
Dominik Schatzmann

Analyzing network traffic from the SWITCH
network from 2003 until today

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

 9e+11

 0 100 200 300 400 500 600 700

N
u
m
b
e
r

o
f

B
y
t
e
s

One Week of June (15 min interval)

Byte Count

2004
2005
2006
2007

Master Thesis MA-2007-12
April 2007 to September 2007

Tutor: Bernhard Tellenbach
Supervisor: Prof. Bernhard Plattner

2

Abstract

The analysis of the characteristics of network traffic is the basis for many areas of research
such as traffic engineering, anomaly detection or application identification. In most cases, it
consists of an analysis of the development of one or multiple traffic metrics in a certain time
interval. While this interval is typically in the range of hours to days when investigating the
characteristics of an isolated anomaly, its length can be up to several years when investigating
seasonal effects or when performing other long term studies. The main problem with long term
studies is that there is almost no seamless data set available that offers a complete view on
the traffic of a medium to large scale network. Since we started collecting the Cisco NetFlow
data from the border gateway routers of a medium scale Internet backbone network in 2003,
we are now in a good position for doing such studies. Today (2007), our NetFlow data archive
consist of 26 TiB of compressed flow records stored on a tape library. The main challenge
with long (and short) term studies on this data set is to handle the huge amount of data in a
convenient way. This means that we need a hard- and software infrastructure that allows for a
time and resource efficient planing, supervising and processing of the network traffic data. To
address this problem, we designed and implemented the Data Mole, an extensible framework
for optimized access to tape archives and for large scale data processing on privacy compliant
computer clusters. Other important design goals were ease of use and on-off capability. A web
interface offers convenient monitoring and controll interfaces to the users of the framework.
Furthermore, we optimized and integrated some basic modules for NetFlow data processing
like a sorter for NetFlow records or a calculator for basic metrics like e.g. the number of flows
per interval. Preliminary results from the data analysis projects of three different users show
that the Data Mole framework is easy to use, is basically on-off stable and allows for a time
and resource efficient processing of large scale data set.

3

4

Acknowledgment

Different people contributed to this Master Thesis and I would like to express my gratitude to
them. I would like to thank . . .

• Prof. Dr. Bernhard Plattner for the supervision of my Master Thesis and for making this
project possible.

• Bernhard Tellenbach for his support during my thesis. It was a great pleasure to col-
laborate with him. The discussions with Berhnard helped me to successfully finish this
thesis.

• Dr. Rainer Baumann for various discussions that have inspired different parts of this
work.

• The CSG for their general support and especially for using the coffee corner that help
me to survive the last 6 months.

• My friends and colleagues for their support and their understanding for my absence
during the last months.

• My parents for providing me with all I needed and for their unconditional support at
anytime.

Dominik Schatzmann

5

6

Contents

1. Introduction 11
1.1. Motivation . 11
1.2. Problem Statement . 11
1.3. Related Work . 12
1.4. Outline . 13

2. Problem Analysis 15
2.1. Requirements . 15
2.2. Infrastructure . 16

2.2.1. Computer Cluster . 16
2.2.2. Long Term Storage System . 16

2.3. Data Management . 16
2.3.1. Jabba Server . 16
2.3.2. Cluster Node . 19

2.4. Job Management . 20
2.4.1. Job Creation . 21
2.4.2. Job Scheduling . 23
2.4.3. Job Controlling . 23
2.4.4. Job Monitoring . 23

2.5. Conclusion . 23

3. Design 25
3.1. Modular Design . 25
3.2. Generic Metric Module . 25
3.3. Data Object Model . 28

3.3.1. Objects have states . 28
3.3.2. Where to store the objects . 29
3.3.3. Work on Objects . 29

3.4. Inter-Module Communication . 29
3.5. Class Library . 30

4. Implementation 33
4.1. Overview . 33

4.1.1. Metric Universe . 33
4.1.2. Downloader . 33
4.1.3. Job Scheduler . 34

4.2. Metric Universe . 35

7

Contents

4.2.1. Overview . 35
4.2.2. Interface . 36
4.2.3. Mapper . 37
4.2.4. Jobber . 39

4.3. Downloader Part . 39
4.3.1. Jabba Indexer . 41
4.3.2. Download Interfaces . 41
4.3.3. Download Master . 42
4.3.4. Download Client . 44

4.4. Job Scheduler Part . 44
4.4.1. Job Scheduler Interface . 45
4.4.2. Job Scheduler Master . 45
4.4.3. Job Scheduler Client . 45

4.5. Web Interface . 46

5. Evaluation 47
5.1. On-Off Capability . 47
5.2. Ease of Use . 47
5.3. Performance . 48
5.4. Set of Basic Metrics . 49

5.4.1. Structure . 49
5.4.2. Metrics . 50
5.4.3. Results . 50

6. Conclusion 53
6.1. Summary . 53
6.2. Contribution . 54
6.3. Future Work . 54

A. Appendix 55
A.1. Task Description . 56
A.2. Finite State Modules . 62

A.2.1. Download Client . 62
A.2.2. Job Scheduler Master . 63
A.2.3. Job Scheduler Client . 63

A.3. GBM Example Configuration . 64

8

List of Figures

1.1. The data processing by UPFrame . 12
1.2. The data processing for a long term analysis 13

2.1. The computer cluster at CSG . 17
2.2. The network load during a file download at xFS 19
2.3. The development of file size . 20
2.4. The measurement parameter . 21
2.5. The measurement splitting . 22

3.1. The modular design of the Data Mole project 26
3.2. The Generic Block Module . 27
3.3. The finite state machine of the job data structure 28
3.4. The data object model of the Data Mole . 30
3.5. The inter-module communication . 30
3.6. The Data Mole class library . 31
3.7. The module forming process . 32

4.1. The module overview . 34
4.2. An overview of the Generic Block Module . 35
4.3. How to chain different modules . 36
4.4. Mapping the request to jobs . 37
4.5. The finite state model of the worker ’mapper’ 38
4.6. The finite state model of the worker ’jobber’ 40
4.7. An overview of the downloader part . 41
4.8. The finite state model of the worker ’download jobber’ 43
4.9. The process flow of the worker ’download master’ 44
4.10.An overview of the job scheduler part . 45

5.1. The processing time of the basic metrics module 48
5.2. The size of the local file cache . 49
5.3. The structure of the basic metric user binary 50
5.4. The byte counter metric . 51
5.5. The flow counter metric . 51

9

List of Figures

10

1. Introduction

The analysis of the characteristics of network traffic is the basis for many areas of research
such as traffic engineering, anomaly detection or application identification. In most cases, it
consists of an analysis of the development of one or multiple traffic metrics in a certain time
interval. While this interval is typically in the range of hours to days when investigating the
characteristics of an isolated anomaly [10] [13] [14], its length can be up to several years
when investigating seasonal effects or when performing other long term studies [11] [12].

The main problem with long term studies is that there is almost no seamless, unsampled data
set available that offers a complete view on the traffic of a medium to large scale network. For
example, the NetFlow [1] records collected by [6] of the GÉANT [5] Network are sampled with
a rate of (1/1000). The NetFlow data of the Abilene Network [3] is collected by the Abilene
Observatory program [4] is anonymized (lower-order 11 bits of IP address are set to zero).

Since we started collecting the unsampled Cisco NetFlow data from the border gateway
routers of a medium scale Internet backbone network[2] [8] in 2003, we are now in a good
position for doing such studies. Today (2007), our NetFlow data archive consist of 26 TiB of
compressed flow records stored on a tape library.

1.1. Motivation

Our archive of unsampled NetFlow data is a valuable asset and puts us in a unique position for
performing long term traffic analysis on the border traffic of a medium scale Internet backbone
network. But if we want to do this type of analysis, we need to handle the huge amount of data
in a convenient way. More precisely, we need a hard- and software infrastructure that allows
for a time and resource efficient planing, supervising and processing of this data. But because
our data set puts us in a unique position for doing such an analysis, it is unlikely that there
already exists an off-the-shelf solution for such a hard- and software infrastructure. Hence, if
we want to exploit our unique position for doing long term analysis, we have to design and
implement a hard- and software infrastructure for a time- and resource efficient processing of
our NetFlow data.

1.2. Problem Statement

To process the NetFlow traffic that is collected by the DDosVax project a modular and reusable
management framework is needed. The management framework has to address the problem
of data and job management. A simple interface for control and monitoring should be created.
In a next step a set of basic traffic metrics should be evaluated with the help of this framework.

11

1.3. Related Work

Figure 1.1: The data processing by UPFrame

Data Management The framework must be able to work with the full data set that is col-
lected by the DDosVax project. The quantity and quality of the stored records is unknown (e.g
missing, corrupt). The framework has to be able to cope with outages of the data set. The file
download from the long term storage system to the computer cluster has to be optimized.

Job Management The framework has to be able to process several jobs in parallel. A mea-
surement often has a run time of several weeks. For maintenance of the server cluster the
framework has to implement the feature that on-going measurements can be stopped and
resumed.

1.3. Related Work

To the best of our knowledge, we did not find an existing framework that is able to handle job
management and data management of long term traffic analysis. However, there exist several
programs and tools that are able to process NetFlow data. But most of them do not include job
management or data management features. In the following we briefly present two popular
tools for NetFlow data processing and one open source tool for job management.

UPFrame [9] is a powerful framework to process NetFlow data in real time. The main appli-
cation of UPFrame is the optimized processing of subsequent NetFlow records with several
programs at the same time. This is illustrated in Fig. 1.1. But for long term traffic analysis we
are rather interested splitting the timeline into multiple parts and processing them in parallel
by one or only a few different programs as illustrated in Fig. 1.2.

NFDUMP [15] is a toolset to capture, store, filter and replay NetFlow data. It is able to read
NetFlow data from live streams or from files stored in folders meeting a special naming con-
vention. Like UPFrame, NFDUMP is used to process data of a single timeline and has no
built-in functionality for timeline splitting and parallelization.

There exist different generic frameworks for the issue of job scheduling like the one developed
by the Condor Project [16]. Basically, Condor is a framework for high throughput computing
(HTC). It detects idle personal computers and uses their resources to process any type of
job. Furthermore, it has some data management features to distribute input data and to copy
back local output of these jobs. This project could be a candidate for the job scheduling part

12

1.4. Outline

Figure 1.2: The data processing for a long term analysis

of our framework.

1.4. Outline

This work is structured into the following parts. In chapter 2 the problem statement of this
work is analyzed based on the existing resources and the requirements. The design of the
Data Mole is discussed in chapter 3. Then in chapter 4 the implementation of the different
modules is presented. IN chapter 5 we discuss the evaluation of this framework. Chapter 6
summarizes the work and discusses the open issues.

13

1.4. Outline

14

2. Problem Analysis

In this chapter we work out some important key points that should be respected during design
and implementation of the Data Mole project. In the first section we formulate the general
requirements of this project and then the available infrastructure is presented. In a next step
we review the infrastructure based on the requirements to work out the key points that should
be respected. These results are then summarized in the conclusion section.

2.1. Requirements

The Data Mole project has to accomplish the following requirements:

• Modularity
The framework has to be programmed in a modular manner. This allows to expand the
framework or replace existing functional blocks without much effort. Further the cost for
validation and debugging of the framework is decreased. This is achieved by the fact
that each module can be validated and tested independently.

• Ease of Use
The effort for an end user to handle the framework has to be very small. The end user
is not willing to read more than 20 pages and to spend more than 5 hours to be able to
perform measurements using the framework.

• Reusability
There exists a large number of good analysis programs for NetFlow data processing.
The framework should be able to integrate these programs with low effort. This reusabil-
ity can be achieved by the choice of a robust and simple interface.

• On-Off Capability
The time to perform a long term traffic analysis is in the range of weeks or months. Due
to this long processing time the framework has to implement a feature that allows to
stop and then resume the measurements. This feature is called ’On-Off Capability’ and
is required for example for maintenance of the computer cluster infrastructure.

• Performance
The overall performance of the framework should be optimized. The critical parts of the
data path and job path have to be identified and optimized.

15

2.2. Infrastructure

2.2. Infrastructure

The Data Mole is primary used by the Communication Systems Group[7] (CSG). Therefore
the Data Mole is optimized to run on the infrastructure that is provided by the CSG. But the
design of the Data Mole has to be generic enough so that the framework can be adapted to
any infrastructure with low effort. This section describes the infrastructure of the CSG. This
knowledge is then needed for the further analysis of the problem.

2.2.1. Computer Cluster
The computer cluster for task processing consists of six computers called nodes. Each node
has two AMD Opteron 275 processors with 8GB RAM. The AMD Opteron 275 processor is a
dual core processor and therefore 4 jobs can be processed in parallel on one node. The local
storage has a size of 4TiB. Due to the fact that the node performs a RAID 6 over the physical
storage only 3TiB are available for the user. The nodes are connected with a Gigabit Ethernet
(GbE) network.

