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Abstract 

The main goal of this semester thesis is to evaluate the performance of routing metrics on 

an indoor wireless test-bed. At the first part of the thesis we built a stationary wireless 

test-bed (TikNet) of 20 commodity PCs distributed on the G-floor of the ETZ building at 

the ETH. The Tik-Net test-bed is a platform for wireless experimentation with real-world 

hardware that improves the understanding of wireless networks while circumventing 

conventional assumptions and possible misconceptions made by simulation tools with 

actual real-world recorded behavior. 

Wireless testbed conclusions about higher layer mechanisms (like routing or transport 

mechanisms) imply also a concrete understanding of the wireless behavior. In this 

context we tried to identify and quantify through link level measurements the intensity of 

wireless link level phenomena, like the link asymmetry and the validity of “neighbor” 

abstraction. Our extended study shows that link asymmetries exist at the TikNet test-bed, 

whereas the “neighbor” abstraction could be roughly a valid assumption. 

The performance evaluation of routing metrics on the test-bed complements the thesis. 

For the routing metric evaluation, we used the minimum hop-count metric and the ETX 

routing metric proposed by MIT. It turns out that ETX provides better connectivity but is 

only slightly better than minimum hop-count in terms of mean throughput for the specific 

experimental scenarios. We also proceeded to evaluate ETX in terms of mobility and 

prediction accuracy. This evaluation along with the wireless characterization of the 

testbed could provide a basis for understanding how routing metrics affect the 

performance of the routing protocols in practice and thus could lead to the design of new 

routing metrics that would make the mesh networking paradigm a viable realizable 

solution. 
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1. Introduction 

Over the last decade wireless LAN technology such as 802.11 has been deployed at an 

explosive rate. Apart from the infrastructure mode networks that can now be found 

everywhere - from university campuses to airports, cafes and private homes - wireless ad-

hoc networks have also drawn a lot of attention. There is a massive amount of activity in 

the research community to improve the performance of the wireless ad-hoc networks and 

develop new applications based on this technology, such as mesh networks. In particular, 

static multi-hop wireless ad-hoc networks, where users cooperate by forwarding each 

other’s packets, have the big advantage of easy deployment and apart from providing 

connectivity between users they can also act as a gateway to the internet. The most 

representative example of this kind of networks is the Roofnet network deployed by MIT 

which provides connectivity to the area of Cambridge [1]. 

The majority of the wireless research over the past few years has been conducted with 

simulations. Although simulations have the obvious advantage of less effort when 

designing an experiment, control and repeatability, they are often not representative of 

the real world behavior, thus producing many times imprecise results [2]. This is mainly 

due to the simplifications made by simulation tools about the distributed and very 

complex nature of the wireless signal propagation, and the transmission and reception of 

the wireless signals. For example, initial work [3] has shown that the most common 

simulator (ns-2) produces results that vary significantly from real-world experimentation 

results. My motivation of building up a wireless testbed and using hardware-based 

experimentation lies exactly in the direction of trying to achieve the most physical layer 

realism and understand in depth the various phenomena in wireless networks. For 

example, my measurements along with already mentioned experiments of the research 

community [4, 5] show that wireless networks exhibit a variety of behaviors, such as link 

asymmetry, that are difficult to understand and are not recreated in current simulators.  

There are mainly two goals that this project tries to achieve. The first goal is the 

construction of a functional indoor static multi-hop ad-hoc wireless testbed [6] and the 

characterization of its wireless links. The testbed can be a powerful tool in the hands of 

every researcher because it allows someone to bypass the limitations that simulators 

impose and test his ideas in practice, thus pushing research by the means of practical real 

world experimentation. However, in order to understand the results or the performance of 

the system that one designs, one must have complete (to the extend that this is possible 

for wireless networks) knowledge of the wireless behavior of the testbed. Therefore, it is 

of significant importance to characterize to a great extend the wireless behavior of the 

network through extensive link level measurements.  

The second goal is the evaluation of the minimum hop-count metric and the ETX routing 

metric proposed by MIT [7]. I will try to recreate the results mentioned in [7] based on 

experimentation in TikNet wireless testbed and understand the advantages and mainly the 

disadvantages of them. This evaluation along with the wireless characterization of the 

testbed could provide a basis for understanding how routing metrics affect the 

performance of the routing protocols in practice and thus could lead to the design of new 

routing metrics that would make the mesh networking paradigm a viable realizable 

solution. 
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The remainder of this technical report is organized as follows. Section 2 describes the 

procedure that was followed and the hardware and software tools that were used in 

implementing the TikNet testbed. In Section 3 I present all the link level measurements 

and try to characterize the behavior of the wireless testbed from a physical and link level 

point of view. In Section 4 the different routing metrics and their performance evaluation 

are presented. Finally, in Section 5, I summarize and conclude about the results and 

propose possible future work. 

 

2. TikNet testbed setup 

In this section I present all the various components of the currently 20-node TikNet 

testbed - from the topology and the hardware till the software tools - that make this 

testbed an available operating platform for experimentation in wireless networking. 

