
Institut für
Technische Informatik und
Kommunikationsnetze

Masters Thesis

The ANA Project

Development of the
ANA-Core Software

September 21, 2007

Ariane Keller

Supervisor: Prof. Dr. B. Plattner
Advisor: Theus Hossmann, Dr. Martin May, Dr. Rainer Baumann

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract

In recent years, the Internet has reached enormous popularity, but at
the same time its weaknesses become evident: Huge efforts have to be
taken to manage all participating nodes, and the infrastructure is not suit-
able to integrate emerging network paradigms such as sensor networks or
delay tolerant networks. Therefore several research projects try to reinvent
the Internet and provide a network architecture which is better armed for
future needs.

This thesis is situated in the ANA project which builds an autonomic net-
work based on a clean slate approach. The ultimate goal is to develop a
novel autonomic network architecture that enables flexible, dynamic, and
fully autonomic formation of networks.
In an ANA node two main components can be identified: The MINMEX
and the Playground. The Playground hosts the elements (functional blocks)
providing networking functionality. The MINMEX ties these functional blocks
together and dispatches the data amongst them.
In this Masters thesis we have developed the communication infrastructure
between the MINMEX and the functional blocks. Due to this infrastructure
ANA developers will never have to care about how packets get transferred
between the different functional blocks.
The infrastructure is implemented for Linux kernel 2.4 and 2.6 as well as
for the Linux user space. This allows to run ANA in different environments,
reaching from embedded devices to personal computers, without the need
of changing anything on the given operating system.
In a second phase we have designed a bootstrapping process. This boot-
strapping process can be used by any functional block in ANA, regardless
whether it implements a high level application or a low level communication
facility. With the help of this bootstrapping process different ANA nodes can
start to communicate together.
In order to illustrate the operation of the ANA core software as well as the
bootstrapping process we have implemented the first application running
on ANA: A chat program.

Acknowledgments

With this Masters thesis I complete my studies in Information Technology and
Electrical Engineering at the Swiss Federal Institute of Technology (ETH) Zurich.

A number of people have contributed to this thesis and I would like to express
my gratitude to them.

I would like to thank Prof. Dr. Bernhard Plattner for the supervision of my
Masters thesis.

I would like to thank my advisors Dr. Martin May and Theus Hossmann. I
am very thankful that Martin had that much confidence in me and let me work
in this fascinating project. I thank Theus for the time and effort he put in sup-
porting me with this thesis.
Special thanks to Dr. Rainer Baumann. He knew my interests and arranged
this exciting Masters thesis for me. During my thesis he aided me with his ex-
perience in holding presentations and writing reports.
I’m thankful that Rainer and Martin encouraged me to stay at ETH after my
Masters thesis is completed. I’m looking very much forward to this experience.

I would like to thank Thomas Steingruber for equipping me with all the nec-
essary hardware, regardless whether it was a mouse, a switch or a third com-
puter. His door was always open and he fullfilled my wishes always straight
away.

I would like to thank Dr. Christophe Jelger and Ghazi Bouabene from the
University of Basel for all the inspiring discussions and the great collabora-
tion during the development of the ANA prototype.

Zurich, September 2007

Ariane Keller

CONTENTS

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 The ANA Project . 8
1.3 Goals of this Thesis . 9
1.4 Outline . 10

2 Related Work and Background Information 11
2.1 Networking Projects . 11
2.2 Bootstrapping . 13
2.3 Inter Process Communication Mechanisms 19

3 The Architecture of the ANA Project 21
3.1 Blueprint . 21

3.1.1 Terminology . 21
3.1.2 Compartments . 23
3.1.3 MINMEX . 24
3.1.4 Summary . 25

3.2 Prototyping Phase: From Abstraction to Implementation 26
3.2.1 Building Blocks . 26
3.2.2 Communication Principles 26
3.2.3 Important Data Structures 28
3.2.4 ANA API . 29
3.2.5 Example Communication 31
3.2.6 Summary . 33

4 Implementation of the ANA Core in the Linux Kernel 34
4.1 Communication Between the MINMEX and the Bricks 34

4.1.1 UDP Socket Communication 34
4.1.2 Generic Netlink Communication 40
4.1.3 Kernel Intern Communication 48
4.1.4 Evaluation: Throughput of the ANA Core 56
4.1.5 Summary . 59

4.2 Writing System Agnostic Code 60
4.2.1 Standard Wrapper Functions 60
4.2.2 Mutual Exclusion - ANA Locks 60
4.2.3 Parallel Execution - ANA Threads 61
4.2.4 Summary . 62

4.3 Backporting to Linux Kernel 2.4 63

5 The Bootstrapping Phase 65
5.1 Building a Dynamic Protocol Stack 65
5.2 Get to Know Other Nodes . 67
5.3 Chat Application . 70
5.4 Summary . 72

6 Summary and Further Work 73
6.1 Summary . 73
6.2 Further Work . 74

3

CONTENTS

A Howto: Start using ANA 75
A.1 Compilation . 75
A.2 Bricks Required for the Chat Application 75
A.3 Loading the MINMEX and the Bricks 75
A.4 Troubleshooting . 76
A.5 Configuring the MINMEX and the Bricks 76
A.6 Addressing Schemes . 77

B First Steps in Writing Code for ANA 78
B.1 Guidelines for Writing System Agnostic Code 78
B.2 Writing Your First Brick . 79

C Important Data Structures 81
C.1 MINMEX . 81
C.2 Brick . 85

4

LIST OF FIGURES

List of Figures

1 Overview over an ANA node. 9
2 Main components of the ANA-node. 22
3 Data flow through Functional Blocks (FB), Information Dispatch

Points (IDP) and an Information Channel (IC). 22
4 Layering of compartments in ANA. 24
5 MINMEX - Brick interconnection with the control and the data

gates. 27
6 Overview over communication possibilities between the MINMEX

and Bricks. 28
7 Path of a data message. 30
8 Function prototypes for the handling of UDP sockets in the MIN-

MEX. 40
9 Schema of generic netlink registration. 42
10 Registration of a generic netlink family. 43
11 Registration of a callback function for a generic netlink family. . . 45
12 The generic netlink family for receiving control messages in the

MINMEX. 47
13 A PC hosting two different MINMEX. 50
14 Attachment from a Brick to the MINMEX. 52
15 Sending of a data message from the MINMEX to a Brick. 53
16 Brick starting a control request. 55
17 Test setup for throughput measurements 56
18 Percentage of delivered packets depending on the packet rate. . 58
19 CPU load for different packet rates. 58
20 Three steps for building a dynamic protocol stack. 66
21 Example setup to explain the bootstrapping process. 68
22 Bootstrapping active node . 69
23 Bootstrapping passive node . 71

5

1 Introduction

1 Introduction

1.1 Motivation

Today, the Internet has reached enormous popularity. Mostly due to the enor-
mous amount of applications provided and the ease of use for the end-user.
But as the number and diversity of network capable devices increase and the
applications make higher demands on the underling network, some drawbacks
get apparent:

• For small devices (e.g. in sensor networks) it is not feasible to provide
the whole TCP/IP stack, since it consumes a lot of resources. Therefore,
it is desirable to let them communicate using a simpler protocol. But
unfortunately the Internet requires the IP protocol for every participating
node.

• With the number of participants in the Internet the management over-
head increases. If one system administrator is assumed per 100 nodes,
10 million system administrators are needed for 1 billion nodes. The in-
troduction of ubiquitous computing and sensor networks may increase
the number of nodes beyond 1 billion. Therefore system administrators
as well as users may be swamped with the increasing system complex-
ity [29].

• The success of the Internet made it a valuable goal for attackers: Viruses,
worms and Denial-of-Service attacks are well known problems. The In-
ternet was not designed with security in mind, but as an open system
with distributed control and mutual trust [1]. Therefore it is not possible to
protect the network against malicious users without changing the archi-
tecture of the Internet significantly [2].

• Firewalls as well as NAT enabled routers pose difficulties for some le-
gitimate applications like VoIP. They block incoming connections, either
because the specified destination port is blocked, or because the speci-
fied port is not yet known by the NAT device. Firewalls may have to be
reconfigured, in order to allow incoming traffic to some applications. And
nodes behind a NAT device have to initiate all connections. This is difficult
in case of VoIP because the caller is never known in advance.

• Many applications have some Quality of Service (QoS) requirements. But
the Internet does not provide any help for QoS. In order to provide opti-
mal performance some applications (e.g. video conferencing) need to
estimate the available bandwidth, latency etc. If many applications per-
form these measurements actively (e.g. by sending probe packets), the
network load increases unnecessary [4]. It would be preferable that the
network itself provides some QoS mechanisms as well as information
about the network status.

To eliminate these drawbacks the core network infrastructure needs to be
changed fundamentally. But unfortunately the infrastructure of the Internet is
not likely to change, as several examples (RSVP, IPv6 etc.) have shown in the

6

1.1 Motivation

past. One major problem are the Internet Service Provider (ISP) which are very
conservative in deploying anything that does not lead to a financial benefit [5].

Reducing the enormous management overhead would be a motivation for
ISPs to introduce a new networking architecture. Such a future network archi-
tecture should resolve all drawbacks from the current Internet, and it should be
flexible enough to integrate new solutions instead of putting new functionality
on top of the network architecture.

In the next few paragraphs we describe some current research areas which
are targeted to overcome the drawbacks of the Internet architecture. There ex-
ists already a variety of proposals for new network architectures. They can be
coarsely divided into two parts:

1. Internet patches: All proposals in this category are based on the Inter-
net architecture. They provide extensions or modifications of the current
architecture.

2. Clean slate approaches: A clean slate network architecture is one that
does not depend on the current Internet.

[7] summarizes these approaches and concludes that many approaches deal
with the separation of identifiers and locators, contrarily to today’s Internet
where the IP address is both, an identifier and a locator.
Another important topic is end-to-end connectivity. If end-to-end connectiv-
ity is provided at higher layers, the network does not need to provide global
reachability. Independent addressing realms can become part of the network
architecture and global reachability becomes a property which can be switched
on and off.
Another research field concerning new network architectures is active network-
ing. In active networking one comes away from the principle that switches have
to be simple devices. Instead, they become active and execute code. There
are two kinds of active networks:

• Strong active networks: in a strong active network the end user inserts
programs to the network which will be executed by the routers.

• Moderate active networks: the programs to be executed are provisioned
by the network operator, only the data to be processed is inserted by the
end user.

It is evident that the properties of an active network can be changed easily, and
therefore it is much more flexible than the current Internet.

Another research field are autonomic networks. The aim of such network ar-
chitectures is to create self-managing networks to overcome the rapidly grow-
ing complexity of the Internet and other networks and to enable their further
growth, far beyond the size of today [42]. In an autonomic network the human
interaction with the network is as small as possible. The network should be
able to manage itself with the help of policies specified by its operators and
users. To achieve this goal IBM has defined in 2003 the following four func-
tional areas [45]:

7

1.2 The ANA Project

• Self-Configuration: Automatic configuration of components.

• Self-Healing: Automatic discovery, and correction of faults.

• Self-Optimization: Automatic monitoring and control of resources to en-
sure the optimal functioning with respect to the defined requirements.

• Self-Protection: Proactive identification and protection from arbitrary at-
tacks.

Clearly, these are challenging goals. But an autonomic network architecture
can greatly facilitate the maintenance and the incorporation of new features in
the future Internet.

1.2 The ANA Project

The ANA (Autonomic Network Architecture) project [35] tries to build an auto-
nomic network based on a clean slate approach. It is a European Union funded
project in “Situated and Autonomic Communications” [9]. The ANA project has
started in January 2006 and will last until end of 2009. Universities, research
institutes and industry partners from Europe1 are participating in this project.

The ANA project is divided into the following workpackages:

1. Architecture: architecture of autonomic networks, implementation of the
“ANA core software”.

2. Communication mechanisms: naming, addressing and routing schemes.

3. Self-* mechanisms: principles, mechanisms and proof-of-concepts nec-
essary for self-management and resilience.

4. Testbed: testbed development and deployment.

The ultimate goal is to develop a novel autonomic network architecture that
enables flexible, dynamic, and fully autonomic formation of network nodes as
well as whole networks. It should exhibit a maximum degree of flexibility and
provide support for functional scaling. Functional scaling means that the net-
work is able to completely integrate new functionality. This is accomplished
by abandoning the one-size-fits-all network architecture of the Internet and by
providing an architectural framework which enables the co-existence of differ-
ent network architectures. As a result, a main abstraction of ANA is the com-
partment. Each compartment can be individually managed and may use a
completely different set of communication protocols.

In ANA, the network stack is not fixed as in the Internet, but it is dynamically
built depending on the networks needs. This flexibility is achieved by defining
a Minimal INfrastructure for Maximal EXtensibility (MINMEX) which has to be
provided by any ANA node. The MINMEX provides the functionality which is
required to bootstrap an run ANA. The actual networking functionality is im-
plemented in the playground. The playground is an accumulation of functional

1and also one university from Northern America

8

1.3 Goals of this Thesis

blocks, each of which provides a certain networking service (e.g. encryption,
compression, reliable packet transport etc.). The MINMEX coordinates the
packet flow from one functional block to another. For this reason there is no
direct communication between different functional blocks, but all communica-
tion is routed over the MINMEX. Figure 1 shows an overview of an ANA node.
For more information about the ANA architecture refer to section 3 or the ANA
Blueprint [28].
In the ANA project there is a team responsible for providing other developers
with the ANA core software. This software allows future developers to populate
the ANA node with autonomic features.

Figure 1: Overview over an ANA node.

1.3 Goals of this Thesis

This thesis is situated in the ANA project, more exactly in the development of
the ANA core software. When this thesis started in March 2007 the develop-
ment of the ANA core software had just started.

The ANA core should provide as much flexibility as possible, therefore we
decided, that it should run in the Linux user as well as in the Linux kernel space.

This thesis covers mainly the following two areas:

1. Provide the underlying communication facilities between the MINMEX
and the functional blocks in the Linux kernel space.

2. Design and implementation of a bootstrapping phase which allows differ-
ent nodes to start to communicate together.

Besides these two main topics, a large variety of other tasks were performed,
reaching from debugging of code in the different ANA core areas, to giving
some presentations on an ANA coding workshop.

9

1.4 Outline

1.4 Outline

This report is structured as follows: Chapter 2 provides in its first part some
information on other networking projects. In a second part it introduces some
protocols which allow to discover autonomously some services provided on a
network. The last part discusses some inter process communication mecha-
nisms, since inter process communication is an important aspect of the ANA
core implementation.
Chapter 3 summarizes the concepts underlying the ANA architecture and it ex-
plains how these concepts are mapped to the actual implementation.
Chapter 4 describes in detail the implementation of the ANA core in the Linux
kernel space. It describes how the communication mechanisms between the
MINMEX and the functional blocks are implemented and gives a short perfor-
mance evaluation. Since the ANA core should run on kernel 2.4 and 2.6 as
well as in user space it discusses some aspects of writing system agnostic
code and it presents the main differences between the Linux kernel 2.4 and
2.6.
The second phase of this Masters thesis is covered in chapter 5. It describes
the design of the bootstrapping phase in which different nodes learn about each
other.
In chapter 6 we summarize the contributions of this Masters thesis and give an
outlook over the next steps to be taken in the ANA development process.

10

2 Related Work and Background Information

2 Related Work and Background Information

This Masters thesis is accomplished in the ANA project, which builds a new,
autonomic network architecture. Therefore we present in the first part of this
section some projects related to either autonomicity or to new network archi-
tectures.

A focus of this Masters thesis is to provide a “bootstrapping process” during
which different nodes get to know the features of other nodes in the same
network. Some conventional protocols with this ability are described in the
second part.

In the ANA implementation there are a lot of different processes which have
to communicate together. Therefore we provide in the third section a summary
of inter process communication (IPC) mechanisms. Since each process may
reside in Linux user space or in Linux kernel space we do not only consider well
know IPC mechanisms as UNIX sockets, but also IPC mechanisms between
user space and kernel space applications.

2.1 Networking Projects

There are several projects related to developing new network architectures.
The EU founded different projects in the area of autonomic networking, most
of them are part of the sixth Framework Program, more precisely of the FET
(Future and Emerging Technologies) [8]. The goal of FET is to identify possible
areas for long-term, foundational, high risk and visionary research in commu-
nications. Among these projects are: “BIONETS” [32], “Haggle” [33], “CAS-
CADAS” [34] and also “ANA” [35]. All of these projects cover a slightly different
area of autonomic networking.

An important player in the field of autonomic computing is IBM [45]. IBM has
its own research group in autonomic computing and provides different software
products in the area of self managing autonomic computing.

In the US there is a big effort on building a network infrastructure called
GENI [10]. The aim of GENI is to allow researchers to experiment with com-
pletely new network architectures under real networking conditions.

A slightly less ambitious goal is pursued by Click [39]. Click does not want
to reinvent the Internet, but it provides a software architecture in which different
elements of a router can be easily exchanged and therefore different elements
and various router configurations can be tested.

IBM

IBM focuses its research on autonomic computing. It has defined the self *
properties needed for a selfmanaging system (self-configuring, self-optimizing,
self-healing and self-protection). In order to enforce the research activity in
autonomic computing IBM plans to host and sponsor conferences, develop an
Advisory Board and begin funding research on autonomic computing through
awards and fellowships [45].

