
Computer Engineering and Networks Laboratory (TIK)
Prof. Dr. Lothar Thiele

Author: Supervisors:

Severin Hafner Kevin Martin
Dr. Simon Künzli

Andreas Meier

Distributed Spy-Software Tool

WSNSpy

MASTER’S THESIS
MA-2007-32

JULY 2007

2

Contents

Abstract viii

Preface x

1: Introduction 1
1.1 Wireless Sensor Networks . 1
1.2 Problem Statement . 1
1.3 Scope of this Thesis . 2
1.4 Related Work . 3

1.4.1 SNIF - Sensor Network Inspection Framework 4
1.4.2 Emstar . 4
1.4.3 Sympathy and Memento . 5
1.4.4 Deployment Support Network . 5

1.5 Chapter Overview . 5

2: Conceptual Design 7
2.1 System Overview . 7
2.2 Radio Spy . 8

2.2.1 Feasibility Study: Multi-Frequency Scan 9
2.2.2 Spy Functionality . 12

2.3 WSNSpy Tool . 14
2.3.1 Use Cases . 15
2.3.2 Network "Health" . 16
2.3.3 WSNSpy Requirements . 17
2.3.4 WSNSpy Design . 18

3: Implementation 25
3.1 A80-Spy Implementation . 25

3.1.1 A80 Software Stack . 25
3.1.2 Software Architecture . 27

3.2 WSNSpy Tool Implementation . 30
3.2.1 Development Environment . 31
3.2.2 Software Architecture . 33

i

Contents

4: Evaluation 39
4.1 Evaluation Cases . 39
4.2 Evaluation Tests . 40

4.2.1 Spy Node Evaluation . 40
4.2.2 DSN Node and DSN-Server Evaluation 41
4.2.3 WSNSpy Tool Evaluation . 43

5: Conclusions and Outlook 47
5.1 Summary . 47
5.2 Contributions . 48
5.3 Outlook . 49

A: Experimental Equipment 51
A.1 A80 Radio Module . 51
A.2 BTnode . 51
A.3 Adaptor Board . 52
A.4 Fire Detection Sensor Network . 53
A.5 Deployment Support Network (DSN) . 53
A.6 DSN-Server . 54
A.7 DSNAnalyzer . 54

Bibliography 58

ii

Tables

2-1 Packet Transmission and Spy Interception Scenarios
The leftmost column states the result of a packet transmission. The terms
"MSG LOST" and "ACK LOST" mean that the transmission was not success-
ful but does not provide the reason for the failure. The columns two and three
define whether the sent packet was overheard by the spy. 13

3-1 RPC Commands Table . 30

4-1 Spy Node Evaluation Results . 41
4-2 DSN Evaluation Results . 42

iii

Tables

iv

Figures

1-1 Three-Layer Concept . 3

2-1 System Overview . 7
2-2 Channel Coverage for different Bandwidth Settings 11
2-3 RSSI Distribution over all Channels

The figure shows the RSSI values measured on different channels while
sending on channel 50. On channel 20 another system was active during
the test. 12

2-4 A80-Spy Flow Chart . 14
2-5 WSNSpy Screenshot . 19
2-6 WSNSpy Design . 20
2-7 WSNSpy Data Flow . 21
2-8 Network Topology Storage . 22

3-1 Packet Format PHY . 26
3-2 Packet Format MAC . 27
3-3 A80-Spy Log Format . 29
3-4 WSNSpy Package Diagram . 33
3-5 Class Diagram Network Topology Storage and Message Con-

struct . 35

4-1 Test Setup for the Spy Node Evaluation 40
4-2 Test Setup for the DSN Evaluation 42
4-3 Test Setup for the WSNSpy Evaluation 43
4-4 Comparison of the Test Result with Reality

The upper image shows the reconstructed network evaluated for the two
node-distinct paths property by using the WSNSpy tool. The lower image
presents the topology of the real network obtained by the DSNAnalyzer. . . . 44

A-1 A80 Radio Module . 52
A-2 BTnode rev3 . 52
A-3 Adaptor Board . 53
A-4 BlueBox . 54
A-5 DSNAnalyzer Screenshot . 55

v

Figures

vi

Abstract

In this thesis we developed a system that allows to determine the health state of
a wireless sensor network in a fast and easy way without any instrumentation of
nodes.

Due to limited energy resources and memory constraints, usually no additional
functionality for debugging purposes can be inserted into wireless sensor networks,
which implies hardly any observability in case of failure.

To improve observability, we designed a system that is able to passively overhear
sensor network traffic using a distributed spy network. We neither depend on the in-
strumentation of sensor nodes nor does the system generate traffic in the frequency
band of the sensor network. Additionally, we developed the evaluation tool WSNSpy,
which reconstructs the sensor network from the overheard message transmissions
by only depend on low-level information, i.e. sender and receiver of a message trans-
mission. The obtained network we use as the basis for the network state evaluation
which is done by checking certain conditional properties on its fulfillment. The prop-
erties to check can modularly be added allowing the user to specify the definition of
network health individually for his sensor network.

We evaluated the system within this thesis achieving high capturing characteris-
tics and a well matching relation between the reconstructed network and reality,
providing a good basis for checking various properties.

vii

Abstract

viii

Preface

The work presented in this document was developed within a master’s thesis of
the Swiss Federal Institute of Technology (ETH) in Zurich. The location for the
development was the Communication and Wireless Group of the Research and
Development department of Siemens Building Technologies (SBT) in Zug.

I would like to thank Kevin Martin, R&D Engineer at SBT Zug, Dr. Simon Künzli,
Senior Engineer at SBT Zug, and Andreas Meier, Ph.D. student at ETH Zurich for
supervising my work and for their great support during this thesis. I also wish to
thank Siemens SBT for the opportunity to do my thesis in the exciting area of fire
detection systems.

Zug, July 2007

Severin Hafner

ix

Preface

x

1
Introduction

Humans often rely on sensors in order to get information of various kinds from
their environment. Sensors could be used actively by reading e.g. a thermometer
to adapt the clothing to the weather, or passively by deploying a fire detector in
order to get alerted in case of a fire. As one single sensor only provides informa-
tion of a small area, several sensors are needed for larger environments. In this
case, multiple sensors can be combined to a sensor network which is usually done,
by applying radio devices to the sensor in order to achieve a wireless sensor network.

1.1 Wireless Sensor Networks
Wireless Sensor Networks (WSN)1 are an emerging technology in scientific and
in industrial environments. A network consisting of several sensor nodes is
able to monitor a larger area than a single sensor. The wireless communication
guarantees an easy deployment of the sensor nodes even in harsh environments.
These attributes make WSNs an interesting and promising technology for various
applications in different surroundings. Examples for deployed WSNs are Bird
Observation on Great Duck Island, Maine, USA [6], Ocean Water Monitoring [15]
or glacier monitoring [7] as a selection out of numerous applications.

1.2 Problem Statement
However, the development of a WSN is not as easy as its operation should be in
the end. Network deployments vary heavily in environmental condition and utiliza-
tion which leads to demanding requirements for the hardware and software. Usu-
ally, WSNs consist of tiny sensor nodes which should be able to run autonomously

1Wireless Sensor Network (WSN) is a wireless network consisting of spatially distributed au-
tonomous devices using sensors to cooperatively monitor physical or environmental conditions, such
as temperature, sound, vibration, pressure, motion or pollutants, at different locations. [11]

1

Chapter 1: Introduction

for several months or even years. Therefore, WSNs are equipped with very limited
hardware, i.e. they are built with little memory and small processors due to en-
ergy limitations. As these devices are built especially for one single application they
usually become highly optimized for their purpose. The hardware is selected consid-
ering the requirements of the application and limitations are taken into account. If
the system is working at the end, everything is fine. However in case of failure, it is
very difficult to identify the buggy part and to provide a solution. The main reason
for this difficulty is that systems with limited resources like senor nodes provide
hardly any observability.

Observability mostly implies either additional hardware, e.g. LEDs for system state
feedback, or additional code for debugging outputs which always results in a demand
for more memory and energy consumption. But these are the critical parameters for
tiny sensor nodes as the costs raise massively if enhancements are included only
for debugging purposes. Therefore, other techniques must be found that allow to get
detailed knowledge about the network without interfering with the sensor nodes.

One possibility to obtain this functionality is to make use of a so-called Deployment
Support Network (DSN) [3]. The DSN is a second network laid out on top of the
original sensor network using a different frequency range. Through the DSN the
sensor nodes can be configured and logging events can be collected for further anal-
ysis. More powerful nodes with a higher bandwidth than the sensor nodes itself can
be used for the DSN, because battery lifetime is not that much an issue, here. The
DSN itself could have the same drawbacks as stated above for the WSN concerning
the observability. But for the DSN, a fully working WSN could be used, for which no
debugging should be necessary anymore.

However, the concept of the DSN requires additional DSN nodes attached to the
sensor nodes. Hence, the DSN can only be used during development. For the debug-
ging of deployed WSNs a concept is needed which provides information about the
network state without interfering and instrumentation of nodes.

Ringwald et al. showed in [10] that many of the experienced problems concerning
the deployment of a sensor network can be detected by overhearing and analyzing
sensor network traffic without the need for sensor node instrumentation. The
possibility to passively listen to the traffic generated by the sensor network, can be
achieved by deploying special spy nodes in the area of the sensor network. This has
the main advantage that the spy nodes do not interfere with the sensor network. As
a single spy node cannot record the communication of the entire network, several
spy nodes need to be deployed. However, for controlling the spy network and for
collecting overheard data the concept of the DSN is well suited.

1.3 Scope of this Thesis
The scope of this thesis was to develop a system that is on the one hand able to
overhear traffic from a sensor network and on the other hand to process the cap-
tured data in order to gain further knowledge of the state of the sensor network.
For practical reasons, the spy network should be easy deployable and configurable

2

1.4. Related Work

Figure 1-1: Three-Layer Concept

which can be achieved by using the DSN for the spy nodes instead of for the sensor
nodes. This leads to a three-layer concept as shown in Figure 1-1.

The lowest layer contains the WSN which runs a certain application. In the area
of the WSN spy nodes are deployed for overhearing sensor network traffic. As the
spy nodes forward the captured traffic to the directly connected DSN nodes, the spy
nodes can be seen as the connection between WSN and DSN. The DSN is used to
configure the spy network and to collect the data overheard by the spy nodes.

In a second step, the overheard data is used to reconstruct the network based on
low-level information, i.e. only using sender and receiver of a message transmission.
The reconstructed network is then used to check certain user defined properties
which are evaluated for every node on fulfillment. By this, statements concerning
the "health" state of the network can be made based on the captured traffic.