2.1 Hardware and topology 

TikNet consists of 20 personal computers distributed at random spots throughout the G-

floor of the ETZ building (Department of Information Technology and Electrical 

Engineering – ETH Zurich) covering a physical area of roughly 2250m
2
. Figure 1 is a 

snapshot of the exact position of the 20 nodes. Each numbered circle in Figure 1 serves 

also as a correspondence of the IP alias of the node, which makes it remotely accessible 

through the ETH wired network (e.g. node 3 can be reached by the alias “tik-wifi3”).  

 

 

Figure 1 Topology of TikNet wireless testbed 

 

The upper and lower parts of the floor plan consist of multiple office rooms separated by 

non-concrete walls. However, the middle part consists of very concrete and hard to 



 8 

penetrate walls (mostly concrete cement and metal), thus making the communication in 

the vertical axis more difficult than in the horizontal axis. In order to overcome any 

possible unintended partitioning of the network, extensive connectivity measurements 

were taken place (mostly with the use of the fping command) that lead to slight 

calibrations of the initial position of selected nodes. The final position of the 20 nodes, 

which is shown in Figure 1, assures no partitioning in the wireless network and provides 

full functionality to the user of the TikNet testbed.  

The 20 PCs used can be roughly separated into two categories: i) Dell PCs with 2GHz 

processor and 512MB RAM memory, and ii) PCs with 866MHz processor and 512MB 

RAM memory. All of them are currently equipped with the 802.11b/g D-Link G-520 [8] 

wireless NIC based on the Atheros AR5212 chipset and an external omni-directional 

antenna and (unless stated otherwise) operating at 2.422GHz (802.11b channel 3) with 

the transmission power set to +15dBm (30mW).   

2.2 Software 

2.2.1 Linux and drivers 

The operating system selected is GNU/Debian Linux with a Linux kernel version of 

2.6.18-4. As already mentioned each node can be accessed remotely through the ETH 

wired network (e.g. using ssh) using its alias (e.g. ssh tik-wifi5.ethz.ch for accessing node 

5). In the current implementation, node 4 (tik-wifi4.ethz.ch) plays the role of a “server” in 

the sense of being able to connect to all other nodes using ssh without the need for a 

password. This provides the user with the flexibility to execute every script that is used 

for a certain experimental setup in node 4, avoiding to connect to every node 

individually. Of course, this is something that should be changed in the near future, by 

assigning to another PC that is not part of the wireless testbed the role of the “server”. 

Also implementing management, monitoring and security tools for the TikNet testbed 

would provide more flexibility to the system and make the experimentation more user-

friendly.  

Because the wireless NIC installed in every node of the wireless testbed uses Atheros 

chipset, the decision of using MADWIFI (Multiband Atheros Driver for WiFi) 

(MADWIFI) was pretty straightforward. In particular, I used the Madwifi-ng (next 

generation) driver, which is a Linux driver for 802.11a/b/g universal NIC cards - 

Cardbus, PCI, or miniPCI - using Atheros chip sets. Madwifi drivers are vastly used by 

the research community because they are open-source and allow for versatile and flexible 

configuration of the wireless card. It is also widely documented (at least in the context of 

initial experimentation). For more information about Madwifi drivers one should check 

[9].  

2.2.2 Packet capture 

For dumping the wireless traffic on TikNet network I used extensively tcpdump [10]. 

Tcpdump can capture all the packets in the specified interface and allows for printing out 

the headers of the packets in a human-readable format. For further processing of the 

dump files I used wireshark [11] and its related utilities.  
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2.2.3 Click modular router  

For routing purposes of the testbed I installed in every node the Click Modular Router 

software [12]. Click Router, presented in Eddie Kohler’s Ph.D. thesis [13], is a general 

purpose software tool for implementing modular router configurations. A general 

description of the Click Modular Router software is first presented and then follows the 

specific router configuration I used for importing wireless routing functionality to the 

testbed. 

The motivation and the idea behind Click Modular Router Project is to represent the 

packet flow through a network router as a sequence of packet processing modules (called 

elements) connected in a directed graph. The vertices of the directed graph represent the 

various elements. The edges of the graph represent the connections between elements and 

are possible paths for packet handoff. The functionality of the elements should be kept as 

simple as possible (e.g. queuing, decrease of TTL, traffic classification, interfacing with 

network devices). Designing a router simply means connecting different elements in a 

directed graph. Therefore, due to the fine-granularity of the elements and the simplicity 

of building a router configuration, a Click router configuration is modular, flexible, and 

easy to extend.  

The element graph is then implemented in C++ using classes as elements and function 

calls as packet transfer mechanisms, combined with clever macros. Click routers run as a 

userlevel program or as a Linux kernel module. An evaluation of Click’s performance as 

a kernel module in IP routing shows that it can achieve very fast operation [14]. Apart 

from userlevel program or kernel module, Click router is implemented for ns-2. This 

turns out to be very important for research since the transition from simulations to real 

world testbed experimentation can happen very fast: almost nothing has to be changed in 

the router configuration file. 