11

2.1 Networking Projects

Ambient Networks Project

“The Ambient Networks project is (...) developing innovative mobile network
solutions for increased competition and cooperation in an environment with a
multitude of access technologies, network operators and business actors. It
offers a complete, coherent wireless network solution based on dynamic com-
position of networks that provide access to any network through the instant
establishment of inter-network agreements. The concept offers common con-
trol functions to a wide range of different applications and access technologies,
enabling the integrated, scalable and transparent control of network capabili-
ties.” [30]

Bison

“BISON draws inspiration from biological processes and mechanisms to de-
velop techniques and tools for building robust, self-organizing and adaptive NIS
(Network Information Systems) as ensembles of autonomous agents. What
renders this approach particularly attractive from a dynamic network perspec-
tive is that global properties like adaptation, self-organization and robustness
are achieved without explicitly programming them into the individual artificial
agents. Yet, given large ensembles of agents, the global behavior is surpris-
ingly adaptive and can cope with arbitrary initial conditions, unforeseen scenar-
ios, variations in the environment or presence of deviant agents. This repre-
sents a radical shift from traditional algorithmic techniques to that of obtaining
the desired system properties as a result of emergent behavior that often in-
volves evolution, adaptation, or learning.” [31]

BIONETS

“The motivation for BIONETS comes from emerging trends towards pervasive
computing and communication environments, where myriads of networked de-
vices with very different features will enhance our five senses, our communi-
cation and tool manipulation capabilities.” “BIONETS overcomes device het-
erogeneity and achieves scalability via an autonomic and localized peer-to-
peer communication paradigm. Services in BIONETS are also autonomic, and
evolve to adapt to the surrounding environment, like living organisms evolve by
natural selection.” [32]

Haggle

“Haggle is a new autonomic networking architecture designed to enable com-
munication in the presence of intermittent network connectivity, which exploits
autonomic opportunistic communications (i.e., in the absence of end-to-end
communication infrastructures). We propose a radical departure from the exist-
ing TCP/IP protocol suite, completely eliminating layering above the data-link,
and exploiting and application-driven message forwarding, instead of delegat-
ing this responsibility to the network layer. We use only functions that are abso-
lutely necessary and common to all services, but that are sufficient to support
a large range of current and future application.” [33]

12

2.2 Bootstrapping

CASCADAS

“The overall goal of CASCADAS is identifying, developing, and evaluating ar-
chitectures and solutions based on a general-purpose component model for
autonomic communication services; specifically in such context autonomic ser-
vice components autonomously achieve self-organization and self-adaptation
towards the provision of adaptive and situated communication-intensive ser-
vices. In other words, the project is driven by the ambition of identifying a
fundamental, uniform abstraction for situated and autonomic communication
entities, at all levels of granularity. This abstraction is called an ACE (Autonomic
Communication Element), and it represents the cornerstone of the component
model, in which the four driving scientific project principles (situation aware-
ness, semantic self-organization, self-similarity, autonomic component-ware)
will properly converge.” [34]

GENI

GENI (Global Environment for Networking Innovations) [10] will give scientists
a clean slate on which to imagine a completely new Internet that will likely
be completely different from the one of today. GENI will consist of a collec-
tion of physical networking components, including a dynamic optical plane, for-
warders, storage, processor clusters, and wireless regions. These resources
are collectively called the GENI substrate. On top of the substrate, a software
management system for GENI will layer experiments on the substrate.

Before GENI can be built it will take a few years of development and the
NSF (National Science Foundation (of the US)) has to approve the founding.

Click

Click [39] is a software architecture for building configurable routers. A click
router is assembled from many small elements which process the packets.
With the help of a configuration file the desired elements can be put together in
the order desired. This enables facile testing of different elements and different
configurations.

A click router can be built in user space, in the Linux kernel or in the network
simulator ns2. In order to build click in the kernel, the Linux kernel source code
needs to be patched and recompiled. In kernel space there may exist only one
click router which overwrites the standard Linux kernel packet processing. In
userspace however it is possible to have the click router as well as the standard
Linux routing in parallel.

2.2 Bootstrapping

A basic problem in networking is to initiate communication between different
nodes. Before communication can start, nodes have to know the existence of
each other and how they can reach other nodes.

The bootstrapping phase consists usually of three different steps:

1. A user wants to connect to a certain service. He either knows the address
of it (e.g. the URL of a web server) or he chooses from a list the most

13

2.2 Bootstrapping

appropriate entry. This list can be for example the result of a search query
in a web search engine or a list provided by the operating system with all
available printers. This list is either written in a file or it is dynamically
created with the help of a negotiation protocol.

2. The node has to learn the network address of the target node. This in-
formation can either be written in a file or it can be discovered with the
help of some protocols, as for example DNS for the translation of domain
names into IP addresses.

3. The application has to know how it can send a packet to the wire and a
device driver has to know how to handle an incoming packet. In today’s
networks this is accomplished with the use of the TCP/IP protocol stack.
In this protocol stack every protocol header specifies a next header field
(or a port number) which indicates the next higher protocol. The values
of these fields are hard coded, therefore it is immediately clear to which
application a specific packet belongs.

This section discusses some of the approaches to discover other nodes or
services autonomically.

AppleTalk

AppleTalk [11] is a protocol suite conforming to the OSI layer model. It was
developed in the early 1980s. The main goal was to provide a facility to easily
share resources, such as printers or files in a local network.

One protocol of the AppleTalk protocol suite is the Name-Binding Protocol
(NBP). It is used to make applications available to other applications across the
network.

Applications are identified by names, but addressed with numeric identi-
fiers. The Name-Binding protocol provides a way of translating the names of
applications into their addresses.

Each application (entity) can assign itself a name. In addition to a name, an
entity can also have certain attributes. Each node maintains a table containing
name-to-address mappings of all entities of that node. Any entity can enter its
name and socket number into the name-to-address table to make itself visible
by name. The union of the name-to-address tables of the network is called the
name directory. It is a distributed database of name-to-address mappings.

Before a named entity can be accessed over an AppleTalk network or in-
ternet, the address of that entity must be obtained, by sending a query for the
corresponding name.

NetBIOS, SMB, Browsing for Servers in Windows

NetBIOS [12] is used by Microsoft Windows to allow applications on separate
computers to communicate over a local area network. NetBIOS may run over
Ethernet, TCP/IP or IPX.

NetBIOS names represent a flat name space. Therefore NetBIOS packets
cannot be routed, and hence TCP/IP is often used to send NetBIOS messages.
In order to obtain a unique name, the Name Management Protocol broadcasts
a system’s intention for a new name to the network. If no other system objects,

14

2.2 Bootstrapping

the name is registered.
Names may be resolved into IP addresses either with the help of WINS (Win-
dows Internetworking Name Server), with a statically configured file or the
query is broadcasted. The latter cannot be used if client and server are on dif-
ferent network segments, since broadcast messages are stopped from routers.

The browsing functionality from Windows systems allows users to browse
for other servers (e.g. in the ”Network Neighborhood” environment). This
browsing functionality is implemented with the Server Message Block proto-
col (SMB) which in turn uses NetBIOS.

On each NetBIOS network one machine will be elected to function as a
“domain master browser” (DMB). The DMB contacts each Windows machine
and exchanges the “browse list contents” with it. This way, all Windows ma-
chines will eventually obtain a complete list of all machines that are on the
network [13].

Zeroconf

Zeroconf [15] is an IETF working group chartered in September 1999. The
goal of zeroconf is to develop a protocol suite which is guided by the following
principles:

1. Allocation of IP addresses without a DHCP server.

2. Resolution of hostnames to IP addresses without a dns server.

3. Autonomous service discovery in a network without a centralized direc-
tory server.

It is targeted to the scenario where a few nodes are connected and form a
local network.

These goals are already solved by NetBIOS for Windows and AppleTalk for
Mac. However the interconnection from Windows and Mac PCs in the same
LAN still needs human intervention. Therefore zeroconf wants to develop an
open and easy to implement protocol.

The working group has developed the protocol IPv4LL, which chooses a
random IP Address from the 169.254.255.255 address range 2. With the help
of the ARP protocol (ARP probe and ARP announcement packets) it is verified
that the address is not used by another host in the network. The resolution of
hostnames is done with the help of multicast DNS [24]. There is a dedicated
toplevel domain .local which is used for link local discovery only. Service dis-
covery is also solved by using the DNS system. DNS Service Discovery (DNS-
sd) [16] is a way of using standard DNS programming interfaces, servers, and
packet formats to browse the network for services. There is a special DNS
record in which services can be described. It may run with the “normal” DNS
system or the multicast DNS system.

There are several implementations of the zeroconf protocols: Rendezvous
as well as its successor Bonjour [17] have been developed by Apple and are
also available for Linux, Solaris and Windows. Most printers also support the
Bonjour protocol and can therefore be found by a client without interaction of

2This address range is dedicated for local networks.

15

2.2 Bootstrapping

the user. Avahi [18] is an implementation of the DNS service discovery and
multicast DNS specifications for Zeroconf networking for Linux.

UPnP

The goal of UPnP [25] (Universal Plug and Play) is to enable devices to be
automatically configured when they are connected to a network. The devices
advertise their capabilities and they are controllable from other devices.

UPnP networks consist of two types of nodes: Controlled devices and con-
trol points. Controlled devices take the role of servers, answering the requests
of control points. UPnP has the following steps:

1. The first step in a UPnP network is the discovery. A controlled device
announces its service to the control points and control points look for
devices of interest.

2. The second step is the description. The control point retrieves a detailed
description of the discovered device. This description is expressed in
XML.

3. In a third step the control point can send control messages to the device.

4. The forth step is eventing: A device may provide updates on some vari-
ables, which are received from the control point.

5. The fifth step is presentation: The device may provide a presentation
page, which can be shown in a browser and over which a user can inter-
act with the device.

BOOTP, DHCP

The Bootstrap Protocol (BOOTP) [22] as well as the Dynamic Host Configu-
ration Protocol (DHCP) [23] serve the purpose of integrating a newly booted
computer in a network. The newly booted computer has to learn its IP address
and probably some other parameters like the network mask, the address of
the dns server etc. In both protocols a centralized server is used for this task.
However, before a client can send a query to this server, the servers address
has to be found. This is done by broadcasting a DHCPDISCOVER query to
the network. This query is answered by the BOOTP or DHCP server respec-
tively and contains an IP address. In order that not each subnet has to offer its
own DHCP server there is one DHCP relay agent in each subnet. Its task is to
forward DHCPDISCOVER queries to the DHCP server.

DNS, Multicast DNS

The Domain Name System is used to resolve domain names into IP addresses.
There exists a large server infrastructure in which each server is responsible
for a certain subdomain. The entries in this servers have to be managed man-
ually. In order to avoid this management overhead, multicast DNS [24] was
designed. It describes how DNS queries have to be handled in order that they

16

2.2 Bootstrapping

can be resolved without the need of a DNS server. This is especially useful
in spontaneously built networks, in which no DNS server is available and the
participants are not interested in resolving global domain names, but only the
once in the current network. Multicast DNS defines a top level domain .local
which is used for the local naming of services.

Jini

The purpose of the Jini [20] architecture is to federate groups of devices and
software components into a single, dynamic, distributed system. Jini is an
extension to the Java technology.

In Jini, a service is an entity that can be used by a person, a program, or
another service. A service may be a computation, storage, a communication
channel, a software filter, a hardware device, or another user.

The heart of the Jini system is a trio of protocols called discovery, join, and
lookup, which provide the facility to find other services.

• Discovery occurs when a service wants to make itself available on the
network. The service provider locates a lookup service by multicasting a
request on the local network for any lookup service.

• Join occurs when a lookup service has been found. A “service object” for
the service is loaded into the lookup service. This service object contains
the Java programming language interface for the service along with other
descriptive attributes.

• Lookup occurs when a client or user needs to locate and invoke a service.
The desired service is described by its interface type (written in the Java
programming language) and possibly other attributes. Having sent the
query to a lookup service, the corresponding service object is loaded into
the client.

• The final stage is to setup the communication between the client and the
service using Java Remote Method Invocation.

Jini was developed by Sun Microsystems but now runs under the Apache
2.0 license. It is also know as Apache River.

Webservices

Webservices provide a standard means of interoperating between different
software applications, running on a variety of platforms and/or frameworks.
Webservices are characterized by their great interoperability and extensibility,
as well as their machine-processable descriptions thanks to the use of XML.

In order to make a webservice available there are three approaches: [14]

• The Registry Approach: Each service has to register itself explicitly in a
directory.

• The Index Approach: Each service provides its information to the net-
work. The index owner collects the description of the webservices and
makes them available for lookup queries. This approach is similar to web
search engines.

17

2.2 Bootstrapping

• Peer-to-Peer Discovery: At discovery time, a requester agent queries its
neighbors for a suitable webservice. If any one of them matches the
request, it replies. Otherwise each queries its own neighboring peers and
the query propagates through the network until a particular hop count or
other termination criterion is reached.

Summary

There are many protocols to automatically detect other nodes or other services
in a network. In order to detect other services, most of them assume the exis-
tence of an IP network. There are two conceptually different methods to learn
about other services:

1. Usage of a centraliced server. This server may actively look for content
to save, or devices have to register explicitly with the server. Before the
actual service discovery can start, the centraliced server has to be found,
which is done by either statically predefining the address of the server,
or by broadcasting a discovery message. Examples in this category are
DHCP, jini, the windows browsing facility with WINS etc.

2. Distributed data base. There is no server, instead queries are broad-
casted or multicasted over the network. These queries are answered
by all the participating nodes together. Examples are the protocols from
zeroconf, mDNS and DNS-sd, appletalk, NetBIOS over Ethernet etc.

Some of the protocols discussed provide both approaches. Depending on the
current situation the most suitable method can be chosen. To this category
belong e.g. webservices or the windows browsing facility, if it is configured
correspondingly.

All presented protocols are dedicated for a certain application or protocol.
This is in contrast to the ANA bootstrapping mechanism presented in section 5.
This bootstrapping protocol can be used by every ANA networking element and
by every ANA application.

The bootstrapping process we will present consists of two phases:

1. Unlike legacy applications which make use of the TCP/IP protocol stack,
an ANA node cannot relay on a predefined protocol stack. Therefore the
functional blocks have in a first step to build a dynamic protocol stack.
This is accomplished with the help of a node local repository in which
each functional block can publish and lookup some entries.

2. A functional block wants to learn about services on an other ANA node.
Thereto “discovery queries” are broadcasted over the Ethernet segment.

18

2.3 Inter Process Communication Mechanisms

2.3 Inter Process Communication Mechanisms

In ANA, the MINMEX as well as each functional block are implemented as in-
dividual processes. No two functional blocks communicate directly together,
but all the communication goes over the MINMEX. Therefore there is the need
of an inter process communication (IPC) facility between the functional blocks
and the MINMEX. This communication should be as flexible as possible. The
functional blocks as well as the MINMEX may reside in Linux kernel space or
in user space or even on different physical devices. To allow virtualization it
should also be possible that multiple MINMEX reside on one physical device.
This section gives a short summary over the different IPC mechanisms evalu-
ated for the communication between the MINMEX and a functional block.
The following list describes the inter process communication concepts under
consideration along with their advantages and drawbacks. The list is divided
into four blocks, depending on where the two processes may reside.

USER-USER, KERNEL-USER, KERNEL-KERNEL

UDP Sockets + Allows communication from one PC to another PC
+ Same communication for PC intern communication as

for PC to PC communication
- IP/UDP has to be implemented which contradicts the

assumption of a clean slate approach
- Quite a big control overhead (header, checksum etc.)

User-User

Shared Memory + Possible on every system, even the smallest
- Inconvenient to program

Unix Sockets + Similar programming for PC intern communication as
for PC to PC communication (with UDP sockets)

+ Less overhead than UDP sockets
+ No assumption on existence of network protocols

Message Passing + Receiver can influence receiving order, search for
a specific message type etc.

+ Structured data
Pipes + Less overhead than UDP sockets

- No multicast possible

Kernel-User

Netlink Sockets + Use of well known socket interface in user space
+ Communication can be started from the kernel
+ Default kernel/userspace interface for networking
+ Can be used for kernel/kernel communication as well
- Modification of the kernel source code needed

(registration of a protocol type)
Generic Netlink + Makes use of netlink sockets

+ Protocol registration is done at runtime
(kernel source code needs no modification)

19

2.3 Inter Process Communication Mechanisms

+ Provides some degree of security, as the data type of
the argument can be specified
(integer, string etc., but also nested types)

sysfs, procfs + Allow to transmit a lot of data
- No immediate feedback provided
- Kernel cannot initiate a communication

syscalls - Modification of Linux source code needed
- Each system call has to have its own name and its own

number registered in the Linux kernel source code
- Kernel cannot initiate a communication

Kernel-Kernel

Shared Memory + Possible on every system, even the smallest
- Inconvenient to program

Export functions + Normal way modules are taking with each other
in the Linux kernel

+ No IPC mechanism is needed
- Each function exported has to have a unique name

Summary

For the implementation of the ANA core communication, shared memory was
dismissed from the beginning. The ANA prototype will run on Linux and there-
fore there exist more elaborate communication possibilities.
The user space application provides named pipes and UNIX sockets.
For the user space - kernel space communication, generic netlink is preferred
over the standard netlink sockets, since they do not require the modification of
the Linux kernel source code. Generic netlink sockets are discussed in sec-
tion 4.1.2.
The kernel implementation provides a communication mechanism where func-
tions are exported. Instead of exporting all functions a more elaborated design
was developed, with which the number of exported functions is constant for an
arbitrary number of functional blocks and MINMEXs. Section 4.1.3 discusses
this design.
Since UDP sockets are the most flexible communication mechanism they are
supported in user space as well as in kernel space. The implementation of
the UDP communication mode in the Linux kernel space is discussed in sec-
tion 4.1.1.
The other possibilities were dismissed either because they require the modifi-
cation of the Linux kernel source code or because they have a big overhead.

20

3 The Architecture of the ANA Project

3 The Architecture of the ANA Project

In this chapter we introduce the network architecture proposed by the ANA
project. We start with a summary of the ANA Blueprint [28] in which the high
level design principles are defined. In the second part we discuss how these
design principles are implemented in the ANA core software.

3.1 Blueprint

The Blueprint focuses on the overall architectural aspects of ANA. It defines
the basic abstractions and building blocks of ANA and it presents their basic
operation and interactions. The Blueprint does not deal with autonomicity, but
with the architecture which allows to implement autonomicity in a second step.
In this section we describe the basic building blocks and the communication
concepts of ANA. Please refer to the ANA Blueprint for a more detailed discus-
sion.

3.1.1 Terminology

This section summarizes the keywords necessary to be able to follow the de-
scriptions in the ANA Blueprint.
Figure 2 shows the structure of an ANA node with its main components:

• MINMEX: (Minimal INfrastructure for Maximal EXtensibility): The MIN-
MEX defines the common denominator among ANA nodes, and must be
present in all implementations. It provides the basic low level functionality
which is required to bootstrap and run ANA.

