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Abstract

The dissemination of rumors in a network is modeled as
a game. There, the choice of most suitable starting nodes is
one important aspect. Analyzes with different models of the
rumor game in various network topologies are performed.
For small world networks and random graphs it is simulated
using a network algorithm tool. Furthermore concepts of
Voting theory are used to gain a broader insight in the anal-
ysis of this rumor game.
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1
Introduction

Rumors can spread astoundingly fast through networks of people. Traditionally
this happens by word of mouth, but with the emergence of the internet and its new
possibilities new ways of rumor propagation are present. People write email, chat
with each other or publish their thoughts in a blog. In these networks many factors
influence the dissemination of rumors. It is important who initiates at which place
some piece of information and how convincing it is. Furthermore the underlying
network structure decides how fast the information can propagate and how many
people can be reached.
More generally we can speak of diffusion of information in networks. This was the
topic of various research during the past years. The analysis of these diffusion pro-
cesses can be useful for viral marketing, e.g. to target a few influential people for
initating marketing campaigns. How the diffusion takes place is tightly influenced
by the underlying nework structure.
We aim at modeling the spreading of rumors as a game where a number of play-
ers can choose different starting nodes in a graph to spread messages. Additional
parameters as the persuasiveness or the aging of a rumor can modulate the propaga-
tion of the message through the network. The payoff of each player is the number
of nodes that are convinced by the corresponding rumor.
In this thesis we are interested in various aspects of such a rumor game. The
choice of nodes that is particularly suitable for initiating the piece of information
is one important problem. Of course it is strongly dependent on the underlying
network structure. We therefore analyze various network topologies starting with
star, line and grid graphs. Furthermore we examine how multiple players influence
our rumor game. The players can select from different strategies. In the analysis
of the game the existence of Nash equilibria is examined.

1



2

Basically we define two different models for the rumor game and perform our ex-
aminations in each of them. Moreover we perform simulations in two different
small world graph models and in a random graph model. Small world networks
have been discovered in various natural phenomena, examples include electric
power grids, neural networks, voter networks or social influence networks. Thus
our simulations show the behaviour of the rumor game in real world networks and
give us further knowledge which rumor placing strategies are beneficial.
The analytical examinations in general graphs are conducted with concepts of fa-
cility location theory. After adapting these concepts to our model they give further
insights in the problem of choosing the best nodes to initiate the rumor in a general
graph.
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Related Work

In the following we outline three main areas of research related to our rumor game.

2.1 Diffusion of Information

The determination of an initial set of active nodes that starts the diffusion process is
an important task for modeling the diffusion of information. Kleinberg et al. [13]
study the optimization problem of selecting the most influential nodes in a social
network. The optimal solution is NP-hard, but provable approximation guarantees
are provided for efficient algorithms. This Influence Maximization Problem asks
to find the k-node set of maximum influence, whereas the influence of a set of
nodes is the expected number of activated nodes at the end of the diffusion process.
Kleinberg et al. achieve an approximation of the optimum by a natural greedy hill-
climbing strategy. Their method is better than heuristics based on nodes’ degrees
and centrality within the network, as well as choosing random nodes. The hill-
climbing strategy is always within a factor of at least 63% of the optimal solution
for this problem.
Blume [1] studies strategic interaction between players. The players are myopic
in their decision making and after they made one, they are locked in for some
short period of time. He examines two kinds of strategy revision processes: In
Best-Response Dynamics each player maximizes instantaneous payoff at each re-
vision opportunity, whereas in Stochastic-Choice Dynamics the players choose
their strategy from some probability distribution. The strategy revision process
is a continuous-time Markov process on the space of configurations and describes
the evolution of players’ choices through time. The player adapts to the environ-
ment in which she plays. The environment is in turn determined by the choices
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made by the entire collection of players.
Young [17] considers processes in which new technologies and forms of behaviours
are transmitted through social or geographic networks. The player’s decisions are
based on a combination of their inherent payoff and the number of neighbors who
have adopted them. The long-run behavior of such systems is analyzed using a po-
tential function. A change in a player’s payoff results in a change in the potential.
Every pure Nash equilibrium is a local maximum of the potential function. Young
introduces a structural criterion, called close-knittedness. A group is close-knit if
its members have a relatively large fraction of their interactions with each other as
opposed to outsiders. He shows that when agents have a logistic response function
to their neighbor’s choices, and they interact in small, close-knit groups, the ex-
pected waiting time for diffusion to occur is bounded above independently of the
number of agents and independently of the initial state.

2.2 Game-Theoretic Approaches

The propagation of information through a social network has been studied from
a game theoretic perspective, in which one postulates an increase in utility for
players who adopt the new innovation or learn the new information if enough of
their friends have also adopted it.
Morris [15] and Young [17] consider a setting like the following coordination
game: in every time step, each node in a social network chooses a type 0, 1. The
players of type 1 have adopted the information. Each player i receives a positive
payoff for each of its neighbors that has the same type as i, in addition to an in-
trinsic benefit that i derives from its type. Each player may have a distinct utility
for adopting, depending on his inherent interest in the topic. Suppose that all but a
small number of players initially have type 0. Morris and Young explore the ques-
tion of whether type 1’s can ”take over” the graph if every node chooses to switch
to a type with probability increasing as the number of is neighbors that are of the
same type increases.
Morris [15] examines when we get contagion under deterministic best response
dynamics in local interaction games. Each player’s binary choice in each period
is best response to the population choices of the previous period. In this setting
maximal contagion occurs when local interaction is sufficiently uniform and there
is low neighbor growth. The game model consists of a set of players, furthermore
it is specified which players interact with which other players. The players interact
with a finite subset of the population. Each player at each location has a set of
available actions and a payoff function. A player chooses one of two actions to
play against all neighbors.
Ellison [3] examines the dynamic implications of learning in a large population
coordination game. In each period of a dynamic model the players are randomly
matched and each pair plays a 2× 2 coordination game. There exist two matching
rules, uniform and local. The game is repeated till it converges. Again the players
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react myopically to their environment.
In our rumor game we concentrate on the decision making at the beginning, that is
when the players are choosing their nodes to initate the rumor in the network.