1.4 Related Work
This section surveys previous work in relation with monitoring and debugging of
WSNs. There exist various propositions and tools for this purpose. However most of
them were designed from an active approach in which the sensor nodes themselves
need to be instrumented and/or traffic is generated for monitoring and debugging
capabilities in the frequency range used by the WSN.

In the following sections several approaches that are in one way or the other similar
to the one presented in this thesis are discussed. Besides the similarities, we
highlight especially the differences and the thesis is put into context of the related

3

Chapter 1: Introduction

approaches.

1.4.1 SNIF - Sensor Network Inspection Framework
The Sensor Network Inspection Framework (SNIF) [10] provide functionality for in-
specting a deployed sensor network, consisting of a distributed network sniffer and
a data-stream-based framework for online traffic analysis. The tool uses the DSN
for configuring the spy nodes and for collecting the overheard data.

Two major differences can be stated while comparing SNIF with the system devel-
oped within this thesis.

• First, the sniffing part, designed for the BTnode platform [16] has a radio and
a Bluetooth module combined as one single device. This has the drawback that
the hardware for overhearing the sensor network traffic is not modularly re-
placeable. In case of an improvement of the radio module not only the spy
nodes but the DSN nodes as well need to be replaced. It was a crucial require-
ment for this thesis’s outcome that new hardware can be introduced fast and
easily. Therefore, we preferred a solution where the spy node and the DSN
node are deployed on two separate platforms connected via an adaptor board.

• Second, in the SNIF, the part for the evaluation of captured traffic in the back-
end tool is mainly based on higher-layer information. E.g. in order to trace a
packet on its way to the sink, either the path to the sink which is not contained
in the header of the Medium Access Control (MAC) header must be known or
else the payload of the MAC packet must be considered. The system devel-
oped in the scope of this thesis, is designed to work with as few information
as possible. So, only source and destination of a message is used for network
analysis, which is contained in the MAC header. No higher-level protocols are
considered.

In contrast to the SNIF in which possibly an single packet is used for the detection
of a certain case (e.g. a node reset due to a sequence number reset), the evaluation
of our tool is based on all captured messages within a certain time frame. The goal
was not to detect incidents based on individual messages, but to provide a network
evaluation tool.

1.4.2 Emstar
Emstar [4] is a software environment designed for heterogeneous networks contain-
ing a mixture of extremely constrained 8-bit "motes" up to less resource-constrained
32-bit "microservers". It runs on a linux platform and consists of several libraries
and tools which can modularly be combined and which support simulation, emula-
tion, and visualization for WSNs.

The Emstar framework provides a rich variety of tools and services for the devel-
opment of a WSN. However, it relies on a heterogeneous network including some
powerful nodes, called "microservers". The WSN actually being developed only

4

1.5. Chapter Overview

consists of the very resource-constrained nodes, on which no additional software for
monitoring and debugging purposes can be placed. Besides, Emstar requires the
instrumentation of nodes and uses the sensor network for transmitting secondary
data containing monitoring information. Hence, for our purposes Emstar is not
suited.

1.4.3 Sympathy and Memento
Sympathy and Memento are similar tools which both provide functionality to detect
failures and for the debugging of WSNs.

Sympathy [9] enables failure detection by making use of selected metrics and by in-
cluding an algorithm which localizes the source of a failure. This reduces the overall
failure notification and narrows the search for the cause.

Memento [12] is a health monitoring system for WSNs by providing failure detection
and symptom alerts. It consists of two parts, an energy-efficient protocol in order to
deliver state summaries and a distributed module for the detection of failures.

However, both tools need instrumentation of sensor nodes as detecting failure is
based on metrics obtained directly from the sensor nodes. This violates the stated
concept to design a passively listening spy tool. Moreover, Sympathy and Memento
use the same frequency band for transmitting debug information, which influences
the behavior of the actual WSN application.

1.4.4 Deployment Support Network
The Deployment Support Network (DSN) is based on the concept in which a second
device is attached to every sensor node building up a network on top of the sen-
sor network operating in a different frequency range. The DSN is used for sending
commands to and to collect logging information from the sensor nodes.

Unfortunately, the concept of the DSN requires additional DSN nodes attached
to the sensor nodes. As this is not possible for deployed WSNs, the DSN is not
suited. However, the DSN is well suited for controlling the nodes of the spy network.

1.5 Chapter Overview
This thesis is organized as follows. Chapter 2 explains the conceptual design of the
spy system developed, by providing a system overview and by describing its purpose.
In Chapter 3 we explain in detail how the system is implemented. The evaluation
and testing of the system is documented in Chapter 4 and Chapter 5 gives a sum-
mary on the thesis and the conclusions obtained, as well as an outlook on future
work.

5

Chapter 1: Introduction

6

2
Conceptual Design

The thoughts and work done during this thesis concerning the conceptual design
are described in this chapter. First, we give an overview over the system, then
the concept for the spy nodes, and afterwards the analysis and evaluation part
resulting in the WSNSpy tool are presented.

2.1 System Overview
In order to spy on WSNs and to evaluate the captured traffic with the system
proposed in this thesis, several individual components need to be put together. In
this section the complete system is illustrated, focusing on the big picture.

The system is shown in Figure 2-1. Dark gray colored parts represent already ex-
isting components, described in Appendix A, which are integrated into the system
"as is". Light shaded parts, however, denote the tools that are developed within the
scope of this thesis, i.e. spy node and WSNSpy.

The system consists of the four components that are described below, starting on the
right.

• Spy Node
Before any traffic can be analyzed and evaluated, a device is needed that con-
stantly listens to traffic and captures ongoing transmissions. Such a device
is called a spy or sniffer and should ideally be permanently in receive state.
However, the overheard traffic somehow has to be processed and delivered to

Figure 2-1: System Overview

7

Chapter 2: Conceptual Design

the next element of the chain, which contradicts the principle of permanently
receiving. Nevertheless, it is important to reduce the processing part done by
the spy to a minimum.

• DSN Node
The second element of the system is the DSN node which is directly connected
to the spy node. Several DSN nodes build a DSN as described in Appendix A.5.
Every output coming from the spy node is forwarded via the DSN to the GUI
node, i.e. the root node. In the opposite direction, commands targeting the spy
node are forwarded by the DSN node.

• DSN-Server
The DSN-Server communicates with the DSN node via the GUI node. It uses
the commands provided by the JAWS [1] software running on the DSN nodes.
The DSN-Server provides a bunch of methods which could either be used to
control the DSN or to get information out of the servers database [8]. For a
more thorough description of the DSN-Server, see Appendix A.6.

• WSNSpy (Evaluation Tool)
Finally, the WSNSpy can access the data stored in the database and process it
in whatever way it is demanded. For the communication between the WSNSpy
and the DSN-Server, the XML-RPC [22] interface is used.

After obtaining a general understanding of how these components work together
the first and last element of the system are explained in very detail as they
constitute the core part of this thesis.

2.2 Radio Spy
To be able to analyze packets and interpret the state of a network, traffic needs to
be overheard and recorded. In a network in which all nodes communicate on the
same frequency channel, the functionality of a spy node does not differ that much
from a sensor node. The hardware usually is the same, as the spy must operate
in the same frequency band to be able to receive any traffic. However, there also
exists multi-frequency networks which change their communication channel from
time to time. This alteration of the radio frequency may happen slowly, e.g. when
changing to another channel due to interference, or even pretty fast, as it is done in
Bluetooth [21], where the frequency is changed up to 1600 times per second.

Frequency-hopping is often used to make a network more resistant against interfer-
ence and jamming devices. Unfortunately, it also complicates the task of overhearing
traffic as a spy normally is not aware of the hopping sequence and therefore does
not know the actual communication channel.

Due to the advantages described concerning security and reliability, a frequency-
hopping application is planned for the WSN. This leads on the one hand to the
need of a spy that is able to rapidly switch from frequency to frequency and to
scan the medium for network traffic, and on the other hand to actually overhearing

8

2.2. Radio Spy

the traffic. This is a kind of a contradiction, because mostly when an ongoing
communication is detected by scanning the medium, it is too late to start receiving
as a part of the message has already been missed. Therefore, we propose to split
the tasks scanning and overhearing into two phases and to do them sequentially.

In the following section the process of finding a feasible solution for a multi-
frequency spy based on the A80 radio module is described.

2.2.1 Feasibility Study: Multi-Frequency Scan
Detailed specifications on how the multi-frequency scheme will look like for the final
sensor network are not available, yet. Therefore, only vaguely defined constraints
can be stated. Hard constraints for the feasibility study are only given from the
hardware of the radio module, itself.

2.2.1.1 Guidelines for the Multi-Frequency Functionality

In connection with frequency selection the following guidelines are stated.

• The channel bandwidth is set to 25 kHz, which leads to 80 channels in the
2 MHz wide ISM-Band in the range of 868− 870 MHz.

• Every node chooses a certain number of channels out of the 80 possible chan-
nels. The selection process is not yet specified, but it will depend on the set of
channels selected by neighboring nodes, the rating based on the link quality
done earlier, and other factors.

• The format of transmitted packets is defined, e.g. header format, preamble
length, etc. The minimal length of a message on the physical layer 3.1.1.1 is
12.5 Bytes and the length of an acknowledgment is 9.5 Bytes which results in
an actual transmitting time of about 20 ms at 5 kBaud and 10 ms at 10 kBaud.

• The hardware for the radio spy is given, which is the same device as the radio
module of the sensor nodes. The module is specified in detail in Appendix A.1

As there must be assumed that any possible channel could be used for transmis-
sions, every channel should be scanned for traffic all the time. This implicates that
a single radio module for every channel running in parallel is needed, which is not
practicable. Hence, several restrictions concerning the radio module must be taken
into account.

2.2.1.2 Timing Constraints of the Radio Chip

The time needed to decide whether a transmission is in process at a certain moment
on a single channel consists of the following subtasks.

1. Frequency Programming
The time needed to program a new frequency is about 0.7 ms. It is possible to

9

Chapter 2: Conceptual Design

further reduce the time needed for this step. The radio chip provides two fre-
quency registers which allow to write the new frequency to the second register
while the first one is used and vice versa. The setup of the new frequency could
be done during step two of the previous iteration. The only action to be done in
this step is to switch from one frequency register to the other.

2. Measure RSSI Value
A transmission can be detected by measuring the Received Signal Strength
Indication (RSSI) value. The time needed for the measurement depends on the
required accuracy and as a consequence on the number of measured samples.
When switching to a new frequency it takes some time until the RSSI value is
stable, which is called RSSI attach time. Therefore, about 1.1 ms are needed to
decide whether a transmission is in process.