• Playground : The playground is the execution environment where the
more elaborated and complex networking functionality of ANA is placed.
The playground hosts the optional protocols that one is free to develop
with the help of the functionality provided by the MINMEX elements.

• Hardware Abstraction Layer : The hardware abstraction layer provides
generic access to the hardware upon which ANA is executed.

The following list summarizes the most important elements of the ANA ar-
chitecture. The relation of Functional Blocks, Information Dispatch Points and
Information Channels is depicted in Fig. 3.

• Functional Block (FB) : Functional blocks are the information processing
units of ANA. They generate, consume, process or forward information.
A functional block runs on exactly one node. A functional block might
consist of other functional blocks and resides in the playground of an
ANA node. (Note, in the ANA Blueprint functional blocks are sometimes
called clients).

• Information Channel (IC) : Information channels are an abstraction for
communication channels. FBs communicate over ICs.

• Information Dispatch Point (IDP) : Information dispatch points are ac-
cess points to FBs or ICs. The MINMEX manages the association of a

21

3.1 Blueprint

Figure 2: Main components of the ANA-node (src: ANA Blueprint [28]).

Figure 3: Data flow through Functional Blocks (FB), Information Dispatch
Points (IDP) and an Information Channel (IC).

22

3.1 Blueprint

given IDP to a FB or IC. For example, the MINMEX is able to exchange
a functional block behind a given IDP. This leads to the possibility to ex-
change functionality, whereas leaving the address constant. For example
an encryption routine could be changed, without that a functional block
using the encryption routine would have to change anything.

• Label : A label is a node local identifier for an IDP.

• Compartment : A compartment is a policed set of FBs, IDPs and ICs with
some commonly agreed set of communication principles, protocols and
polices.

• Membership database : The membership database stores information
about available network compartments, functionality provided by other
clients and functionality provided by the ANA software.

3.1.2 Compartments

The concept of compartments allows the division of communication networks
into smaller units. The boundary of a compartment can be based on technolog-
ical or administrative boundaries. Compartments using different technologies
can communicate together through a common overlay compartment. They pro-
vide both: hiding of compartment internals form the outside world and hiding
of communication complexity from its members.

Each compartment has to provide the following key functions:

• Registration and De-registration: The registration function assures that
only admissible communication elements become a member of the com-
partment. It can be either some kind of authentication function or it can
be completely open.

• Identifier management: Typically some kind of identifier is assigned to a
member during registration phase. A resolution function has to be pro-
vided to look up an identifier and to obtain the information necessary to
communicate with the requested member.

• Routing: The routing function is responsible to select a communication
path inside the compartment.

Node Compartment

The node compartment is a special compartment which is present in each
ANA node. The MINMEX as well as each functional block residing on one
node belong to the node compartment of this node. The node compartment
provides mechanisms for functional blocks to make themselves visible for other
functional blocks on the same node. It provides also the possibility to search for
a functional block which provides a certain functionality. Any FB or IDP belongs
to exactly one node compartment. Therefore the node compartment has full
control over the FBs and IDPs. The node compartment may provide different
views of the actual ANA node to different functional blocks. Thereby it can hide
some functionality from some functional blocks, or define some obligations for
certain functional blocks.

23

3.1 Blueprint

Figure 4: Layering of compartments in ANA.

Network Compartment

A network compartment encompasses several nodes and involves communi-
cation across an underlying network infrastructure. Each node which wants
to belong to a given network compartment has to implement the required net-
work stack. By providing the network functionality of different compartments an
ANA node may connect to different network compartments. The communica-
tion between different nodes is provided by ICs and is typically accomplished
over a physical link (but it may also be a virtual one). Network compartments
can be combined in a flexible way. A network compartment may combine the
functionality of several OSI layers, or it may provide only a part of an OSI layer.
To allow communication between different network compartments they may be
”layered”. Therefore a communication between two nodes may traverse several
network compartments. Figure 4 shows the layering of different compartments.

3.1.3 MINMEX

The MINMEX is a minimal component required for all nodes running ANA. The
MINMEX offers the following services:

• Information Dispatch Framework (IDF):
Data packets are always sent to an IDP which is bound to a functional
block or an information channel. This allows to redirect packet flows with-
out the sender being aware of this. Data is forwarded from one IDP to
the next on a hop by hop basis. The IDF has to dispatch data belonging
to different compartments with different sorts of addressing and naming
schemes. Therefore IDPs are identified by local labels which have no net-
working meaning. IDPs are stored in Information Dispatch Tables (IDTs).
An IDT typically contains all the IDPs that belong to some communication
context. Therefore it is possible to check which member has the right to
change which IDP or to block members consuming excessive resources.

• Key-Val Repository (KVR):
The key-val repository is a directory service to access communication
mechanisms, protocols and compartments. The key-val repository is
part of the membership database of the node. Clients may add entries

24

3.1 Blueprint

with self-chosen values which can later be retrieved via the standard re-
solve functionality. An ANA node could announce available services to its
neighbors by putting entries in the neighbors key-val repository.

• Bootstrap Procedure (BP):
The bootstrap procedure is used to detect other nodes and to activate
compartments. In addition it loads the static configuration of the ANA
node, which is typically maintained by a human user. It can also start
more sophisticated service discovery programs, instantiate FBs and in-
formation dispatch points.

• MINMEX Controller (MC):
The MINMEX controller monitors the basic operation of an ANA node.
It is truly autonomic and basically it performs sanity and health checks
of the components running inside the node. Its main goal is to protect
the MINMEX elements from faulty components in order to guarantee the
performance of the ANA node. The MC controls the forwarding paths and
the state of the IDTs. It performs a garbage collection of unused IDPs
and entries in the key-val repository. It controls the state of all functional
blocks and it provides a low level of access control for the IDTs.

3.1.4 Summary

In this section we have presented the architecture of the ANA Project. In
each ANA node there are two main components: On the one hand there
is the MINMEX which is the minimal component to be provided from each
ANA node and on the other hand there is the playground in which the
real functionality (provided by the functional blocks) is hosted. We have
introduced the concept of compartments which allows different networks
to coexist.
For this thesis the most important terms are: MINMEX, functional block,
and IDP.

25

3.2 Prototyping Phase: From Abstraction to Implementation

3.2 Prototyping Phase:
From Abstraction to Implementation

The ANA Blueprint is the basis for the development of the ANA prototype. This
section describes the implementation decisions as discussed on the ANA core
developer meeting in Basel on 14. March 07.
The ANA prototype will run on Linux. As a basic concept the implementation
should not need any other software. This leads to a simple installation of ANA,
since only the ANA software has to be installed. However it dismisses any ar-
chitecture which would use some ”helper” software as e.g. click [39] or any kind
of middle ware. The ANA prototype should work on three different ”platforms”:

• Linux user space

• Linux kernel space

• Network Simulator ns2

The goal of the implementation is to share as much code as possible for all
platforms. An additional requirement for the kernel space implementation is
that it should not touch the Linux kernel source code. This would impose the
burden of patching the Linux kernel source code and recompile it to future ANA
developers. The userspace part as well as the framework is implemented at
the Computer Science Department at the University of Basel [27] whereas the
kernel space part and the ns2 part are developed at the Computer Engineering
and Networks Laboratory at ETH Zurich [26].
During this Masters thesis the kernel part was developed.

This section describes the design of the core functionality to be provided from
each node which wants to participate in the ANA world.

3.2.1 Building Blocks

There are two main components in the ANA core:

• Bricks: A Brick is the most atomic element in ANA. It corresponds to a
functional block as described in the ANA Blueprint. It can be part of a
bigger functional block or of a compartment. Together all Bricks form the
playground of an ANA node. Before a Brick can participate in ANA it has
to attach itself to the MINMEX.

• MINMEX: In an ANA node Bricks interact through the MINMEX. The MIN-
MEX allows to discover other existing Bricks in the ANA node. It dis-
patches messages between IDPs owned by different Bricks.

In user space the MINMEX as well as the Bricks are individual processes. In
kernel space the MINMEX as well as each Brick run as kernel modules.

3.2.2 Communication Principles

The communication between the Bricks and the MINMEX is realized with so
called communication gates. A communication gate is the abstraction of an

26

3.2 Prototyping Phase: From Abstraction to Implementation

Figure 5: MINMEX - Brick interconnection with the control and the data gates.

inter process communication channel. Each MINMEX and each Brick has two
different kinds of communication gates: one to receive data and one to receive
control information. The MINMEX may provide several communication gates
for data and for control information. This permits different types of Bricks to
connect to the MINMEX (e.g. one could use UNIX sockets and another could
use PIPES as a communication mechanism). Multiple Bricks are allowed to
send messages to the same communication gate of the MINMEX. Figure 5
shows a possible setup between a MINMEX and multiple Bricks. Note that
there is no direct communication channel between two Bricks. All communica-
tion is routed through the MINMEX.
The following paragraphs describe the three different kinds of messages to be
exchanged between the MINMEX and a Brick:

Control
Control messages are used between a Brick and the MINMEX to attach a Brick
to the MINMEX and to manage the handling of the IDPs. They are always initi-
ated from the Brick to the MINMEXs control gate. The execution of the Brick is
blocked until it has received the corresponding reply. The MINMEX processes
the request and sends a reply message to the Bricks control gate. There are
no unsolicited control messages for the Brick.

Data
Data messages are sent to the data gate of the destination. For both, the MIN-
MEX and the Bricks, data messages can arrive asynchronously to the control
flow. Data messages have the format [destinationIPD][data]. There is no re-
ply for a data message.

Notification
The MINMEX can send unsolicited notification messages to a Brick (e.g. to
inform the Bricks about a MINMEX which is about to go down etc.). These

27

3.2 Prototyping Phase: From Abstraction to Implementation

Figure 6: Overview over communication possibilities between the MINMEX and
Bricks.

messages are sent asynchronous to the program flow of the Brick. The only
possibility for a Brick to receive asynchronous messages is via its data gate.
Therefore a Brick registers an IDP on the MINMEX to which the MINMEX can
send notification messages. A received notification message is forwarded to
the registered notification parsing function. There is no reply to notification
messages.

Figure 6 shows an overview over the communication possibilities between the
MINMEX and the Bricks. The current implementation provides the following
communication mechanisms between MINMEX and Brick:

• UDP: Communication over UDP sockets
can be used in all user space ↔ kernel space configurations.

• UNIX sockets: Used for user space ↔ user space communication.

• PIPES: Communication over named pipes, only used for user space com-
munication.

• GENETLINK: Communication over generic netlink sockets, used for a
MINMEX in kernel space and a Brick in user space.

• KERN: Kernel intern communication by direct function call, only used for
kernel space communication.

The Linux kernel specific implementation of these communication mechanisms
is discussed in section 4.1.

3.2.3 Important Data Structures

This section summarizes the tables and lists used to save the information nec-
essary to operate an ANA node. All of them are depicted in Fig. 7. A more
thorough discussion can be found in Appendix C where all the individual struc-
tures and lists are described in detail and in the ANA core documentation [48]

28

3.2 Prototyping Phase: From Abstraction to Implementation

where those management units are explained for future ANA developers.

Brick Table
The Brick table belongs to the MINMEX. It holds the information about each
Brick attached to the MINMEX. It is a hash table with a size defineable upon
program start up. For each Brick it holds the addresses of its data and control
gates and the notification label. This way, the MINMEX knows how to send
data, control and notification messages to its attached Bricks.

Information Dispatch Table (IDT)
The IDT holds the information on the registered information dispatch points
(IDPs) in the MINMEX. The IDT is used to map a label to a Brick. Upon the ar-
rival of a labeled message, the IDT is consulted to know to which Brick this IDP
belongs. With the help of the Brick table, the MINMEX knows how to forward
the message to the correct Brick.

Shadow Dispatch Table (SDT)
Each ANA Brick has a hidden management unit called the Shadow Dispatch
Table. The SDTs role is to map IDP labels to functions. When the Brick receives
a data message, it checks its SDT for the given IDP label and it executes the
function corresponding to the given IDP.

Figure 7 shows how a data message is routed from one Brick to another. The
sending function (Brick C, Fct 1 on Fig. 7) has to specify the destination IDP.
The MINMEX checks to which Brick this IDP belongs and how this Brick can
be reached. Afterwards he forwards the message to the data gate of the Brick
owning this IDP. The Brick checks in its shadow dispatch table which function
corresponds to this IDP and finally it invokes the corresponding function with
the given argument.

3.2.4 ANA API

This section describes the basic ANA API which is used from Bricks to com-
municate with the MINMEX. The ANA API is divided into different layers, each
of which provides a different abstraction level.

• API Level -1: It defines the platform dependant communication mecha-
nism between the Bricks and the MINMEX.

• API Level 0 (AL0): AL0 groups all functions that permit to access the
MINMEX in a platform unspecific way. It consists of attachment and de-
tachment functions, as well as a registration function for callback func-
tions.

• API Level 1 (AL1): AL1 is a library of procedures for interacting with ANA
compartments, ICs and FBs. It does not remove the need to manage
communication with the MINMEX at AL0. But once attached there are
procedures for creating requests and parsing replays.

• API Level 2 (AL2): At AL2 functionality can be accessed through ordinary
method calls, object destruction runs automatically the necessary low
level cleanup actions.

29

3.2 Prototyping Phase: From Abstraction to Implementation

Figure 7: Path of a data message: A Brick sends the message to the MIN-
MEX, the MINMEX looks for the correct destination Brick, the destination Brick
invokes the function corresponding to the IDP.

30

3.2 Prototyping Phase: From Abstraction to Implementation

At the point of writing, the API Level -1, AL0 and AL1 are implemented. The
API Level -1 cannot be considered as an API, but rather it is the system specific
implementation of the functions to be provided from API Level 0. The focus of
the first part of this Masters thesis lies on the implementation of the API AL0
in the Linux kernel space. Therefore we shorty introduce the functions to be
provided from AL0.

Functions to be provided from API Level 0
API Level 0 provides the basic functions which are needed for a Brick to inter-
act with the MINMEX. All functions required are summarized in the following
list:

• attach: establishes the link between a functional block an the MINMEX.

• detach: terminates the attachment of the Brick, all resources are freed.

• send: send data packets to a dispatch point.

• registerCallback: requests the ANA node compartment to create an IDP
for the callback function. Any message sent to this IDP will result in a
call of the registered function. Transmission is unreliable → packets may
never arrive at the callback function.

• unregisterCallback: unbinds the callback bound to the given IDP, all re-
sources get freed.

• redirect: registers a new callbackfunction for a given IDP.

3.2.5 Example Communication

Each Brick and each MINMEX has a dedicated channel for control and for data
messages respectively. The MINMEX acts as a server which waits for requests
and executes the corresponding commands. Once connected, the Brick as well
as the MINMEX perform regular heart beat checks, to determine whether the
other is still alive.

Attachment
A Brick which wants to become a member of an ANA node has to know the
MINMEXs control interface (e.g. socket address, pipe etc.). It sends an attach
message to that interface with the following format:
[a][controlMode][controlAuxLength][controlAux]
[dataMode][dataAuxLength][dataAux][desiredMode]
where the modes describe which kind of link the Brick wants to communicate
over and the *Aux fields contain the corresponding addresses. Upon receiving
an attach message the MINMEX performs the following actions:

1. Check whether it has the requested modes.

2. Generate a handle for that Brick.

3. Add the Brick to the Brick table.

4. Generate a label for the node compartment and put it in the IDT.

31

3.2 Prototyping Phase: From Abstraction to Implementation

5. Compose the reply message and sends it back to the Brick over the con-
trol link specified.

The reply message has the following format:
[r][handleSize][labelSize][maxMsgSize][handle]
[controlLabel][nodeDataMode][dataAuxLength][dataAux]
Where the handle corresponds to the identifier of the Brick chosen by the MIN-
MEX. The controlLabel refers to the node compartment label, labelSize indi-
cates the size of all IDP labels (e.g. identifiers for the callback functions) and
handleSize indicates the size of the handles (e.g. identifiers for the Bricks).
maxMsgSize corresponds to the maximum message size allowed to send and
dataAux specifies the address where the MINMEX is listening for data.

Registration
A Brick can send a register request for one of its callback functions to the
MINMEX. The Brick sends a request message to the MINMEX which tells the
MINMEX to

1. Generate a new label.

2. Add it in its IDT.

3. Return it to the Brick.

Thereafter the Brick generates a new entry in its SDT where it maps the label
returned by the MINMEX to the actual callback function. This step complets
the communication setup. The registered callback functions are now accessi-
ble by other Bricks, by sending a message to the IDP belonging to this callback
function.

Data exchange
Data messages have the following format:
[TargetIDP][Data]
Each time the MINMEX receives a data message, it checks whether the indi-
cated function (IDP) exists and whether the Brick is allowed to access it. After-
wards it forwards the data message to the Brick which owns the IDP. The Brick
looks up the IDP in the shadow dispatch table and invokes the corresponding
callback function. The data received is given as an argument to the callback
function.

Detachment
The detachment of a Brick from the MINMEX either occurs explicitly with the
exchange of a detach message, or implicitly with the help of a heard beat mech-
anism. Bricks and the MINMEX exchange in regular intervals heart beats. If
no heart beat is received for a configurable amount of time the counterpart is
assumed to be dead and all resources are freed.
In order to explicitly detach, either a Brick or the MINMEX may send a detach
message to its counterpart. Upon receiving a detach message all resources
belonging to that connection are freed.

32

3.2 Prototyping Phase: From Abstraction to Implementation

3.2.6 Summary

In this section we have linked the ANA Blueprint with the actual implementation.
We have introduced the term Brick which corresponds to a functional block in
the Blueprint. We have described the communication between the MINMEX
and the Brick, which makes use of the control gates and of the data gates. The
lifecycle of a Brick consists of the following four steps: attachment, registration,
data exchange and detachment. These functions have to be provided by the
ANA API Level 0.