2.3 Location Problems

In the one-dimensional space Hotelling [11] examines a competitive location prob-
lem. He analyzes the establishement of ice-cream shops at a long beach where the
customers are distributed uniformly and buy their ice-creams at the nearest shop.
Voronoi Games are used to process the problem in two dimensions. In these games
the location set is continuous, and the consumers are assumed to be uniformly
distributed. Cheong et al. [2] suppose that the Voronoi Game is played on a square
with uniform demand and with a large enough number of moves. The second
player locates all her points after observing all of player 1’s moves. They show that
in this setting player 2 obtains a payoff of at least 1/2+α for a fixed constant α. In
our model the location set is discrete, thus we cannot just adopt these calculations.
In the competitive location model of Hakimi [9] two competitors alternately choose
locations for their facilities in the plane. Here the leader takes into consideration the
reaction of the follower by choosing her positions. The follower has full knowledge
of the leaders choosen positions and correspondly chooses her positions. Hakimi
shows that finding the leader’s and the follower’s position on general graphs is
NP-hard. Our model differs from Hakimi’s in various aspects. Hakimi enables
the placing of users on edges, and the placing of multiple users at vertices. In our
model each vertex can be interpreted as one user.
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3
Preliminaries

In this section a model for the propagation of the rumors in the network is de-
scribed. Furthermore two different models of the rumor game are defined and the
topology model is described.

3.1 Propagation

Our Flooding Model defines the propagation of the rumors in a graph G(V,E).
Two rumors with persuasiveness psvi are initiated at starting nodes si ∈ V . The
propagation of the rumors stops if all nodes have received one rumor.

In round k node i believes rumor ri with probability Pi =
∑

mi
psvi(mi)∑

m psvi(m) , where mi

is a message received from a neighbor containing rumor ri. Thus Pi depends on
the rumors obtained in round k − 1. Rumor ri is then propagated in round k to all
neighbors which have not yet received one.
Granovetter [8] and Schelling [16] were among the first to define a model that
handles the propagation of information in networks by introducing the Threshold
Model. There, the information is propagated to all neighbors if the summed up
persuasiveness of the received messages exceeds a threshold,

∑
m pers(m) ≥ t.

A further basic diffusion model is the Independent Cascade Model, recently inves-
tigated in the context of marketing by Goldenberg, Libai and Muller [6] [7]. In this
model node i is given the single chance to propagate rumor ri to neighbor j with
probability pi,j . There are no further attempts of node i to activate node j. This
process runs till no further activations are possible.
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8 3.2. RUMOR GAME

3.2 Rumor Game

In this section two models are described that are used for the selection of the start-
ing nodes of the rumor game, the Basic Model and the Bidding Model.

3.2.1 Basic Model

Consider two players p1, p2 and a graph G(V,E). Vertices vi ∈ V correspond to
strategies, edges ei ∈ E are interaction possibilities. In the Basic Model of the
rumor game the players choose their strategy by selecting their starting node in the
graph to place a rumor ri with persuasiveness psvi. Then the rumors propagate
through the graph as specified by the Flooding Model. The payoff for player pi

is calculated when every node has heard a rumor and equals the number of nodes
that believe rumor ri. This model can be extended to multiple players, where each
player chooses one node in the graph to initate her rumor.

3.2.2 Bidding Model

The Bidding Model is an extension of the Basic Model. It consists of two players, a
purse for each player and a graph G(V,E). There is a auction for each node v ∈ V ,
where the players bid secretely for the node. The highest bid wins the node, the
money of the loosing player is lost. Nobody wins the node if bids at a node are
equal. The payoff of each player is payoff= number of convinced nodes. We can
think of different strategies of bidding. A player can choose high degree nodes,
choose central nodes or bid for many nodes and distribute these bids uniformly.

3.3 Topology

We perform our analyzes in different regular topologies each of them having n
nodes. The star contains one central node and n − 1 leaves. The d-dimensional
grid (d,l) has lenght l in each dimension and consists of nodes of degree 2d except
the nodes at the borders.
Furthermore we perform examinations in Kleinberg, respectively Eppstein small
world graphs and Eppstein random graphs. These models are described in detail
in Section 4.1.5.



4
Analysis

4.1 Basic Model

We consider the Basic Model of the rumor game where player 1 starts placing a
rumor with psv = 1 at one node, afterwards player 2 places a rumor with psv = 2
at another node. If two rumors arrive at the same time at a node then the higher
persuasiveness wins, in this case player 2. In the following we perform our exami-
nations for various topologies.

4.1.1 Star

The central node in the star topology dominates all other nodes. The player which
places her rumor there isolates the other and wins all remaining nodes. When one
player places the rumor at the central node we obtain a Nash equilibrium.

4.1.2 Line

For the analysis of the game we calculate a n× n payoff table of all possible com-
binations of strategies. From Table 4.1 we learn which combination of strategies is
the best for each player and whether any Nash equilibria exist.
We do not allow that both players choose the same node, therefore the correspond-
ing table entries remain empty. In Table 4.1 there are only non-dominated rows and
columns in the table. We obtain a Nash equilibrium if the players choose the two
nodes in the middle of the line. In this case no player has an incentive to change its
strategy.

Lemma 4.1.1. In the line topology the winner obtains payoff p = dn/2e, the looser
p = bn/2c in a Nash equilibrium.

9
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4 + 1 n
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Table 4.1: Strategies of player 1 are on the left, on the top nodes where player 2
initates her rumor. For each tuple is given the payoff of player 2.

Proof. The two players can be seen as competitors in the Hotelling problem [11].
There, two ice cream shop owners want to locate their shop at the best place at a
beach. The customers visit the shop nearest to them. The owners relocate the shops
till they are both situated at the middle where they both reach half of the customers.
In this situation they do not have any further incentive to change their strategy. This
results in a Nash equilibrium with payoff p = dn/2e for the winner.

4.1.3 D-dimensional Grid

The construction of a payoff table soon becomes difficult for increasing dimen-
sion. However the regularity of a d-dimensional grid let us presume that the Nash
equilibrium is still situated in the middle. The middle is defined as the node with
minimal maximal distance to any other node.

Lemma 4.1.2. In a Nash equilibrium the players are choosing adjacent nodes in
the middle of a d-dimensional grid.

Proof. A player pi places her rumor at a random node i. The opposite player’s best
response is to place the rumor besides the placed copy in direction to the middle.
Thus she ensures a largest possible part of the network for herself by isolating
player 1 from that area. However, the first player’s best response is now as well
to move his copy in direction to the middle to regain the lost area. This procedure
continues till both player place their copies in the middle and cannot increase their
payoff anymore.