As a conclusion, we can state that at least 2 ms are needed to perform a channel
sensing action. If this is done by one single spy node sequentially for all channels,
one round would take 160 ms. Compared with the message transmission time of
20 ms for a low baud rate the probability of detecting the transmission is very low.

2.2.1.3 Broad-band Property of the Radio Chip

In order to improve the radio spy, the broad-band property of the radio chip can be
exploited. The idea is to detect a transmission with a broad-band receiver scanning
several channels at a time. In this case traffic is detected faster, however the correct
channel needs to be specified later on with further measurements.

The CC1020 radio chip provides five different settings, for which the channel band-
width varies between 19.2 kHz and 307.2 kHz. There is a difference between chan-
nel spacing which denotes the width of a channel and the channel bandwidth which
specifies the actually used frequency range for receiving. Usually, the latter one is
smaller than the first one.

Figure 2-2 shows the RSSI values measured by a receiver while operating with dif-
ferent bandwidth settings. The center frequency of the receiver was always set to
channel 70. The RSSI values were measured while a sender node operating with a
narrow band setting of 19.2 kHz for the channel bandwidth was transmitting on dif-
ferent channels. The test used to determine the values presented in the figure was
done by placing the sender and receiver node directly next to each other.

From the figure we can conclude, there exists a hard level difference between in-
band channels 64 to 76 and channels which are out-of-band for a channel bandwidth
of 307.2 kHz. This is a promising fact in order to detect whether in the range of
the receiver a transmission is going on. For smaller channel bandwidths the edge
between in-band and out-of-band channels weakens. This makes it harder to decide
on an ongoing transmission. Channel bandwidth settings of 25.5 and 51.2 kHz are
not useful for our purpose as no further knowledge could be gained than scanning
with 19.2 kHz bandwidth.

The observation stated above can be verified by Figure 2-3 which shows the mea-
sured RSSI values on all channels while transmitting on channel 50. The transmis-

10

2.2. Radio Spy

Figure 2-2: Channel Coverage for different Bandwidth Settings

sion has visible impacts on about 25 channels in the range of channel 40 to 65. It has
to be mentioned that the high signal strength measured on channel 20 originates
from a second transmitter and must be omitted.

One major difficulty for deciding whether in a certain channel a transmission is
going on, is that we do not know the distance between the two nodes. By only
considering the signal strength measured on this single channel, it is impossible to
decide whether a node in short distance is sending on an neighboring channel or
whether a node far away is actually transmitting on the scanned channel.

2.2.1.4 Conclusions

To finalize, it is difficult to detect the channel on which a transmission is going on.
Actually, only the channel bandwidth of 307.2 kHz can be used for pre-sensing the
medium, because smaller bandwidths do not have hard edges between in-band and
out-of-band frequencies. To identify a single channel the last 13 channels must be
scanned sequentially.

Due to this result we decided not to dig too much into a sophisticated multi-
frequency spy, but to concentrate on the realization of a single channel spy, which

11

Chapter 2: Conceptual Design

Figure 2-3: RSSI Distribution over all Channels
The figure shows the RSSI values measured on different channels while sending on channel
50. On channel 20 another system was active during the test.

covers the main focus of this thesis better. The development of a feasible multi-
frequency spy is left open for future work.

2.2.2 Spy Functionality
In this section, we describe the functionality of the spy, which was designed for the
A80 radio module. However, the focus is laid on the conceptual part by explaining
the functionality provided to overhear traffic rather than discussing implementa-
tion specific topics. This is done in particular in Section 3.1.

2.2.2.1 Message Assembly

As the spy node only passively listens to the communication occurring in a WSN, we
need to thoroughly discuss how a successful message transmission can be detected.
Packets might be missed either by the sensor node or the spy node, or by both of
them, which needs to be considered when interpreting the output of the spy. We list
the cases that could occur in Table 2-1.

From the spy’s point of view, it is necessary to receive a message and the corre-
sponding acknowledgment to be sure that the message transmission was successful.

12

2.2. Radio Spy

Spy intercepts packet Spy misses packet
MSG OK The first part of a trans-

mission was successful
and was captured by the
spy.
⇒ SPY LOG

The first part of a trans-
mission was successful but
was not intercepted by the
spy.
⇒ NO SPY LOG

MSG LOST No message was received
and therefore no acknowl-
edgment was generated.
However, the spy inter-
cepted the message and
generated a log output.
⇒ SPY LOG

No message was received
neither by the sensor node
nor by the spy and there-
fore neither an acknowl-
edgment nor a log output
was generated.
⇒ NO SPY LOG

ACK OK This case shows a com-
pleted transmission of a
packet and its successful
interception by the spy.
⇒ SPY LOG

A packet transmission
was successful but the
acknowledgment could
not be overheard by the
spy node. Therefore no log
output is generated.
⇒ NO SPY LOG

ACK LOST The acknowledgment was
not received by the sen-
sor node and will be re-
transmitted shortly. How-
ever, the spy intercepted
the packet and generated a
log output.
⇒ SPY LOG

The acknowledgment was
not received neither by the
sensor node nor by the spy
but will be retransmitted
shortly. No log output was
generated.
⇒ NO SPY LOG

Table 2-1: Packet Transmission and Spy Interception Scenarios
The leftmost column states the result of a packet transmission. The terms "MSG LOST" and
"ACK LOST" mean that the transmission was not successful but does not provide the reason
for the failure. The columns two and three define whether the sent packet was overheard by
the spy.

If only the message is considered, it is not possible to know if the message was re-
ceived by the sensor node. Therefore, the acknowledgment must be considered. On
the other hand, it is impossible for the spy to detect that the acknowledgment was
missed by the receiver. But this does not matter, because the missed acknowledg-
ment will be retransmitted in a while and the transmission will be successful for
the sensor nodes as well as from the spy’s point of view.

We decided to keep the spy as simple as possible and to stick to the minimal func-
tionality needed to capture traffic. This means that the messages and acknowledg-
ments are not assembled to a completed message transmission but to output every
received packet one after another. The message assembly is done later on, when im-
porting the data into the WSNSpy. The following scenario shows the advantage of

13

Chapter 2: Conceptual Design

Figure 2-4: A80-Spy Flow Chart

this decision.

Assume that a spy node only receives one part of a communication, because only
one node involved in an ongoing communication is in its reception range. The spy
either receives the message or else the acknowledgment. In both cases, the spy
does not have enough information to guarantee a successful message transmission
between the two nodes. If a second spy node is placed that intercepts at least the
other part of the communication, both spies together provide enough information
for assembling a message. Therefore, the assembly must be done after the logs of
the spy nodes have been merged.

2.2.2.2 Spy Concept

From the insights stated above, the algorithm running on the A80-Spy was devel-
oped. Figure 2-4 shows the layout of the algorithm.

On startup, the spy immediately goes into receive state RX1 and remains in this
state until the transmission of a packet is detected. In state RX2 the packet is re-
ceived and after completion the packet is checked on bit errors. If the packet is
received correctly a log output is generated in OUT and the statistics are updated
in STATS. Otherwise, if the packet contains errors no output is generated and the
spy returns into RX1 state waiting on overhearing the next packet.

How this algorithm is implemented in detail and what components of the software
stack of the A80 are used is described in Section 3.1

2.3 WSNSpy Tool
While intercepting ongoing transmissions is an engineering task, the evaluation
of the overheard traffic is much more complex. The purpose of the WSNSpy is to

14

2.3. WSNSpy Tool

provide an environment to analyze and evaluate a WSN in order to make statements
concerning the "health state". The term "healthy network" could be interpreted in
many ways and its definition differs for every sensor network depending on the
stated requirements.

In this section the design of the WSNSpy tool is presented. First the requirements
from the user’s point of view resulting in use case definitions are stated, followed
by the definition of "health" in the context of fire detection sensor networks. Then,
the actual design of the tool itself is presented, without going to much into detail
concerning the implementation part.

2.3.1 Use Cases
Use cases are defined from the user’s point of view. The user is interested in getting
a response after he has done an action, rather than in its technical realization. In
the following, we describe every use case for the WSNSpy.

1. Network Reconstruction
One of the main tasks the tool must be able to perform, is to reconstruct a
network based on the information delivered. It must not matter where the
information comes from, however, a common data format must be defined in
order to remain independent of the data source. The information delivered by
the spy nodes consists of log outputs for every captured packet, distinguishing
between messages and acknowledgments. The tool should assemble success-
ful message transmissions out of these logs and extract sender node, receiver
node, and the time at which the message has occurred. From this information
the network should be reconstructed.

2. Network Evaluation
The key functionality of the spy tool consists of checking certain properties ap-
plied to the network or a part of it. Properties should modularly be extendable
and replaceable. For every property the evaluation result must be compared
to a certain threshold. According to this comparison the property is fulfilled or
not.

3. Load Server Content
Besides importing file content, it should also be possible to make the evalua-
tion based on information obtained directly from the database the DSN-Server
uses to store the collected data.

4. Continuously Importing Server Content
In order to have a certain flexibility and to be able to evaluate the network
as fast as possible the analysis should be possible while the network still is
running. Therefore, the tool must provide the functionality of ongoing data
import. As real-time analysis is impossible due to the DSN, it should at least
be possible to poll repetitively on database changes and to provide an ongoing
data import.

5. Load File Content
The tool should provide the functionality to load a file which contains the in-

15

Chapter 2: Conceptual Design

formation the evaluation will rely on. This case is necessary for offline use,
without connection to the DSN-Server.

6. Time Window Adjustment
A certain flexibility is necessary for specifying the time frame which is consid-
ered for generating the network. If logs are imported continuously it should
be possible to limit the time window to a certain size, e.g. considering only the
messages intercepted within the last minute.

7. Various Input Sources
The tool should be able to process various data input formats which leads to a
multi-functional evaluation tool. Besides the already mentioned format of the
spy logs, it should be possible to process logs generated by the sensor nodes,
itself. As a third input source, log files originating from Glomosim [23] simu-
lations must be possible to process. It is crucial to provide the possibility to
compare obtained evaluation results based on spy inputs with results of other
input sources. This helps to evaluate the tool itself, as well as to give inputs
for simulation scenarios improvements.

8. Examination of Messages
Besides the analysis of the network in general, the functionality of examining
every single message is needed as well. The main focus of the tool should be
the network evaluation which does not rely on the message content. However,
it could be useful to provide functionality to examine message contents for
further analysis.

9. Statistical Figures
For in-depth network analysis certain key figures should be provided, for the
whole network as well as only for parts of it or even for every single node
and message. Key figures for a node are for example the number of sent and
received messages, the time window in which this node was active and the
number of neighbors. For a link, the number of successful transmissions as
well as the time window the transmissions occurred are of interest.