Based on Click router as a general software tool described above and apart from the 

Roofnet project, MIT also developed router configurations that support various routing 

protocols for wireless ad-hoc networking. This was done as a part of the Grid project [15] 

and it is what I also use to provide wireless ad-hoc routing functionality to the testbed.  

The Grid software implements the DSDV (Highly dynamic Destination-Sequenced 

Distance-Vector routing) and DSR (Dynamic Source Routing) protocols for routing in ad 

hoc mobile wireless networks. DSDV is described in [16] and is a pro-active routing 

protocol. That means that entire network topology is known to all nodes and maintained 

in routing tables with the aid of periodic routing advertisement messages sent by all 

nodes. One the other hand, DSR belongs to the category of reactive routing protocols; it 

is described in [17]. In a reactive protocol a route is discovered only on-demand. The 

Grid DSR implementation follows revision 9 of the IETF Internet-Draft specification, 

following the requirements for networks which require bidirectional links to send unicast 

data. Both the DSDV and DSR implementations include modifications for better 

performance, which also allow the protocols to work properly with routing metrics other 

than minimum hop-count; these changes are described in [7].  

The Grid code, as a part of the Click Router software is a set of Click elements that can 

be put together in various ways to run DSDV, DSR. All the routing protocol state (e.g. 
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routing tables, link tables, ARP caches, etc.) is maintained in Click elements, 

independently of the OS. Protocol state is accessed using through Click. 

Because Click can run at userlevel on many different operating systems and machine 

architectures, Grid also runs on many operating systems and machines. In addition, Grid 

can run at kernel level in Linux, using the Click Linux module. Both userlevel and kernel 

module are practically the same protocol code. The only things that change are the Grid 

interfaces to the network devices and to the operating system [15].  

Elaborate details of setting up the Grid Click configuration for a wireless node are 

provided in [15]. 

 

3. Link characterization of the wireless testbed 

3.1 Motivation  

As already mentioned, experimentation using a wireless testbed has some clear 

advantages against simulation-based experimentations. Due to the fact that simulations 

often rely on simplifying rules about the wireless signal propagation, which have not 

been validated using today’s wireless radios, real hardware-based experimentation fills in 

the gap between conventional assumptions and possible misconceptions (depending 

strongly on the accuracy of the models used and the protocol’s code implementation) and 

real world actual recorded behavior. This however does not come without a cost. Setting 

up a testbed experiment involves taking into account a lot of parameters and it is only by 

the means of a concrete and properly structured experimentation methodology that 

someone could understand and interpret in a correct way the measured results.  

It is exactly in this general context that understanding the wireless behavior of TikNet 

testbed becomes essential before moving on to analyzing results about higher layers 

mechanisms (such as routing and transport protocols or routing metrics – presented in 

Section 4). Therefore, I have conducted a set of experiments and processed the collected 

data trying to accurately understand the link-level behavior of the TikNet testbed. The 

results and the methodology used are presented in the following paragraphs. 

3.2 Experimental setup – methodology 

The technical characteristics of the wireless NICs used in the testbed can be found in 

section 2.1. These cards operate at 802.11b mode and can be configured to transmit at 1, 

2, 5.5, or 11Mbit/s; throughput the entire set of experiments in this section rate adaptation 

mechanism was disabled.  

It is mentioned that the wireless cards manufacturers have often not implemented in full 

detail the ad-hoc operation mode. This can lead to functionality problems after some time 

of operation, such as network partitioning. In order to avoid unintended partitioning of 

the ad-hoc network and profiting from the experience of previous testbed 

experimentation I set the cards in “Ah-demo” mode. “Ah-demo” mode is a simplified 

version of the ad-hoc mode, since absolutely no beacons or other control packets are sent. 
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It is the same mode as “pseudo IBSS” mode that is supported by other 802.11 chipset 

such as Prism 2.5 [4]. 

The data presented in section 3 is derived from two main sets of experiments. In the first 

set of experiments, each node in turn sends 3000 broadcast packets uniformly transmitted 

within a time interval of 30secs, while the rest of the nodes are passively listen. The same 

experiment is repeated but for different possible configurations (transmission power: 0, 

15dBm – packet size: 180, 1080bytes – transmission rate: 1, 2, 5.5, 11Mbps). The 

experiment uses 802.11 broadcast packets because they involve no link-level 

acknowledgements or retransmissions and effectively capture the actual packet loss rate 

of a link between two nodes. The second set of experiments simply consists of all the 

nodes been set in monitor mode capturing all the packets that are in the air for a total 

period of 5min.  

3.3 Results 

As already mentioned, in order to measure the loss ratio for all the possible direct links 

(19x20 = 380 in total), each node took a turn transmitting 3000 broadcast packets 

uniformly spread in an interval of 30 seconds. Within these 30 seconds every other node 

recorded the number of packets received. Each experiment lasted 600 seconds and 

provided us with the pair-wise link delivery ratios in the following simple way; the 

delivery ratio from node A to node B is calculated by dividing the packets B received 

from A to the total number of packets that A sent. The corresponding results are 

presented in the figures included in section 3.3.1
1
. Experiments were conducted for 

different wireless configurations. 