Observation 4.1.3. In a d-dimensional grid a Nash equilibrium is always unique.

Obviously there exist several symmetrical identical solutions of a Nash equilbrium
in a d-dimensional grid. We do not consider these as different solutions. In a
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regular grid there is only one node with minimal maximal distance to any other
node. Therefore the middle is unique and so is the Nash equilibrium as stated in
Observation 4.1.3.
Because Lemma 4.1.2 holds and the length l in one dimension is even both players
obtain exactly half of the nodes by placing the rumor in the middle. This lets us
state following observation.

Observation 4.1.4. In the 2-dimensional grid topology with even length l every
player obtains payoff p = n/2 in a Nash equilibrium.

If the dimension is odd the first player wins n1/d more by placing her rumor in the
middle.

Observation 4.1.5. In the d-dimensional grid topology with odd dimension l the
first player obtains payoff p = n/2 + n1/d in a Nash equilibrium.

4.1.4 Fairness

The Nash equilbira that we have analyzed so far are very different in terms of their
fairness. In the following we examine their fairness coefficient.

Definition 4.1.6. The fairness coefficient of a Nash equilibria in a two player ru-
mor game is

fairness =
payoff player 1
payoff player 2

.

Obviously the star topology is not very fair. If the number of players is |P | ¿ n,
then the payoff for the player who chooses the central node is payoff = n − p.
The corresponding fairness coefficient is very low, fairness = 1

n−1 . However, the

line topology is very fair, the fairness coefficient being almost 1, fairness = n/2−1
n/2+1 .

In a d-dimensional grid one player gains n(d−1)/d more than the other, leading to
fairness = n/2−n(d−1)/d

n/2+n(d−1)/d . Thus for increasing dimension the fairness coefficient is
decreasing. If d and n are small enough then the Nash equilibrium can be quite
unfair. Compare a 2-dimensional grid with n = 100, there the fairness coefficient
is 0.6 and therefore not very high. Correspondingly we obtain in a 3-dimensional
grid for the same parameters fairness = 0.4. If n is high then the Nash equilibria
is fair, the fairness coefficient being close to 1.0.
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4.1.5 Simulation

To simulate the rumor game on various network topologies we use Sinalgo. This
is a simulation framework for testing and validating network algorithms. The Jung
framework is a further useful tool. It provides a common and extensible language
for the modeling, analysis and visualization of data that can be represented as a
graph or network. Various network models are implemented. By including the
Jung framework in the Sinalgo framework we can simulate the rumor game also
on small world graphs and random graphs.
In a simulation in Sinalgo each node executes an algorithm that specifies what is
done with an incoming message. Messages can be sent from node to node or can
be broadcasted from a node to all neighbors.
The Jung framework implements various models. Most interesting for us are the
small world graph models of Kleinberg and Watts. Furthermore we consider also
the random graph model of Eppstein.
For the simulation of our rumor game each node processes following simple al-
gorithm. In each round a node i receives messages m1,m2 ∈ M contain-
ing rumor1, respectively rumor2. Message mi is propagated with probability

Pmi =
∑

mi
psvi(mi)∑

m psvi(m) to the neighbors where no message was received from. Node
i ignores further messages.
This allows us to simulate our rumor game where each player chooses some node
to initate its rumor. In the next sections we first describe the different graph models
and then analyze different rankings of nodes in small world graphs.

Kleinberg Small World Model

The Kleinberg graph generator produces a random graph with small world prop-
erties. The underlying model is an n × n toroidal lattice. Each node u has four
local connections, one to each of its neighbors, and in addition long range connec-
tions. These nodes are chosen randomly according to a probability proportional to
d−α, where d is the lattice distance between u and its long-range contact v and α
is the clustering expononent. Previous examinations have shown that a clustering
exponent of 2.0 matches most accurately real small world graphs.

Watts Small World Model

The Watts model defines a small world network using the beta-model as proposed
by Duncan Watts. The basic ideas is to start with a one-dimensional ring lattice
in which each vertex has k neighbors. Then the edges are randomly rewired with
probability β, in such a way that a small world network can be created. Its proper-
ties are low characteristic path lengths and a high clustering coefficient.
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Eppstein Power Law Graph

Eppstein et al. [4] propose a graph model with power law distribution, what is an
important characteristic of web graphs. Faloutsos et al. [5] observed that the inter-
net topology exhibits power law distribution for example in the degree sequence of
web graphs. Furthermore power law distribution occurs in epidemiology, popula-
tion studies, genome distribution and various social phenomena.

HITS Ranking

The hypertext-induced topic selection (HITS) of Kleinberg offers a concept to the
ranking of nodes in the network. Nodes are understood as Hubs which are con-
nected to other nodes and as Authorities that are linked by other nodes. Based on
these two terms Kleinberg [14] introduces a ranking for nodes in a network.
In the following we simulate the Basic Model of our two player rumor game. Player
1 chooses a random node, player 2 chooses the node with highest HITS value. We
simulate the rumor game 1000 times in a Kleinberg small world graph. In Table
4.2 the results are listed.

Node Wins Avg. # won nodes Avg. HITS value Avg. degree
Random 18.1% 41% 15.5 12.0
Max. HITS 81.9% 59% 40.5 18.9

Table 4.2: Results of 1000 simulations in the Kleinberg small world model with
625 nodes and clustering exponent 2.0

The number of won nodes is with 59% on average significantly higher. From these
simulations we can conclude that choosing the node with the highest HITS value
offers great advantage for a player compared to a random node.

Observation 4.1.7. In a two player rumor game it is significantly better to choose
the node with the highest HITS ranking than a random node for the inital place-
ment.

Varying of Clustering Exponent

The clustering exponent α characterizes the localized degree of the long-range
connections in the network. We have the uniform distribution over long-range
connections when α = 0. As α increases the long-range connections of a node
become more and more clustered. Therefore α serves as a structural parameter
measuring how connected the nodes in the graph are. We simulate the rumor game
in small world graphs in the table below for 0 ≤ α ≤ 4. Bigger values of α are not
interesting, the probabilty for long-range connections becoming too low.
When α increases the wins and the average won nodes of player 2 decrease. The
average maximum HITS value increases whereas the other values like degree and
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HITS node \ α 0 1 2 3 4
Wins 97.6% 94.8% 81.9% 73.3% 71.5%
Avg. won nodes 63.5% 62.1% 58.1% 55.5% 53.7%
Avg. max HITS value 33.1 35.0 40.7 49.0 53.7

Table 4.3: Results for player 2 choosing the node with highest HITS value. 1000
simulations for every value of α in a Kleinberg small world graph with 625 nodes.

