layer below it.
For example, a layer that provides error-free communications across a net-
work provides the path needed by applications above it, while it calls the
next lower layer to send and receive packets that make up the contents of
the path. The seven layers as defined by the OSI model ordered from the
top are application, presentation, session, transport, network, data link and
physical layer.
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Polymorphic
worm

Proxy server

Software bug

Software exploit

Telnet protocol

Virus

Polymorphic code is code that mutates while keeping the original algorithm
intact. This technique is often used by computer viruses, shellcodes and
computer worms to hide their presence. A polymorphic worm uses the tech-
nigue of polymorphic code mutation. Polymorphic algorithms make it difficult
for such software to locate the offending code as it constantly mutates. En-
cryption is the most commonly used method of achieving polymorphism in
code. However, not all of the code can be encrypted as it would be com-
pletely unusable. A small portion of it is left unencrypted and is used to
jumpstart the encrypted software. Anti-virus software targets this small un-
encrypted portion of code.

A proxy server is a server (a computer system or an application program)
which services the requests of its clients by forwarding requests to other
servers. A client connects to the proxy server, requesting some service, such
as a file, connection, web page, or other resource, available from a different
server. The proxy server provides the resource by connecting to the specified
server and requesting the service on behalf of the client. A proxy server may
optionally alter the client’s request or the server’s response, and sometimes
it may serve the request without contacting the specified server.

A software bug (or just "bug") is an error, flaw, mistake, failure, or fault in a
computer program that prevents it from behaving as intended (e.g., produc-
ing an incorrect result). Most bugs arise from mistakes and errors made by
people in either a program’s source code or its design, and a few are caused
by compilers producing incorrect code.

An exploit is a piece of software, a chunk of data, or sequence of commands
that take advantage of a bug, glitch or vulnerability in order to cause unin-
tended or unanticipated behavior to occur on computer software, hardware,
or something electronic (usually computerized).

Telnet (Teletype Network) is a network protocol used on the Internet or local
area network (LAN) connections. The initial protocol specification can be
found in RFC 854. The introduction therein describes the purpose of the
protocol in the following way: "The purpose of the Telnet Protocol is to provide
a fairly general, bi-directional, eight-bit byte oriented communications facility.
Its primary goal is to allow a standard method of interfacing terminal devices
and terminal-oriented processes to each other.”

A computer virus is a computer program that can copy itself and infect a com-
puter without permission or knowledge of the user. The original may modify
the copies or the copies may modify themselves, as occurs in a metamor-
phic virus. A virus can only spread from one computer to another when its
host is taken to the uninfected computer, for instance by a user sending it
over a network or carrying it on a removable medium such as a floppy disk,
CD, USB drive or by the Internet. Additionally, viruses can spread to other
computers by infecting files on a network file system or a file system that is
accessed by another computer. Viruses are sometimes confused with com-
puter worms and Trojan horses. A worm can spread itself to other computers
without needing to be transferred as part of a host, and a Trojan horse is a
file that appears harmless until executed.



Appendix C

The original tracker framework

In this chapter the components and their functions of the Tracker framework will be presented.
Furthermore the skeletons of important functions will be sketched.

C.1 Component overview

There coexist multiple threads in the Tracker. The functionality is divided into components each
corresponding to a single thread. The explanation of the functionality will be split into two
phases, the initialization phase and the packet processing phase.

The initialization phase

Figure C.1 illustrates the components and functions participating during the initialization of
the Tracker. The main function first reads the configuration file. According to the configura-

Main Process
trackerConfig.xml

Read
configuration file

State Tracking Thread n
Initialize dynamic State Tracking Thread 2

library plugins \[State Tracking Thread 1 Plugin Stack

Plugin 1:
initFunction

Start reporting
thread

Plugin 2:
initFunction
Plugin n:
initFunction

Start the state
tracking threads

State Tracking Threads

Initialize stateTracker()
capturing routine

via pcap

Start pcap
capturing loop,
callback handle is
the function

dispatcher()

Figure C.1: The initialization phase of the Tracker

tion settings the desired number of state tracking structures is created. Each state tracking
structure gets its own plugin stack. As mentioned in chapter 2 the plugins are initialized by
calling i ni t Functi on. When the data structures have been created the reporting thread will
be started. Following the state tracking threads are started. These threads remain inside the
function st at eTr acker and wait for incoming messages from the di spat cher function in
the main process.
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The packet processing phase

The Packet Processing phase is depicted in Figure C.2. When a packet arrives at the state

TrackerOutput.dat
TrackerDump.dat

[ Capturing Thread Reporting Thread
=
[> Pcap packet
capturing loop Statetracking Thread n
" /
Dispatcher()
callback handle

== Socket

== IPC |
== File I/O

getThreadId() / Plugin n:

Figure C.2: The packet processing phase of the Tracker

stateTracker()
message loop

Plugin 1:
entryFunction

tracking host the pcap packet capturing loop will create some data structures and invoke the
callback function di spat cher . Inside the di spat cher function the packet is analyzed and if
the packet belongs to an already registered network connection the network packet is sent via
message passing to the appropriate state tracking thread. If no network connection can be found
for the received packet a new connection for this packet will be registered and assigned to a ran-
domly chosen thread. The packet receiving thread invokes the first plugin by calling its function
ent ryFunct i on and passes the network packet by reference. Each plugin is responsible to
forward the network packet to the next appropriate plugin when it has done its processing steps.
When no suitable plugin is found anymore in the plugin stack the state tracking loop will pass a
reporting buffer to the reporting thread and wait for new network packets. The reporting thread
itself will write the received buffer to a log file betimes.