33

4 Implementation of the ANA Core in the Linux Kernel

4 Implementation of the ANA Core in the
Linux Kernel

This chapter describes the implementation of the ANA core in the Linux ker-
nel. It starts with a description of the communication mechanisms between
the Bricks and the MINMEX. This gives an insight in some fundamental con-
cepts of the Linux kernel, such as interrupt handling or the delayed execution
of tasks. We present a short performance evaluation of the implemented com-
munication modes and conclude that the ANA node implemented in the kernel
is by far the fastest. In the second section we present some helper functions
to write system agnostic code. They allow the developer to write code which
runs in user or in kernel space without having to care about the system specific
implementation. In section 4.1 and 4.2 the description is based on a kernel 2.6.
But the ANA core runs also on a kernel 2.4. Therefore we have summarized
the most important changes from kernel 2.4 to kernel 2.6 in section 4.3.

4.1 Communication Between the MINMEX and the Bricks

This section describes in detail the three communication mechanisms “UDP
sockets”, “generic netlink sockets” and the “export of functions” in the Linux
kernel in general, and how they are used in ANA. The communication mecha-
nisms described, are not visible to an ANA developer, but they are used in the
implementation of the AL0 functions to pass the commands between the Bricks
and the MINMEX.

The explanations are based on the kernel version 2.6.20. However, we have
ported the code to run on every 2.6 kernel as well as late 2.4 kernels.

The MINMEX as well as each Brick are implemented as Linux kernel mod-
ules. The MINMEX in kernel space offers 3 different communication modes:

• UDP: Communication over UDP sockets. This communication mode can
be used from any Brick.

• GENETLINK: Communication over generic netlink sockets. This will be
used from Bricks living in user space.

• KERN: This communication mode enables the Brick to call the functions
provided by the MINMEX directly. It can only be used from Bricks which
are in kernel space.

4.1.1 UDP Socket Communication

This section discusses the Linux kernel socket API along with all its implications
like callback functions, interrupt context and work queues. The second part
gives an overview about how UDP sockets are used in the ANA core.

Linux Kernel Socket Interface

The Linux kernel provides a similar API for socket programming as is known
from user space. The major difference lies in the identification of the sock-
ets: in user space each socket is referenced with the help of a file descriptor,

34

4.1 Communication Between the MINMEX and the Bricks

whereas in the kernel each socket is referenced with a struct socket. Table 1
lists the most common kernel socket functions. A complete list can be found in
the Linux kernel header file include/linux/net.h.

creation sok reate (int family, int type, int proto,

struct socket **res)

bind kernel bind (struct socket *sock,

struct sockaddr *addr, int addrlen)

send msg sok sendmsg (struct socket *sock, struct msghdr *msg,

size t len)

recv msg sok revmsg (struct socket *sock, struct msghdr *msg,

size t size, int flags)

setsockopt kernel setsokopt (struct socket *sock, int level,

int optname, char *optval, int optlen)

close sok release (struct socket *sock)

Table 1: Linux kernel socket interface.

The system calls invoked from user space and the kernel socket API map to
the same functions. In the Linux kernel it is assumed, that these functions are
invoked from user space. Each function which has a pointer as an argument
(e.g. sock sendmsg) checks whether this pointer really belongs to a userspace
address segment and if not it returns -EFAULT, which stands for “Bad Address”.
To overcome this problem the memory area has to be adjusted with the function
set fs(). The argument is either KERNEL DS or USER DS, standing for kernel
data segment or user data segment, respectively. After having executed the
function, the old state should be restored. The adjustment of the memory area
can be accomplished with the following code snippet.

m_segment_t old_fs = get_fs();

set_fs(KERNEL_DS);

/*call function here*/

set_fs(oldfs);

Receiving Data in Kernel Space

There are two different mechanisms to receive data from a socket in kernel
space. One that is similar to user space and one that is kernel space specific.
In the first mechanism the function sock recvmsg is called, and the program
execution gets blocked until the socket receives some data. As in user space
a dedicated thread has to be started to be able to receive messages asyn-
chronously to the program execution. However, unlike in user space, there is
no select() function which would allow to wait on multiple sockets. Therefore
this approach should only be used if the module wants to receive a message
synchronously to the program flow and has to wait until the socket has received
the message.
To receive messages asynchronously to the program flow, the second, kernel
specific mechanism should be chosen: A function which should be executed

35

4.1 Communication Between the MINMEX and the Bricks

upon data reception is assigned to the socket. The Linux kernel invokes this
“callback function” when data is received on the specified socket. The call-
back function has as an argument the struct sock upon which the data was
received. The callback function is responsible to dequeue the message from
the sockets receive message queue, to process the data and finally to free the
memory occupied by the message. For TCP, the dequeued message holds the
data without the header, whereas for UDP the data returned has the header
still attached. This means, that the actual message starts 8 bytes later (2 bytes
source port, 2 bytes destination port, 2 bytes length and 2 bytes checksum).
The following code snippet shows a minimal callback function for a UDP socket:

void callback(struct sock *sk, int bytes){

struct sk_buff * skb;

skb = skb_dequeue(&sk->sk_receive_queue);

printk("received data: %s with len %u \n",

skb->data+8, skb->len-8);

kfree_skb(skb);

}

A callback function can be assigned to a socket with the following code snippet:

struct socket *mysocket;

/*creation and binding similar to user space*/

/*register callback*/

mysocket->sk->sk_data_ready = callback;

The callback function is executed in interrupt context. Meaning that (1) all inter-
rupts are masked and that (2) there is no process associated with the current
execution. (1) imposes the need of a fast execution of the callback function,
since otherwise no further interrupts may be handled. (2) imposes that the
function is not allowed to sleep, since a process context is needed to resched-
ule the sleeping function.

Therefore the callback function has to be executed as fast as possible and
especially it is not allowed to sleep in the callback function. A function may
sleep under the following conditions:

• Execution of a sleep function (e.g. msleep()).

• Call of a function which may sleep itself (e.g. sock sendmsg()).

• Waiting for the hardware to be ready.

If a process is in interrupt context the task of processing some data is usu-
ally split in two parts:

1. A first part which prepares the data (top half).

2. A second part which processes the data (bottom half).

The top half is executed in interrupt context where all interrupts are disabled.
Therefore it only does some basic processing and passes the received data to

36

4.1 Communication Between the MINMEX and the Bricks

the bottom half which does the real processing of the data. The Linux kernel
offers different mechanisms to implement bottom halves:

• Kernel timers

• Tasklets

• Work queues

Kernel timers as well as tasklets are executed in “soft interrupt context”, mean-
ing that all hardware interrupts are enabled, but that there is no backing process
assigned. This implies that kernel timers as well as tasklets are not allowed to
sleep, in contrast to work queues, which are executed in process context. Each
work queue has one or more dedicated processes (e.g. kernel threads) which
run the functions submitted to the queue. This allows that the function executed
may sleep, since there is a process context assigned to the function which is
needed to reschedule the function after a sleep.
Work queues allow kernel code to request that a function may be invoked at a
later time. It can be requested that the function is executed as soon as pos-
sible or after a predefined amount of time. There exists a default work queue
which can be used from anywhere in the Linux kernel. Apart from the default
work queue each kernel module can create its own work queues. Since a lot
of different functions can be registered to the default work queue, it should only
be used for tasks running a short period of time, and when the tasks are not
time critical.
Functions to be executed from the work queue are called work queue han-
dler functions. Only one instance of a work queue handler function can be
inserted in the work queue at any given time. This has an impact when the
work queue is used in combination with the socket API. Since it is unknown
how many packets arrive on a socket before the work queue gets executed, the
socket callback function should not dequeue the packet from the sockets re-
ceive message queue. Instead it triggers only a work queue handler function.
This function is responsible to dequeue all messages in the sockets receive
message queue.

A work queue handler function has to have a predefined interface:

void workQueueFunction(struct work_struct *myWorkStruct);

A drawback of this interface is the lack of a parameter to supply data to the
work queue handler function. But this can be solved with the following trick: A
wrapper struct has to be created, which has as one of its entries the struct

work struct. The other entries can be customized according to the functions
needs. Such a wrapper function may look as the following:

struct wq_wrapper{

struct work_struct worker;

struct sock * sk;

};

Upon receiving a message the top half fills in the customized fields and inserts

37

4.1 Communication Between the MINMEX and the Bricks

the work queue handler function in the work queue. When the work queue han-
dler function gets executed it determines the base address of the wq wrapper

struct. The Linux kernel provides therefore the following macro:

container_of(ptr, type, member);

where ptr points to the known element (e.g. myWorkStruct) , type indicates
the struct to which ptr belongs (e.g. wq wrapper), and member is the name of
ptr in the struct (e.g. worker). The container of macro returns the address
of the whole struct.

The following example shows the whole process from receiving a packet
until freeing the corresponding socket buffer.

struct wq_wrapper wq_data;

/* the sockets callback function

* triggered each time a message arrives on the socket

* referenced by sk

* queue_work fails if the work queue handler function

* is already in the work queue.

*/

static void callback(struct sock *sk, int bytes){

wq_data.sk = sk;

queue_work(wq, &wq_data.worker);

}

/* the work queue handler function

* first it determines the base address of the wq_wrapper struct

* then it dequeues packets as long as there are any in the queue

* having processed a packet it frees the socket buffer

* skb_queue_len returns the number of packets in the recv queue

*/

void workQueueHandler(struct work_struct *data){

struct wq_wrapper * foo = container_of(data,

struct wq_wrapper, worker);

int len = 0;

while((len = skb_queue_len(&foo->sk->sk_receive_queue))>0)

{

struct sk_buff *skb = NULL;

skb = skb_dequeue(&foo->sk->sk_receive_queue);

printk("data %s,len %i", skb->data+8, skb->len-8);

kfree_skb(skb);

}

}

38

4.1 Communication Between the MINMEX and the Bricks

Use of UDP Sockets in the ANA Core

The ANA MINMEX provides two distinct interfaces: one for control and one for
data messages. There may be multiple instances for each of these interfaces
for different IP address/port pairs. Since in the MINMEX control as well as data
messages may arrive at any given time, the execution model with the callback
function was chosen.
In the next few lines we introduce the function prototypes used for handling
UDP sockets in th MINMEX. The numbers in brackets refer to Fig. 8.
The MINMEX provides two socket callback functions: one for data and one for
control reception respectively (independently of the number of UDP data and
control gates specified). For each data gate specified upon module insertion
function (1) is registered as a socket callback function, and for each control
gate function (2).

Upon receiving a control message the MINMEX does some processing and
sends an answer back to the originator. Data messages may be forwarded to
another Brick. Both of these actions lead to a call to sock send. This function
needs to access the network card and it may therefore sleep. Since the call-
back function is executed in interrupt context as discussed in the last section,
the data processing has to be split in a top and in a bottom half. For each
MINMEX there exists a dedicated work queue which is responsible for the ex-
ecution of all work queue handler functions of this MINMEX. This solution is
preferred over the solution with the kernel wide work queue, since there is less
interference with the world outside of ANA.
The only task of the callback functions (1) and (2) is to insert the work queue
handler function (3) and (4) in the work queue. The work queue handler func-
tions dequeue the messages from the given socket as discussed in the last
section. They determine the actual data and the length of the data and invoke
the data or control parsing functions (6) and (7) respectively. These functions
do the actual parsing of the message. They check for the type of the message
(e.g. attach, register a callback function, send data to an IDP etc.) and forward
the message to the corresponding function. This function performs the oper-
ation requested and sends finally a confirmation back to the Brick or forwards
the data message to the correct Brick. Since these functions are common to all
communication mechanism for kernel and user space they are not further dis-
cussed here. After the parseData or parseControl function returns, the socket
buffer gets freed from the work queue handler function.

The ANA Brick has one control interface and one data interface for each
MINMEX it wants to be connected to. The handling of the control communica-
tion is simple, since the Brick always initiates the communication and waits until
it receives an answer. Therefore there is no need of a callback function, but the
answer can be received with a call to sock recvmsg(). This call may block, but
this is allowed since we are not in interrupt context and since the execution of
the program has to wait until the response is received.
Data messages can be received asynchronously to the control flow of a Brick.
Therefore the Brick registers a callback function for the socket on which it lis-
tens for data messages. The steps required are analogously to the one in the
MINMEX for receiving data and control messages and they are therefore not
explained here.

39

4.1 Communication Between the MINMEX and the Bricks

static void cb_data(struct sock *sk, int bytes); (1)

static void cb_control(struct sock *sk, int bytes); (2)

void parseDataTemp(struct work_struct *data); (3)

void parseControlTemp(struct work_struct *control); (4)

struct wq_wrapper{ (5)

struct work_struct worker;

struct sock * sk;

};

void parseData(char * buff, int len); (6)

void parseControl(char * buff, int len); (7)

Figure 8: Function prototypes for the handling of UDP sockets in the MINMEX.

An interested reader is referred to the source code available at [47]. The
following files are of special interest:

• C/bricks/AL0/kernel/KanaLib0.c

• C/bricks/AL0/common/anaLib0.c

• C/minmex/kernel/kernel minmex.c

4.1.2 Generic Netlink Communication

This section gives an introduction to netlink sockets and explains the steps
necessary to work with generic netlink sockets. The last paragraph gives an
overview over the generic netlink sockets as they are used in the ANA core
software and it introduces a small user space library to simplify the handling of
generic netlink sockets.

Introduction to Netlink Sockets

Netlink is a special IPC used for transferring information between kernel and
user space processes. Netlink provides a full-duplex communication link be-
tween the Linux kernel and user space. It makes use of the standard socket
APIs for user-space processes and a special kernel API for kernel modules.
Netlink sockets use the address family AF NETLINK, as compared to AF INET

used by a TCP/IP socket. Both SOCK RAW and SOCK DGRAM are valid values for
socket type. However, the netlink protocol does not distinguish between data-
gram and raw sockets. Each entity using netlink sockets has to define its own
protocol type (family) in the kernel header file include/linux/netlink.h. Cur-
rently (for kernel 2.6.20) there are 17 different netlink families registered with
the Linux kernel. Among them are:

• NETLINK ROUTE, used for the communication between user space routing
daemons and the kernels packet forwarding module.

40

4.1 Communication Between the MINMEX and the Bricks

• NETLINK NFLOG, used as a communication channel between the user space
iptable management tool and kernel space Netfilter module.

• NETLINK IP6 FW, used to transport IPv6 packets from Netfilter in the Linux
kernel to the user space.

• NETLINK GENERIC, generic netlink interface, to be used from different ap-
plications.

Netlink sockets have the following advantages against other communica-
tion mechanisms for user space / kernel space communication as summarized
in [36]:

• It is simple to interact with the standard Linux kernel as only a constant
has to be added. There is no risk to pollute the kernel or to drive it in
instability, since the socket can immediately be used.

• Netlink sockets are asynchronous as they provide queues, this means
that they do not disturb the scheduling of the Linux kernel. This is in
contrast to system calls which have to be executed immediately.

• Netlink sockets provide the possibility of mullticast.

• Unlike systemcalls netlink sockets allow to initiate a communication form
kernel space.

• They have less overhead (header and processing) compared to standard
UDP sockets.

Beside these advantages netlink sockets have also some drawbacks:

• The Linux kernel has to be modified and therefore to be recompiled. A
task that many users are afraid of.

• The maximum number of netlink families is 32. If everyone registers its
own protocol this number may exhaust.

Generic Netlink

To eliminate these drawbacks the ”generic netlink family” was introduced in
Linux kernel 2.6.15. It acts as a netlink multiplexer, in a sense that different
applications may use the generic netlink address family. The architecture of
the generic netlink family is described in [37] and [38].

The generic netlink architecture consists of five components:

1. The netlink subsystem which serves as the underlying transport layer
for all of the generic netlink communications.

2. The generic netlink bus which is implemented inside the kernel, but
which is available to user space through the socket API and inside the
kernel via the netlink and generic netlink APIs.

3. The generic netlink users who communicate with each other over the
generic netlink bus; users can exist both in kernel and user space.

41

4.1 Communication Between the MINMEX and the Bricks

Figure 9: Schema of generic netlink registration.

4. The generic netlink controller which is part of the kernel and is respon-
sible for dynamically allocating generic netlink communication channels
and other management tasks. The generic netlink controller is imple-
mented as a standard generic netlink user, however, it listens on a spe-
cial, pre-allocated generic netlink channel.

5. The kernel socket API . Generic netlink sockets are created with the
PF NETLINK domain and the NETLINK GENERIC protocol value.

Users which provide services over the generic netlink bus establish new
communication channels by registering a generic netlink family with the generic
netlink controller. Users who want to use a service query the controller with the
name of the corresponding generic netlink family to see whether the service
exists and to determine the correct channel number. Typically users which
provide a service reside in kernel space, whereas users which want to use a
service reside in user space.

A generic netlink family consists of a name and a set of functions, which
process the data received from the client. Functions belonging to a family are
identified with the help of indices. In order to send data to a specific function the
client has to know the channel number as well as the index of this function. For
security reasons there has to be a policy for each argument which a function
expects. This policy defines the type of the argument (e.g. integer, string
etc.). If a message is received the Linux kernel verifies the conformance of the
argument with the policy for that function. If the argument type is correct, the
function is invoked, otherwise the message is simply discarded.

Figure 9 illustrates the registration of a new generic netlink participant.

1. The server has to register the protocol family with the generic netlink
controller. The server provides a name for his family and the generic
netlink controller assigns a free netlink protocol number to this name. This
id is required for any message sent from a client to a server. Figure 10
shows the elements involved to register a generic netlink family.

42

4.1 Communication Between the MINMEX and the Bricks

int genl_register_family(struct genl_family *family);

/**

* struct genl_family - generic netlink family

* @id: protocol family identifier

* @hdrsize: length of user specific header in bytes

* @name: name of family

* @version: protocol version

* @maxattr: maximum number of attributes supported

* @attrbuf: buffer to store parsed attributes

* @ops_list: list of all assigned operations

* @family_list: family list

*/

struct genl_family

{

unsigned int id;

unsigned int hdrsize;

char name[GENL_NAMSIZ];

unsigned int version;

unsigned int maxattr;

struct nlattr ** attrbuf; /* private */

struct list_head ops_list; /* private */

struct list_head family_list; /* private */

};

Figure 10: Registration of a generic netlink family.

43

4.1 Communication Between the MINMEX and the Bricks

2. The server registers his functions with the generic netlink controller. Fig-
ure 11 explains the elements involved in registering a callback function
for a given generic netlink family. The doit function should point to the
function which will process the data. cmd is the identifier for that function
to be used from a client.