HITS value of the random node or the degree of the maximum HITS node stay the
same. We can conclude that α influences the rumor game, higher values leading to
a more balanced outcome of the game.

Observation 4.1.8. In a Kleinberg small world graph varying the clustering expo-
nent α influences the outcome of the two player rumor game significantly.

Degree Ranking

The degree of a node is a further measurement to rank nodes. In Table 4.2 we see
that the nodes with highest HITS value do also have a significantly higher degree
than random nodes. That is not very astonishing, rather does the degree of a node
have strong influence on its HITS value.
Again we simulate the rumor game 1000 times in a Kleinberg small world graph.
Player 1 chooses a random node and player 2 the node with the highest degree.
Compare the following table for the results.

Node Wins Avg. won nodes Avg. HITS value Avg. degree
Random 9.8% 38.4% 15.9 11.9
Highest degree 90.2% 61.6% 18.9 23.4

Table 4.4: Results of 1000 simulations in the Kleinberg small world model with
625 nodes and clustering exponent 2.0

As we can see player 2 wins now even more games. Furthermore the wins are
slightly clearer with 62% won nodes. This lets us state the following observation.

Observation 4.1.9. In a two player rumor game it is significantly better to choose
the node with the highest degree than a random node for the inital placement.

Comparison of Degree and HITS Ranking

Now it remains to examine which of the two ranking methods is better. For that
purpose compare the table below generated by a simulation where player 1 chooses
the highest degree node and player 2 the node with the highest HITS value.
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Node Wins Avg. won nodes Avg. HITS value Avg. degree
Highest degree 63.4% 53.1% 18.9 23.3
Highest HITS 36.6% 46.9% 40.9 19.0

Table 4.5: Results of 1000 simulations in the Kleinberg small world model with
625 nodes and clustering exponent 2.0

The dominance of choosing the highest degree node is a bit surprising. However,
the wins are quite narrow with only 53% of the nodes for the winning player.
Nevertheless we can state following observations.

Observation 4.1.10. In a two player rumor game it is significantly better to choose
the node with the highest degree than the node with highest HITS ranking for the
inital placement.

Observation 4.1.11. The HITS ranking is not the best measurement for choosing
the node to initiate the rumor in the network.

Watts Small World Model

We want to ensure that the observations do not depend on the Kleinberg model but
rather do hold also in other graph models. Therefore we examine the Watts small
world graph model in the following. One disadvantage in this model is that the
nodes are homogenous in degree, that is most nodes have about the same degree
whereas real networks are inhomogenous.
We start with simulating the rumor game two times, player 1 choosing each time a
random node and player 2 once the highest degree and once the node with highest
HITS value. We observe that choosing the highest degree node or the highest HITS
value node is much better than choosing a random node. In each case the players
win about 67% of the nodes and 97% of the games, what confirms Observations
4.2.1 and 4.2.3.
In Table 4.6 we compare the HITS ranking and degree ranking for different values
of β. The values are noted for the node with the highest HITS value.
The Watts model interpolates between a regular lattice and a random network as β
varies. If β = 0 then the graph equals the basic lattice structure. As β increases the
lattice becomes increasingly disordered unitl at β = 1 we have a random network.
In Table 4.6 we observe that again the first player’s strategy dominates when we
for once do not consider the special cases β = 0.0 and β = 1.0. The variation
of β does not have much influence about the results of the rumor game. We have
to mention that the results are not that clear in the Watts model the average won
nodes beeing close to 50%, however Observations 4.2.4 and 4.2.5 are confirmed
once again.
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HITS node \ β 0.0 0.2 0.4 0.8 1.0
Wins 87% 37% 38% 43% 30%
Avg. won nodes 49.8% 46.9% 48.6% 48.9% 48.1%
Avg. max HITS value 16.0 39.6 38.9 40.3 41.1
Avg. degree 11.9 18.1 21.1 23.8 24.2

Table 4.6: Results for player 2 choosing the node with highest HITS value. 100
simulations for values of β in a Watts small world graph with 625 nodes and pa-
rameter degree = 6.

Eppstein Random Graph Model

In this section we examine the outcome of the rumor game in the Eppstein random
graph model. It appears that in the Eppstein model the parameters influence the
results strongly.

HITS node \#e 1000 2000 3000 4000 6000
Wins 75% 50% 42% 17% 8%
Avg. won nodes 316 310 298 275 270
Avg. max HITS value 114 50 38 33 29
Avg. degree 18.8 29.5 39.4 48.9 66.7

Table 4.7: Results for player 2 choosing the node with highest HITS value. 100
simulations for every number of edges in a Eppstein random graph with 625 nodes
and parameter = 5.0.

In Table 4.7 we can observe that the values are decreasing linearly with increasing
number of edges. Only the average degree of the node with highest HITS value is
increasing. This is also a logical consequence of the increasing loss of influence of
player 2.
The average degree gives us some evidence what choice of parameters could be
most realistic. As we have seen in Table 4.2 in the Kleinberg small world model
lies this value between 12 and 19 in a graph with 625 nodes. Thus values that are
much higher can be interpreted as leading to a degenerated network with too high
clustering of the nodes.
Still it remains quite difficult to define what choice of paramteres could be most
realistic. However, we can conclude from Table 4.7 that for small number of edges
it is better to choose the node with highest HITS value, whereas for high number
of edges the highest degree node is better. For random graphs which are similar to
small world graphs in terms of their number of nodes and edges we cannot state
clearly which strategy is better.
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4.2 Basic Model with Multiple Players

In this section we extend the rumor game to multiple players. We look at different
cases on the line and grid topology by using the Basic Model. The players want to
maximize their payoff and play with a risk averse or a risky strategy. If a player
chooses a risky strategy, she wants to ensure a high maximal payoff. A risk averse
strategy wants to secure a high minimal payoff by maximizing the payoff.