Five nodes are used for general calculations. These nodes are called x01 to x05. One node
is used as login and management server and it is called xFS. An other older computer called
aw4 is used as backup management server. This is illustrated in Fig. 2.1. In near future the
cluster will be expanded by a new file server, called fs1.

The root file systems of x01 to x05 are hosted by xFS and is mounted via Network File System
(NFS). The local disk storage of each node can be accessed from each node over NFS.

2.2.2. Long Term Storage System
The CSG uses a long term storage system that is called Jabba [18]. This system is supported
by the department of information technology and electrical engineering (ITET) of the ETH
Zurich. Jabba consists of a Sun Fire V880 and of a IBM 3494 robot with 4 IBM 3592 FC tape
drives. The storage system is connected with Gigabit Ethernet(GbE) to the ETH network.
Jabba currently has a capacity of about 336 TiB and can be easily expanded.

2.3. Data Management

To achieve the requirement of an efficient framework critical resources have to be identified
and the design of the framework has to optimized to cope with these critical resources. In this
section we review the data path of the NetFlow records. We start our review with the Jabba
storage server and will then focus on the cluster nodes.

2.3.1. Jabba Server
The Jabba server is a tape based storage server. To optimize the interaction with this server,
we analyze in a first step how the data is stored on the Jabba system. Then we review how
the data can be downloaded from The Jabba server. In the last part we discuss the limitations
of the Jabba server.

16

2.3. Data Management

S
W
IT
C
H
 B
a
c
k
b
o
n
e

a
w
4
 1
0
.0
.0
.1
1

x
F
S
 1
0
.0
.0
.1
0
0

2
 U

x
0
5
 1
0
.0
.0
.1
0
5

2
 U

x
0
4
 1
0
.0
.0
.1
0
4

2
 U

x
0
3
 1
0
.0
.0
.1
0
3

2
 U

x
0
2
 1
0
.0
.0
.1
0
2

2
 U

x
0
1
 1
0
.0
.0
.1
0
1

k
o
m
-p
c
-a
w
5
.e
th
z
.c
h

 8
2
.1
3
0
.1
0
4
.2
5
3

ro
o
t
d
ri
v
e

/d
e
v
/s
d
a
1
 (
3
0
G
B
)

(/
h
o
m
e
 e
x
p
o
rt
e
d
!)

E
x
p
o
rt
e
d
 n
fs
ro
o
t
d
ri
v
e
s

/d
e
v
/s
d
a
2
 (
1
0
0
G
B
)

1
0
.0
.0
.1
0
0
:/
n
o
d
e
ro
o
tf
s

D
a
ta

/d
e
v
/s
d
a
4
 (
1
.7
T
B
)

1
0
.0
.0
.1
0
0
:/
la
rg
e
X

/d
e
v
/s
d
a
 (
3
 T
B
,
R
A
ID
6
)

S
w
it
c
h
 (
in
te
rn
)

D
a
ta
 (
2
.7
 T
B
,
R
A
ID
6
)

/d
e
v
/s
d
a
1

1
0
.0
.0
.1
0
5
:/
x
0
5

D
a
ta
 (
2
.7
 T
B
,
R
A
ID
6
)

/d
e
v
/s
d
a
1

1
0
.0
.0
.1
0
4
:/
x
0
4

D
a
ta
 (
2
.7
 T
B
,
R
A
ID
6
)

/d
e
v
/s
d
a
1

1
0
.0
.0
.1
0
3
:/
x
0
3

D
a
ta
 (
2
.7
 T
B
,
R
A
ID
6
)

/d
e
v
/s
d
a
1

1
0
.0
.0
.1
0
2
:/
x
0
2

D
a
ta
 (
2
.7
 T
B
,
R
A
ID
6
)

/d
e
v
/s
d
a
1

1
0
.0
.0
.1
0
1
:/
x
0
1

B
o
o
t
d
ri
v
e

/d
e
v
/m

d
0
 (
9
.2
 G

B
)

(+
/d
e
v
/h
d
a
1
,
/b
o
o
t)

D
a
ta
 (
o
ld
 h
o
m
e
s
)

/d
e
v
/m

d
2
 (
1
.1
 T
B
)

1
0
.0
.0
.1
1
:/
la
rg
e
1

D
a
ta
 (
in
c
l.
 d
e
b
m
ir
ro
r)

/d
e
v
/m

d
3
 (
1
.6
 T
B
)

1
0
.0
.0
.1
1
:/
la
rg
e
2

D
a
ta

/d
e
v
/m

d
4
 (
1
.4
 T
B
)

1
0
.0
.0
.1
1
:/
la
rg
e
5

S
y
s
te
m
 D
is
k
 +
 S
o
ft
w
a
re
 r
a
id
’s

C
o
m
p
u
ti
n
g
 n
o
d
e
s
 s
p
e
c
:

2
x
 O

p
te
ro
n
 2
7
5
 (
2
.2
 G

H
z
,
D
u
a
l-
C
o
re
)

8
G
B
 R
A
M

3
 T
B
 S
to
ra
g
e
 (
p
h
y
s
.
4
 T
B
,
b
u
t
H
W
 R
A
ID

 6
)

B
o
o
t:
N
e
tw

o
rk
 b
o
o
t
(k
e
rn
e
l
+
 r
o
o
t
fi
le
 s
y
s
te
m
)

L
o
g
in
 (
p
re
-s
h
a
re
d
 k
e
y
):
 U
S
E
R
S
,
R
O
O
T

R
o
o
t
fi
le
 s
y
s
te
m
:
N
o
 l
o
c
a
l
ro
o
t
fi
le
 s
y
s
te
m
 (
N
F
S
ro
o
t)

O
n
e
 p
e
r
n
o
d
e
 i
n
 x
fs
:/
n
o
d
e
ro
o
tf
s
/

H
o
m
e
s
:
/h
o
m
e
 i
s
 t
h
e
 s
a
m
e
 a
s
 o
n
 x
F
S
 (
N
F
S
)

L
o
g
in
 s
e
rv
e
r
s
p
e
c
 (
+
b
a
c
k
u
p
 m
a
n
a
g
e
m
e
n
t
s
e
rv
e
r)
:

2
x
 O

p
te
ro
n
 2
7
5
 (
2
.2
 G

H
z
,
D
u
a
l-
C
o
re
)

8
G
B
 R
A
M

3
 T
B
 S
to
ra
g
e
 (
p
h
y
s
.
4
 T
B
,
b
u
t
H
W
 R

A
ID

 6
)

B
o
o
t:
F
ro
m
 U

S
B
 s
ti
c
k
 (
k
e
rn
e
l)
 a
n
d
 h
a
rd
 d
is
k
 (
ro
o
t
fi
le
 s
y
s
te
m
)

L
o
g
in
 (
p
re
-s
h
a
re
d
 k
e
y
):
 U
S
E
R
S
,
R
O
O
T

M
a
il
:
F
o
rw

a
rd
 r
o
o
t/
u
s
e
r
lo
c
a
l
m
a
il
to
 m

a
il.
e
e
.e
th
z
.c
h
.
N
o
 l
o
c
a
l
d
e
liv
e
ry
.

M
a
n
a
g
e
m
e
n
t
s
e
rv
e
r
s
p
e
c
:

2
x
 A
M
D
 A
th
lo
n
(t
m
)
M
P
 2
8
0
0
+
,
2
G
B
 R
A
M

~
4
 T
B
 S
to
ra
g
e
 (
p
h
y
s
.
5
.5
 T
B
,
b
u
t
S
W
 R
A
ID
 5
)

L
o
g
in
 (
p
re
-s
h
a
re
d
 k
e
y
):
 R
O
O
T

B
o
o
t:
F
ro
m
 h
a
rd
 d
is
k

M
a
n
a
g
e
m
e
n
t
to
o
ls
:
In
te
rn
a
l
o
n
ly
.
U
s
e
 X
1
1
 f
o
rw

a
rd
in
g
 o
v
e
r
s
s
h

 (
W
in
d
o
w
s
:
u
s
e
 X
m
in
g
/p
u
tt
y
 f
o
r
X
1
1
)

H
W
 R
A
ID
 c
o
n
fi
g
u
ra
ti
o
n
 (
x
F
S
,x
0
1
-x
0
5
):

W
e
b
-b
a
s
e
d
,
p
ro
x
y
 (
S
W
)
lis
te
n
in
g
 o
n
 1
0
.0
.0
.X
X
X
:8
1

 P
o
w
e
r/
B
M
C
 (
x
F
S
,x
0
1
-x
0
5
):

G
U
I
(/
ro
o
t/
m
a
n
a
g
e
m
e
n
t/
ip
m
i/
IP
M
IV
ie
w
2
0
.s
h
,
S
u
p
e
rm

ic
ro
)
o
r
ip
m
it
o
o
l

M
a
il
:
F
o
rw

a
rd
 r
o
o
t
m
a
il
to
 m

a
il.
e
e
.e
th
z
.c
h
.
N
o
 l
o
c
a
l
d
e
liv
e
ry
 (
A
le
rt
in
g
)

M
A
N
A
G
E
M
E
N
T

2
 U

S
w
it
c
h
 (
e
x
te
rn
)

L
O
G
IN

k
o
m
-p
c
-a
w
4
.e
th
z
.c
h

8
2
.1
3
0
.1
0
4
.2
5
2

N
e
tf
lo
w

/d
e
v
/s
d
a
3
 (
7
5
6
G
B
)

(n
o
t
e
x
p
o
rt
e
d
)

3
 U

F
IL
E
 S
E
R
V
E
R

fs
1
 1
0
.0
.0
.1
9
9

D
a
ta

/d
e
v
/s
d
a
1
 (
8
.7
T
B
)

1
0
.0
.0
.1
9
9
:/
la
rg
e
fs
1

?
?

F
il
e
 s
e
rv
e
r
s
p
e
c

1
x
 X
e
n
o
n
 5
3
1
0
 (
Q
u
a
d
-C

o
re
,
1
.6
 G

H
z
)

4
G
B
 R
A
M

8
.7
 T
B
 S
to
ra
g
e
 (
p
h
y
s
.
1
2
 T
B
,
b
u
t
H
W
 R

A
ID

 6
)

B
o
o
t:
 F
ro
m
 U
S
B
 M

o
d
u
le

L
o
g
in
 (
p
re
-s
h
a
re
d
 k
e
y
):
 O
n
ly
 r
o
o
t

M
a
il
:
F
o
rw

a
rd
 t
o
 l
o
g
in
 s
e
rv
e
r
o
r
m
a
il
to
 m

a
il.
e
e
.e
th
z
.c
h
.

 N
o
 l
o
c
a
l
d
e
liv
e
ry
.

J
A
B
B
A

D
-I
T
E
T
 T
a
p
e
 L
ib
ra
ry

C
a
p
a
c
it
y
:
>
3
0
0
 T
B

N
e
tf
lo
w
 d
a
ta
 >
2
6
 T
B

E
Z
M
P
3

N
e
tf
lo
w
 d
a
ta
 c
o
lle

c
to
r

A
c
c
e
s
s
:
p
re
-s
h
a
re
d
 k
e
y

U
s
e
r
n
e
tf
lo
w
 o
n
 x
F
S

L
o
g
in
:
 s
s
h
 w
a
g
n
e
r@

e
z
m
p
3

 (
a
s
 u
s
e
r
n
e
tf
lo
w
!)

B
u
ff
e
r:

<
5
h

(!
!!
)

E
T
H
 L
A
N

Figure 2.1: The computer cluster at CSG

17

2.3. Data Management

File index The DDosVax project collects the NetFlow data from different border gateway
routers of the SWITCH network. The NetFlow records from one hour are collected and ag-
gregated to two bzip2 compressed hour files. These files are then saved on the Jabba server.
Every month more than 700 files are stored on the Jabba server.

The data set is not complete. Several files with compressed NetFlow records are not stored
on the Jabba server. These gaps can be explained by the fact that some system outages have
stopped the recording process of the DDosVax Project.

In 2007 more than 160’000 files are stored on the Jabba server. The process to find and
locate a file for a given hour by hand is quite painful. This process has to be automated.

An index of all files stored on the Jabba server has to be built. This index can be used to
locate all files of a given time period. Due to the large number of files index generation has to
be automated. The index generator has to be able to work with outages in the file set.

The Tape Device The time that is needed to download the data from the Jabba server
to the cluster nodes has to be minimized to increase the performance of the system. IBM
specifies the maximum download capacity of the IBM 3592 tape device [17] with 108 Mbps.
The administrators [18] of the Jabba system announced that the drive has an IO-performance
of 30 to 100 Mbps.