C.2 Components and their algorithms

In this section the basic functionality of the most important functions of the Tracker framework
is presented. For an overview of the entire set of functions and a short description refer to the
generated source code documentation. The source listings are not complete. They rather intend
to allow the reader being able to orient easier in the Tracker source code.

Main Process

The most important steps done in the Main Process are illustrated in Figure C.1. The listing C.1
shows the code corresponding to the illustrated steps during initialization.

Listing C.1: The most important steps in the Main Process

/!l Read configuration file
configData allConfigData = scanConfigFile(file);

Il Initialize dynamic library plugins
initDynamicLibrary(&allConfigData);

/! Start the reporting thread

aReportingThread =

initReportingThread(&stateTrackerThreads [0]. outgoingMessageQueue ,
&allConfigData);

/] Start the state tracking threads
stateTrackerThreads = initStateTrackerThreads(&allConfigData);

/! Initialize capturing routine
captureHandle = initCapture(allConfigData.device, filter_exp);

/! Global available information used by state tracking threads
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dispatcherExtraArguments someDispatcherExtraArguments;
someDispatcherExtraArguments. captureHandle = captureHandle;
someDispatcherExtraArguments. allConfigData = &allConfigData;
someDispatcherExtraArguments. connections = &connections;
someDispatcherExtraArguments. fragmentedPackets =
&fragmentedPackets;

someDispatcherExtraArguments. stateTrackerThreads =
stateTrackerThreads ;

/!l Register necessary signal handlers...
/] Start pcap capturing loop with dispatcher () as callback

pcap_loop (captureHandle,—1,dispatcher,(u_charx)
(&someDispatcherExtraArguments));

If a packet is captured by the pcap library the callback function di spat cher is invoked. Listing
C.2 shows the most important code sequences for this function.

Listing C.2: Conceptual code excerpt for the function di spat cher

I/l Get the necessary global available information
someDispatcherExtraArguments = (struct dispatcherExtraArgumentsx)(args);

/! Determine the id of the appropriate state tracking thread

/1 and return a reassembled packet if necessary

IPConnection* reassembledPacket = getLocalThreadldByPacket (pkthdr,
packet, someDispatcherExtraArguments , threadldOfConnection);

if (threadldOfConnection != —1) {
/I select the corresponding state tracker thread for this connection
stateTrackerThread =xaStateTrackerThread =
someDispatcherExtraArguments —>stateTrackerThreads + threadldOfConnection;

if (reassembledPacket)

/l take info from reassembled packet if it exists

}

else

{
}

memcpy (message . msgText, &newPacket, sizeof (newPacket));
messageQueueSend(aStateTrackerThread —>incomingMessageQueue,
&message, sizeof (newPacket));

/! normal, not fragmented packet

} else {
/1 The packet arrived is either not supported or it has been only a fragment.
/1 In the latter case the localThreadld is returned only after the time the
/1 last frame has arrived and the packet could be reassembled.

}

The function responsible for reassembling network packets if necessary and to deter-
mine if the packet already belongs to a registered network connection is the function
get Local Thr eadl dbyPacket . The basic steps executed in this function are listed in listing
C.3.

Listing C.3: Conceptual code excerpt for the function get Local Thr eadl dByPacket

/! declare pointers to packet headers

// define ethernet header

/1 define/compute ip header offset

I/l delete entries of the IPkey map which are older than FRAGMENTATION_TIMEOUT

/1 if fragmented, that means more—fragments—flag is set and/or fragment offset!=0

/1 process packet x*/
/I save the essential data (source port, destination port) in case of TCP / UDP

/1 create connectionKey/Identifier
connectionKey * connKey;
if (ipHeader—>ip_src.s_addr ==
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someDispatcherExtraArguments —>allConfigData—>monitoredHostIpAddress .s_addr){
connKey = new connectionKey (ipHeader—>ip_dst.s_addr,«srcport ,xdestport);

} else if (ipHeader—>ip_dst.s_addr ==
someDispatcherExtraArguments —>allConfigData—>monitoredHostIpAddress .s_addr)){
connKey = new connectionKey (ipHeader—>ip_src.s_addr,«destport,xsrcport);

}

/Il Try to find the entry in the connection map.
connectionMap::iterator connectionMaplter =
someDispatcherExtraArguments —>connections —>find (xconnKey);

if ( connectionMaplter == someDispatcherExtraArguments —>connections —>end ())
/I the connection entry is not in the map, therefore we add it

// assign a random threadld, get the timestamp and
// add the new connection to the map
aConnection—>localThreadld =
rand () % someDispatcherExtraArguments —>allConfigData—>numOfStateTrackerThreads ;
connectionEntry anEntry (xconnKey, aConnection);
someDispatcherExtraArguments —>connections —>insert (anEntry);

/] set the iterator to the new entry
connectionMaplter = someDispatcherExtraArguments —>connections —>find (xconnKey);

threadld = connectionMaplter—>second—>localThreadld ;
return reassembledPacket;

State Tracking Threads

The functionality of the state tracking threads is resided in the function st at eTr acker . Each
thread just awaits messages from the dispatching process and processes them. The code skele-
ton looks as shown in listing C.4.

