
Master Thesis

Towards Peer-to-Peer Games: XP2Pilot

Jean-Luc Geering
jlg@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer 2007

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Stefan Schmid, Thomas Locher

Abstract

A game is both an interesting and a complex application. Having a shared state makes
it a challenging undertaking to develop it in a peer-to-peer setting. XP2Pilot is an
implementation of such a game. It is a fully decentralized version of XPilot-NG, built
on top of Pulsar.

Acknowledgments

First of all, I would like to thank Prof. Dr. Wattenhofer for giving me the opportunity
to work on this most interesting and challenging project. During this truly unique
experience, I benefitted not only on a technical but also on a personal level.

Stefan Schmid and Thomas Locher, my faithful advisors, thank you for not breaking
my e-bike when you took it for a ride.

Special thanks to Remo Meier who allowed me to use Pulsar and was always quick to
respond to my numerous questions.1

Cordial thanks to the open-source communities. They make the world a better place.
At least the virtual one.

To the Swiss taxpayers, thank you for financing my education. Keep up the good work,
the SFITZ2 is such an awesome institution.

To the TIK, thank you for lending me Funghi. He was a good companion who never let
me down during the six months we spent together. I wished all laptops would behave
like he did.

To the Swiss Federal Railways, thank you for letting me feed Funghi on your trains. We
could spend even more time working together.

Thanks to my family, friends and fellow students for playing my game when it was
neither finished nor fun.

Thanks, Jean-Paul Würth. Your nonsense full of meaning helped me in a crucial mo-
ment.

To all those who pretended listening to me when I was complaining - I hope we can still
be friends.

Let’s not forget all the brave readers of this report:

Thank you and good luck!

1Yes, I know, I should have read the documentation first.
2Aka EPFZ aka ETHZ.

2

Contents

1 Introduction 5
1.1 Common Uses of Peer-to-Peer . 5

1.1.1 File Sharing . 5
1.1.2 Multimedia Live Streaming . 5
1.1.3 Distributed Hash Tables . 6

1.2 Peer-to-Peer and Games . 6

2 Components 7
2.1 Game . 7
2.2 Network: Peer-to-Peer Overlay . 7

3 Architecture and Design 9
3.1 The Game . 9
3.2 From XPilot-NG to XP2Pilot . 10
3.3 Network Layer . 11
3.4 Game Engine . 11

3.4.1 Server Role . 11
3.4.2 Registrar Role . 12
3.4.3 Client Role . 12

3.5 The Pieces and their State . 12
3.6 Network Dynamics . 13

3.6.1 Piece Subscriptions . 14
3.6.2 Piece Transfer States . 15

3.7 Network States . 17
3.8 Player Management . 18
3.9 A Final Comment . 19

4 Implementation 21
4.1 Spring . 21
4.2 The ch.dongxi.xpilot.game.* classes 21
4.3 The ch.dongxi.xpilot.legacy.* classes 21

4.3.1 The ch.dongxi.xpilot.legacy.map package 22
4.3.2 The ch.dongxi.xpilot.legacy.net.packet package 22

4.4 The ch.dongxi.xpilot.net.* classes 22
4.5 The ch.dongxi.xpilot.p2p.* classes 22

4.5.1 The ch.dongxi.xpilot.legacy.p2p.message package 23
4.6 The ch.dongxi.xpilot.pulsar.* classes 23
4.7 The ch.dongxi.xpilot.tasks.* classes 24
4.8 The ch.dongxi.xpilot.view.* classes 24
4.9 The ch.dongxi.xpilot.world.* classes 25
4.10 Threads . 25

5 Conclusion 27

3

Chapter 1

Introduction

There are many peer-to-peer applications, but most of them do not have a shared state.
On the other hand, games have to deal with player interaction, i.e. a shared state. Would
it not be interesting to store and manipulate a shared state in a not only distributed
but also fully decentralized system, in other words, build a peer-to-peer game?

1.1 Common Uses of Peer-to-Peer

1.1.1 File Sharing

The most prominent use of peer-to-peer technology nowadays is file sharing. The
Gnutella network is one example of an early successful application, and today Bit-
torrent [1] is the dominant file sharing protocol.

The characteristics of file sharing are that the content is static, i.e. the file being shared
does not change,1 there are no timing constrains, and the goal is to transmit information
from one to many other nodes. If we only look at the information that has been sent
after the transfer is complete, it is equivalent to one server sending the same content to
many clients.2

1.1.2 Multimedia Live Streaming

The new trend in peer-to-peer computing is to replace a streaming server with a peer-
to-peer distribution scheme. In Switzerland Zattoo3 is already a popular live video
streaming system, although it does not deliver very good quality. Joost is a service by
the makers of Kazaa and Skype. Pulsar [2], is a new peer-to-peer based protocol which
promises good performance.

We find some of the same characteristics in streaming as in file sharing: the goal is to
distribute content from one server to many clients in an efficient and robust way. If we
consider each frame of a video stream separately, the content is also static, but small and
with a short life-span. But contrarily to file sharing there are timing constrains. The
frames have to be delivered in order and on time. A delay of a few seconds is acceptable,
but certainly a few hours or days like we know it from file sharing applications, is out
of question.

