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Abstract

The increasing complexity and heterogeneity in multiprocessor SoCs call for new perfor-

mance evaluation methodologies in order to meet the severe time-to-market constraints.

This thesis aims at designing a performance evaluation approach for multiprocessor SoCs

at early stages in the design space exploration. The challenge is to speed-up the simulation

and at the same time to maintain accuracy for making design decisions.

To overcome the challenge, we present a modular trace-based simulation framework, in

which the application functionality is abstracted as high-level traces in order to achieve

efficiency and allow for fast design space exploration. Compared with existing trace-

based approaches, it has the following features: 1) the traces are generated automatically

without any manual instrumentation; 2) both the application and the architecture are

scalable and modular; 3) the framework can explore a variety of parameters, e.g. different

resource bindings, different scheduling policies including preemption, complex communi-

cation paths, different communication buffer locations and different atomic transaction

data sizes.

We implement the framework in the context of Distributed Operation Layer, which aims

at optimizing the mapping of parallel applications onto multiprocessor architectures. To

verify our framework’s modularity, efficiency and capability to explore various parameters,

we extensively test it on two case studies: a producer-consumer application and an MPEG-

2 decoder.
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1
Introduction

This thesis aims at designing a performance evaluation approach with both accuracy and

efficiency at system level. The first section describes the context of our work and the reason

of making use of simulation method at system level. After that the motivations and the

various factors that need to be considered in the system level simulation are illustrated.

In Section 1.3, we proposed a modular trace-based simulation framework, which can help

to solve the challenges in mapping parallel applications onto multiprocessor architectures.

Finally the organization of this thesis is presented.

1.1 Context

The advancement in electronic technologies have led to the emergence of the System-on-

Chip (SoC), which enables more and more functionality to be integrated on a single chip.

With the increasing complexity of modern applications, traditional single processor archi-

tecture can no longer meet the demanding performance requirements. Nowadays, the trend

of embedded system design is moving from single processor architecture toward hetero-

geneous multiprocessor SoC architecture. This shift calls for new methodologies because

traditional ad-hoc approaches fall short for dealing with the complexity and heterogeneity

of multiprocessor SoCs.
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2 Introduction

One primary goal in the process of system development is to meet the severe time-to-

market constraints. Due to the fact that the multiprocessor SoC has opened up a large

design space, having an efficient and accurate performance estimation method is manda-

tory for the design space exploration, especially in the early design stage. Traditional

cycle-accurate cosimulations are impractical anymore at this scenario, because the time

for constructing a synthesizable system as well as simulating softwares on it using multi-

ple Instruction Set Simulators (ISS) is not affordable, which may take days of work, even

months. Therefore, performance evaluation at a higher abstraction level, e.g. system level,

is necessary to minimize the modeling effort, time-to-market, as well as to get the best

trade-off between accuracy and speed.

The context of the work is the development of Distributed Operation Layer (DOL) [1],

which aims at optimizing the mapping of parallel applications onto multiprocessor archi-

tectures. The DOL takes the application specification, the architecture specification as

inputs and generates the optimized mapping specification. During the design space explo-

ration, the mapping optimization procedure makes use of various performance evaluation

strategies at different abstraction levels. The formal performance analysis method has

the highest speed, yet its bounds are not tight. It can be used to select a set of possible

alternatives when the design space is large. The system level simulation framework can

then be used to validate the results of the formal performance analysis method. More

importantly, it is used to optimize the mappings and confine the design candidates to a

small sphere.

1.2 Motivation

The challenge of system level performance evaluation for mapping an application onto

a multiprocessor embedded system is to speed-up the simulation, and at the same time

maintain sufficient accuracy for making design decisions, which implies that the impact

engendered by the architecture should be taken into account. The basic principles that

should be considered for system level performance evaluation can be summarized as fol-

lows: effect of the sharing of a resource, effect of communication architectures, efficiency,

accuracy, modularity and automatization.

Effect of Sharing of Resource

In a multiprocessor System-on-Chip architecture, several processes may be mapped onto

the same computation resource. They have to compete with each other to get access to
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the CPU and to carry out their own functionalities. Yet in some performance analysis

methodologies, the effect of sharing computation resources is neglected. It assumes the

largest parallelism among the processes mapped onto the same processor to the extent that

no process will block because of access conflicts, which does not reflect the actual situa-

tion. Therefore, the performance evaluation framework should provide various arbitration

mechanisms to assign mutually exclusive access to the computation resource.

Similarly, the effect of sharing communication resources, e.g. the communication bus,

should also be taken into consideration. The communication delays through one bus result

not only from the bandwidth, but also from the unavailability of the bus. If the bus is

taken by another resource at the moment, the communication requests can only be satisfied

until the bus is released and free again.

Effect of Communication Architecture

In DOL, an application is modeled as process network, the processes of which will be

mapped onto different processors and to cooperate together by means of inter-process

communications in order to accomplish the overall functionality. There are a variety of

ways for these processes to send and receive data between each other. One possibility

is that two processes are mapped onto the same processor. Under such circumstance,

these two processes are able to exchange data through internal communication. Where

the data transfer between processes can be conducted through local buffers and does not

need to access the two external bus. The overhead will be much less, compared with the

case when the processes communicate through an external communication media. In the

external communication, the data from the sender process will have to traverse at least

one bus to reach the destination. The time delay on the bus due to the limitation of

bandwidth or access conflicts is considerable. Additionally, the communication between

two processes can as well be carried out via a series of buses. The overhead stemming

from going through all these buses is more significant.

Moreover, another important aspect of the communication architecture is the location

of the memory that is used to buffer the communication data. Considering the case of

an external communication via one bus, if the memory is located on one side of the two

processors involved in the communication, e.g. origin processor, only the target processor

who tries to read data from the memory will have to access the bus. In this case, the

speed for the origin processor to access the memory will be much faster. In contrast, if the

buffer memory is implemented on a shared memory linked to the bus, both write requested

from origin processor and read requested from target processor ought to occupy the bus,



4 Introduction

resulting in slower data transfer speed.

Therefore, the variety and complexity of communication architectures in multiproces-

sor SoCs can produce a vast range of alternatives for implementation. Therefore, the

communication plays a key role and can exert considerable influence on the final system

performance. This requires that a system level performance evaluation tool should be

capable of exploring various candidates and derive meaningful performance estimation for

each alternative of the communication architecture.

Efficiency and Accuracy

In the initial design stages, the design space is extraordinarily large that the efficiency of

the performance evaluation is vital to guarantee the time-to-market constraints. Hence

any method that can lead to an improvement of the simulation speed merits serious consid-

eration. The dilemma, however, is that efficiency and accuracy are usually contradictory.

Thus it is difficult to improve these two ingredients at the same time. As a matter of

fact, it is very likely that the measures to increase efficiency can degrade accuracy, and

vice versa. To overcome this contradiction, the performance framework should provide

embedded system designers with flexible choices between accuracy and efficiency, in ac-

cordance with their actual needs. When the number of alternative solutions is large, the

efficiency may take precedence over accuracy. When the candidates are scaled down to

a small number after initial explorations, the designers can then increase the accuracy of

the performance evaluation to obtain the best solutions.

Modularity and Automatization

In the domain of multiprocessor SoCs design, both applications and architectures can vary

significantly. On the one hand, the number of processes, their respective definition and the

communication among them differ from application to application. On the other hand,

the number of the processors, the processor type and the communication architecture

connecting them can also be flexible. Accordingly, the performance evaluation framework

should be made modular to the largest extent and be able to cope with different scenarios.

It should not be limited to a specific application or hardware architecture platform, which

means the performance evaluation framework needs little or no modification when given

a set of valid specification for the application, architecture and mapping.

Moreover, since the system level performance evaluation is used to investigate a vast rang

of possible solutions, it is important to make it automatic in order to release the system

designers from burdensome task of manual operations, as well as to increase efficiency. in a
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performance estimation framework, the system designers will be harassed by these manual

operations which are error prone and even infeasible when the scale of the applications

grow increasingly larger.

1.3 Contribution

In this thesis, we present a modular trace-based simulation framework to solve the chal-

lenges faced by system level performance evaluation. This framework is based on execution

traces in order to achieve high efficiency and allow for fast design space exploration. In

the simulation framework, the application functionality is represented as a set of traces,

in which the computation and communication behaviors are abstracted as computation

and communication events. Its features are listed as follows:

• The trace generation is completely automatic, which releases the designers from

tedious manual instrumentation.

• Both the application and architecture modular, which means that without any mod-

ification, the framework can deal with mappings with different applications and

architectures specified under certain schemes.

• It can explore different resource bindings.

• To model the sharing of computation and communication resources, different arbi-

tration mechanisms, e.g. TDMA, FIFO and Fixed Priority (FP) with preemption,

are implemented for the resource sharing.

• It can explore complex communication path via a sequence of communication re-

sources.

• It can explore different communication buffer locations, i.e. internal memory at

original processor or target processor and shared memory.

• It can explore different atomic transaction data size which represents different gran-

ularities of the packet size. The atomic transaction data size offers flexibility for

designers with choices between accuracy and efficiency.

The proposed methodology is briefly illustrated in Figure 1.1. It mainly consists of

two phases. In the first phase, we modify the existing functional simulation to enable

the automated generation of traces which are independent of target architectures and

scheduling policies. It has application specification as input and execution traces as output.

In the second phase, with the execution traces, the architecture and the mapping as input,
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Mapping 
Specification

Execution 
Traces

Architecture 
Specification

Performance Estimation 
Results

Application 
Specification

Functional 
Simulation

Trace-based cosimulation

Figure 1.1: Proposed methodology.

the trace-based framework we built is used to obtain the performance estimation results,

such as execution time, processor load and bus load, which can provide hints for either

refining the existing mapping or designing a new mapping. In addition, the performance

evaluation methodology is implemented and testified in the context of the Distributed

Operation Layer. We take advantage of SystemC [2] to build the basic components.

Besides, we use XML to configure and specify the architecture and the mapping. To

validate its efficiency and capability to explore various parameters, we extensively test

the framework on two case studies: the producer-consumer application and an MPEG-2

decoder.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. In the next chapter, the related

work with regard to high level simulation is explored. In the third chapter, we introduce
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our trace-based simulation framework, including the basic concepts and methodologies.

The implementation of our framework in the context of DOL is described in detail in

Chapter 4, while in Chapter 5, case studies on a simple producer-consumer application

and an MPEG-2 decoder are used to test the framework. In the last chapter, we give the

conclusions of this thesis, as well as the future work.
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2
Related Work

In this chapter, we investigate the related work about system level performance evaluation

methodologies, including timed functional simulation and the trace-based performance

evaluation. In section 2.1, the state-of-art approaches in timed functional simulation are

presented and their respective drawbacks are analyzed. Section 2.2 desribes the major

achievements in the trace-based performance evaluation, i.e. trace-based simulation and

trace-based analysis. Finally by comparing with other trace-based methodologies, the

main characteristics of our approach are presented.

2.1 Timed Functional Simulation

As a good compromise between formal performance evaluation methods and cycle-accurate

simulation, the timed functional simulation uses timing to model the running effect of

an application. It is faster than cycle-accurate simulation and is more accurate than

the formal performance evaluation method. But it needs to execute the functional code

iteratively during the design space exploration, which degrades the efficiency. Some of the

state-of-art timed functional simulation approaches are listed as follows:

The work in [3] addresses the problem of performance estimation for multiprocessor

systems at the system level. It is based on a back-annotation approach to increase ef-

9
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ficiency, which means that the timing elements needed for performance estimation are

generated once and for all. The application code needs to be analyzed to isolate the basic

computation blocks. The types of scheduling policies of the computation node are limited

and the processes of a computation node are scheduled according to a uniform random

distribution. Additionally, this framework does not investigate complex communication

architecture.

Chronosym [4] uses a timed native execution model to simulate the execution of the

software on the target architecture. Both the OS and software code are executed on

the simulation host. The software code is annotated with execution delays to model the

timing effect on the target processor. Since it does not need to simulate the processor

functionality as ISS-based simulation does, Chronosym is much faster than the ISS-based

simulation. Yet in the process of exploring a large design space, the software code and OS

code should be executed iteratively, which limits its efficiency.

2.2 Trace-based Performance Evaluation

Trace-based performance evaluation methodologies are developed to overcome the draw-

back of the timed functional simulation. The speed-up is achieved by abstracting the

computation behaviors as high-level execution traces. Therefore, to simulate the compu-

tation behavior effects, the target architecture will not need to run the actual programming

code. Besides, in trace-based performance evaluation, the tedious analysis of branches in

the source code is no longer required since the execution has already been flattened.

The work in [5] uses transaction level SystemC modeling technique to simulate the

system. Since the functionality has been abstracted in the traces, it allows for a very fast

investigation of SoC architectures. Yet the approach is not generic. It is mainly used to

explore network processor architectures consisting of a variable number of processing units

communicating via only one bus. Besides, it is designed to solve specific application area,

namely packet processing. It assumes that an application is used to deal with different

types of packets which will receive their corresponding processing.

Another trace-based simulation framework SoCExplore [6] is used for exploring

communication-centric design space of complex SoCs with network based interconnects.

It uses a communication event simulator SoCNet to model the communication and the

execution order of the trace events. Since it does not make use of a well defined appli-

cation model of computation, e.g. Kahn, an explicit concurrency extraction is needed to

separate the application space from the system space. This is similar to the compilers that
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try to extract parallelism in the code. In addition, in order to generate traces, manual

instrumentation is required to track the execution of the computation and communication

behavior.

Sesame [7] tries to separate the application modeling and architecture modeling. An ex-

plicit mapping step is required to associate them together for trace-based simulation. The

configurations of the application, architecture and mapping are all specified in parameter-

based files. It supports gradual architecture model refinement. The Kahn Process Network

model of computation [8] is utilized to specify the application. The traces are generated

dynamically, by running the application model and are dispatched to the architecture

model using a UNIX IPC-based interface, which means that the computation program-

ming code in the application is executed iteratively for multiple mappings. Besides, manual

annotation to the original source code is needed in order to track the computation and

communication actions.

The trace-based performance analysis presented in [9] makes use of the communication

analysis graph (CAG) to evaluate the performance of on-chip communication architec-

tures. An initial cosimulation step is needed to generate traces, from which the CAG can

be extracted. The CAG is then analyzed statically without dynamic simulation, resulting

in faster design space exploration. But it is mainly used to investigate communication

architectures, e.g. its topology and associated protocols. It does not support concur-

rent computation and communication mapping exploration. The sharing of computation

resources is not considered. Besides, it does not contain various scheduling policies for

scheduling the requests on the bus, and only a priority-based scheme is used. In addition,

the granularity of the communication is coarse. In the CAG a communication event may

contain read or write of large size and it will be executed atomically.

2.3 Proposed trace-based Simulation Framework

Our framework also adopts the trace-based approach to achieve efficiency. It aims at

evaluating the system performance at a high level and can be used to explore design

space at early stages. Compared with the foregoing trace-based performance evaluation

methodologies, it has the following characteristics:

• The application is specified using a restricted version of Kahn process network. We

extend the KPN by adding an extra constraint, i.e. the FIFO channel is bounded

by a limited size. Consequently, both read and write will block when the channel

is empty and full, respectively. Yet the deterministic characteristic of the KPN is
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maintained.

• The traces are generated automatically without any manual instrumentation.

• Once the traces are generated, they can be reused for different mappings of the

same application. This means we only need to run the functional model once and

the time for executing the computation programming code is saved during the trace-

based simulation.

• It is able to explore arbitrary communication structures, e.g. internal communica-

tion, external communication, communication via a path. The communication path

may consist of several communication resources.

• When the communication channel is mapped onto the architecture, one important

factor that can affect the system performance is the location of software channel

buffer. Our framework is capable of investigating the various scenarios of imple-

menting the software channel buffer on the origin processor, target processor or

shared memory. According to our investigation, this is the first time that the imple-

mentation of software channel buffer is considered in the system level performance

evaluation.

• Various scheduling policies, including TDMA, FIFO and FP with preemption, have

been implemented to provide exclusively mutual access to the resources.

• Trace refinement is conducted by dividing the previous communication event into

smaller atomic communication events. The size of the atomic communication event

is flexible to provide a balance between accuracy and efficiency.

• The framework is generic. The application is not limited to a specific area. Any

application written under the process network specification scheme can be handled.

Besides, the architecture in the framework can be very complex with arbitrary pro-

cessors and buses.



3
Framework

In this chapter, the trace-based simulation framework we have proposed is presented in

more detail. In Section 3.1, an overview of the framework is given, including the formal

description and the system model. In the next sections, the fundamental blocks of the

framework and their underlying mechanisms are described. For example, in Section 3.2,

the way the application is specified and how the traces are generated from functional sim-

ulation are illustrated, while Section 3.3 explains the approach of modeling architecture,

including the uniform definition of resources and the algorithms for various scheduling

policies. The last section describes the way to simulate the computation event and com-

munication event for certain mapping configuration.

3.1 Overview

Our framework aims at solving the problem for performance evaluation at high level.