So far, the requirements from a user’s point of view are explained. The next section
describes what tools are necessary to rate the state of a network.

2.3.2 Network "Health"
As already mentioned, there does not exist an absolute definition of a healthy net-
work. The definition must rather be done by considering the requirements specified
for the network, which highly depend on the purpose of the sensor network. The
following properties can be used to determine the health of a network.

• Connectivity
The degree of connectivity shows how many neighbors a node has to communi-
cate with. The more neighbors the more redundant is the network. Node or link
failures have less impact on a well connected network. However, many neigh-
bors imply big routing tables and other neighbor-specific parameters a node

16

2.3. WSNSpy Tool

must remember. So, there is a trade-off between connectivity and resources
needed.

• Node Activity
In an efficient WSN, communication is reduced to a minimum in order to save
battery power. Therefore, high node activity often indicates an unintended be-
havior of the network. So, the number of messages sent by a node in a certain
time is an indicator for the health of a network.

• Network Partition
The minimal requirement for a WSN is that at least it is connected in a way
that every node could communicate with any other. If a network partition oc-
curs this is not the case anymore. This is why it is important to check a network
on partitioning.

• Two Node-distinct Paths to the Sink
This property states that for every node of a network at least two independent
paths to the sink exist in a way that no intermittent node is visited twice. This
property originates from the background of fire detection networks. These
networks must guarantee that in case of a node failure the remaining network
still is connected and that no partition occurred. This is proven by checking
whether two node-distinct paths for each node of a network exists. So, this
property is one level more restrictive than the network partition property and
is therefore an indicator for a possibly even healthier network.

After considering the requirements defined from the user’s point of view and the
basic properties that need to be checked in order to be able to state the health of a
network, we are ready to work out the tool design in detail.

2.3.3 WSNSpy Requirements
For the design of the WSNSpy the following features need to be treated as require-
ments in order to make an integration into the development environment feasible.

• Using Deployed DSN
A DSN which uses the DSN-Server for acquiring data is already set up as a
development environment. Therefore, other implementations of a DSN were
not taken into account for the realization of the distributed spy tool.

• Integration into DSNAnalyzer
As the DSNAnalyzer is a heavily used tool for configuring and debugging the
WSN actually developed, the integration of the WSNSpy into the DSNAna-
lyzer should be possible. Apart from this, the DSNAnalyzer contains some com-
ponents like the communication with the DSN-Server which could be reused in
the WSNSpy. Therefore a combination of the two tools should be investigated.

• Various Input Sources
As stated earlier, to use the WSNSpy efficiently, it is important that the tool is
able to process data from various input sources. Besides the already mentioned

17

Chapter 2: Conceptual Design

format of the spy logs, it should be possible to process logs generated by the
sensor nodes itself and as a third input source the log files originating from
Glomosim simulations.

• Evaluation based on Low-level Information
To be as independent as possible of later implemented protocols, the evalua-
tion should be base on low-level information only. The implemented protocols
so far for the A80 radio module are the physical (PHY) and the media access
layer (MAC). To guarantee a successful message transmission the MAC layer
is needed, as acknowledgments must be considered. Therefore, the MAC
header format is necessary for the evaluation. However, higher-layer protocols
can be omitted.

In the next section the functionality of the WSNSpy tool will thoroughly be dis-
cussed.

2.3.4 WSNSpy Design
The intention of developing the WSNSpy tool was to provide a tool that has the
ability to analyze and evaluate data containing certain information about sensor
node communication. The information needed by the tool must contain the sender,
receiver, and the time stamp of a message transmission. The tool then reconstructs
the network topology based on this information and allows to analyze the network
by the user providing certain statistical numbers. In a second step the network can
be evaluated by checking if one or multiple properties are fulfilled by the network.

From the use cases defined in Section 2.3.1 the layout of the spy tool was designed
which is shown in Figure 2-5. Every sub-window provides a certain functionality
and is connected to one or several sub-windows. However, the layout of the tool does
not explain how the components are connected and what the sub-windows purpose
are. So, we are going to describe how the tool is designed.

The logical design of the WSNSpy is shown in Figure 2-6 in which the different
modules of the tool and their dependencies are displayed. The size of the rectangles
is an indicator of the complexity, size, and importance of the module. For the
explanation the picture is traversed from top to bottom and from left to right. As
already mentioned, the input data, originating from various sources like spy nodes,
sensor nodes, and simulation, denotes the starting point of the WSNSpy.

2.3.4.1 Input Data Processor

The InputDataProcessor module operates in three consecutive phases which are
repeated on new data input. The three phases are illustrated in Figure 2-7 and
described below.

1. Assemble Messages from Logged Events
In a first step the input data needs to be processed in order to get successful

18

2.3. WSNSpy Tool

Figure 2-5: WSNSpy Screenshot

19

Chapter 2: Conceptual Design

Figure 2-6: WSNSpy Design

message transmissions. This task depends on the kind of the input source and
the following three cases are considered in the WSNSpy.

• Sensor Node
Every node generates a log event if a message is received, and another
log event if a sent message is acknowledged. Out of a send event and a
receive event, successful message transmissions can be deduced as the
logs contain origin, destination, and message ID.

• Spy Node
Spy nodes cannot be certain if a packet is received by its intended re-
ceiver. Therefore, a message transmission cannot be assembled from a
send and a receive event. Nevertheless, events generated from the over-
heard message and acknowledgment provide enough information to de-
termine a successful message transmission.

• Simulation
The logs originating from simulation cases are similar to the ones coming
directly from the sensor node. As they only differ in the format of the logs,
the concept described in the first case can be applied.

So, successful message transmissions are assembled by the InputDataProces-
sor module out of the provided events.

2. Reconstruct Network out of Messages
A message contains certain information including its sender and receiver. The

20

2.3. WSNSpy Tool

Figure 2-7: WSNSpy Data Flow

capture time is added to the log event by the DSN node. From this knowledge,
we can reconstruct a part of the network as it is obvious that sender and re-
ceiver node must be neighbors. Otherwise they would not have been able to
communicate with each other. By doing this for every message transmission,
the network grows more and more until we have a complete representation of
the physical network.

In case of full network coverage by the spies, we even can be sure that the
complete network can be reconstructed, as all communicating nodes will be
found sometime. On the other hand it can be stated that nodes not involved
in any communication can hardly be declared as a part of the original network.

3. Store Network Topology
Whereas the input of the WSNSpy is based on messages, the evaluation
itself depends on the reconstructed network. Therefore, the messages are
transformed again into the different network components, i.e. nodes and edges.

2.3.4.2 Network Topology Storage

The reconstructed network must be stored in a useful manner. In order to comfort-
ably operate on the network it should be possible to navigate easily through the
network by reaching from every node its attached edges and neighbors. To achieve
this goal, the NetworkTopologyStorage is built up as shown in Figure 2-8.

For every node a reference to its incoming and outgoing edges are stored as well
as a reference to its neighboring nodes. The same is done for the edges, by storing
a reference to its source and destination node. As the edges were developed from
messages, the time when the transmission has happened is stored in edges as well.

21

Chapter 2: Conceptual Design

Figure 2-8: Network Topology Storage

2.3.4.3 Time Window Filter

For the analysis and evaluation of the network not all messages need necessarily to
be considered. Therefore, the possibility must be provided to select a certain time
frame. Only messages transmitted in this time frame are considered for the evalu-
ation. Every NetworkTopologyStorage access occurs through the TimeWindowFilter
module.

2.3.4.4 Message View

This module lists all messages of the network that complies with the timing
requirements of the time window. The MessageView module belongs to the analyzing
part of the tool and provides the functionality to investigate every single message
in detail.

2.3.4.5 Network Graph

The NetworkGraph displays a graphical representation of the network and allows
the user to arrange the nodes according to their physical positions. The network is
updated every time the NetworkTopologyStorage has changed.

For analysis purposes, the module provides functionality to select certain network
elements for further investigation. Moreover, the NetworkGraph is the starting point
of the evaluation which is done in the PropertyChecker module.

2.3.4.6 Information Window

In this passive window information about the network is displayed. The numbers
provided depend on the selected network components in the NetworkGraph. If no
element is selected summary information about the whole network is provided.

22

2.3. WSNSpy Tool

The displayed information consists of several key numbers like the number of
neighboring nodes, incoming and outgoing links, number of overheard messages
and so on.

2.3.4.7 Property Evaluation

The core part of the WSNSpy tool, i.e. the evaluation, lies in the PropertyEvaluation
module. The actual network is evaluated against certain properties that embodies
an indicator for the health state of the network as described in Section 2.3.2. For
each node every property is checked on its fulfillment. If all properties evaluate
correctly the node is marked green, in case of an incorrect termination of at least
one property the node is marked red. This way, nodes that do not comply to the
defined restrictions are highlighted and consequently call the user’s attention in
order to do further investigations.

23

Chapter 2: Conceptual Design

24

3
Implementation

This chapter describes the actual implementation of the first and last component of
the system presented in Section 2.1. First, we describe the implementation of the
A80-Spy and afterwards of the evaluation tool WSNSpy.

3.1 A80-Spy Implementation
For the spy nodes we use the A80 radio module, which is described in Appendix A.1.
The main reasons for this decision are that

• the A80 radio module is available and actually used,

• in-deep knowledge about the hardware is available,

• a software stack or at least the layers needed by the spy are available, and

• the spy must be able to receive packets sent from nodes belonging to the sensor
network. As these nodes contain the A80 radio module, it is advantageous to
use the same module for the spy nodes.

While we could use the hardware of the A80 radio module "as is", we developed
the spy software within this thesis. However, parts of the already existing software
stack could be integrated into the spy software. Hence, we first give a short
description of the software stack, before we present the implementation of the spy
in detail.

3.1.1 A80 Software Stack
As discussed in Section 2.3.3, a spy must be able to receive packets and to extract
the information about the sender and receiver. This information is hold by the
Medium Access Control (MAC) header of a packet. The functionality for receiving
packets is provided by the Physical Layer (PHY) and in order to extract sender and

25

Chapter 3: Implementation

Figure 3-1: Packet Format PHY

receiver data the MAC layer functionality is needed. However, higher-layer data
like neighborhood tables or routing information is not of interest. Therefore, the
PHY and MAC layer of the A80 software stack is explained below.

3.1.1.1 Physical Layer (PHY)

The A80 PHY uses a preamble and a Start Frame Delimiter (SFD) to communicate
as shown in Figure 3-1. The preamble is needed to signalize to the receiver that
a packet will be sent shortly and to synchronize the receiver with the sender. The
length of the preamble depends on the wake-up time synchronization between
sender and receiver and is set by the MAC layer. The SFD marks the start of the
actual packet transmission.