1In case it does change, it will be shared as a new file.
2Of course it is far more efficient, and even if the first node goes offline the data keeps spreading.
3http://www.zattoo.com

5

1.1.3 Distributed Hash Tables

A distributed hash table (DHT) is a fully decentralized system for storing, looking up
and retrieving key-value pairs. Important features include scaling to a large number
of nodes, fast message routing and good performance and resilience under churn. Well
known examples of DHTs are CAN [3], Chord [4] and Pastry [5].

A DHT consists of a keyspace, i.e. the set of allowed keys, for example the 16 bytes bit
strings, and a keyspace partitioning scheme describing how to split ownership among
participating nodes.

To illustrate this, let us consider a circular keyspace. Each node has its own ID that
serves as a key or, if it is not in the right format, can be hashed into a key. This ID
defines its position on the circle. The node owns and is responsible for all the keys
between its ID and the ID of the next node on the circle.

The nodes connect to neighbours and arrange themselves in an overlay network. The
different protocols define to which and to how many neighbours a node has to connect.
This determines how fast a protocol can route messages, how well it scales and handles
churn.

The data stored in a DHT is also static. Direct modification of the values is not possible.
To update a value, a new value is inserted with an identical key, to replace the old
one.

1.2 Peer-to-Peer and Games

Games are an interesting application for peer-to-peer computing. While a shared state
and player interactions need to be taken care of (i.e., the content is not static), absolute
correctness and consistency do not have to be guaranteed (a game is no banking soft-
ware). As long as they do not trouble the user too often, errors can be tolerated.

In order for a game to be easily distributed, locality of interest is essential [6]. A peer-to-
peer game where every node needs to know about everything is certainly feasible, but it
would not benefit of most advantages of a distributed system. Depending on the game,
a node’s visibility can be limited without influencing the user experience, e.g. any 2D
war game with limited screen size and fog of war.4 On the contrary, it would be absurd
to play chess seeing only a quarter of the board at the time.

There are also timing constrains to be considered when implementing a game, as the
user expects a fast feedback for his actions. In this sense, a game might be even more
sensitive to delays than a live streaming application.

Any game will have its share of cheaters, and so will peer-to-peer ones. The architecture
of the system should include anti-cheating mechanisms whenever possible, and make it
hard to cheat when it cannot be prevented.

4 [7] further reduced the amount of data transmited by defining focus sets.

6

Chapter 2

Components

2.1 Game

Instead of writing a new game from scratch, we chose a existing open-source client-server
game. Two multiplayer games, both realtime, were considered:

Quake 3 is a first person shooter and has been used many times for research (e.g.,
[7], [8]). Its engine is freely available, but some components still have to be bought to
actually run the game. The game is also fairly complex, has advanced graphics and
dead reckoning.

XPilot (Fig. 2.1) is an Asteroids-like 2D multiplayer game, where items can be collected
to enhance the offense or defense characteristics of the player’s ship. It is the game used
by [9] to implement their model. It is open-source,1 and rather simple. It can be
simplified further by removing features like items, shields and fuel.

The main reason to choose XPilot was it’s simplicity compared to Quake 3, making it
easier to adapt, as the focus was more on peer-to-peer aspects than on a game with
many features or nice graphics.

2.2 Network: Peer-to-Peer Overlay

As the goal was not to develop yet another type of peer-to-peer overlay network, we
decided to reuse an existing DHT. We only needed a protocol with an available imple-
mentation, which could build and maintain an overlay network and route messages in
it in a relatively short time. We tried to keep our game implementation as independent
as possible from the underlying protocol and its implementation.

The first versions of our prototype were running on FreePastry2, a free java implemen-
tation of the Pastry [5] protocol. The main drawback was that a node cannot signal
that it wants to leave the network. Its absence is only detected after a timeout. But for
our game to be responsive, we wanted to avoid as many timeouts as possible.

Therefore, we switched to Pulsar3, which provides all required features, in particular
fast message routing and keyspace management.

1Available from sourceforge.net.
2Available at http://freepastry.rice.edu/.
3With the friendly permission of its creator.

7

Figure 2.1: xpilot-ng-sdl screenshot.

8

Chapter 3

Architecture and Design

XP2Pilot is a fully decentralized game. In this chapter we will describe the game, the
architecture of its components and how it integrates XPilot-NG and Pulsar. We will
also see the three roles a node plays, and its principal data structures.

3.1 The Game

XP2Pilot is a simplified version of XPilot-NG. The user controls a ship which has to
be navigated around obstacles (walls), looking for the ships of other players. He1 is
supported in this task by a short range radar indicating the direction and distance of
surrounding ships. To determine his position at any moment during a game, the user
can look at a map indicating the current position of his ship in the world.

Figure 3.1: Schematic screenshot of the game, showing its 3 main elements: triangles
represent ships, dots are bullets fired by a ship and the grey zones are walls. The ship
in the center is always the one controlled by the player.

Once he comes close to another ship, he can fire bullets and try to destroy it. Of course,
his opponents will do the same, quickly filling the space with bullets. In order not to

1Or she. Out of sheer conventionalism or laziness, we have opted for the male form throughout this
thesis - which does not mean that female users could not appreciate the game.

9

lose points, the user has to avoid being hit by a bullet or crashing into another ship or
into a wall while chasing his adversaries.