Listing C.4: The code skeleton for the state tracking thread loop st at eTr acker

void x stateTracking:: stateTracker (void = ptr) {
while (! finish)

{
messageQueueReceive (thisThread —>incomingMessageQueue, &readBuffer, ...)
switch (readBuffer.msgType)
{
case MSQ _TYPE_IP_MESSAGE:
{
do
{
dlerror ();
plugin_t ip = ipProtocol—>entryFunction ;
ret = ip(...);
if (ret == EXIT_FAILURE)
{
/% Report buffer is dumped x/
}
else
/% Plugins successful x/
/+x Append new entry in report bufferx/
msgsnd (thisThread —>outgoingMessageQueue )
}while ()
}
}
}

}

The state tracking threads invoke the first suitable plugin by calling its entry function. Each
protocol is then responsible to call a succeeding plugin. The entry function mandatory to be
implemented by each protocol plugin should follow the concept as shown in listing C.5.

Listing C.5: Program code guideline for the mandatory ent r yFuncti on

|// Extract information of preceding protocol
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/1 Process the packet for the current protocol
/! and e.g. update state machine etc.

/! Report
/I Give packet to the next protocol

/1 Always return success, even if the packet had wrong format
int returnValue = EXIT_SUCCESS;

/! The findSubProtocol function searches in the subProtocolMap
/1 for an entry with the key monitoredHostPort

protocolx nextProtocol = thisProtocol —>findSubProtocol (monitoredHostPort);
if (nextProtocol && nextProtocol—>entryFunction) {
returnValue = nextProtocol—>entryFunction (nextHeader,
packetLength—SIZE_UDP_HEADER, NULL, nextProtocol,
thisStateTracker, lastReportbuffer —>next, packet);

}

return returnValue;
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Appendix D

Techniques in Signature
Generation Mechanisms

The following presented techniques have been used in one or more signature generation mech-
anisms presented in this documentation. If not specified explicitly the main source can assumed
to be http://en.wikipedia.org.

D.1 Byte-Frequency Distribution (BFD)

The byte frequency distribution is a function f,(b), which describes the probability for b to appear
at position p. b is between 0 and 255. The sum of f,(b) for all possible bytes (the values from
0 to 255) is 1. If W is the width in bytes of the signature, (f1, f2,..., fw) represents a simple
signature based on BFDs.

D.2 Longest Common Substring (LCS) problem

The longest common substring problem is to find the longest string (or strings) that is a substring
(or are substrings of) two or more strings. It should not be confused with the longest common
subsequence problem. You can find the lengths and starting positions of the longest common
substrings of S and T in O(n + m) with the help of a generalised suffix tree. Finding them by
dynamic programming costs O(nm). The solutions to the generalised problem take O(n; +...+
nig)and O(ny---...---ng) time.

D.3 Longest Common Subsequence (LCSeq) problem

The problem of the longest common subsequence (LCSeq) is to find a longest sequence which
is a subsequence of all sequences in a set of sequences (often just two). The problem is some-
times defined to be finding all longest common subsequences. The problem is NP-hard for the
general case of an arbitrary number of input sequences. When the number of sequences is
constant, the problem is solvable in polynomial time by dynamic programming.

D.4 N-Gram analysis

N-Grams are used to describe objects as vectors. This makes it possible to apply geometric,
statistical and other mathematical techniques on objects although the techniques are only de-
fined for vectors.

Definition: A is an alphabet and | 4| is the cardinal number of the alphabet. Let n be an integer.
An N-gram is a word of length n.

If you determine the number of occurrences of an N-gram within a possible sequence of char-
acters of an alphabet you get a N-gram frequency vector for this sequence. For comparing two
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such vectors you could for instance apply the Manhattan, Cosine or Euclidian distance. Another
metric is the Z-score.

D.4.1 Z-score

In statistics, a standard score (also called z-score or normal score) is a dimensionless quantity
derived by subtracting the population mean from an individual (raw) score and then dividing
the difference by the population standard deviation. The z-score reveals how many units of the
standard deviation a case is above or below the mean. If the mean and deviation can not be
known then may be one could assume that the subject is normally distributed.

D.4.2 Dice coefficient

A prominent algorithm to compute a similarity between words is the Dice algorithm. The Dice
coefficient of two terms « and b is defined by:

_ 2[l(a)nC(b)|
d(a,b) = TryHT)
where I'(z) is a N-gram decomposition of the term d. d is between 0 and 1.
An example:
Let Term a = "wirk” and Term b = "work”. If we use Tri-grams the decomposition looks as follows:

I'a) = {w, wi, wir,irk,rk,k} and T'(b) = {w, wo, wor, ork, rk, k}

The Dice coefficient is d(wirk, work) = % = 0.5. So you can say the similarity is 50 percent.

D.5 Expectation-Maximization (EM) algorithm

An expectation-maximization (EM) algorithm is used in statistics for finding maximum likelihood
estimates of parameters in probabilistic models, where the model depends on unobserved la-
tent variables. EM alternates between performing an expectation (E) step, which computes an
expectation of the likelihood by including the latent variables as if they were observed, and a
maximization (M) step, which computes the maximum likelihood estimates of the parameters by
maximizing the expected likelihood found on the E step. The parameters found on the M step
are then used to begin another E step, and the process is repeated.