It takes application specification, architecture specification and mapping specification as

input and derives from the simulation the system performance statistics, such as processor

load, bus load, and overall system execution time. They can be used to guide the designers

to improve the design of the system.

13
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3.1.1 Problem Description

The application in our framework is previously specified by means of process network,

a restricted version of KPN. It defines the functional behaviour for each process and

how they communicate with each other via software channels. The details about process

network will be explained in section 3.2.1. The architecture used in our framework is a

tailored description of the target hardware platform, with only some major parameters

concerning the hardware components. The major components are computation resources

and communication resources. The mapping specification determines how the processes

are mapped onto computation resources, as well as how the software channels are mapped

onto communication resources.

10 10

10 20

(a) Process network

(b) Architecture

Process1

Process2

Process3 Process4

bus1 bus2 bus3

DSP1

RISC1

DSP0

RISC0

Figure 3.1: Process network and architecture.

As can be seen from Figure 3.1, an application can be described as a weighted directed

acyclic graph Gpn = (Vprocess, Esw channel), in which Esw channel ⊆ 〈Vprocess × Vprocess〉 is a

partial order.

• Vprocess is the set of vertices in Gpn. vprocess ∈ Vprocess denotes one process in the

process network. In each process the corresponding functional behavior is defined.
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In the mapping, each process is a atomic mapping unit, indicating that it can only

be mapped to one processor.

• Esw channel is the set of edges in Gpn. esw channel ∈ Esw channel denotes one software

channel in the process network. The software channel is a bounded FIFO channel.

It is used by two processes in the process network to communicate with each other.

The direction of an edge denotes the data flow direction of the software channel.

Sbuf size is the set of weights of the edges in Gpn. sbuf size ∈ Sbuf size edge denotes

the buffer size of a corresponding software channel.

The architecture can be described as an undirected graph Garch = (Vresource, Ehw connection).

• Vresource is the set of vertices in Garch, and Vresource = Vcomp res
⋃

Vcomm res, where

Vcomp res stands for the set of computation resource vertices and Vcomm res stands for

the set of communication resource vertices. vresource ∈ Vresource denotes one resource

in the architecture.

• Ehw connection is the set of edges in Garch. ehw connection ∈ Ehw connection denotes one

connection between two hardware resources.

We define Pcomm as the subset of paths in Garch, and for each pcomm ∈ Pcomm, both

the start vertex and the last vertex should be computation resources. It denotes a pos-

sible communication path in the architecture level. For example, in Figure 3.1, path

< DSP1, bus1, RISC1 > is one elements in Pcomm

The computation mapping is defined as a many-to-one function: Mcomp : Vprocess −→
Vcomp res. According to the definition, several processes can be mapped onto the same

computation resource. But for each process, it can and only can be mapped onto one

computation resource at a time.

The communication mapping is defined as a many-to-one function: Mcomm :

Esw channel −→ Pcomm. So it is possible that several software channels are mapped onto

the same communication path. Yet for one software channel, it can only be mapped to

one communication path each time.

The performance estimation is defined as a metric:

Tperf (bus load, processor load, estimated execution time). The bus load stands for the

time the bus is in use for actual data transfer. The processor load stands for the time the

processor is in use for actual computation. The estimated execution time measures the

estimated time needed for executing the application on the target architecture.

The goal of the trace-based simulation framework is to derive the performance statis-

tics which will guide the designers to find the best mapping solution. According
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the foregoing definitions, we define our simulation framework as a function: Fsim :

(Gpn, Garch,Mcomp,Mcomm) −→ Tperf . It takes application Gpn, architecture Garch, com-

putation mapping Mcomp and communication mapping Mcomm as input. After the simu-

lation, the performance statistics Tperf is obtained.

3.1.2 System Model
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Figure 3.2: Trace-based simulation framework.

The infrastructure of the trace-based simulation framework is illustrated in Figure 3.2,

where we make use of a concrete application and architecture as an example to explain

the framework while in fact they are both modular and can be easily extended. As

can be seen in the figure, the application consists of three processes and two software

channels, i.e. software channel C1 connecting Process1 and Process2, software channel C2
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connecting Process2 and Process3. The architecture contains two processors, one bus, and

a shared memory. For computation mapping, Process1 and Process2 are both mapped to

Processor1, Process3 to Processor2. For communication mapping, software channel C1 is

mapped to Processor1 because both Process1 and Process2 are mapped onto Processor1,

and C2 mapped to the path < Processor1, Bus, Processor2 >.

There are two phases in our simulation framework: trace generation and trace-based

simulation. In the first phase, the traces are generated only once via functional simulation.

In the original application specification, the behaviours of the processes are described with

sequential programming language, e.g. C. By conducting functional simulation on the

process network, pure functional execution traces are produced. The traces generated

from this step are architecture and scheduling independent. In the second phase, trace-

based simulation is executed each time a new design needs evaluation while the traces

can be reused. Another input for the simulation is the hardware architecture, which is

derived from the architecture specification. The resource in the architecture can simulate

the performance consequence of the trace event and schedule trace events from different

processes according to a given policy (e.g. TDMA, FIFO, and fixed priority). The time

needed to finish a trace event is related with the parameters of the resource, e.g. type

of processor and clock frequency. A mapping specification links the application and the

architecture. For certain mapping, the system is simulated and the performance estimation

results are obtained.

3.2 Application Modeling

As is explained in Figure 3.2, the application in the trace-based simulation framework is

represented as execution traces produced from functional simulation. In this section, we

mainly focus on explaining the process network and the execution traces.

3.2.1 Process Network

The application is initially modeled in the form of process network, a restricted version

of the Kahn Process Network (KPN). In KPN, parallel processes communicate with each

other through unbounded FIFO channels. For communication, only reading from channel

may block for missing data, while writing to channel never stall. One major characteristic

of KPN is that it is deterministic, which implies that the same application input will

always produce the same outputs, regardless of implementation platform or scheduling.

In the application specification of our framework, we extend the KPN by adding an extra
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constraint, i.e. the FIFO channel is bounded by a limited size. Consequently, writing

to channel may block when the buffer is full. The reason for introducing blocking write

is that on the one hand, the unbounded FIFO channel does not exist in reality, thus

limiting the expression ability of KPN. On the other hand, possible deadlock caused by

the communication between processes can be detected in our model. In a word, both

blocking read and blocking write will be considered, yet the deterministic characteristic

of KPN has retained, which lays the foundation for using function traces to represent the

combination of certain input and the application and subsequently drive the underlying

architecture model to simulate the system.

3.2.2 Execution Trace

Trace Generation

As it has been described in Figure 3.1, the process network can be represented as a weighted

directed acyclic graph. The function of each process component is specified in C program-

ming language, regardless of the future implementation. With the process network, we

should do initial simulation to obtain the traces for later simulation. Simulation can be

carried out at different levels, according to the degree of exposure of final implementation

detail. The lower-level simulation, e.g. ISS-based simulation, is more accurate, yet its

disadvantage is low speed. So we need to raise the abstraction level. As the functional

simulation focuses on validating the algorithm of the application, it does not consider the

impact of the target hardware architecture, such as the detailed execution on the target

resource and how the communication is performed. No timing information can be collected

from functional simulation and only the partial order of the computation behaviours and

communication behaviours can be established. The high level of simulation makes it faster

than other simulation methods. The fact that we are only concerned about the execu-

tion procedure of each process and the existing dependency among them makes functional

simulation suitable for trace generation. The role played by the functional simulation can

be depicted in Figure 3.3. The traces are generated only once and can be reused for each

mapping in trace-based simulation.

Trace Representation

The trace events in traces are classified into three types: computation event, read event

and write event.

• The computation event abstracts the function of a basic computation block by iden-
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Figure 3.3: Functional simulation for trace generation.

tifying the corresponding code. When the computation resource simulates the con-

sequence of running the computation event, it does not have to do the actual com-

putation. Instead, it will only wait for some time delay, which is the time estimation

for this computation running on a certain computation resource, e.g. DSP. Since

some computation, e.g. DCT, may need significant time to finish on the simulation

host, the abstraction of computation in this way can considerably increase the speed

of our trace-based simulation.

• The write event contains how many data items and which software channel to write

to.

• Similarly, read event records how many data items and which channel to read from.

The granularity of a trace event can be illustrated by Figure 3.4. In the box is the source

code segment of a process. On the right is its abstract representation, i.e. a directed graph

Gprocess = (Vcomm, Ecomp), in which the vertex Vcomm corresponds to a read or write while

the edge Ecomp stands for the computation. The weight of the edge denotes the execution

delays of the computation. We use the unfolded version of this graph to represent one

possible execution path, namely trace.

Each process in the process network has its own trace, of which the trace events form

a total order. Because of the existence of blocking read and blocking write, the execution

of the trace events from different process may be interrelated. Therefore, as a whole, the
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for (;;) {
Dol_read(8);
if ( … ) {
compute; // 5
Dol_read(8);
compute; // 10

} else {
compute; // 5
DOL_write(8);
compute; // 10

}
DOl_write(16);
compute; // 10

}

Read(8)

Compute
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Read(8)
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Write(16)
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(10)
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Figure 3.4: Trace granularity.

trace events of the application form a partial order. Thus if there is no order between

two events, they can run in parallel on the target architecture. The approach to express

dependencies among trace events can be illustrated in Figure 3.3.

Before defining the dependency between two traces events, we introduce the following

functions for each software channel ck ∈ C on trace event ei, where C is the set of software

channels in the application. The function Wck
describes the writing of a trace event to

software channel ck, while Rck
describes the reading of a trace event to software channel

ck.

Wck
(ei) =

{
d if ei writes d bytes to ck

0 else
(3.1a)

Rck
(ei) =

{
−d if ei reads d bytes from ck

0 else
(3.1b)

So if Wck
(ei) = d, the data available of ck will increase by d bytes. And if Rck

(ei) = −d,

the data available of ck will decrease by d bytes.

We define ep,m ∈ Ep and eq,n ∈ Ep, where Ep is the set of trace events for process p, Eq

is the set of trace events for process q, ep,m is the mth trace event in Ep and eq,n is the nth

trace event in Eq. We say that ep,m is directly dependent on eq,n if one of the following

constraints is satisfied:
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• p = q, and m = n + 1;

• p �= q, and there exists ck ∈ C,{ ∑m
i=1 Rck

(ep,i) +
∑n−1

j=1 Wck
(eq,j) < 0∑m

i=1 Rck
(ep,i) +

∑n
j=1 Wck

(eq,j) ≥ 0
(3.2)

• p �= q, and there exists ck ∈ C,{ ∑m
i=1 Wck

(ep,i) +
∑n−1

j=1 Rck
(eq,j) > sck

,where sck
is the size of ck.∑m

i=1 Wck
(ep,i) +

∑n
j=1 Rck

(eq,j) ≤ sck

(3.3)

As a matter of fact, the first constraint implies that two trace events are in the same

process. The second constraint stands for blocking read, in which the first formula means

the read can not be satisfied and the second one means the read can be satisfied. The

third constraint represents blocking write, in which the first formula means the write can

not be satisfied and the second one means the write can be satisfied.

Trace Transformation

The communication events are responsible for modeling data transfer. For two commu-

nication events, e.g. one write event writing 64 bytes to the channel and the read event

reading 64 bytes as depicted in Figure 3.6, it means in the trace-based simulation the

read event can be scheduled only after the write event has finished. The granularity of

the communication in this way is coarse. Yet it is highly possible that the buffer of the

software channel is implemented in a pipelined way, indicating that the process in the re-

ceiving side of the channel can immediately start to read after the process in the sending

side writes some data into the channel, e.g. 4 bytes. In this case, it will be more likely to

reflect the actual situation if the original communication events are split into a series of

atomic communication events, each one handling 4 bytes of data.

On the other hand, as the trace events will be simulated at the architecture level in

the framework, the granularity of the communication of the traces should be closer to the

hardware in order to increase accuracy. Take the architecture in Figure 3.5 for example.

Consider 64 bytes of data are transferred from processor1 to processor2 via two buses with

width of 32 bits, namely 4 bytes. After 4 bytes are transferred from processor1 to the

buffer of the bridge connecting bus1 and bus2, bus2 will start to transfer the 4 bytes to

processor2, rather than wait until all 64 bytes are available. Therefore, the introduction of

atomic communication event will facilitate the communication simulation at architecture

level.
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Figure 3.5: Architecture for trace refinement.

Another reason why we prefer to do trace transformation and split the events into atomic

communication events is that it enables the implementation of preemption scheduling pol-

icy in an straightforward way. In the procedure of simulation, the atomic communication

event should either be finished by the scheduler or not be executed at all. The details

with regard to this topic will be presented in section 3.3.4.

The approach to do trace transformation is depicted in Figure 3.6. The atomic size

of a communication event is fixed in one simulation. Yet it is configurable and can be

changed by the user. In the process of trace transformation, each communication event

containing data more than the atomic size will be divided into smaller ones, while other

information about the trace events such as which software channel will maintain. For

example, in Figure 3.6, we define the atomic size as 8 bytes. Thus the previous write

event e1 of process1 with 64 bytes will be divided into 8 atomic trace events, each one

containing 8 bytes. Yet the software channel binding information will retain and all the

atomic trace events generated from e1 will still write to C1. Additionally, as the atomic

size gets smaller, the traces and will become larger. Because the trace-based simulation

has to consider each trace event individually, the simulation speed will suffer from the trace
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transfromation. And the flexibility of atomic size provides the designer with a trade-off

between accuracy and efficiency.
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Figure 3.6: Trace transformation.

3.3 Architecture Modeling

The architecture is in charge of modeling the performance consequence of the trace events

generated by means of functional simulation on process network. The organization of the

architecture has been illustrated in Figure 3.1 and 3.2. It mainly consists of two types of

resources, namely computation resource and communication resource. Their characteris-

tics and how they communicate with each other are defined in a parameter-based scheme.

At the initialization step of the simulation, all the resources are automatically extracted

from the architecture design file and built from those parameters which specify the type of

the resource, clock frequency and scheduling policy. The computation resource, e.g. RISC

or DSP, is used for simulating the computation event. As the functional behaviour has

already been captured in the process of generating traces, when handling the computation
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events, the computation resource only need to measure the time delays that need to be

used for executing the computation on this processor, thus resulting in faster performance

evaluation. Both the computation resource and communication resource can simulate the

data transfer included in the communication event. For example, the internal communi-

cation takes place on the computation resource. Sometimes a single communication event

should be executed consecutively by a series of resources in order to be finished, in accor-

dance with the fact that in actual situation a data transfer from the origin processor needs

to traverse several buses to arrive at the target processor. To provide exclusively mutual

access to the resources, a set of arbitration mechanisms have been established, including

TDMA, FIFO and fixed priority with preemption.

3.3.1 Architecture Resource

At the architecture level, all the components are modeled as resources, no matter whether

it is a computation resource or communication resource. All the characteristics of the

resources, such as clock frequency, are defined in a parameter-based way. Therefore,

adding a new resource to the architecture or changing the characteristic of a resource only

requires changing the corresponding parameters in the architecture file, which makes our

modeling of architecture modular.

TDMA, FIFO
FIXED_PRIORITY

Resource

Scheduler

Event queue

Event queue

Figure 3.7: Skeleton of resources.

Figure 3.7 illustrates the uniform skeleton of resources. The architecture in our frame-

work consists of a set of resources, including computation resources and communication

resources. All the architecture resources are connected and attached through event queues

which store the trace events arriving from another resource. Consider two processors linked
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to a bus in Figure 3.8. The bus will hold two different event queues, one for each proces-

sor. Therefore, when one processor delivers communication events to the bus in order to

conduct reads or writes, they will be queued in their corresponding event queue of the bus.

The event queues in the processors are used to store trace events from processes mapped

onto them. In this way, the architecture can be easily extended and can form any complex

hardware architecture.
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Figure 3.8: How to connect resources.

3.3.2 Processor

Processor is one type of computation resource onto which one or more processes of the ap-

plication can be mapped. In our trace-based simulation framework, a processor is mainly

responsible of scheduling the traces events delivered from processes according to a given

scheduling policy. The also model the latency for processing a computation event. More-

over, a processor cooperates with other resources, e.g. buses, to simulate the performance

consequence of a communication trace event. Two factors of the processor can affect the

time needed to finish a trace event, as can be illustrated as follows: the processor type

and its frequency.

Processor Type

In the first place, the latency caused by the same trace event on different processors may be

different and is dependent on the type of the processors, e.g. DSP or RISC. It is very likely
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that an algorithm which is designed specifically for DSP can run much faster on DSP than

on RISC. To reflect this difference and extract the corresponding performance estimation

for a trace event on each type of processor, several methods can be used: low-level model

of architecture, performance estimation tools, available documentation or experience of

the designers.

Clock Frequency

In the second place, even for the same trace event mapped onto two processors of the

same type, the latency used to model execution of the trace event can still be different

because the two processors may have different clock frequencies. It is intuitive to note

that the higher the frequency of the processor, the more powerful its processing capability

can be. Assumes that it will take 5 cycles to accomplish the trace event on a RISC. In

the architecture there are two RISC processors, whereas the clock frequency of the first

processor is 100MHz and that of the second one is 200MHz. It will take about 50 ns for

the first processor to finish the trace event while only 25 ns is needed for the latter one.