4.2.1 Line

Risk Averse Strategy

In the risk averse case, player 1 places the rumor at position n/6, compare Figure
4.1. She avoids the middle so that the other players can not isolate her, but she
secures a minimal payoff of n/6. Player 2 places the rumor similarly at position
5n/6. Thus player 3 can place her rumor somewhere between the already placed
rumors. We assume player 3 to play fair, what lets her choose the middle. This
results in a payoff of n/3 for every player.
Generalizing the game to k risk averse players, the locating principle stays the
same. The rumors are initated at distances 1/k starting at 1/(2k). Therefore every
player obtains payoff= n/k.

P1 P2P3

n/6 5n/6

Figure 4.1: Line risk averse. Placing strategies of three players.

Risky Strategy

If the players decide to play with more risk the analysis looks differently. Player
1 and 2 do position their rumors at positions n/4 and 3n/4. Thus they ensure
a payoff of n/4 and they still have the opportunity to win even n/2. For player
3 there remain following possibilities, where she obtains always payoff= n/4.
Compare Figure 4.2 for the three different cases.

P1 P2
(i) P3

n/4 3n/4

(ii) P3(iii) P3

Figure 4.2: Line risky strategy. (i) In this fair case player 3 places the rumor in the
middle. (ii) The rumor is placed at 3/4 + 1. (iii) In the third case player 3 places
the rumor at 3/4− 1.



18 4.2. BASIC MODEL WITH MULTIPLE PLAYERS

Case Player 1 Player 2 Player 3
(i) 3n

8
3n
8

n
4

(ii) n
2

n
4

n
4

(iii) n
4

n
2

n
4

Table 4.8: Lists the payoff of each player in the corresponding case.

From Table 4.10 we learn that player 3 cannot influence his own payoff but decides
how much payoff the others obtain. In this case we assume that she chooses the
fair strategy, resulting in a payoff =3n

8 for player 1 and 2.
If we consider k risky and fair players, we observe that player 1 and 2 win slightly
more that the others, their payoff being 1

k+1+ 1
2(k+1) . They benefit from the fairness

of the other players. Each of the remaining players obtains payoff= 1
k+1 .

4.2.2 2-dimensional Grid

Risk Averse Strategy

Playing with a risk averse strategy the k players aim at maximizing their payoff and
at the same time at ensuring a high minimal payoff. One possible outcome is that
the players initate their rumors at nodes located on a circle, see Figure 4.3(a). This
results in an equal distribution of the nodes for all players, giving each of them a
payoff of n/k.

Risky Strategy

If the players choose more risky strategies, they want to ensure themselves a high
maximal playoff. One possible outcome is that they place the rumors on a circle
at bigger distances. Thus locating on the circle is not the best place any more for
everybody and some players locate the rumor inside the circle. See Figure 4.3 for
a possible arrangement.
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(a) (b)

Figure 4.3: 2d grid. (a) Risk averse placing strategies of five players. (b) Risky
placing strategies of five players.

4.3 Bidding Model

In the following we analyze the Bidding Model for different topologies. We assume
that the players place the rumor at once at the same time. Furthermore it holds for
the purse p ¿ n. It is the player’s objective to reach as many nodes as possible.
In the following the most central node in network G = (V, E) is the node vi

with minimal maximal distance to any node v ∈ V . The two players can choose
between following strategies.

Strategy 1: Bid p for the most central node.
Strategy 2: Choose randomly p nodes and bid 1 for each of them.

We analyze the player’s expected payoff for different topologies. Player 1’s ex-
pected payoff is EP1[i, j] when she is playing strategy i and player 2 is play-
ing strategy j. Obviously the expected payoff of player 2 then is EP2[i, j] =
n− EP1[i, j].

4.3.1 Star

As we have seen in Section 4.1.4 the star topology is very unfair in the Basic Model.
In the Bidding Model there is again a much bigger payoff for choosing strategy 1
which bids for the central node if p ¿ n and both players have the same purse.
For the expected payoff of player 1 when both player choose strategy 2 we trivially
obtain EP1[2, 2] = n

2 . If player 1 bids p for the central node, then she wins all
nodes except the ones which player 2 has bid for, EP1[1, 2] = n − p. Table 4.10
shows the resulting payoffs.

Theorem 4.3.1. In the star topology the Nash equilibrium is dependent on the
value of the purse p. For p ≤ n

2 it occurs if both player play strategy 2, for p > n
2

if the two players play different strategies 1 and 2.
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P2 Strategy 1 P2 Strategy 2
P1 Strategy 1 0, 0 n− p, p

P1 Strategy 2 p, n− p n
2 , n

2

Table 4.9: Star topology. The expected payoffs of both players for the correspond-
ing strategies.

Proof. For p < n
2 it holds n − p > n

2 . In this case the players choose different
strategies 1 and 2 by maximizing their payoff. If it holds for their purse p ≥ n

2 then
both players choose strategy 2.

4.3.2 Line

When both players choose strategy 2 trivially each obtains an expected payoff of
E[2, 2] = n/2. When the players choose different strategies 1 and 2 the p nodes
of player 2’s strategy are placed randomly on the line. Therefore p + 1 intervals
of expected size n

p+1 are generated. Player 1’s central node is positioned in one
of these intervals, thus her expected payoff becomes EP1[1, 2] = n

2(p+1) . The
following table lists the expected payoffs for both players.

P2 Strategy 1 P2 Strategy 2
P1 Strategy 1 0, 0 n

2p+2 , n− n
2p+2

P1 Strategy 2 n− n
2p+2 , n

2p+2
n
2 , n

2

Table 4.10: Line topology. The expected payoffs of both players for the corre-
sponding strategies.

Theorem 4.3.2. In the line topology the Nash equilibrium occurs if both players
choose strategy 2.

Proof. We compare the the two expected payoffs of the Nash equilibra. It holds
n
2 ≥ n

2p+2 if p ≥ −1. Therefore if both players choose strategy 2 they do not have
any incentive to change their strategy and a Nash equilibirum occurs.

In Figure 4.4 the expected payoff for changing values of the purse p is showed. For
small values of p the expected payoff is high for player 1 who bids for the central
node. In this case her opponent’s purse allows to bid for few nodes only. For
increasing p player 1’s payoff is decreasing exponentially. Player 2’s purse now
enables to spread the rumors to many nodes at the beginning, limiting the influence
of the central node strongly.
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Figure 4.4: Expected payoff of player 1 when she is playing strategy 1 and player
2 is playing strategy 2 for n = 1000.