To increase the performance all files that are saved on the same tape should be downloaded
at once. This reduces the chance that a tape must be loaded twice or more. To increase the
download speed even more, several tapes can be downloaded in parallel. The table shows the
expected download speeds for a minimal rate of 30 Mbps and a maximal rate of 108 Mbps.
This optimization is only possible if the tape name of each file is stored in the file index.

Parallel Downloads 1 2 3 4
per hour (min / max) [GiB] 12.6 / 45.3 25.1 / 90.5 37.7 / 135.8 50.29 / 181.0
per day (min / max) [TiB] 0.3 / 1.0 0.6 / 2.1 0.9 / 3.2 1.2 / 4.2

The Network Connection The Jabba server is connected with Gigabit Ethernet (GbE) to
the ETH network. The traffic from the Jabba server crosses this network and then entresr the
cluster on the xFS.

The capacity limit of a GbE Network is around one gigabit per second. This corresponds to a
rate of 0.11 GiB per second or 419 GiB per hour. This rate is up to 10 times higher than the
output of the tape library.

The Fig. 2.2 shows the network load on xFS during a file download phase when two tapes
are downloaded in parallel. A throughput of around 150 Mbps is achieved. This corresponds
to 71 % of the maximum rate. The gaps in the plot correspond to time periods when the
download has been stopped to show the normal network traffic load.

It can be concluded that the network connection from the computer cluster to the Jabba server
does not limit the download and is therefore not a critical resource.

18

2.3. Data Management

Figure 2.2: The network load during a file download at xFS

The Limits The Jabba server has four tape devices. The maximum download speed of
the system is achieved if and only if all four devices are used. But the Jabba server is not
only used by this project. The Jabba server is used by all the different institutes of the ITET.
Therefore all tape devices of the Jabba server have to be shared with the other institutes.
Therefore not more than two tape devices should be used in parallel.

2.3.2. Cluster Node
This section reviews the data path on the cluster node. First we focus on disk size, which limits
the job size that can be processed. Then we discuss disk speed, wich limits the number of
input streams that can be processed in parallel. Furthermore memory limitations of the node
are reviewed.

Disk Size The hard disks of one cluster node are combined with the help of a hardware
RAID controller to a logical disk with the capacity of the size of 3GiB.

The size of the compressed NetFlow data has increased over the years. For example a file
with the NetFlow records of one hour in the year 2007 is twice the size of such a record in
2003. The Fig. 2.3 shows an overview over the average hour file size averaged over one
month. To reduce the error from corrupted files only files with a minimal size larger than 20
MByte are used for the calculation.

We can conclude that in 2007 the local storage of the nodes is sufficient to store at least
12 weeks of compressed NetFlow data. A standard job runs over the collected data of several
hours up to weeks. Therefore the disk space is large enough and is not a critical resource.

19

2.4. Job Management

Figure 2.3: The development of file size

The data can be downloaded first and can then be processed by the analysis program without
a problem.

Disk Speed The hardware RAID controller concatenates the local hard disks with a
RAID 6 [19] to a larger logical capacity. In this mode the data is spread over different disks.
This provides fault tolerance and increases the read and write performance of the local ca-
pacity.

The disk array performance can be estimated by a simple file copy operation. A node needs
less than 25 minutes to copy different files with a total size of 68 GiB. This corresponds to
performance of 46 MiB/s.

The NetFlow data of the DDosVax project is compressed with a Bzip2 [23] file compressor. On
the cluster we have measured a decompression rate of 5 MiB/s. The decompression process
is CPU limited. Based on the results of the file copy measurement it can be shown that 9
decompression processes can be fed from the disk array of one cluster node.

It can be concluded that the disk array of one cluster can at least feed the four local CPUs
with compressed NetFlow data without any problems. Disk speed is not a critical resource.

2.4. Job Management

In the first subsection we focus on the process of how smaller work packages can be created
from longer measurements. Then we review how this work or these jobs can be efficiently
processed by the computer cluster. Furthermore the topic of monitoring is discussed.

20

2.4. Job Management

Figure 2.4: The measurement parameter

2.4.1. Job Creation
All the metrics that are used for network traffic measurements can be characterized by the
following triple: Measurement duration, warm up duration and a roll off duration.

• Measurement duration
The time it takes when the measurement process to create meaningful results.

• Warm up
The additional information from the past (measurement as time interval) that is needed
to bring the measurement process into a valid state.

• Roll Off
The additional additional information from the future (measurement as time interval)
that is needed finish the measurement.

For example, a simple flow counting metric needs no additional information of the past or of
the future to create a meaningful output. Therefore the warm up and roll off duration can be
set to zero.

On the other hand, a metric that collects the largest ten flows (based on the transmitted bytes)
of the last 24 hours needs at least the NetFlow data of the last 24 hours before it is able to
create meaningful output. The warm up phase is defined as 24 hours and is needed to bring
the process into a valid state.

Fig. 2.4 shows a generic metric with roll off and warm up phase, the ’simple flow counting
metric’ and the ’largest ten flows metric’. The measurement duration of all metrics is the
same, but the three processes have to run over different input data sizes to produce the
desired measurement results.

21

2.4. Job Management

Figure 2.5: The measurement splitting

In a next step we have to split the long measurement into smaller parts, called ’jobs’ in this
work. This process of deviding up the longer measurement is often called ’time line split’ in
this work.

The division of the measurement along the time line is always possible. A problem arises only
if the measurement needs a long warm up or roll off duration. The overhead of a measurement
with non-zero warm up or roll off duration increases if the measurement duration decreases.
This is visualized in Fig. 2.5.

To reduce the overhead the measurement interval can be increased. But this solution has
one major drawback. When the measurement interval is increased, the time to process this
interval increases. If the process is stopped during the processing of a longer interval, the
results of the full period are lost and the measurement over this large interval has to be
restarted. The trade off between this risk and the accepted overhead defines the optimal
measurement interval.

To remove this drawback ’application checkpointing’ [27] could be used. But checkpointing
is a rather complex issue. Furthermore the advantage of checkpointing is limited to events
that are caused by the environment, like power outages. But if the program crashes due to
a memory leak or corrupted input data, the program will crash anyway and check pointing is
not able to solve these problems.

It has been decided to accept these limitations in a first version and to cover application
checkpointing in a later version of the Data Mole project. Then a module with checkpointing
should be implemented to handle metrics with large warm up and roll off phases.

The Data Mole download divides the measurement into smaller blocks called jobs and pro-
cesses these blocks in parallel. In our work, this processing type is called block processing
and the unit that does this processing is called Generic Block Module (GBM).

22

2.5. Conclusion

2.4.2. Job Scheduling
In the previous section it was shown how longer measurements can be divided into smaller
job. This section reviews the problem of how the different jobs can be processed efficiently in
parallel on the computer cluster.

As long as the cluster can process more jobs than input data for new jobs can be downloaded,
the job scheduling is very simple: Use the next free node. When the metric calculations take
more time and probably need more resources, such as memory or disk space, an efficient job
scheduling can increase the performance of the framework.

There exist different projects like Condor [16], LoadLeveler [20] or the TORQUE Resource
Manager [21] that focus on the problematic of implementing a fair and efficient job scheduling.

The design of the job scheduler has to be modular and generic such that later the module can
be replaced with an existing scheduler of an other project. But due to the limited time a simple
job scheduler should be implemented first. The integration of an existing, more efficient job
scheduler should be continued in a later phase of the Data Mole project.

2.4.3. Job Controlling
To accomplish the on-off capability the state of each job has to be stored. This allows to start
and stop the measurement and resume it without any problem. Due to the large number of
jobs an efficient method to manage the different states has to be selected.

2.4.4. Job Monitoring
The timeline is often divided into more than a thousand subparts. To keep track of all these
jobs a visual interface is needed. This interface should indicate the state of each job in the
’go/no go’ [22] form. A web interface that illustrates the states of each job with the help of
colors could be used.

2.5. Conclusion

This chapter reviewed the problem of a long term analysis based on the infrastructure of the
CSG group.

The analysis of the data path shows that an index of all saved compressed NetFlow files has
to be implemented. This index allows to download from several physical tapes in parallel. This
will increase the download rate. Further the local disk space of the cluster nodes is fast and
large enough. Therefore the local disk space is not regarded as a critical resource.

The review of job management shows that a module for block based metrics should be de-
signed. Furthermore a modular job scheduler has to be implemented, that can be replaced or
improved in a later phase of the project. An efficient, scalable data structure to store the large
number of jobs with their states has to be implemented.

23

2.5. Conclusion

24

3. Design

In this section we present the design that is used to build the Data Mole framework. This
design is based on the problem analysis and the requirements of the last chapter. The knowl-
edge that is presented in this chapter is needed to understand the implementation of the
different modules.

In the first section the modular design of this framework is presented. Then the concept is
shown that is used to reduce the implementation time of new metrics. After this step the data
structure that is used by this framework and its handling is discussed. The chapter is closed
with the presentation of the inter-module communication and a short survey of the Data Mole
class library.

3.1. Modular Design

"Modular design means trying to subdivide an assembly in smaller parts (modules) that are
easily interchangeably used" [24].

Based on this definition the Data Mole framework can be divided into four major parts. These
are the downloader part, that fetches the data from the Jabba server, the job scheduler part,
that processes the jobs on the cluster nodes, the control and monitor part, that is used by
the user as interface to the modules and the fourth part is the ’metric universe’. This last
part hosts the different metric modules like the IP entropy measurement module. All these
parts consist of several modules that are used to implement the needed functionality. This is
illustrated in the figure 3.1.

The measurement modules use a common interface that allows them to stack different mod-
ules together. This allows us to build some basic modules like a flow sorter module, that
is then reused by an other metric module. This feature should reduce the time needed to
develop new metrics modules.

Due to the modular design the implementation of new features or the replacement of existing
modules can be handled in a short time. A module is an executable file and can be started
independent of other modules on any cluster node. The features of the different modules are
discussed in chapter 4.

3.2. Generic Metric Module

An important design decision of the Data Mole project is the strict separation of management
functions and the traffic processing functions. The management functions are similar for all

25

3.2. Generic Metric Module

Figure 3.1: The modular design of the Data Mole project

metrics and can be reused for each metric module. The pure processing of the input data
and the metric calculation is different for each metric module and therefore this part has to be
redesigned and reimplemented for all different metrics modules.

The management functions that are needed to process a block oriented metric (see 2.4) are
summarized to one generic module that is called Generic Block Module (GBM). The concept
of this GBM is illustrated in figure 3.2. The GBM can be reused to build a new module for any
block based metric. The GBM is configured over an XML file to fit the user’s needs.

A traffic analysis that is performed with the help of the GBM can be summarized in the fol-
lowing steps. In a first step the GBM divides the timeline into different jobs. Then the GBM
organizes the data that should be analyzed for each job (request this data by a download in-
terface or ask an other GBM for this data). This input data is then sent with a user binary, that
implements the traffic analysis routine, to a cluster node (the search for a free host is done by
the job scheduler). There the user binary is executed and the result of the traffic analysis is
stored in the job folder. The GBM is discussed in more detail in section 4.2.

This separation of management functions and the traffic processing functions has the follow-
ing advantages:

• Stability
If the user binary crashes for example due to a segmentation fault the management
part of the module is not affected.

• Reusablity
The management functions of the module can be reused for any new block based

26

3.2. Generic Metric Module

Figure 3.2: The Generic Block Module

27

3.3. Data Object Model

Figure 3.3: The finite state machine of the job data structure

metric. The user only has to adapt the XML configuration file and to create a new
analysis binary.

3.3. Data Object Model

The different modules have to handle a large set of data objects. For example, the Generic
Block Module (GBM) divides the timeline into thousands of jobs and the module has to work
on these thousands of job data objects. In this section we discuss how the data objects are
handled and processed by the modules.

To simplify the text the discussion is done based on the GBM. But the result and the concept
of this section can be applied to any other module in the Data Mole framework.

3.3.1. Objects have states
The GBM divides the timeline into different jobs. Each job is modeled as a data structure
that can be in different states. For example, when the job is processed by a cluster node the
data object ’job’ is in the state ’processing’. When the data processing is finished the job is in
the state ’finished’. All data objects of the Data Mole project have a finite number of states.
Therefore the data processing of the Data Mole project can always be modeled as a finite
state machine [25]. The figure 3.3 shows the simplified finite state machine of the job data
structure. The state of a data object is carried in the data structure itself as a local variable
called ’state’.

28

3.4. Inter-Module Communication

3.3.2. Where to store the objects
To accomplish the requirement of on-off capability the data objects have to be saved in per-
sistent storage. The Data Mole project uses a database (MySQL) to store the data objects.
The use of a database as storage server has the following advantages:

• Provided basic features
The database already provides a set of standard features like searching, indexing or
caching that can be used to work on data sets.