Users lose one point every time their ship is destroyed by an adversary and 2 points if
the destruction is self inflicted (e.g., by crashing into a wall or flying into one of their
own bullets).

The difficulty of the game resides in the fact that the player has limited control over his
ship. He can only change its direction, its speed and fire bullets along the axis of the
ship. To slow down, he has to turn his ship 180◦ around and accelerate. As the cannon
is mounted in front of the ship and always fires straight ahead, it takes a bit of practice
to maneuver the ship while aiming at a moving target.

3.2 From XPilot-NG to XP2Pilot

XPilot-NG is divided in two parts, a client and a server (Fig. 3.2), which communicate
over UDP. In order to build XP2Pilot as a peer-to-peer system, we discarded the server
and kept only the client2, which was used as a GUI for the game. It communicates with
a pseudo server written in java, using the original xpilot protocol (Fig. 3.3). This server
is only a facade in front of the game engine. It formats the data for the client and sends
it using the xpilot protocol. Furthermore, it decodes the commands sent back by the
client and passes them to the game engine.

xpilot-ng-client B

xpilot-ng-server

xpilot-ng-client A

xpilot-ng-client C

Figure 3.2: Client-Server architecture of XPilot-NG with 3 players.

Player A

xp2pilot

xpilot-ng-client

xpilot-ng-server facade

game engine

network layer: Pulsar

Player B

xp2pilot

xpilot-ng-client

xpilot-ng-server facade

game engine

network layer: Pulsar

Player C

xp2pilot

xpilot-ng-client

xpilot-ng-server facade

game engine

network layer: Pulsar

Figure 3.3: P2P architecture of XP2Pilot with 3 players.

2In Ubuntu Linux it corresponds to the xpilot-ng-client package.

10

3.3 Network Layer

Pulsar provides an abstraction of the network layer. It communicates with other in-
stances by multiplexing messages over one UDP socket and generates a unique identifier
from the IP address and port number of this socket. This identifier has different func-
tions: it is the player’s ID, is used for routing and determines what responsibilities a
node has. In addition to the messages needed for building and maintaining the overlay
network, Pulsar transmits messages for the game engine. It also signals when a new
node joins, leaves or times out.3

Each node is responsible for all the IDs closest to its own ID. A node can decide if an
ID is local by comparing it with its own and with the IDs of all its neighbours.

3.4 Game Engine

The game engine (Fig. 3.3) is the core of the system and contains the actual logic. It
has a small physics engine, manages the state of the game and scores of the players,
collaborates with other nodes and adapts to any change in the overlay network. It also
caches all the data located in other nodes that is needed by the client.

These tasks can be divided into three groups according to the various roles a node
plays:

3.4.1 Server Role

XP2Pilot is played in a 2-dimensional square world4, which is divided into smaller
squares. For convenience, we shall call each of these small squares a piece5. Each piece
has a key (an ID) and the keys are evenly distributed in the keyspace of the underlying
DHT, i.e. Pulsar. Using Pulsar ’s keyspace partitioning scheme, the responsibility for a
piece is assigned to a node, which acts as a server for this piece.

To guarantee some continuity in case of a server node failure, each one of them sends
a periodical update to one or more backup nodes. These nodes are also defined by the
mechanism which is used to find a server node, the first backup node being the node
that will own the given piece’s ID when the current server node leaves.

For each piece it is responsible for, a node keeps a list of the ships and the bullets
currently located in it, and a list of the nodes subscribed to it (see 3.4.3). At every
time-step, a series of tasks have to be performed:

• Apply the latest command sent by a user to his ship.

• Create new bullets for the ships that are firing.

• Update the position of all objects (ships and bullets).

– Bullets hitting a wall are removed.

– Bullets whose time to live has expired are removed.

– Ships colliding with a wall are either reflected or destroyed if their collision
speed exceeds a given speed limit.

3More precisely: it notifies the game engine when connecting to a neighbour, or when losing this
connection.

4A 2D torus to be more specific, as the left side is connected to the right and the top to the bottom.
5In the code, they are implemented by the WorldPiece class, not to be mistaken for WorldPeace!

11

– Ships colliding with a bullet or with each other are also removed.

• Notify the registrar (see 3.4.2) node of each removed ship that it has been destroyed
by a bullet of a given player. A ship crashing into a wall is treated like a ship
destroyed by one of its own bullets.

• Transmit the objects moving out of the piece’s boundary to the node responsible
for the adjacent piece.

• Send the continually updated game state, i.e. the list of the positions of all objects,
to all subscribed nodes.

3.4.2 Registrar Role

When a player connects, he registers his ID with the node closest to the inverse of his
own.6 Conversely every player is a registrar for others. Every node keeps a registry,
which contains ID, nickname, and score of the registered players.

The registrar node is also responsible for the ship of the player node. When the player’s
ship gets destroyed, either by getting hit by a bullet, by colliding with another ship, or
crashing into a wall, the registrar is notified by the server node. The registrar updates
the score and inserts the ship at a random new position.

The registrar node also tries to make sure that there is always one and only one copy of
each of its players’ ships. If needed, it can insert a new ship or remove a duplicate.

3.4.3 Client Role

The player or client role consists in gathering and keeping up to date the information
presented to the user, i.e. prepare the data for the xpilot-ng-server facade layer.