3. The client queries the netlink controller for the id of the family. The client
has to provide the name of the registered family. If the family is available
the id is returned, otherwise a NACK is returned.

4. The client sends a message to the server. The id of the function to be
executed, the id of the message type (int, string etc.), the message itself
and a unique identifier of the sending process along with some flags have
to be provided. Upon receiving this message the netlink interface checks
whether the supplied argument, the id of the argument type and the ex-
pected type of the argument match and calls the function corresponding
to the id given.

5. The server may respond to the client.

For more details and a ”hello world” example refer to [44]. And as the
generic netlink HOWTO suggests: ”... As usual, the kernel source code is
your best friend...” [38].

Userspace API
All the netlink operations originating from user space can be accomplished with
the standard socket interface. However the usage is quite complex, as different
headers and different ids and flags have to be set correctly. Therefore there
exists the library libnl [41] which takes care of the low level interactions with the
netlink interface. Unfortunately this library supports the generic netlink family
not yet in its official release. But there is generic netlink support in the current
svn version. As the integration of the whole library in the ANA core would be
too much overhead, only some tricks are taken from that library, and an ANA
specific library was developed.

Binding a Netlink Socket
As for a TCP/IP socket, the netlink bind() API associates a local (source) socket
address with the opened socket. The netlink address structure is as follows:

struct sockaddr_nl

{

sa_family_t nl_family; /* AF_NETLINK */

unsigned short nl_pad; /* zero */

__u32 nl_pid; /* process pid */

__u32 nl_groups; /* mcast groups mask */

} nladdr;

The nl pid serves here as the local address of this netlink socket. The client
has to choose a unique 32-bit value to fill in nl pid, or set it to zero. If it
is set to 0, the Linux kernel associates a pid for that socket, but there is no

44

4.1 Communication Between the MINMEX and the Bricks

int genl_register_ops(struct genl_family *, struct genl_ops *ops);

/**

* struct genl_ops - generic netlink operations

* @cmd: command identifier

* @flags: flags

* @policy: attribute validation policy

* @doit: standard command callback

* @dumpit: callback for dumpers

* @done: completion callback for dumps

* @ops_list: operations list

*/

struct genl_ops

{

u8 cmd;

unsigned int flags;

struct nla_policy *policy;

int (*doit)(struct sk_buff *skb,

struct genl_info *info);

int (*dumpit)(struct sk_buff *skb,

struct netlink_callback *cb);

int (*done)(struct netlink_callback *cb);

struct list_head ops_list;

};

/**

* struct nla_policy - attribute validation policy

* @type: Type of attribute or NLA_UNSPEC

* available types are listed in include/net/netlink.h

* @len: Type specific length of payload

*/

struct nla_policy {

u16 type;

u16 len;

};

Figure 11: Registration of a callback function for a generic netlink family.

45

4.1 Communication Between the MINMEX and the Bricks

common way to get to know this pid in the client. If a userspace process has
only one open netlink socket, the nl pid can simply be set to the pid of this
process. However if a client has multiple open netlink sockets, things become
more complex, since the pid cannot be used as a unique identifier. The solution
is based on the fact, that a Linux system will never allow 232 different processes
running simultaneously, and hence not all bits of the int returned by getpid()

are used. Therefore the nl pid can be combined from the pid of the process
and a process local unique identifier. A function providing a unique nl pid is
provided in the libnl library. A server in the Linux kernel which wants to send a
message to the client uses this pid as a destination address.

Use of Generic Netlink Sockets in the ANA Core

Kernel Space MINMEX
The MINMEX registers a netlink family with the generic netlink controller. A
Brick can identify this family by its name ”ANA”. Thereafter the MINMEX reg-
isters a callback function for control messages and one for data messages as
well as the policies for the argument of the callback function. In the current im-
plementation the policy is defined to be a string of maximum length 1024. The
callback functions call the data respective control parsing functions common
to all communication modes. Figure 12 shows the registration of the generic
netlink environment to receive AL0 control messages in the MINMEX.

This design provides a lot of flexibility, since new callback functions as well
as new policies can be added easily. Also, when in a future step security be-
comes more important the policy can be easily extended to constrict the argu-
ments more precisely. It would be even possible to change the message format
from the current character array, to a struct which holds the different elements.

User Space Brick
An ANA Brick may use any combination of UDP and generic netlink sockets
to send and receive data and control messages respectively. There exists at
most two generic netlink sockets, one for control communication, and one for
data communication, since they can be easily used in duplex mode. If either
sending or receiving of data goes with UDP sockets, there exists a “one way”
UDP socket and a “one way” generic netlink socket.

The assignment of a unique address is done upon the initialization of the
Brick, with the generate local port function provided by the ANA core library.
In order to send data from kernel space to user space, the kernel space has to
know about this ID. Therefore the ID of the control as well as of the data socket
is part of the attach messages sent from the Brick to the MINMEX.

To facilitate the usage of generic netlink sockets from within a Brick, a small
library has been developed. This library is not limited to the ANA world, but it
could be used from any user space process interested in the generic netlink
sockets. The library consists of the following functions:

• uint32 t generate local port(void)

This function generates a unique id which may be used to bind the socket.

• int create nl socket(int protocol, int groups, int pid)

This function generates a generic netlink socket and binds it to the pid

46

4.1 Communication Between the MINMEX and the Bricks

/*ANA family definition*/

struct genl_family ANAFamGN = {

.id = GENL_ID_GENERATE, //genetlink should generate an id

.hdrsize = 0,

.name = "ANA", //the name of this family,

.version = 1,

.maxattr = ATTR_MAX, //defined in anaCommon.h

};

/*control structure definition*/

struct genl_ops controlOpsGN = {

.cmd = COMMAND_CONTROL, //defined in anaCommon.h

.flags = 0,

.policy = controlPolicyGN,

.doit = recvControlGN,

.dumpit = NULL,

};

static struct nla_policy controlPolicyGN[ATTR_MAX + 1] = {

[ATTR_ID] = { .type = NLA_STRING, .len = 1024 },

//ATTR_ID defined in anaCommon.h

};

/*registered callback function for processing control messages */

int recvControlGN(struct sk_buff *skb_2,

struct genl_info *info)

{

/* for each attribute there is an index in

* info->attrs which points to a nlattr structure

* in this structure the data is given

*/

struct nlattr * na = info->attrs[ATTR_ID];

char * mydata = (char *)nla_data(na);

int length = nla_len(na);

/*evoke the ANA parse control function */

parseControl(mydata, length);

return 0;

}

/*registration of the generic netlink family*/

genl_register_family(&ANAFamGN);

genl_register_ops(&ANAFamGN, &controlOpsGN);

Figure 12: The generic netlink family for receiving control messages in the
MINMEX.

47

4.1 Communication Between the MINMEX and the Bricks

specified in the argument. protocol has to be set to NETLINK GENERIC

and groups to a multicast group mask (or 0 if no mulitcast messages
should be received).

• int sendto fd(int s, const char *buf, int bufLen)

This function sends buf to the socket descriptor s.

• int get family id(int sd, char * family)

This function returns the id of the family identified by family. sd has to
be a valid generic netlink socket descriptor.

There exist also functions to send and receive data and control messages.
However these functions are integrated in the “standard” functions to send and
receive messages provided by the ANA core library.

More information about the generic netlink implementation in the ANA core
can be found in the source code [47]. The following files are of special interest:

• C/minmex/kernel/kernel minmex.c

• C/bricks/AL0/userspace/UanaLib0.c

• C/bricks/AL0/common/anaLib0.c

4.1.3 Kernel Intern Communication

This section describes the scenario where both MINMEX and Brick are in the
Linux kernel space. We describe how modules can access functions from other
modules, without the need to export all these functions in general. In the sec-
ond part we describe the ANA core specific implementation.

Minimize the Number of Exported Functions

Since in the Linux kernel all modules run as a single process there is no need
for an inter process communication mechanism. Instead, a module can call
the functions from another module directly. However, functions are in general
private to the module owning the function. In order to make a function visible
to other modules the owning module has to export the function explicitly. Since
every exported function has to have a unique name the number of exported
functions should be kept small. If module A needs nevertheless to make many
functions accessible for other modules it can do the following: In a first step it
saves all function pointers in a struct. In a second step it exports a function
which returns a pointer to this struct. If a module B wants to call a function from
module A, it first has to call the exported function. From the struct received,
module B can gather the addresses of all the functions registered from module
A.

Due to module dependencies this mechanism has the drawback that mod-
ule A has always to be loaded when module B is loaded, even when module B
does no longer need the functions of A.

Another drawback arises when multiple similar modules exists, since then
every module has to export a function with a different name. This situation
could arise in the ANA world in a test setting, where multiple ANA MINMEXs

48

4.1 Communication Between the MINMEX and the Bricks

run on the same machine. To avoid this drawback a third “management mod-
ule” is inserted. It provides global functions to register and unregister other
modules. Upon registering, a module provides a struct with its function pointers
along with a name. Another module interested in these functions can query the
control module for the requested name and it gets the corresponding pointer
to the struct. After this step communication between the two modules does no
longer need the control module.
This architecture provides the following benefits:

• There is no direct dependency between the modules A and B.

• The amount of exported functions does not depend on the number of
inserted modules.

• The management module can be used for monitoring and other control
purposes too.

There is one drawback with this approach: Module A can be removed from
the kernel regardless the needs of module B. Therefore module B could use a
function which belongs to module A even when module A is already removed,
which would lead to a segmentation fault. This implies the need of a mech-
anism, that module A can contact module B and inform it about its upcoming
removal.

Implementation of the KERN Mode in the ANA Core

In addition to the ANA MINMEX and the Brick modules there exists an ana-
Control module.

Figure 13 shows the control module along with two registered MINMEX.
Two Bricks have queried the control module for the MINMEX and they have
obtained the information necessary to communicate with the MINMEX. This
procedure is explained in more detail in the next few paragraphs.

The control module provides the following three functions:

• registerAnaMinmex(struct anaMinmexFunctions * anaMinmexFct, int

mode, char * name)

registers the struct anaMinmexFct with given name and communication
mode.

• unregisterAnaMinmex(char * name)

unregisters the node functions belonging to the given name.

• getMinmexFunctions(char * name)

returns a pointer to the node functions identified by the given name.

This simple interface is not yet safe, since the unregister function can be
called from any module. However it would be not difficult to add a third private
value to the registerAnaMinmex function, which has to be provided for unreg-
istering the MINMEX. The control module manages its entries with a linked list
as provided by the Linux kernel (linux/list.h).
Upon initialization, the ANA node registers a name, its mode and the following
struct with the control module:

49

4.1 Communication Between the MINMEX and the Bricks

Figure 13: A PC hosting two different MINMEX. The Bricks query the control
module for the functions provided by the MINMEX.

50

4.1 Communication Between the MINMEX and the Bricks

struct anaMinmexFunctions{

int (*attach)(char *msg, int len); (1)

void (*detach)(char *msg, int len); (2)

int (*regist)(void *msg, int len); (3)

int (*redirect)(char *msg, int len); (4)

void (*unregist)(char *msg, int len); (5)

void (*heartBeat)(char *msg, int len); (6)

void (*notification)(char *msg, int len); (7)

int (*changeView)(char *msg, int len); (8)

void (*callback)(char *msg, int len); (9)

void (*brickDataChannel)(struct anaBrickFunctions (10)

*brickDataFunctions,

anaHandle_t handle)

};

Functions (1) to (9) are the normal functions executed from the MINMEX as
described in section 3.2.4. Function (10) is a helper function. It is called by
the Brick to register the functions it provides for the MINMEX. In the current
implementation this is the function which parses data messages received from
the MINMEX (11) along with a urn (12). Theoretically a Brick may attach to
more than one MINMEX. Therefore the Brick has to know from which MINMEX
it has received the data. The urn is exactly for this purpose. It corresponds to
the data gate urn specified upon insertion of the Brick module. Upon sending
a data message to the Brick, the MINMEX invokes the callback function. The
argument name is set to the urn which identifies itself.

struct anaBrickFunctions

{

/*data*/

void (*callback)(char * msg, int len, char * name); (11)

/*urn over which this Brick is reachable for this node*/

char * urn; (12)

};

A Brick which wants to be attached to a given MINMEX queries the control
module with the name of the MINMEX. If a MINMEX with this name is regis-
tered the corresponding anaMinmexFunctionspointer is returned, and the Brick
can access the MINMEXs functions directly. During the attachment process
it calls the MINMEXs attach() function as well as the brickDataChannel()

function to register its data processing function. The attachment procedure be-
tween a Brick and a MINMEX is shown in Fig. 14. Figure 15 shows the basic
code used to send a data message from the MINMEX to a Brick.

51

4.1 Communication Between the MINMEX and the Bricks

/* Brick */

/* urn over which this Brick is reachable for the MINMEX

* in the "real" implementation this is given as cmd line argument

*/

char * urn = "NodeANA"

/* initialize Bricks callback function */

struct anaBrickFunctions *myFunctions

= mallocWrapper(sizeof(struct anaBrickFunctions));

/*the parseCallback function parses the received data messages */

myFunctions->callback = parseCallback;

myFunctions->urn = mallocWrapper(strlen(urn)+1);

memcpy(myFunctions->urn, nodeName, strlen(urn)+1);

/* get the functions from the MINMEX with the name "ANA". */

struct anaMinmexFunctions * MINMEX1 = getNodeFunctions("ANA");

/* attach Brick to MINMEX with the prepared attach message */

MINMEX1->attach(attachmessage, len);

/* MINMEX */

int handleAttach(char *msg, int length) {

/* parse the attach message and create a new handle

* for this Brick, insert Brick in BrickTable,

* copy reply message to msg

* /

memcpy(msg, replyMsg, replyLen)

return replyLen;

}

/* Brick */

/* parse the reply

* get the handle over which this MINMEX identifies this Brick

*/

/* register the Bricks data parsing functions with the MINMEX */

MINMEX1->brickDataChannel(myFunctions, handle);

/* MINMEX */

/* update the entry in the client table for this Brick */

void handleClientDataChannel(struct anaBrickFunctions

* brickDataFunctions,

anaHandle_t handle){

struct CTentry_s* entry = getCTEntry(&CT, handle);

entry->dataAux = brickDataFunctions;

}

Figure 14: Attachment from a Brick to the MINMEX.

52

4.1 Communication Between the MINMEX and the Bricks

/* MINMEX */

/* Data is sent in the following way: */

struct CTentry_s* entry = getCTEntry(&CT, handle);

struct anaBrickFunctions * clifunc = NULL;

clifunc = (struct anaBrickFunctions *)entry->dataAux;

clifunc->callback(msg, len, clifunc->urn);

/* Brick */

void parseCallback(char * msg, int len, char * urn){

/*search for the correct MINMEX */

struct anaNodeSpecs_s * tmp;

tmp = minmexList;

while (tmp != NULL){

struct anaBrickFunctions * myfnc;

myfnc = tmp->myDataFunctions;

if (!memcmp(myfunc->urn, urn, strlen(myfnc->urn)))

break; /* correct entry found */

}

tmp=tmp->next;

}

/* check whether tmp == NULL -> no MINMEX found

* otherwise correct MINMEX found ->

* lookup the IDP in the shadow dispatch table,

* the first element in msg points to the idp

* /

anaLabel_t idp = msg;

struct SDTentry_s *entry = NULL;

entry = getSDTEntry(tmp->shadowT , idp);

/* send the data to the function corresponding to the IDP

data = msg + tmp->labelSize;

entry->callBackFct(data, len - tmp->labelSize, idp,

tmp, entry->aux);

}

Figure 15: Sending of a data message from the MINMEX to a Brick identified
by “handle“.

53

4.1 Communication Between the MINMEX and the Bricks

If a MINMEX is removed from the kernel (e.g. rmmod anaMinmex) it notifies
the Bricks about this event by calling the kickAllBricks() function. Thereafter
all Bricks free the resources belonging to this MINMEX. Finally the MINMEX
unregisters itself from the anaControl module.

There is a conceptual difference between the communication modes UDP,
UNIX, PIPES and GENETLINK on the one side and KERN on the other side.
The first imply that the Brick has to send a control message to the control gate
of the MINMEX. The MINMEX then analyzes the request message and invokes
the corresponding function. When the function is executed the MINMEX sends
a response message back to the control gate of the Brick. If both MINMEX and
Brick are in kernel space, the Brick invokes the control function of the MINMEX
directly. In order to achieve compatibility with the message passing system of
the first group, the exchanged arguments are the same. This means that the
kernel space version encodes its request in a message and invokes the control
function with this message as an argument. The control function parses the
message and executes the function. When the function is executed it writes
its reply in the buffer which was before used for the command argument. Fig-
ure 16(a) shows the message flow for the UNIX, PIPES, UDP and GENETLINK
mode, the kernel intern mode is depicted in Fig. 16(b).

More Information about the KERN communication mode can be found in
the following code files:

• C/bricks/AL0/kernel/KanaLib0.c

• C/bricks/AL0/common/anaLib0.c

• C/minmex/kernel/kernel minmex.c

• C/minmex/common/minmexFunctions.c

54

4.1 Communication Between the MINMEX and the Bricks

(a) Control Path for UNIX, PIPES, UDP and GENETLINK.

(b) Control Path when the MINMEX and the Brick are in kernel space.

Figure 16: Brick starting a control request. If the MINMEX and the Brick are
both in kernel space, the Brick calls the control function directly. Otherwise
the Brick sends a control request message to the MINMEX, whereupon the
MINMEX invokes the correct control function.

55

4.1 Communication Between the MINMEX and the Bricks

4.1.4 Evaluation: Throughput of the ANA Core

The aim of this section is to compare the performance of the different commu-
nication mechanisms implemented. We are not interested in exact numbers or
in long term studies since the goal of the ANA prototype is to provide a network
architecture that has different properties than the Internet and not one that is
optimized for speed.

Of special interest is the maximum possible packet rate a Brick can send to
another Brick on the same node without loosing packets. The tests show that
the kernel intern communication mode is by far the fastest and the only one
which never looses a packet.