4.3.3 D-dimensional Grid

In the following we generalize the calculation of the expected payoff for d-
dimensional grids. For EP1[2, 2] we obtain again an expected payoff of n/2.
For the calculation of EP1[1, 2] we project the nodes set by strategy 2 on the d

axes. The interval on one axis containing the central node has expected size n1/d

p+1 .

Therefore we obtain for the expected payoff EP1[1, 2] =
∏d

i=1
n1/d

2(p+1) = n
2d(p+1)d .

Figure 4.4 shows the expected payoffs for different topologies. We observe that
the results are similar as already obtained for the line topology. Now, the expected
payoff for player 1 is decreasing earlier, because for increasing dimension it needs
more nodes to isolate player 1’s central node.

P2 Strategy 1 P2 Strategy 2
P1 Strategy 1 0, 0 n

2d(p+1)d , n− n
2d(p+1)d

P1 Strategy 2 n− n
2d(p+1)d , n

2d(p+1)d
n
2 , n

2

Table 4.11: D-dimensional grid topology. The expected payoffs of both players for
the corresponding strategies.

Theorem 4.3.3. In the d-dimensional grid topology the Nash equilibrium occurs
if both player choose strategy 2.

Proof. The expected payoff EP1[1, 2] = n
2d(p+1)d is smaller than n

2 for every value
of p. Therfore a player has higher payoff when she is playing strategy 2. This
results in the Nash equilibrium when both player choose strategy 2.
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5
Location Theory

In location theory it is examined where to locate facilities so that the distance to the
users is optimized. We are analyzing the same problem by looking for optimal po-
sitions to initate rumors in a network. In our rumor game two players compete for
nodes in a graph G(V,E). Each can choose alternately one starting node to place
her rumor. Then it is examined how many nodes are reached when the flooding
algorithm is started.
Hakimi et al. [9] examine the facility location problem in a weighted graph. The
facilities are located at vertices or edges whereas the users are located only at ver-
tices. In their model it is possible to locate multiple users at a vertex. Hakimi et al.
develop concepts to determine the best vertices to place the facilities.
We adapt these concepts to our model where only one user is located at each vertex,
the set of users U being V . Furthermore the edge weights are restricted to 1 in our
graph. In our model we use these concepts to determine the best vertices to start
the rumor game. In the following a few terms are introduced and adapted to our
model.
The (r|p)-medianoid problem in location theory asks to locate r new facilities in
the graph which compete with p existing facilities for reaching the most users.
Whereas the (r|p)-centroid problem examines how to locate first the p facilities
when it is known that r facilities are located afterwards by a second player.

Definition 5.0.4. Finding the (r|p)-medianoid of network is the problem of player
2 who wants to locate r new vertices to initiate the rumor when already p vertices
are choosen by player 1.

23
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G(V,E)
..
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N1(V1,E1)
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s

s

s

1

x1
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3

n

Figure 5.1: Finding the medianoid of a graph.

Definition 5.0.5. Finding the (r|p)-centroid of a network is the problem of player
1 who wants to locate optimally p vertices to initiate the rumor when afterwards r
rumors are placed by a second player.

5.1 Finding the Medianoid and Centroid of a Net-
work

In the following we introduce some notations. In graph G(V, A) it holds
DG(v, Z) = min{d(v, z)|z ∈ Z}, where d(v, z) is the length of a shortest path
in G from v to z. Thus DG(v, Z) designates the minimal shortest path from node
v to a node z ∈ Z. Let Xp be the set of the p nodes choosen by player 1 and Yr

the set of the r nodes choosen by player 2. The set of vertices that are closer to
a rumor published by Yr than to the ones published by Xp is V (Yr|Xp) = {v ∈
V |D(v, Yr) < DG(v, Xp)}. This lets us define the part of the graph controlled by
rumors placed at Yr as W (Yr|Xp) =

∑{w(v)|v ∈ V (Yr|Xp)}.

Lemma 5.1.1. The problem of finding an (r|X1)-medianoid of a network is NP-
hard.

Proof. We prove this theorem by reducing the dominating set (DS) problem to the
(r|X1)-medianoid problem.

For the DS problem there is given a graph G(V,E) with node set V , edges set E
and an integer r < |V |. It is asked whether there is a subset V ′ ∈ V such that
|V ′| ≤ r and DG(v, V ′) ≤ 1 for all v ∈ V .
Given an instance of the DS problem, we construct a network N1(V1, E1) with
node set V1 = V ∪ S ∪ x1. |S| equals n, a new vertex is introduced for every
existing vertex v ∈ V and is connected to it, compare Figure 5.1. All nodes in
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Figure 5.2: Finding the centroid of a graph. Diamond structure in graph N1.

S are connected to x1. Thus the edge set is E1 = E ∪ B ∪ T , whereas B =
{(si, vi)|s ∈ S, v ∈ V } and T = {(x1, s)|s ∈ S}.
We show that there exist r vertices on N1 composing Yr such that W (Yr|x1) ≥ |V |,
iff the DS problem has a solution. If DS has a solution in G, then there exists
V ′ ⊂ V with |V ′| = r such that DG(v, V ′) ≤ 1 for all v ∈ V . Let Yr = V ′.
Then it follows W (Yr|x1) = |V |+ c, because D(v, Yr) = 1 < d(v, x1) = 2. The
constant c = 1

2r follows from the fact that r nodes lie in the middle of x1 and some
vi ∈ V ′.
Now suppose Yr is such that W (Yr|x1) ≥ |V |. If wi ∈ Yr it holds W (wi|x1) ≤
W (vj |x1), wi and vj being neighbors. This follows from degree(wi) = 2 and
the fact that one side is blocked by x1. Therefore we can move each wi ∈ Yr to
its neighbor vj ∈ V without loosing value of W . This leads to Yr ⊂ V . Then it
is easy to see that W (Yr|x1) > |V |, what lets us state for all v ∈ V, D(v, Yr) <
d(v, x1) = 2. Thus Yr is a solution to DS.

Lemma 5.1.2. The problem of finding an (1|p)-centroid of a network is NP-hard.

Proof. We prove this theorem by reducing the vertex cover (VC) problem to the
(1|p)-centroid problem.