We must also note that using broadcast packets allows us to capture the actual packet 

losses because 802.11b broadcast packets do not involve acknowledgements or 

retransmissions. On the other hand, if 802.11b unicast packets are lost, the MAC layer 

retransmits them. The retransmissions hide from the upper layers a great deal of the 

actual packet losses (according to the maximum number of retransmission allowed) 

making the wireless communication possible under a perceived lower loss ratio. 

3.3.1 Link asymmetry 

In figure 2 and 3 (where small packets with 100-bytes payload were used) each vertical 

bar corresponds to both ways of a direct radio link between a pair of nodes; the two ends 

of each vertical line represent the two delivery ratios of each direct link (one in each 

direction). The above figures reveal a fundamental characteristic of real-world wireless 

networks; the asymmetry between the two directions of a single direct link.  

                                                 
1
 Figures shown only for 1Mbit/s and 11Mbit/s. Experiments were conducted also for 2Mbit/s and 

5,5Mbit/s but are not shown here. In order to check the validity of these results some of the experiments 

were repeated. It was found that due to high dynamics of the wireless channel the re-measurements were 

not strongly correlated with the initial measurements when one looked at specific node-pairs and their 

corresponding link delivery ratios. Although link asymmetry was well pronounced for every iteration of the 

experiment, a more careful evaluation based on statistical analysis would be beneficial. Finally, all the 

experiments were conducted throughout the second half of the semester during late night hours in order to 

avoid any dramatic changes due to interference or channel change. 
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Figure 2 Pair-wise delivery ratios at 30mW, 1Mbit/s, small packet 

 

Figure 3 Pair-wise delivery ratios at 30mW, 11Mbit/s, small packet 

 

Of the 190 node pairs in figure 2 (1Mbit/s), there are 121 pairs out of 380 that delivered 

packets in at least one direction. Of those links, 37 are asymmetric with forward and 

reverse delivery ratios that differ by at least 25%. That is around 30% of the active links 

that have quite emphasized delivery ratio asymmetry. The respective results for figure 3 

(11Mbit/s) are 111 out of 380 active links and 35 (around 31%) asymmetric links. We 

can see that the asymmetry remains around the same percentage as for 1Mbit/s. This is 

something that we expected since for the only the payload is transmitted with 11Mbit/s 

(the MAC header is transmitted with 1Mbit/s). 

We repeated the experiments using large packet size (1000-bytes payload) and lower 

transmit power (1mW). The results are presented in the figures 4, 5. For large packet size 

we observed that the asymmetric links are fewer percentage-wise compared to the 

previous results with small packet size (around 26% for figure 4 and 17% for figure 5). It 

seems that for large packet size – where the 11Mbit/s could make a substantial difference 

– the asymmetry of the links is less pronounced. Also the transition from low values of 

delivery ratios to high values of delivery ratios is sharper. 

Commenting on the results for 1mW (presented in figures 6, 7) we can see clearly that 

the number of node pairs that have packets delivered in at least one direction has 

dropped. That causes the connectivity graph to be sparse and increases the average 

number of hops that a packet needs to transverse in the network. Finally, it is also 

interesting to note that the highest percentage value of asymmetric links (around 33%) 

occurs for low transmission power (1mW) and small packet size.  
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Figure 4 Pair-wise delivery ratios at 30mW, 1Mbit/s, large packet 

 

Figure 5 Pair-wise delivery ratios at 30mW, 11Mbit/s, large packet 

 

 

Figure 6 Pair-wise delivery ratios at 1mW, 1Mbit/s, small packet 

 

Figure 7 Pair-wise delivery ratios at 1mW, 1Mbit/s, large packet 
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Link asymmetry in wireless networks has been also reported from several independent 

research groups ([4], [5]). Since 802.11 uses link-level ACKs to confirm delivery, both 

directions of a link must work well in order to avoid retransmissions. Therefore, link 

asymmetry becomes an essential design factor for routing protocols of 802.11 wireless 

networks. Focusing on the results presented in figures 2-7, we can easily distinguish links 

with extreme asymmetry in the directions of the link, even zero delivery ratios in one 

direction and near 80% in the other direction. In such an extreme case and keeping in 

mind that 802.11 uses MAC-level ACKs, direct communication between two nodes 

becomes nearly impossible. 

Although asymmetric signal propagation is impossible due to the fundamental reciprocity 

theorem (i.e. if the role of the transmitter and the receiver changes, the instantaneous 

signal transfer function between the two remains the same), there are a variety of factors 

that can contribute to link asymmetry. These factors are listed in a comprehensive way in 

[18]. For example, transmit power differences exist not only between different models of 

wireless cards, but also among wireless cards of the same model. Likewise, the receiver 

sensitivity (i.e. the capability of the receiver to decode incoming packets as a function of 

the received signal strength) can differ significantly between different wireless NICs. 