D.6 Clustering

Cluster Analysis?, also called data segmentation, has a variety of goals. All relate to grouping
or segmenting a collection of objects (also called observations, individuals, cases, or data rows)
into subsets or “clusters"”, such that those within each cluster are more closely related to one
another than objects assigned to different clusters. Central to all of the goals of cluster analysis is
the notion of degree of similarity (or dissimilarity) between the individual objects being clustered.
There are two major methods of clustering, hierarchical clustering and k-means clustering.

D.6.1 Hierarchical clustering

In hierarchical clustering the data are not partitioned into a particular cluster in a single step.
Instead, a series of partitions takes place, which may run from a single cluster containing all
objects to n clusters each containing a single object. Hierarchical Clustering is subdivided into
agglomerative methods, which proceed by series of fusions of the n objects into groups, and
divisive methods, which separate n objects successively into finer groupings.

Lfrom http://www.resample.com/ximiner/help/HCIst/HClst_intro.htm
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D.7 Rabin fingerprint

The Rabin fingerprinting scheme is a method for implementing public key fingerprints using
polynomials over a finite number of elements. Given an n-bit message my, ..., m,_1, We view it
as a polynomial of degree n — 1:

fl@)y=mog+miz+ ..+ Mgzt
We then pick a random irreducible polynomial p(z) of degree k, and we define the fingerprint of
m to be

f(z) mod p(z)

which can be viewed as a polynomial of degree & — 1 or as a k-bit number.
For further information consider the original document about the Rabin fingerprint [29]. [4] gives
an overview of applications of the above presented fingerprinting method.

D.8 Bayes law

The Bayes law is a result in probability theory, which relates the conditional and marginal proba-
bility distributions of random variables. In some interpretations of probability, the Bayes law tells
how to update or revise beliefs in light of new evidence a posteriori.

The probability of an event A conditional on another event B is generally different from the prob-
ability of B conditional on A. However, there is a definite relationship between the two, and the
Bayes law is the statement of that relationship, as described by the following formula:

a5y - PELAP)

D.9 Content-based Payload Partitioning

The COPP algorithm is based on Rabin fingerprints that searches for repeated byte sequences
by partitioning the payload into content blocks. This enables the description of payload content
that is tolerant of payload variability to some degree. The algorithm has been developed for the
Autograph project [9] and is performed after accumulating enough number of suspicious flows
to partition the payloads into variable-length chunks of content blocks.
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Appendix E

Signature examples

E.1 Honeycomb signature

The honeycomb signature records can be translated into Bro or Snort format. The strings can
be distributed over several packages as the messages are reassembled per flow. Example for
the Slammer Worm:

alert udp any any -> 192.168. 169. 2/ 32 1434 (nsQ:
"Honeyconmb Fri Jul 18 11h46nB3 2003 "; content:
"]04 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 DC C9 BO
| B|EB OE 01 01 01 01 01 01 01| p| AE| B | 01] p| AE| B| 90
90 90 90 90 90 90 90/ h | DC C9 BO| B/ B8 01 01 01 01
| 1] C9 B1 18| P|E2 FD|5 |01 01 01 05| P| 89 E5|/Ch.dllh
el 32hker nGhount hi ckChGet Tf | B9| | | Gh32. dhws2_f | B9| e
t Chsockf | B9| t oGhsend| BE 18 10 AE| B| 8D| E| D4| P| FF 16
| P| 8D| E| EO| P| 8D E| FO| P| FF 16| P| BE 10 10 AE| B| 8B 1E
8B 03| =U | 8B EC| Q| 05 BE 1C 10 AE|B|FF 16 FF DO| 1
| C9| QQP| 81 F1 03 01 04 9B 81 F1 01 01 01 01| Q 8D E
| CC| P| 8B| E| CO| P| FF 16]j | 11| j|02|j| 02 FF DO| P| 8D E
| C4| P| 8B| E] CO| P| FF 16 89 C6 09 DB 81 F3|<a| D9 FF 8
B| E| B4 8D 0Cl @8D 14 88 C1 E2 04 01 C2 C1L E2 08| )
| C2 8D 04 90 01 D8 89| E| B4|j| 10 8D E| BO| P1] C9| ¥ | 81
F1| x| 01| Q 8D| E| 03| P| 8B| E| AC| P| FF D6 EB|"; )

E.2 Earlybird signature

Earlybird signatures are content-based signatures formatted for the Snort IDS. As the content-
sifting algorithm does not keep any per-flow state the generated signatures describe only con-
tent information contained within a single packet. An example:

drop tcp $HOVE _NET any -> $EXTERNAL_NET 5000
(nmsQ: "2712067784 Fri My 14 03:51:00 2004";

rev:1; content:"|90 90 90 90 4d 3f e3 77 90
90 90 90 ff 63 64 90 90 90 90 90| ";)

81



82 APPENDIX E. SIGNATURE EXAMPLES

E.3 COVERS signature

In [37] two signature examples are given. The first example is a size based signature, which is
generated for the OpenSSL heap overflow vulnerability:

{type = 2, data.size > 420}

The type and data fields refer to variable names defined in the input format specification for
OpenSSL. It means that the system needs to drop an input if one of its field’s type is 2, and the
field’s size is greater than 420. Another example uses character distribution based signature for
FTP:

{emd =" SITE", params.size > 452&&non — ASCII(params)}

This signature specifies that an attack has size greater than 452 and contains non-ASCII char-
acters.