3.1.1.2 Medium Access Control Layer (MAC)

In WSNs, the MAC protocol is probably the most important protocol. This is due to
the fact that energy is a very critical resource in WSNs. A sending or receiving node
uses much more power than a node in sleeping state. Therefore, the following two
points must be considered.

• Active states, i.e. sending and receiving should be as short as possible.

• Collisions due to simultaneous packet transmissions should occur as few as
possible, because sending power is wasted.

Hence, it is crucial that the medium access is highly optimized. However, there does
not exist the optimal MAC protocol for every WSN, because networks differ in vari-
ous ways, like size, purpose, activity, etc.

For the actually developed WSN, WiseMAC [14] is used as MAC protocol. WiseMAC
was designed for ultra low power multi-hop networks with very low data rate. It
is based on Carrier Sense Multiple Access (CSMA) with collision avoidance. This
is achieved by sensing the medium before a packet is sent. Moreover, WiseMAC
uses a preamble sampling technique, which minimizes the power consumed when
listening to an idle medium. The protocol stores the sampling schedule of a node’s
direct neighbors which allows to adapt the preamble length due to the knowledge of
the neighboring wake-up times.

In Figure 3-2 we illustrate the format of a WiseMAC packet. It consists of a header,
payload, and footer. The header contains a base header which is used to identify
the packet by providing the overall length, a sequence number, and the distinction
between message and acknowledgment type, among other information. The MAC
header also includes the destination address and in case of type message (MSG) the

26

3.1. A80-Spy Implementation

Figure 3-2: Packet Format MAC

source address as well. The PHY layer adds in front of the complete MAC packet
the preamble and the SFD, as it was shown in Figure 3-1.

For the implementation of the A80-Spy, the distinction between messages and
acknowledgments, the packet length and the information about sender and receiver
address is used.

3.1.2 Software Architecture
In this section the implementation of the spy on the A80 radio module is presented.
Below, we explain the algorithm used for the spy, followed by the output format for
overheard messages and acknowledgments. Finally, we describe various aspects
considered for the spy implementation.

3.1.2.1 A80-Spy Algorithm

We implemented the A80-Spy among the concept illustrated in Section 2.2.2.2. For
intercepting packets the method to receive messages provided by the PHY layer is
used. This method requires a callback method to be set which is called every time
a packet is received. The spy remains in receiving state until a complete packet
was overheard. Afterwards, the callback method processes the packet according to
Algorithm 1.

In case of a received message or an acknowledgment reception the packet is stored
in a buffer in order to free the receiving buffer for subsequent packets. For each type
of the packet a separate buffer exists. Then, an event flag is set and the internal spy
statistics are updated. Finally, the receive method of the PHY is called again.

During the processing of a packet, the spy is not in reception state. Therefore, it is
crucial to keep the processing part as short as possible. The time between the end
of a message transmission and the beginning of an acknowledgment is about 4 ms.
This is the time needed by the receiving node for processing the message, to gener-
ate the acknowledgment, and to prepare its transmission. As the time for an output
takes about 0.5 ms per character at a rate of 19200 Baud, captured messages cannot
be printed out immediately. In fact, intercepted packets are temporarily stored and
an event is used to print the message out later on. Events are managed by an event-
handler which periodically checks whether any flags for certain events were set. If

27

Chapter 3: Implementation

Algorithm 1: Processing Overheard Packet

Input: Packet Received

if ! ACK then
// Packet is of type MSG;
store MSG in msg_buffer;
set msg_Event flag;
update statistics;

else if ACK && ! NACK then
// Packet is of type ACK;
store ACK in ack_buffer;
set ack_Event flag;
update statistics;

else
// Packet is of type NACK;
drop packet;

end
// Re-init receiving;
phy_receive_frame();

this is the case, the corresponding event is triggered. By this concept, receiving is
not blocked anymore during the message output.

If the spy listens to message transmissions that occur shortly after each other, the
spy might not be fast enough to output every message in time. To prevent the buffer
being reused before the output event has finished, secondary buffers are introduced
for each packet type. Every buffer is only rewritten after the output of its content
has finished. If primary and secondary buffer are occupied due to high interception
activity of the spy, the message will be discarded.

3.1.2.2 Spy Output Format

The output of the spy is a simple line of text which is different for messages and
acknowledgments. The Figure 3-3 shows the output of several captured packets by
one single spy and is used to illustrates the format of the spy logs.

The output marked with a red frame shows a spy log of a packet that was identified
to be of type message. The first part is automatically generated by the A80 logging
service and contains an identifier and the address of the spy node. The following
three character are used to differentiate between the different logging schemes. Logs
generated by the spy part of the A80 software are always marked as "iat". The mes-
sage is printed in hexadecimal notation, in which every byte is encoded as a 2-digit
hex number. This implies that the log output gets twice as long as the message has
been, without considering the first part of the log previously explained. In order to
keep the log output as short as necessary, we have to make sure that the spy is able
to write more than twice as fast as the A80 is communicating via the wireless link.

28

3.1. A80-Spy Implementation

Figure 3-3: A80-Spy Log Format

This is done by setting the baud rate of the serial interface of the radio module to
19200 Baud, which is four times as fast as the communication via the wireless link.

The log output for an intercepted acknowledgment, marked with a green frame, is
shorter as it does not contain any payload data. The first two parts of the log, i.e. the
spy’s hardware address and the logger are the same as for message logs. Instead of
the packet’s content only the destination address and the RSSI value measured by
the receiver of the preceding message are printed out.

Finally, the yellow frame shows the combination of the two different log formats of a
message transmission and its corresponding acknowledgment. This can be verified
as the destination address (80440090) of the acknowledgment is identical to the
source address of the message. The source address (80440090) is contained in the
message header after the base header (1C00) and the destination address (804400A0).

In the following we explain several facets of the implementation which do not
belong to the core part of the spy, but still are worth to be mentioned.

3.1.2.3 Watch Dog

For redundancy reasons we implemented a watch dog which terminates and re-inits
the receiving process if no packet is received for 60 seconds. This action was taken,
because we observed a reduction of the spy’s performance when running the spy for
a long time including phases without any transmission activity. The watch dog has
the disadvantage that a message is missed if it is transmitted at the same time as
the watch dog fires. However, the risk of a message loss is reasonable compared to
the benefits of the watch dog.

29

Chapter 3: Implementation

RPC Command Description

spy.init Initialization of the spy. All statistical values
are set to zero.

spy.stop Stops the spy from intercepting messages.

set.chan <param>

Sets the receiving channel of the spy. The
spy.stop command must be executed in ad-
vance. The parameter contains the channel
to be set [0...79].

set.ant <param>

Specifies the receiving antenna. The A80
radio module contains two orthogonally ar-
ranged antennas. The parameter contains
the antenna to be used.

get.spystats
Prints the statistical numbers from the spy,
i.e. the number of overheard messages and
number of acknowledgments.

get.spypar
Returns the parameters used by the spy
for the current configuration, i.e. the chosen
channel and antenna are printed out.

get.rssi
This command triggers the measurement of
the RSSI value, i.e. the actual signal strength
is measured.

Table 3-1: RPC Commands Table

3.1.2.4 RPC Commands

The spy provides several commands executable through a Remote Procedure Call
(RPC) interface in order to apply configurations to and to get information from the
spy. In Table 3-1 the supported commands are listed.

3.1.2.5 Statistics

The spy keeps track of the number of received messages and acknowledgments by
maintaining statistics. The statistics can be read out by the corresponding RPC
command.

In the next section the implementation of the WSNSpy tool is presented.

3.2 WSNSpy Tool Implementation
For the implementation of the evaluation tool a development environment, includ-
ing several tools and libraries are needed, which we describe first. Afterwards, the
implementation itself is presented in detail.

30

3.2. WSNSpy Tool Implementation

3.2.1 Development Environment
In this section the environment we used for the spy tool development is presented.
First, the chosen programming language is justified, then some libraries and
modules used for the WSNSpy are explained.

3.2.1.1 Programming Language

In contrast to the spy software which is written in C, we decided to use Sun’s
Java [17] as programming language for the WSNSpy tool. We considered several
factors in order to get to this decision, which are elucidated in the following.

• Apart from the implemented RPC commands, the spy node software does not
need to provide functionality for user interaction as its only purpose is to print
out overheard traffic. The spy tool, however, provides functionality to analyze
and evaluate the overheard traffic, which leads to the insight that user inter-
action must be provided. In order to allow the user interaction to happen in-
tuitively and comfortable, a Graphical User Interface (GUI) is advisable. Con-
sidering the Swing toolkit, Java provides a good environment for GUI develop-
ment. Swing provides a rich variety of graphical objects (e.g. Frames, Buttons,
Textareas, etc.) that can be assembled to a customized GUI.

• The evaluation tool is designed to run on an ordinary computer, for which
nowadays performance is hardly a critical criterion anymore. Considering this,
the focus for the WSNSpy development was laid on usability rather than re-
source consumption optimization. For our purposes, Java meets the stated con-
straints best.

• Considering the given development environment, Java is used for compatibil-
ity reasons as well. The WSN configuration and analysis tool DSNAnalyzer,
which is comparable to the WSNSpy in the sense of utilization, is already im-
plemented in Java. As a few parts of the DSNAnalyzer cover the needs of the
WSNSpy, especially the communication between the tool and the DSN-Server,
it was advisable to reuse certain modules of the DSNAnalyzer in the WSNSpy.
However, this requires the use of Java as programming language.

• As the tool should not be restricted to a certain platform, Java as a platform
independent programming language meets this requirement as well.

• Java provides many libraries which drastically facilitates programming. E.g.
the JGraph library provides an interface for drawing network views including
user interactions, enabling simple integration in a Java application.

• Finally, we already have a certain experience working with Java, which al-
lowed us to reduce the phase of familiarization with the Java development
environment to a minimum.

Considering the arguments explained, we decided to develop the WSNSpy as a Java
application. The Java Development Kit (JDK) used for the evaluation tool is based
on version 1.5.0_11. In order to comfortably work during the spy tool development,

31

Chapter 3: Implementation

we used the Integrated Development Environment (IDE) of the Eclipse [18] Project.

3.2.1.2 JGraph Library

An important part of the evaluation tool is the reconstruction and display of the
network. This is done by showing the nodes and links of the network as a network
graph. For this purpose, we make use of the open source library JGraph [19],
which provides a full-featured graph model interface for Java. Due to the open
source principles, it is possible to manually extend and alter certain JGraph
functionalities, which make JGraph even more useful. JGraph is based on cells of
type node and edge which are specified by a rich variety of attributes concerning the
appearance and operability of the cells. The network topology is defined by adding
to every edge its source and target node cell.