The client node must keep track of its user’s current ship position, which server node
corresponds to this piece, and forward the user’s commands to this node. As will be
seen in 3.5, a node can be in the client and the server role at the same time for a given
piece.

A client node only needs to know what is happening in the area around its user’s ship.
Thus, the node subscribes to the server node of the visited piece and to those of the
eight pieces around. It will only receive updates for these nine pieces. This active zone
follows the player’s ship. It is shifted when the ship crosses a piece boundary.

When coming across a ship with an unknown ID, the node queries the registrar of this ID
for the nickname and the score of the player controlling the ship. It keeps polling the reg-
istrar at regular intervals to maintain its local score list up-to date. (Fig. 3.10.b)

3.5 The Pieces and their State

A node can be the server for a subset of pieces7 and have another subset in the active
zone. To manage this, each piece is flagged when it is active (i.e., in the active zone)
and in a given state. There are three main states: Void, Remote and Local, and four
transition states between them (Fig. 3.5).

6For more than 1 node this is always a remote node.
7For a definition of piece, see the first paragraph of 3.4.1.

12

L R R

R

R

R R

R R

R R

R L

R R

RR R

RL L

R L

R

R R

Figure 3.4: The world as seen by a node. The little triangle represents the player’s ship,
they grey zone around it represents its active zone. The letters in the pieces (i.e., the
little squares), if present, indicate their state: L stands for Local, R for Remote. Pieces
without letters are in the Void state.

• A piece is in the Local state if the node owns its ID, i.e., when the node is the
server for the piece.

• A piece is in the Remote state when the node is subscribed to the server node in
charge of this piece. This can be for two reasons:

– If it has the active flag set8 but is not Local.9 The node needs continuous
information about the situation in this piece in order to display it to the
user. This data is contained in the remote updates sent by the server.

– If one of the adjacent pieces is in the Local state. In this case the node
needs to know the address of the server node in order to be able to transfer
objects without delays.

• The pieces in the Void state are of no current interest for the node.

• Subscribe, Unsubscribe, Transfer in, Transfer out are the transition states between
the 3 previous ones (Fig 3.5). They will be described in more detail in the next
section.

3.6 Network Dynamics

As users join and leave the game, nodes have to constantly adapt to their new neigh-
bourhood. A new node modifies the partition of the keyspace and thus the ownership
of pieces and the re-partition of players between the registrars. The same happens
when a user quits.

8i.e., it is one of the nine pieces in the active zone.
9If the piece is Local the information is already available and there is no need for subscription.

13

When a node leaves gracefully, it sends the state of its local pieces and the content
of its registry to their respective nearest neighbours, notifies all of its subscribers, and
signals the underlying network layer it should leave the overlay network.

When a node fails, its absence will be detected by its neighbours only when a timeout
happens. The data has to be recovered from existing backups or is lost if none is
available.

As ships move around the world they cross piece boundaries, thus modifying the active
zone. This can cause a change of state for the pieces that are not any more in the zone,
and new pieces may have to be subscribed to.

cancel()

fetch()

fetch()

subscribe()

UNSUBSCRIBE

TRANSFER_OUT

REMOTE

LOCAL

SUBSCRIBE

TRANSFER_IN

VOID

subscribe()

unsubscribe()

cancel()

transfer()

cancel()

timeout()

done()

create()

Figure 3.5: State transition graph for a piece.

3.6.1 Piece Subscriptions

When a node detects that it needs to subscribe to a piece, it sets the piece’s state to
Subscribe and sends a piece subscription request message to the server node which is in
charge of this piece. If all goes well it gets a piece subscription ack message back from
the server, allowing it to switch the piece’s state to Remote. If it does not get this
message back, a timeout (Fig. 3.5) will trigger the sending of a new piece subscription
request message.

On receiving a piece subscription request message, the server node adds the subscriber
to the subscriber list for the given piece. After replying with a piece subscription ack
message, it starts sending regular remote update messages containing the status of all
objects currently in the piece.

Fig. 3.6 illustrates this process. On the left side, it shows the piece state for the
subscriber node, on the right side for the server node, and in between the messages they
exchange. As noted in section 3.5 a node never subscribes to a Local piece.

14

Server nodePlayer node

Piece Subscription Request

Piece Subscription Ack

VOID

SUBSCRIBE

LOCAL

REMOTE

LOCALRemote Update

Figure 3.6: Subscription process. Illustration of the state of the same piece on the
subscriber and on the server side. Messages are sent asynchronously.

Unsubscribing is even simpler as the node does not have to wait for an acknowledgment.
It will detect that the server node did not receive its message if it keeps receiving remote
update messages.

3.6.2 Piece Transfer States

The actual transfer between the current server node and the new one happens in three
phases. When the new node determines that it is responsible for a piece, it places it in
the Transfer in state (Fig. 3.5) and sends a piece transfer request message, containing
the piece number, to the current server. (Fig. 3.7)

Upon receiving this message, the old server node changes the state of the piece from
Local to Transfer out (Fig. 3.5 & 3.7). It replies with a piece transfer data message
containing all the ships and bullets currently in this piece, a list of the nodes subscribed
to it, and a flag indicating if itself wants to subscribe to this piece. It also notifies all
the subscribers which new node is taking over the responsibility as a server with a piece
subscription transfer message. (Fig. 3.8)

When it receives the data, the new server node sets the state of the piece to Local,
answers with a piece transfer ack message (Fig. 3.7), and sends a piece subscription
ack message to all the subscribing nodes of the incoming piece transfer data message
(Fig. 3.8). If requested, the old server node is added to the list of subscribers for the
piece.