Receiver noise variation in the means of interference variations at the receiver or even the 

performance of the LNA amplifier can also contribute to link asymmetry. Finally, when 

there is wireless traffic in the network the spatial distribution of the MAC collisions (due 

to ineffectiveness of the carrier sense mechanism) can contribute as well to link 

asymmetry.  

3.3.2 Distribution of delivery probabilities 

Many routing and link-layer protocols assume that a communication between two nodes 

in a wireless network is either possible with a high delivery ratio or rather impossible. 

This is called “neighbor” abstraction in wireless networks and it is based on the 

assumption that the transition as the SNR changes from essentially zero bit error rate 

(BER) to a BER of a high enough value to make communication impossible is rapid. 

“Neighbor” abstraction is borrowed from the wired networks, where it is true, and has 

driven the design of many graph-theoretic routing algorithms for wireless networks. It 

also justifies the design of conservative rate adaptation algorithms that reduce the bit rate 

when only a few packets are lost.  

An analysis of the link delivery probability distribution will reveal if the “neighbor” 

abstraction is valid or not for the measurements on TikNet. Figures 8, 9 show the 

distribution of inter-node delivery probabilities on TikNet at the rates of 1Mbit/s and 

11Mbit/s. Measurements were also performed for 2Mbit/s and 5,5Mbit/s but they don’t 

differ significantly from the plotted curves and were omitted for convenience in 

interpreting the graphs.  

In the following paragraphs I will compare my results with the results presented in [4] 

(see also figure 10). There are two main differences. The distribution of the delivery 

probabilities does not change with the modulation scheme used. This is true for both 

small packet size and large packet size. The plotted lines for 1, 2, 5,5 and 11Mbit/s (2 and 

5,5Mbit/s are not shown) are very close to each other, nearly overlapping whereas in 
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figure 10 there is a clear distinction between the lines with the 11Mbit/s line being 

significantly steeper than the other ones. 
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Figure 8 Distribution of the link delivery probabilities for 100-bytes payload 
broadcast packets 
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Figure 9 Distribution of the link delivery probabilities for 1000-bytes payload 
broadcast packets 
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Figure 10 Distribution of the link delivery probabilities for 100-bytes payload 
broadcast packets based on measurements on Roofnet [4] 

 

In order to have a better and more exact understanding about the distribution of the 

delivery probabilities I also plotted the empirical cumulative distribution function only 

for node pairs with non-zero delivery ratio. Again because the results we quite similar for 

the different rates and also for large or small packet size, the CDF for 1Mbit/s is only 

presented. The CDF is shown in figure 11. 

The authors of [4] observed that intermediate loss rates (and therefore delivery ratio) 

dominate the distribution of the delivery probabilities of all node pairs. They concluded 

that multi-path fading could be the main reason for the large number of links with 

intermediate loss rates. By arbitrarily defining a loss rate as intermediate if the delivery 

probability for that link is between 30% and 70%, we can see in figure 11 that only 20% 

of all the active node pairs have intermediate loss rates. Therefore we can assume that the 

“neighbor” abstraction is roughly valid for TikNet testbed. Although this comes in 

contradiction with the results for Roofnet presented in [4] it can be explained if we 

consider that TikNet is an indoor environment and Roofnet is an outdoor environment. 

Indoor environments have substantially lower values of delay spread (time difference 

between first and last path) and therefore the effect of multi-path fading is less 

pronounced in such an environment. 

Some experimental 802.11 measurements suggest that “neighbor” abstraction holds [3, 

19] while others do not [4]. In a wireless environment where “neighbor” abstraction 

could be a reasonable assumption, traditional routing with minimum hop-count as a 

metric could perform quite well. The reason is that minimum hop-count routing is based 

on the concept that if the small “HELLO” packets can reach a node, that link has a rather 
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good delivery ratio (otherwise it would have zero delivery ratio). That also means that it 

would be able to sustain communication with the two nodes exchanging data packets. 
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Figure 11 Cumulative distribution function of delivery probability for all node pairs 
in TikNet (1Mbit/s, small packet size, 30mW) 

 

3.3.3 Interference from other 802.11 sources 

For completeness of the wireless characterization of the TikNet testbed I measured the 

external interference from other 802.11 sources. In the G-floor of the ETZ building (and 

in the floors above and below) there are about 4 802.11 access points that belong to the 

ETH public wireless network transmitting at various frequencies. The measurements 

consider only the external 802.11 traffic in channel 3 (the channel the testbed is 

operating). In order to be representative for the main experiments, I also measured the 

interference during late night hours.  

The procedure that I followed is the following: All the nodes were set in monitor mode 

operating at channel 3 (2.422 GHz) and captured the ongoing 802.11 traffic for 300sec. 

The dump files were afterwards processed offline and I extracted the traffic that is due to 

beacons and the data traffic. The values are averaged for all TikNet nodes within an 

interval of 1 second and are tabulated in table 1. The standard deviation is reported in the 

parentheses. 

4 data packets per second and 13 beacon packets per second are not considered an 

important interference factor that could alter substantially the outcomes of the other 
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experiments. In [4] we can see that for Roofnet the external 802.11 interference is even 

higher. Therefore, operating at channel 3 and measuring during late night hours is 

justified. 