3.2.1.3 Modules Used from the DSNAnalyzer

Into the WSNSpy some modules originating from the DSNAnalyzer application can
be integrated. This is done on the one hand, because there is no sense in developing
already existing work, and on the other hand to meet the requirement of compati-
bility of the WSNSpy to the DSNAnalyzer. The three modules mentioned below are
integrated into the spy tool.

• DSNCommunication
This module handles the communication between the tool and the DSN-Server.
It provides the functionality to fetch events from the server’s database that
were collected via the DSN, and to configure the sensor nodes by executing
RPC commands. In the WSNSpy only the first part of the DSNCommunication
module, i.e. for database interaction is used.

• EventList and Event
The events stored in the database of the DSN-Server need to be parsed on
import for further use. As all events are of the same format, we were able to
use this module for the spy events as well. The imported events are passed to
the next module as a list of events.

• Time Object
This module provides the functionality of working with date and time objects.
It is similar to the classes provided by the JDK except that the Java Applica-
tion Programming Interface (API) does not support microseconds.

3.2.1.4 Logger

For the development of the WSNSpy the Apache Logging Service log4j [20] was
used. The logger enables logging during runtime and can be controlled by editing a
configuration file.

32

3.2. WSNSpy Tool Implementation

Figure 3-4: WSNSpy Package Diagram

After presenting the development environment used for the WSNSpy, the imple-
mentation of the evaluation tool is thoroughly discussed.

3.2.2 Software Architecture
Before going into detail, the implementation of the WSNSpy is presented by explain-
ing how the tool is organized. The different packages and the relationship between
them are shown in Figure 3-4.

The implementation is organized into five packages. The GUI package is the main
package, from which the application is started. The rest of the tool is divided into
a Common and a ConnectivityView package. The first package contains classes on
which various parts of the tool are based on. In the second package all classes
concerning the ConnectivityView tab are contained. The packages dsn.util and
dsn.common are packages included from the DSNAnalyzer as described in Sec-
tion 3.2.1.3. In the latter package classes closely related to the ConnectivityView
tab are contained. In order to add a new tab as a tool extension later on, simply a
new package must be included.

In the following, the three packages belonging to the WSNSpy implementation are
explained in detail.

3.2.2.1 GUI Package

The GUI package contains the overall class WSNSpyMain. It initiates the Connectivi-
tyView tab and potentially subsequent tabs. The WSNSpyMain class could be merged
with the DSNAnalyzerMain class in order to have the two tools combined into a single
one, divided into several tabs. Additionally, the property file of the WSNSpy needs
to be merged with the one of the DSNAnalyzer.

33

Chapter 3: Implementation

3.2.2.2 Common Package

The Common package contains several classes that are used by various classes
outside of this package. Following classes are a member of the Common package.

Input Data Processor
As described in Section 3.2.1.3, collecting the events is done in the DSNCommunication
module of the DSNAnalyzer. So, the events collected in the EventList are provided
to the InputDataProcessor via an Observable - Observer connection, over which the
InputDataProcessor is notified on changes of the EventList.

The InputDataProcessor afterwards processes the input data sequentially according
to the input source. The input source is specified by setting the mode property in the
property file to

• "dsn" if logs originate directly from the sensor nodes,

• "sim" if the simulation is the input source, or

• "spy" if the logs are generated by spy nodes.

In "dsn" and "sim" mode two log events exist, a send and a receive event. A receive
event is recognized if it contains "id=" and "source=" as string identifiers. If only
"id=" is contained the event is treated as a send event.

Events originating from spy nodes are either message or acknowledgment events
and are distinguished by the string identifiers "msg=" for a message event and
"dest=" for an acknowledgment event.

The InputDataProcessor not only acts as an Observer of the EventList, but as an
Observable class which notifies its Observer on network topology changes, as well.
So, the ConnectivityView, which is registered as an Observer of the InputDataPro-
cessor, gets notified every time a bunch of events are processed and messages are
generated.

Network Topology Storage
The InputDataProcessor builds up the Network Topology Storage which is the base
for all further investigation and processing. As illustrated in Figure 3-5, the storage
consists of nodes and edges which are instances of the Node and Edge classes. In
order to obtain the network topology the message interface IMessage is used which
defines how the different types of messages are accessed.

In every node references to incoming and outgoing links are stored, as well as a list
of its neighbors. On the other hand, every edge stores a reference of its origin and
destination node. In addition, the time stamps are stored for every usage of the link.
The references between nodes and edges connect the network elements together and
allow an easy navigation through the network.

Every node gets a status assigned that is shown by the color if a node is highlighted.
How the status is defined depends on the fulfillment of certain properties which are
explained in Section 3.2.2.4.

34

3.2. WSNSpy Tool Implementation

Figure 3-5: Class Diagram Network Topology Storage and Message Con-
struct

35

Chapter 3: Implementation

3.2.2.3 ConnectivityView Package

The package contains classes that are used only in the ConnectivityView tab. The
package is split into a class for every sub-window and some additional classes for
controlling purposes. In the following, a selection containing the most important
classes of this package is described in detail.

ConnectivityView
The ConnectivityView class is the main class for this tab, holding control over all
sub-windows and the connections in between.

NetworkGraph
The largest sub-window in size displays the network topology of the reconstructed
network. The NetworkGraph acts as an Observer of the InputDataProcessor and
therefore gets notified on new message input. For displaying the network graph,
the JGraph library is used which provides functionality to draw the network and to
react on user interaction.

The NetworkGraph is used to control selected as well as highlighted network
elements. We differentiate between selection and highlighting because if a node
is selected, not only this node is highlighted, but all neighboring nodes as well as
incoming and outgoing edges are highlighted. This allows to examine a part of the
network more thoroughly. Highlighted nodes are colored according to the status
color set, i.e. red or green (or gray by default). Edges are labeled according to the
number of message transmissions.

MsgWindow
The MsgWindow controls a text field and reacts on Observer notification from the
InputDataProcessor. The sub-window interacts with the NetworkGraph for the se-
lection of network elements. On selecting a certain message, the corresponding edge
is selected in the NetworkGraph as well, and vice versa.

The TimeWindowController is attached to the MsgWindow and allows to consider only
certain messages within a time frame for the evaluation. This is done by adjusting
the visible time frame. The time window can be moved forward and backwards by
using a slider button.

InfoWindow
The InfoWindow is a passive sub-window and simply provides information about the
network, or single nodes and edges depending on the selection of network elements.

PropertyChecker
On initialization the PropertyChecker class searches the plugin folder of the
WSNSpy for Java classes implementing the Property interface. The found Prop-
erty classes are included into the PropertyChecker sub-window and are then ready
to check a network on fulfillment. The Property classes are included by using a class
loader, which means that the Property classes do not have to be registered anywhere

36

3.2. WSNSpy Tool Implementation

in the code. So, there is no need to compile the whole WSNSpy tool just for including
a new Property. However, the Property class itself must be compiled, which can be
done by adding the jar archive of the WSNSpy to the classpath.

Once the Property classes are loaded, the PropertyChecker provides the functional-
ity to check a network whether the properties are fulfilled or one or several network
elements violate a certain property.

In the next section the purpose of the Property plugins are explained. The Property
classes do not build an individual package, but the files are separated from the rest
of the tool and located in a special folder, instead.

3.2.2.4 Property Plugins

A Property plugin has to implement the Property interface in order to be considered
by the PropertyChecker and to appear in the sub-window. The Property interface
defines how the Property is accessed and demands, apart from some other methods
for configuration purposes, the "eval" method being implemented. This method
is called by the PropertyChecker in order to evaluate a certain network topology
provided as a parameter value to the Property. The result of the evaluation consists
of all nodes of the network to which "true" or "false", or in case of non-determinism
"unknown" is mapped.

Apart from the Property plugins explained so far that are used to evaluate a certain
network topology, the WSNSpy uses a property file for configuring the spy tool,
itself. In the following these properties are explained.

3.2.2.5 Property File

The WSNSpy tool can be configured through a property file in order to specify long-
term configurations. The following properties can be specified.

• The path of the DSN-Server is a necessary parameter in order to be able to load
data from the server. If this property is not set, events can only be imported
from a local file.

• In order to use the debug session functionality where the DSN-Server is polled
constantly for database changes, a logging port must be specified.

• The mode property specifies the input source. Possible values are "spy", "dsn",
or "sim", which are explained in Section 3.2.2.2.

• The sink node of the network must be specified. This property is used by cer-
tain properties that evaluate paths of a network.

• The network layout file contains information on how the nodes should be posi-
tioned in order to match to the physical arrangement. If a layout file is spec-
ified in the property file nodes are arranged accordingly, otherwise random
positions are applied.

37

Chapter 3: Implementation

• By specifying a map as a background image, the nodes can be placed according
to their physical positions.

More detailed instructions concerning the different functionalities can be found in
the readme file of the WSNSpy.

38

4
Evaluation

In this chapter the whole system developed in this thesis is evaluated in order
to verify the correct functionality of every single part as well as the complete system.

4.1 Evaluation Cases
As described in Section 2.1, the system consists of four components with individual
functionality that are connected building a chain. For the evaluation every compo-
nent is tested individually, apart from the two components in the middle, i.e. DSN
nodes and DSN-Server, which are evaluated in one single test. Therefore, we define
the following tests for the evaluation.

1. Spy Node Evaluation
The spy nodes denote the basis for the data acquisition and therefore must be
able to capture a high percentage of the WSN traffic.

2. DSN Node and DSN-Server Evaluation
The DSN consisting of the DSN nodes and the DSN-Server is used for collect-
ing the traffic overheard by the spy nodes. The DSN only provides transport
functionality and so, as it is used "as is", satisfying performance can be ex-
pected, but is tested anyway.

3. WSNSpy Tool Evaluation
The WSNSpy tool is tested on two different properties. On the one hand, the
question of how well the real system can be reconstructed, solely based on low-
level information is investigated. On the other hand, we evaluate the prop-
erties provided by the WSNSpy in order to determine the health state of the
network. The evaluation is done by comparing the network obtained by spying
with the real network.

By evaluating the three cases explained, we can finally make a statement concern-
ing the functioning of the whole system.

39

Chapter 4: Evaluation

Figure 4-1: Test Setup for the Spy Node Evaluation

4.2 Evaluation Tests
In the following, for every part of the system the test performed for the evaluation
is explained, the results are presented, and the conclusions are drawn.

4.2.1 Spy Node Evaluation
To evaluate the performance of the spy nodes it is crucial to know the exact number
of successful message transmissions to be able to compare the number of sent
messages with the number of captured message transmissions. This allows us to
determine the percentage of overheard messages compared to the actually sent
messages. The application used for the sensor network, as well as the evaluation
framework is presented in the next section.