In the VC problem there is given a graph G(V, E) and an integer p < |V |. It is
asked whether there is a subset V ′ ⊂ V with |V ′| ≤ p such that each edge e ∈ E
has at least one end node in V ′.
Given an instance of the VC problem, we construct a network N1(V1, E1) from G
by replacing each edge ei = (u, v) in G by the diamond structure shown in Figure
2.
Let Yr(Xp) be the set of nodes choosen by player 2 when player 1 has choosen the
nodes Xp. We prove the theorem by showing that there exists a set Xp of p vertices
on N1 such that W (Y1(Xp)|Xp) ≤ 3 for every vertex Yr(Xp) on N1, iff VC has a
solution.
Suppose V ′ is a solution to the VC problem in G and |V ′| = p. Let Xp = V ′ on
N1. Then for any diamond joining u and v in N1, either u or v belong to V ′ = Xp.
Then it is easy to see that W (Y1(Xp)|Xp) ≤ 3 for every point Yr(Xp) on G.
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Figure 5.3: Counterexamples for strategies of player 1 where she does not win
at least half of the nodes. (a) Player 1 selects the node with smallest radius. (b)
She selects the node with highest degree. (c) Player 1 selects the midpoint of the
minimum spanning tree. In these examples player 2 always wins at least n/2.

On the other hand suppose the set of p points Xp on N1 is such that
W (Y1(Xp)|Xp) ≤ 3 for every choice of point Y1(Xp) on N1. If on each dia-
mond of N1 there exists at least one point of Xp, then we can move this point to u
or v ∈ V ′ ⊂ V . It follows that each diamond has either u or v in V ′ and therefore
V ′ would provides a solution to the VC problem in G.
Let us assume there is a diamond in N1 joining u and v on which no point of
Xp lies. Suppose min{D(u,Xp), D(v,Xp)} > 1 then it is easy to see that
W (e1|Xp) ≥ 4 what contradicts our presumption. Thus, we may assume that
min{D(u,Xp), D(v, Xp)} = 1. Now consider another adjacent diamond with ex-
actly one point of Xp at w. Then it holds 0 < D(u, Y1(Xp)) < D(u,Xp), that
means Y1(Xp) lies at f2, see Figure 2. However, then it follows W (Y1(Xp)|Xp) ≥
4. Thus there have to be at least two points of Xp on the diamond (v, w). In gen-
eral, if there are no points of Xp on some diamond in N1, then there are at least two
points of Xp on a adjacent diamond of N1. Therefore, there are enough diamonds
to cover all diamonds in N1, what gives us a solution to VC in G.

5.1.1 Heuristics for Centroid

The first player can use various strategies to find the optimal node to place the ru-
mor in our two player rumor game. We looked at following strategies for choosing
the centroid of a network: choose the node with smallest radius, with largest degree
or the midpoint of the minimal spanning tree. However, for these strategies it is
easy to find graphs where they do not win, compare Figure 5.3.
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In the example shown in Figure 5.3(a) player 1 selects the node vj with the smallest
radius radmin. In this simple case the second player wins more than player 1
by choosing the highest degree node vi if it holds degree(vi) > 3 · radmin/2.
In Figure 5.3(b) player 1 selects the node vi with highest degree. If it holds
n > 2 · degree(vi) then player 2 wins more than half of the nodes by selecting
the neighbor of vi. When the midpoint of the minimum spanning tree is choosen
by player 1 then it is easy to see that player 2 can choose a neighbor and win more
than half of the nodes, compare Figure 5.3(c).

5.1.2 Heuristics for Medianoid

In this section we are interested in finding the (r|r)-medianoid of a graph. Our
approach is to subdivide the graph and to determine in each area the local (1|1)-
medianoid. By distributing the calculation of the medianoid we obtain an approx-
imation to the optimal solution. Obviously it strongly influences the results how
the graph is subdivided. If both players can set about the same number of rumors,
r ≈ p, then we can subdivide the graph by following simple algorithm.

Algorithm BASIC. The clusters Si of the partition S are simultaneosly generated.
For each of the p nodes choosen by player 1 a cluster Si is created. Then in each
step the cluster is growed by adding layers around it. Each layer contains vertices
vi of constant distance, d(vi, pi) = c. If two layers meet at the same time at a node
then it is assigned with probability 1/2 to a cluster Si. The algorithm stops when
no further nodes can be added to any cluster Si.

Each node is reached by this algorithm, therefore the graph is subdivided com-
pletely. We obtain a subdivision S of G(V,E) with following properties.

(1) All Si ∈ S are disjoint.
(2) ∀v ∈ V it holds ∃Si ∈ S, v ∈ Si.

The subdivision generated by Algorithm BASIC does not restrict the size of the
partitions. One could think that the centrum of the partitions is also the best vertex
to choose for a player. Compare Figure 5.3(c) for an example where this vertex is
beaten.
In the following player 1 is assumed to place her rumors at the r best positions
knowing that a second player is to place another r rumors. In other words we
assume that the (r|r)-centroid is known to player 1. Consider the partition S of
Algorithm BASIC. In the worst case each Si corresponds to a star topology where
one leaf is shared with each neighbor, resulting in a very unfair outcome of the
rumor game for the second player.
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Figure 5.4: Example of a graph where no CondorcetVertex exists.

5.2 CondorcetVertices

For our analyzes of the Rumor Game in different topologies we introduce the Dis-
tance Score and the CondorcetVertex.

Definition 5.2.1. For any two vertices vi, vj ∈ V the number of vertices that are
closer to vi than to vj is designated as the Distance Score, DSi(j) = |{v ∈ V :
d(v, vi) < d(v, vj)}|.

Definition 5.2.2. A vertex vj ∈ V is called a CondorcetVertex if DSi(j) ≤ |V |/2
for every vi ∈ V .

Thus a vertex vj ∈ V is called a CondorcetVertex if no more than one half of
the vertices gets the rumor from any other vertex in the graph. In a general graph
CondorcetVertices must not exist, compare Figure 5.4. In this example for every
choosen node of the first player, the second player wins more than n/2.
Let F (x) be the sum of shortest paths from a vertex x to all other vertices, F (x) =∑

v∈V d(v, x).

Definition 5.2.3. A vertex vj ∈ V is called MinSPVertex if F (vj) ≤ F (vi) for
every vi ∈ V .