The piece transfer ack message lets the old server set the state of the piece to Void like
in Fig. 3.7, or if requested the subscription, directly to Remote (Fig. 3.5).

15

Old owner nodeNew owner node

Piece Transfer Request

Piece Transfer Data

Piece Transfer Ack

VOID

TRANSFER
IN

LOCAL

TRANSFER
OUT

LOCAL
VOID

Figure 3.7: Piece transfer process. For the considered piece, it shows the state transi-
tions in both nodes. Messages are sent asynchronously.

New owner node

VOID

TRANSFER
IN

LOCAL

Old owner node

LOCAL

TRANSFER
OUT

VOID

Player node

REMOTE

SUBSCRIBE

REMOTE

Piece Transfer Request

Piece Transfer Data

Piece Transfer Ack

Piece Subscription Transfer

Piece Subscription Ack

Figure 3.8: Combined piece transfer and subscription transfer process involving three
distinct nodes. Messages are sent asynchronously.

16

3.7 Network States

A node can be in four distinct network states:
Connect, Join, Ready and Leave. (Fig. 3.9)

• It starts in the Connect state. In this state, it looks for nodes to connect to. It
can use multicast messages on the local area network or contact a pre-configured
Pulsar join server and ask it for a list of recently active nodes.

• As soon as it finds a node, it switches to the Join state and gives Pulsar some
time to initialize the overlay network. It starts sending notifications10 of its state
to its neighbours. It receives the same from them together with piece location hint
messages which it then forwards to all of its neighbours also in the Join state.
These messages help the node to find the current server node of a piece in case
multiple nodes join simultaneously.11

• After a given time, the node is considered to have reached its position in the
overlay network and the state is set to Ready. The node requests the pieces it is
responsible for (see 3.6.1) and starts answering registration requests from player
nodes. It registers its user and the actual game starts as soon as it gets an answer
from the registrar.12

• When the state is set to Leave, the node quickly transmits its local pieces and
the content of its registry, and signals Pulsar to disconnect from the neighbour
nodes.

It could happen that a node loses all its neighbours when in the Join or Ready state.
In this case, it simply goes back to the connect state and starts looking again for new
neighbours.

CONNECT JOIN

LEAVE READY

Figure 3.9: Network state transition graph.

10GameNotification messages.
11Let us consider the case where node A and node B are joining the game, and node S is the server

for a given piece. Let us choose that A’s ID is the closest one to the piece’s ID and that B’s ID is
closer to it than the ID of S. Without piece location hints, A would request the piece from B, which
does not have it, and B would not request it from S knowing that A owns the piece’s ID.

12This answer includes the position of the player’s ship, for the node might need to subscribe to the
piece where the ship is located.

17

3.8 Player Management

When a player node joins the game, it sends a Register message containing the nickname
of its user to its registrar, i.e. the node responsible for the inverse of its own ID.

The registrar creates a new entry in its registry with player ID, nickname, score, cur-
rent piece, and life count13. It initializes the life count to 1, and picks a random piece
to be the current piece. It then replies with a current piece message, indicating where
the player can expect to find its ship, and a score message confirming that the nickname
was registered14 (Fig. 3.10.a). At the same time, the registrar node sends an insert
ship message to the server node of to chosen current piece (Fig. 3.10.c). This message
contains the current piece number, the player’s ID and the life count.

Player node Registrar nodeRegistrar node

Register

Current Piece

Score

Score Query

Score

Insert Ship

Registrar node Server node

Has Ship

Has Ship

Has Ship

(a & b) (c)

Has Ship

Object Transfer

Has Ship

Has Ship

(d)

Server node Server nodeRegistrar nodePlayer node

Current Piece

Figure 3.10: (a) Registration process. (b) Querying for the score and nickname of a
user. (c) Inserting a new ship. (d) Ship transfer between 2 server nodes.

The server node inserts the ship in the piece chosen by the registrar. The ship is then
managed like all other objects in this piece. The server node periodically sends back a
has ship message containing the player’s ID, the piece number and the life count.

13Corresponds to a ship sequence number.
14The score message contains player ID, nickname and score.

18

On getting a has ship message, the registrar first compares the life count with the stored
life count of this player. If they do not match15, it replies with an erase ship message
specifying the player’s ID and the life count. If the life counts do match, the registrar
updates the current piece and notifies the client node (Fig. 3.10.d). This current piece
updating happens every time a ship crosses a piece boundary.

Object transfer messages (Fig. 3.10.d) are used when a ship or bullet crosses a piece
boundary and needs to be transported to another server node.16 When the object is a
ship, the registrar learns about the transfer either by getting a has ship message from
a new node (Fig. 3.10.d), or when reading a updated current piece number in the has
ship message of the previous server node.

When a ship is destroyed (Fig. 3.11), the server node notifies the registrar node with a
ship destroyed message containing the player’s ID and the life count. If the life counts
match, the registrar updates the score, increments the life count, picks a random piece
as the new current piece and initiates the ship insertion process as if the ship was the
one of a player who just started.