Therefore, the latency Tlatency ns caused by a trace event which requires Ncycles cycles in

order to be finished on the target processor whose clock frequency is Fclock MHz can be

calculated with:

Tlatency =
Ncycles

Fclock
× 103

3.3.3 Bus

The bus in the framework is one type of communication resources, used to transfer data

between two different resources linked to it. In multiprocessor system, it plays the key

role in communication. When two processes mapped onto two different processors need

to exchange data, one common practice is to connect them through a bus. In our frame-

work, we have modeled the bus as communication media. It is capable of dealing with

communication trace events. For each resource linked to it, it maintains an event queue

to buffer all the data transfer requests from that resource. The latency on the bus caused

by trace event relies on how many data to transfer, which protocol to use, and the bus

bandwidth. At the same time, there may be several requests form different resources to

this bus. Hence an arbiter is required to schedule them and assign them exclusive access.

Also, arbitration policies, such as TDMA, FIFO, fixed priority, are implemented in our

framework.

The latency Tlatency ns caused by a communication event with data quantity Ndata bytes

on a bus with bus width Nwidth bytes and bus frequency Fclock MHz under some protocol
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which requires Tprotocol ns, can be expressed as:

Tlatency = 
Ndata/Nwidth� × 1
Fclock

× 103 + Tprotocol (3.4)

3.3.4 Scheduling

Each resource in the architecture has its own scheduler to schedule the trace events dis-

patched onto it according to a given scheduling policy. The event queue is the entity that

can be scheduled by the scheduler. For each scheduling policy, we design the corresponding

algorithm. Yet the structure of the event queue is uniform for all types of schedulers.

Event Queue

An event queue is an infinite FIFO buffer used to store trace events delivered to it from

other resources or processes. For processor, one event queue corresponds to one process

mapped onto it. If the next trace event of the process’s trace is ready to be executed, it

is dispatched to the target processor and inserted at the end of the event queue. It will

be scheduled by the scheduler if the traces events before it have all been finished and the

time slice for this process is available. For communication resource, e.g. bus, one event

queue stands for a resource with which it is connected, e.g. processor. It is for organizing

reading or writing requests from that resource. In our framework, each event queue can

be scheduled by the corresponding scheduler. As is depicted in Figure 3.9, it has three

states, i.e. ready, running and waiting, in accordance with three different process states

in scheduling. Take the event queue of TDMA scheduler for example. If there are trace

events ready in the queue and the time slice is not available. This means that the process

is waiting to be scheduled and it is not blocking on I/O and its state will be set to ready.

After the time slice arrives, the scheduler will choose the earliest event from the event

queue and simulate its execution by waiting for the corresponding amount of time. At

this moment, the event queue’s state is running. After all the trace events are finished, it

is possible that the process is going to wait on I/O. No more trace event arrives and the

event queue becomes empty, the state of the event queue is set to be waiting.

At present, three types of scheduling mechanisms have been implemented for our frame-

work, which are TDMA, FIFO, fixed priority. Yet with similar mechanism, it is not difficult

to implement any other scheduling policy (such as round-robin). The respective design

details of the three scheduling policies are described as follows.
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TDMA Scheduling

In Time-Division Multiple Access (TDMA) scheme, the time axis is divided into a number

of time slots of a fixed length. Each event queue is allocated a fixed set of slots at which

it can access the resource. This allows different event queues to share the processor or

the bandwidth of the bus, thus providing some sort of fairness. Yet the overhead on this

particular scheduler may be larger compared to other scheduling policies due to constant

context switches. If the trace events in current event queue have not been finished before

its time slot ends, the scheduler will switch to next event queue. This behaviour can

be regarded as preemption in that the scheduler preempts current process while it is still

running by taking CPU away from one process and give it to another. The state of an event

queue in TDMA scheduler is illustrated in Figure 3.9. The procedure of state transition

has already been described above. The algorithm to implement TDMA in our framework

is illustrated in Algorithm 1.
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Figure 3.9: Event queue states in TDMA scheduler.



3.3 Architecture Modeling 29

Algorithm 1 TDMA scheduler for processor

1: loop
2: for all event queues qi ∈ Q in the scheduler do
3: time slice left ti ← Ti which is the time slice assigned to this event queue
4: while time slice left ti for qi has not expired do
5: if the state si of qi is WAITING then
6: wait until ti ends or si becomes READY
7: if ti has ended then
8: break
9: end if

10: end if
11: fetch the next trace event ek from qi
12: if ek is a computation event then
13: wait until ti ends or the performance estimation latency lk for ek ends
14: update both ti and lk
15: if lk is 0 then
16: finish ek and delete it from qi
17: if qi is empty then
18: set si to be WAITING
19: end if
20: end if
21: if ti has ended then
22: break
23: end if
24: else if ek is a write event then
25: if ti is not sufficient for transfer data in ek then
26: wait until ti ends
27: end if
28: wait for latency lk needed to transfer the data
29: update ti
30: if the current resource is not the last one to handle ek then
31: deliver ek to the next resource on the write path
32: else
33: update the channel buffer
34: end if
35: finishek and delete it from qi
36: if qi is empty then
37: set si to be WAITING
38: end if
39: if ti has ended then
40: break
41: end if
42: else if ek is a read event then
43: if ti is not sufficient for transfer data in ek then
44: wait until ti ends
45: end if
46: wait for latency lk needed to transfer the data
47: update ti
48: if the current resource is the first one on the read path then
49: update the channel buffer
50: end if
51: finishek and delete it from qi
52: if qi is empty then
53: set si to be WAITING
54: end if
55: if ti has ended then
56: break
57: end if
58: end if
59: end while
60: wait until the time slice Ti+1 for qi+1 has come
61: end for
62: end loop
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FIFO Scheduling

The FIFO scheduler is based on the principle of a first-come, first-served behaviour. The

event queue will be chosen to execute in the order they arrive. It is a non-preemptive

scheduling algorithm so every event queue can execute until it gets blocked, which means

it becomes empty. When an event queue becomes ready it is added to the tail of ready

queue. The problem with FIFO is that the average waiting time can be long since it

does not take into account short tasks before long tasks. Figure 3.10 describes the states

transitions of an event queue in FIFO scheduler. If there are some trace events in the

event queue waiting to be scheduled, its state is set to ready and is inserted at the end

of the ready queue. Then if event queues arrived before it have all been finished by the

resource or get blocked, it will be selected to execute by the scheduler and the its state is

set to running. After that it holds the resource until all its trace events are finished and it

will be waiting on I/O. The event queue will be ready again if I/O requests are satisfied.

As can be seen in Figure 3.10, there is not state transition from running towards ready for

the reason that in FIFO scheduling there is no preemption. The algorithm for implement

FIFO scheduler is described in Algorithm 2.
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Figure 3.10: Event queue states in FIFO scheduler.
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Algorithm 2 FIFO scheduler for processor

1: loop
2: if the scheduling queue qschedule is empty then
3: wait until some event queue needs to be scheduled
4: end if
5: fetch from qschedule the first event queue qfst

6: fetch the next trace event ek from qfst

7: if ek is a computation event then
8: wait until the performance estimation latency lk for ek ends
9: finish ek and delete it from qfst

10: if qfst is empty then
11: set the state si of qfst to be WAITING
12: end if
13: else if ek is a write event then
14: wait for latency lk needed to write the data
15: if the current resource is not the last one to handle ek then
16: deliver ek to the next resource on the write path
17: else
18: update the channel buffer
19: end if
20: finishek and delete it from qfst

21: if qfst is empty then
22: set si to be WAITING
23: end if
24: else if ek is a read event then
25: wait for latency lk needed to read the data
26: if the current resource is the first one on the read path then
27: update the channel buffer
28: end if
29: finishek and delete it from qfst

30: if qfst is empty then
31: set si to be WAITING
32: end if
33: end if
34: end loop
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Fixed Priority Scheduling

Fixed priority scheduling is previously known as real-time scheduling. The fixed priority

scheduler guarantees that at any time the process which is ready to execute and has the

highest priority can have access to the resource even if there is some other process running.

In our framework, each event queue is set a fixed value to represent their respective priority.

The event queue with highest priority always gets the resource as soon as its trace event

arrives, thus may preempt the execution of other event queue. State transitions of an event

queue in fixed priority scheduler can be seen in Figure 3.11. The preemption takes place

when an event queue with higher priority is ready and the current event queue will be set

to ready from running. If the event queues with higher priorities have all been finished

or blocked, the event queue which was preempted before will resume its execution. The

algorithm to implement fixed priority mechanism is illustrated in Algorithm 3.
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Figure 3.11: Event queue states in fixed priority scheduler.
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Algorithm 3 Fixed priority scheduler for processor

1: loop
2: if the scheduling queue qschedule is empty then
3: wait until some event queue needs to be scheduled
4: end if
5: fetch from qschedule the first event queue qfst with the highest priority
6: fetch the next trace event ek from qfst

7: if ek is a computation event then
8: wait until the performance estimation latency lk for ek ends or interrupt event is

signaled
9: update lk

10: if lk is 0 then
11: finish ek and delete it from qfst

12: if qfst is empty then
13: set the state si of qfst to be WAITING
14: end if
15: end if
16: finish ek and delete it from qfst

17: else if ek is a write event then
18: wait until latency lk needed to write the data for ek ends or interrupt event is

signaled
19: if ek has not been finished then
20: continue
21: end if
22: if the current resource is not the last one to handle ek then
23: deliver ek to the next resource on the write path
24: else
25: update the channel buffer
26: end if
27: finishek and delete it from qfst

28: if qfst is empty then
29: set si to be WAITING
30: end if
31: else if ek is a read event then
32: wait until latency lk needed to read the data for ek ends or interrupt event is

signaled
33: if ek has not been finished then
34: continue
35: end if
36: if the current resource is the first one on the read path then
37: update the channel buffer
38: end if
39: finishek and delete it from qfst

40: if qfst is empty then
41: set si to be WAITING
42: end if
43: end if
44: end loop
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3.4 Mapping Modeling

In this section, three aspects concerning mapping are explained. In the first paragraph,

some factors in the mapping that can affect the system performance and can be considered

in our framework are investigated. In the second paragraph, the method of implementing

mapping in our framework is presented. In the third paragraph, simulation work flow for

certain mapping is generally described.

In multiprocessor system, provided the same application and the same architecture,

performance can still be different due to different mappings. Just as section 3.1.1 has

described, mapping can be divided into two types: computation mapping and commu-

nication mapping. For a functionality specified in the process, it can be faster if it is

implemented on DSP rather than on RISC. Therefore, given a target architecture, we may

try to map this functionality on the DSP processor in the first place. For the commu-

nication between different processes, it seems to be advantageous to implement it in one

processor, without the need to visit external bus or memory. The problem is that we have

to map all the processes between which there are communications onto one processor,

which may dramatically increase the load of the processor and reduce the overall perfor-

mance. In addition, sometimes we need to map a software channel to a communication

path in order to exchange data between two process mapped onto two different processors.

In this circumstance, the location of the software buffer between communicating processes

can also have impact on the system performance. If the buffer is put in the local memory

of origin processor, it means that if some process on the processor tries to write to the

software buffer, it does not need to take any external bus. By contrast, if the software

channel buffer is located in some shared memory linked to the bus, both reads and writes

will have to be scheduled by the arbiter in order to access external bus, leading to extra

load on the bus. In a word, there are a number of interleaved factors in the process of

mapping and they may result in contradictory performance outcome. Therefore, to obtain

optimized overall system performance, we need to make balance among different choices

of computation mapping and communication mapping.

In our framework, the configuration of the mapping is stored in a file on a parameter

basis. It specifies binding of process and computation resource, binding of software channel

and communication path, buffer of software channel and the corresponding scheduling

policy for each resource. For each mapping, the framework automatically extracts the

mapping parameters from the mapping file, updates the corresponding information in the

application and architecture, and then simulates the system. To change the mapping, we

only need to change the corresponding parameters in the mapping file. For instance, if
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we intend to change the scheduling policy of a resource from TDMA to FIFO, we only

need to modify scheduling part for this resource. This mapping specification mechanism

will facilitate the automation of design space exploration since to investigate a different

mapping only requires reconfiguring the mapping file.

After the mapping information is established in the simulation framework, performance

estimation about computation trace event as to how much time is needed to accomplish

the event on the target processor is attached. Then the processes begin to dispatch trace

events to the target architecture. The computation event is directly delivered to the

target processor. The latter will simulate the performance impact on the system of the

computation by waiting for some time delays related to both the computation behaviour

and target processor. Communication event first requests to the software channel the

right to write or read, to see whether the space or the data is available, thus modeling

blocking write and blocking read in the application. Afterwards if the I/O requests can

be satisfied, the communication will be delivered to the target resource. The architecture

then simulates the procedure of data transfer either on a processor internally or via a path

consisting of a series of communication resource. In the following the detailed steps about

how the application and architecture interact with each other to deal with computation

mapping and communication mapping are described.

3.4.1 Computation Event Simulation

The work flow for dispatching computation events can be depicted in Figure 3.12. The

sequence of the execution of all trace events conform to partial order, we have explained.

A computation event is only directly dependent on its precursor in the same process.

Consequently, if the trace events before it have all been finished by the target architecture,

it is time for the process to deliver the event to the target processor, which is the first step

in the figure. In the second step, the scheduler of the processor will schedule the coming

event according to a give arbitration mechanism, e.g. TDMA, FIFO or fixed priority, and

model its performance effects. After the computation event is finished by the processor,

the process the trace event belongs to will be notified the completion in the third step,

which will trigger the handling of the next trace event. In this way, the timing effects of

the computation behaviours can be modeled.

3.4.2 Communication Event Simulation

In the process of simulating the communication event, two important issues are taken

into account by our framework. For one thing, the dependencies between trace events are
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Figure 3.12: Computation event dispatching.

modeled. For another,the implementation of the software buffer can affect the performance

of the system. Thus our framework should be able to handle the various scenarios of the

locations of buffer.

In the application model, the dependency between different processes is established

through software channels connecting them together. On the one hand, the read process

ought to wait until the data it requests have been written by the write process. On the

other hand, the write process has to ensure that the space in the software channel is

sufficient for writing certain number of data. To model this kind of blocking write and

blocking read, we introduce virtual software channel into our framework, in which only

the abstract state of the software channel is recorded, e.g. the number of data or space

available right now, without store actual data being transferred. This is compatible with

the expression of communication trace event, in which only how many data items and

which software channel to transfer are contained.

For a write event, it first sends requests to the virtual software channel for free space. If

the space can not be satisfied for current writing, the write process then blocks. Otherwise

it means the writing can take place, the space available of the software channel is changed

by substracting the number of data in the write request. Yet the data available will not

be updated immediately. Instead, it is changed after the write event is finished by the
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target architecture, which is more reasonable with regard to actual situation. The read

event has similar behaviour, except it will have to request and change data available first

and refresh space available after it is accomplished by the architecture.

Another important element that can exert influence on the performance of communi-

cation is the implementation of the software buffer if the software channel is mapped to

a communication path. Assume the buffer is implemented in the original processor who

starts the data transfer. It will not need to be granted to access the external bus in order

to write to the local memory, resulting in much faster accessing speed. On the other

hand, if the software buffer is located in the local memory of the target processor, access-

ing speed for read process will be faster. But since sometimes in the processor the local

memory is so limited that the software buffer with certain size can not be allocated, it is

necessary to place it in some shared memory connected to an external bus. This solution

will make it essential for both reads and writes to compete for the bus and have access

to the shared memory. Additionally, in multiprocessor system, two different processors

may be connected through several buses. In this occasion, the communication between

the processes mapped onto these two processors will be more costly. The model of the

different scenarios in communication mapping and the relative work flow are described as

follows.

Buffer on Original Processor

Work flow for dispatching write event when the buffer it writes to is implemented in the

local memory of the origin processor can be described by Figure 3.13.

1. The write event of Process1 sends request to C1 to check if space is available. If

not, Process1 will block.

2. If in the first step the request is satisfied, the write event is dispatched to Processor1.

3. The scheduler of Processor1 simulates the execution of the write event and finishes

it by updating C1.

Work flow for dispatching read event when the buffer it reads from is implemented in

the local memory of the origin processor can be described by Figure 3.14.

1. The read event of process2 sends request to C1 to check if data is available. If not,

process2 will block.

2. If in the first step the request is satisfied, the read event is dispatched to bus.
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Figure 3.13: Write event dispatching when buffer of the software channel is on the origin

processor.

3. The bus simulates the data transfer from processor1 to processor2 and updates the

space available of C1.

4. The scheduler of processor2 simulates the execution of the read event and finishes

it.
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Figure 3.14: Read event dispatching when buffer of the software channel is on the origin

processor.

Buffer on Target Processor

Work flow for dispatching write event when the buffer it writes to is implemented in the

local memory of the target processor can be described by Figure 3.15.

1. The write event of process1 sends request to C1 to check if space is available. If not,

process1 will block.

2. If in the first step the request is satisfied, the write event is dispatched to processor1.

3. The scheduler of processor1 simulates the execution of the write event and then

dispatches it to the bus.