• Accessibility
The data objects in a database can be accessed from anywhere over the network.

• On-Off Capability
If a module is stopped or has crashed the data objects are still accessiblale on the
database server.

• Multiple User capability:
The database server has a built in multi user capability.

• Scalability
A database server is built to handle thousands of queries on large tables.

• Interface
An implemented library to access the database server exists for all major programming
languages.

3.3.3. Work on Objects
The processing of data object is solved with the help of two fundamental class types. The
table class, that is the keeper of the data objects, and the worker class that implements the
transitions of the finite state machine.

The table class encapsulates and hides the MySQL database. The worker uses the table
class to get a local copy of the data object and to set or update the variables of a data object
on the database server. This is illustrated in figure 3.4

3.4. Inter-Module Communication

Inter-module communication is implemented with shared data objects. These data objects
are saved on the MySQL server. The different modules use the table classes to access the
shared objects. This is illustrated in figure 3.5.

The common solution for inter-process communication (IPC) [31] is the use of shared mem-
ory [30]. It is possible to interpret the inter-module communication via the MySQL server as
a global shared memory concept. Therefore we claim that the Data Mole uses a global per-
sistent shared memory for inter-module communication. The advantages of using a database
server as shared memory are:

29

3.5. Class Library

Figure 3.4: The data object model of the Data Mole

Figure 3.5: The inter-module communication

• On-Off Capability
The database is accessible even if the module itself is stopped. Therefore one module
is able to post a command/message even if the other module is stopped.

• Accessibility
The shared memory can be easiliy accessed over the network from anywhere. The
database handles multiuser access for us.

• Generic
There exists a large set of libraries in different programming languages to access the
database.

• Monitoring and Debugging
We are able to monitor the communication between the modules with the help of exist-
ing tools like the phpMyAdmin [32] browser. This simplifies the software deployment.

3.5. Class Library

All of the modules share some common attributes. We have designed a class library in C++ to
use this fact to reduce the implementation time. In addition the class library is used to provide
the modules with common interfaces. Figure 3.6 shows an overview over the class library.

30

3.5. Class Library

Figure 3.6: The Data Mole class library

All modules of the framework are children of the framework element class. The framework
element class is an object composition [33] of different basic classes. These basic classes
provide features like database connection, a generalized logging system and access to the
module configuration.

The table class implements the required data structures that are used by the Data Mole. As
we have discussed in section 3.3, the table class is used to access the different data objects
from the MySQL Server.

The worker class implements the transactions of the finite state model. The worker interacts
with the different tables to get, for example, a local copy of the data object.

The module class implements the ’main function’ of each module. This class combines differ-
ent workers and tables to one executable module. This class triggers the different workers of
these modules to perform their work. The figure 3.7 shows some examples of modules of the
Data Mole project with their internal classes structure.

With the help of this class library new modules can be built and old ones can be maintained
with low effort.

31

3.5. Class Library

Figure 3.7: The module forming process

32

4. Implementation

In the Data Mole project the modules can be grouped into three different parts: the downloader
part, the job scheduler part and the metric universe. These three categories are visualized in
the Fig. 4.1. The fourth part is the web interface but this part has no modules of it own. In the
following chapter these main parts with the corresponding modules are presented.

4.1. Overview

4.1.1. Metric Universe
The user modules are hosted in the metric universe. At the moment only one type of template
exists to create new user modules. This is the Generic Block Module (GBM). The GBM is
configured by an XML file to process a customized analysis. The GBM can be connected to
the downloader interface or to an other GBM. If the module is connected to the downloader
interface, the module will process the data form the DDosVax project. In the other case the
GBM uses the output of the other GBM as its own input data. This allows the combination of
different GBM’s to a larger chain.

4.1.2. Downloader
The downloader part consists of five modules:

• Jabba Indexer
The compressed files of NetFlow data are stored on the Jabba server. The jabba in-
dexer module scans the Jabba storage server for all stored NetFlow data files and
produces an index of these files. In this index the information about file path, file size,
physical tape id or, for example, the router id is saved.

• Download Client
The download client module downloads the files from the Jabba server to a local file
cache. Normally multiple download clients work in parallel. This increases the download
speed as long as they work on different physical tapes.

• Download Master
The download master module manages the local file cache. If some files of the Jabba
server are requested, this module will instruct the download client to download the
requested files. The download master tries to distribute the work based on the physical
tapes to the different download clients. The download master acts as ’garbage collector’

33

4.1. Overview

Figure 4.1: The module overview

on the local file cash. When all the space of the local file cache is used, the module tries
to identify unused files and removes them form the local file cache.

• Download Interface
The download interface module maps the time based requests of the metric modules
to a file based request that can be handled by the download master.

4.1.3. Job Scheduler
The Data Mole implements a job scheduler on the basis of two module types:

• Job Scheduler Master
The job scheduler master module collects all tasks of the block modules. These tasks
are stored in a table called task table. The job scheduler master checks the workload of
the different download clients and submits, if possible, the task to a free job scheduler
client.

• Job Scheduler Client
The job scheduler client module receives the runnable tasks from the job scheduler
master. The module prepares and performs the execution of the user binaries. Then this
module monitors the process until it has finished its work. After this the job scheduler
client copies back the results and removes any temporary files.

34

4.2. Metric Universe

Figure 4.2: An overview of the Generic Block Module

4.2. Metric Universe

The metric universe is the part of the framework where user modules that are used to perform
different traffic analyses will be stored. To simplify the process of creating new metric modules
we have created a Generic Block Module (GBM). In this section the GBM is discussed.

4.2.1. Overview
The design of the GBM is simple and is illustrated in Fig. 4.2. The GBM consists of the two
tables ’request table’ and ’job table’ and the two workers ’worker mapper’ and ’worker jobber’.

The ’request table’ of the GBM is used by the other modules to communicate with the GBM.
The other modules use this interface to deposit their requests for this module and to check if
their requests have been answered. A request can be interpreted as the following command:
"Module, give me your results for the time period starting at time X and ending at time Y". The
module then tries to answer these requests.

The ’job table’ holds all possible jobs that can be processed by this module. The jobs are

35

4.2. Metric Universe

Figure 4.3: How to chain different modules

created based on the timeline division as discussed in section 2.4.

The worker ’mapper’ identifies all the jobs that have to be processed to answer the requests.
He marks these jobs in the ’job table’ as requested (increment a request counter). Now the
worker mapper has to wait until these jobs are processed. Then the worker collects the results
of the different jobs and marks the request as finished. The modules that have placed the
requests can then access the result and perform their analysis on this data.

The worker jobber is responsible for processing requested jobs. For each job the jobber or-
ganizes the needed input data. The input data and the user binary is then submitted to the
job scheduler for processing. In a last step the results of the finished jobs are saved in the job
folder.

4.2.2. Interface
A basic but important key idea of the Data Mole framework is that every module should be able
to request and process the output from an other module. This allows the stacking of different
existing modules together to get the needed result. The Fig. 4.3 visualizes this behavior. In
this example a module that calculates the variance needs the input data from the module that
calculates the mean. Furthermore it should be possible that multiple modules can use one
module at the same time as their ’input producer’.

The interface that is used by these modules to order data from an other module has to be as
generic as possible to support a large number of possible applications. The smallest common
denominator of the different modules is the timeline because all modules produce results for
a certain time duration. The form of this output id different for each module. But the output of
all modules can always be saved into a data file.

The GBM of the Data Mole project uses a shared data object called ’request’ as the interface.
A request data object consists of a time duration and a path to a folder. The module submits
the ’request’ with the correct time period (time period of the requested data) to an other
module. The submodule processes this request and saves the result into a folder. The path

36

4.2. Metric Universe

Figure 4.4: Mapping the request to jobs

of this folder is then saved into the request data object. The caller can then use this path
information to access and process the provided result data.

4.2.3. Mapper
The mapper worker manages requests from the different modules and maps them request to
the needed jobs.

More precisely the mapper sorts the requests in the request table by priority (FIFO) in a
first step. Then it calculates for the first n requests the corresponding jobs that have to be
processed. This selection is based on the principle that the provided answer of the module
includes at least the requested time period. This mapping process is illustrated in Fig. 4.4. For
example, to answer the request numbers 1 the job number 2, 3 and 4 have to be processed.
The number of request processed in parallel is configured in the XML configuration file of the
GBM.

In a next step the mapper sets the priorities of the requested jobs according to the priority of
the corresponding requests. If the requests of different modules overlap, then the job inherit
the highest priority of all requests.

Then the mapper has to wait until all jobs of the request are processed. In a next step the
mapper links (or copies) all results of the different jobs into one result folder. During this
process the mapper checks for each job if it was successfully processed and writes this
information into an XML based log file. The path to this result folder is saved in the request
table. In a last step the request is marked as finished.

When the calling module is finished with the processing of the data of the result folder, it
marks the request as ’removable’. The mapper decreases the request counter of these jobs
and removes the result folder. In a last step the request is removed from the request table.

The complexity of this full process is further increased due to the fact that the caller module
is allowed to mark his request as ’removable’ at any time during the processing. The full finite
state machine of the mapper worker is illustrated in Fig. 4.5.

37

4.2. Metric Universe

Figure 4.5: The finite state model of the worker ’mapper’

38

4.3. Downloader Part

4.2.4. Jobber
The worker ’jobber’ is responsible for processing the requested jobs. The jobber is, as are
all workers of the Data Mole framework, designed as a finite state machine. The full state
machine of the worker ’jobber’ is illustrated in Fig. 4.6. The major part of this state machine is
discussed in this section.

The timeline is divided as discussed in section 2.4 into different jobs. The parameter to split
the timeline can be configured in the XML configuration file. Each job is identified with a
unique number called job id, a warm up, start, stop and roll off time. The data structures of all
jobs are saved as rows on the MySQL server and are accessed by the class job table.

Each job has a request counter. This counter is increased and decreased by the worker
’mapper’ to indicate if the job is needed to answer a request. The worker ’jobber’ tries to
process all requested jobs. The results of each job are saved in a folder and are kept as long
as the request counter of this job is larger than zero.

In a first step the module organizes the input data needed to process the requested job. The
jobber adds a request for the input data of the required time period including warm up and roll
off in the request table of this submodule (a download interface or an other GBM). The jobber
then has then to wait until the request is answered. The job is then in the state ’waiting’.

The jobber polls the request table of the submodule to check when the request is answered.
Then the job is sent to the job scheduler. At this time the job is marked to be in the state
’processing’. The job scheduler is responsible for process is the job on a free cluster node
with the help of the user delivered binary. The job scheduler collects and stores the results in
the job result folder. The jobber wait until the job is processed. Then the job is pushed into the
state ’finished’.

The input data required to process this job is now no longer needed and therefore the worker
’jobber’ marks the request that was submitted to the submodule as ’removable’. After this step
the submodule has the permission to remove this request.

4.3. Downloader Part

Different modules are used to implement efficient access to the Jabba server. In this section
we present the interaction that is needed to download the compressed hour files with the
NetFlow data from the tape server. Fig. 4.7 displays the different modules that are used.

At a glance the module ’download indexer’ creates a static index called ’jabba index’ of all files
of the DDoxVax project that are stored on the Jabba server. The module ’download master’
organizes the download of the files. The download master uses the table ’file table’ to store the
dynamic data of the files, like the information if a file is requested or if the file is in the local file
cache. The download interface is used to map the time-based request from the generic block
module to the different files in the file table. The download interface increases or decreases
the request counter in the file table to indicate if a file is needed or not. The download master
creates a list of all files that are requested that are saved on the same physical tape and
submits this list to a download client. The download client downloads the files into the local

39

4.3. Downloader Part

Figure 4.6: The finite state model of the worker ’jobber’

40

4.3. Downloader Part

Figure 4.7: An overview of the downloader part

disk cache and updates the path information in the file table. The download interface checks
if all files required to answer the request are downloaded. If so then the request is marked as
’answered’ and the caller is able to run his analysis over this data set.

4.3.1. Jabba Indexer
The compressed NetFlow hour files from the DDosVax project are saved every hour on the
Jabba tape server. The file names of these hour files are built form a router id, a consecutive
number and the save time, for example 19993_00040897_1190494800.stat.bz2. The router
id is 19991 or 19993 and identifies the border gateway router that has collected the NetFlow
data. The consecutive numbering was started at 0 at the project start and is incremented by
one at each file export. The save time corresponds to the time in Unix time when the file was
exported from the border gateway router. This time can be used to estimate the content of the
file.