E.4 Vigilante signature

The following example is an arbitrary execution control SCA for the Slammer worm. The alert is
457-bytes long. The enclosed message is 376-bytes long and has been truncated.

Service: Mcrosoft SQ Server 8.00.194

Alert type: Arbitrary Execution Control

Verification Infornmation: Address offset 97 of nessage O

Nunber messages: 1

Message: O to endpoint UDP: 1434

Message data: 04,41, 41,41, 41, 42,42,42, 42,43, 43, 43, 43, 44, 44, 44, 44,
45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 4A, 4A,
4A, 4A, 4B, 4B, 4B, 4B, 4C, 4C, 4C, 4C, 4D, 4D, 4D, 4D, 4E, 4E, 4E, 4E, 4F, 4F, 4F, 4F,
50, 50, 50, 50, 51, 51, 51, 51, 52, 52, 52, 52, 53, 53, 53, 53, 54, 54, 54, 54, 55, 55,
55, 55, 56, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 0A, 10, 11, 61, EB, OF, 41, 42,
43,44, 45, 46, 01, 70, AE, 42,01, 70, AE, 42, . . . . ..

The SCA identifies the vulnerable service as Microsoft SQL Server version 8.00.194 and the
alert type as an arbitrary execution control. The verification information specifies that the ad-
dress of the code to execute should be placed at offest 97 of message 0. The SCA also contains
the 376 byte message used by the Slammer worm.
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Installation manual for the
application state tracker framework

The application state tracker framework is a standalone application which tracks the state of
various network protocols up to the application layer. In this manual the installation procedure
and the configuration of the Tracker is described. Because it was written to work in conjunction
with Argos, also tips for installation and configuration of the latter are provided. The tracker in-
terface (actually the identical component as the Signature Generator) links the Tracker to Argos
and is briefly presented. For a more thorough description of installing the entire set of NoAH
components, especially Argos, refer to the document "How to set up the NoAH infrastructure?”
which is provided on the NoAH project homepage as part of the deliverable 2.2, http://www.fp6-
noah.org/publications/deliverables/D2.2/index.html.

F.1 The tracker framework

F.1.1 Installing the tracker framework
The tracker framework is a standalone application tracking the state of various network protocols
up to the application layer. The installation is not yet automated but rather straightforward. The
following points have to be done for a proper installation:
1. Make sure you have a version of the libpcap [18] installed. The tracker framework has been
tested with the version 0.8 of libpcap. This library is used for capturing the raw network
packets and is used by various other projects in the network domain, e.g. by Wireshark

(former Ethereal). To install libpcap under Debian and Ubuntu Linux Distributions follow
these steps:

(a) Download and install the library: apt - get install |ibpcap0.8

(b) As the Tracker is looking for the library libpcap.so, we have to create a link with this
name to the libpcap version we want to use,
eg.ln Jusr/lib/libpcap.so.0.8 /usr/lib/libpcap.so
The installation of the libpcap will be quite similar on other Linux distributions.
2. Copy the Tracker files into a folder.
3. If you compile the Framework the first time, type aut or econf -i
4. Start the configuration script: . / confi gure

5. Run the Makefiles: make
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F.1.2 Configuration of the tracker framework

The Tracker is configured by a configuration file named t r acker Conf i g. xmi . Later versions
of the Framework will allow configuration files specified by the user. A DTD (Document Type
Definition) specification of the XML file will follow. The configuration file first defines some pa-
rameters for the tracker framework itself. The number of state-tracking threads for instance
allows to improve the utilization of multicore-processors or multiprocessor systems. Then the
network protocols available as plugins for the framework are declared. A protocol can have
other subprotocols attached. Note that the current version of the Tracker is able to monitor only
one host, i.e. packets are only examined if they belong to a connection with the monitored host
as source or destination port.

F.2 Qemu, Argos and the Interface

Because the tracker framework is meant to work with Argos, we describe the installation and
configuration of Qemu, the tracker interface and Argos itself in this section.

F.2.1 Qemu

Qemu [26] is a processor emulator which allows full virtualization of computer systems. In con-
junction with the NoAH project Qemu is used to create working image partitions of guest op-
erating systems which will be then able to run with Argos. We won't use Argos for the instal-
lation of the guest operating systems because Argos slows down the operating system due to
its dynamic tainted analysis (DTA). To install Qemu download the latest archive at the project
page and unzip it. Type ./ confi gure, nake and make install. Qemu is now located in
/usr/ | ocal . Building Qemu may not work with the Gnu compiler gcc version 4.xx. Instead
use 3.xx. E.g. change the symbolic link gcc in/ usr/ bi n from gcc-4. 1togcc- 3. 4.

KQemu accelerator

It is recommended to additionally use the Qemu accelerator KQemu. It can be downloaded at
the project page of Qemu. Unzip the archive, run ./ confi gur e, nake and make i nstall .
This will install KQemu into / usr /| ocal . To run the kernel module kgenu the following com-
mands can be used:

1. / bi n/ nknod /dev/kgenu ¢ 250 O
2. / bin/chnod 666 /dev/kgenu
3. / sbi n/ nodpr obe kgenu

The Qemu version has to support the accelerator module. You can check this with the output of
the configure script in the directory of Qemu. In the output it should say kgenu support yes.