The test scenario is as follows: There is a packet sending and a packet
receiving Brick. The sender Brick sends 12 Million packets continuously to the
MINMEX which forwards them to the receiver Brick. The receiver Brick counts
each packet received, but does no further packet processing. Figure 17 shows
the test setup.

Figure 17: Test setup: The “sender Brick” sends continuously messages to the
“receiver Brick”.

The maximum possible packet rate (without packet loss) is depending on the
payload of each packet transmitted. Therefore we did the tests with the follow-
ing two payload sizes:

1. Payload of 6 Bytes.

2. Payload of 1 kByte.

Throttling of sender packet rate

In order to regulate the packet rate, the sending Brick has to wait in regular
intervals for a short period of time before sending more packets. The waiting is
accomplished by putting the sending process to sleep. The minimum possible
sleep time corresponds to the Linux kernel timer interrupt resolution, which is
at most 1ms. This is not optimal, since packets are always sent in bursts during
which the packet rate is high followed by a period in which no packets are sent.
Presumably the maximum possible packet rate would be higher if the packet
rate would be constant. Nevertheless the reported packet rates give a clear
indication of which communication modes are fast and which are slow.

56

4.1 Communication Between the MINMEX and the Bricks

Results

Table 2 summarizes the packet throughput for a payload of 6 Bytes and Tab. 3
summarizes the results for a payload of 1 kByte. Three main points can be
observed:

1. IPC mechanisms specialized for communication within a computer are
more efficient than UDP which is designed as a communication protocol
between distant computers.

2. The ANA core can process more packets the more parts of it run in
the Linux kernel space. By far the fastest communication mechanism
is “KERN” in which the Bricks call the functions provided by the MINMEX
directly.

3. The packet rate decreases by approximately 30% if the payload is changed
from 6 to 1024 Bytes. This increases the bandwith used by a factor of ap-
proximately 100.

MINMEX Brick Packet Rate Bandwith
u-space: UDP u-space: UDP 29’000 1.4
u-space: UNIX u-space: UNIX 41’000 2
k-space: UDP u-space: UDP 41’000 1.9
k-space: GENETLINK u-space: GENETLINK 98’000 4.7
k-space: UDP k-space: UDP 65’000 3.1
k-space: KERN k-space: KERN 366’000 17.7

Table 2: Maximum packet rate (packets/second) and Bandwith (Mbit/s) for
packets with a payload of 6 Bytes without packet loss.

MINMEX Brick Packet Rate Bandwith
u-space: UDP u-space: UDP 21’000 171
u-space: UNIX u-space: UNIX 37’000 299
k-space: UDP u-space: UDP 20’000 163
k-space: GENETLINK u-space: GENETLINK 69’000 565
k-space: UDP k-space: UDP 47’000 385
k-space: KERN k-space: KERN 266’000 2180

Table 3: Maximum packet rate (packets/second) and Bandwith (Mbit/s) for
packets with a payload of 1 kByte without packet loss.

Using Fig. 18 and Fig. 19 we can compare the packet loss and the CPU load
for different packet rates. These values are obtained from a test with minimum
sized packets. As clearly can be seen the KERN communication mode poses
by far the least computational burden to the CPU. Whereas the GENETLINK
mode is computational expensive, but does not loose any packets until the
packet rate is approximately 100’000 Packets per second. GENETLINK as well
as UNIX are not able to send packets faster than a threshold, but up to this
value the packet loss rate is approximately 0. By contrast the UDP mode. UDP
mode is able to send packets very fast, but the faster they are sent the more
packets get lost.

57

4.1 Communication Between the MINMEX and the Bricks

Figure 18: Percentage of delivered packets depending on the packet rate.

Figure 19: CPU load for different packet rates.

58

4.1 Communication Between the MINMEX and the Bricks

4.1.5 Summary

The described communication mechanism UDP, GENETLINK and KERN along
with the userspace communication modes UNIX and PIPES provide an ade-
quate communication channel between the MINMEX and the Bricks for any
given situation. However all these communication mechanisms are well hid-
den in the ANA core software and the different properties have been merged
in order to fit in the given AL0 API.

The evaluation has shown, that the communication modes have different
characteristics as far as maximum possible packet rate and packet loss is con-
cerned. The KERN communication mode is by far the fastest and the only
one which provides a reliable connection between the MINMEX and the Bricks.
Packet loss in an ANA node could lead to severe problems in the future. To see
this we examine the following scenario: In the traditional network stack, if http
sends a packet it can assume that the packet is delivered since it uses TCP
as a transport protocol. In the ANA world, both the http and the TCP protocol
would be implemented as dedicated Bricks. Since UNIX, GENETLINK and es-
pecially UDP may loose some packets in one single node, the http connection
would still be unreliable.

Therefore either all Bricks which need a reliable connection have to run in
the kernel space, or we have to provide another communication mode which
offers a reliable connection between the MINMEX and the Bricks.

However for a network node which is loaded only moderately no packet loss
should occur for any of the implemented communication modes.

59

4.2 Writing System Agnostic Code

4.2 Writing System Agnostic Code

A goal of the ANA core software is to provide an environment which runs in
Linux user space, kernel space and on the network simulator ns2. Upon writ-
ing a Brick a developer should not have to care about differences in the system
specific functions. Therefore we have implemented a set of wrapper functions,
which can be used by the Brick developer and which hide all the details. This
sections describes the concepts behind these wrapper functions. Besides the
need of wrapper functions some other things have to be considered when writ-
ing system agnostic code. All of them are listed in Appendix B.1.

4.2.1 Standard Wrapper Functions

We have implemented a library of our own functions for the basic interaction
with the system. The functions provided from this library are for example mal-
loc and free. An up to date list can be found in the source code in the file
C/shared/anaCommon.c.

The names of these wrapper functions correspond to their userspace names.
It is important to note that the gnu functions and the ANA functions do not corre-
spond in a 1 to 1 relationship. For example the ANA malloc() function initializes
explicitly the allocated memory area to 0, and the ANA free() function sets the
freed pointer to NULL.

4.2.2 Mutual Exclusion - ANA Locks

The Linux kernel 2.6 is preemptive. This means that the scheduler can revoke
the CPU from a thread and pass it to another thread at any time. Since some
data structures are used by different threads they need to be locked properly.

To avoid race conditions we have developed ANA locks, which are used to
protect all critical data structures of the ANA core software. The Linux kernel
provides two different kinds of locking mechanisms:

1. Spinlock: Spinlocks may be used when the process is in “atomic context”,
e.g. upon processing an interrupt. When holding a spinlock it is forbidden
to sleep, which limits the set of possible functions to be executed while
holding a spinlock.

2. Semaphore: When holding a semaphore a process is allowed to sleep.
However it is illegal to acquire a semaphore when the process is in inter-
rupt context.

Both spinlocks as well as semaphores are available either as exclusive locks,
or as reader/writer locks. When a process holds an exclusive lock, it is the
only one who can enter the critical section. For reader/writer semaphores the
programmer may distinguish whether he wants to read the data only, or whether
he wants to change something. Multiple reads are allowed simultaneously, but
writes are guaranteed to have exclusive access to the critical section.

Since we want to provide the ANA locks for all future ANA developers, they
have to be easy to use and they should not put any constraints on the functions
to be executed while holding the lock. Therefore in the Linux kernel space

60

4.2 Writing System Agnostic Code

the ANA locks are mapped to semaphores with exclusive access to the critical
area. In user space they map to a pthread mutex.

The use of ANA locks is explained in the ANA Core documentation [48].

4.2.3 Parallel Execution - ANA Threads

A Brick receives all data messages on one communication gate. This gate
invokes the callback function corresponding to the IDP in the data message.
While the callback function does not return, the gate is not able to process any
further messages. This could lead to a situation where a callback function of a
Brick executes an infinite loop and therefore the whole Brick would be blocked.
To avoid this situation, we have implemented an ANA thread library. This library
can be used in Linux user space as well as in the kernel space. Thread han-
dling in the kernel space differs from the one in user space. The most important
difference between userspace threads and kernel space threads appears upon
termination of a program. In user space, upon pressing CTRL-C, all threads get
killed as well. Whereas in kernel space upon removing a module the threads
continue to live. This situation should be avoided, since it will most likely end in
a kernel oops, when the thread tries to refer some memory from the removed
module.
In the Linux kernel threads cannot be stopped, but they need to stop them-
selves. The Linux kernel provides some functions for handling thread termina-
tion. A termination signal can be sent to the thread to be killed. The execution
of the process sending this signal gets blocked, until the thread to be termi-
nated has really stopped. A kernel thread has to poll for the termination signal
and upon receiving it, the thread has to terminate itself.

The main goal of the ANA thread library is to facilitate the termination of
threads in the kernel space and to avoid kernel oops caused by orphaned
threads. The ANA thread library is designed as follows: There exists one ANA
thread environment for each Brick. This environment holds a list of all currently
active threads. All threads created with the ANA thread library start with the
same thread function. This function has two tasks:

1. Call the thread function specified by the programmer.

2. Unregister itself with the thread environment when the thread function
has returned.

Upon starting a thread, the thread identifier (e.g. the pid in user space and
the pid as well as the struct task struct in kernel space) is inserted in the
threads list.

When the thread environment is quitted in user space, it sends to each
thread in the thread list a SIGTERM signal.
In kernel space it calls the kthread stop function, which informs the thread
that it should stop, and waits until the thread has really stopped. This implies
that the thread has to check in regular intervals whether it should stop. For this
purpose there exists the anaThreadShouldStop function. If a thread does not
check for the termination signal, the module which started the thread cannot
be removed.

The use of ANA threads is explained in the ANA Core documentation [48].

61

4.2 Writing System Agnostic Code

4.2.4 Summary

Thanks to the ANA wrapper functions, a Brick may run in user space or in ker-
nel space, without the need of modifying their source code.
With the help of the basic wrapper functions it is easy for a developer who is
comfortable with user space programming to write a Brick which runs in kernel
space as well. The more elaborated functions like ANA locks and ANA threads
require some effort of the developer in order to get used to the APIs, but they
are much simpler than the standard Linux kernel APIs.

62

4.3 Backporting to Linux Kernel 2.4

4.3 Backporting to Linux Kernel 2.4

A lot of embedded devices today still run on kernel 2.43. To allow ANA to run
on such embedded systems, the ANA core software was backported to late
kernels 2.4. The ANA framework is written in a manner that it automatically
detects whether it runs on a kernel 2.4 or 2.6 and it chooses the appropriate
code to be compiled and executed.

The overall Linux kernel architecture changed from kernel 2.4 to kernel 2.6
significantly. The following list summarizes the main changes as they are rele-
vant for the ANA core software.

• The scheduling mechanism has changed from a non-preemptive kernel
2.4 to a preemptive kernel 2.6. This means that with kernel 2.4 the pro-
grammer is responsible to release the CPU to give other tasks the oppor-
tunity to be scheduled, whereas in kernel 2.6 the scheduler can revoke
the CPU at any time. Both behaviors have pros and cons: in kernel 2.4
one module can consume a lot of CPU time, whereas in kernel 2.6 an
unfair module will be suspended. In kernel 2.6 it is important that all data
structures which are accessed from multiple functions are appropriately
locked, since it is never known when an other function is invoked. This
function could manipulate the data structure, which could lead to race
conditions.

• In kernel 2.4 all global variables are visible in the whole kernel by default.
In the kernel 2.6 series global variables are only visible in one module. In
order to make a variable or function accessible by an other module they
need to be exported explicitly.

• In kernel 2.4 the programmer is responsible to take care that a module
which is used by other modules cannot be removed. This task is per-
formed automatically in kernel 2.6.

• The interface for deferring work in an interrupt handler has changed com-
pletely. In kernel 2.4 an interrupt handler uses the task queue when the
processing of some data may sleep. Kernel 2.6 interrupt handlers use
a work queue. Work queues allow much more flexibility than the task
queue: The programmer can easily create multiple work queues and
schedule tasks to one of them, whereas in kernel 2.4 one usually uses
the default task queue. This implies that tasks in the task queue may
block each other, whereas in 2.6 only the work from one and the same
work queue may block each other. Furthermore work queues allow the
execution of a task to a predetermined time in the future, whereas the
task queue is always executed “as soon as possible”. In order to defer
work until a predetermined time in the future, in kernel 2.4 a combination
of kernel timers and the task queue is needed.

• The functions for handling kernel threads have changed completely. In
kernel 2.6 there are dedicated functions to be used in order to stop a
kernel thread. In kernel 2.4 this task is accomplished with the help of
signals and the use of a so called completion object.

3E.g. the released version of the OpenWRT [46] Linux distribution for embedded systems runs
on Linux kernel 2.4.

63

4.3 Backporting to Linux Kernel 2.4

• The interface on how commandline parameters for a kernel module are
specified has changed.

• The whole Makefile structure has changed completely. Kernel 2.4 is more
oriented on a ”normal user space Makefile” whereas kernel 2.6 has a
dedicated Makefile format which is more comfortable to use.

64

5 The Bootstrapping Phase

5 The Bootstrapping Phase
How Nodes Get to Know Each Other

Whereas the first part of this Masters thesis is concerned about the commu-
nication between Bricks and the MINMEX in the same node, the second part
deals with the communication setup between different nodes. The focus lies
on the bootstrapping phase, in which nodes discover each other and exchange
information in order to learn each others capabilities.

Upon starting an ANA node, the Bricks have to organise themselves in order
to be able to process packets from other nodes. The building of this dynamic
protocol stack is described in the first section. In a second phase the Bricks
have to learn about similar Bricks residing on other nodes. Thereto exist some
Bricks which provide a bootstrapping service. This bootstrapping mechanism
is specified in the second section.

5.1 Building a Dynamic Protocol Stack

During the start up of an ANA node, each Brick registers itself with the MIN-
MEX. But the individual Bricks do not know anything about other Bricks residing
on the same node. Since the ANA project wants to achieve autonomicity, the
Bricks cannot relay on a fixed protocol stack, but they have to build a protocol
stack dynamically. This allows the exchange of some Bricks during operation,
depending on the networks current needs.

Figure 20 shows how a dynamic protocol stack is set up. This dynamic
protocol stack is built with the help of the Key-Val Repository (KVR) introduced
in section 3.1.3. Each Brick interested in participating in the protocol stack has
to accomplish the following steps:

1. Publish some keywords which describe its capabilities in the KVR.
Fig. 20(a): Brick B publishes its keywords “interface, wired, Ethernet” in
the KVR.

2. A Brick interested in a certain service sends a lookup query to the MIN-
MEX. The MINMEX queries the KVR and returns the IDPs matching the
query.
Fig. 20(b): Brick A queries the KVR for the keyword “Ethernet” and ob-
tains the IDP B.
Upon knowing this IDP the Bricks can start to communicate. They can
negotiate some protocol information (e.g. MTU etc.), and decide how
data messages are exchanged.

3. Bricks may offer bootstrapping services, which can be used from “com-
mon” Bricks to get to know Bricks residing on other nodes. A common
Brick can choose whether it wants to publish some keywords to a Brick
with boostrapping functionality. This keywords are stored in a repository
of the Brick with bootstrapping functionality. The entries of this repository
are publicly available and are used during the bootstrapping phase.
Fig. 20(c): Brick A publishes the keyword “IP” in the bootstrapping repos-
itory of Brick B.

65

5.1 Building a Dynamic Protocol Stack

(a) Publish keywords in KVR.

(b) Query KVR for a keyword.

(c) Publish keywords in the bootstrapping Brick.

Figure 20: Three steps for building a dynamic protocol stack.

66

5.2 Get to Know Other Nodes

4. Since communication is in most cases bidirectional it is useful to provide
the address of the originator of a bootstrapping request to the Bricks tar-
geted by the query. For this purpose a Brick with bootstrapping function-
ality may provide a second repository in which other Bricks can publish
their description. When a bootstrapping query matches an entry in this
repository, the corresponding Brick obtains the information necessary to
contact the querying Brick. We refer to this process as subscription.

5.2 Get to Know Other Nodes

This section describes the bootstrapping phase where Bricks get to know Bricks
residing on other nodes. Throughout this section it is assumed, that the proto-
col stack is already built, and that Bricks interested in the bootstrapping phase
have already published their description in the corresponding repositories.

In order to be able to communicate with other Bricks, the IDPs of the peer
Bricks have to be learned. For this study it is assumed that all nodes participat-
ing are attached to the same Ethernet segment. Access to the Ethernet is open
to each node, and therefore all Ethernet Bricks can directly communicate with
each other. However, a Brick which has no direct media access, e.g. which is
subscribed to the Ethernet Brick, has first to discover other Bricks of the same
type.

Apart from the standard message exchange, each Brick can choose be-
tween three different bootstrapping options:

1. Aggregation: All bootstrapping replies are delivered in one package.

2. Cache: The bootstrapping Brick manages a cache of recently learned
addresses. Instead of broadcasting the bootstrapping request it queries
its cache repository.

3. Subscription: A Brick can subscribe to bootstrapping events. These
Bricks get the address of the “querying Brick” whose boostrapping re-
quest matched the Bricks keywords.

The most comfortable way to describe this bootstrapping procedure is to
look at an example. Figure 21 shows the basic example setup, consisting of
two nodes connected by an Ethernet segment. Each node has 4 functional
blocks. One of them is an Ethernet functional block. It consists of two Bricks,
one responsible for the framing of the Ethernet packets and sending them to
the wire and one which offers bootstrapping functionality to the remaining three
functional blocks.

In a first step we are looking at node A which initiates the bootstrapping re-
quest and in a second phase we cover node B which answers the bootstrapping
request.

Node A

Brick A describes itself with the keywords “A” and “O”.4 It is interested in other
Bricks which describe themselves either with “A” or with “O”. During the boot-
strapping procedure the following steps are executed in node A (q.v. Fig. 22):

4This keywords can be replaced by anything according to an ontology which is still to be defined.

67

5.2 Get to Know Other Nodes

Figure 21: Example setup to explain the bootstrapping process.

1. Brick A sends a query describing the request to the Brick with the boot-
strapping functionality. This request consists of the following 6 argu-
ments:

(a) Query: The query consists of keywords concatenated by AND, OR
or NOT. It describes the Bricks of interest.