The Jabba server uses SAM-FS as file system. The command ’sls’ can be used to obtain
information about the files on this file system, for example the physical tape id where the
data is saved. The module ’jabba indexer’ scans all folders of the DDosVax project with the
command ’sls -D *’ to obtain all the meta information about all existing files of the project.

In a next step the jabba indexer uses the unique consecutive number to build the file index.
The module search as the meta file information for eache number. If the information is found,
the module parses the data into the file index. If no information is found, the file is marked as
missed.

4.3.2. Download Interfaces
The main task of the download interface is to map the time based request of a Generic Block
Module to the corresponding files.

41

4.3. Downloader Part

For example a Generic Block Module requests all flows that were collected during a given
time A to B. Then the download interface uses the jabba index to create a list of all files that
were collected during this time. Then all these files are marked as requested. This is done by
increasing the request counter in the file table of all these files.

The download of the files is organized by the download master after this point. The down-
load interface checks periodically if all files are downloaded and then marks the request as
finished.

The DDosVax project collects the NetFlow data from different routers and saves them in dif-
ferent files. The download interface can be configured to download only the NetFlow data of
one specific router or of all the routers. Different download interfaces with different configu-
ration, can be run in parallel. This allows the Generic Block Modules to select the download
interface that provides them it with the required NetFlow data.

The download interface consists of a request table and a worker ’mapper’ which are identi-
cal to the mapper and request table of the Generic Block Module. This allows the GBMs to
address the download interface just like a normal GBM. Furthermore the download interface
consists of a download jobber worker and a standard job table. The download jobber worker
initializes the job table with jobs that have the same duration as the compressed hour files
of the DDosVax project. The mapper worker therefore automatically maps the time-based
request to the files.

The download jobber worker maps the request of the job table to the file table. The full state
machine of the worker ’download jobber’ is illustrated in Fig. 4.8. The complexity of the state
machine is increased due to the fact that the download interface is able to work in a so called
copy mode, where the hour files are copied into the local cache of the donwload interface.

4.3.3. Download Master
The download master is the heart of the download part. This module checks the file table for
files that should be downloaded and manages the local file cache. The process flow of the
download master is illustrated in Fig. 4.9

The files from the Jabba server are downloaded of the download client into the local file
cache. The size of this cache is limited by the configuration of the download master to avoid
a disk overflow. When new files should be downloaded, the download master checks if there
is enough space in the local file cache to store these requested files. If the local file cache
is full, a garbage collector is started. The garbage collector removes all files from the local
file cache that are no longer used (request counter smaller than one). If after this operation
the free space in the local file cache is still too small, the download is paused until more files
could be removed. Otherwise the download master submits the files for download to a free
download client. For this purpose the download master updates the field ’client’ with the id of
the download client that should download this file.

The download master uses the information about the physical tape id of each file from the
Jabba index to group files that are saved on the same physical tape. To optimize the download
speed a group of files that lies together on the same tape is always submitted to one download

42

4.3. Downloader Part

Figure 4.8: The finite state model of the worker ’download jobber’

43

4.4. Job Scheduler Part

Figure 4.9: The process flow of the worker ’download master’

client.

4.3.4. Download Client
The download client searches the file table for files that should be downloaded. In a first step
the download client uses the command ’stage’ on the Jabba server to mark all files that should
be downloaded. This command will force the tape server to copy the files from the tape to the
hard disk of the Jabba server. In a second step the files are copied with the command ’scp’
into the local file cache of the cluster. The path to the file in the local file cache is then saved
in the file table. The file is marked as cached and finished. At this point the download client
has finished its work and searches the table for new work.

To optimize the download rate several download client modules are used. Each module has
its own unique id. A download client module processes only files that are tagged with his id.
The download master uses this tag to distribute the workload over all download clients.

The finite state machine of the download client can be found in the appendix A.2

4.4. Job Scheduler Part

The job scheduler is used by the modules to process tasks on the computer cluster. In this
section all modules that are used to implement the job scheduler are presented.

The job scheduler of the Data Mole consists of three major different elements. The job sched-
uler interface, that is used by the modules as interface to submit a job, the job scheduler
master, that manages the queue of all tasks that can be processed and distributes this work
to the job scheduler clients, and job scheduler clients, that process the task. The three ele-
ments use the table ’task’ to communicate with each other. This is illustrated in Fig. 4.10.

44

4.4. Job Scheduler Part

Figure 4.10: An overview of the job scheduler part

4.4.1. Job Scheduler Interface
The job scheduler interface is used by the Generic Block Module to interact with the job
scheduler part. The job scheduler interface can be used to submit jobs to the table ’task’ and
can be used to check if the job have been processed.

The use of this interface class allows us to modify the job scheduler part at a later time
without much effort, due to the fact that only this interface class has to be adapted to the new
job scheduler design.

4.4.2. Job Scheduler Master
The job scheduler master distributes the runnable tasks among the different job scheduler
clients that then process the work.

Each submitted task uses a bit field called ’client_mask’ to indicate which clients can be used
to process this task. The client_mask is a 64 Bit variable and therefore 64 different clients can
be addressed. This makes it possible that tasks from different modules can be processed by
different job scheduler clients.

The job scheduler master maintains a list with the usage of all job scheduler clients. If one job
scheduler client has unused processing capacity the job scheduler master tries to find a task
that can be processed on this client taking into account the client_mask restrictions. The task
is submitted to the client by setting the ’client’ field of this task to the id of the job scheduler in
the task table . The job scheduler client will then process this task.

The process flow of the job scheduler master is illustrated in appendix A.2.

4.4.3. Job Scheduler Client
A job scheduler client is started on the physical node to which it was assigned and processes
the individual tasks. The client will periodically check the task table to identify new tasks that
should be processed. In a first step the job scheduler client creates a temporary folder in the
local disk space and copies the input data into this folder (if requested). Then the parameter
for the call of the user binary is created. The standard output and the standard error file

45

4.5. Web Interface

handler are redirected into a local file. Then the job scheduler starts the user binary and waits
until the user process is finished. In a last step all the results are copied back and the local
task folder is removed.

4.5. Web Interface

A web interface was programmed to manage all the different modules of the Data Mole
project. It can be used to install and remove modules from the framework. Furthermore the
web interface is used to control and monitor the different modules.

Each module is defined by an XML file. To install a new module the XML file has to be up-
loaded via the web interface into the module manager. After this step the module is registered
in the module table and can be controlled over the web interface.

The names of all installed modules are visible on the left site of the web interface. A specific
module menu is reached with a left mouse click on a module name. The module menu has at
least the following three entries configuration, control and log.

The configuration menu is used to edit the parameters of this module. The module registers
these changes after the next restart. The control menu is used to start, stop or pause the
module. The log menu displays the last log entries of the module. To use this feature the
DB-Logging target has to be activated in the XML configuration.

Different module types have additional menu entries. For example a module that is based
on the Generic Block Module has a request menu. The request menu is used to manage all
requests of a specific module. This menu can be used by a user to make a module perform a
certain measurement over a given time.

46

5. Evaluation

5.1. On-Off Capability

The modules of the Data Mole framework save their internal state during runtime in the
MySQL database server. If a module receives the command to stop from the web interface,
the module just finishes its works and returns to the parent process. No special backup rou-
tine has to be called. When the module is started again, it loads the latest internal states from
the MySQL server and resumes its work.

But what happens if the module is stopped by a power outage of the computer? Due to the fact
that the module updates the internal state during runtime, all information needed to resume
work is already saved in the MySQL server. After the reboot of the cluster node, the modules
can be restarted as if they were stopped.

This robust design was stressed during a node failure on 6. September 2007. During an
ongoing measurement a cluster node was switched off by the internal monitoring card. All
modules running on this node were killed. After the node was rebooted, the modules could
be restarted as if they had been stopped.

The other modules of the framework were not effected by this power outage. This is possible
due to the fact that the other modules post their requests for the killed modules directly on
the MySQL server. The MySQL server will store these requests and the killed modules will
process them when it is started again.

5.2. Ease of Use

An other important requirement on the Data Mole framework is usability. The user interacts
with the Data Mole framework at two points in time: during the building process of a new
user metric module and during the measurement phase when the user interacts with the web
interface to control and to monitor the analysis process.

During this work three different metric modules were implemented and successfully used
the Data Mole framework. The Counter-Strike Server traffic analysis of Lorenz Breu, Zattoo
Observer of Daniel Koller and Basic Metrics Module of the developer of this framework. In
all three projects the metric module was built on the top of the Generic Block Module as
discussed in section 3.2. For all three project the XML configuration file to build the metric
module was written in less than one day.

The web interface to control the modules was presented to different users. After a short
introduction to the background of the framework the users were able to use the web interface

47

5.3. Performance

Figure 5.1: The processing time of the basic metrics module

to control and monitor the different modules in less than 2 hour.

Based on this experience we can conclude that the Data Mole fulfills the requirement of Ease
of Use.

5.3. Performance

The throughput of the Data Mole network is limited by two main factors, the download speed
from the Jabba server and the processing power of the cluster nodes.

The Download speed is bounded by the physical speed of the tape reader devices of the
Jabba server. The theoretical limits and the possible optimizations are discussed in section
2.3.1.

The processing power of the cluster should be efficiently used to process the NetFlow data.
To increase the effectiveness the runtime of each analysis process should be minimized.
The processed metrics were designed with the help of the Software Optimization Guide for
AMD64 Processors [29] and have been profiled with the valgrind [28] program to detected
and remove performance bottlenecks. Fig. 5.1 shows a performance analysis of an optimized
module that collects a set of basic metrics. This evaluation shows for example that 43 % of the
processing time is spent on decompressing the NetFlow record files (bz2_bz_Decompress).
36 % of processing time is spent on a hashtable lookup that is used to resolve the autonmous
system number of an IP address. Only 21 % of the processing time is used to sort of the
netflow records and calculate of the metrics themself.

The charging level of the local file cache can be used to identify if throughput of the Data Mole
is limited by the processing capacity of the nodes or the download. In Fig. 5.2 the relative
cache usage during a measurement performed the Zattoo Oberserver of Daniel Koller is
plotted.

After the request was placed in the metric module on Friday the data mole started down-
loading the necessary NetFlow records. Usage of the local file cache increased linearly form
Friday to Saturday. During this time the throughput of the Data Mole framework was limited by
the read performance of the Jabba server. On Saturday the download was stopped and the
used cache size was stable. At this point the downloader module had organized enough input
data that all cluster nodes were provided with runnable jobs. After this point the framework
was limited by the processing capacity of the cluster. On Sunday midday the first jobs were

48

5.4. Set of Basic Metrics

finished and the download module continued with the download. The maximal local cache
size was then reached and the garbage collector was started. The garbage collector removes
the unused NetFlow records from the cache. The event is visible as a rapid decrease of cache
size in Fig. 5.2.

Figure 5.2: The size of the local file cache

After observation of activity of the download path and the CPU usage of the cluster during
the measurements of these three projects, we can conclude that the performance of the Data
Mole framework is only limited in the start time of the measurement by the download capacity
of the Jabba server. Then the throughput is primarily limited by the computational resources.

5.4. Set of Basic Metrics

A module that collects a set of basic traffic metrics was designed and implemented during this
work. This section presents the module and the results that were found by using this module.

5.4.1. Structure
The module is built on the top of the Generic Block Module. Therefore, as discussed in section
3.2, only the pure traffic analysis binary has to be built. The structure of the binary is illustrated
in Fig. 5.3.

The binary is fed with the unsorted compressed NetFlow hour files from the DDosVax project.
In a first step these files are decompressed and the timing of each flow is recalculated. Then
the flows are submitted to the flow sorter.

The flow sorter performs a bucket sort of the incoming flows in a first step. The buckets of the
last three hours are saved on the local disk. After the first flow of the fourth hour is detected
the oldest hour is processed. The flow sorter sorts the buckets of this oldest hour according
to the flow start time with a merge sort. To optimize performance all records of one bucket
should fit into local memory. For 2007 a bucket size of about one minute is used.

49

5.4. Set of Basic Metrics

Figure 5.3: The structure of the basic metric user binary

The sorted flows are then submitted to the metric toolbox. In this toolbox different metrics that
should be calculated can be activated. The results of these metrics are then saved as comma
separated values into a local file.

5.4.2. Metrics
We have implemented four different metric plug-ins for the toolbox. The first plug-in, called
’trivial metrics’ collects the overall byte, flow and packet counts. These metrics are useful
to check if the input data has the desired characteristics. The plug-in ’IP metrics’ collects
different metrics like absolute counts, unique count and entropies based on the SRC and
DST IP address of the transmitted flows. The plug-in ’AS metric’ collects metrics based on the
autonomous system number of each flow and the plug-in ’protocol metrics’ collects metrics
based on the port number of the protocol. All metrics are calculated separately for the different
flow directions.