Installing a Guest Operating System

To install a guest operating system from a cd-rom or an image the following steps are necessary:
1. genu-ing create nyOS.ing 5CB
2. genu -hda nyOS.ing -cdrom/dev/cdromor nylnage.iso -boot d

The first command creates an empty image file with a size of 5 gigabytes. The second command
starts Qemu with ny CS. i ng as local harddisk. Because we want to mount ny| nage. i so from
where we install the guest operating system, we use the - cdr omoption. The - boot d option
tells Qemu not to boot from hda but from the cdrom.

The cdrom option can also be used to mount software into the guest OS. If you want to create
an image of a directory you can use

nki sofs -D -iso-level 3 -joliet-long -1 -0 directory.ing
-no-iso-translate -allownultidot -U directory



F.2 Qemu, Argos and the Interface 85

The content of the di r ect or y is now stored in the image di r ect ory. i ng. This image can be
mounted with Qemu: genu -hda nyOS.ing -cdrom directory.ing. Now the operating
system in myCS. i ng can access di rect ory. i ng as a cd-rom drive.

Providing more memory for the Guest OS

If you want to use more memory for the guest OS use the following commands:
e unount /dev/shm
e nount -t tnpfs -0 size=528m none /dev/shm

The last command allows us to set the memory to 512 megabytes by starting Qemu with genu
-m 512 .... We have set the size to 528 mb because the tmpfs should always be slightly
bigger than the memory size used for the guest OS.

F.2.2 Argos

The Tracker is part of a project called NoAH (Network of Affined Honeypots) and thus is meant
to work in conjunction with other programs although it can be run independently. The core of
the NOAH project is a honeypot system based on the virtual machine Qemu. This system called
Argos allows the detection of remote code execution through dynamic tainted analysis (DTA).
How to set up Argos and other related topics are described in the documentation section on
the project page of Argos [8]. The installation steps in a nutshell: Download the latest Argos
archive, unzip and compile it by running . / confi gure -prefix=/opt/argos, make and
make instal | . This will install Argos into the directory / opt / ar gos. If you want to use Ar-
gos with the state tracker framework you will have to add the option - enabl e- net -t r acker
to the configure script. If Argos is too slow and consumes too much memory you can add
- enabl e- | owremas option to the configure script.

F.2.3 Networking

There exist various howto’s in the internet for how to set up networking capabilities within Qemu
and Argos respectively. A common way is to use a virtual bridge. But with this configuration
you won't be able to connect from the guest OS to the outside world except to the host OS.
To achieve full NAT-alike networking functionality you will have to combine both bridging and 1P
forwarding / NAT. In this section we will explain the idea of bridging and virtual interfaces. Further
we provide the reader with some simple shell scripts which set up a network environment for
Argos and Qemu respectively. The guest OS however will not be able to contact hosts except
the host OS. At wwv. | i nuxf or en. de you can find a german howto for Qemu and networking
via IP forwarding®. A configuration manual for bridged networking with IP forwarding will follow
at a later time.

Ethernet bridging A virtual bridge allows you to interconnect network devices like it is done
when using real bridges. Additional to the functionality of a pure switch the bridge ker-
nel module gives you the opportunity to filter packets. For further information look at
http://linux-net.osdl.org/index.php/Bridge.

Tap / Tun interface Tun is a virtual point-to-point network device. It was designed as low level
kernel support for IP tunneling. For user applications there are two interfaces: /dev/tunX
(character device) and tunX (virtual point-to-point interface). Tap is the same virtual device
as Tun but instead provides support for Ethernet tunneling. The two interfaces for user
applications are: /dev/tapX and tapX.

The idea is that a user application can write a packet (Ethernet or IP frame) to the virtual
device /dev/tunX and the kernel will receive the frame from the tunX interface. The other
way around the kernel writes to the tunX interface and the user application reads from
/dev/tunX. Thus these virtual network devices (Tap / Tun) can receive packets from a
user space program instead from a physical network interface. And the other way around

Lhttp://www.linuxforen.de/forums/showthread.php?p=939854#post939854
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they send packets to user space applications instead of to a physical network interface.
The kernel itself handles the packets like they came from real physical devices. A good
starting point for further information is http://vtun.sourceforge.net/tun/fag.html.

Combination of bridging and the tap interface Because we want to have access to network
devices via Argos and no one should realize that there is a host OS, we first build a bridge
on our host OS. This way the emulated OS will access the network via the bridge and
will not see the guest OS. But this is only possible if we additionally assign a virtual tap
interface to Argos through which it can communicate with the kernel of the host OS.

Preconditions

e Make sure your kernel supports bridging and virtual interfaces (tun). This can be checked
by typing grep CONFI G TUN . config and grep CONFI G BRI DGE . confi g in the
directory / usr/ src/ <your |inux kernel version>. These two options should be
included statically or as modules, e.g. CONFI G_BRI DGE=m

e The following packets have to be installed: bridge-utils, SDL library and headers

Starting Emulation with Network Support

If we have met above preconditions we will be able to start Qemu or Argos with network support.
The following scripts are necessary:

gemu-ifup A script which automates the procedure of setting up the bridge and the virtual
interface (appendix F.4.1).

gemu-ifdown A script which removes the created bridge and interfaces (appendix F.4.2).
start-argos A script which starts Argos (appendix F.4.3). Starting Qemu works similar.