The MinSPVertex vj is the vertex which has the minimal sum of shortest paths to all
other vertices. In a graph the MinSPVertex does always exist. A CondorcetVertex
does not always equal the MinSPVertex, compare Figure 5.5(b) where vertex vi is
a CondorcetVertex but not a MinSPVertex.
CondorcetVertices do not have to be adjacent, compare Figure 5.5(b).
In a complete graph Gc(V, E) every vertex is a CondorcetVertex. It holds for all
vj ∈ V that DSi(j) ≤ |V |/2 for every vi ∈ V . From Gc we construct a worst
case example for the expected payoff of a CondorcetVertex by deleting half of the
outgoing edges from one node vj . The corresponding graph G′

cV,E still consists
only of CondorcetVertices. However, vertex vj with degree n/2 has an expected
payoff of only n/4.
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Figure 5.5: (a) Example where two CondrocetVertices v1 and v2 are not adjacent.
(b) Worst case example for the expected payoff of CondorcetVertex vi. The part of
the graph in the circle is a complete graph.

5.2.1 Greedy Algorithm

Hansen et al. [10] provide a greedy algorithm for finding the (possibly emtpy)
set of Condorcet points of a network in polynomial time. Our CondorcetVertices
are not allowed lying on edges, therefore Hansen’s algorithm is simplified to the
pairwise comparison of vertices. The complexity is O(n3).

Algorithm Greedy. At the beginning all vertices are put in the set Cg of possible
CondorcetVertices. For each possible pair (vj , vk) vj ∈ Cg, vk ∈ V in turn the
Distance Score DSk(j) is calculated. If DSk(j) > |V |/2 then vj is deleted from
Cg. Stop if Cg = ∅, in this case the graph has no CondorcetVertex.

5.2.2 Tree

In the following we analyze our rumor game for the tree topology. Therefore we
define a basic algorithm which finds an optimal node vopt to publish the rumor for
player 1. This node matches the (1|1)-centroid of the tree.

Algorithm TreeBasic. Let T (V, E) be a tree. The player starts at a leaf vi ∈ V . In
each step the Distance Score DSj(i) of all neighbors nj ∈ Ni is computed. Player
1 moves to the neighbor with highest DSj(i) if she can improve herself and starts
a new round. The algorithm stops at vopt when no neighbor is better any more.

Lemma 5.2.4. Given a tree T (V, E) algorithm TreeBasic always finds a Con-
dorcetVertex.

Proof. In TreeBasic for each leaf vi a unique path pi is defined on which a player
moves as long as she can improve her Distance Score DSj(i). The properties of
a pi are: (1) pi is unique, (2) pi does not contain any local maxima of DSi. The
uniqueness of pi follows from the fact that each node has an unique parent node
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and the tree does not contain any cycles. Property 2 follows from the definition
of TreeBasic, where the player only moves to a neighboring node if she increases
DSj(i). Therefore DSj(i) is monotonically increasing on pi till vopt is reached.
Lets assume player 2 finds a better node v′opt, DS′opt > DSopt. Now consider
player 1’s vopt as the new root of the tree T ′(V, E). The subtree T ′j which has
neighbor nj of vopt as root contains v′opt. The Distance Socre in subtree T ′j is
maximized if v′opt = nj . However, for vopt it holds that the Distance Score of each
neighbor DSj(opt) is lower or equal than DSopt. Therefore our assumption is
wrong and player 2 can not find a better node. Moreover it holds DSjopt ≤ |V |/2
for every vj ∈ V . Thus vopt is a CondorcetVertex.

5.2.3 D-dimensional Grid

Algorithm TreeBasic can be generalized to d-dimensional grids, compare algo-
rithm DGridBasic.

Algorithm DGridBasic. In a d-dimensional grid Gd(V,E) the player starts at an
arbitrary node vi ∈ V . In each round the Distance Score DSj(i) of all neighbors
nj ∈ Ni is computed. The player moves to the best neighbor and starts a new
round. The algorithm stops at vopt where no neighbor is better any more.

Lemma 5.2.5. In a d-dimensional grid algorithm DGridBasic always finds a Con-
dorcetVertex.

Proof. For any path pi between a point vi and the optimal solution vopt following
properties hold: (1) pi does not contain any cycles. (2) There are no local maxima
of DSj(i) on pi. Player 1 moves on pi to the neighbor with highest DSj(i) as long
as she can improve her score according to algorithm DGridBasic. If no neighbor is
better any more, then player 1 has found an optimal node.
Lets assume player 2 finds a better node. Because properties (1) and (2) hold
this has to be a neighbor of the point found by player 1. However, the algorithm
only terminates if it holds DSj ≤ DSi for all neighbors vj ∈ N . Therefore our
assumption was wrong and player 2 cannot find a better point than player 1.

5.2.4 Small World Graphs

In this section we examine whether CondorcetVertices do exist in small world
graphs. Therefore we look for CondorcetVertices in a Kleinberg small world graph
with 64 nodes. If it holds for node vj and any node vi ∈ V that DSi(j) ≤ n/2,
then vj is a CondorcetVertex. A simulation in a Kleinberg small world graph with
64 nodes finds in average 41.6 CondorcetVertices.
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Conclusion

In this thesis we have presented the Rumor Game which models the spreading
of information in networks. Two different models for two players were used to
describe the problem. For one model we defined an extension to multiple players.
For the propagation model two versions were specified, however only the Flooding
Model, a basic version of the Threshold Model, was used in the analysis.
In the Basic Model we analyzed different underlying topologies, starting with star
and line and then generalizing the examinations to d-dimensional grids. Moreover
we examined this model for k players. The payoff for the players was determined
for the corresponding topologies.
Furthermore simulations were performed in the Basic Model for different small
world and random graphs on behalf of the tool Sinalgo. We were interested in
rankings as the degree and the HITS value of nodes. In our simulations the highest
degree node turned out to be the better to publish a rumor than the node with the
highest HITS value.
The Bidding Model was as well analyzed for the different topologies star,line and
d-dimensional grid. The payoff of each player and the existence of Nash equilibiria
was determined.
In the section Location Theory we proved the np-hardness of the (r|p)-medianoid
and (1|p)-centroid in our model and gave some analysis of the rumor game in trees
and small world graphs.
Finally we thought about heuristics of the np-hard problem of finding the (r|r)-
medianoid in graphs. Our approach was to subdivide the graph and to calculate in
every part the (1|1)-medianoid.
During the research we encountered several questions and problems which exceed
the scope of this thesis. We used only flooding as a propagation model, but defined
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also its generalization the Threshold Model and the Independent Cascade Model.
Analyzes with these models could give some further insights in the propagation of
information.
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