5.4.3. Results
The basic metric module is used to process a measurement on the traffic of the last four years.
Due to limited time only two weeks of each year were processed. The module collected more
than 728 different measurement points per interval (interval duration 15 min) over this period.
In this section we discuss only the most important results from this analysis.

Fig. 5.4 shows the number of transmitted bytes over all border gateway routers of the switch
network. The x-axis of these plots correspond to time index. On the left side we start with
Monday midnight and end on the right side with Sunday midnight. The y-axis corresponds to
the number of transmitted bytes in the last 15 minutes.

From this result we can conclude that the overall traffic volume has increased as expected
over the last years. But the volume has not increased linearly. The results show that the traffic
volume increased heavily between the year 2005 and 2007.

Fig. 5.5 shows the transmitted flows over all border gateway routers during the same time.
The interesting point is that the number of flows was quite stable over the years 2003 to 2006.
But in 2007 the number of flows per 15 minute interval increased heavily. Due to the fact that
the traffic volume in 2007 is quite the same as in 2006, we can conclude that the additional
flows did not significantly affect the traffic volume.

Based on these two results we are able to demonstrate that the traffic characteristic has

50

5.4. Set of Basic Metrics

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

 9e+11

 0 100 200 300 400 500 600 700

N
u
m
b
e
r

o
f

B
y
t
e
s

One Week of June (15 min interval)

Byte Count

2004
2005
2006
2007

Figure 5.4: The byte counter metric

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 100 200 300 400 500 600 700

N
u
m
b
e
r

o
f

F
l
o
w
s

One Week of June (15 min interval)

Flow Count

2004
2005
2006
2007

Figure 5.5: The flow counter metric

51

5.4. Set of Basic Metrics

changed over the years. The change in traffic characteristic is likely to impact e.g. threshold
based anomaly detection metrics and needs to bee assessed in more detail in future work.

52

6. Conclusion

This project started with the idea to perform a long term traffic analysis on archived NetFlow
data. In the beginning of the project we realized that we need a tool set to manage the large
number of files and jobs. Based on this need, we launched the Data Mole project. The result
of this thesis is a first running version of the Data Mole Framework.

The next section summarizes the key achievements of this work. The section ’future work’
discusses the major work packages that should be implemented to improve the Data Mole.

6.1. Summary

This work presents an efficient and modular framework for short and long term traffic analysis
of Cisco NetFlow data.

The Data Mole provides a generic module that can be used for fast integration of block based
traffic analysis. The effort required to create a new metric module based on this Generic
Block Module is reduced to providing the pure traffic analysis routines and to adapting an
XML based configuration file. This allows the integration of existing projects in less then one
day.

The Data Mole automatically divides a job of long duration into smaller jobs. Each job is
independently processed and monitored by the Data Mole. The framework is able to manage
the state of more than 100’000 jobs in parallel. This is possible as a database system is used
in the background to manage the jobs. This makes it possible to perform measurements over
long time periods that are divided into thousands of small jobs.

The platform provides a web based monitor and control interface. This graphical interface
provides the user with an overview of the progress of the measurements, allowing him to
detect problems like failed jobs and crashed modules in just a few seconds.

The architecture of the Data Mole allows the starting and stopping of the framework during
ongoing measurements. This feature makes it possible to switch off all or only some dedicated
cluster nodes for maintenance without affecting the measurement. The data path of the Data
Mole is optimized to provide an efficient analysis of the NetFlow data. Using an optimized
download strategy the effect of the bottleneck of the file download can be limited. The analysis
of traffic data from 2007 has shown that the bottleneck is shifted from the downloader path
to the processing of the NetFlow data. Or in other words, we can download the NetFlow data
faster than we are able to process it on the cluster.

53

6.2. Contribution

6.2. Contribution

In this work an object oriented library in C++ has been designed and implemented that can be
used to create different modules. Based on this library several modules have been designed
and implemented that provide on the one hand a transparent and fast access to the NetFlow
records on the long term storage system and on the other hand a basic job scheduler func-
tionalities. In the end a Generic Block Module was created to allow fast integration of existing
and new block oriented traffic analysis metrics.

A monitoring and control web interface based on an object oriented php5 library has been
built.

Based on existing code, a new NetFlow processing template for long term traffic analysis has
been created. The template includes a fast and robust stream based NetFlow record sorter.
The interface of the template is adjusted to the Generic Block Module. Based on this template
a module to collect basic traffic metrics like flow counts, IP entropy or protocol port entropy
has been created. This template calculates more than 720 metrics.

Additionally the integration and running of several other NetFlow evaluation have been sup-
ported:

• Counter-strike server traffic analysis, Lorenz Breu

• Zattoo Observer, Daniel Koller

6.3. Future Work

The Data Mole in its first version provides a simple job scheduler. This scheduler keeps a list
of runnable jobs and distributes the jobs on the available computers. To decide if a job is to be
submitted to a node or not only the number of already started jobs on this node is taken into
account. This simple scheduler decision metric is not optimal. It can and has to be improved.
For example a better approach would be based on the resource requirements of a job. These
requirements, such as number of CPUs, size of memory and the size of the local disk space
could then be compared with the available resources of the nodes. Based on this comparison
the decision should be done.

An other work package should address the multi-user capability of the framework. At the
moment all tasks from all users are handled with the same priority. A fair resource allocation
based on different users has not yet been integrated.

Furthermore, a generic streaming module for the framework could be created in addition
to the block processing module. This generic streaming module could be used to process
metrics that e.g depends on state aggregated over the whole measurement interval. The key
feature that should be implemented by this streaming module is application checkpointing.

54

55

A.1. Task Description

A. Appendix

A.1. Task Description

Institut für
Technische Informatik und
Kommunikationsnetze

February 26th, 2007
Bernhard Tellenbach, Daniela Brauckhoff

Master Thesis:

Analyzing network traffic from the SWITCH
network from 2003 until today

for Dominik Schatzmann <schadomiee.ethz.ch>

1 Introduction

Since the foundation of the modern Internet in 1992, it was subject to significant structural and
technical changes. On the one hand, these changes are inflicted by its massive growth in users
and content. But on the other hand, they are a result of the factthat the Internet is responsi-
ble for a constant output of new services and applications. Nevertheless, there is also a ”dark
side” of the Internet: It is a huge playground for criminals and grumblers. In the arms-race bet-
ween security professionals and cyber-criminals, a lot of different technologies and methods to
protect home-users and networks were developed. This includes intrusion detection/prevention
systems, anti-virus software and (application-level) firewalls.

A significant amount of these technologies rely on some form of anomaly detection or behavi-
oral patterns. Examples are: [8](clustering), [1](fast spreading worms) and [11](spam) for large
scale applications and [7] or [13] for host/small scale applications. Furthermore there are mul-
tiple publications that investigate properties of different metrics using data that is restricted to
a rather short extract of the timeline (hours, days and sometimes weeks). [4] investigates the
influence of sampling on some metrics used for anomaly detection (mainly entropy1), [14] stu-
dies the persistency aspects of Internet flows (”heavy hitters”) and [3] studies characteristics of
P2P flows. Another closely related field is the influence of thenetwork type on selected traf-
fic metrics/patterns. [2] investigates e.g. upstream traffic behavior based on data collected from
Broadband Fixed Wireless (BFW) and Digital Subscriber Link (DSL) access services.

If we consider a changing environment like the Internet, it is likely that the definition of what is
”anomalous” has to be updated/revised continuously. The following methods could be used to
perform the updates:

• Adapt the definition using manual inspection and plausibility checks whenever necessary.
Problem: Time consuming and slow.

1see [9] for an information theoretical evaluation of the entropy metric

56

A.1. Task Description

• Use the last X measurements of the metric to adapt the definition of ”anomalous” (e.g.
used in early warning systems/signature generators that are based on byte frequency dis-
tributions). Problems are e.g.: Selecting a ”good” value for X or evasion if X and the
anomaly detection algorithm is known to the attacker.

But our claim is that if we could improve our understanding of the mechanics and properties
of the Internet at different levels of detail (autonomous systems, national, metropolitan and
enterprise networks), it will be possible to derive models that include future changes in a more
reliable way. Ideally, there is no need for updates at all.

Despite the fact that research was able to reveal a lot of interesting properties, little is known
about their long term development. The reason for this is that collecting and storing the required
data for medium scale national network is hard and becomes unmanageable for huge ASes. But
knowing the past is a first step toward a better understandingof the mechanics and properties
and might therefore help a lot in developing better models ofwhat is anomalous. At least there
is strong evidence in the form of a variety of algorithms in the area of anomaly detection that
rely on the past to predict the future (e.g. [15]).

In the course of the DDoSVax [6] project, an infrastructure to collect and store information
about the network traffic crossing the borders of the Swiss Education and Research Network
SWITCH was set up at our institute. Furthermore, because the project started in 2003, it brings
us in an unique position to look at the long term development of different properties of the
Internet at the scale of a national educational network. Until now, only parts of our dataset have
been investigated (each with a very specific focus).

In this thesis, we want to make a first step toward understanding the long term development
of selected properties/metrics. Some of these properties/metrics will be new and have to be
developed during the thesis.

The DDoSVax Project

In the joint ETH/SWITCH research project “DDoSVax” aggregated network traffic data (Cisco
NetFlow [5]) is collected at all border gateway routers of the Internet backbone operated by
SWITCH [12]. This data contains information about which Internet hosts were connected to
which others and how much data was exchanged over which protocols.

The DDoSVax project provides archived NetFlow data as well as a near real-time framework
(named UPFrame) with plug-in support for online processingof NetFlow data received from
routers.

2 The Task

This master thesis consists of the following two major tasks:

• Management tools:Design, implementation and evaluation of a set of management tools
to set up and control netflow data processing and evaluation.

2

57

A.1. Task Description

• Extraction of flow metrics: Design, implementation and evaluation of a set of tools that
extract different flow metrics.

• Long term analysis:Select two or more of the extracted metrics, analyze their long term
development in detail and put it into the context of the development of the Internet in
general.

These tasks and their subtasks are described in the following two subsections.

2.1 Management Tools

First, some facts about our NetFlow data set:

• Time interval: March 2003 - today
• Hourly volume (compressed):500 MB
• Total estimated volume (compressed) until 22.02.07:15 TB
• Storage locations:

– Archive on jabba (tabe-library). Avg. download speed: 5 MBytes/s
– Data of the last 20 days on aw3 (/aux/ddosvax/pulled/old/)

• Completeness:Only a few gaps (outages) or corrupt files (exact number unknown). A
partial (incomplete) log already exists (Task: complete it).

And some facts about our (new) cluster:

• 1 Login-Server (kom-pc-aw4):AMD Athlon MP 2800+ (dual core), 2.1 GHz, 2 GB
RAM (old file server)

• 1 Fileserver:2x DualCore Opteron 275 with 8 GB RAM and approx. 2.5 TB data storage
(redundant, RAID 6).

• 5 Nodes:2x DualCore Opteron 275 with 8 GB RAM and 4 TB data storage (no backup,
no redundancy!).

• Network: 1 GB Ethernet

In order process our entire netflow data archive and with respect to the above infrastructure, the
management tools have to accomplish the following tasks:

1. Download the required files from jabba and preprocess (e.g. sorting, splitting,...) them.
This includes sanity checks for corrupt files or actions/alerting in case of missing files.

2. Initiate and control the processing of the downloaded files.
3. Initiate and control post-processing steps. E.g. graph generation or generation of mean,

variance, std.deviation or later on, for other derived quantities defined in the ”long term
analysis” task.2

4. Cleanup if necessary (local storage control) and backup results from already processed
files.

Furthermore, it is important that these tools are designed in a way that they are easy to configure
and to adapt to other tasks. A modular and robust design is themost important criteria for the
assessment of the management tools.

2’Thís task should be scheduled for the time when the processing is running. Therefore, ”other” quantities will
not be available at the start of the data processing

3

58

A.1. Task Description

2.2 Extraction of Flow Metrics

This task consists of the following subtasks:

• Define the flow metrics to be extracted:For the autonomous system (AS) stuff, see [10].
The required IP to AS tables should be provided by the tutor. The following flow metrics
are mandatory(if feasible):

– Packets/Flows/Bytes/ASes per interval
– Unique SrcIP/DstIP (direction IN/OUT respectively) and unique SrcAS (direction

IN) and DstAS (direction OUT) count per interval
– Entropy: SrcIP/DstIP, SrcPort/DstPort, SrcAS/DstAS per interval (directions like

for the unique count)
– Peer-Tracker statistics (contact Lukas Haemerle)
– Flow-length distribution per interval (curve fitting(?)/define classes)
– Packet-size distribution per interval (curve fitting(?)/define classes)
– Flows per port (1024+top XXX) per interval
– Two or more additional metrics defined by the student.