4. The bus simulates the data transfer from processor1 to the internal memory of

processor2 and finishes it by updating C1.

Work flow for dispatching read event when the buffer it reads from is implemented in

the local memory of the target processor can be described by Figure 3.16.
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Figure 3.15: Write event dispatching when buffer of the software channel is on the target

processor.

1. The read event of process2 sends request to C1 to check if data is available. If not,

process2 will block.

2. If in the first step the request is satisfied, the read event is dispatched to processor2.

3. The scheduler of processor2 simulates the execution of the read event, and finishes

it by updating space available of C1.
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Figure 3.16: Read event dispatching when buffer of the software channel is on the target

processor.

Buffer in Shared Memory

Work flow for dispatching write event when the buffer it writes to is implemented in the

shared memory linked to an external bus can be described by Figure 3.17.

1. The write event of process1 sends request to C1 to check if space is available. If not,

process1 will block.

2. If in the first step the request is satisfied, the write event is dispatched to processor1.

3. The scheduler of processor1 simulates the execution of the write event and then

dispatches it to the bus.

4. The bus simulates the data transfer from processor1 to the shared memory linked

to the bus and finishes it by updating data available of C1.

Work flow for dispatching read event when the buffer it reads from is implemented in

the shared memory linked to an external bus can be described by Figure 3.18.
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Figure 3.17: Write event dispatching when buffer of the software channel is in the shared

memory.

1. The read event of process2 sends request to C1 to check if data is available. If not,

process2 will block.

2. If in the first step the request is satisfied, the read event is dispatched to the bus.

3. The bus simulates the data transfer from shared memory to processor2 and updates

the space available of C1.

4. The scheduler of processor2 simulates the execution of the read event and finishes

it.
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Figure 3.18: Read event dispatching when buffer of the software channel is in the shared

memory.

Communication via Two Buses

Even though here we assume that the buffer of the software channel is placed in the shared

memory linked to bus1, it can be easily extended to cover those general cases we have

presented above. As is depicted in the Figure 3.19 and Figure 3.20, while the completion

a write event requires the processing on both processor1 and bus1, the accomplishment of

a read event on processor2 needs to access bus1, bus2 and processor2 sequentially. Besides,

the number of resources that can appears in the communication path is not limited, which

indicates that our framework is capable of handling complex communication architecture.

Work flow for dispatching write event when it involves two buses in the communication

path can be described by Figure 3.19.

1. The write event of process1 sends request to C1 to check if space is available. If not,

process1 will block.

2. If in the first step the request is satisfied, the write event is dispatched to processor1.
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3. The scheduler of processor1 simulates the execution of the write event and then

dispatches it to bus1.

4. Bus1 simulates the data transfer from processor1 to the shared memory linked to

bus1, and then finishes the write event by updating data available of C1.
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Figure 3.19: Write event dispatching when it involves two buses in the communication

path.

Work flow for dispatching read event when it involves two buses in the communication

path can be described by Figure 3.20.

1. The read event of process2 sends request to C1 to check if data is available. If not,

process2 will block.

2. If in the first step the request is satisfied, the read event is dispatched to bus1.

3. Bus1 simulates the data transfer from shared memory to the bridge connecting bus1

and bus2, and updates the space available of C1.

4. Bus2 simulates the data transfer from the bridge to processor2.

5. The scheduler of processor2 simulates the execution of the read event and finishes

it.
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Figure 3.20: Read event dispatching when it involves two buses in the communication

path.

Communication Path

As has been explained before, the software channel can be mapped onto a communica-

tion path consisting of an ordered set of resources. Here we redefine the communication

path according to the track of data transfer on all the resources by a resource sequence

Pcomm (r1, r2, r3, ..., ri, rmem, ri+1, ..., rn−1, rn), where rmem stands for the memory resource

implementing software buffer and both r1 and rn are computation resources. The rmem

can be either a shared memory linked to an external bus or a local memory lying in a

processor.

The write path can be derived from the communication path defined above and is defined

as a resource sequence Pwrite (r1, r2, r3, ..., ri). Work flow for dispatching write event is to

traverse all the resources, namely from r1 to ri, in the same order as they are specified in

Pwrite. The performance consequence of a write event on rk ∈ Pwrite will be modeled by

the scheduler of rk after the trace event is delivered from rk−1 to rk. Additionally, the

software buffer will be updated after ri accomplishes a write event.

In a similar way, the read path is defined as a resource sequence Pread (ri+1, ri+2, ..., in).

Thus in order to finish a read event mapped onto Pread, each resource rk ∈ Pread will have

to simulate the effect of the read event one after another according to their respective

position in Pread. In contrast to the moment of updating software buffer in Pwrite, the



46 Framework

first resource in Pread, namely ri+1, updates the buffer immediately after it finishes a read

event.

All the scenarios investigated in previous sections conform to this scheme. And it

is capable of dealing with all kinds of communication architectures considered in our

framework.



4
Implementation

The framework of our trace-based simulation has been discussed in the previous chapter.

In this chapter, we mainly concentrate on explaining how to implement the framework

in DOL by means of SystemC. The first section gives an overview of the DOL, including

its underlying mechanism and basic components. The method of expressing application,

architecture and mapping in the xml files is then presented with concrete samples. The

Section 4.2 describes the functional simulation of DOL and how to modify the original

DOL APIs in order to generate traces. After that, in Section 4.3, the class diagram of the

trace-based simulation is given and the major components are described in details.

4.1 Distributed Operation Layer

We implemented our framework as a component of Distributed Operation Layer (DOL),

which is part of the framework of SHAPES European project [10][11]. The SHAPES

project is proposed to overcome challenges that emerge in the design of multiprocessor

embedded systems.

The DOL has as main inputs an application specification, an architecture specification

and a mapping specification of the application onto the target architecture. The DOL aims

at reducing significantly the effort of mapping applications onto multiprocessor hardware

47
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platforms under certain mapping constraints.

The primary components of DOL are the application model, the architecture model, the

mapping model, and a design space exploration mechanism. As depicted in 3.2.1, the ap-

plication is specified in the form of a restrict version of Kahn Process Network (KPN). The

architecture specification in the DOL is an abstract description of a hardware platform,

omitting implementation details in order to raise the design level. It consists of com-

putation resources, communication resources and the interconnections among resources.

The mapping specification in the DOL decides how the processes of the application are

mapped onto computation resources, as well as how the software channels are mapped

onto communication resources. The definitions for application, architecture and mapping

are all written using XML schema [12].

4.1.1 Application Specification

In DOL, the process network computation model is used to model an application, where

the structure of the process network is specified by the XML file, while the application

behavior is specified by the associated C source code. Listing 4.1 is an example of a

process network XML file. It contains three parts, the process description, the sw channel

description, and the point-to-point connections between process and the corresponding

software channel. The detailed description of these parts is shown as follows:

� �

<proce s s name=” generator ” basename=” generator ”>
<port name=”out” type=”output ” basename=”out”/>
<sou rce l o c a t i o n=” generator . c” type=”c”/>

</process >

. . .

<sw channel name=”C1” type=” f i f o ” s i z e=”10” basename=”C1”>
<port name=” in ” type=” input” basename=” in ”/>
<port name=”out” type=”output ” basename=”out”/>

</sw channel>

. . .

<connect ion name=”g−c”>
<o r i g i n name=” generator ”>

<port name=”out” basename=”out”/>
</o r i g i n >
<t a r g e t name=”C1”>

<port name=” in ” basename=” in ”/>
</target >

</connect ion>
� �

Listing 4.1: Process network XML file.
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• process: The node process in the XML file corresponds to a process in the process

network. The attribute name is required to serve as a unique identifier for a process.

The child node port is used to connect the process with a software channel. A

process node may contain one or more port nodes, which are divided into two types,

namely in and out. The process can write data to port of type out and can read data

from port of type in. The source node indicates the file containing the functional

behaviour of the process. The attribute type specifies which type of programming

language is used while the attribute location denotes where the source file is stored.

For example, in Listing 4.1, the functionality of process generator is specified using

the C programming language and the corresponding source file is generator.c.

• sw channel: The node sw channel describes a software channel in the process net-

work. A software channel is the only way for two different processes to communicate

with each other. The attribute name denotes the name of the software channel. The

attribute type specifies the type of the software channel. Currently all the software

channels have a classic FIFO behavior in DOL. Since in DOL’s process network the

software channel is bounded, an additional attribute size is used to specify the size

of the FIFO. Two port nodes are defined to denote the input port and output port

of this FIFO channel, respectively.

• connection: The node connection is used to explicitly specify all the connections

between processes and software channels. The node origin and target can be either

process or software channel. For example, in Listing 4.1, the connection named g-c

connects process generator with the software channel C1. Besides, their respective

port types determines that generator can write via the output port out to C1. C1

can read via the input port in.

4.1.2 Architecture Specification

The architecture XML file is an abstract representation of the underlying HW platform. It

includes all the HW characteristics useful for the performance evaluation. There are mainly

two kinds of resources in the architecture: computation resources and communication

resources. The way the resources are specified and how they connect with each other are

presented in Listing 4.2.

• processor: The node processor describes a computation resource. The attribute

type specifies the type of the processor, e.g. RISC or DSP. The child node node

is a interface through which the computation resource can be connected to other
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� �

<p roc e s s o r name=” proce s so r1 ” type=”DSP”>
<node name=”node”>

<duplexport name=” p roc e s s o r po r t ”/>
</node>
<con f i gu r a t i on name=” c lock ” value=”200 MHz”/>

</proces so r>

. . .

<hw channel name=” i n t i l e l i n k ” type=”BUS”>
<node name=”node”>

<duplexport name=”port1”/>
<duplexport name=”port2”/>
<duplexport name=”port3”/>

</node>
<con f i gu r a t i on name=”buswidth” value=”32 b i t ”/>
<con f i gu r a t i on name=” c lock ” value=”200 MHz”/>

</hw channel>

. . .

<connect ion name=” p roc e s s o r 1 l i n k ”>
<o r i g i n name=” proce s sor1 ”>

<node name=”node”>
<port name=” p roc e s s o r po r t ”/>

</node>
</o r i g i n >
<t a r g e t name=” i n t i l e l i n k ”>

<node name=”node”>
<port name=”port1”/>

</node>
</target >

</connect ion>

. . .
� �

Listing 4.2: Architecture XML file.
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components in the architecture. Another child node configuration can be used to

specify performance characteristics of the resource, e.g. the clock frequency.

• hw channel: The node hw channel describes a communication resource, such as a

bus. It is used to exchange data between different processors. Similarly, the child

node node enables it to be connected with other resources. The parameters, e.g. bus

width and clock frequency, are stored in the configuration node.

• connection: The node connection plays the role of interconnecting all the resources in

the architecture together. The child node origin and target contain the two resources,

which are supposed to connect to each other. They can be either computation or

communication resources. The resources are connected via node.

4.1.3 Mapping Specification

The mapping specification links the application and the architecture. The mapping infor-

mation can be split into two parts: computation mapping and communication mapping.

The computation mapping specifies which process will execute on which computation re-

source, while the communication mapping denotes how to implement the communication

at the architecture level. The mapping file also explicitly denotes all the utilized communi-

cation paths. Besides, various scheduling policies are as well included in the mapping file,

for computation or communication resource sharing. Listing 4.3 illustrates the structure

of the mapping file.

• path: A path specifies a possible communication path between two architecture re-

sources. It consists of a series of resources, in which both origin and target should

be computation resources. The resources between origin and target can be buses

or shared memories. In addition, the child node buffer specifies where the commu-

nication buffer is located. The direction of the data flow accords with the order

the resources in the path. For example, in Listing 4.3, the communication path

p1p2path uses the shared memory DXM as its buffer, and it is composed of the

following resources: processor1, in tile link, DXM, processor2.

• binding: The node binding can have two types: computation or communication

binding. In the case of the computation binding, origin stands for a process in

the process network and target describes a processor in the architecture. In the

case of the communication binding, origin is a software channel while target is a

communication path or a processor. If a software channel is mapped to a processor,

it means internal communication.
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� �

<path name=”p1p2path”>
<o r i g i n name=” proce s sor1 ”/>
<r e s ou r c e name=” i n t i l e l i n k ”/>
<r e s ou r c e name=”DXM”/>
<r e s ou r c e name=” i n t i l e l i n k ”/>
<t a r g e t name=” proces so r2 ”/>
<bu f f e r name=”DXM”/>

</path>

. . .

<bind ing name=” generator b ind ing ” type=”computation”>
<o r i g i n name=” generator ”/>
<t a r g e t name=” proces so r2 ”/>

</binding>

. . .

<bind ing name=”C2 binding” type=”communication ”>
<o r i g i n name=”C2”/>
<t a r g e t name=”p1p2path”/>

</binding>

. . .

<s chedu le name=” p roc e s so r 1 s ch edu l e ” type=” f i f o ”>
<r e s ou r c e name=” proce s sor1 ”/>
<o r i g i n name=” square”/>

</schedule>

<s chedu le name=” p roc e s so r 2 s ch edu l e ” type=”tdma”>
<r e s ou r c e name=” proce s sor2 ”/>
<o r i g i n name=” generator ”>

<con f i gu r a t i on name=” s t a r t s l o t ” value=”1”/>
<con f i gu r a t i on name=” numberofs lot s ” value=”1”/>

</o r i g i n >
<o r i g i n name=”consumer”>

<con f i gu r a t i on name=” s t a r t s l o t ” value=”2”/>
<con f i gu r a t i on name=” numberofs lot s ” value=”1”/>

</o r i g i n >
<con f i gu r a t i on name=” s l o t s on e c y c l e ” value=”2”/>
<con f i gu r a t i on name=” s l o t l e n g t h ” value=”30”/>

</schedule>

<s chedu le name=” i n t i l e l i n k s c h e d u l e ” type=” f i x e d p r i o r i t y ”>
<r e s ou r c e name=” i n t i l e l i n k ”/>
<o r i g i n name=” proce s sor1 ”>
<con f i gu r a t i on name=” p r i o r i t y ” value=”2”/>

</o r i g i n >
<o r i g i n name=” proce s sor2 ”>
<con f i gu r a t i on name=” p r i o r i t y ” value=”1”/>

</o r i g i n >
</schedule>

. . .
� �

Listing 4.3: Mapping XML file.
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• schedule: The node schedule is used to specify the scheduling policy and the configu-

ration for a corresponding resource. Currently, three types of scheduling policies are

implemented in our trace-based simulation framework, i.e. TDMA, FIFO and FP.

The node resource indicates which resource this scheduling configuration is set for.

The nodes origin are the processes or resources to be scheduled. For the scheduling

on a processor, all processes that are bound to be correspondent processor will be

scheduled. For the arbitration on a bus, all the resources connected to it can be

scheduled. For instance, in the scheduling processor1 schedule, the process square

will be scheduled by the processor processor1 under the scheduling policy FIFO.

In particular, if the scheduling type is FP, the configuration priority specifies the

priority of the process and the larger value stands for higher priority. For instance,

in the scheduling in tile link, the processor processor1 is assigned a higher prior-

ity. If the scheduling type is TDMA, the configuration slotsonecycle stands for how

many quantum slots within one TDMA cycle. The configuration slotlength stands

for how many nanoseconds are assigned for each quantum slot. The configuration

startslot stands for the start slot that is assigned to the process. The configuration

numberofslots stands for how many quantum slots are allocated to the process. For

instance, in the scheduling processor2 schedule, there are two quantum slots in one

TDMA cycle. The length of each quantum is 30 ns, and the second slot is assigned

to the process consumer.

4.1.4 Static Characterization

The static characterization file contains the performance estimation of each computation

behaviour on each possible computation resource, as well as the time needed for writing

or reading a word (4 bytes) on each processor. This file can be generated from the low-

level model of architecture, using performance estimation tools, available documentation,

or the experience of the designer. In the Listing 4.4, we present a segment of the static

characterization file. It contains two parts: the time estimation for the computation

behaviors of the processes and the time estimation for the communication behaviors.

• process: The node process stands for a process in the process network. The child

node computation specifies a possible computation behavior in the process, identified

by the start line and end line of a corresponding basic block in the source file. For

instance, the pair < 26, 28 > represents the computation behavior which starts at

line 26 and ends at line 28 in the source file. In particular, the start line number -1

stands for the start of the fire() function while the end line number -1 stands for
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the end of the fire() function. Each computation behavior is characterized for all

the possible resources where the process can run. The child node processor of node

computation denotes the time needed to finish the computation event on this type

of processor. The basic unit of the time is cycle. For example, it will take 60 cycles

for a DSP processor to finish the computation behavior < 26, 28 > of the process

generator.

• communication: The node communication specifies the time estimation for internal

communication on different processors. It has two types, namely read and write.

The child node processor of node communication denotes the time needed to finish a

writing or reading on this type of processor. The basic unit of the time is cycles per

word. For example, it will take 2 cycles to read a word from the internal memory of

the DSP processor.