4.2.1.1 Test Setup

For the evaluation of the sensor network we used the "WiseMAC-Test" application,
which provides the functionality of simply forwarding every received message with-
out any retransmissions. The system under test shown in Figure 4-1, consists of four
sensor nodes which are placed in close distance to each other. So we can state that
the reception range is not an issue in this test.

The traffic generated by the test network is captured by two independently operat-
ing spy nodes which are placed directly next to each other. The spy nodes are con-
nected via a serial connection to a computer, thus we get a reliable connection to the
spy nodes which allows to count the number of overheard message transmissions.

With the test setup explained, we did five tests including precisely 1000 message
transmissions. The tests were done in a large office building.

40

4.2. Evaluation Tests

Spy 1 (Serial) Spy 2 (Serial)
Minimum 99.0% 99.0%
Maximum 100% 100%
Average 99.5% 99.7%

Table 4-1: Spy Node Evaluation Results

4.2.1.2 Results

The results obtained for the spy node evaluation is shown in Table 4-1. At least
99.0% of the message transmissions could be overheard by the spy nodes for each
test. On the other hand, in at least one of the five tests all message transmissions
could be overheard by the spy nodes. On average three to five messages were missed.

4.2.1.3 Conclusions

The test results show that there is almost no difference between the two spy nodes,
which allows us to conclude that the software is working correctly. The minor dif-
ferences of 0.2% on average can be explained by the placement, which was slightly
different for the two spy nodes.

So, we can state that the spy nodes of the system provide suitable capturing func-
tionality, which allows us to use the data acquired by the spy node as a basis pro-
viding enough information for the analysis and evaluation of the capture data.

By using two redundant spy nodes at the same time, we are able to increase the
percentage of the overheard message transmissions even more. If we apply this
approach to the tests described above, all messages could be captured, because
every message transmission was overheard by at least one of the two spy nodes.

4.2.2 DSN Node and DSN-Server Evaluation
Beutel et al. stated in [3] that packets might get lost on the DSN, depending on
the total amount of DSN traffic. Due to this fact it is necessary to test the DSN
on packet losses. If we can verify that the DSN, which is not overloaded works
reliable, the system provides the functionality to passively capture WSN traffic in a
satisfying manner.

4.2.2.1 Test Setup

In comparison with the test explained above for the evaluation of the spy nodes, the
system under test and the amount of the sent messages remain the same for the
DSN evaluation. However, only one of the two spy nodes is connected directly the
computer, using a serial connection as shown in Figure 4-2. Spy number "1" though,
is connected via the DSN to the computer, which allows us to investigate the effects
of the DSN. As the DSN only contains one single spy node, the loss of data due to
an overloaded network can be neglected.

41

Chapter 4: Evaluation

Figure 4-2: Test Setup for the DSN Evaluation

4.2.2.2 Results

The results obtained are shown in Table 4-2. The minimal percentage of the
overheard message transmissions for any of the five tests is 98.1% for the spy node
connected via the DSN to the computer, and 98.2% for the node connected directly
via a serial link. For at least one of the five tests both of the spy nodes overheard all
1000 message transmissions. On average 99.4% and 99.5% of the messages could be
overheard.

Spy 1 (DSN) Spy 2 (Serial)
Minimum 98.1% 98.2%
Maximum 100% 100%
Average 99.5% 99.4%

Table 4-2: DSN Evaluation Results

4.2.2.3 Conclusions

The evaluation clearly shows that considering the number of lost messages, there is
no difference in using the DSN or connecting the spy node directly to the computer
using a serial interface. Obviously, for a single node the DSN is not overloaded and
so we can state that in this very case, the DSN does not perform worse than by
using a serial interface.

We showed that the system’s capturing part has good functionality for overhearing
WSN traffic. Hence, the captured data provides a reasonable basis for the evalua-
tion of the captured data.

42

4.2. Evaluation Tests

Figure 4-3: Test Setup for the WSNSpy Evaluation

4.2.3 WSNSpy Tool Evaluation
After the evaluation of the capturing part showing good functionality for overhear-
ing WSN traffic, the WSNSpy tool is evaluated. First, the reconstructed network
is verified against the real network topology and afterwards the result of the
evaluated properties are compared to the state obtained from the sensor nodes.

4.2.3.1 Test Setup

For the evaluation of the WSNSpy tool a different application is used for the sensor
network, as sending messages in a circle is too simple for a meaningful property
evaluation. Therefore, the Neighborhood Detection (ND) algorithm is used as test
application.

The ND application was developed for the commissioning of a sensor network in
which the determination of a node state only depends on the states learned from
direct neighbor nodes. The ND algorithm assigns to every node one out of three
possible node state: As long as it does not have a path to the sink, the node state is
red. Nodes connected to the sink without having two node-distinct paths are marked
yellow, while the state of a node having two node-distinct paths to the sink is green.

The test setup is shown in Figure 4-3. The test network consists of eight sensor
nodes including the magenta colored node in the middle (806403e1), which denotes
the sink. In connection with the sensor network the DSN is used, which allows us
to obtain the node states of the sensor network in reality.

The spy network consists of two distributed spy nodes connected via the DSN. In
the test, most of the sensor nodes were overheard by both of the spies, which means
that we have used two at least partially redundant spy nodes.

For the evaluation the ND algorithm was initiated and every node was switched on
after a random delay of at most four minutes. As soon as a node gets switched on,
it starts to find neighboring nodes until either a satisfying connectivity is achieved
or no new neighbors can be found. The test terminates as soon as no node state
changes occur in the whole sensor network for at least three minutes. This is the
case after 250 to 300 sent messages.

43

Chapter 4: Evaluation

Figure 4-4: Comparison of the Test Result with Reality
The upper image shows the reconstructed network evaluated for the two node-distinct paths
property by using the WSNSpy tool. The lower image presents the topology of the real net-
work obtained by the DSNAnalyzer.

4.2.3.2 Results

The results presented in this section are derived from nine independent tests. In
five tests, a different sink than illustrated in Figure 4-3 is used in order to diversify
the network and to get more general results.

For all of the nine tests, the number of neighbors of a node never differs more than
by one. The evaluation concerning the number of neighbors yields a percentage of
99.2% of all neighbors that could be found by the system. If a node only receives
an initial broadcast message, the sender is registered as a neighbor without an
acknowledgment been sent. As this case cannot be detected by the system, some
neighbors cannot be determined, which explains the minor difference.

For each test, the reconstructed network is evaluated against the network partition
property and the two node-distinct paths property. The evaluation result is verified
by considering the topology of the real network. For the nine tests performed, no
node state was evaluated falsely. Figure 4-4 above exemplarily shows the compar-
ison between the evaluation of the node states done with the WSNSpy, and below
the real network topology. The node to the left is only connected via one single link,
which is not sufficient if the condition of two node-distinct paths must hold for the
network. Comparing the result obtained by the WSNSpy with the actual topology
of the real network, we can verify that the two topologies match and the properties
evaluate correctly.

The precise number of sent messages could not be obtained from the test network,
as not every single message transmission was logged. However, the capturing
performance was investigated in the evaluation of the spy nodes and the DSN, and
hence, we rely on these results.

44

4.2. Evaluation Tests

4.2.3.3 Conclusions

From the evaluation of the WSNSpy tool and, as it is based on the data captur-
ing part, from the evaluation of the whole system we can conclude that the system
works as intended. The node states evaluated by the WSNSpy do match with reality
which leads to the conclusion that the system provides good visibility of the sensor
network. This is obtained by only passively capturing and analyzing traffic.

45

Chapter 4: Evaluation

46

5
Conclusions and Outlook

To finish off, the contributions achieved in this thesis as well as the conclusions
that can be drawn out of the evaluation are presented in this chapter. Finally, an
outlook on future work is given.

5.1 Summary
In the scope of this thesis we developed a system which allows us to decide in a fast
and easy way whether a Wireless Sensor Network (WSN) is in good condition. The
definition of the term "good condition" is different for every network and therefore
must be specified for a certain WSN individually in advance.

The system developed consists of

• a distributed spy for passively capturing WSN traffic, and

• the evaluation tool WSNSpy allowing to analyze a network, based on the data
captured by the spy part.

The spy nodes continuously capture WSN traffic and make a log output on every
packet received. For practical reasons and in order to provide a sensor network in-
dependent framework for collecting the captured messages, the Deployment Support
Network (DSN) is used for the spy nodes. Overheard messages are stored in a data-
base by the DSN-Server providing a basis for further analysis.

In the evaluation tool WSNSpy, the network is reconstructed by simply considering
sender and receiver of a captured message transmission. Based on the reconstructed
network, the tool provides the functionality to define certain conditional properties
which will be checked on fulfillment for every single node. The result is the superpo-
sition of all properties evaluated for a node, and is displayed by a red or green icon
depending on the property result. By this, the complete network can be checked on
user defined conditions, allowing to formulate an individual definition of health for
any network.

47

Chapter 5: Conclusions and Outlook

Additionally, we investigated the realization of a multi-frequency scanner in the
scope of a feasibility study, in order to detect channels with ongoing transmissions.
We propose to start scanning as a broad-band receiver and to successively narrow
the bandwidth on traffic detection until a single channel is identified. However, to be
able to detect a transmission on a single channel fast enough, several radio modules
running in parallel are needed.

The system developed within this thesis runs completely independent of the sensor
network, which allows to spy on the network without any instrumentation of sensor
nodes. Hence, the system can be used not only during the development of a WSN,
but also for analyzing a fully deployed network.

The evaluation of the system developed was done by considering every single part
of the system individually. The following evaluation results could be obtained.

• The spy nodes performed well by at least overhearing 99.5% (98.1%) of all mes-
sage transmission on average. Redundant spy nodes increase the capturing
performance such that hardly any message transmission is missed.

• By using one spy node via the DSN, there is no difference in the percentage of
overheard message transmissions compared to a spy node connected directly
via a serial link. Hence, the DSN does not reduce the capturing performance
as long as it is not overloaded.

• The evaluation of the WSNSpy shows that the topology of the reconstructed
network does match with the real network. Basically, all neighbors for each
node could be detected (Some neighbors could not be detected by the system
due to broadcast messages, which are not considered). Therefore, we can state
that the network obtained provides a good representation of reality and can be
used for the property evaluation.

• The property for checking the network topology on two node-distinct paths
evaluates correctly and the determined node states match with reality.

5.2 Contributions
To finish off, we state the achievements that could be obtained within this thesis.

• With the system developed in this thesis, we achieved good visibility of a WSN
without any instrumentation of sensor nodes.

• The evaluation tool is based on low-level information, consisting of sender
and receiver of a message transmission only. Such a system is independent
of higher-layer protocols and therefore suitable for various applications.