Subscribe

Unsubscribe

Insert Ship

Current Ship & Score

Remote Updates Ship Destroyed

Has Ship

Has Ship

Has Ship

Player node Server node Server node Registrar node

Ack & Remote Updates

Figure 3.11: Replacement of a ship after it has been destroyed. To simplify the diagram,
a current ship message and a score message are represented as one. The same holds
for the ack and remote update messages. The player node only sends the unsubscribe
message to the first server node if necessary (see 3.5).

For better readability, the command messages17 sent by the player nodes to the server
nodes have been omitted in all of the diagrams.

3.9 A Final Comment

Throughout this chapter, we depicted the player, server and registrar as three distinct
nodes for the sake of clearness. Nevertheless, it might happen that for a given scenario,
a node has the player and the server role or the server and the registrar role. The only
guarantee is that a player node cannot be its own registrar.

15Which can happen when the registrar decides to insert a new ship, wrongly assuming it has been
lost although only the has ship message has been lost or delayed.

16When an object passes from a Local to a Local node, no special message is sent.
17See 3.4.3, second paragraph.

19

Chapter 4

Implementation

XP2Pilot requires Java 1.5 and has 4 dependencies: Pulsar (pulsar.jar), Spring (spring.jar
and commons-logging.jar) and Log4j (log4j-1.2.14.jar).
All classes are in the ch.dongxi.xpilot1 package and its sub-packages.

4.1 Spring

The Spring application framework was used extensively throughout this project as a
dependency injection container. Most important classes were designed as Spring beans.
This allowed for a great flexibility when deploying launch configuration and simplified
the reuse of components.

The Spring IDE, an Eclipse plugin, allowed an easy navigation of the project and its
graph generation feature provided a good overview. (see Appendix A)

The Spring configuration files are included in the classpath, in the springconfig folder.
The real subfolder contains configuration files that are specific to run XP2Pilot in a
real environment while files in the sim subfolder are their counterparts for a simula-
tion.

4.2 The ch.dongxi.xpilot.game.* classes

In the Game class we store the NetworkState (Fig. 3.9), and the PlayerState (i.e.,
UNREGISTERED, REGISTERING and REGISTERED).

The Player class is used by a registrar node to store a player’s registration (see 3.8),
and by a client node to store the score and nickname of other users. (see 3.4.3)

The ShutdownHook class adds a shutdow hook to the virtual machine, i.e. a thread that
will be started when the user quits the game. (see description of Leave in 3.7)

4.3 The ch.dongxi.xpilot.legacy.* classes

All classes in the ch.dongxi.xpilot.legacy package and its sub-packages relate to the
xpilot-ng-server facade layer. (Fig. 3.3)

1dongxi.ch is the author’s personal domain.

21

The ch.dongxi.xpilot.legacy.ConnectionSetupTask class opens a UDP socket and
listens for an incoming connection from the xpilot-ng client. The xpilot protocol multi-
plexes a reliable connection over this UDP connection. The reliable connection is used
to transmit the map data and information about users joining and leaving. The UDP
connection is used to send frames and receive keyboard and mouse commands from the
user.

The ch.dongxi.xpilot.legacy.SendFrameTask class uses the ch.dongxi.xpilot.
legacy.net.UDPConnection set up by the ConnectionSetupTask to send frames to
the client at a frequency defined by the FPS constant.

The ch.dongxi.xpilot.legacy.SendScoreTask class uses the ch.dongxi.xpilot.
legacy.net.ReliableConnection set up by the ConnectionSetupTask to keep the
internal ch.dongxi.xpilot.game.PlayerList in sync with the one displayed to the
user.

The ch.dongxi.xpilot.legacy.XPilotClient class spawns a new process starting the
xpilot-ng client using the command specified in the options. It appends the -join and
the -port2 option to the command line. It redirects the output from stdout and stderr
to the logging system (log4j).

4.3.1 The ch.dongxi.xpilot.legacy.map package

The ch.dongxi.xpilot.legacy.map.LegacyMap class reads a XPilot-NG map from a
file in the xp2 format (xml). The filename can be set with the FILENAME constant.

It provides the list of walls as a collection for the game engine and a MapData packet
for the xpilot-ng-server facade layer.

4.3.2 The ch.dongxi.xpilot.legacy.net.packet package

The ch.dongxi.xpilot.legacy.net.packet package contains a class for most of the
packet types defined by the xpilot protocol, and a PacketFactory class, used to read
a ch.dongxi.xpilot.legacy.Packet from a byte stream. ch.dongxi.xpilot.legacy.
Packet.Type is an enum listing all the packet types and their corresponding byte value.

4.4 The ch.dongxi.xpilot.net.* classes

The ch.dongxi.xpilot.net package contains a ByteReader and a ByteWriter to read
from respectively write to a byte array. They can handle boolean values, int and long
values using 1, 2, 4 or 8 bytes and Strings.

4.5 The ch.dongxi.xpilot.p2p.* classes

The classes in the ch.dongxi.xpilot.p2p package provide most of the game’s logic.

The CommandManager forwards the user’s command to the CommandManager of the right
node from where it will be applied to the right ship. (see 3.4.3 and 3.4.1)

The ObjectManager implements the physics engine: it updates the position of ships and
bullets, and checks if they collide with walls or with each other. It inserts or removes

2the port number is read from the ConnectionSetupTask

22

ships when told so by the registrar, and tells it about ships that have been destroyed
(see 3.8). It handles object transfers when ships or bullets cross piece boundaries.