� �

<proce s s name=” generator ”>

<computation s t a r t=”−1” end=”26”>

<p roc e s s o r type=”DSP” time=”100”/>

<p roc e s s o r type=”RISC” time=”150”/>

</computation>

<computation s t a r t=”26” end=”28”>

<p roc e s s o r type=”DSP” time=”60”/>

<p roc e s s o r type=”RISC” time=”160”/>

</computation>

<computation s t a r t=”28” end=”−1”>

<p roc e s s o r type=”DSP” time=”80”/>

<p roc e s s o r type=”RISC” time=”90”/>

</computation>

</process >

<communication name=” read”>

<p roc e s s o r type=”DSP” time=”2”/>

<p roc e s s o r type=”RISC” time=”2”/>

</communication>

<communication name=” wr i t e ”>

<p roc e s s o r type=”DSP” time=”2”/>

<p roc e s s o r type=”RISC” time=”2”/>

</communication>

. . .
� �

Listing 4.4: Static characterization XML file.
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4.2 Trace Generation

In the DOL context, an application is modeled using the process network computation

model stemming from the KPN. One of the most prominent characteristics of this com-

putation model is its deterministic nature, indicating that given a same input the outputs

will be the same regardless of the timing of the processes of the network. This characteris-

tic builds the basic rationale of our framework where the timing of processes is abstracted

as high-level trace events and the data dependency among processes is captured as a

partial-order set of these trace events. This partial-order set is determinate for a given

application and independent of the hardware resources as well as scheduling policies of

any target architectures that this application is mapped to.

In the process network of the DOL, there is no global memory that can be used by the

processes to communicate. Two processes can exchange data only by a bounded FIFO

channel that connects these two processes. Other processes which are not connected to

the corresponding FIFO channel cannot access it. The DOL provides two API primitives,

i.e. DOL write() and DOL read(), for the writing to or reading from the software channel,

respectively. The software channel in DOL process network is limited in size. As a con-

sequence, both DOL write() and DOL read() are blocking primitives. The DOL write()

will block when the data in the buffer exceeds the upper limit of the software channel.

The DOL read() will block when the FIFO buffer is empty. The two communication APIs

DOL write and DOL read are described in Listing 4.5:

� �

API : int DOL write (void ∗port , void ∗buf , int len , DOLProcess ∗p)
Desc r ip t ion : DOL write ( ) wr i t e s l en bytes from bu f f e r pointed by buf to port .

API : int DOL read (void ∗port , void ∗buf , int len , DOLProcess ∗p)
Desc r ip t ion : DOL read ( ) reads l en bytes from {port} i n to the bu f f e r

pointed by buf .
� �

Listing 4.5: DOL APIs definition.

Functional Simulation

To verify the application specifications at the very beginning of the whole design cycle, a

functional simulator is designed in the DOL context. Taking only the specifications of an

application as inputs, the DOL generates a SystemC-based functional simulator which can

be executed in a LINUX host machine. The simulator executes the application code and

simulates the functionality of the application, neglecting the effects caused by the target
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architecture. In this way, functional bugs can be exposed and debugged at an early stage

without interferences of low level details, e.g. OS and scheduling policies.

The functional simulation in DOL is implemented in SystemC. The first step in the DOL

functional simulation is to generate the SystemC package automatically, from the process

network specification and the source codes. To achieve this, DOL creates a wrapper

file for each process. The wrapper adaption does the SystemC simulation. The DOL

APIs, i.e. DOL write and DOL read, are defined in the wrapper file and are controllable

at the simulation level. Thus it is possible to modify the DOL APIs in order to track

the communication behavior in the functional simulation, and implicitly the computation

behavior. In the wrapper file, we redefine the DOL write and DOL read, as depicted in

Listing 4.6:

According to the API redefinition in Listing 4.6, DOL write() called in the C source

file will be replaced by a series of instructions and function calls. Take DOL write() as

an example. After the redefinition, the original DOL write() call is maintained, thus the

previous functionality of the process is not affected. The additional instructions and func-

tional calls serve to trace the execution of the process. The computation behavior between

two successive communication calls can be identified by start line and end line. The

method create computation event will create a computation event for this process after

each computation. The method create write event will create a write event each time

DOL write is called. Similarly, DOL read is redefined so that the read behavior can be

tracked.

Trace Format

After running once the instrumented functional simulation of the application, traces for

each process are generated and stored in a trace file. Three types of trace events are

generated, namely computation events, write events and read events. The format of the

trace file is illustrated in Listing 4.7.

In the trace file, the events of a certain process are arranged consecutively in the order

they are executed. For each process, the trace has the following elements. It starts with a

line specifying the name of the process, identified by a special character $. After that, each

line stands for a trace event until the trace of another process is reached. And the first

element of a trace event is the identifier. For example, the line of computation event has

c as its first character. The next two integer numbers are the start line and the end line

which identify a computation segment in the source code. The line of a write event has

w as its identifier. The next number records the number of data to be write, while the
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� �

static i n l i n e int DOL write(void ∗port ,
void ∗buf ,
int len ,
DOLProcess ∗ proce s s )

{
s c por t<wr i t e i f > ∗wr i t e po r t

= s t a t i c c a s t <s c por t <wr i t e i f > ∗>(port ) ;
char ∗ s t r = s t a t i c c a s t <char∗>(buf ) ;
while ( l en − − > 0)

(∗ wr i t e po r t)−>wr i t e (∗ s t r ++);
#ifde f INCLUDE TRACE

st rcpy ( channel name ,
dynamic cast< f i f o ∗>(wr i t e por t−>g e t i n t e r f a c e ())−>basename ( ) ) ;

#endif
}

#ifde f INCLUDE TRACE
#define DOL write( port , buf , len , p roce s s ) end l i n e = LINE ; \
d o l f u n c t i o n a l t r a c e . create computation event ( \

( s t a t i c c a s t <square wrapper ∗>(p−>wptr))−>basename ( ) , \
s t a r t l i n e , end l i n e ) ; \

DOL write( port , buf , len , p roce s s ) ; \
d o l f u n c t i o n a l t r a c e . create write event ( \

( s t a t i c c a s t <square wrapper ∗>(p−>wptr))−>basename ( ) , \
len , channel name ) ; \

s t a r t l i n e = LINE ;
#endif

static i n l i n e int DOL read(void ∗port ,
void ∗buf , int len ,
DOLProcess ∗ proce s s )

{
s c por t<r e a d i f > ∗ r ead por t

= s t a t i c c a s t <s c por t <r e a d i f > ∗>(port ) ;
char ∗ s t r = s t a t i c c a s t <char∗>(buf ) ;
while ( l en − − > 0)

(∗ r ead por t)−>read (∗ s t r ++);
#ifde f INCLUDE TRACE

st rcpy ( channel name ,
dynamic cast< f i f o ∗>( read port−>g e t i n t e r f a c e ())−>basename ( ) ) ;

#endif
}

#ifde f INCLUDE TRACE
#define DOL read( port , buf , len , p roce s s ) end l i n e = LINE ;\
d o l f u n c t i o n a l t r a c e . create computation event ( \

( s t a t i c c a s t <square wrapper ∗>(p−>wptr))−>basename ( ) , \
s t a r t l i n e , end l i n e ) ; \

DOL read( port , buf , len , p roce s s ) ; \
d o l f u n c t i o n a l t r a c e . create read event ( \

( s t a t i c c a s t <square wrapper ∗>(p−>wptr))−>basename ( ) , \
len , channel name ) ; \

s t a r t l i n e = LINE ;
#endif
� �

Listing 4.6: DOL APIs redefinition.
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� �

\$ generator
c −1 32
w 8 C1
c 32 −1
c −1 32
w 8 C1
c 32 −1
c −1 32
w 8 C1
c 32 −1
c −1 32
w 8 C1
c 32 −1

. . . .
� �

Listing 4.7: Trace format in the trace file.

string indicates the name of the channel to write to. The line of a read event has r as its

first character. The next number records the number of data to be read from the channel,

while the string tracks the name of channel to read from.

4.3 Trace-based Simulation

We implement the trace-based simulation in SystemC. The event-trigger mechanism is

used to realize synchronization between differnt components. The wait() function call is

used to model the execution delays of the trace events.

4.3.1 Class Diagram

The class diagram of the system is depicted in Figure 4.1. It consists of three parts: appli-

cation layer, architecture layer and mapping layer. The application layer is automatically

contructed from the trace file and the process network specification. The architecture

layer is automatically constructed from the architecture specification. The mapping layer

is used to bind the application and architecture together. They are explained in detail in

the next sections.

4.3.2 Application Layer

The application layer has 3 major classes, i.e. the Application class, the Process class and

the SW channel class. Their respective descriptions are shown as follows.
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* *

+running()
+get_name()
+set_application_belong_to()
+set_computation_resource()
+set_computation_estimation()

-_process_name
-_trace
-_target_computation_resource
-_computation_estimation_table
-_application_belong_to_ptr

Process

+read_request()
+read_complete()
+write_request()
+write_complete()

-_name
-_size
-_data_num_available
-_room_available
-_application_belong_to_ptr
-_read_comm_path_head_ptr
-_write_comm_path_head_ptr

SW_Channel

+create_app_from_file()
+get_trace_from_file()
+get_process()
+get_sw_channel()
+set_computation_estimation()

-_list_process
-_list_sw_channel

Application

+scheduling()
+set_processor_belong_to()
+add_trace_event()
+set_waiting()
+set_ready()
+set_running()

-_processor_ptr
-_list_event_queue
-_schedule_event

Processor_schedule

+scheduling()
+set_bus_belong_to()
+add_trace_event()
+set_waiting()
+set_ready()
+set_running()

-_bus_ptr
-_list_event_queue

Bus_Arbiter

+get_name()
+set_scheduler()

-resource_name
-scheduler_ptr

Resource

+scheduling()
+add_trace_event()
+set_waiting()
+set_ready()
+set_running()

-_name

Scheduler

+create_arch_from_file()
+set_communication_estimation()
+get_processor()
+get_bus()
+get_resource()

-_list_processor
-_list_bus

Architecture

+set_mapping_from_file()
+parse_schedule()
+parse_path()
+parse_binding()

-application_ptr
-architecture_ptr

Mapping

+set_scheduler()
+set_type()
+set_frequency()
+set_read_cycles_per_word()
+set_write_cycles_per_word()

-_processor_type
-_processor_frequency
-read_cycles_per_word
-write_cycles_per_word

Processor

+set_scheduler()
+set_frequency()
+set_bus_width()

-bus_frequency
-bus_width

Bus

1

*

1
*

1

1

1

1

1

* 1 *

1

1

1

1

* *

Application Layer

Mapping Layer

Architecture Layer

Figure 4.1: Class diagram of the trace-based simulation.
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Application Component

As is depicted in Figure 4.1, the class Application is used to create processes and software

channels, as well as to manage them.

To create processes and software channels, the method create app from file() takes

the process network xml file as input. By automatically parsing the xml file, the names and

the configurations of processes and software channels are retrieved. The list of processes is

then created and stored in the member list process. The list of software channels is cre-

ated and stored in the member list sw channel. The method get trace from file()

reads traces from the trace file and attaches them to the corresponding processes.

Another functionality of the class Application class is to manage the processes and

software channels. For example, a call to the get process() method will return the

pointer to a certain process, given the name of the process. This is an important service

for those components that need to access certain processes.

In addition, the method set computation estimation() updates the performance esti-

mation of the computation behavior for each new mapping. Since the time needed to finish

a computation event is dependent on the target computation resource, it will change when

the mapping is changed, e.g. when the process is mapped to a different processor or when

the processor’s characteristic change. The method set computation estimation() takes

a characterization file as input, in which the performance estimations for each computa-

tion event on each type of processor are specified. The run time information is updated

for each process.

Process Component

The process is modeled by its execution trace generated during the functional simulation.

The process is represented in the diagram by the Process class. During the trace-based

simulation, the Process class dispatches the trace events to the architecture dynamically.

The trace of a process is stored in the member trace of the Process class. It is

implemented as a linked list, in which each node stands for a trace event. Since the trace

can be large in the memory, the benefit of storing the trace as a linked list is that large

continuous memory is not required. Besides, because there is no random access to the

trace event of the trace, the speed of traversing the list will not be a drawback.

As is illustrated in Figure 4.2, each process has a performance table, which maintains the

performance estimation of the computation behaviors for current mapping. In the class

Process, the performance table is the member computation estimation table. Each

computation behavior has an entry in the table. The right column of the entry specifies
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how many cycles it will take the target processor to complete the computation behavior.

Each computation trace event holds a pointer pointing to the entry it belongs. In this

way, for a different mapping, only the performance table needs to be updated. This will

increase the efficiency of the simulation because the timing of the computation event can

be directly accessed without time-consuming queries.

Behavior#1 2

Behavior#2 6

Behavior#3 4

Performance Table
Behavior#1

Behavior#2

Behavior#3

Behavior#3

Figure 4.2: Performance table.

The Running() method of class Process delivers trace events to the target processor

to trigger the simulation of the system. The method is registered as a SystemC thread,

which means that it will be automatically called after the simulation starts. The com-

putation events of a process will be directly dispatched to the processor onto which the

process is mapped. For the communication events, instead of directly dispatching it to

the processor, the process will first consult to the software channel to check whether or

not the communication is safe (i.e. for read event, data are available, for write event, free

rooms are available). Only if it is safe, it will be dispatched. Otherwise, the process will

block.

SW Channel Component

The software channel class is only an abstract description of the application communication

channels, without modeling the actual data transfer. It is used to express the dependencies

between two trace events who communicate with each other through the software channel.
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In the class diagram, the software channel is represented by the SW Channel class.

The class SW channel has two important members, i.e. data num available and

room available, which are used to represent the current state of the software chan-

nel. The member data num available stands for how many data items are available for

reading while room available records the number of free space can be used for writing.

The values of these two members can be changed by the following four methods:

• The method read request() is called by the method Running() of the class

Process. It checks if the available data can satisfy the read request. If not, the pro-

cess who calls this read request will block. Otherwise, it will subtract the number

of data requested from the member data num available and return immediately.

• The method read complete() is called by a certain resource of the architecture

when a read event is finished. In this case, the member room available is increased

by the number of data in the read event. In addition, if there is process blocking on

writing to this software channel, it will be waked up. If the available room still can

not meet the write request, the process will remain blocking. Otherwise, the process

will resume and dispatch the write event to the architecture.

• The method write request() is also called by the method Running() of the class

Process. It checks if the available room can meet the write request. If not, the pro-

cess who calls this write request will block. Otherwise, it will subtract the number

of room requested from the member room available and return immediately.

• The method write complete() is called by some resource of the architecture when

a write event is finished. The member data num available is increased by the

number of data in the write event. If there is process blocking on reading from the

software channel, it will be waked up. If the data available still can not meet the

read request, the process will block again. Otherwise, the process will resume and

dispatch the read event to the architecture.

4.3.3 Architecture Layer

As is depicted in Figure 4.1, the architecture mainly consists of three classes, i.e. the

Architecture class, the Resource class and the Scheduler class. They are described as

follows.
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Architecture Component

The Architecture class is used to create and manage the resources, including processors

and buses. The method create arch from file() reads the configuration of the hardware

platform from the architecture XML file. It then parses the parameters of the resources

and creates them. The processors will be stored in the member list processor while

the buses will be put in the member list bus. There are a series of methods which help

managing the resources. For example, the call to the method get processor with the

name of a certain processor will return the pointer pointing to that processor.

Resource Component

The abstract base class Resource defines the common members and behaviors for all the

resources in the architecture. One important member is scheduler ptr that points to the

scheduler attached to this resource. Here, we separate the implementations of resources

and schedulers for the sake of flexibility. By means of this separation, the framework is

flexible to adopt new scheduling policies. Both the class Processor and class Bus derive

from this base class. Besides, in order to extend the architecture and introduce new

resource, we only need to define a new class that inherits from the abstract base class

Resource. Here we explain the two resources implemented.

• The Processor class models the processor, e.g. DSP or RISC, in the architecture.

The type of the processor is specified in the member processor type. The fre-

quency of the processor is stored in the member processor frequency. Besides, a

processor scheduler is attached to the class Processor so that the access requests to

the processor from different processes can be scheduled according to a given schedul-

ing policy.

• The Bus class models the communication bus. The clock frequency of the bus is

specified by the member bus frequency. The width of the bus is stored in the

member bus width. A bus arbiter is attached to the bus to provide exclusively

mutual access.

Scheduler Component

The abstract base class Scheduler defines the common interfaces for the schedulers. Both

processor scheduler and bus arbiter inherit from this base class. Currently, three scheduling

policies have been implemented, i.e. TDMA, FIFO and FP.
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The data structure EVENT QUEUE in Listing 4.8 is used to stored the trace events that

need to be processed by the resource. The member list event queue of the scheduler

stores all the event queues, which can be scheduled according to the specified schedul-

ing policy. In the data structure EVENT QUEUE, some members are used to specify the

parameters for a special scheduling policy. For example, the member priority denotes

the priority of the event queue in the fixed-priority scheduler. The member time slice

specify the time slice for this event queue in the TDMA scheduler. As discussed in Section

3.3.4, the event queue has three states in the state machine. In the data structure, the

state of the event queue is stored in the member state. The trace events for this event

queue is stored in the member list trace event.