For the mandatory metrics this involves the definition of interval size, pre-filtering (proto-
col/subnet/router...) and storage format. Furthermore, estimations of complexity, required
main memory and storage space have to be provided as a basis for the feasibility analy-
sis. The feasibility analysis should be based on the limitations set by our infrastructure.
If applicable, specify simplifications/abstractions of a given metric in order to make its
extraction feasible.

• Design the processing tools:Propose a design for the software that extracts the metrics
defined in the previous step. This includes at least the core algorithms, the format(s) of
the results, a concept to store them in a feasible way, a concept for load distribution and
robustness considerations.

• Implement the processing tools:In C or C++ (the basic toolset is written in C, but C
code can be integrated in C++).

• Evaluate the processing tools:Run a set of tests using data from approx. one day. Func-
tional tests: Are the calculated metrics correct? (Using sanity checks and/or manual in-
spection). Robustness: Memory leaks, not enough diskspace,file access error (e.g. broken
connection to file-server).

2.3 Long Term Analysis

In this task, two or more of the extracted metrics should be selected. Furthermore, their their
long term development should be analyzed in detail and it should be put into the context of the
development of the Internet in general.

For the analysis of the long term development of time series (including forecasting), there exist
multiple well-known techniques. Depending on the metric, these techniques might consist of
trend analysis with respect to mean, variance and std. deviation. Other techniques might include
identification of daily/weekly/monthly/yearly rhythms and/or estimation/investigation of para-
meters of process models for time series (see http://www.statslab.cam.ac.uk/ rrw1/timeseries/t.pdf
for a headstart).

4

59

A.1. Task Description

3 Deliverables

During this thesis the following deliverables will be produced:

1. A concise and detailed documentation of the conducted work.
2. The code and installation instructions for the data management tools.
3. The code and installation instructions for the data processing tools.
4. The code and installation instructions for the data evaluation tools.
5. A ready-to-use installation on our computing cluster along with its documentation.

3.1 Documentation structure

The report should contain the steps conducted along with thefindings/consequences/results,
lessons learned, summary and an outlook on future work3. All designs should be described in
detail and design decisions should be motivated. Evaluations have to be academically sound. In
case of measurements of stochastic quantities, this means e.g. multiple runs and indication of
confidence intervals. Finally, the report should contain anaddendum with installation and usage
instructions for the developed tools.

The code of all of the in this thesis developed tools should come along with a detailed documen-
tation. The code should follow a coherent and clean coding and commenting style so that the
code is easy to understand and use. If applicable, the documentation could be generated using
automated documentation tools (e.g. doxygen).

If important new research results are found, a paper might bewritten as an extract of the thesis
and submitted to a computer network or security conference.

4 General Information

Dates/Meetings:

• This master thesis starts on Monday, 19.03.2007 and finisheson Monday, 19.09.2007. It
lasts six months in total.

• Informal meetings with the tutors will be held at least once aweek.

Presentations:

• Two intermediate informal presentations for Prof. Plattner and all tutors will be scheduled
two and four months into the thesis.

• A final presentation at TIK will be scheduled close to the completion date of the thesis.

Supervisors:
Tutor: Bernhard Tellenbach, tellenbach@tik.ee.ethz.ch +41 44 632 70 06, ETZ G97
Co-Tutor: Daniela Brauckhoff, brauckhoff@tik.ee.ethz.ch,+41 44 632 70 50, ETZ G97
Co-Tutor: Arno Wagner, wagner@tik.ee.ethz.ch, +41 44 632 7004 , ETZ G95

3Additional information and tips are available on the thesiswiki at http://tikiwiki.ethz.ch/
thesis/index.php/Main/HomePage.

5

60

A.1. Task Description

Literatur

[1] B. A. Wagner. Entropy based worm and anomaly detection in fast ip networks. In14th IE-
EE International Workshops on Enabling Technologies Infrastructures for Collaborative
Enterprises (WET ICE 2005), 2005.

[2] D. M. Amit Sinha, Kenneth Mitchell. Flow-level upstreamtraffic behavior in broadband
access networks: Dsl versus broadband fixed wireless. InIPOM2003, 2003.

[3] L. H. Arno Wagner, Thomas Dübendorfer and B. Plattner. Flow-based identification of
p2p heavy-hitters. InInternational Conference on Internet Surveillance and Protection
(ICISP) 2006,, 2006.

[4] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. Impact of packet
sampling on anomaly detection metrics. InInternet Measurement Conference 2006, Rio
de Janeiro, Brazil, 2006.

[5] Netflow services solutions guide.http://www.cisco.com/univercd/cc/td/
doc/cisintwk/intsolns/netflsol/nfwhite.htm.

[6] Ddosvax.http://www.tik.ee.ethz.ch/~ddosvax/.

[7] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. InProceedings of the
10th ACM conference on Computer and communications security, pages 251–261, New
York, NY, USA, 2003. ACM Press.

[8] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions.
In Proceedings of ACM SIGCOMM 2005, August 2005.

[9] W. Lee and D. Xiang. Information-theoretic measures foranomaly detection. IEEE Sum-
posium on Security and Priovacy, Oakland, CA, May 2001.

[10] J. Oberheide, M. Karir, and D. Blazakis. Vast: Visualizing autonomous system topolo-
gy. In Proceedings of ACM 3rd International Workshop on Visualization for Computer
Security(VizSEC), November 2006.

[11] A. Ramachandran and N. Feamster. Understanding the networklevel behavior of spam-
mers. 2006.

[12] SWITCH. Swiss academic and research network.http://www.switch.ch/, 2006.

[13] Y. Tang and S. Chen. Defending against internet worms: A signature-based approach. In
Proceedings of IEEE INFOCOM, March 2005.

[14] J. Wallerich, H. Dreger, A. Feldmann, B. Krishnamurthy,and W. Willinger. A methodolo-
gy for studying persistency aspects of internet flows.SIGCOMM Comput. Commun. Rev.,
35(2):23–36, 2005.

[15] Q. Wu and Z. Shao. Network anomaly detection using time series analysis. InProceedings
of the IEEE Joint International Conference on Autonomic and Autonomous Systems 2005,
2005.

6

61

A.2. Finite State Modules

A.2. Finite State Modules

A.2.1. Download Client

62

A.2. Finite State Modules

A.2.2. Job Scheduler Master

A.2.3. Job Scheduler Client

63

A.3. GBM Example Configuration

A.3. GBM Example Configuration

Listing A.1: Multi-Page Java Code

<?xml version=" 1.0 " encoding="UTF−8" ?>
< j o b d e s c r i p t i o n >
<module_config>
< !−− Warning: TYPE_LENGTH < 13 −−>

< !−− Unique module i d −−>
<param type=" module_id " >7000< / param>
<param type=" module_name ">bas ic_met r i c< / param>
<param type=" module_type ">MD_Block< / param>

< !−− Module owner −−>
<param type=" module_owner ">schadomi< / param>
<param type=" module_group "> s t u d i s < / param>

< !−− Module Binary−−>
<param type="MD_BIN_CMD" > / home / schadomi /dm/md/ md_block −m bas ic_met r i c −h 10.0 .0 .100 −s schadomi −u schadomi −p password< / param>

< !−− DEBUG −−>
< !−−

D_STEP:
Wait a f t e r each message on a user key i n t e r a c t i o n ?
’ f a l s e ’ : (De fau l t)
’ t r ue ’ : Implements a very simple debugger

−−>
<param type="D_STEP"> f a l s e < / param>

< !−− LOGGER −−>
< !−− Log sources: −−>
<param type=" LS_framework " > t r ue < / param>
<param type=" LS_dbc " > t r ue < / param>
<param type=" LS_dbq " > f a l s e < / param>
<param type=" LS_config " > t r ue < / param>
<param type=" LS_logger " > f a l s e < / param>

< !−− Log l e v e l s e l e c t i o n −−>
< !−− LL_error i s always on . . . −−>
<param type=" LL_debug " > t r ue < / param>
<param type=" LL_warning " > t r ue < / param>

< !−− Log Target Se lec t i on −−>
< !−− Log Er ro r & Warnings to the Systemlog? −−>
<param type=" LT_syslog " > f a l s e < / param>
< !−− Log to the console? −−>

64

A.3. GBM Example Configuration

<param type=" LT_console " > f a l s e < / param>
< !−− Log the e x i t code to the DB? −−>
<param type=" LT_db_log_err " > t r ue < / param>
< !−− Log the f u l l ’msg ’ i n the DB−Log? −−>
<param type=" LT_db_log_txt " > t r ue < / param>
< !−− Log to f i l e −−>
<param type=" L T _ f i l e " > f a l s e < / param>
<param type=" LT_ f i l e_p " > / dev / n u l l < / param>
< !−− Log to e r r o r and warning as emai l [Not Implemented Yet]−−>
<param type=" LT_email " > f a l s e < / param>
<param type=" LT_email_@ " >schadomi@ee . ethz . ch< / param>

< !−− MD_Base−−>
< !−− The number o f seconds the module w i l l s leep

a f t e r a completed ’ main ’ run . This coressponds
to a the lower l i m i t o f the p o l l i n g i n t e r v a l l .

−−>
<param type=" MD_B_pol l_int " >120< / param>
< !−− The number o f seconds the module w i l l sleep ,

when i t get ’ s a wa i t cmd.−−>
<param type =" MD_B_wait_int " >180</param>

<!−− MD_Block −−>
<param type ="MD_B_req" >basic_metr ic_req </param>
<param type ="MD_B_job " >bas ic_metr ic_ job </param>
<param type ="MD_B_sreq " > d l _ i n t e r f a c e _ a l l _ r e q </param>

<!−− TBL_Job −−>
<!−− Describes the t i m e l i n e to job mapping −−>

<!−− i f t h i s op t ion i s set the job tab le w i l l be f i l l e d
w i th the jobs from j o b _ s t a r t to job_stop . Otherwise
you have to f i l l e d the tab le by your own , befor you
can s t a r t the module . I f you are unsure say " t r ue "
−−>

<param type =" TBL_Job_in i t " > t rue </param>
<!−− This parameters are used to auto f i l l the tab le

i f TBL_Job_in i t == t rue .
TBL_Job_start == F i r s t Job S t a r t
TBL_Job_stop == Last Job Stop
(w i l l be ad jus t to f i t on the job_du boundaries) .
TBL_Job_du == The dura t i on o f one job .
TBL_Job_duw == The dura t i on o f the warm up .
TBL_Job_dur == The dura t i on o f the r o l l o f f .

time_warmup t i m e _ s t a r t t ime_stop t i m e _ r o l l o f f
|<− warm up −> |<− cout r e s u l t s −> | <− r o l l o f f −>|

65

A.3. GBM Example Configuration

Example: Job X has the f o l l o w i n g t i m i n g s :
time_warmup: 1000
t i m e _ s t a r t : 2000
t ime_s top : 3000
t i m e _ r o l l o f f : 4000

To process the job X the framwork w i l l request data
from time_warmup to t i m e _ r o l l o f f by the " submodule " .
This i npu t data range w i l l be de l i ve red to the Job Binary .
The Job Binary should produce some output f o r the
i n t e r v a l l t i m e _ s t a r t to t ime_stop .