• We can check a sensor network in a fast and easy way on its health state by
evaluating properties required for the network.

48

5.3. Outlook

5.3 Outlook
To reconstruct the network observed, our system simply needs low-level informa-
tion, i.e. sender and receiver. However, an even more radical approach could be
thought of in which no information from the message content is needed at all. By
adding to every WSN node a spy, message transmissions could be detected by con-
stantly measuring the signal strength. The evaluation then can be done without the
need of any message content information.

The evaluation tool WSNSpy has still room for further development. The following
features could be of interest.

• For storing a certain network topology or for saving an image of a specific
property evaluation, an export functionality would be useful.

• While continuously importing messages is possible already, the property eval-
uation can only be done for an unchanging network topology, i.e. continuously
evaluating properties is not possible. However, network states can be deter-
mined faster if continuous property evaluation would be possible.

• Although the spy nodes run autonomously, the DSNAnalyzer tool is needed
for executing commands on the spy nodes, e.g. changing to another channel.
Including the functionality for configuring spy nodes directly into the WSNSpy
tool would simplify the setup of the spy network.

49

Chapter 5: Conclusions and Outlook

50

A
Experimental Equipment

In this part of the appendix we explain the equipment used for the realization of
this thesis. On the one hand, we worked with several hardware components either
for the development of the system or for its verification and testing. On the other
hand, tools used within this thesis are explained.

A.1 A80 Radio Module
The A80 radio module shown in Figure A-1, is used for the sensor nodes of the
WSN as well as for the spy nodes. The module is based on a MSP430 micropro-
cessor and uses a Chipcon CC1020 UHF transceiver for wireless communication.
The MSP430 [13] incorporates a 16-bit RISC CPU and is suitable for demanding
mixed-signal applications.

The CC1020 RF chip [2] is a narrow-band low power and low voltage UHF wireless
data transceiver in the frequency range from 402 MHz to 470 MHz and from
804 MHz to 940 MHz. The CC1020 runs in the Industrial, Scientific and Medical
(ISM) band using the frequency range from 868 MHz to 870 MHz. The chip has a
signal sensitivity of −118 dBm, a data rate of 4800 Kbit/s and supports a Frequency
Shift Keying (FSK) data modulation.

The A80 contains two orthogonally arranged antennas which allow to switch
between them and make use of antenna diversity on receiving.

A.2 BTnode
The BTnode rev3 [16] is an autonomous wireless communication and computing
platform based on an Atmel ATmega 128L microcontroller and a Zeevo ZV4002
Bluetooth radio. The BTnode which is shown in Figure A-2 was developed by the
Federal Institute of Technology (ETH) of Zurich.

51

Appendix A: Experimental Equipment

Figure A-1: A80 Radio Module

Figure A-2: BTnode rev3

For our purposes, the BTnode is used as DSN node in order to forward the logs
received from the A80 via the adaptor board using the Bluetooth radio.

A.3 Adaptor Board
The Adaptor Board shown in Figure A-3 is a hardware platform acting as a connec-
tor between the A80 target and the BTnode. The adaptor board contains a support
MSP consisting of a MSP430 providing functionality to measure the current con-
sumed by the A80, and the possibility to spy on the communication between the

52

A.4. Fire Detection Sensor Network

Figure A-3: Adaptor Board

BTnode and the A80 radio module. The adaptor board additionally allows direct
interaction with the A80 by using a serial interface.

The adaptor board is used for the development of a fire detection sensor network.
For practical reasons the board is placed in a so called blue box. A fully applied blue
box consists of an adaptor board, A80 module and a BTnode as it is illustrated in
Figure A-4.

A.4 Fire Detection Sensor Network
The WSN under development is a fire detection sensor network based on mesh net-
working functionality. In such a network nodes choose their neighbors if a good con-
nection exists to a node in the vicinity. By this, a stable but possibly over time chang-
ing network is obtained, in which a message could be routed via several targets and
various paths to its destination. Hence, the network gets more robust against node
failures.

A.5 Deployment Support Network (DSN)
Sensor networks are difficult to debug and to configure as the sensors provide hardly
any observability due to power and resource constraints. One possibility to improve
observability during the development of a WSN is to make use of the Deployment
Support Network (DSN) as proposed in [3].

The DSN is based on a concept in which a second device is attached to every
sensor node building up a second network on top of the sensor network operating

53

Appendix A: Experimental Equipment

Figure A-4: BlueBox

in a different frequency range. This network is used for sending commands to
and to collect logging information from the sensor nodes. The DSN used for the
WSN development is built out of BTnodes communicating by using a Bluetooth
connection.

A.6 DSN-Server
The DSN-Server [5] provides an interface to the DSN that can be used by many
tools in order to access the DSN. On the one hand, the server provides functionality
to send commands via the DSN to the targets and on the other hand, logs generated
by the spies and collected via the DSN are stores in a database by the server. The
database can be accessed by various tools through the DSN-Server in order to get
information from the sensor nodes.

A.7 DSNAnalyzer
The DSNAnalyzer is a software tool for the analysis and configuration of WSNs
using the DSN. The tool was developed within the scope of a master’s thesis [8] and
the functionality provided consists of the following parts.

• The sensor nodes can be configured through the DSNAnalyzer by providing
an interface for executing commands directly on the target. This can be done
for every node individually or by commands executed for every node in the
network. Commands can also be used to retrieve information about the state
of a node.

54

A.7. DSNAnalyzer

Figure A-5: DSNAnalyzer Screenshot

• The analyzing part allows the investigation of events collected from the tar-
gets. By showing a timeline for each target, the chronological sequence of the
events and the relation in between can be examined.

• The third view provides various diagrams for the evaluation of link quality
tests.

Figure A-5 shows a screenshot of the DSNAnalyzer tool.

55

Appendix A: Experimental Equipment

56

Bibliography

[1] Jan Beutel, Matthias Dyer, and Kevin Martin. Demo abstract: Sensor network
maintenance toolkit. In Proc. 3rd European Workshop on Wireless Sensor Net-
works (EWSN 2006), 2006.

[2] Chipcon AS. CC1020 Single Chip Very Low Power RF Transceiver Data Sheet,
2006.

[3] Matthias Dyer, Jan Beutel, Lothar Thiele, Thomas Kalt, Patrice Oehen, Kevin
Martin, and Philipp Blum. Deployment support network - a toolkit for the de-
velopment of wsns. In Proceedings of the 4th European Conference on Wireless
Sensor Networks, pages 195–211. Springer, Berlin, January 2007.

[4] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ra-
manathan, and Deborah Estrin. Emstar: a software environment for devel-
oping and deploying wireless sensor networks. In In Proceedings of the 2004
USENIX Technical Conference, 2004. Also published as CENS Technical Re-
port 0034, December 16, 2003.

[5] Thomas Kalt. Online sensor network analysis tool. Master’s thesis, Swiss
Federal Institute of Technology (ETH) Zurich, 2006.

[6] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. In WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, pages 88–97, New York, NY, USA, 2002. ACM Press.

[7] K. Martinez, R. Ong, and J. K. Hart. Glacsweb: a sensor network for
hostile environments, http://www.citebase.org/abstract?id=oai:eprints.
soton.ac.uk:15604, 2004.

[8] Patrice Oehen. Dsnanalyzer: Backend for the deployment support network.
Master’s thesis, Swiss Federal Institute of Technology (ETH) Zurich, 2006.

[9] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler,
and Deborah Estrin. Sympathy for the sensor network debugger. In SenSys ’05:
Proceedings of the 3rd international conference on Embedded networked sensor
systems, pages 255–267, New York, NY, USA, 2005. ACM Press.

57

http://www.citebase.org/abstract?id=oai:eprints.soton.ac.uk:15604
http://www.citebase.org/abstract?id=oai:eprints.soton.ac.uk:15604

Bibliography

[10] Matthias Ringwald, Kay Römer, and Andrea Vitaletti. Snif: Sensor network
inspection framework. Technical Report 535, Department of Computer Science,
ETH Zurich, October 2006.

[11] Kay Römer and Friedemann Mattern. The design space of wireless sensor
networks. IEEE Wireless Communications, 11(6):54–61, December 2004.

[12] Stanislav Rost and Hari Balakrishnan. Memento: A Health Monitoring System
for Wireless Sensor Networks. In IEEE SECON, Reston, VA, September 2006.

[13] Texas Instuments. Microcontroller MSP430 Overview, http://focus.ti.
com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342,
2006.

[14] WiseMAC: an ultra low power MAC protocol for the downlink of infrastructure
wireless sensor networks, volume 1, 2004.

[15] Argo - global ocean sensor network, http://www.argo.uscd.edu.

[16] Btnode rev3 - product brief, http://www.btnode.ethz.ch, April 2005.

[17] Java development environment, http://www.java.sun.com.

[18] Eclipse integrated development environment, http://www.eclipse.org.

[19] Jgraph library, http://www.jgraph.com.

[20] Apache logging service log4j, http://logging.apache.org/log4j/docs/index.
html.

[21] Bluetooth, http://www.bluetooth.com.

[22] Xml-rpc, http://www.xmlrpc.com, 2006.

[23] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A library for parallel simula-
tion of large-scale wireless networks. In Workshop on Parallel and Distributed
Simulation, pages 154–161, 1998.

58

http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342
http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342
http://www.argo.uscd.edu
http://www.btnode.ethz.ch
http://www.java.sun.com
http://www.eclipse.org
http://www.jgraph.com
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://www.bluetooth.com
http://www.xmlrpc.com

	Abstract
	Preface
	Introduction
	Wireless Sensor Networks
	Problem Statement
	Scope of this Thesis
	Related Work
	SNIF - Sensor Network Inspection Framework
	Emstar
	Sympathy and Memento
	Deployment Support Network

	Chapter Overview

	Conceptual Design
	System Overview
	Radio Spy
	Feasibility Study: Multi-Frequency Scan
	Spy Functionality

	WSNSpy Tool
	Use Cases
	Network "Health"
	WSNSpy Requirements
	WSNSpy Design

	Implementation
	A80-Spy Implementation
	A80 Software Stack
	Software Architecture

	WSNSpy Tool Implementation
	Development Environment
	Software Architecture

	Evaluation
	Evaluation Cases
	Evaluation Tests
	Spy Node Evaluation
	DSN Node and DSN-Server Evaluation
	WSNSpy Tool Evaluation

	Conclusions and Outlook
	Summary
	Contributions
	Outlook

	Experimental Equipment
	A80 Radio Module
	BTnode
	Adaptor Board
	Fire Detection Sensor Network
	Deployment Support Network (DSN)
	DSN-Server
	DSNAnalyzer

	Bibliography