 

Channel Data Beacons 

3 
4 packets/s 

(±9) 

13packets/s 

(±21) 

Table 1 Data and beacons from other 802.11 sources 
averaged for all TikNet nodes 

 

4. Evaluation of routing metrics on the testbed 

Building on the understanding of the wireless behavior of TikNet testbed, this section 

addresses the issue of routing metrics for wireless networks and their performance on the 

testbed. More specifically, I focus on two well known metrics, the minimum hop-count 

metric and the ETX metric, and compare their performance under different scenarios. 

Another presentation and comparison of different routing metrics is also available in [19]. 

4.1 Introduction to routing metrics for wireless networks 

Before describing the various routing metrics, it seems appropriate to remind that a link 

metric is simply a weight assigned to each link that characterizes its capability to sustain 

direct communication between two nodes. On the other hand, a path metric is the 

combination of the metrics of all the paths that constitute the specific path.  

4.1.1 Minimum hop-count metric 

The simplest and most commonly used by existing ad hoc routing protocols metric is the 

minimum hop-count metric. As already mentioned in 3.3.2, routing with minimum hop-

count as a metric is based on the assumption that “neighbor” abstraction (links either 

work well or don’t work at all) is valid for wireless networks. This metric does not take 

into account the loss characteristics of the link or any other information. All links that can 

exchange routing packets have weight 1 and are equivalent. There is no possible way to 

distinguish them by means of link delivery probability or exposed interference. The link 

quality is binary and all paths created out of this metric have minimum number of hops.  

An obvious advantage of minimum hop-count metric is its simplicity. It does not require 

any probing or measurements and it can be easily implemented. On the other hand, 

minimum hop-count is proven to have many disadvantages as well. Minimizing the hop 

count maximizes the distance traveled by each hop. The greater the distance, the lower 

the signal strength is and consequently the higher the loss rate. Even if the best route is 

that of minimum hops, in a dense network there may be many routes with the same 

minimum length and the metric simply can not distinguish between them. The selection is 

random and it is likely to be non-optimal. Finally, minimum hop-count does not take into 

account the asymmetry between the forward and reverse delivery ratios of a node pair. 
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4.1.2 Expected Transmission Count (ETX) metric 

The ETX metric was proposed in [7]. It stands for Expected Transmission Count and its 

design goal is to find paths that minimize the expected number of transmissions 

(including retransmissions) required to deliver a packet from its origin to its destination. 

It predicts the number of retransmissions based on per-link measurements of packet loss 

rate in both directions of each wireless link. The ETX of a path is the sum of the link 

metrics. By minimizing the number of retransmissions it tries to find paths with high 

throughput by distinguishing between different loss rates.  

If the measurement-based probabilities of successful transmissions in the forward and 

reverse direction of a link are df , dr respectively then the ETX of a link [7] is  

rf dd
ETX

×
=

1
 

The forward delivery ratio, df , is the measured probability that a data packet successfully 

arrives at the destination; the reverse delivery ratio, df, is the measured probability that 

the ACK arrives at the sender.  

EXT measures the delivery ratios between two nodes by probing. Each node broadcasts 

small probes at a predetermined rate (every 1 sec in Grid Click implementation [7, 12]). 

Because broadcast packets do not require ACK or retransmission the loss rate of the 

broadcast probes is the actual loss rate. Each probe also carries information about probes 

received from other neighbors. Each node keeps track of the probes that it received 

during the last 10 seconds and computes the probability of successful reverse 

transmission. The information in each probe packet is used to calculate the probability of 

successful forward transmission.  

ETX’s main advantage is that is takes into account both directions of a direct link and 

thus it can cope with link asymmetry. It is also immune to self-interference [19] because 

it does not measure delay. More explicit analysis of the ETX metric is presented after the 

experimental results of this section. 

4.2 Metric performance with DSDV 

4.2.1 Experimental setup 

The wireless cards for the following measurements were configured to send at 1Mbps, 

Ahdemo mode and with RTS/CTS turned off. The transmit power is set at 30mW. I use 

two different packet sizes, a small one of 256bytes (including UDP header) and a large 

one of 1160bytes.  

Each data packet when transmitted consists also of 160 additional bytes (IP header, Grid 

encapsulation, LLC, 802.11 header, 802.11b physical layer header). An 802.11b ACK 

packet takes 304 µs to transmit, the inter-frame gap is 60 µs (DIFS+SIFS), and the 

minimum expected back-off time is 310 µs, resulting in a total of 2,754ms for every 

small data packet and 11,234ms for every large data packet. The above values give a 

maximum throughput of 250 small unicast packets per second and 89 large unicast 

packets per second over a loss-free link. 
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Each experiment presented in this section lasts about 200min. Two iterations of each 

experiment, one for minimum hop-count and another one for ETX are called a Run. I 

have enumerated all the sets of experiments as Run 1, Run 2, etc. depending on the 

transmit power and packet size configuration of the experiment. Within the 200min of an 

experiment each node transmits to all other nodes (including itself). All node pairs are 

covered in turn. The sending node sends UDP data packets to his destination as fast as it 

can. The destination measures the rate at which the packets arrive.  