When we have started the guest OS do not forget to configure the guest OS too. The presented
script in F4.1 explains how it works.

F.2.4 Tracker interface

The tracker interface links the tracker framework to Argos. When Argos detects an attack the
Interface is notified via a socket. The Interface sends a signal to the Tracker and the latter dumps
its outputs. In the Tracker output the network packets which have caused Argos to produce an
alarm are then identified by the Interface.

Installation

The interface needs the cargos-lib which can be downloaded at the project homepage of Argos
[8]. For the installation run aut oreconf -i,./configure and make. In some deliverables
the Interface is part of the tracker framework in that it is contained as a subfolder of the frame-
work. Then aut or econf will not only create the necessary files for the Tracker but also for the
Interface. The makefile of the Tracker may then also invoke the makefile of the Interface.

Database setup

Because the interface uses a MySQL database to store information about the generated signa-
tures, you have to first make sure that you have a version of MySQL server installed on one of
your hosts. The access credentials are later added to the configuration file of the interface as
mentioned in the next section. If you have a running version of MySQL server use the following
commands to set up the signature database:

e nysql -uuser -ppassword -hyour host

e nysql > CREATE DATABASE si gnat ur eDB;
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e nysql > signatureDB < signature_dat abase. sql ;
e nysqgl > exit;

Note that you have to replace the access credentials for user, password and host according to
your settings in the first of the above listed commands.

Configuration

The interface is configured by the file confi gl . xii . In this configuration file we have to set the
IP at which we can connect to Argos through the control socket. With our network configuration
this IP corresponds to the IP of the bridge. The .netlog file of Argos will be located from where
Argos is started. So be aware when setting the path to the netlog file, that Argos will have to be
started from the same directory. It is recommended to use a dedicated directory from where to
start Argos because all session related files will then be held in a separate place. The output
and the dump file of the Tracker will be located in the Tracker directory.

F.3 Putting the Pieces Together

After the successful installations of all software components we can use our scripts to run either
Qemu or Argos. Use Qemu for the installation of guest operating systems and for the installation
of additional software. When we have our desired guest OS setup, we start Argos for attack
detection, preferably not as root. At last we start the Tracker and the Interface.

F.4 Ready-to-use Scripts

F.4.1 Qemu-ifup

Listing F.1: Script for bridge configuration, place it in /etc

#!/bin/bash
#place it in the folder /etc/

# The bridge

clear

echo /11 1ITTIITTIITIIETTTETTIETTTNTTT
echo // Configuring the bridge...
echo /11 1ITTIITTIITIIETTTETTIETTTNTTT

if ifconfig bro
then
echo Bridge br0 exists already.
sudo ifconfig br0O 192.168.3.55 # The bridge gets this IP address
else
echo Bridge brO does not exist yet, | am creating it now.
# adds a bridge bro
sudo brctl addbr br0
# bridge brO with 192.168.3.55 is the gateway for the guest OS...
sudo ifconfig br0 192.168.3.55
fi
echo Bridge—IP—Address: 192.168.3.55

# The virtual interface

echo /11 1ITIITTIETELITEIEILIIELTEELIEEL ey
echo // Configuring the virtual interface $1...
echo /11 1ITIITTIETELITEIEILIIELTEELIEEL ey

# $1 is the ifname—argument from argos (for us tunl)

# The bridge connects to the guest OS via this I[P

# The guest OS itself doesn’'t_know_this _and_just _sees_ethO...
sudo ifconfig $1 192.168.3.50

sudo brctl addif br0O $1 # adds the interface $1 to the bridge br0
echo The interface $1 gets the IP 192.168.3.50

echo /11 1TTITTEITTLIETEIIEETE L LTI e rirrnng
echo // Configuration at the Guest OS:

echo // Network—Controller IP: 192.168.3.51 — Host IP

echo // Default Gateway IP: 192.168.3.55

echo // Note: The virtual tap interface is not addressed here
echo /11 1TTITTEITTEIEIITIEETEETEE T i rirrnnt

exit 0
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F.4.2 Qemu-ifdown

Listing F.2: Script for removing virtual interfaces, place it in /etc

#!/bin/bash

sudo /sbin/ifconfig brO0 down
sudo /shin/ifconfig $1 down

sudo /usr/sbhin/brctl delif br0 $1
sudo /usr/sbhin/brctl delbr bro

F.4.3 Start-argos

Listing F.3: Script that starts Argos with network capability

#!/bin/sh

# without the next line , the mouse won’t_work
export  SDL_VIDEO_X11_DGAMOUSE=0

#without the next line , there would be a warning because of the frequency
sudo sh —c 'echo_1024_>_/proc/sys/dev/rtc/max—user—freq’

#set access permissions
sudo chmod 666 /dev/net/tun

#without the next line , you have to start argos as root (only on kernel >2.6.?7?)
sudo tunctl —u user —t tapO

#start argos, snapshot mode
argos —m 256 —hda /home/user/DiplomaThesis/images/win2kEN .img —net nic,vlan=0
—net tap,vlan=0,ifname=tap0, script=/etc/gemu—ifup —win2k —csaddr 192.168.2.55

#shutdown interface
letc/gemu—ifdown
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Signature Database

| Table signatureHeader

‘ Field name Data type

Description

sigNo int unsigned, primary,
auto-increment

revision smallint unsigned
osType smallint unsigned

moduleName text

attackType smallint unsigned
protocol tinytext

field tinytext

lastModification datetime

The primary key which uniquely identifies a signature
and its header. Every signature must have a header.