(b) Aggregation: Describes whether the answers should be given one
by one or aggregated in a package.

(c) Cache: The cache parameter specifies whether the query should
be looked up in the local cache or whether the query should be
broadcasted.

(d) Keyworks: Brick A describes itself with this keywords, they are used
to update the cache of remote Bricks.

(e) Data IDP: Brick A waits on this IDP for data messages, used to
update the cache of remote Bricks.

(f) Reply IDP: The boostrapping answers have to be sent to this IDP.

2. The Brick with the bootstrapping functionality analyzes the request. De-
pending on the cache parameter, the query is looked up in the local cache
or the request gets broadcasted.

3. Upon receiving an answer the following information is obtained:

(a) The MAC address of the remote network interface.

(b) The IDP where the peer Brick listens for data messages.

(c) A set of keywords describing the peer Brick.

68

5.2 Get to Know Other Nodes

(a) Brick A initiates a bootstrapping request.

(b) The Ethernet Brick handles a bootstrapping reply.

Figure 22: Bootstrapping process in node A.

69

5.3 Chat Application

4. The bootstrapping Brick registers a new IDP with the MINMEX for each
discovered Brick. This IDP is associated with the function the Brick pro-
vides for sending data messages along with the MAC address and the
IDP of the peer Brick.

5. Depending on the aggregation parameter of the original request, the re-
sponses are sent back immediately, or after a network specific delay. A
response consists of the newly generated IDP and the keywords identify-
ing the peer Bricks.

6. The bootstrapping Brick updates the local cache with the keywords, MAC
address and IDP learned from the boostrapping reply.

Node B

In our example node B receives the bootstrapping request. In order to minimize
the amount of messages to be exchanged, Brick A and Brick B wants to learn
about Bricks which have sent a query matching their keywords. Therefore they
have published their keywords in the subscriber repository of the Brick offering
bootstrapping functionality. The bootstrapping procedure in node B is depicted
in Fig. 23. During the bootstrapping phase the following steps are executed:

1. Upon receiving a bootstrapping request, the Brick with the bootstrapping
facility checks the local repository for entries corresponding to the query.
All IDPs along with their keywords are sent back to the originator of the
query.

2. The cache repository gets updated with the information learned from the
bootstrapping request packet.

3. The Bricks subscribing to the bootstrapping events get notified.

(a) The subscriber repository is queried.

(b) For each Brick found a new IDP is registered.

(c) The subscriber Bricks are notified of the newly generated IDP along
with the description of the source Brick. The subscriber Brick can
use this IDP to send a message to Brick A on node A.

5.3 Chat Application

We have written an Ethernet compartment which provides the described boot-
strapping functionality. Instead of accessing the hardware directly it uses an-
other Brick (called vlink Brick) which provides virtual access to the hardware.
This allows the creation of virtual Ethernet links between distant networks. On
top of this “vlink-Ethernet” compartment we have implemented a simple chat
application. All participants on the same Ethernet segment communicate to-
gether, there is no private chat up to now.
If a chat Brick starts, it publishes its description “chat” in the Ethernet Brick
and it subscribes itself to bootstrapping events matching the keyword “chat”.
Thereafter it sends a bootstrapping request to the Ethernet Brick, which forms

70

5.3 Chat Application

(a) Answering the bootstrapping request.

(b) Notify subscriber of bootstrapping request.

Figure 23: Bootstrapping process in node B.

71

5.4 Summary

an Ethernet frame for the request and forwards this to the vlink Brick. The vlink
Brick processes this frame according to its configuration (e.g. it could send a
broadcast message through eth0). Since all participants have subscribed to
bootstrapping events, they immediately know the address of the newly started
Brick and can start to send chat messages to this Brick.

5.4 Summary

The described bootstrapping procedure implements a “default off” policy. This
means that each Brick has to explicitly choose over which other Bricks it wants
to be reachable. Default off polices have the drawback, that each communi-
cation has to be allowed explicitly, whereas in a default on policy all possible
communication channels are allowed. However, default off policies are pre-
ferred over default on policies, since they offer much less flexibility to attackers.

Bricks participating in the bootstrapping phase can choose which informa-
tion is publicly available, by adding a different set of keywords to the local repos-
itory, to the subscriber repository and to the bootstrapping request message.

The bootstrapping procedure offers great flexibility. Each of the three dif-
ferent parts: Aggregation, Cache and Subscription may be implemented in-
dependently and for a lightwight bootstrapping process they can be omitted
completely.

An implementation of this bootstrapping scenario can be found in the vlink-
Ethernet compartment. It is the first compartment written for ANA. It offers
Ethernet connectivity running over virtual links, thus enabling to connect ANA
nodes on different physical networks. We have written a simple chat application
which uses the vlink-Ethernet compartment. All the participants are able to
communicate together without the need of configuring anything and therewith
we have proven that the ANA core software and the described bootstrapping
procedure work as expected.

Although we usually speak in terms of “Brick A sends a message to Brick
B” it is important to remember, that actually Brick A sends a message to the
MINMEX, the MINMEX checks the given IDP and sends the message to the
Brick owning this IDP. This allows that Bricks may be exchanged easily, and
that IDPs may be redirected to point to other functions.

72

6 Summary and Further Work

6 Summary and Further Work

6.1 Summary

This thesis is realized within the ANA project which builds an autonomic net-
work based on a clean slate approach. During this thesis we have developed
the underlying communication facilities between the two main objects in ANA:
the MINMEX and the Bricks. Although no future developer will have to deal
with the code written during this thesis, it will be used upon sending or receiv-
ing every packet.

In a second phase we have developed a bootstrapping process which al-
lows different Bricks to learn about each other. We have implemented the first
ANA compartment which shows that the ANA core software and the designed
bootstrapping process operate seamlessly.

The following list summarizes the major contributions of this thesis to the ANA
core development process.

• Implementation of the MINMEX as well as the framework for the Bricks in
the Linux kernel space. They are stable and designed in a way, that future
programmers do not have to write a single kernel specific line of code.
The most interesting part is the communication interface between the
MINMEX and the Bricks as well as the ANA thread library which allows a
programmer with no kernel knowledge to use kernel threads.

• A short performance evaluation which compares the different commu-
nication modes implemented has shown that the KERN communication
mode is by far the fastest. This clearly indicates the benefit when the
ANA software runs in the kernel space.

• The provided code runs on any kernel 2.6 and on recent kernel 2.4. This
allows an easy distribution of the ANA code, since the developers can
stay with their actual kernel version and they do not have to compile a
new kernel. The ANA code can even run on embedded devices, most of
which run a kernel 2.4.

• Design of a flexible bootstrapping mechanism which allows Bricks on dif-
ferent nodes to learn about each other and to setup communication be-
tween them. The bootsrapping mechanism is designed in a way that it
can be used from any Brick in ANA regardless whether it is an applica-
tion or any other Brick in the networking stack. The bootstrapping process
has the three options aggregation, cache and subscription. This allows
to choose the most appropriate procedure for each situation.

• The chat application in combination with the Ethernet compartment work
as a proof of concept for the ANA framework as well as for the bootstrap-
ping process. Such demo applications are also useful for future program-
mers to see how programming in the ANA world works.

• I have learned a lot about the Linux kernel internals. Now I have a thor-
ough understanding of the handling of interrupts, the deferring of work
and the implications of putting a process to sleep as well as of generic

73

6.2 Further Work

netlink, a mechanism to exchange data between the kernel and the user
space. This knowledge I could pass to other ANA developers in a work-
shop, many discussions and even more emails.

Beside these main contributions, there are many minor contributions of this
thesis in the context of the ANA project, ranging from debugging of code written
by other developers until restructuring the ANA code repository or providing
some guidelines for writing code in ANA.

6.2 Further Work

The ANA core is far from being finished. The most desirable enhancements
are listed below:

• In order to make the life of future ANA Brick developers more enjoyable
we have to provide a simpler API. Most of the developers will have their
origin in user space application programming, and will therefore be used
to the standard socket API. However the actual ANA API is quite different.
The next API should therefore provide a functionality similar to today’s
socket API. The ANA coding workshop in Basel has shown that there
is the need of some example applications running on ANA. They should
clearly show how the API is to be used, what is similar to ordinary socket
programming and what is special to ANA.

• At the moment the ANA playground is nearly empty. There are only
some demo Bricks. Now we can start to populate the playground. We
need some packet processing elements like routing Bricks etc. In order
to reach the goal of autonomicity we need some monitoring Bricks.

• Up to now, the ANA core has not much of autonomicity in it. There is
still the lack of a packet called “Information Flow”. This packet will be
responsible for setting up an optimal protocol stack in the ANA node, and
to modify it depending on the current needs of the network.

• We have to review the bootstrapping process in order to be sure that it is
the appropriate way to go. We have to think about whether the chosen
bootstrapping process is generic enough and whether there is an easier
way to go.

• In addition to the hardware abstraction layer, an ANA abstraction layer
would be useful. It should allow legacy applications to run over ANA.
Therewith we could evaluate the benefits of the ANA network architecture
in comparison with the current Internet.

We hope to cover all these steps until the project ends in December 2009.

74

A Howto: Start using ANA

A Howto: Start using ANA

This appendix describes all steps necessary to start the chat application.

A.1 Compilation

1. Get the source code:
‘svn checkout https://subversion.cs.unibas.ch/repos/ana/’

You will need a username and a password. These can be obtained from
Christophe Jelger from the University of Basel.

2. Switch to the trunk directory and compile the program.
‘cd ana-core/trunk/’

‘make user’ for a user space compilation
‘make kernel’ for a kernel space compilation
All the user space binaries will be copied in the bin directory and all the
kernel modules in the modules directory.

A.2 Bricks Required for the Chat Application

1. vlink: Virtual Link support, up to now the only way to access the hardware.

2. eth-vl: Ethernet over vlink: Provides the bootstrapping functionality to find
other chat partners.

3. chat: The chat application.

For the MINMEX, the vlink and the eth-vl Brick you can choose whether you
want to run them in the Linux kernel or the Linux user space. The chat Brick has
to run in user space, since it provides interaction with the user. In this example
we will insert the MINMEX, the vlink and the eth-vl Brick as modules in the
kernel and we will define KERN as communication mode. We will start the chat
Brick in user space and we chose the communication mode GENETLINK.

A.3 Loading the MINMEX and the Bricks

For the modules we do not have to provide a special commandline argument,
since the default values are already OK. Refer to section A.5 to see how to
change the commandline arguments.
The vlink Brick has to be configured to send all packets to an Ethernet inter-
face. A more detailed description on how to configure the vlink can be found
in [48].
For the chat Brick we have to specify that we want to use GENETLINK as com-
munication mode and we have to provide the “address” of the MINMEX.
Note that you need root rights in order to insert the modules.
‘insmod modules/anaControl.ko’

‘insmod modules/anaMinmex.ko’

‘insmod modules/anaVlink.ko’

‘./bin/vlconfig create 1’

‘./bin/vlconfig add if vlink1 eth0’

75

A.4 Troubleshooting

‘./bin/vlconfig up vlink1’

‘insmod modules/anaVEthBrick.ko’

‘./bin/chat -c genetlink://123 -d genetlink://123 -n genetlink://ANA -D ANA ERR’

This should start your ANA chat client and you can start sending messages to
other people running the chat client on the same Ethernet segment.

A.4 Troubleshooting

• ‘error while loading shared libraries:...’

You need to specify the path to the ANA libraries:
Setting it for the current shell:
‘export LD LIBRARY PATH=/path/to/ana/ana-core/trunk/lib:${LD LIBRARY PATH}’

To set it system wide, add the ANA library path to the file /etc/ld.so.conf

and type ‘ldconfig’ in the shell. (You need to be root).

• Brick starts, but claims something like
‘Unable to attach to ANA minmex’.

– Some permissions may be violated. If the MINMEX runs as root, the
Brick has to run as root too (only if UNIX is chosen as a communi-
cation mode).

– The chosen communication modes may be incompatible. E.g. if
the MINMEX runs in kernel space, a Brick cannot choose UNIX as
communication mode.

• The vlink Brick does not work.
You need to run it with root privileges and you need to configure it with
the vlconfig tool.

A.5 Configuring the MINMEX and the Bricks

The MINMEX supports the following commandline arguments:
-c: control gate
-d: data gate
-h: handle size in bytes (default 2)
-l: label size in bytes (default 2)
-b: mtu for messages between client and node (default 200)
-C: hash Mask size and size of client table (default 26)
-T: hash Mask size and size of the IDT (default 210)
-D in user space and debug in kernel space: DebugLevel, with one of the fol-
lowing values:
ANA NONE: no messages
ANA EMERG emergency, something really bad happened, brick/MINMEX may
crash, be unusable
ANA ERR error condition, system drops a packet, a lookup fails
ANA NOTICE normal situation, worthy to note
ANA DEBUG debugging information

Each Bricks supports the following commandline arguments:
-d: data gate

76

A.6 Addressing Schemes

-c: control gate
-n: control gate of the MINMEX to connect to
-D in user space and debug in kernel space: DebugLevel

In user space the commandline arguments have to be specified in the form
[hyphen][optionname][space][optionvalue]:
‘./bin/minmex -D ANA ERR’.
For a module this is different: [optionname][equal sign][optionvalue].
‘insmod modules/anaMinmex debug=ANA ERR’

Generally each kernel module provides a list with all supported arguments
along with a description of these arguments. This list can be accessed with the
following command:
modinfo path/to/module.ko

Commandline arguments are generally specified with the following schema:
insmod path/to/module.ko varName=’Value’ arrayName=’Value1’,’Value2’

A.6 Addressing Schemes

Each communication mode has a different scheme to identify the ”address” on
which it listens for data or control messages respectively:

KERN “kern://name”
GENETLINK “genetlink://name”
UDP “udp://ip:port”
UNIX “unix://path/to/file”
PIPES “pipe://path/to/pipe”

If no gate is specified on the command line a default gate is chosen. In
userspace it is a UNIX socket and in kernel space it the KERN mode.
Upon running the MINMEX two different communication gates need to be spec-
ified: One to receive data and one to receive control messages.
For KERN and GENETLINK mode the ”name” is not important. For KERN
it corresponds to the module name which is obtained automatically and for
GENETLINK it is hard coded in the source code. For UDP mode the urn spec-
ifies on which IP address/port pair the MINMEX is waiting for data or control
information.

Bricks have to specify three gates: one for receiving control information, one
for receiving data messages and the control gate of the MINMEX they want to
send messages to.
For GENETLINK the ”name” does not matter for the Bricks control and data
gate. The MINMEX control gate has to be specified to be “ANA”.
In KERN mode the names of the data and control gate are used as an identi-
fier to distinguish from which MINMEX a message was arrived. But generally a
Brick is only attached to one MINMEX and therefore this value can be omitted.
The name of the MINMEXs control gate needs to be the module name of the
MINMEX, e.g. “anaMinmex”.

77

B First Steps in Writing Code for ANA

B First Steps in Writing Code for ANA

Everything presented in this chapter is based on svn revision 230. It may be
possible (likely) that there will be several changes, for example to the wrapper
functions or to the template for the Bricks.

B.1 Guidelines for Writing System Agnostic Code

This appendix lists some guidelines for writing code that should run in the Linux
user and in the kernel space.

1. Programming language: C.

2. Variables have to be declared at the beginning of a block.

3. void has to be explicitly mentioned in the parameter list of a function
declaration.

4. Global variables cannot be declared in a header file. They need to be
defined in one file and the other files need to use the keyword extern.

5. Avoid user space specific functions such as bzero() or strtok(). Use mem-
set() or strsep() instead which are available in both environments.

6. The ANA core provides a library of wrapper functions, which makes sys-
tem specific functions (e.g. memory allocation) accessible for kernel and
user space:

• int atoiWrapper(char *mychar);

• int inet addrWrapper(const char *cp);

• void freeWrapper(void *pointer);

• void *mallocWrapper(int size);

• int ANAsleep(int seconds);

• int randomWrapper(void);

• int gettimeofdayWrapper(struct timeval *tv, struct timezone *tz);

• socket manipulation wrapper functions. These are specific to the
ANA core:

– int setSockOptWrapper(void *sock, int level,int op, char * optval,
int optlen);

– int readWrapper(void *sock, char * data, int len);
– int sendSocketWrapper(void *sock, int domain, void *aux, void

*msg, int len);
– void closeWrapper(void * sock);
– int sockCreateWrapper(void *toReturnSock, int domain, int type,

int protocol);
– int bindWrapper (void * sock, struct sockaddr * address, int size);

7. anaPrint(debugLevel, “format string”): A macro to be used for printing
messages.

78

B.2 Writing Your First Brick

8. The ANA core provides a “triple Makefile structure”: There exist dedicated
Makefiles for userspace, kernel 2.6 and kernel 2.4. In order that a Brick
gets compiled in each of these three environments all of the Makefiles
have to be adapted.

B.2 Writing Your First Brick

In this section we give some hints on how to start writing your own Bricks.

• If you want to develop a Brick which is intended to run mainly in kernel
space you should obtain an actual Linux kernel source code (e.g. 2.6.20)
and compile your kernel with as many debugging options as possible.

• Obtain the ANA source code:
‘svn checkout https://subversion.cs.unibas.ch/repos/ana/’

You will need a username and a password. These can be obtained from
Christophe Jelger from the University of Basel.

• Read the ANA core documentation in the ana-core/trunk/doc directory.
This is important! It provides you with all the necessary information on
the concepts of ANA and it introduces the API as well as the wrapper
functions provided.

• Switch to the Bricks directory and create your own directory.
‘cd ana-core/trunk/C/bricks’

‘mkdir myFirstBrick’

• Copy the file examples/brickAL0 1.c as well as the three Makefiles in your
directory.
Makefile is the kernel 2.6 Makefile, Makefile-24 the kernel 2.4 Makefile
and the Makefile-user the one for the user space.
The brickAL0 1.c file contains a minimal Brick which sends a message
via the MINMEX to itself.

• Adapt the Makefiles in your directory, and the ones in the C/bricks/ di-
rectory.

• Open your copy of the file brickAL0 1.c. Be not scared because of the
code you see. Most of it you will not have to understand.