� �

typedef struct EVENT QUEUE
{

char name [NAMELENGTH] ;

/∗For f i x e d p r i o r i t y . ∗/
int p r i o r i t y ;

/∗For TDMA. ∗/
double t im e s l i c e ;

/∗For s t a t e t rans f ormat i on . ∗/
int s t a t e ;
s c ev en t s ch edu l ab l e ev en t ;

/∗ t race event to be schedu l ed ∗/
l i s t <TRACE EVENT ∗> l i s t t r a c e e v e n t ;
l i s t <TRACE EVENT ∗> : : i t e r a t o r i t e r t r a c e e v e n t ;

}EVENT QUEUE;
� �

Listing 4.8: The EVENT QUEUE data structure.

In the method Scheduling(), the event queues are scheduled by the processor scheduler

or the bus arbiter. The implementation of the Scheduling() methode is different for

two reasons. On the one hand, the bus arbiter does not handle computation events as

processor scheduler does. On the other hand, the method of measuring timing of the

trace event is different. For example, the time needed to finish a read event on a bus is

dependent on some parameters of the bus, e.g. clock frequency and bus width, while on

a processor it is determined by the clock frequency and the processor types. For different

scheduling policies, the implementation of the Scheduling() method is also different,

because different scheduling policies have different algorithms.

The state transitions of an event queue in the scheduler are carried out by the following

methods: set ready(), set running() and set waiting(). For example, the method

set ready will change the current state of the event queue to ready while the method
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set waiting() will change the current state of the event queue to waiting. They are

implemented differently for various scheduling policies.

4.3.4 Mapping Layer

The mapping layer is used to associate the application with the architecture. This is

realized in the Mapping class. The method set mapping from file() reads mapping

information from the mapping file. It then calls the following methods to set the mapping

configuration:

• The method parse schedule() creates schedulers for the corresponding resources.

It also creates event queues that need to be scheduled by the scheduling. The relative

parameters, such as the priority of an event queue in a fixed priority scheduler, are

attached to each event queue.

• The method parse path() creates the communication paths specified in the map-

ping file. The paths are used to connect different communication resources together

in order to conduct a data transfer.

• The method parse binding() connects the processes of the application and the pro-

cessors of the architecture. It also links the software channels and the communication

paths.

4.3.5 Conclusion

The trace-based simulation framework implemented consists of two phases. In the first

phase, we modify the previous DOL functional simulation model to make it able to auto-

matically generate traces. The traces can then be reused in the design space exploration.

In the second phase, we implement the trace-based simulation in SystemC. To model the

architecture, we adopt the uniform resource definition. Both processor and bus are de-

fined by the abstract basic class Resource.Thus the architecture in the framework can be

modeled in a modular and flexible way. In addition, all the inputs of the trace-based

simulation, e.g. the process network, the architecture and the mapping, are specified in

the form of XML file under certain scheme. In this way, the inputs are configurable and

easy to modify.
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5
Case Study

We have already presented framework of our trace-based simulation in Chapter 3 and its

implementation aspects in Chapter 4. In this chapter, we focus on using two compelling

case studies to verify the framework and to prove its efficiency: the producer-consumer

application and the MPEG-2 decoder [13][14][15]. In Section 5.1, by investigating different

mappings for the producer-consumer application, several important functionalities of the

framework are testified, such as various scheduling policies, the ability to handle different

locations of the software buffer and the capability to handle communication via a path

consisting a sequence of resources. In Section 5.2, a more complex application, namely

the MPEG-2 decoder, is used to test the efficiency and other characters of the framework.

5.1 The Producer-consumer Case Study

In this case study, we use a simple example, i.e. producer-consumer application, to show

how our trace-based simulation framework capture the performance impacts caused by

different mappings of this application, e.g. scheduling policies, locations of communication

buffer, communication paths and resource bindings.
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5.1.1 Application and Architecture Description

The producer-consumer application is written using the process network specification

scheme of DOL. It consists of three processes, i.e. generator, square and consumer, and

two software channels connecting them, i.e. C1 and C2. The buffer sizes of C1 and C2

are both 10 bytes. The process generator generates data items, which are then written

to C1. The process square reads data from C1, computes the square of the number and

writes the result to C2. The process consumer reads data from C2 and displays it on

the terminal screen. Figure 5.1 depicts the structure of the producer-consumer process

network.

generator square consumerC1 C2

Figure 5.1: The producer-consumer application used in our experiment.

The default hardware platform used in our experiments is made of two processors, i.e.

processor1 and processor2, one external bus, i.e. in tile link, and one shared memory.

The structure of the architecture is described in Figure 5.2. The configuration of the

architecture is shown in Table 5.1. This is the basic structure of a tile architecture.

During our experiments, we will use more complex architecture composed of several basic

tiles interconnecting via the inter-tile communication backbone. In particular, the default

atomic data transaction size is 4 bytes.

Scheduler

Processor1

Shared 
Memory

Processor2

Scheduler

Arbiter

in_tile_link

Figure 5.2: The one tile architecture used in our experiment.
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Resource Configuration

processor1 frequency: 200M.

processor2 frequency: 200M.

in tile link frequency: 200M. width: 32bit.

Table 5.1: Configuration of the architecture.

5.1.2 Mapping Exploration Overview

We do the design space exploration for the producer-consumer application by changing

various parameters, e.g. the different scheduling policies, the different locations of com-

munication buffer, the communication path and the different resource bindings. The

experimental settings and exploration results are listed and analyzed as follows.

5.1.3 Scheduling Policy

In this section, we will explore three different scheduling policies for the producer-consumer

application, i.e. TDMA, FIFO and FP.

TDMA

Example 1. The first test case is depicted in Figure 5.3, in which the producer-consumer

application is mapped to the single tile architecture. As seen in Figure 5.3, both gen-

erator and consumer are mapped to processor2, square to processor1, C1 to the com-

munication path (processor2, in tile link, processor1) and C2 to the communication path

(processor1, in tile link, processor2). Both the buffer of C1 and that of C2 are located

in the target processors. In particular, the scheduling policies adopted by all the resources

are TDMA. The detailed scheduling configuration information is shown in Table 5.2. For

example, in processor2, the second time slot is assigned to consumer.

Resource Scheduling Configuration

processor1 TDMA quantum slot length: 30ns, square←1

processor2 TDMA quantum slot length: 30ns, generator←1,consumer←2

in tile link TDMA quantum slot length: 30ns, processor1←1, processor2←2

Table 5.2: Scheduling configuration for Example 1.

We utilize the VCD waveform tracing utility provided by SystemC to track the execution
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generator square consumerC1 C2

Shared 
Memory

TDMA 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

TDMA 
Scheduler

TDMA 
arbiter

Figure 5.3: The mapping specification in Example 1 where the scheduling policy is TDMA

for all resource.

procedure of the input traces on the target architecture. The generated waveform is listed

in Figure 5.4, in which the waves stands for the execution states of the processes. The

high period represents that the process is being processed by the target resource while

the low period depicts the inactive state of the corresponding process. Take the variable

consumer compute as an example. What can be deduced from this wave is that the target

processor processor2 starts to execute the process consumer at the time stamp of 30 ns

and halts its execution at time stamp of 50 ns. All the other waves can be interpreted in

the same manner, such as consumer read on processor and consumer read through buses.

The wave consumer read on processor represents the execution of the reading of consumer

on the target processor. The wave consumer read through buses stands for the execution

of the reading of consumer via the buses. The important phenomena of the waveform are

indicated in the figure and the corresponding analysis is shown as follows:

1. At this moment, even though the process generator is still ready, it is stalled by the

processor because its time slot is used up and the next time slot does not belong to

it.

2. At this moment, the time slot for generator arrived and generator is selected by

processor2 to run again.

3. The series of arrows denote the data flow direction of the first four bytes which are

transferred among the processes.

4. For the same write event with 4 bytes of generator, the time consumed on the
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processor processor2 is larger than that consumed on the bus in tile link. The reason

is that accessing local memory is faster than accessing the external memory.

5. The processor processor2 does not block when the bus in tile link is transferring

data. The reason is that we adopt an asynchronous communication manner. Thus

these two resources which can run concurrently.

6. Since the process generator and the process square are mapped to two different

processors, they can run concurrently.

7. Since generator and consumer are both mapped to the same processor, they access

processor2 exclusively.

Another output of the trace-based simulation is the performance statistics as presented

in Listing 5.1. It contains important performance numbers. The following performance

data are derived from this experiment.

• The estimated runtime Tsystem for executing the entire application is 3815 ns. It

denotes the total time of the application in order to finish its execution on the

specific architecture, and under the specific mapping. It is an important indicator

of the system performance.

• The load of the processor processor1 Lprocessor1 is 2020 ns. It is defined as the total

time consumed by all the processes mapped onto the corresponding processor. The

processor load reflects the usage of the processor.

• The load of the processor processor2 Lprocessor2 is 2420 ns.

• The load of the bus in tile link is Lin tile link 2400 ns. It is defined as the total time

when the bus is busy with transferring data. The bus load reflects the usage of the

bus.

• The maximum processing time of all processors is 2420 ns.

• The time needed to execute the process generator on the processor processor2

Tgenerator,processor2 is 1200 ns. It denotes how long it will take the target proces-

sor to finish this process. The process execution time can help the designers to

decide which process demands more computation time.

• The time needed to execute the process consumer on the processor processor2

Tconsumer,processor2 is 1220 ns.

• The time needed to execute square on processor1 Tsquare,processor1 is 2020 ns. It

denotes the processor load of the processor which has the largest processing time
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Figure 5.4: VCD waveform output for Example 1.
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� �

Performance s t a t i s t i c s :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator

p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .200000 e+03

p r oc e s s i n g time on buses (NS) : 6 .000000 e+02

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer

p roc e s s i n g time on p roc e s s o r (NS ) : 1 .220000 e+03

p r oc e s s i n g time on buses (NS) : 6 .000000 e+02

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square

p r o c e s s i n g time on p roc e s s o r (NS ) : 2 .020000 e+03

p r oc e s s i n g time on buses (NS) : 1 .200000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1

p r o c e s s i n g time (NS ) : 2 .020000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2

p r o c e s s i n g time (NS ) : 2 .420000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k

p roc e s s i n g time (NS ) : 2 .400000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 3 .815000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .420000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 2 .400000 e+03

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.1: Performance statistics for Example 1.
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among all the computation resources in the architecture. Since the time needed to

finish the application on the target architecture is closely related with the processing

time on each hardware resource, in order to improve the system performance, we

should increase the degree of load balance among the processors as much as possible.

• The max processing time of buses is 2400 ns. It denotes the bus load of the bus which

has the largest bus load among all the communication resources in the architecture.

If one bus is overloaded because of too many data items to transfer, the overall

performance may degrade.

• The time needed for handling the communication on the bus in tile link from gen-

erator Tgenerator,in tile link is 600 ns.

• The time needed for handling the communication from consumer on in tile link

Tconsumer,in tile link is 600 ns.

• The time needed for handling the communication on in tile link from square

Tsquare,in tile link is 1200 ns.

It is self-evident that the following constraints hold for the above performance numbers:

Lprocessor1 = Tsquare,processor1

Lprocessor2 = Tgenerator,processor2 + Tconsumer,processor2

Lin tile link = Tgenerator,in tile link + Tconsumer,in tile link + Tsquare,in tile link

(5.1a)

In general, for a processor R, if there are n processes mapped onto it, namely

p1, p2, ..., pn, the following constraint holds for the load of R, i.e. LR, the timed needed

for pi to execute on R, i.e Tpi,R.

LR =
n∑

i=0

Tpi,R

The performance numbers can be used to guide the designers in the design space explo-

ration. In our experiments, by comparing the performance numbers of different mappings,

we check the functionality of the application and verify certain constraints.
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FIFO

Example 2. To testify the FIFO scheduling policy, we map the producer-consumer ap-

plication described in Figure 5.1 onto the architecture of a single tile presented in Figure

5.2. The mapping is depicted in Figure 5.5. The scheduling configuration is described

in Table 5.3: all the architecture resources, i.e. processor1, processor2 and in tile link,

employ FIFO scheduling policy.

generator square consumerC1 C2

Shared 
Memory

FIFO 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

FIFO 
Scheduler

FIFO 
arbiter

Figure 5.5: The mapping specification in Example 2 where the scheduling policy is FIFO

for all resource.

Resource Scheduling Configuration

processor1 FIFO square

processor2 FIFO generator, consumer

in tile link FIFO processor1, processor2

Table 5.3: Scheduling configuration for Example 2.

The output waveform for Example 2 is depicted in Figure 5.6. The important phenom-

ena of the waveform are indicated in the figure and the corresponding analysis is shown

as follows:

1. The process generator and the process consumer are scheduled by the processor

processor according to FIFO scheduling policy. Therefore, generator and consumer

never preempt each other. Once one of them gets processor2, it will continue its

execution, until there is no data in its input channel.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1200
communication time through buses (NS ) : 600
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1220
communication time through buses (NS ) : 600
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2020
communication time through buses (NS ) : 1200
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2020
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 2420
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 2400
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2540
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2420
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 2400
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.2: Performance statistics for Example 2.

2. The process square monopolies the processor square. In this circumstances, square

can be selected by the scheduler to run whenever it is ready.

The output performance statistics table for Example 2 is depicted in Listing 5.2. By

comparing with Example 1, we can draw the following conclusions:

• The loads of all resources keep the same in that the resource binding does not change.

For a certain processor, the processes mapped onto it are the same.

• The total execution time decreases from 3815 ns to 2540 ns. The reason is that in

Example 1, the scheduling policies for all resources are TDMA. In TDMA, each time

slot is fixed to a certain process. If the process is not ready to run, the time slot can

not be used by any other ready process and will be wasted. Therefore, the resources

are not fully utilized. By contrast, the resources in this example are better utilized.



5.1 The Producer-consumer Case Study 77

13
01
00
 p
s

26
02
00
 p
s

39
03
00
 p
s

Ti
me

co
ns
um
er

co
ns
um
er
_c
om
pu
ta
ti
on

co
ns
um
er
_r
ea
d_
on
_p
ro
ce
ss
or

co
ns
um
er
_r
ea
d_
th
ro
ug
h_
bu
se
s

ge
ne
ra
to
r

ge
ne
ra
to
r_
co
mp
ut
at
io
n

ge
ne
ra
to
r_
wr
it
e_
on
_p
ro
ce
ss
or

ge
ne
ra
to
r_
wr
it
e_
th
ro
ug
h_
bu
se
s

sq
ua
re

sq
ua
re
_c
om
pu
ta
ti
on

sq
ua
re
_r
ea
d_
on
_p
ro
ce
ss
or

sq
ua
re
_r
ea
d_
th
ro
ug
h_
bu
se
s

sq
ua
re
_w
ri
te
_o
n_
pr
oc
es
so
r

sq
ua
re
_w
ri
te
_t
hr
ou
gh
_b
us
es

  1
  1

  1

  2

pr
oc

es
so

r2

pr
oc

es
so

r1

Figure 5.6: VCD waveform output for Example 2.
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Fixed Priority

Example 3. The third example is depicted in Figure 5.7 to testify the FP scheduling

policy. The resource binding is the same as the previous two examples. The scheduling

configuration is described in Table 5.4. The scheduling policies for all resources are FP.

generator square consumerC1 C2

Shared 
Memory

Fixed priority 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

Fixed priority 
Scheduler

Fixed priority  
arbiter

Figure 5.7: The mapping specification in Example 3 where the scheduling policy is FP for

all resource.

Resource Scheduling Configuration

processor1 FP square ← 1

processor2 FP generator ← 1,consumer ← 2

in tile link FP processor1 ← 2, processor2 ← 1

Table 5.4: Scheduling configuration for Example 3.

The output waveform for Example 3 is depicted in Figure 5.8. The important phenom-

ena of the waveform are indicated in the figure and the corresponding analysis is shown

as follows:

1. At the beginning, even though both consumer and generator are ready, consumer is

selected to run by processor2 because it has a higher priority.

2. At this moment, the data is available for consumer to read. Since it has higher

priority, the consumer preempts the execution of generator. The arrow denotes the

context switch.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .200000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1 .220000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2 .020000 e+03
p r oc e s s i n g time on buses (NS) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .020000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 2 .400000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2 .560000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 2 .400000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.3: Performance statistics for Example 3.

3. This is another context switch caused by preemption for the same reason.

The output performance statistics table for Example 3 is depicted in Listing 5.3. Since

the resource binding does not change, the loads of all resources keep the same. The total

execution time is similar to Example 2, but is smaller than Example 1. The reason is that

the resources are better utilized.
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Figure 5.8: VCD waveform output for Example 3.
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5.1.4 Communication Buffer Location

In this section, we will explore different communication buffer locations for the producer-

consumer application, namely origin processor, target processor and shared memory.

Origin Processor

Example 4. First of all, in this mapping, we investigate the scenario when the software

buffer is located in the origin processor. The mapping is depicted in Figure 5.9. The

scheduling configuration of the mapping is presented in Table 5.5.

generator square consumerC1 C2

Shared 
Memory

FIFO 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

FIFO 
Scheduler

TDMA 
arbiter

Figure 5.9: The mapping specification in Example 4 where the communication buffer is

located in the origin processor.