If the signhature was improved the revision number is
increased.

The numerical type of operating system for this sig-
nature.

The name of the application that should be pro-
tected.

The type of attack the signature is describing.

The protocol name according to the corresponding
entry in the NetPDL database.
The vulnerable protocol field name according to the
entry in the NetPDL database.

The timestamp of the last modification of this signa-
ture.

Table G.1: Database table outline for signature headers
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Table signatureDetails |

Field name Data type

Description ‘

sigNo int unsigned, primary
transportProto tinytext
srcPort smallint unsigned
destPort smallint unsigned
flowDirection smallint
flowState smallint
eipString tinytext
rawEipNetworkPacketOffset
unsigned

rawEipApplicationPayloadOffset
int unsigned

rawApplicationPayloadOffset
int unsigned

lcsString  text

int

lastModification datetime

This foreign key points to the signatureHeader table.
The textual description of the transport protocol.
The application source port.

The application destination port.

Numerical value of the packet direction.

Numerical value of the connection state.

The overwritten EIP value if any in text form.

The offset of the EIP from the beginning of the net-
work packet.

The offset of the EIP from the beginning of the appli-
cation payload.

The offset of the application payload in the network
packet.

A byte string created with the LCS method that can
be used to identify the attack in the network packet.

The timestamp of the last modification of this signa-
ture.

Table G.2: Database table outline for detailed signature information

Table packetldentifier |

Field name Data type

Description ‘

sigNo int unsigned, primary
name tinytext

packetldentificationType small-

int unsigned

string tinytext
specOffset int unsigned
specWidth int unsigned
specFieldValue int

This foreign key points to the signatureHeader table.

The name of the PDML field declaring the message
type according to the NetPDL database.

Numerical value of the identifier type.

A string if the message is identified by a string.
The offset of the field specifying the message type.
The width of the message specifying field.

The value of the field for this message type.

Table G.3: Database table outline for protocol-specific message type identifers
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Table variableField

Field name Data type

‘ Description

sigNo int unsigned, primary
name tinytext

offset int unsigned
criticalLength int unsigned

endTokenString tinytext

nbFieldType unsigned short
lengthSpecifyingField tinytext

lengthSpecifyingFieldOffset  int
unsigned
lengthSpecifyingFieldWidth  int
unsigned

lengthMultiplicator  smallint

lengthAddend smallint

This foreign key points to the signatureHeader table.

The name of the field with variable length that seems
to be vulnerable.

The offset of the field.

The critical field length triggering e.g. a buffer over-
flow.

A hexadecimal string if the field is terminated by a
token.

The field type according to the NetPDL database.
The name of the field specifying the length.
The field offset.

The field width.
A multiplicator for the field value to compute the ac-

tual field length.
An addend for the field value.

Table G.4: Database table outline for vulnerable fields of variable length

Table snortSignatures

Field name Data type

‘ Description

sigNo int unsigned, primary
revision smallint unsigned
content text
lastModification datetime

This foreign key points to the signatureHeader table.
The revision of this Snort signature.
The Snort signature in text form.

The timestamp of the last modification of this signa-
ture.

Table G.5: Database table outline for Snort signatures
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Appendix H

TODOs

Old tracker

1.

Support offloaded and thus wrong checksums

Signature information extraction

1.
2.
3.

Add a signature property for byte frequency distributions (BFD)
Support other attack types, especially format strings

Improve idea of generic properties for information extraction

Signature Generation

1.

2
3
4.
5
6

Test if packets are encoded

. Signature for reassembled packets

. Testing the generic approach with different protocols

Stream-based protocols

. NetBee library constraints and workarounds?

. Evaluate new Snort signatures

State machine

1.

Event data handling in the network protocol state machine framework

2. Adding timeouts for each state to the event processing

3.

Implementation of a state tracking action class
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List of Abbrevations

ASR .............. Address Space Randomization

BFD .............. Byte Frequency Distribution

BNF ... Backus Naur Form

CFG ... Control Flow Graph

COPP ............ Content-based Payload Partitioning
DFA .............. Deterministic Finite-state Automaton
DTA .............. Dynamic Taint Analysis

FTP ..ol File Transfer Protocol

IDS ... Intrusion Detection System

IPS ...l Intrusion Prevention System

ISP ... Internet Service Provider

LCSeq ............ Longest Common Subsequence

LOC ...t Lines Of Code

MB ............... Mega bytes

NAT ... Network Address Translation

NetPDL ........... Network Protocols Description Language
NIC ... Network Interface Card

NOAH ............ Network of Affined Honeypots

NREN ............ National Research and Education Network
OSImodel ........ Open Systems Interconnection (Reference) Model
PDL .............. Protocol Declaration Language
PDML ............ Packet Declaration Markup Language
PoC .............. Proof of Concept

PSML ............ Packet Summary Markup Language
RFC ...l Request For Comment

SGM ............. Signature Generation Mechanism
SOHO ............ Small Office, Home Office

SSH .............. Secure SHell

STL oot Standard Template Library

TCP ..ot Transport Control Protocol

UML .............. Unified Modeling Language
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