• Change mymodename into the name of your Brick (e.g. myBrick). This
string will be printed in front of each anaPrint() in user space. In ker-
nel space, the name of the Brick as obtained by THIS MODULE->name is
printed in front of each message.

• The execution of your Bricks code will start in the brick start() func-
tion. In this function you can start to register callback functions, query the
MINMEX for some other Bricks etc.

• Upon removing the Brick (by typing Ctrl-C or rmmod moduleName) the
brick exit() function gets executed. In this function you should unreg-
ister all your callback functions and free all memory etc.

79

B.2 Writing Your First Brick

• You will rarely have to change anything below the
/* Do not change anything below here, unless you know exactly

what you do! */ mark. This area covers the user space and kernel
space specific initialization of the Brick. It parses the commandline argu-
ments and attaches the Brick to the MINMEX.

• The necessary steps to compile and run your Brick are described in Ap-
pendix A. The compilation has to be started in the ‘ana-core/trunk’ di-
rectory.

• New wrapper functions should be declared in the file
trunk/C/include/anaCommon.h and implemented in
trunk/C/shared/anaCommon.c.

• Some coding guidelines:

– A callback function should return as fast as possible. If you need to
perform a lengthy action start a dedicated thread. As long as a call-
back function gets executed no further messages can be processed.

– Callback functions may get invoked at “random times”. Therefore
you will have to carefully lock all data structures used by callback
functions and threads.

– You should not stay in brick start() for “a long time”. This will
block the shell upon inserting the kernel module.

– Carefully code the removement of your Brick. Errors upon removing
a Brick may crash your kernel...

• Write and test your code carefully, since the kernel space is much more
sensitive to programming mistakes than the user space.

80

C Important Data Structures

C Important Data Structures

This Appendix describes the management units used by the MINMEX as well
as by the Brick in detail. It lists all structs used and explains the elements
of these structs. Note that the described structs correspond to svn revision
100. The elements may have changed in the meantime. Especially the names
will be different. All elements called “client” have changed to “brick” and most
elements called “node” have changed to “minmex” (except for the elements
related to the node compartment).

C.1 MINMEX

The MINMEX has two management tables, one to save all information belong-
ing to Bricks and one for all IDPs, as well as two linked lists to save all different
communication capabilities. The first list holds all control communication gates
whereas the second list holds all data communication gates. Each element of
these lists is of type commGate s.

struct commGate_s {

int mode; (1)

int descriptor; (2)

struct socket * commGateSocket; (3)

struct anaNodeFunctions * commGateFunctions; (4)

char *urn; (5)

struct commGate_s *next; (6)

};

1. Mode for this gate: UDP, UNIX, PIPES, GENETLINK, KERN.

2. File descriptor to identify this gate. Used in userspace for UDP and
PIPES, used in kernel space for GENETLINK to hold the family ID.

3. Used in kernel space to identify the socket, used for UDP and
GENETLINK, unused for KERN.

4. Pointer to a struct anaNodeFunctions which holds pointers for each ANA
MINMEX function that can be called from a Brick. Only for the KERN
mode.

5. URN of this gate, e.g. for UDP: udp://127.0.0.1:6666, for KERN it is the
name of this module.

6. pointer to the next gate, used when more than 1 gate is registered

The client table holds the information of each Brick attached. It is a hash
table with a size defineable upon program start up. There is a global variable
CT of type ClientTable t which holds some management information for the
client table along with a pointer to an array holding the actual Bricks. Each
entry of the client table is of type CTentry s.

81

C.1 MINMEX

typedef struct {

unsigned int size; (1)

int hashMaskSize; (2)

int handleSize; (3)

int nbClients; (4)

struct CTentry_s **tab; (5)

} ClientTable_t;

1. maximum numbers of Bricks pow2 of hashMaskSize

2. size of the mask used in hash function, can be specified with the -C
parameter upon program start

3. defines the size of the keys (e.g. the size of anaHandle t), can be speci-
fied with -h parameter

4. number of active entries in the table

5. pointer to the actual table, member ”i” of this table can be accessed in
the following way:

ClientTable_t CT;

struct CTentry_s *tmp = CT.tab[i]

82

C.1 MINMEX

struct CTentry_s {

anaHandle_t handle; (1)

int dataMode; (2)

int dataDescriptor; (3)

struct socket * dataSocket; (4)

void *dataAux; (5)

int controlMode; (6)

int controlDescriptor; (7)

struct socket * controlSocket; (8)

void *controlAux; (9)

int age; (10)

anaLabel_t notificationLabel; (11)

struct CTentry_s *next; (12)

};

1. key of the hash table, identifier of the Brick

2. mode over which data has to be sent to this Brick (UDP, UNIX, PIPES,
GENETLINK, KERN) defined in include/anaCommon.h

3. UDP and PIPES in user space: file descriptor used to send data mes-
sages to this Brick, GENETLINK: uid of this Bricks data gate

4. socket for sending data messages to this Brick, used for UDP in kernel
space

5. complementary argument depending on the mode. For UDP this is a
sockaddr in, for KERN this is the function pointer on which the Brick
waits for data, GENETLINK and PIPE do not use it

6. mode over which control information has to be sent to this Brick (UDP,
UNIX, PIPES, GENETLINK, KERN) defined in include/anaCommon.h

7. UDP and PIPES: file descriptor used to send control information to this
Brick, GENETLINK: uid of this Bricks control gate

8. socket over which control messages are sent used for UDP in kernel
space,

9. Complementary argument depending on the mode. For UDP this is a
sockaddr in, not used for KERN, GENETLINK and PIPE

10. counts the number of unacknowledged heart beat requests in a series,
set back to zero on reception of a HB request from the Brick

11. IDP used by the MINMEX to send unsolicited notifications to the Brick
(e.g. tell the Brick that the MINMEX will go down)

12. in case of a hash conflict all entries are put in a linked list

83

C.1 MINMEX

The information dispatch table holds the information on the registered in-
formation dispatch points (IDPs). Since in user space the MINMEX runs in a
different process than the Brick it is not possible to let the MINMEX map the
IDP directly to a function. Instead the MINMEX redirects data received for a
given IDP to the corresponding Brick. There is a global variable IDT of type
IDT t which holds some management information for the information dispatch
table along with a pointer to the information dispatch table. Each entry in this
array is of type IDTentry s.

typedef struct {

unsigned int size; (1)

int hashMaskSize; (2)

int labelSize; (3)

int handleSize; (4)

int deadEntryLimit; (5)

struct IDTentry_s **tab; (6)

} IDT_t;

1. number of entries in the information dispatch table, pow2 of
hashMaskSize

2. size of the hash mask, definable upon program start with the -T param-
eter

3. size in Bytes of the labels stored in this table (-l parameter)

4. size in Bytes of the handles stored in this table (-h parameter)

5. an entry not used for more than deadEntryLimit heart beat checks time
intervals will be deleted

6. a pointer to the entries of the IDT

84

C.2 Brick

struct IDTentry_s {

anaLabel_t label; (1)

int private; (2)

anaHandle_t handle; (3)

nodeCallback_t callBackFct; (4)

void *aux; (5)

int age; (6)

struct IDTentry_s *next; (7)

};

1. Information Dispatch Point (IDP): key of the hash table, used to identify
a function registered by a Brick

2. flag indicating if the IDP is private or shared with other Bricks, 0 = shared,
1 = private. Private entries are only shown to the Brick which has regis-
tered this IDP

3. indicates the owner of the IDP (corresponds to entry (1) of CTentry s)

4. function handling the IDP (e.g. the function which sends the data to the
corresponding handle)

5. auxiliary argument, in the current implementation it equals the handle of
the owner of this IDP

6. incremented upon each heartbeat check, reset upon using this IDP. A
value of -1 means that this entry is permanent and will not be removed.

7. in case there is a hash conflict each entry is put in a list

C.2 Brick

The Brick manages in a linked list all the MINMEXs it is connected to. For each
MINMEX there is an element of type struct anaNodeSpecs s, which saves all
the information necessary for the communication with this MINMEX.

85

C.2 Brick

struct anaNodeSpecs_s {

anaHandle_t handle; (1)

anaLabel_t nodeCompLabel; (2)

anaLabel_t notificationLabel; (3)

int labelSize; (4)

int handleSize; (5)

int mtu; (6)

int myDataMode; (7)

int myDataDescriptor; (8)

struct socket * myDataSocket; (9)

struct anaClientFunctions * myDataFunctions; (10)

void *myDataAux; (11)

int myControlMode; (12)

int myControlDescriptor; (13)

struct socket * myControlSocket; (14)

void *myControlAux; (15)

int nodeDataMode; (16)

int nodeDataDescriptor; (17)

struct socket * nodeDataSocket; (18)

void *nodeDataAux; (19)

int nodeControlMode; (20)

int nodeControlDescriptor; (21)

struct socket * nodeControlSocket; (22)

void *nodeControlAux; (23)

int age; (24)

void *buffer; (25)

struct anaNodeSpecs_s *next; (26)

struct shadowIDT_s *shadowT; (27)

unsigned char *attachMessage; (28)

};

1. The handle chosen by the MINMEX to identify the Brick

2. label identifying the IDP to reach the MINMEX compartment via the data
link

3. This label is used by the MINMEX to notify the Brick of an unsolicited
information. E.g. used in the heartBeat process to receive the heartBeat
reply from a MINMEX. This label is generated by the API0 at the attach
process

4. size of labels for this MINMEX

5. size of handles for this MINMEX

6. maximum size of messages

7. mode over which this Brick receives data (must be value specified in

anaCommon.h)

8. file descriptor over which Brick receive data messages (used in user
space)

86

C.2 Brick

10. socket over which Brick receive data messages (used in kernel space)

11. function which receives data message (for KERN mode)

12. complementary argument depending on the mode: GENETLINK: uid,
PIPES: dummy descriptor and timeout value

13. mode over which this Brick receives control information

14. file descriptor over which this Brick receives control messages (used in
user space)

15. socket over which this Brick receives control messages (used in kernel
space)

16. complementary argument depending on the mode: GENETLINK: uid,
PIPES: dummy descriptor and timeout value

17. mode over which the MINMEX receives data messages

18. file descriptor over which data messages has to be sent (used in user
space)

19. socket over which data data messages have to be sent. (used in kernel
space)

20. complementary argument depending on the mode: UDP: struct sock-
addr in, GENETLINK: family id

21. mode over which the MINMEX receives control messages

22. file descriptor over which control information is sent (use in user space)

23. socket over which control information is sent to the MINMEX (used in
kernel space for UDP)

24. complementary argument depending on the mode: UDP: struct sock-
addr in, GENETLINK: family id, KERN: pointer to the MINMEX functions,

25. age of this MINMEX (incremented from the heartbeat check), reinitial-
ized to zero on MINMEX notification reception. Once the age is above a
threshold, the entry is deleted

26. buffer for data reception, will be allocated according to the MTU

27. pointer to the next MINMEX

28. shadow dispatch table associated with MINMEX

29. This String is built according to the information above by the
anaL0 initNodeSpecs function, it is sent to the MINMEX by the
attach() function

87

C.2 Brick

The shadow dispatch table maps the callback functions registered with a
MINMEX to the lDP (label) chosen by that MINMEX. This implies that the Brick
has to know from which MINMEX a message was received, in order to look up
the IDP in the corresponding shadow dispatch table.
The shadow dispatch table is of type shadowIDT s and its entries are of type
SDTentry s.

struct shadowIDT_s{

unsigned int size; (1)

int hashMaskSize; (2)

int labelSize; (3)

struct SDTentry_s **tab; (4)

} ;

1. size of the shadow information dispatch table

2. size of the hash mask, is log2 of table size

3. size of ANA labels, keys of the table

4. table holding the entries

struct SDTentry_s {

anaLabel_t label; (1)

anaCallback_t callBackFct; (2)

void *aux; (3)

struct SDTentry_s *next; (4)

};

1. the IDP chosen by the MINMEX

2. the function corresponding to the IDP

3. auxiliary argument to callBack function

4. in case there is a hash conflict the entries are put in a linked list

88

REFERENCES

References

[1] R.D. Pethia, Computer Security, Testimony Before the Committee on Gov-
ernment Reform Subcommittee on Government Management, Informa-
tion, and Technology on March 9, 2000

[2] M. Handley, and A. Greenhalgh, Steps Towards a DoS-Resistant Internet
Architecture, Proceedings of ACM SIGCOMM Workshop on Future Direc-
tions in Network Architecture, 2004

[3] Requirements Analysis, Sixth Framework Programm, Project Number:
FP6-IST-27489, Deliverable 1.2, Thomas Plagemann et al, 8.11.07

[4] A. Nakao, L. Peterson, and A. Bavier, A Routing Underlay for Overlay Net-
works, Proceedings of 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2003

[5] L. Peterson, S. Shenker, and J. Turner, Overcoming the Internet Impasse
through Virtualization, Proceedings of 3rd Workshop on Hot Topics in Net-
works (HotNets-III), 2004

[6] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, and A.F. Yassin, A Practical Guide
to the IBM, Autonomic Computing Toolkit (Book Title), IBM Corporation,
April 2004

[7] State of the Art, Sixth Framework Programm, Project Number: FP6-IST-
27489, Deliverable 1.1 Christophe Jelger et al, 30.6.2006

[8] Future and Emerging Technologies,
http://cordis.europa.eu/ist/fet/ (21.06.07)

[9] Situated and Autonomic Communications (SAC),
http://cordis.europa.eu/ist/fet/comms.htm (13.09.07)

[10] Global Environment for Networking Innovations (GENI),
http://www.geni.net/ (27.08.07)

[11] Inside AppleTalk, Gursharan S. Sidhu, Richard F. Andrews, Alan B.
Oppenheimer
developer.apple.com/MacOs/opentransport/docs/dev/Inside AppleTalk.pdf
(20.08.07)

[12] NetBios, NetBEUI, NBF, SMB, CIFS Networking,
http://timothydevans.me.uk/nbf2cifs/book1.html (26.08.07)

[13] The Official Samba 3.2.x HOWTO and Reference Guide, 10. Net-
workBrowsing http://www.samba.org/samba/docs/man/Samba-HOWTO-
Collection/NetworkBrowsing.html (26.08.07)

[14] Web Services Architecture, W3C Working Group Note 11 February 2004,
http://www.w3.org/TR/ws-arch/ (21. 08.07)

[15] Zero Configuration Networking (Zeroconf), http://www.zeroconf.org/
(21.08.07)

89

REFERENCES

[16] DNS Service Discovery (DNS-SD), http://www.dns-sd.org/ (27.08.07)

[17] http://developer.apple.com/opensource/internet/bonjour.html (21.08.07)

[18] http://avahi.org/ (21.08.07)

[19] DNS-Based Service Discovery, Stuart Cheshire, Marc Krochmal, Ap-
ple Computer, Inc, 10th August 2006 http://files.dns-sd.org/draft-cheshire-
dnsext-dns-sd.txt (21.08.07)

[20] http://www.jini.org

[21] http://www.artima.com/jini/jiniology/lookup.html

[22] BOOTSTRAP PROTOCOL (BOOTP), rfc951

[23] Dynamic Host Configuration Protocol, rfc 2131

[24] Multicast dns http://www.multicastdns.org/ (26.08.07)

[25] UPnP Device Architecture, July 20, 2006,
http://www.upnp.org/specs/arch/UPnP-DeviceArchitecture-v1.0-
20060720.pdf (26.08.07)

[26] ETH Zurich, Computer Engineering and Networks Laboratory, 8092
Zurich, www.tik.ee.ethz.ch

[27] Universität Basel, Departement Informatik, 4056 Basel,
http://informatik.unibas.ch

[28] ANA Blueprint, Sixth Framework Programm, Project Number: FP6-IST-
27489, Deliverable D1.4/5/6v1, Christophe Jelger et al, 15.02.07

[29] Active Technologies, Vorlesungsslides von B. Plattner, SS 2007

[30] Ambient Networks Project, http://www.ambient-networks.org/ (21.06.07)

[31] Bison: Biology-Inspired techniques for Self-Organization in dynamic Net-
works, http://www.cs.unibo.it/bison/ (21.06.07)

[32] BIONETS: bio-inspired service evolution of the pervasive age:
http://www.bionets.eu/ (21.06.07)

[33] Haggle: A European Union funded project in Situated and Autonomic
Communications, http://www.haggleproject.org/ (21.06.07)

[34] CASCADAS: Bringing Autonomic Services to Life, http://www.cascadas-
project.org/ (21.06.07)

[35] ANA: Autonomic Network Architecture,
http://www.ana-project.org/(21.06.07)

[36] Why and How to Use Netlink Socket, Kevin He,
http://www.linuxjournal.com/article/7356 (21.06.07)

[37] Patch: Generic Netlink HOW-TO based on Jamal’s original doc,
http://lwn.net/Articles/208755/ (10.11.2006)

90

REFERENCES

[38] Generic Netlink HOWTO,
http://linux-net.osdl.org/index.php/Generic Netlink HOWTO (21.06.07)

[39] The Click Modular Router Project, http://read.cs.ucla.edu/click/ (21.06.07)

[40] Click concepts tutorial: a general overview of concepts in Click,
http://www.pats.ua.ac.be/content/software/click-1.5/concepts.pdf
(26.08.06)

[41] libnl - netlink library, http://people.suug.ch/ tgr/libnl/ (21.06.07)

[42] Wikipedia Autonomic Networking,
http://en.wikipedia.org/wiki/Autonomic Networking (21.06.07)

[43] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, Linux Device
Driver 3rd Edition, O’Reilly, 2005

[44] Kernel Module Programming: Examples,
http://people.ee.ethz.ch/ arkeller/ma (21.06.07)

[45] About IBM autonomic computing,
http://www-306.ibm.com/autonomic/about.shtml (21.06.07) The Vision of
Autonomic Computing, The Vision of Autonomic Computing, 2003 IEEE,
http://www.research.ibm.com/autonomic/manifesto/

[46] OpenWrt, http://www.openwrt.org (13.08.07)

[47] ANA code repository,
https://subversion.cs.unibas.ch/repos/ana/ (13.08.07)

[48] ANA core documentation, https://subversion.cs.unibas.ch/repos/ana/ana-
core/trunk/doc/anacore-doc.pdf

91