Before starting each experiment, the routing protocol runs for 3 or 4 minutes, long 

enough for it to stabilize. Also, as opposed to the procedure followed in [7], we didn’t use 

any snapshot of the routing tables. The routing tables were changing dynamically 

throughout the whole duration of experiment. 

4.2.2 DSDV throughput results 

Figure 12 compares the throughput CDFs of paths found by DSDV using minimum hop-

count and ETX for all node pairs. These data were collected when the wireless cards were 

transmitting with 30mW and the packet size was 256bytes (Run 1).  

Figure 12 shows that ETX manages to find better throughput paths only for 20% of all 

the possible pairs. In this small region that ETX outperforms minimum hop-count the 

throughput is very low. ETX is better for these low throughput paths mainly due to two 

reasons: 
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Figure 12 DSDV throughput CDF for ETX and minimum hop-count (30mW, 256-
byte packet) 
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i) ETX avoids links with great asymmetry. The analysis of the delivery ratios of 

the wireless links of the testbed presented in 3.3.1 showed that there are 

highly asymmetric links with good delivery ratio in one direction and zero 

delivery ratio in the other. Minimum hop-count does not take into account the 

bi-directional delivery ratios and thus can not estimate correctly the quality of 

a very asymmetric link, resulting in zero throughput for 10% of all possible 

paths. On the other hand, ETX avoids the highly asymmetric links and find 

paths with non-zero throughput where minimum hop-count does not succeed 

providing more connectivity to the network.  

ii) ETX also avoids communication grey zones. If two nodes that want to 

communicate are very far apart that the delivery ratio is very low, but 

nonetheless they manage to exchange some routing packets, it is said that the 

destination is in the grey zone of the source. Where minimum hop-count has 

no way of characterizing the link quality, ETX possibly identifies that these 

links are of very low quality and avoids them.  

However, apart from that small region of 20% of all the nodes, where throughput is quite 

low, minimum hop-count outperforms ETX. By operating at the usual transmit power of 

30mW the links of an indoor wireless testbed have pretty good delivery ratios (50% of all 

the active links have delivery ratio more than 85% - see figure 11). Also, as already 

mentioned in 3.3.2 there are not many links with intermediate loss rates. That is of course 

in favor of minimum hop-count as explained in 3.3.2.  

At the upper right corner of the figure one can also see the overhead of the DSDV routing 

packets and the overhead of the ETX probe packets. DSDV routing packets force the 

maximum throughput to be less than the theoretically predicted (250 packets /sec). 

Moreover, the throughput with ETX is slightly smaller than with minimum hop-count 

due to the overhead of the ETX probe packets. 

A more careful analysis of the data shows that the average throughput for all node pairs 

achieved by ETX and minimum hop-count is almost the same (107,8 packets/sec and 

107,4 packets/sec respectively). The main advantage of ETX is that it avoids link 

asymmetries. However, asymmetry can be addressed to some extent also with the link 

handshaking scheme proposed in [20]
2
. Although the link handshaking scheme can not 

discriminate between links with varying degrees of asymmetry, it is expected to improve 

minimum hop-count performance. It is also an improvement in the sense that it is a 

mechanism that does not introduce overhead through probing. Therefore, it is reasonable 

to expect that the average throughput achieved by minimum hop-count will increase even 

above the average throughput of ETX. Alternatively, in a rather illustrative way, one 

should expect less pair nodes with zero throughput at the lower left corner of figure 12. 

Using ETX as a metric in such a case becomes questionable.  

I repeated the experiment with the transmit power set to 30mW and the packet size set to 

1160bytes (Run 2). The results are similar to the results from Run 1 and are shown in 

figure 13. ETX still outperforms minimum hop-count for extremely asymmetric links and 

                                                 
2
 In this scheme, a node A only accepts route updates from a neighboring node B if B is advertising a direct 

route to A.  
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large number of hops although the packet size is larger. The mean throughput for ETX is 

again slightly better than the mean throughput of minimum hop-count metric. 
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Figure 13 DSDV throughput CDF for ETX and minimum hop-count (30mW, 1160-
byte packet) 

 

All the experiments in this section were repeated more than one times and the validity of 

the results was verified. 

4.2.3 Mobility scenario 

In the scenarios that I have considered so far, all the nodes were stationary. Although this 

would be true for community networks scenarios, in ad hoc wireless networks users are 

mobile. Therefore, I investigated the performance of DSDV when one node is mobile and 

compared the performance of minimum hop-count and ETX metrics. 

I moved in constant slow walking speed the mobile node (extra node) around the 

periphery of the G-floor through the main corridors, starting from a point near to node 8 

(see figure 1). During the whole experiment node 8 was sending UDP data to the mobile 

node at full rate (the data packet size was small - 256bytes payload). The experiment was 

performed only once and the results are presented in table 2. 
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Minimum 

hop-count 
ETX 

Throughput  
127,7 

packets/sec 

115 

packets/sec 

Table 2 ETX and minimum hop-count performance in a mobility scenario 

 

The throughput under minimum hop-count metric is 11% higher than the throughput 

under ETX metric. Also in [21] they observed that minimum hop-count metric performs 

better than ETX metric under mobility scenarios.  