The PieceManager handles the pieces’ state. It takes care of the necessary piece trans-
fers when the overlay network changes (see 3.6), and subscribes to piece’s server node
when needed (see 3.5). Constants determine the intervals or timeouts for various main-
tenance jobs, for example BACKUP INTERVAL is the interval between sending two piece
backups.

The PlayerManager implements parts of the player role. It registers the user, and peri-
odically queries registrars for the score of known users. (see 3.4.3 and Fig. 3.10.b)

The PlayerRegistrar class is responsible for the registrar role of a node (see 3.8). It
keeps a registry of players and handles score queries. It manages each player’s ship
(intervals and timeouts are also determined by constants) and transfers a player’s reg-
istration when a change in the overlay network requires it. (see 3.6)

The *DTO3 classes are used to send objects, players, pieces and remote updates between
nodes.

4.5.1 The ch.dongxi.xpilot.legacy.p2p.message package

The ch.dongxi.xpilot.legacy.p2p.message package contains a class for every type of
message exchanged between nodes. ch.dongxi.xpilot.legacy.p2p.message.
Message.Type is an enum that lists all these types.

The ch.dongxi.xpilot.legacy.p2p.message.MessageMarshaller is used to convert
messages to or form a byte array.

4.6 The ch.dongxi.xpilot.pulsar.* classes

The ch.dongxi.xpilot.pulsar package provides the classes that act as a layer be-
tween XP2Pilot and Pulsar and the classes that are needed for the configuration of
Pulsar.

The Dispatcher class delivers incoming messages to the appropriate handler
(PieceManager, ObjectManager, ...).

The GameService class is the interface betweenXP2Pilot and Pulsar. It passes incoming
messages to the Dispatcher for delivery, and provides methods to send messages, to
determine if the node owns a given ID, or to find the first given number of nodes
responsible for an ID.

JoinService is a wrapper around org.pulsar.protocol.entrypoint.EntryPoint
Service making it easier to use it as a Spring bean.
LocalService does the same for org.pulsar.protocol.local.LocalService.

A PulsarMessage is a container object for a ch.dongxi.xpilot.legacy.p2p.message.
Message. It shields XP2Pilot from the specific way Pulsar represents a message.

3DataTransferObject.

23

4.7 The ch.dongxi.xpilot.tasks.* classes

ClientLoop is a org.pulsar.core.scheduler.IJob that runs at the FREQUENCY de-
fined in ch.dongxi.xpilot.game.Game. It handles the commands of the user. (see
4.10)

ServerLoop is also a IJob and runs at the same frequency.
It calls objectManager.updateObjects(); and pieceManager.sendRemoteUpdates();

4.8 The ch.dongxi.xpilot.view.* classes

The ch.dongxi.xpilot.view contains a GUI that can be used to inspect the internal
data structures of a node. (Fig. 4.1)

Figure 4.1: Screenshot of the game inspector window. The title bar indicates the node’s
IP address and port number and the user’s nickname. The status bar shows the network
state and player state (see 4.2). The square in the center represents the world, divided
in 10 x 10 pieces (see 3.4.1). White pieces are in the Local state, grey ones in the Remote
state, and black ones are Void (see 3.5). The active zone (see 3.4.3) appears in light
green. The number in the bottom left corner of the white pieces indicates the number
of subscribers. The number in the top left corner of other pieces indicate if the node
has a backup for a given piece, and if available, the level of this backup (see 3.4.1). The
left column displays the content of the registry (see 3.8), here with only one entry. The
right column displays the score and nickname of known users.

24

4.9 The ch.dongxi.xpilot.world.* classes

The ch.dongxi.xpilot.world package provides classes for ships, bullets, walls, posi-
tions, and pieces (WorldPiece).

The World class contains the list of all WorldPieces. A piece can be accessed by its
number, by its row and column coordinate, or by giving a position it contains. It de-
clares the following constants: PIECE COUNT, ROW COUNT, COLUMN COUNT, PIECE HEIGHT,
PIECE WIDTH, WORLD HEIGHT and WORLD WIDTH.

4.10 Threads

XP2Pilot runs with only three threads:

• One thread (ch.dongxi.xpilot.legacy.net.PacketInputThread) reads the pack-
ets sent by the client, updates the connection information and enqueues the ship
commands in a java.util.concurrent.ConcurrentLinkedQueue.4

• The shutdown hook is invocated by the virtual machine when the user quits the
game and thus run only a very short time. (see 4.2)

• All other tasks are implemented as org.pulsar.core.scheduler.IJob and run
inside the thread of the org.pulsar.core.scheduler.Scheduler.

4which are then dequeued by the ClientLoop task (see 4.7)

25

Chapter 5

Conclusion

Although not promised to a bright commercial future, nor having the pretension to be
the most fun game ever created, XP2Pilot is nevertheless a successful implementation of
a peer-to-peer game. It is not only a distributed but also a fully decentralized system. It
adapts to the changing overlay network and recovers from inconsistencies with minimal
inconvenience for the user.

The transition from one server node to the next one is almost unnoticeable, thus achiev-
ing the fluidity required by a realtime game.