T i p : One day = 86400 s
−−>

<!−− T r i c k : Job swi tch a t 0600 and 1800 . . .
. . . no over lapp over 1200 (rushhour) −−>

<param type =" TBL_Job_start " >1047621600</param>
<param type =" TBL_Job_stop " >1184842138</param>
<param type ="TBL_Job_du " >43200</param>
<param type ="TBL_Job_duw " >3600</param>
<param type ="TBL_Job_dur " >3600</param>

<!−−
I f t h i s op t ion i s set , a l l e x i s t i n g e n t r i e s o f the j o b t a b l e
w i l l be checked dur ing the module s t a r t . This takes a l o t o f t ime .
Otherwise j u s t the f i r s t e n t r i e i s checked . I f unsure say " f a l s e "
−−>

<param type ="TBL_Job_sca " > fa lse </param>

<!−− WK_Mapper −−>
<param type ="WK_MAP_maxreq" >3</param>

<!−− WK_Mapper Cache "WK_MAPC " −−>
<param type ="WK_MAPC_path" >/home / schadomi /dm/ bas ic_met r i c / mapper </param>
<param type ="WK_MAPC_slim" >500</param>
<param type ="WK_MAPC_hlim" >550</param>
<param type ="WK_MAPC_jsize " >1</param>
<param type ="WK_MAPC_rman" > fa lse </param>
<param type ="WK_MAPC_wari" >3600</param>

<!−− WK_Jobber −−>
<param type ="WK_JOB_wijf " > t rue </param>
<param type ="WK_JOB_para" >25</param>
<param type ="WK_JOB_gc" >t rue </param>

66

A.3. GBM Example Configuration

<!−− WK_Jobber Cache "WK_MAPC" −−>
<!−− Cache Path −−>
<param type ="WK_JOBC_path" >/home / schadomi /dm/ bas ic_met r i c / jobber </param>
<!−− Cache s o f t l i m i t (MB) −−>
<param type ="WK_JOBC_slim" >500</param>
<!−− Cache hard l i m i t (MB) −−>
<param type ="WK_JOBC_hlim" >550</param>
<!−− Cache job s ize (MB) −−>
<param type ="WK_JOBC_jsize " >1</param>
<param type ="WK_JOBC_rman" > fa lse </param>
<param type ="WK_JOBC_wari " >3600</param>

<!−− JS_In te r face −−>
<!−− Path where t h i s f i l e can be found . . . −−>
<param type =" JS_IF_xml " >/home / schadomi /dm/md/ bas ic_met r i c . xml </param>
<!−− Where to place the runnable task (Task Scheduler DB) −−>
<param type =" JS_IF_tb l " > tb l _ task </param>
<!−− C l i e n t Mask: (BitMask to s e l e c t the c l u s t e r nodes)

C l i e n t s e l e c t i o n :
c l 1 2
c l 2 4
c l 3 8
c l 4 16
c l 5 32
JS_IF = SUMME
−−>

<!−− Use c l i e n t 1 , 2 , 3 , 4 −−>
<param type ="JS_IF_cm" >30 </param>
</ module_config >

<!−−
############# BINARY CONFIGS ##############################
This confn igs are processed by the jobschedu ler c l i e n t
to create the Arg−Vector to c a l l the b inary
###
−−>

<!−− i npu t f i l e pa t t e rn −−>
<pat te rn >

<!−−
Describes the i npu t f i l e s t h a t should be processed .
Target s e l e c t i o n =~= l s i npu t / r eq_ fo lde r / < r e l _ f o l d e r >/ < p a t t e r >.
M u l t i p l e pa t t e rn can be def ined . Just increment the " i d "

−−>
< l i s t i d ="1" r e l _ f o l d e r = " . " desc =" DataPakets "> dat . bz2 </ l i s t >
</ pa t te rn >

67

A.3. GBM Example Configuration

<!−− set the op t ion f o r b inary execut ion −−>
<bin >
<!−−

The path to your b inary . Don ’ t f o r g e t to change the r i g h t s o f the
f i l e , t h a t the " apache−Webaerver " can execute your b ina ry !
−> chwon o+rwx <bin>

−−>
<param type=" bin_path " > / home / schadomi /dm/md/ bas ic_met r i c . b in< / param>
< !−−

I f t h i s op t ion i s selected , the jobschedu ler c l i e n t w i l l
change the working path to the j o b f o l d e r . Otherwise the
jobschedu ler use the a loca l−tmp f o l d e r .
I f unsure say " f a l s e " . This can reduce nfs load because
the f i l e s (w i th r e a l t i v e path) w i l l be s tored on a l o c a l d isk .

−−>
<param type=" r u n _ i n _ j o b f o l d e r " > f a l s e < / param>
< !−−

Copy the inpu t data i n a temporary f o l d e r (<tmp> / i npu t) on the node?
The f i l e s o f the ’ f i l e l i s t ’ w i l l be replaced wi th the l o c a l copies .
This op t ion can reduce the NFS load of the " f i l e server "
and speed up your b inary . I f unsure say " t r ue "

−−>
<param type=" cp_data_to_ input " > t r ue < / param>
< !−− Copy the f i l e s t h a t are s tored i n the <tmp> / ou tput f o l d e r

back to the j o b f o l d e r . I f unsure say " t r ue "
−−>

<param type=" cp_output_back " > t r ue < / param>
< !−− Copy the f i l e s t h a t are s tored i n the <tmp> f o l d e r back to

the j o b f o l d e r . I f unsure say " f a l s e " (o therwise probably unused
tmp f i l e s w i l l be copied back . . .)
PS:
I f you have some problem wi th your b inary , say yes here . Then the
the s tanda r t out and s tanda r t e r r w i l l be copied back .
−−>

<param type=" cp_tmp_back " > t r ue < / param>
< / b in>

< !−− Copy the f i l e s t h a t are s tored i n the <tmp> f o l d e r back to
the j o b f o l d e r . I f unsure say " f a l s e " (o therwise probably unused
tmp f i l e s w i l l be copied back . . .)
−−>

< !−− set the op t ion to create the c o r r e c t arguments f o r your b inary −−>
<user_arg>
< !−− Examples:

TYPE:
TXT : A s t a t i c t e x t argument l i k e "−v "
TXT2: L ike TXT but w i th to arguments l i k e "− i n t e r v a l 900 "

68

A.3. GBM Example Configuration

PATH: W i l l be replaced by the c o r r e c t path by the j s _ c l i e n t
opt = " tmp " l o c a l tmp f o l d e r
opt = " tmp_output " l o c a l output f o l d e r (<tmp> / ou tput)
opt = " tmp_input " l o c a l i npu t f o l d e r (<tmp> / i npu t)

JOB: W i l l be replaced wi th the cu r ren t job parameters
opt = "warmup" t ime warmup of t h i s job
opt = " s t a r t " t ime s t a r t o f t h i s job
opt = " stop " t ime stop of t h i s job
opt = " r o l l o f f " t ime r o l l o f f o f t h i s job

LIST: W i l l add the l i s t s , t h a t are def ined wi th the help o f the " pa t te rns "
opt = " p a r a l e l l " < i tem1_id1><i tem1_id2> . . . <i tem2_id1>
opt = " s e r i e l l " < i tem1_id1><i tem2_id1> . . . <i tem1_id2>

−−>
<param type="TXT" opt= " " f l a g ="−−verbosen " >< / param>
<param type="TXT2" opt= " " f l a g ="−− i n t e r v a l " >900< / param>
<param type="PATH" opt= " tmp " f l a g ="−−tmp " >< / param>
<param type="PATH" opt= " tmp_output " f l a g ="−−output " >< / param>
<param type="JOB" opt= "warmup" f l a g ="−−time_warmup " >< / param>
<param type="JOB" opt= " s t a r t " f l a g ="−−t i m e _ s t a r t " >< / param>
<param type="JOB" opt= " stop " f l a g ="−−t ime_stop " >< / param>
<param type="JOB" opt= " r o l l o f f " f l a g ="−−t i m e _ r o l l o f f " >< / param>
<param type=" LIST " opt= " p a r a l e l l " f l a g =" " >< / param>
< / user_arg>
< / j o b d e s c r i p t i o n >

69

A.3. GBM Example Configuration

70

Bibliography

[1] NetFlow Services Solutions Guide.
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/ . . .
products_implementation_design_guide09186a00800d6a11.html
10.09.2007

[2] The Swiss Education & Research Network.
http://www.switch.ch
10.09.2007

[3] Abilene Network.
http://abilene.internet2.edu
10.09.2007

[4] The Abilene Observatory.
http://abilene.internet2.edu/observatory
10.09.2007

[5] The GÉANT project.
http://www.geant.net
10.09.2007

[6] DANTE.
Netflow data captured on the GEANT network. http://rtmon.gen.ch.geant2.net
10.09.2007

[7] Communication Systems Group (CSG).
http://www.csg.ethz.ch
10.09.2007

[8] The DDosVax Project.
http://www.tik.ee.ethz.ch/∼ddosvax
10.09.2007

[9] Duebendorfer, T. (IWCIP 2005).
A Framework for Real-Time Worm Attack Detection and Backbone Monitoring
http://www.tik.ee.ethz.ch/∼ddosvax/publications/papers/ . . .
. . . iwcip2005-duebendorfer-upframe.pdf
10.09.2007

71

Bibliography

[10] A.Wagner. (WET ICE 2005).
Entropy based worm and anomaly detection in fast ip networks.

[11] Jörg Wallerich.
A methodology for studying persistency aspects of Internet flows.
www.net.informatik.tu-muenchen.de/∼hdreger/papers/CCR35_FlowPersistency.pdf
10.09.2007

[12] Anukool Lakhina. (BUCS-TR-2003-021).
Structural Analysis of Network Traffic Flows.
http://www.cs.bu.edu/techreports/pdf/2003-021-odflows.pdf
10.09.2007

[13] Daniela Brauckhoff. (IMC-2006)
Impact of Packet Sampling on Anomaly Detection Metrics.
www.imconf.net/imc-2006/papers/p16-brauckhoff.pdf
10.09.2007

[14] Seong Soo Kim and A. L. Narasimha Reddy. (ICDCSW ’06).
Impact of Packet Sampling on Anomaly Detection Metrics.
dropzone.tamu.edu/∼skim/adsn2.pdf
10.09.2007

[15] NFDUMP tools.
http://nfdump.sourceforge.net
10.09.2007

[16] The Condor Project.
http://www.http://www.cs.wisc.edu/condor/
10.09.2007

[17] IBM System Storage Product Guide
http://www.ibm.com/storage/pguide/prodguidetape.pdf
10.09.2007

[18] Archiving - Department of Information Technology and Electrical Engineering
http://computing.ee.ethz.ch/infrastructure/archiving/index.en.html
10.09.2007

[19] Wikipedia contributors.
RAID
http://de.wikipedia.org/w/index.php?title=RAID&oldid=36349137
10. 09 2007

[20] Tivoli Workload Scheduler LoadLeveler.
Using and Administering
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp? . . .

72

Bibliography

. . . topic=/com.ibm.cluster.loadl.doc/llbooks.html
10. 09 2007

[21] TORQUE Resource Manager.
http://www.clusterresources.com/pages/products/torque-resource-manager.php
10. 09 2007

[22] Wikipedia contributors.
Go/no go
http://en.wikipedia.org/w/index.php?title=Go/no_go&oldid=127844875
10. 09. 2007

[23] Julian Seward.
bzip2 and libbzip2.
http://www.bzip.org/
10. 09. 2007

[24] Wikipedia contributors.
Modular design
http://en.wikipedia.org/w/index.php?title=Modular_design&oldid=138005279
10. 09. 2007

[25] Wikipedia contributors.
Finite State Machine
http://en.wikipedia.org/w/index.php?title=Finite_state_machine&oldid=155400777
10. 09. 2007

[26] MySQL.
The world’s most popular open source database
http://www.mysql.com/
10. 09. 2007

[27] Wikipedia contributors.
Application checkpointing
http://en.wikipedia.org/w/index.php? . . .
. . . title=Application_checkpointing&oldid=126648132
10. 09. 2007

[28] Valgrind.
A toolset for debugging and profiling Linux programs
http://valgrind.org/
10. 09. 2007

[29] AMD.
Software Optimization Guide for AMD64 Processors
http://www.amd.com/us-en/assets/content_type/ . . .
white_papers_and_tech_docs/25112.PDF
10. 09. 2007

73

Bibliography

[30] Wikipedia contributors.
Shared memory
http://en.wikipedia.org/w/index.php?title=Shared_memory&oldid=152113914
10. 09. 2007

[31] Wikipedia contributors.
Inter-process communication
http://en.wikipedia.org/w/index.php?title=Inter-process_communication&oldid=154663455
10. 09. 2007

[32] The phpMyAdmin Project
Effective MySQL Management
http://www.phpmyadmin.net
10. 09. 2007

[33] Wikipedia contributors.
Object composition
http://en.wikipedia.org/w/index.php?title=Object_composition&oldid=154383462
10. 09. 2007

74

	Introduction
	Motivation
	Problem Statement
	Related Work
	Outline

	Problem Analysis
	Requirements
	Infrastructure
	Computer Cluster
	Long Term Storage System

	Data Management
	Jabba Server
	Cluster Node

	Job Management
	Job Creation
	Job Scheduling
	Job Controlling
	Job Monitoring

	Conclusion

	Design
	Modular Design
	Generic Metric Module
	Data Object Model
	Objects have states
	Where to store the objects
	Work on Objects

	Inter-Module Communication
	Class Library

	Implementation
	Overview
	Metric Universe
	Downloader
	Job Scheduler

	Metric Universe
	Overview
	Interface
	Mapper
	Jobber

	Downloader Part
	Jabba Indexer
	Download Interfaces
	Download Master
	Download Client

	Job Scheduler Part
	Job Scheduler Interface
	Job Scheduler Master
	Job Scheduler Client

	Web Interface

	Evaluation
	On-Off Capability
	Ease of Use
	Performance
	Set of Basic Metrics
	Structure
	Metrics
	Results

	Conclusion
	Summary
	Contribution
	Future Work

	Appendix
	Task Description
	Finite State Modules
	Download Client
	Job Scheduler Master
	Job Scheduler Client

	GBM Example Configuration