As the receiver moves around the network, the ETX metric does not react sufficiently 

quickly to track the changes in the link quality. This must be a more general problem for 

all the approaches that try to measure a link quality, since they require some time to come 

up with a stable estimate for the link quality. ETX’s sliding window average mechanism 

makes the estimation of the link quality less responsive in time. This may lead ETX to 

report incorrect routing paths. On the other hand, minimum hop-count does not face such 

problems. It simply uses new links when they are discovered.  
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Figure 14 ETX and minimum hop-count performance for a mobile scenario 

 

Finally, analyzing the throughput time variation (see figure 14) I observed that although 

minimum hop-count performance reaches zero at some points where ETX manages to 

preserve the connectivity, its big advantage comes from the fact that it becomes aware of 

a good path pretty quickly (like a direct path), while ETX takes some time to discover it. 
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This is especially pronounced in the first 20 seconds and the last 50 seconds of the 

experiment where minimum hop-count finds a good path (the direct path in this case 

since the movement pattern starts and ends near the sender – node 8) very quickly, in 

contrast with ETX that can not quickly adapt and find the good (direct in this case) path. 

4.2.4 Accuracy of the transmissions predicted by ETX 

As a last set of experiments I wanted to test the accuracy of the predictions made by ETX 

for the transmissions required by one packet to reach it destination. Experiments were 

conducted only for links (1-hop) and not paths.  

During this experiment
3
 (DSDV is always the routing protocol in use), the sender was 

transmitting packets at the maximum rate to the receiver. The receiver captured in 

monitor mode all the incoming packets and their 802.11 headers. In that way I could 

capture the exact number of retransmissions and through this value I calculate the actual 

number of transmissions averaged for every second. I also “sampled” the routing table of 

the sender every 1 second and extracted the ETX metric value for each second. 

Remember that ETX can potentially change value every 1 second - the inter-probe time.  
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Figure 15 Actual transmissions vs transmissions predicted by ETX (256-byte 
packet, short distance) 

                                                 
3
 One has to keep in mind that this analysis is not complete and was done only to acquire an intuition about 

the conditions under which ETX can have a wrong estimation. More experiments that would also include 

multiple hops are a next step towards the statistical characterization of the ETX prediction accuracy. 
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Figure 16 Actual transmissions vs transmissions predicted by ETX (256-byte 
packet, large distance) 

 

The experiment was conducted one time for short and one time for large distance 

between the sender and the receiver (figure 15, 16). The communication is direct though 

in both cases. In that way we wanted to introduce more actual retransmissions into the 

link and check if ETX is able to correctly predict them of follow the raise.  

It is shown that in this special case although the link is pretty stable and with a good 

delivery ratio, when we increase the distance between the two nodes, ETX incorrectly 

predicts more transmissions than the actual ones. The raise in the average for the actual 

retransmissions is only 1.06 whereas for the transmissions predicted by ETX is 1.37. The 

exact results of these experiments are summarized in table 3. 

 

 
Transmissions 

predicted by ETX 

Actual 

transmissions 

Short distance 1.11 ± 0.1 1.05 ± 0.01 

Large distance 1.58 ± 0.02 1.15 ± 0.02 

Table 3 Actual transmissions and transmissions predicted by ETX 

 

These findings do not represent a general rule or trend but they do show that there are 

cases where ETX is not able to predict the link quality with a high degree of accuracy. 

From a physical layer point of view, the dynamics of the wireless channel make the 
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channel stochastic and very unpredictable and by sampling with a rate of 1 packet per 

second one can not have a good estimator of the link quality. From an engineering point 

of view, ETX might be able to make some quality differentiation between links that is 

accurate for e.g. very asymmetric links but can only make roughly estimates about the 

quality of other links.  

 

5. Conclusion 

Experimenting with real-world hardware might be a challenge in terms of involving too 

many parameters that have to be considered but it also reveals behaviors that are 

sometimes surpising and are not taken into account in the simulations; like link delivery 

ratio asymmetry or intermediate loss rates dominating the distribution of the link delivery 

ratios. One designing new routing metrics or new routing protocols should consider 

coping with link asymmetry and intermediate delivery ratios (if they exist). For example, 

if “neighbor” abstraction is not a valid assumption for ad hoc wireless netwroks, then one 

should avoid designing routing protocols through a graph-theoretic approach. ETX 

design manages to overcome some of the already mentioned problems that affect 

minimum hop-count metric at a great deal. One the other hand ETX is based on a probing 

mechanism and remains a non accuarate estimator of the link quality. I believe that a 

more clever design based also on the advantages of ETX (e.g. avoiding link asymmetry 

or grey zones) is possible. Finally, coping with mobility through any probing mechanism 

seems not enough.  
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