The chosen design provides an efficient anti-cheating measure, i.e. the registrar, which
hinders the user to locally manipulate its score.

Furthermore, we plan to reuse the solutions and concepts developed for XP2Pilot to
build a distributed shared clipboard application, which could be used as a model for
other peer-to-peer collaboration tools.

Related and Future Work

Many techniques developed on a practical level for this project can be found in solutions
described by [10] on a more theoretical level. We divided the world into pieces and
described an active zone which they called region. The essential task of a node as for its
server role is managing interactions between objects, which is what their coordinator
does.

They used Scribe [11], an application level multicast infrastructure, to reduce network
traffic, whereas XP2Pilot could exploit Pulsar ’s streaming capability. The challenge
resides in the tradeoff between reduced bandwidth versus larger latency.

They conclude that building a distributed peer-to-peer game is a feasible option to
achieve better scalability. We tend to agree, but like to add that building a fully decen-
tralized and cheat-proof game might prove impossible for a realtime game.1

Adding features to XP2Pilot to make it more like (or even better than) the original
game, might not be the most rewarding undertaking. On the other hand, building on
XP2Pilot, the implications of cheating on a decentralized peer-to-peer system could be
further explored, and new measures to prevent it could be designed [9].

1Although a secure implementation of a turn based game like poker should be possible, based on
similar cryptographic primitives as in distributed voting protocols.

27

Finding and adapting a form of week cryptography, secure enough for a peer-to-peer
game or any other peer-to-peer system with timing constrains, would be a further chal-
lenge.

When considering an environment like the local area network, where implicit trust or
security is given, one could explore if XP2Pilot ’s method of distributing responsibility
among nodes based on an underlying DHT could be used for other applications, in
order to provide on the application layer what zeroconf 2 aims at doing on the network
layer.

2http://www.zeroconf.org/

28

List of Figures

2.1 xpilot-ng-sdl screenshot. 8

3.1 Schematic screenshot of the game. 9
3.2 Client-Server architecture of XPilot-NG with 3 players. 10
3.3 P2P architecture of XP2Pilot with 3 players. 10
3.4 The world as seen by a node. 13
3.5 State transition graph for a piece. 14
3.6 Subscription process. 15
3.7 Piece transfer process. 16
3.8 Combined piece transfer and subscription transfer process. 16
3.9 Network state transition graph. 17
3.10 (a) Registration process. (b) Querying for the score and nickname of a

user. (c) Inserting a new ship. (d) Ship transfer between 2 server nodes. 18
3.11 Replacement of a ship after it has been destroyed. 19

4.1 Screenshot of the game inspector window. 24

29

Bibliography

[1] Bittorrent protocol specification v1.0, July 2006.

[2] Remo Meier. Peer-to-peer live streaming. Master’s thesis, ETH Zurich, 2007.

[3] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content-addressable network. In Proceedings of the ACM SIGCOMM
’01 Conference, 2001.

[4] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM ’01 Conference, August 2001.

[5] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2001.

[6] Katherine L. Morse. Interest management in large-scale distributed simulations.
Technical Report ICS-TR-96-27, Department of Information & Computer Science,
University of California, Irvine, 1996.

[7] Jeffrey Pang, Frank Uyeda, and Jacob R. Lorch. Scaling peer-to-peer games in
low-bandwidth environments. International Workshop on Peer-to-Peer Systems
(IPTPS), 2007.

[8] Markus Bylund and Fredrik Espinoza. Testing and demonstrating context-aware
services with quake III arena. Communications of the ACM, 2002.

[9] Nathaniel E. Baughman, Marc Liberatore, and Brian Neil Levine. Cheat-proof play-
out for centralized and peer-to-peer gaming. Technical report, Dept. of Computer
Science, University of Massachusetts, 2007.

[10] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-peer support
for massively multiplayer games. Technical report, Department of Computer and
Information Science, University of Pennsylvania, 2004.

[11] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
Scribe: A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications (JSAC), 2002.

31

Appendix A

Beans dependency graph

This graph was generated with the Spring IDE Eclipse plugin.

	Introduction
	Common Uses of Peer-to-Peer
	File Sharing
	Multimedia Live Streaming
	Distributed Hash Tables

	Peer-to-Peer and Games

	Components
	Game
	Network: Peer-to-Peer Overlay

	Architecture and Design
	The Game
	From XPilot-NG to XP2Pilot
	Network Layer
	Game Engine
	Server Role
	Registrar Role
	Client Role

	The Pieces and their State
	Network Dynamics
	Piece Subscriptions
	Piece Transfer States

	Network States
	Player Management
	A Final Comment

	Implementation
	Spring
	The ch.dongxi.xpilot.game.* classes
	The ch.dongxi.xpilot.legacy.* classes
	The ch.dongxi.xpilot.legacy.map package
	The ch.dongxi.xpilot.legacy.net.packet package

	The ch.dongxi.xpilot.net.* classes
	The ch.dongxi.xpilot.p2p.* classes
	The ch.dongxi.xpilot.legacy.p2p.message package

	The ch.dongxi.xpilot.pulsar.* classes
	The ch.dongxi.xpilot.tasks.* classes
	The ch.dongxi.xpilot.view.* classes
	The ch.dongxi.xpilot.world.* classes
	Threads

	Conclusion