Resource Scheduling Configuration

processor1 FIFO square

processor2 FIFO generator, consumer

in tile link TDMA quantum slot length: 30ns, processor1←1, processor2←2

Table 5.5: Scheduling configuration for Example 4.

The output waveform for Example 4 is depicted in Figure 5.10. The important phenom-

ena of the waveform are indicated in the figure and the corresponding analysis is shown

as follows:
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .200000 e+03
p r oc e s s i n g time on buses (NS) : 0 .000000 e+00
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1 .220000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2 .020000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .020000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2 .570000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.4: Performance statistics for Example 4.

1. Since the buffer of the software channel C1 is on the origin processor processor2, the

process generator does not need to take the bus in tile link in order to write to the

buffer. So in the waveform, generator never uses the bus in tile link to write.

2. Since the buffer of the software channel C2 is on the origin processor processor1, the

process square does not need to take the bus in tile link to write to the buffer.

The output performance statistics table for Example 4 is depicted in Listing 5.4. Since

the process generator never uses the bus to write to the software channel C1, the load of

generator on the bus is 0.
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Figure 5.10: VCD waveform output for Example 4.
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Target Processor

Example 5. In this example, we investigate the scenario when the buffer is located in the

target processor. The mapping is depicted in Figure 5.11. The scheduling configuration of

the mapping is presented in Table 5.6.

The performance statistics is listed in Listing 5.5. The output waveform is shown in

Figure 5.12. Since the buffer of the software channel C2 is implemented on the target

processor processor2, the process consumer does not need to take the bus in order to read

from C2. Consequently, the load of consumer on the bus is 0 and in the waveform there

is no variable for the reading of consumer on the bus.

generator square consumerC1 C2

Shared 
Memory

FIFO 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

FIFO 
Scheduler

TDMA 
arbiter

Figure 5.11: The mapping specification in Example 5 where the communication buffer is

located in the target processor.

Resource Scheduling Configuration

processor1 FIFO square

processor2 FIFO generator, consumer

in tile link TDMA quantum slot length: 30ns, processor1←1, processor2←2

Table 5.6: Scheduling configuration for Example 5.

The output waveform for Example 5 is depicted in Figure 5.12. The important phenom-

ena of the waveform are indicated in the figure and the corresponding analysis is shown

as follows:
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .200000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1 .220000 e+03
p r oc e s s i n g time on buses (NS) : 0 .000000 e+00
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2 .020000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .020000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2 .480000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.5: Performance statistics for Example 5.

1. Since the buffer of the software channel C2 is on the target processor processor2, the

process consumer does not need to take the bus in tile link to read from the buffer.

2. Since the buffer of the software channel C1 is on the target processor processor1,

the process square does not need to take the bus in order to read from the buffer.

So in the waveform, square never uses the bus to read.

The output performance statistics table for Example 5 is depicted in Listing 5.5. Since

the process consumer never uses the bus to read from the software channel C2, the load

of consumer on the bus is 0.
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Figure 5.12: VCD waveform output for Example 5.
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Shared Memory

Example 6. In this mapping, we investigate the scenario when the buffer is located in the

shared memory. The mapping is depicted in Figure 5.13. The scheduling configuration of

the mapping is presented in Table 5.7.

generator square consumerC1 C2

Shared 
Memory

FIFO 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

FIFO 
Scheduler

TDMA 
arbiter

Figure 5.13: The mapping specification in Example 6 where the communication buffer is

located in the shared memory.

Resource Scheduling Configuration

processor1 FIFO square

processor2 FIFO generator, consumer

in tile link TDMA quantum slot length: 30ns, processor1←1, processor2←2

Table 5.7: Scheduling configuration for Example 6.

The output waveform for Example 6 is depicted in Figure 5.14. The important phenom-

ena of the waveform are indicated in the figure and the corresponding analysis is shown

as follows:

1. Both writing to the software channel C1 and writing to C2 have to take the bus

in tile link in order to access the shared memory.

2. Both reading from the software channel C1 and reading from C2 have to take the

bus in tile link in order to access the shared memory.
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Figure 5.14: VCD waveform output for Example 6.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .200000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1 .220000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2 .020000 e+03
p r oc e s s i n g time on buses (NS) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .020000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 2 .400000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 3 .110000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .420000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 2 .400000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.6: Performance statistics for Example 6.

The output performance statistics table for Example 6 is depicted in Listing 5.6. By

comparing with the previous two examples, we can draw the following conclusions:

• Both the load of generator on the bus and the load of consumer on the bus are

not 0. The reason is that generator have to access the bus in order to write to the

shared memory. The process consumer has to access the bus in order to read from

the shared memory.

• The total execution time is 3110 ns, which is larger than the previous two examples.

This is reasonable because when the buffer is implemented in the shared memory,

it is more costly to access it than when it is implemented in the local memory of

the processor. Both read and write will have to take the bus in order to access the

shared memory.
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5.1.5 Communication Path

Example 7. To prove that our framework is able to handle communication path consisting

of a series of resources in the architecture, we mapped the producer-consumer application

to a more complex architecture. The mapping is depicted in Figure 5.15. The configuration

of the mapping is similar to the one in Example 2, except that in this example an additional

bus in tile link2 is added.

generator square consumerC1 C2

Shared 
Memory

FIFO 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link1

Internal
Memory

FIFO 
Scheduler

FIFO 
arbiter

in_tile_link2

FIFO 
arbiter

Figure 5.15: The mapping specification in Example 7 where the communication path

consists of two buses.

Resource Scheduling Configuration

processor1 FIFO square

processor2 FIFO generator, consumer

in tile link1 FIFO processor1, in tile link2

in tile link2 FIFO processor2, in tile link1

Table 5.8: Scheduling configuration for Example 7.

The output waveform is shown in Figure 5.16. As can be seen in the figure, the time

consumed by writing of generator on the buses is larger than that in Example 2. The

reason is that generator will have to take two buses successively in order to access the

buffer of C1.

The performance statistics are listed in Listing 5.7. As is shown in Figure 5.15, the

buffer of C1 and the buffer of C2 are both implemented in the shared memory linked
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Figure 5.16: VCD waveform output for Example 7.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1200
communication time through buses (NS ) : 1200
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1220
communication time through buses (NS ) : 1200
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2020
communication time through buses (NS ) : 1200
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2020
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 2420
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k 1
p roc e s s i n g time (NS ) : 2400
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k 2
p roc e s s i n g time (NS ) : 1200
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 3290
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2420
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 2400
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.7: Performance statistics for Example 7.

to in tile link1. As a result, generator needs to access both in tile link1 and in tile link2

in order to write to the buffer of C1. This is why in Example 2 generator can write

through the communication path in 600 ns, while in this example it is 1200 ns. Besides,

the estimated execution time for this mapping is 3290 ns, much larger than the estimated

execution time in Example 2, namely 2540 ns. The reason is the extra bus will create

additional delays in the communication path.
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5.1.6 Resource Binding

Example 8. Different from all the experiments above, we map generator and square to

the same processor processor1, while consumer monopolies processor2. The mapping is

depicted in Figure 5.17.

generator square consumerC1 C2

Shared 
Memory

FIFO 
Scheduler

processor1 processor2

Internal
Memory

in_tile_link

Internal
Memory

FIFO 
Scheduler

FIFO 
arbiter

Figure 5.17: The mapping specification in Example 8 with a different resource binding.

Resource Scheduling Configuration

processor1 FIFO generator, square

processor2 FIFO consumer

in tile link FIFO processor1, processor2

Table 5.9: Scheduling configuration for Example 8.

The output waveform is shown in Figure 5.18.

1. Different form the previous examples, in this example, generator and consumer are

mapped to different processors. Therefore, they can run concurrently.

2. The process generator and square are both mapped to the same processor processor1.

Therefore, their executions are serialized.

The performance statistics are listed in Listing 5.8. The load of processor1 in this

mapping is 3220 ns and the load of processor2 is 1220 ns. In Example 2, which has similar

scheduling configuration, the load of processor1 is 2020 ns and the load of processor2 is
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Figure 5.18: VCD waveform output for Example 8.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proces s : generator
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .200000 e+03
p r oc e s s i n g time on buses (NS) : 0 .000000 e+00
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : consumer
p roc e s s i n g time on p roc e s s o r (NS ) : 1 .220000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : square
p r o c e s s i n g time on p roc e s s o r (NS ) : 2 .020000 e+03
p r oc e s s i n g time on buses (NS) : 6 .000000 e+02
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 3 .220000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 1 .220000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 3 .280000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 3 .220000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 1 .200000 e+03
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.8: Performance statistics for Example 8.

2420 ns. The difference results from the fact that in this mapping, two processes, i.e.

generator and square, are both mapped onto processor1 while only consumer is mapped

onto processor2. By contrast, in Example 2, only square is mapped onto processor1 while

both generator and consumer are mapped onto processor2. Besides, the total execution

time is 3250 ns, which is larger than 2440 ns in Example 2. The reason is that in this

example the loads of the resources are not well balanced.
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5.2 The MPEG-2 Case Study

In this case study, we use a more complex application, namely MPEG-2 decoder to test our

framework for handling mapping of complex system and to prove its efficiency. The results

of the trace-based simulation are analyzed and compared with pure functional simulation.

5.2.1 The MPEG-2 Application and Architecture Description

The MPEG-2 decoder used in this experiment is written using the application specification

schema of DOL, where it has been implemented as a process network and uses blocking read

and blocking write semantics. Two kinds of architectures are used as the implementation

platforms in the experiments: the single tile architecture and the two tile architecture.

The Application

The MPEG-2 decoder is implemented in a reconfigurable manner where the granularity

of parallelism is scalable. The parameters N1, N2 and N3 described in Table 5.10 are the

levels of parallel processed entities. By changing the parameters N1, N2 and N3 in the

process network XML file, different variants of the implementation can be obtained. If

we set N1 = 1, N2 = 1 and N3 = 1, the pipelined version is achieved, as shown in Figure

5.19. If we set N1 = 2, N2 = 2 and N3 = 2, a parallel version is conducted, as shown in

Figure 5.20.

dp dm_0
gm_ch_0

cgdb_0_0
mb_ch_0_0

cm_0
mg_ch_0

tb_0_0_0
bt_ch_0_0_0

cb_0_0
bm_ch_0_0tb_ch_0_0_0

Figure 5.19: MPEG-2 process network with the configuration (N1 = 1, N2 = 1, N3 = 1).

N1 groups of pictures are processed in parallel

N2 macroblocks are processed in parallel

N3 blocks are processed in parallel

Table 5.10: The decompositions parameters in MPEG-2.



5.2 The MPEG-2 Case Study 97

dg

dm_0
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dm_1

gm_ch_1 cg

db_0_0

mb_ch_0_0

db_0_1
mb_ch_0_1

cm_0
mg_ch_0

db_1_0
mb_ch_1_0

db_1_1

mb_ch_1_1

cm_1

mg_ch_1

tb_0_0_0

bt_ch_0_0_0

tb_0_0_1
bt_ch_0_0_1

cb_0_0

bm_ch_0_0

tb_0_1_0
bt_ch_0_1_0

tb_0_1_1

bt_ch_0_1_1

cb_0_1
bm_ch_0_1

tb_1_0_0
bt_ch_1_0_0

tb_1_0_1

bt_ch_1_0_1

cb_1_0
bm_ch_1_0

tb_1_1_0
bt_ch_1_1_0

tb_1_1_1

bt_ch_1_1_1

cb_1_1

bm_ch_1_1

tb_ch_0_0_0

tb_ch_0_0_1

tb_ch_0_1_0

tb_ch_0_1_1

tb_ch_1_0_0

tb_ch_1_0_1

tb_ch_1_1_0

tb_ch_1_1_1

Figure 5.20: MPEG-2 process network with the configuration (N1 = 2, N2 = 2, N3 = 2).

The Architecture

In our experiments, two different architectures are used as implementation platforms for

the MPEG-2 decoder. They are described as follows:

• The first architecture shown in Figure 5.21 is a simple one, with two processors, i.e.

processor1 and processor2, and a bus in tile link connecting them. The configuration

for the resources in the architecture is illustrated in Table 5.11. We have already

denoted this configuration in the beginning of this section as a tile.

• The second architecture shown in Figure 5.22 is more complex compared with the

first one. It has four computation resources, namely DSP 0, DSP 1, RISC 0 and

RISC 1. Besides, it has three communication resources, i.e. intra tile bus 0, in-

tra tile bus 1 and inter tile bus. The bus inter tile bus is used to connect the tiles.

5.2.2 Experimental Results

In order to demonstrate the efficiency and other characteristics of our trace-based simu-

lation framework, we conduct several experiments on the MPEG-2 application, including
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Shared 
Memory

Scheduler

processor1 processor2

in_tile_link

Scheduler

arbiter

Figure 5.21: Architecture with two processors and one bus.

Resource Configuration

Processor1 dsp, 200MHz

Processor2 risc, 200MHz

in tile link 32bit, 200MHz

Table 5.11: Configuration of the resources in Figure 5.21.

several mapping solutions, and that are compared with the pure functional simulation of

this application. The input test files for all the MPEG-2 process networks in the following

experiments are the same in order to make the results comparable.

Functional Simulation

First we conduct the functional simulation for the MPEG-2 process network depicted in

Figure 5.19. The extra functionalities that we have added into the functional simulation,

e.g. trace generation, are removed in order to obtain the actual performance. Without

instrumentation perturbation, the functional simulation takes about 167 seconds for the

MPEG-2 application to process the input file, i.e. a .m2v video file of about 2.7 MB. The

overhead lies in both running the computation code and executing data transfer through

software channels.

Trace Generation

As is discussed before, the deterministic character of the process network enables the traces

be generated only once and used for different mappings. Thus the time needed for running
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Scheduler

DSP_0

intra_tile_bus_0

arbiter

tile1

Scheduler

RISC_0

Scheduler

DSP_1

arbiter

tile2

Scheduler

RISC_1

arbiter

intra_tile_bus_1inter_tile_bus

Figure 5.22: Architecture with four processors and three buses.

Resource Configuration

RISC 0 risc, 200MHz

RISC 1 risc, 200MHz

DSP 0 dsp, 200MHz

DSP 0 dsp, 200MHz

intra tile bus 0 32bit, 200MHz

intra tile bus 1 32bit, 200MHz

inter tile bus 32bit, 200MHz

Table 5.12: Configuration of the resources in Figure 5.22.

the actual computation code is saved and the efficiency of the trace-based simulation can

be increased. This will be demonstrated later.

To generate the traces used for the trace-based simulation, again we run the functional

model of the MPEG-2 application in DOL. This time we include the trace generation

instrumentation in the functional simulation. Consequently, the functional simulation

time is larger for the reason that extra overhead is needed for dynamically generating

and storing the traces. It takes 263 seconds to finish the simulation with respect to 167

seconds without instrumentation. The traces stored in the trace file are used to trigger

the trace-based simulation which will re-execute these traces for different mappings and

implementation platforms.

The size of the trace generated is about 500 MB. When the traces get larger the sim-

ulation time will increase as well. Besides, since the trace-based simulation reads into

the whole traces once into the memory, the input traces can not exceed 700 MB for the
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MPEG-2 decoder.

Mapping the pipelined version to the one tile architecture

The architecture of a single tile used in this mapping is depicted in Figure 5.21. The

traces of the application are generated from the functional simulation of the MPEG-2

configuration depicted in Figure 5.19. The configuration of the mapping is illustrated

in Table 5.13. Particularly, the scheduling policy adopted by all the resources is FIFO.

The performance statistics of the mapping are generated as an output of the trace-based

simulation, and they are shown in Listing 5.9.

Process or Software Channel. Binding Configuration

dispatch gops processor2

collect gops processor1

dispatch mb 0 processor2

collect mb 0 processor1

dispatch block 0 0 processor1

collect block 0 0 processor1

transform block 0 0 0 processor1

mb channel 0 0 processor2→in tile link→shared memory→
in tile link→processor1, buffer:processor1

gm channel 0 processor2

mg channel 0 processor1

bm channel 0 0 processor1

bt channel 0 0 0 processor1

tb channel 0 0 0 processor1

Table 5.13: Configuration of Mapping MPEG-2 in Figure 5.19 to architecture in Figure

5.21.

The efficiency of the trace-based simulation is high. There are two reasons:

• It takes about 33 seconds to finish the trace-based simulation while it takes about

167 seconds to finish the functional simulation. The speed-up is more than 5 times.

• It is more accurate because the trace-based simulation has already taken the imple-

mentation architecture into account.

The reason is that in our trace-based simulation framework, it does need to run the actual

computation code and the traces can be reused in the design space exploration.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : d i spatch gops
p r o c e s s i n g time on p roc e s s o r (NS ) : 6 .059948 e+08
p r oc e s s i n g time on buses (NS) : 3 .530310 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t g o p s
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .637740 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : dispatch mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 4 .560947 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 7 .060805 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : d i sp a t ch b l o ck s 0 0
p roc e s s i n g time on p roc e s s o r (NS ) : 2 .500740 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t b l o c k s 0 0
p roc e s s i n g time on p roc e s s o r (NS ) : 2 .280960 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : t r an s f o rm b lo ck 0 0 0
p roc e s s i n g time on p roc e s s o r (NS ) : 4 .000590 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 3 .678144 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 6 .059948 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 3 .530310 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 3 .678614 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 3 .678144 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 3 .530310 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.9: Performance statistics for mapping the pipelined version to the one tile ar-
chitecture.
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Mapping the pipelined version to the two tile architecture

The two tile architecture used in this mapping is shown in Figure 5.22. The application

is the same as in the previous experiment. The configuration of this mapping is described

in Table 5.14. Besides, the scheduling policy for this mapping is FIFO. The performance

statistics generated from the trace-based simulation are shown in Listing 5.10.

Process or Software Channel Binding Configuration

dispatch gops RISC 0

collect gops DSP 1

dispatch mb 0 DSP 0

collect mb 0 RISC 1

dispatch block 0 0 DSP 1

collect block 0 0 RISC 1

transform block 0 0 0 RISC 1

mb channel 0 0 DSP 0→intra tile bus 0→inter tile bus

→intra tile bus 1→DSP 1, buffer:DSP 1

gm channel 0 RISC 0→intra tile bus 0→DSP 0, buffer:DSP 0

mg channel 0 RISC 1→intra tile bus 1→DSP 1, buffer:DSP 1

bm channel 0 0 RISC 1

bt channel 0 0 0 DSP 1→intra tile bus 1 →RISC 1, buffer: RISC 1

tb channel 0 0 0 RISC 1

Table 5.14: Configuration of Mapping MPEG-2 in Figure 5.19 to architecture in Figure

5.22.

The time to finish the simulation for this mapping is about 41 seconds, which is larger

compared with the previous mapping, i.e. 33 seconds. The major difference between these

two experiments is that the communication architecture in this mapping is more complex.

Therefore, it is likely that a communication trace event needs to be processed by more

resources in this experiment, thus increasing the simulation time. Nevertheless, as the

architecture becomes more complex, the speed does not decrease exponentially.

Mapping the fully parallel version to the one tile architecture

The single tile architecture used in this mapping is shown in Figure 5.21. The traces of the

application are generated from the functional simulation on the MPEG-2 in Figure 5.20.

In the configuration of the mapping, all the processes are mapped onto processor1 except
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : d i spatch gops
p r o c e s s i n g time on p roc e s s o r (NS ) : 6 .059948 e+08
p r oc e s s i n g time on buses (NS) : 3 .530310 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t g o p s
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .637740 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

p r o c e s s o r : RISC 0
p roc e s s i n g time (NS ) : 6 .059948 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : RISC 1
p roc e s s i n g time (NS ) : 1 .334236 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : DSP 0
p roc e s s i n g time (NS ) : 4 .560947 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : DSP 1
p roc e s s i n g time (NS ) : 1 .887814 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t r a t i l e b u s 0
p roc e s s i n g time (NS ) : 3 .346853 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t r a t i l e b u s 1
p roc e s s i n g time (NS ) : 9 .683438 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t e r t i l e b u s
p r o c e s s i n g time (NS ) : 3 .311550 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2 .496425 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 1 .887814 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 9 .683438 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.10: Performance statistics for mapping the pipelined version to the two tile
architecture.



104 Case Study

dispatch gops, which is mapped onto processor2. By changing the scheduling policy of

processor1, the following performance results are retrieved from the trace-based simulation.

• FIFO scheduling: The performance statistics are shown in Listing 5.11. The time

to finish the simulation is about 34 seconds, which is similar to the first mapping

of the MPEG-2 in Figure 5.19 to the single tile architecture in Figure 5.21. The

architectures for these two mappings are the same, while the process network for this

last mapping is more complex. Yet it seems that the complexity of the application

does not lead to the sacrifice of the simulation speed. The reason is that both process

networks have the same input and the size of the generated traces are similar. Hence

the number of traces events that need to be processed by the architecture is similar.

In a word, the speed of the simulation depends on the trace size and the complexity

of the architecture.

• TDMA scheduling: The performance statistics are shown in Listing 5.12. The time

to finish the simulation is about 43 seconds. The simulation speed is slower compared

to FIFO scheduling policy for the reason that there are more transitions to model

in the TDMA scheduler. In this mapping, the length of the time slot is set to 1

ms. In particular, if the time slot length is too small, the simulation speed will

degrade significantly. The reason is that the TDMA scheduler will need much more

transitions in order to model the switches because of the completion of time slots.

Yet in the actual situation, the time slot has a convenient size, e.g. 3 ms.

• FP scheduling: The performance statistics are shown in Listing 5.13. The time to

finish the simulation is about 39 seconds.

In particular, the time used in the initialization phase of the trace-based simulation is

57 seconds, which includes the process of reading traces from the disk. Yet after that, the

traces in the memory can be reused for each mapping. So the time for initialization can

be saved for the following mappings.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : d i spatch gops
p r o c e s s i n g time on p roc e s s o r (NS ) : 5 .752707 e+08
p r oc e s s i n g time on buses (NS) : 3 .530325 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t g o p s
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .667483 e+10
p r oc e s s i n g time on buses (NS) : 7 .140376 e+07
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : dispatch mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 4 .475900 e+09
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 7 .099947 e+09
p r oc e s s i n g time on buses (NS) : 7 .140376 e+07
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

p r o c e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .089579 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 1 .725010 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 1 .463382 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2 .101954 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .089579 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 1 .463382 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.11: Performance statistics for mapping the fully parallel version to the one tile
architecture using FIFO.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : d i spatch gops
p r o c e s s i n g time on p roc e s s o r (NS ) : 5 .752707 e+08
p r oc e s s i n g time on buses (NS) : 3 .530325 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t g o p s
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .667483 e+10
p r oc e s s i n g time on buses (NS) : 7 .140376 e+07
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : dispatch mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 4 .475900 e+09
p r oc e s s i n g time on buses (NS) : 0 .000000 e+00
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 7 .099947 e+09
p r oc e s s i n g time on buses (NS) : 7 .140376 e+07
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

p r o c e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .089579 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 1 .725010 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 1 .463382 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 1 .426309 e+11
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .089579 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 1 .463382 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.12: Performance statistics for mapping the fully parallel version to the one tile
architecture using TDMA.
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� �

Performance s t a t i s t i c s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : d i spatch gops
p r o c e s s i n g time on p roc e s s o r (NS ) : 5 .752707 e+08
p r oc e s s i n g time on buses (NS) : 3 .530325 e+06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t g o p s
p r o c e s s i n g time on p roc e s s o r (NS ) : 1 .667483 e+10
p r oc e s s i n g time on buses (NS) : 7 .140376 e+07
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : dispatch mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 4 .475900 e+09
p r oc e s s i n g time on buses (NS) : 0 .000000 e+00
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s : c o l l e c t mb 0
p roc e s s i n g time on p roc e s s o r (NS ) : 7 .099947 e+09
p r oc e s s i n g time on buses (NS) : 7 .140376 e+07
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

p r o c e s s o r : p roce s sor1
p r o c e s s i n g time (NS ) : 2 .089579 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p roc e s s o r : p roce s sor2
p r o c e s s i n g time (NS ) : 1 .725010 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bus : i n t i l e l i n k
p roc e s s i n g time (NS ) : 1 .463382 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimated execu t ion time (NS) : 2 .101520 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f p r o c e s s o r s (NS ) : 2 .089579 e+10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max p roc e s s i n g time o f buses (NS ) : 1 .463382 e+08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� �

Listing 5.13: Performance statistics for mapping the fully parallel version to the one tile
architecture using FP.
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5.3 Summary

We have investigated two case studies in this chapter. The producer-consumer case study

proves that our framework is able to handle various scheduling policies, different locations

of the software buffer and communications via a series of resources. In the second case

study, we investigate mappings of a more complex application, i.e. the MPEG-2 decoder,

onto complex multiprocessor system. The positive results testify the scalability and modu-

larity of our framework. Besides, the speed of the trace-based simulation is faster than the

functional simulation for the MPEG-2 case study, which proves the efficiency of our frame-

work. The exploration results are summarized as follows for both the producer-consumer

application and the MPEG-2 decoder.

The Producer-consumer Application

The results of exploring different communication buffer locations are shown in Table 5.15.

We keep other parameters the same and only change the communication buffer location.

When we mapped the communication buffer onto the shared memory, the total execution

time is larger than that when it is put into the internal memory of the processor. The

reason is that both read and write will need to compete and access the bus for shared

memory. Thus extra overhead is required.

Communication buffer Execution time (ns)

Origin processor 2510

Target processor 2480

Shared memory 3110

Table 5.15: Exploration of communication buffer locations.

The results of exploring communication path are shown in Table 5.16. When we increase

the number of buses in the communication path from one to two, the total execution time

will increase. The reason is that the extra bus will introduce additional delays on the

communication path.

Number of buses between two processors Execution time (ns)

One 2540

Two 3290

Table 5.16: Exploration of communication path.
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The results of exploring different resource bindings are shown in Table 5.17. In the first

binding, the loads of the resources are better balanced. Consequently, the total execution

time of the first binding, i.e. 2440 ns, is smaller compared with that of the second binding,

i.e. 3250.

Binding Processor1 load (ns) Processor2 Execution

load (ns) load (ns) time (ns)

generator, consumer→processor2; 2020 2420 2440

square→processor1

generator, square→processor1; 3220 1220 3280

consumer→processor2

Table 5.17: Exploration of resource bindings.

The results of exploring different scheduling policies are shown in Table 5.18. The total

execution time of TDMA is largest. The reason is that in TDMA, each time slot is fixed

to a certain process. If the process is not ready to run, the time slot will be wasted.

Therefore, the resources are not fully utilized.

Scheduling Execution time (ns)

FIFO 2540

FP 2560

TDMA 3815

Table 5.18: Exploration of scheduling policies.

The MPEG-2 Decoder

The results of exploring different implementation platforms for the pipelined version is

shown in Table 5.19. When it is mapped to a two-tile architecture rather than on one tile

architecture, the total execution time will reduce by one third. The reason is that the two

tile architecture has more computation ability and can explore more concurrency between

the processes.

The time needed for functional simulation is 167 seconds. When the pipelined version

is mapped onto the one tile architecture, the time needed for trace-based simulation is 33

seconds. The speed-up is about 5 times in this scenario.

The results of exploring different scheduling policies for the fully parallel version are

shown in Table 5.20. It turns out that the total execution time of TDMA is the largest.

The reason is that some time slots are wasted and the resources are not fully utilized.
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Application Architecture Scheduling Execution Speed of functional Speed of trace-based Speed-up

time (s) simulation (s) simulation (s)

Pipelined One tile FIFO 36.8 167 33 5.1

Pipelined Two tile FIFO 25 167 41 4.1

Table 5.19: Exploration of implementation platforms.

Application Architecture Scheduling Execution Speed of functional Speed of trace-based Speed-up

time (s) simulation (s) simulation (s)

Parallel One tile FIFO 21 169 34 5

Parallel One tile FP 21 169 39 4.3

Parallel One tile TDMA 142.6 169 43 3.9

Table 5.20: Exploration of scheduling policies.



6
Conclusion and Future Work

This chapter gives a conclusion for the whole thesis, as well as the future work. In Section

6.1, the content of this thesis and the major characteristics of the framework are sum-

marized. Section 6.2 gives an overview of the future work that can help to improve the

current framework.

6.1 Conclusion

In this thesis we have presented a trace-based simulation framework which can guide de-

signers at early stages of the design space exploration. We described the basic components

and the underlying mechanisms of the framework, such as the application modeling, ar-

chitecture modeling and mapping modeling. In the application modeling, an application

is first specified using a restricted version of the Kahn Process Network. The speed-up of

the simulation is achieved by abstracting the functionality of the application as high-level

traces. In the architecture modeling, we used a uniform resource definition to represent

both processors and buses. The architecture is modular and can be extended to have

arbitrary resources. In the mapping modeling, the application and the architecture are

associated together to form a system. Besides, important factors, e.g. sharing resources

and communication architectures, that can exert influence on the system performance,
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are investigated in the framework. Subsequently, how the framework is implemented in

the context of DOL is given. The method of expressing application, architecture and

mapping in the XML files is presented. After that, we used two case studies, i.e. the

producer-consumer application and the MPEG-2 decoder, to verify a variety of aspects of

the framework and to prove the efficiency of our framework. The major characteristics of

our trace-based simulation framework are summarized as follows:

• Modular: Both the application and the architecture are specified in a modular way.

An application written within the process network specified scheme can have arbi-

trary number of processes and software channels. Besides, the architecture in the

framework can be composed of arbitrary processors and buses.

• Automated: The process of trace generation is automated deriving from the modified

functional simulation. In the trace-based simulation framework, the application and

architecture are constructed automatically from the files. In addition, the procedure

of parsing the mapping configuration is automatic.

• Efficient: The efficiency of the simulation is guaranteed by abstracting computation

behaviors as traces. Thus in the procedure of simulation, there is no need to execute

the actual computation programming code, but only to consider the timing effects.

The traces are generated once and can be reused for different mappings for the same

application.

• Capable to explore a variety of parameters: Many factors that can affect the system

performance are considered. The framework is able to explore arbitrary communi-

cation structures, e.g. internal communication, external communication, communi-

cation via a path. The framework is capable of investigating the various scenarios

of implementing the software channel buffer on origin processor, target processor or

shared memory. In addition, important scheduling policies, including TDMA, FIFO

and Fixed Priority, have been implemented to provide exclusively mutual access to

the resources.

6.2 Future Work

In future work, we plan to:

• Couple our framework with a low-level simulation to increase the accuracy of the per-

formance evaluation results. Since execution delays of the computation trace events

are used to model the timing effect of the computation behaviors, the precision of
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the delays can profoundly affect the final simulation results. A low-level simulation,

e.g. an instruction set simulator (ISS), can be used to achieve this goal. For each

type of processor, its corresponding ISS can be utilized to obtain the performance

estimation for the computation behavior. Normally, the speed on the ISS is very

slow, with 3 orders of magnitude slower than the functional simulation. Yet because

the performance estimation for the basic computation is retrieved once and for all,

the overall efficiency of the trace-based simulation framework will not be affected.

• Consider the size of the hardware communication transfer buffer in the process of

simulation. Currently we assume that the transfer buffer between two hardware

resources is unbounded. Thus no process will be blocked because of the overflow

of the hardware buffer. In the actual simulation, however, the size of a hardware

communication buffer is limited, which will block the processes when the buffer is

full. This will cause indirect effect on the overall performance of the system. If we

can take into account of this effect, the accuracy of the framework can be enhanced.

• Model other performance aspects besides timing, e.g. power consumption and buffer

fill level. The current framework models only the timing effect of the system. In the

process of designing embedded system, another significant performance indicator

is the power consumption. We can take this into consideration by adding more

information in the trace event. For example, the computation trace event now

contains only the execution delays required to finish the computation on a target

processor. Similarly, we can include the energy estimation in the computation event

so that the energy consumption effect for a target processor can be simulated. In

addition, the buffer fill level can help designers to determine the size of software buffer

to implement. The buffer fill level can be retrieved by tracking the state change of

the virtual software channel. Finally, even for timing aspect, we will include the

ending time of each process, which reflects the response speed when the process is

mapped to certain processor.

• Provide a graphic interface to facilitate the usage for the designers. There are several

input files for the simulation tool, one of which is the mapping XML file. Each

design solution needs a mapping file to specify the configuration. The process of

writing a mapping file is tedious and error-prone, especially when the application

and architecture get larger and more complex. Therefore, graphic interface can be

used to solve this problem. The mapping XML file will be automatically derived

from the graphic mapping specification.
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• Model more types of resources in the architecture. Computation resources in the

current framework are restricted to processors while the communication resources

are restricted to buses. To increase the accuracy, the external shared memory may

also be modeled as an independent resource. Besides, a communication resource may

also be a dedicated link between two processors, or a NoC (Network-on-Chip). The

uniform resource definition in our framework reduces the efforts of modeling these

new types of resources.

• Implement more scheduling policies for shared resources. The implemented schedul-

ing policies are TDMA, FIFO and FP. Practically, there may be more types of

scheduling mechanisms, such as round-robin or priority-based round-robin.

• Investigate the error introduced by the atomic data transaction size. By introduc-

ing the atomic data transaction size, the data transfer procedure in our simulation

framework can be closer to the actual situation. Yet a larger atomic data transaction

size will sacrifice the accuracy of the simulation. The side effect of the atomic data

transaction size should be exploited.

• Integrate the current framework with the existing DOL high level multi-objective

DSE framework [16]. When the design space is large, it is difficult or even infeasible

to investigate all the solutions one by one manually. To overcome this problem, the

multi-objective design exploration framework can be utilized to make the process of

design optimization automatic. At the beginning, the multi-objective optimization

explores the overall design space. After a set of optimized candidates are available,

the designers can filter better choices by comparing the performance numbers by

means of our trace-based simulation.
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